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Summary 

Air flowing past a solid surface will stick to that surface. This phenomenon - caused by viscosity - is a 

description of the no-slip condition. This condition states that the velocity of the fluid at the solid 

surface equals the velocity of that surface. The result of this condition is that a boundary layer is 

formed in which the relative velocity varies from zero at the wall to the value of the relative velocity at 

some distance from the wall. 

The goal of the present research is to measure the velocity profile in the thin boundary layer of a flat 

plate at zero angle of attack at Reynolds numbers up to 140,000, installed in the Silent Wind Tunnel at 

the University of Twente. The measured velocity profiles are compared with results from theory. 

In the present study this boundary layer is investigated analytically, numerically and experimentally. 

First, the boundary-layer equations are derived. This derivation and the assumptions required in the 

derivation are discussed in some detail. 

Second, the boundary-layer equations are solved analytically and numerically for the case of laminar 

flow. The analytical similarity solution of Blasius is presented. Then approximation methods are 

carried out and a numerical approach is investigated. These calculations showed that the numerical 

approach yields velocity profiles that are very similar to Blasius’ solution. 

Third, velocity measurements have been carried. Hot Wire Anemometry is used to measure the 

velocity profile inside the boundary layer along the flat plate. A flap at the trailing edge of the flat 

plate is used to ensure that leading edge of the plate is at zero degree angle of attack. From the 

experiments it is concluded that the measured velocity profiles fit Blasius’ solution. Therefore Hot 

Wire Anemometry can be used for measuring the velocity distribution within the boundary layer.   
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1.  Introduction 

Since the physical description of the boundary layer by Ludwig Prandtl in 1904, there have been many 

developments in this field. There are improved analytical relations for certain situations and 

mathematical models, for example implemented in computational methods. However, there is not as 

much research done on the manipulation of the boundary layer since the 'discovery' of the boundary 

layer. This can be of interest for studies on efficiency or drag of wings of aircrafts or blades of wind 

turbines. 

The problem addressed in the present research is to carry out experiments on boundary layers. Such 

experiments are needed to verify the positive effect that is inflicted by techniques to manipulate the 

boundary layer. In practise, it is still difficult to measure the velocity profiles within the boundary 

layer. The present study will compare results from the theory of boundary layers with the results from 

experiments in the most simple setting; a flat plate at zero degrees of incidence at modest Reynolds 

numbers. In the wind tunnel of the University of Twente measurements have been carried out on the 

velocity profile within the boundary layer. These measurements will be compared with the relations 

from theory to assess the accuracy at the measurements.  

In short, the goal of this study is to measure the velocity profile in the boundary layer of the flat plate 

and compare the results with the results from theory.   
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2  Boundary Layer 

2.1  Prandtl’s boundary layer [1] 

Early in the 20
th
 century the theory of the mechanics of fluids in motion had two seemingly 

compelling fields of study. On one hand there was hydrodynamics – the theory that described the flow 

over surfaces and bodies assuming the flow to be inviscid, incompressible and irrotational – and on the 

other hand there was the field of hydraulics which was a mainly experimental field concerning the 

behaviour of fluids in machinery like pipes, pumps and ships. Hydrodynamics appeared to be a good 

theory for flows in the region not close to solid boundaries; however it could not explain concepts like 

friction and drag. Hydraulics did not provide a solid base to design their experiments since there was 

too little theory. Ludwig Prandtl provided a theory to connect these fields. He presented his boundary 

layer theory in 1904 at the third Congress of Mathematicians in Heidelberg, Germany. A boundary 

layer is the thin region of flow adjacent to a surface, the layer in which the flow is influenced by the 

friction between the solid surface and the fluid [2]. The theory was based on some important 

observations. The viscosity of the fluid in motion cannot be neglected in all regions. This leads to a 

significant condition, the no-slip condition. Flow at the surface of the body is at rest relative to that 

body. At a certain distance from the body, the viscosity of the flow can again be neglected. This very 

thin layer close to the body in which the effects of viscosity are important is called the boundary layer. 

This can also be seen as the layer of fluid in which the tangential component of the velocity of the 

fluid relative to the body increases from zero at the surface to the free stream value at some distance 

from the surface. 

2.2  Laws of conservation 

While nobody will question the genius of Prandtl, he did not write down his boundary layer theory 

after he saw the boundary layer on an apple falling from a tree. Prandtl started with two important 

physical principles; the conservation of mass and that of momentum. First we will derive the 

continuity equation and after that the Navier-Stokes equation. 

2.2.1  Continuity Equation 

The continuity equation describes the conservation of mass. We will start with the definition of the 

mass   within a control volume  : 

      ∫    ⃗     

    

 (2.1) 

 
Figure 2.1 Schematic view of control volume 

 

𝑛 ⃗  

𝑢 ⃗ 𝜕𝑉 

𝜕𝑉 𝑡  

𝑉 𝑡  



P. Puttkammer BSc Report University of Twente 
Engineering Fluid 

Dynamics 
June 2013 - 4 - 

 

Then the conservation of mass leads to the equation that the time-rate of change of the mass inside 

     plus the flux of the mass out of      through    should be: 

 
 

  
∫    

    

 ∫     ⃗    ⃗      ⃗   

  

   (2.2) 

Using the Leibniz-Reynolds transport theorem, since the control volume V(t) is moving in 3D space: 

 
 

  
∫    

    

 ∫
  

  
   ∫    ⃗     ⃗   

         

 (2.3) 

And with the notion of the conservation of mass: 

 ∫
  

  
   ∫    ⃗   ⃗   

         

   (2.4) 

Now we want to transform this equation from the integral conservation form to the partial differential 

form. For this we use Gauss’ divergence theorem which states: 

 ∫    ⃗   ⃗    

    

∫   ⃗   ⃗   

     

 (2.5) 

When we substitute this in equation (2.4), the equation will become: 

 ∫
  

  
   ∫    ⃗     ⃗    

        

 ∫ (
  

  
    ⃗     ⃗  )    

    

  (2.6) 

This means that, because      is an arbitrary control volume, the integrand needs to be zero 

everywhere, and then the integral conservation equation is transformed into a differential equation; the 

continuity equation: 

 
  

  
    ⃗     ⃗             ⃗      (2.7) 

2.2.2  Navier-Stokes Equation 

The continuity equation describes the conservation of mass in differential form. Similarly, the Navier-

Stokes equation describes the conservation of momentum. Here we will start with Newton’s second 

law (with the assumption of mass conservation): 

  
   

  
 

 

  
             (2.8) 

This states that the change of momentum of a volume (
 

  
     ) is equal to the force acting on that 

volume. First we specify the change in momentum: 

 
 

  
∫    ⃗   

    

 ∫    ⃗     ⃗    ⃗      ⃗   

  

 (2.9) 

Second we will specify the force. There are two contributions to the force on the volume, the force      ⃗   

acting on the bounding surface of      and force      ⃗  acting at each point within the volume. 
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      ⃗   ∫  ⃗   ∫  ̿  ⃗   

          

 (2.10) 

      ⃗   ∫   ⃗  

    

 (2.11) 

So the integral conservation equation of momentum is: 

 
 

  
∫    ⃗   

    

 ∫    ⃗     ⃗    ⃗      ⃗   

  

 ∫  ̿  ⃗   

     

 ∫   ⃗  

    

 (2.12) 

Again using the Leibniz-Reynolds transport theorem: 

 
 

  
∫    ⃗   

    

 ∫
 

  
   ⃗    ∫    ⃗   ⃗     ⃗   

         

 (2.13) 

Substituting this equation in equation (2.12), we obtain the conservation of momentum in integral 

form: 

 ∫
 

  
   ⃗    ∫    ⃗    ⃗   ⃗    

         

 ∫  ̿  ⃗   

     

 ∫   ⃗  

    

 (2.14) 

Again with Gauss’ theorem (equation (2.5)) we transform the surface integrals into volume integrals, 

obtaining for arbitrary   the differential form of the conservation of energy, also known as the Navier-

Stokes equation: 

 
 

  
   ⃗     ⃗     ⃗   ⃗      ⃗   ̿    ⃗         ⃗      (2.15) 

2.3  Boundary-layer Theory [2] 

We have described the continuity and Navier-Stokes equations. These are the starting point of 

Prandtl’s boundary-layer theory. We will describe steady, incompressible flow. Steady means that the 

flow at a particular position in space will not change in time. In other words, when taking a picture of 

for example the flow field around a car (imagine the flow would be visible), the picture will look the 

same at time   and time     , for arbitrary   . Incompressible flow means it is not possible to 

change the density of air. Also we assume to have a 2-dimensional flow within the (x,y) plane. And 

the last assumption is neglecting the effect of gravity, which will have little influence on the flow 

inside the boundary layer. 

Steady flow 
  

  
   two dimensional               

incompressible flow            no gravity  ⃗    ⃗  

These assumptions will change both the continuity equation as well as the Navier-Stokes equations. 

The continuity equation becomes: 

 
  

  
    ⃗     ⃗      ⃗    ⃗     (2.16) 

The Navier-Stokes equations become upon taking   out of the differentials and setting   to zero: 
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     ⃗    ⃗   ⃗      ⃗   ̿    (2.17) 

Both terms can be rewritten. First we will use the chain rule of differentiations to transform the first 

term: 

    ⃗    ⃗   ⃗   [   ⃗    ⃗  ]  ⃗  (  ⃗     ⃗ )  ⃗          ⃗    ⃗                   (2.18) 

  ̿     ̿     ⃗   ̿  (2.19) 

For a Newtonian fluid, the viscous stress tensor holds: 

  ̿   [   ⃗    ⃗   (   ⃗    ⃗  )
 
]   [   ⃗    ⃗  ]  ̿ (2.20) 

For incompressible flow  [   ⃗    ⃗  ]   . Furthermore for incompressible flow and           , 

equation (2.18) transforms in: 

    ̿     ⃗   ̿     ̿   (   ⃗     ⃗ )  ⃗  (2.21) 

This leads to the following representation of the Navier-Stokes equation: 

  (  ⃗     ⃗ )  ⃗     ⃗    (   ⃗     ⃗ )  ⃗    ⃗  (2.22) 

Now we expand the equation for       and dividing it by  : 

𝒊=1  
  

  
  

  

  
  

 

 

  

  
  (

   

   
 

   

   )      
 

 
                         

(2.23) 

𝒊=2  
  

  
  

  

  
  

 

 

  

  
  (

   

   
 

   

   ) 

Before continuing with the derivation of the boundary layer equations, we need to discuss another 

important assumption. This assumption is that the boundary layer is very thin in comparison with the 

length of the body. That is 

 
 

 
   (2.24) 

 
Figure 2.2 Schematic view of flat plate with boundary layer[2] 

This important assumption reduces the Navier-Stokes equations yet again. Prandtl used the concept of 

dimensional analysis from which he found the similarity parameters. Similarity parameters are used 

for flows for which streamline patterns are geometrically similar and distributions of dimensionless 

forces, temperatures and velocities are the same when plotted against nondimensional coordinates. 

That is the case in this particular problem. Let us introduce the following dimensionless variables: 

    
 

 
    

 

 
    

 

  
    

 

  
    

 

  
  (2.25) 

Substituting these parameters in in the continuity equation we obtain: 
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   (2.26) 

Assuming 
   

    and 
   

    to be of the same order, in order to balance the two terms    
 

 
   . With this 

it follows: 

 
   

   
  

   

   
   (2.27) 

Substituting the scaling in the x-momentum equation of the Navier-stokes equation we get: 

 
  

 

 
  

   

   
 

    

 
  

   

   
  

  

  

   

   
    (

 

  

    

    
 

 

  

    

    ) (2.28) 

Simplifying this equation yields: 

   
   

   
 

   

   
  

   

   
  

  

   
 

   

   
 

 

   
(
 

 
)
 

((
 

 
)
     

    
 

    

    
) (2.29) 

Since we set 
   

   
  , the other terms in the equation should be of the same order. This implies that 

      
 . Then the equation reads: 

   
   

   
   

   

   
  

   

   
 

 

   
(
 

 
)
 

((
 

 
)
     

    
 

    

    
) (2.30) 

We assumed that 
 

 
  , so this implies also that (

 

 
)
 
  . This has the consequence that the second 

term between the bracket will be much more dominant than the first term ( |
   

   |  |
   

   | ), so we can 

neglect the first term. Furthermore we see that the term in front of the brackets have to be of order one, 

otherwise the equation makes no sense since all the other terms in the equation are order one. 

 
 

   
(
 

 
)
 

      
 

 
 √(

 

   
)  

 

√   
 (2.31) 

Now we make another assumption for the boundary layer theory; the Reynolds number is large 

enough to scale with    So the term in front of the brackets has the same order of magnitude as the 

other terms in the equation, since: 

 
 

   
 

 

   
    (

 

 
)
 

     (2.32) 

  The same analyse can be done for the y-momentum equation to obtain: 

   
   

   
   

   

   
  (

 

 
)
    

   
 

 

   
(
 

 
)
 

((
 

 
)
     

    
 

    

    
) (2.33) 

In this equation we notice that the         has order     . Since     is very small, this implies that 

the         term is more dominant than the other terms in the equation. Therefore, we can conclude 

that the y-momentum equation for the boundary layer will become: 

 
   

   
   (2.34) 

Transforming the equations back in terms of dimensional variables, we obtain the following equations: 

 
  

  
 

  

  
   (2.35) 
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   (

   

   ) (2.36) 

 
  

  
   (2.37) 

The result for the y-component of the momentum equation tells us that the pressure gradient in vertical 

direction is zero, so the pressure in vertical direction in the boundary layer is constant. This also tells 

us that the pressure on the outer edge of the boundary layer is imposed directly to the surface of the 

body. 

            (2.38) 

Now we have the boundary layer equations for a flat plate at angle of attack of zero incidence in 2D 

steady, incompressible flow without effects of gravity or other volumetric forces.  

 
  

  
 

  

  
    

  

  
  

  

  
  

 

 

   

  
   (

   

   )  
   

  
     (2.39) 

The above equations are subjected to the boundary conditions at the solid surface, i.e. the no-slip 

condition. The no-slip condition implies that there is no velocity in the x- and y-direction at the surface 

of the body. Furthermore at the edge of the boundary layer the velocity in x-direction is the identical to 

the free stream velocity in front of the plate. So the three boundary conditions are: 

                                (2.40) 

Note that due to the last boundary condition and the fact that at the edge of the boundary layer the 

change of velocity in y-direction is zero, i.e. 
  

  
           

   

   
         , the x-

component of the momentum equation applied at the edge of the boundary layer reduces to: 

   

   

  
  

 

 

   

  
 (2.41) 
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3  Derivation of solution boundary-layer equations  

3.1  Analytical solutions 

3.1.1  Blasius’ Equation 

In general, the laminar boundary layer equations will form a system of partial differential equations 

which can, in principle, be solved numerically. But it is also possible in particular conditions to work 

out the solution analytically in certain cases. In our case with an incompressible flow over a flat plate 

at zero incidence we can derive the Blasius solution. The plate starts at     and extends parallel to 

the x-axis and will have a semi-infinite length. The free stream velocity will be constant. It follows 

from equation (2.41) that a constant    will result in a constant pressure at the edge of the boundary 

layer. This will result in the x-component of the momentum equation for the boundary layer equations:  

  
  

  
  

  

  
   (

   

   )  (3.1) 

The basic idea for obtaining an analytical result is to reduce the boundary layer equations to ordinary 

differential equations. To achieve this we first introduce a stream function       . We need to find a 

possible stream function which satisfies both the continuity equation and the Navier-Stokes equation. 

For satisfying the continuity equation the stream functions is defined such that: 

        
       

  
         

       

  
 (3.2) 

Now we also need to satisfy the x-component of the momentum equation. So we substitute the stream 

function in (3.1). This yields: 

 
  

  

   

     
 

  

  

   

   
  (

   

   ) (3.3) 

In this case there is no length scale in the flow problem: the flat plate is semi-infinite and in y-

direction flow domain extends to do. This suggests the possibility of a similarity solution. For a 

similarity solution, a solution that depends on one variable only, such that the partial differential 

equation reduces to an ordinary differential equation, we want to find the   to depend on a single 

parameter   only. Therefore we define: 

                               (3.4) 

With P and Q to be determined such that equation (3.3) becomes an ordinary differential equation not 

depending on the x-coordinate. The terms in the x-momentum equation are successively: 

 
  

  
                     (3.5) 

 

 

  

  

  
                                 

                                             

(3.6) 

 
  

  
                                        (3.7) 

 
   

   
             (3.8) 

 
   

   
              (3.9) 

Substituting these expressions in equation (3.3) gives: 
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                                               (3.10) 

This results in: 

                 
 

 
            (3.11) 

For a similarity solution, equation (3.11) should be independent of  . So this means that the power of 

x should be zero: 

          (3.12) 

But there are two unknowns, so we need a second expression for P and Q in order to obtain the 

solution. For this we consider the boundary conditions, equation (2.40). The first boundary condition 

is         . Substituting this with the new parameters: 

        
       

  
               (3.13) 

A nor B will not be zero, this is a trivial solution. So this means that        . The second boundary 

equation is         . This results in: 

         
       

  
                                 (3.14) 

Since         already, it follows that       . The last boundary condition is          . 

When we substitute this we obtain: 

        
       

  
                (3.15) 

For the same reason at equation (3.12), we can state this boundary condition should be independent of 

x, so that: 

       (3.16) 

We now have two equations - (3.12) and (3.16) - for P and Q. So we find: 

   
 

 
    

 

 
 (3.17) 

We still need an expression for A and B. Considering equation (3.11) we choose for convenience: 

  
 

 
   (3.18) 

And from equation (3.15) we set: 

                       (3.19) 

Equations (3.18) and (3.19) give us the opportunity to find the parameters A and B: 

   √      √
  

 
 (3.20) 

Substituting these parameters in equation (3.11) and we obtain the Blasius equation for     : 
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                   √                √

  

  
   (3.21) 

Note that   and   are dimensionless. The three boundary conditions required for the third-degree 

ordinary differential equation to solve are: 

                        (3.22) 

Let us look more closely to this result. We went from the partial differential equation of the x-

momentum, equation (2.39), to an ordinary differential equation for     . Since we found the stream 

function, we can use the definition of the stream function of equation (3.2) to obtain the velocity of the 

flow in x-direction : 

        
       

  
                     (3.23) 

For the velocity of the flow in y-direction it follows: 

         
       

  
                   

 

 
     

            (3.24) 

This means that since the Blasius solution is only depending on     , the velocity in x-direction   

depends on   only. The vertical component of the velocity is a function of    times a scaling factor 

proportional to    
    

. 

3.1.2  Shooting method 

To solve the Blasius equation, i.e. a third-order nonlinear ordinary differential equation, we rewrite the 

equation to three first-order ordinary differential equations. We then have three so-called initial value 

problems which can be solved. The Blasius equation is rewritten in such a way that it is an equation 

involving only a first-derivative: 

 
  

  
                                      (3.25) 

 
   

  
                                                  (3.26) 

 
    

  
  

 

 
                              (3.27) 

The problem now is the missing third initial value       . But since we know        , we can use 

the shooting method. The shooting method is a procedure using a guess for the third, missing, initial 

value, carrying out the calculations and comparing the result with the result for       which should be 

       . To solve the initial value problem use is made of the Euler forward method. The goal of 

this technique is to approximate the first derivative in the differential equation. It is based on finding 

the next value of a graph by adding the old value plus the derivative of the curve at the old value times 

an arbitrary step size. This numerical method works well for small enough chosen step sizes. So 

Euler’s forward method for the three differential equations above results in: 

               (3.28) 

                  (3.29) 

             
 

 
         (3.30) 
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3.1.3  Results 

3.1.3.1  Velocity profile for flat plate 

Using the guess for        we can evaluate the three equations above and repeat this for         up 

to large values of   until       does not change anymore. After this we check whether the result of the 

Euler forward method for high values of   gives              . If not, we choose another value 

for       , repeat the calculations etc.. Using the shooting method we find: 

              (3.31) 

The solutions for the components of the dimensionless velocity components in x- and y-direction are 

plotted in figure 3.1 and so are the functions      and       . Consider the plot of       which 

corresponds to the distribution of the dimensionless x-component of the velocity;   is dependent on   

and  . So at two different  -positions along the flat plate the velocity profile is the same. This means 

that in order to have the same value of  ,   needs to compensate the change in  . So along the plate 

the boundary layer will grow in vertical direction due to the increasing   in such a way that the 

distribution remains identical in terms of  . Such a result is called a self-similar solution.   

 
 

  
Figure 3.1 Blasius’ solution for the self-similar velocity distribution in a laminar boundary layer along a flat plate at zero angle of 

attack 
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3.1.3.2  Boundary layer thickness 

When we examine the plot for    against   we choose the   for which         . We assume that at 

this location the edge of the boundary layer has been reached. In our calculations      reaches      

at      . With this information we find: 

   √
  

  
          

    

√   
  

   

√   
(
 

 
)

 
 
  (3.32) 

 

 
    

 
 

   

     
 
 

(
 

 
)

 
 
 (3.33) 

Let us examine this result. We find that the boundary layer thickness is proportional to the square root 

of the local dimensionless coordinate and inversely proportional to the square root of the Reynolds 

number    . Therefore, the boundary layer thickness is proportional to the square root of the x-

position along the surface of the plate. This leads to the conclusion that the boundary layer over a flat 

plate grows parabolically with the distance from the leading edge, i.e. like (
 

 
)

 

 
 , and that with 

increasing Reynolds number     the boundary layer will be thinned.  

3.1.3.3  Skin-friction coefficient[3] 

More results can be derived from this approach of solving the Blasius equation. Let us introduce the 

skin friction of the flat plate. Skin friction arises when a fluid flows over a solid surface. The fluid is in 

contact with the surface of the body, resulting in a friction force exerted on the surface. The friction 

force per unit area is called the wall shear stress. The shear stress for most common fluids, i.e. so-

called Newtonian fluids, depends on the dynamic viscosity and the gradient of the velocity: 

     
  

  
|
   

 (3.34) 

Since we know                 from equation (3.23) we can rewrite the equation for the wall 

shear stress, using: 

 
  

  
   

      

  

  

  
      √

  

  
  (3.35) 

As: 

     
  

  
|
   

    √
  

  
          

    
          (3.36) 

The dimensionless skin-friction is called the local skin-friction coefficient. This is defined as: 

    
  

 
    

 
 

 

     
 
  
        

 

     
 
  

(
 

 
)
 
 
 
         (3.37) 

From the shooting method we found for        the numerical value of      , so with this, equation 

(3.37) transforms in: 
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(
 

 
)
 
 
 
 (3.38) 

So the skin friction coefficient decreases as (
 

 
)
 

 

 
 with increasing distance from the leading edge. For 

the skin friction coefficient of the entire plate we use the following equation: 

 
   

 

 
∫     

 

 

 
     

 √
  
 

∫   
 
    

 

 

     

     
 
 

 
(3.39) 

This shows that with increasing     the skin friction coefficient of the plate decreases. 

3.1.3.4  Displacement thickness 

This frequently used boundary layer property describes the difference between the case with 

hypothetical flow over a flat plate without a boundary layer and the actual flow with a boundary layer. 

 
Figure 3.1 Schematic view explaining the influence of the boundary layer on external streamlines [2] 

Because of the presence of a boundary layer, the streamlines passing through point    are deflected 

upward over a distance   . We can calculate this distance by equating the mass flow between the solid 

surface and the external streamline at point 1: 

  ̇  ∫       
  

 

 (3.40) 

And similarly at point 2: 

  ̇  ∫     
  

 

      
  (3.41) 

The mass flow through the surface at point 1 and through the surface at point 2 are equal since the 

streamline passes from point 1 to point 2. This means: 

 ∫       
  

 

 ∫     
  

 

      
  (3.42) 

We obtain from this equation the displacement thickness   : 

       
∫            
  

 

    
 ∫ (  

  

    
)  

  

 

 (3.43) 

We now return to the situation for an incompressible flow (                 and the velocity 

at the edge of the boundary layer is      . For this situation the displacement thickness becomes: 
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       ∫ (  
      

  
)  

  

 

 (3.44) 

We can transform this equation in terms of the transformed variables   and        from equation 

(3.21) and (3.23). This results in: 

    √
  

  
        √

  

  
    √

 

   
 

   

√   
 (3.45) 

       
 

  
 (3.46) 

Substituting this in equation (3.44), results in: 

       
 

√   
∫ (       )  

  

 

 
(        ) 

√   
              (3.47) 

When we consider the numerical result of         , we see that for all values above       the 

result is 1.727. So when we reach the point of the edge of the boundary layer                  . 

This results in an equation for the displacement thickness: 

       
      

     
 
 

               
     

 
 

     

     
 
 

(
 

 
)

 
 
 (3.48) 

We see that also the displacement thickness is proportional to the square root of the x-position. This 

agrees with the definition of the displacement thickness, it is impossible to have a growing boundary 

layer and a decreasing displacement thickness. Now we can express the boundary layer thickness in 

terms of the displacement thickness: 

 
  

 
 

      

√   
    

√   

                          (3.49) 

This result tells us that the displacement thickness is about 3 times smaller than the boundary layer 

thickness itself. 

3.1.3.5  Momentum Thickness 

Another frequently used characteristic of a boundary layer is the momentum thickness. This property 

gives us an index proportional to the decrement of the flux of momentum due to the presence of the 

boundary layer. We will derive the momentum thickness with the help of figure 3.2. 

 
Figure 3.2 Schematic view explaining the definition of momentum thickness [2] 
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 We consider a mass flux across a segment    of        . Then consider the momentum flux 

(mass flux times the velocity) at segment    with and without the presence of the boundary layer. 

First the momentum flux with the boundary layer: 

               (3.50) 

And then without the boundary layer: 

                   (3.51) 

Integrating over the boundary layer, from   and    we obtain the total momentum flux. When we 

subtract equation (3.50) and (3.51) and take the integral, we obtain the total decrement in momentum 

flux: 

  ̇  ∫           
  

 

 (3.52) 

Now we assume that the missing momentum flux is the product of     
  and the height  , and 

compare these two definitions for the missing momentum flux due the presence of the boundary layer:  

     
    ∫           

  

 

  (3.53) 

We obtain from this equation the momentum thickness  : 

      
(∫           

  

 
 )

    
  

 ∫
  

    
 (  

 

  
)  

  

 

 (3.54) 

Again let us return to the situation where we have an incompressible flow (                 

and the velocity at the edge of the boundary layer is      . Then the momentum thickness 

becomes: 

      ∫
      

  
 (  

      

  
)  

  

 

 (3.55) 

Also here we will use the similarity variables   and       from equation (3.21) and (3.23). This results 

in: 

      
 

√   
∫      (       )  

  

 

 (3.56) 

The equation in the integral      (       ) cannot be integrated analytically. However, for       

      will not change anymore and will be equal to 1.0. The numerical result of the integral is      . 

So we obtain the momentum thickness in our case: 

      
      

     
 
 

            
    

 
 

     

     
 
 

(
 

 
)

 
 
 (3.57) 

So also the momentum thickness is proportional to (
 

 
)

 

 
. Therefore, also the momentum thickness 

grows with the square root of the x-position on the flat plate. The momentum thickness can be 

expressed in terms of the boundary-layer thickness and the displacement thickness: 

                              (3.58) 
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3.2  Approximation solutions 

The boundary layer equations are a set of partial differential equations which we have to solve to 

obtain results like the Blasius equation. In this chapter we will not obtain the exact solution, but we 

will approximate the solution of the boundary layer equations.  

3.2.1  Momentum-Integral Equation 

Approximation solutions of the boundary layer equations can be obtained from the Momentum-

Integral Equation in combination with making an educated guess for the velocity profile. First we will 

obtain the Momentum-Integral Equation[4]. We start with the boundary layer equations from equation 

(3.39) and the definition for the pressure distribution from equation (3.41) 
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(3.59) 

Let us rewrite the continuity equation in order to obtain the velocity in y-direction   inside the 

boundary layer: 

 
  

  
  

  

  
              ∫ ( 

  

  
)    

 

 

  
 

  
∫           

 

 

 (3.60) 

Where we used         . Here y is an arbitrary value. Also, we rewrite the x-momentum equation 

using (3.59) like: 

  
  

  
  

  

  
   

   

  
   (

   

   ) (3.61) 

Now substitute (3.60) in (3.61) in order to obtain: 

  
  

  
 

  

  
∫ ( 

  

  
)  

 

 

   

   

  
   (

   

   ) (3.62) 

Integrate both sides, with h an arbitrary location in the free stream where      and        : 

 ∫ ( 
  

  
 

  

  
∫   
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 ∫ ( (
   

   ))  
 

 

 (3.63) 

We can carry out the integral for the term on the right side of the equation: 

 ∫ ( (
   

   ))  
 

 

  (
  

  
|
   

 
  

  
|
   

)    
  

  
|
   

 (3.64) 

It follows from equation (3.34) that the partial derivative can be rewritten to obtain: 

     
  

  
|
   

   
  

  
|
   

 
  
 
  (3.65) 

Taking this into account the right side of equation (3.64)  yields: 

   
  
 

  
  
 

 (3.66) 

Returning to equation (3.63), we can rewrite the second term inside the integral with the method of 

integration by parts: 
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(3.67) 

Substituting equations (3.66) and (3.67) in equation (3.63), we get: 

 ∫ (  
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 (3.68) 

Now we need some more mathematical rewriting to derive the Momentum-Integral Equation:  
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(3.69) 

We recall the definitions of the displacement thickness and the momentum thickness: 

 

   ∫ (  
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   ∫           

  

 

 

(3.70) 

Now we have gathered all the information for the Momentum-Integral Equation. We will multiply 

equation (3.69)] with -1, and substitute equations (3.70), and we find the Momentum-Integral 

Equation for plane, incompressible boundary layers: 

 
 

  
   

        

   

  
 

  
 

 (3.71) 

3.2.2  Approximation velocity profile 

The Momentum-Integral Equation initially contains too many unknowns to solve the equation. We 

need to approximate the velocity profile and assume that this velocity profile has the same shape 

everywhere in the boundary layer, i.e. is self-similar. We will begin with a velocity profile depending 

on  , wich is a dimensionless parameter (  
 

 
). Note that this   is different from the one used in 

section 3.1. We will work out all the results for a cubic velocity profile and then for a quartic velocity 

profile [5].  

3.2.2.1  Cubic velocity profile 

We take the following cubic velocity profile: 
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   (3.72) 

We have 4 yet unknown constants       . To find these constants, we need 4 boundary conditions. 

On the plate       due to the no-slip condition the velocity has to be zero. But also the derivative 

with respect to x of the velocity in x-direction are zero, so this transforms the x-momentum boundary 

layer equation (3.39) applied at    , with the definition for the pressure distribution from equation 

(3.41) in: 

  (
   

   )
   

    

   

  
 (3.73) 

So we obtain 2 boundary conditions for    . The other boundary conditions can be found at the 

edge of the boundary layer      . There the velocity is equal to the free stream velocity and the first 

derivative, second derivative, and so on with respect to y are zero on the edge of the boundary layer. 

So the 4 boundary conditions for the cubic velocity profile are: 

 

                                                                   
   

   
  

  

 

   

  
 

                                                               
  

  
   

(3.74) 

To obtain the unknown constants in the velocity profile we substitute the boundary conditions in the 

equation for the velocity. We present the results from this procedure in matrix form: 
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]  [
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 (3.75) 

This results in the following: 

         
 

 
 

  

  
 
   

  
     

  

  
 
   

  
     

 

 
 

  

  
 
   

  
 (3.76) 

Substituting these results in the equation for the velocity we get: 

        (
 

 
  

 

 
              )         

  

  

   

  
 (3.77) 

Here   is a dimensionless velocity gradient. 

3.2.2.2  Quartic velocity profile 

The same procedure can be carried out for a quartic velocity profile: 

                   
     

     
   (3.78) 

Here we have 5 unknown constants, so we need 5 boundary conditions. The first 3 boundary 

conditions are the same as for the cubic profile. The 4
th
 boundary condition gives expressions for the 

first and second derivative of   with respect to  . To summarize: 

 

                                                                   
   

   
  

  

 

   

  
 

                                                               
  

  
                              

   

   
   

(3.79) 

Substitution of these boundary conditions in the quartic velocity profile yields: 
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 (3.80) 

Solving this system of equations gives: 

           
  

  
 
   

  
     

  

  
 
   

  
       

  

  
 
   

  
      

  

  
 
   

  
 (3.81) 

Filling these results in the quartic velocity profile we obtain: 

        (           ̂             )       ̂  
  

  

   

  
 (3.82) 

Again  ̂ is a dimensionless velocity gradient. 

3.2.3  Results 

The two velocity profiles are substituted in the Momentum-Integral Equation. For this we need the 

displacement thickness, the momentum thickness and the wall shear stress. Then, the Momentum-

Integral Equation will only depend on the boundary layer thickness     . Subsequently we find the 

displacement thickness, the momentum thickness and the friction coefficient. 

3.2.3.1  Cubic velocity profile 

Let us first substitute the cubic velocity profile in the displacement thickness, the momentum thickness 

and the wall shear stress. The displacement thickness becomes: 
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(3.83) 

And the momentum thickness: 
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(3.84) 

And finally the wall shear stress: 

     
     

  
|
   

  (
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(
 

 
  ) (3.85) 

For the flow over a flat plate the free stream velocity is constant. This implies that the derivative of the 

free stream velocity is zero and therefore   is zero. Now we can find the solution of the ordinary 

differential equation for      analytically. Substituting all the parameters in the Momentum-Integral 

Equation yields: 

 
 

  
    

   

  

 

  

 

 
 (3.86) 
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We can rewrite this equation on the following manner: 

 
 

  
    

   

  

 

  

 

 
     

 

 

   

  
 

   

  

 

  
 (3.87) 

Integrating from the leading edge, where we take    , to x gives: 

 
 

 
      

   

  

  

  
 (3.88) 

So now we found an equation for the boundary layer thickness: 
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  (3.89) 

With this expression for the boundary layer thickness, we can find the displacement thickness, the 

momentum thicknesst and the total skin friction coefficient by putting this result in the equations 

(3.83), (3.84) and (3.85). 
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  (3.91) 
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 (3.92) 

3.2.3.2  Quartic velocity profile 

We follow the same procedure for the quartic velocity profile. We first find the displacement 

thickness, the momentum thickness and the wall shear stress by substituting the quartic velocity 

profile in the definition for these quantities: 
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 (3.93) 
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  ̂ ) (3.94) 

       
   

 
(   ̂) (3.95) 

For the flat plate boundary layer we find from the Momentum-Integral Equation for a quartic velocity 

profile: 

 
 

  
    

   

  

 

  

 

 
    

 

 

   

  
 

   

  

 

  
 (3.96) 

Rewriting this equation on the same manner as before gives us the equation for the boundary layer 

thickness: 
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 (3.97) 

Then with this result for the boundary layer thickness we find the expressions for the displacement 

thickness, the momentum thickness and the total skin friction coefficient: 
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3.3  Numerical solutions [6] 

Up to this point we calculated the solutions of the quantities characterising the boundary layer 

analytically by solving the boundary layer equations using the shooting method or by choosing an 

approximation for the velocity profile inside the boundary layer. The scope of problems that can be 

handled by these methods is limited, since this approach is based on a number of assumptions. To 

expand the possibilities for solving the boundary layer equations, we consider numerical solutions. 

3.3.1  Explicit Discretisation 

Numerical solutions of the boundary layer equations are based on replacing derivatives by finite-

difference approximations. This approximation is called discretisation. We will use this to find 

numerical solutions for the boundary layer equations. We will start with the boundary layer equations 

for a steady free stream flow, where we consider again a constant free stream flow: 

 
  

  
 

  

  
   (3.100) 

  
  

  
  

  

  
  

   

   
 (3.101) 

The domain containing the boundary layer is divided in small 

elements: the so-called grid. This grid consists of grid points 

which are formed by the coordinate lines. This grid is illustrated 

in figure 3.4. At the grid points we want to determine the 

unknown velocity components        and       .  

We can use this method since we know the x- and y-components 

of the velocity at a starting line namely the leading edge (     
of the horizontal plate. The first step will be to find the new 

components of the velocity at the grid points on the line   
    . We will obtain this result by using equation (3.101). Next 

step is to calculate the vertical velocity at this next grid point.  

Let us examine the difference equations in terms of this grid. We will use the 

centered space difference expressions to approximate the partial derivative of   with respect to  .  

 (
  

  
)
   

 
             

     
  (3.102) 

 (
   

   )
   

 
                   

   
 (3.103) 

We cannot use this method for the partial derivative with respect to x since the only data available is 

known for the initial station, and not for a station downstream of this station. Therefore we will use the 

forward space difference method to approximate the partial derivative with respect to x: 

 (
  

  
)
   

 
           

  
 (3.104) 

Now we substitute these three equations in equation (3.101). We obtain: 

     

           

  
     

             

     
  

                   

   
 (3.105) 

We can transform this equation to obtain an expresion for the x-component of the velocity        at the 

next station: 

     
j+1 

     
j 

     
j-1 

      

  i-1 i i+1  

Figure 3.4 Schematic view of grid 

x 

        y 
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  (3.106) 

Now we have the values        known. With this we can determine the values       . We will use 

equation (3.100) for this. First, we use a backward difference for        since we know the value of   

one step back in  , but not one step forward in  . 

 (
  

  
)
     

 
               

  
               (3.107) 

To obtain good accuracy, we can see this as a central difference at a location between grid points   and 

   . We use this fact to approximate        not far from this point at the location between   and 

    and   and    : 
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] (3.108) 

Substituting equations (3.107) and (3.108) in equation (3.101) we get: 

 
 

 
[
           

  
 

               

  
]  

               

  
   (3.109) 

Re-arranging this equation leads to the expression for       : 

                 
 

 
[
           

  
 

               

  
]   (3.110) 

3.3.2  Step size 

We now have the two explicit relations to calculate the x- and y-component of the velocity at the next 

grid point. The stability of the numerical scheme is an important point to consider. The step sizes    

en    cannot be chosen arbitrarily. The stability criterion for this difference scheme is[2]: 

    

 
 
        

 

 
 

(3.111) 

We did the calculation for the case for which the maximum      – the free stream velocity – is        

and the kinematic viscosity   is              . Using this criterion from equation (3.111) we choose 

            and            . This means that it takes 2000 steps to cover the whole length of 

the flat plate when its length is    . The extent of the computational domain in y-direction is        . 

3.3.2  Results 

In comparison with the analytical and approximation method, we can only obtain results by executing 

the calculations. First we verify that the method gives the correct results. When we plot the x- and y-

component of the velocity at three different x positions, we expect profiles that are independent of the 

x position, i.e. a similarity solution (Velocity profiles are plotted in terms of the similarity quantities, 

like we did with the results from the Blasius equations). Here the boundary layer thickness is obtained 

from the data where          
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Figure 3.5  x- and y-component of the velocity in the boundary layer as function of of        

We carried out these calculations for a flat plate of    . The results are as expected; the solution is 

similar, independent of the x position. The second result we derive from this numerical approach is the 

skin-friction coefficient. By using a three-point formula using       , we find the shear stress: 

       (
  

  
)
   

 
 

   
            ) (3.112) 

To find the skin-friction drag coefficient, we need to integrate this shear stress following equation 

(3.39). With the use of the trapezoidal rule we can carry out the integration. We find for the skin-

friction drag coefficient: 

    
     

√   
 (3.113) 

The third parameter we obtain from this numerical approach is the boundary layer thickness. With the 

definition of the height of the boundary layer at the location where          , we can find the 

boundary layer thickness. Since we have found all the values for u, we only need to look for the 

coordinates where the horizontal velocity exceeds        . 
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3.4  Conclusions 

We carried out calculations for the flow in the boundary layer and derived the characteristics of the 

boundary layer using of three different approaches. Let us first summarise the results from the first 

two methods: 

 Blasius Equation Cubic velocity profile Quartic velocity profile 

definition      √
  

  
             

velocity profile            
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We note that it appears that the cubic velocity profile is a better approximation for the solution inside 

the Blasius equation since all the parameters are more accurate than for the quartic profile.   

3.4.1  Velocity profile 

With the Blasius equation we found an equation for the velocity in the boundary layer depending only 

on the dimensionless parameter    
 

 
   

   
. This is not the same parameter which we used for the 

approximation method         . To compare the four velocity profiles, we will need to do this in 

the same manner. For Blasius’ solution we used:  

    
 

 
   

   
 (3.114) 

For the approximation method we used: 

   
 

    
 (3.115) 

The relation between these two expressions is formed by substituting      from Blasius’ solution in 

equation (3.115). This gives: 

   
 

       
    

 
 

   
    (3.116) 

In the velocity profile of Blasius the edge of the boundary layer lies at       , with the 

approximation method lies the edge at    . To compare the solutions we also plot Blasius’ solution 

in terms of       .  

When we plot these four solutions for the velocity profiles we obtain: 
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Figure 3.6 Comparison of Blasius’ velocity profile with velocity profiles computed using polynomial profiles and numerical method 

We observe the failure of the polynomial approximation methods to represent the velocity profile of 

the Blasius solution. The cubic profile starts with a more accurate slope but fails the curvature near 

   . The quartic profile starts too slow (or better, it has too high a speed close to the wall), but 

appears to match the exact solution more accurate near    . The numerical solution shows a very 

similar velocity profile in comparison with Blasius’ solution. This is because in contrast with the 

approximation methods, the numerical approach has more degrees of freedom. That is the reason that 

the Blasius and numerical approach are not exactly the same, but agrees quite satisfactorily.  

3.4.2  Skin friction coefficient 

In contrast to the velocity profile, the skin friction drag coefficient of the numerical results is less 

accurate than the values obtained from the approximation methods based on the Integral Momentum 

Equation. 

Blasius Cubic Quartic Numerical 

   
     

√   
    

     

√   
    

     

√   
    

     

√   
 

The reason of this deviation can be the result of the fact that the numerical method is not accurate near 

the leading edge of the plate. The first steps of    are needed to obtain the correct velocity profile. 

This can be the cause of the reduced skin friction drag coefficient, since the calculation of the shear 

stress is not accurate for very small values of x. In figure 3.7 the local skin friction drag coefficient 

from the Blasius solution and the numeric solution is plotted as function of x, where the length of the 

plate is taken equal to 1. We see the local skin friction drag coefficient from the numerical approach 

matches the solution from the Blasius solution. However, we observe when zooming in a failure to 

match the singular behaviour of the Blasius solution that        . The green curve is the local skin 

friction drag coefficient from the Blasius solution, the red curve that from the numerical approach. 



P. Puttkammer BSc Report University of Twente 
Engineering Fluid 

Dynamics 
June 2013 - 28 - 

 

  
Figure 3.7 Skin friction coefficient as function of x. The green curve is Blasius solution, the red curve the numerical solution  

3.4.3  Boundary layer Thickness 

Also we consider the comparison of the boundary thickness obtained from the different approaches. 

With each method (analytical, approximation and numerical) we found solutions for the boundary 

layer thickness. With the use of the quiver function from Matlab, we can obtain a velocity plot for the 

numerical approach. We only show the velocity vectors for which         , see figure 3.8: 

 
Figure 3.8 Comparison of boundary layer thickness of Blasius’ solution with results from the Integral momentum equation and  

from the numerical solution 

To look more closely, we will derive the boundary layer thickness at    . For this comparison we 

take          and              , i.e.          . 

Blasius Cubic Quartic Numerical 

                                                        

We see that the cubic and numerical method obtain almost the same boundary layer thickness. Both 

methods are better to predict the boundary layer thickness than the quartic approximation method.  
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4  Experiments 

4.1  Set-up  

Flow velocity measurements are important in many fields. Aeronautics uses it for measuring the speed 

of a flying object. For weather forecast, environmental departments make use of these types of 

measurements to carry out research on erosion or irrigation, some authorities need it for measuring at 

lakes or dams, and so on. In the present experiment it is necessary to measure the velocity of the flow 

passing over the flat plate to obtain data to compare this with theoretical data from chapter 3. 

This experiment is carried out in the silent wind tunnel of the University of Twente. A flat plate - with 

a specially designed leading edge for the smooth development of the boundary layer – is placed in this 

wind tunnel at an angle of attack at zero degrees. The flow speed in the boundary layer is measured 

with the use of Hot Wire Anemometry (HWA). The test set-up is such that the Hot Wire can be varied 

in height to be able to measure flow speeds in and around the boundary layer. It is possible to vary the 

height of the Hot Wire with a hundredth of a millimetre (          . 

4.1.1  Flow speed measurements in boundary layer: Hot Wire Anemometry 

Wire probes are used for measurement in air and other gases. HWA is based on the following 

principle. The probe contains a very thin wire with a voltage difference. Due to this difference a 

current runs through the wire, resulting in the heating of this wire. When we now place this wire in a 

flow of air, due to convection the wire cools. HWA will add more energy (voltage) to keep the wire at 

the same temperature. This increase of energy is a measure for the magnitude of the velocity. When 

the velocity of the flow is higher, the wire decreases more in temperature, so more energy is needed to 

compensate this loss in heat.  

HWA is capable of measuring velocities from a few      to velocities of 200 m/s. We will use the 

miniature wire probe of Dantec which is recommended for 2D-flows. The         long plated 

tungsten wire has a diameter of     , which results in a short response time.  

When we measure with a hot wire, disturbing effects need to be discussed. One of these effects is the 

temperature dependency of the probe. When there is a varying fluid temperature, it will introduce 

errors in the measurement. Although the changes will not be that large in this experiment, we use a 

temperature-compensated probe to minimize the possibility of errors in our measurements[7]. 

Secondly we discuss the correction needed to measure close to the surface. The probe will lose extra 

heat due to the presence of the nearby surface. Durst[8] describes in his paper that the correction factor 

(    should be: 

             (4.1) 

With    the actual velocity and       the measured velocity of the flow. The correction factor is 

needed only close to the body. Durst discusses this ‘close to the body’ with a scaled length   : 

    
 

  
                             

 

  
                               √

  
 

 (4.2) 

In experiments Durst notes that if    is larger than 4, there is no need for any correction of the 

measured velocity. When    is smaller than 4, he gives an equation for the correction factor: 

 
                

                      

 
(4.3) 

With A and B experimentally found coefficients. Durst finds for a wire with aspect ratio of 0.7 and a 

wire diameter of     values for A and B. In this case       and      . When we substitute these 

coefficients in the equation for the correction factor we find: 
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 (4.4) 

4.1.2  Calibration of the Hot Wire 

To measure the flow velocity with the Hot Wire, it is necessary to calibrate the probe. For making sure 

the manner in which calibration is carried out will not affect the measurements, the calibration is 

carried out in the wind tunnel itself. Also it is necessary to calibrate the probe at the same angle of 

attack as the angle of attack during the measurements. Bruun [9] describes that the angle of the probe 

influences the measurement. So the flow needs to come from the same direction as where the flow will 

come from when the wind tunnel is turned on. Using the funnel shown in the picture in figure 4.1 we 

are able to blow air in the direction of the probe. This funnel is connected with a device which can 

measure the pressure in terms of the heights of a water column, a Betz micro manometer. With this we 

can carefully set the speed of the flow from the funnel and we can calibrate the Hot Wire. Calibration 

and measurements are executed with the program Streamware Pro V5.02. 

  
Figure 4.1 left: Betz manometer    Right: Funnel with probe for calibration  

It is also important to calibrate the position of the probe, since the position in the boundary layer 

influences the velocity. This is carried out with a broken Hot Wire and a multimeter. The multimeter is 

attached to the surface of the plate (which is of metal) and the ground of the probe. When the broken 

probe touches the surface, a current will flow which we can measure with the multimeter. Since we 

suppose that this position is the same for all individual probes, this gives a measure for the position of 

the probe with respect to the surface of the flat plate. In the discussion of the experiment we will 

discuss that this method has significant limitations. With this technique we obtain the first data point at 

a height of         with respect to the surface of the plate. 

4.1.3  Flap 

The theory describes a flat plate exactly at an angle of attack of zero incidence. In practice the plate is 

not perfectly flat nor at exactly zero incidence. To find out if incidence is zero, pressure sensors are 

mounted at the leading edge on both sides of the plate. When the incidence is exactly zero, the 

pressure will be the same at both sides of the plate. To influence effective angle of attack of the plate, 

a flap is placed at the trailing edge. When the angle of the flap is adjusted, the stagnation point will 

move and therefore the pressures on both sides will be different. This is the same mechanism which is 

used in aircraft wings. With this method we determined that the plate is slightly twisted so that the 

leading edge is pointing upwards. This can be concluded since the pressure on the lower side of the 

plate is higher than on the upper side. When the flap is turned       downwards, the pressures on both 

sides are equal. This is shown in figure 4.2. Here P1, P2 and P3 are three pressure points at the lower 

side of the plate with increasing distance from the leading edge. P8, P7 and P9 are pressure points at 

the same position but on the upper side of the plate. Here we observe that the pressure differences are 

the lowest when the flap is turned to       . 
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point 

degrees 

P1 

(kPa) 

P2 

(kPa) 

P3 

(kPa) 

P7 

(kPa) 

P8 

(kPa) 

P9 

(kPa) 
difference: 

1 - 8 

(kPa) 

2 - 7 

(kPa) 

3 - 9 

(kPa) 

0 -0,0471 -0,0783 -0,1285 -0,0635 -0,0315 -0,1098 
 

-0,0156 -0,0147 -0,0188 

-2,5 -0,0393 -0,0661 -0,1080 -0,0615 -0,0320 -0,1063 
 

-0,0073 -0,0046 -0,0017 

Figure 4.2 Pressure in kPa on the leading edge of the plate. P1, P2 and P3 are on the lower side, P7,P8 and P9 are on the upper side 

of the plate  

 

 
Figure 4.3 Left: Sketch of the positions of the pressure sensors           right: flap at trailing edge of the plate 

4.2  Results 

The conditions at which the experiments have been carried out were the density of air   
             and a viscosity of air            . The free stream velocity is set at        and 

      . The measurements were conducted at a distance from the leading edge of          . With 

this data we can calculate the local Reynolds number, which indicates wheter the flow will be laminar 

or turbulent. For a free stream velocity of        the Reynolds number is           and for        
the Reynolds number is          , both below the critical Reynolds number of      . So the flow 

is expected to be laminar. The height with respect to the surface of the plate is covered in steps 

of        and starts at        . The data collected from the experiments is presented below. 

4.2.1 Without flap 

The first measurements were executed without the flap since the flap was not ready at the beginning of 

the experiments. However, this gives us the opportunity to compare the data with and without the flap. 

The first three experiments were used to acquire experience with the HWA measurements and with the 

set-up. That is why the data reported begins at experiment 4.  

In figure 4.4 the velocity distributions are plotted. The x-axis is the dimensionless velocity where   is 

the measured velocity and    is the free stream velocity. Along the y-axis the dimensionless height is 

plotted where   is the measured height and   is the boundary layer thickness. The boundary layer 

thickness is found at heights where the measured velocity is not increasing any more. Then we know 

we reached the edge of the boundary layer. Also with Blasius’ solution the boundary layer thickness is 

calculated and these values confirm the used height for the boundary layer thickness in the 

experiments.  

For the HWA measurements we also need to compensate for the heat lost to the wall. In this case – 

using the result of Blasius for the shear stress – we only need to correct the values measured at the first 

data point with a free stream velocity of         since we find that      corresponds to        
      . For a free stream velocity of        we find      at              , i.e. in the 

measurement it is not necessary to compensate for the heat lost to the wall. 

P1    P2     P3 

 P8     P7     P9 
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Figure 4.4 Measured velocity distributions at x=0.095 m  

We observe some agreements in the results presented in figure 4.3, but they are not exactly the same. 

This can have a couple of reasons. First, each measurement started with the velocity calibration. This 

can be a cause for slight variations in the measurements. Second, the measurements for        give 

higher values for the velocity. The reason for this can be the slight deviation of the angle of attack 

which influences the velocity distribution in the boundary layer more at higher free stream velocities. 

When measuring the pressures at the leading edge it is observed that the pressure difference increases 

at higher free stream velocities. Since the pressure at the upper side is lower, the flow on this side of 

the plate is higher. The flow at the lower side of the plate, where the flow speed is measured in the 

experiments, is lower. So, a higher free stream velocity causes a higher pressure difference, which 

leads to lower velocities in the measured boundary layer. Therefore, we observe a lower velocity 

distribution at free stream velocities at        in comparison with the experiments at       . Third, a 

distortion at the second data point is observed for both measurements at         which is unexpected. 

Therefore another measurement is carried out for a free stream velocity of       . In this 

measurement this deviation was not observed, so we conclude that this was a random fluctuation. 

 
Figure 4.5 comparison experimental velocity distributions with new measurement at 20 m/s at x=0.095 m  
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4.2.2 With Flap 

The second measurements has been carried out for the flat plate with the flap attached to the trailing 

edge. The flap is set at an angle of      , in order to have the same pressures on both sides of the 

leading edge of the plate. Again, free stream velocities of         and        are used in the 

experiments. The results are presented in figure 4.6. 

 
Figure 4.6 Comparison experimental velocity distributions for the flat plate with flap  

Here we observe more agreements between the results for the two free stream velocities. Since the flap 

ensures equal pressures on both sides of the leading edge of the flat plate, the graphs should be similar 

to each other. Still there are some derivations between both graphs. This can be the cause of failures in 

the measurements. To find out if the measured dimensionless velocities agree, more experiments 

should be carried out. 

4.3  Comparison of data 

4.3.1  Comparison data with and without flap 

Measurements on the pressure on the upper and lower side at the leading edge of the plate show that 

the plate and/or the oncoming flow is slightly twisted such that the leading edge is turned upwards. 

When plotting the results from experiments with and without the flap at the trailing edge, we expect 

for the experiments without the flap a lower velocity distribution, i.e. the curve of the experiments 

with the flap will shift downwards in the graph. The results are presented in figure 4.7. 
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Figure 4.7 Comparison experimental velocity distribution with and without flap  

Indeed, the velocity distributions are higher for the experiments with the flap than the experiments 

without the flap.  

4.3.2  Comparison experimental data with theory  

Now we can compare the data from the experiments with the results from theory described in chapter 

3. We only plot the data from the experiments with the flap and we compare this with the Blasius’ 

solution. The results are presented in figure 4.8. 

 
Figure 4.8 Compare experiment with theory  

The experimental data indicate higher velocities in the boundary layer than the theory predicts. 

Nevertheless, the curves appear to follow the Blasius solution quite well. In the discussion the cause of 

the distortion is explained.  
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The results can also be presented in another way. We now take the y-axis in a similar way as for the 

Blasius solution, i.e. as    
 

 
   

   
. Then we compare the Blasius solution with the data from the 

experiment with the flap for the free stream velocity of       . 

 
Figure 4.8 Comparison Blasius’ velocity profile with the measured data from           

This graph confirms the conclusions, that the Hot Wire is capable to measure the velocity in the 

laminar boundary layer properly. This, because we observe a close similarity between Blasius’ 

solution and the data for a free stream velocity of       . Same procedure is done for the 

measurement for a free stream velocity of        . This graph is not put in this report since the figure 

shows great agreements with figure 4.8 and therefore also confirms the conclusion that the Hot Wire 

seems to be capable to measure the velocity in the laminar boundary layer properly. 

 4.3  Discussion 

Some procedures had certain difficulties which we will discuss here. A major flaw in the experiment is 

the calibration of the position of the probe. 

We used a broken Hot Wire in order to find the location of the probe with respect to the surface of the 

plate. This is carried out with a broken probe since Hot Wires are fragile and are likely to break when 

touching the surface of the plate. Here we assume that for every probe and for every measurement the 

location of the surface of the plate is the same. But since we are working in the very small region of 

the boundary layer (      , differences of tens of millimetres will affact the measurement 

significantly. Since the data from the experiments with the flap attached to the trailing edge did not 

match the solution of Blasius, we presume a failure of positioning the Hot Wire. Therefore we 

measured the location of the surface of the plate with three different broken Hot Wires. Before every 

measurement the probe was taken out of the probe support. The results are presented in figure 4.9. The 

probe was turned      for measurements 6 to 10. 

Figure 4.9 Height measurements with different Hot Wires 

measurement 1 2 3 4 5 mean 6 7 8 9 10 mean 

Probe 1 (mm) 4.34 4.39 4.43 4.41 4.31 4.38 5.29 5.31 5.33 5.28 5.29 5.30 

Probe 2 (mm) 4.91 4.98 5.02 4.95 4.92 4.96 5.15 5.18 5.27 5.19 5.21 5.20 

Probe 3 (mm) 5.06 5.07 5.10 5.05 5.10 5.08 5.30 5.32 5.28 5.31 5.35 5.31 
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These results show differences in the position of the surface of the plate for different probes but also 

variations within the results for each probe itself. It also shows that the measurement of the height 

changes when the probe is turned     . Where the average height for probe 2 and 3 differ        

when turning the Hot Wire, for probe 1 the difference is almost     . It can be concluded that probe 

1 is bent and therefore we cannot use this probe for calibrating the position of the surface of the plate.  

So in order to determine the height of the surface we only use probe 2 and 3. Since the heights vary for 

each probe it is not possible to determine the height within a margin less than       . Therefore the 

height that is used in the presentation of the results is most likely not accurate. With this knowledge, 

we can fit the results from the experiments with Blasius’ solution. What we mean by this is we set the 

position of our first measured data point with a certain measured velocity equal to the corresponding 

height for this velocity from Blasius’ solution. With this we can investigate the measurement follow 

the curve from the Blasius euation. The graph was fitted with the first data point height of        , a 

difference of         with measured position. The results of fitting the experimental data with the 

Blasius solution is presented in figure 4.10. 

  

Figure 4.10 Fitting experimental data with Blasius’ solution 

This result shows satisfactory agreements with results from Blasius’ solution. Three factors can have 

contributed to this difference in height. First factor can be the unequal lengths of the probes. A slight 

difference in length of the Hot Wire probes can already contribute substantial to the deviation. Second 

factor can be the design of the probe holder. The probe is placed in the probe holder like a plug in a 

socket. The probe can twist slightly in the probe holder. But since we are searching for differences in 

the range of hundredths of millimetres, this can play a role. Third factor is the wing profile to which 

the probe holder is attached. This wing can also move slightly. This can also play a role in the 

deviation of the height of the surface. 

Let us secondly discuss the use of the Betz micro manometer. We set the Betz manometer at a 

particular pressure to obtain a chosen flow velocity. At low speeds (      ) the pressure is not 

varying much, so it is difficult to set the right velocity. Furthermore, it is difficult to read off the 

pressure precisely. Fluctuations in the use of the Betz manometer give flaws in the calibration of the 

Hot Wire and therefore in the measurements.  

4.4  Conclusions 

From these experiments it can be concluded that the Hot Wire data can be fitted with the theory, i.e. 

Blasius’ solution. With the use of the flap the pressure at the upper- and lower side was set at equal 

values. The set-up for the Hot Wire probe should be reconsidered since we are not able to determine 

the height of the probe with respect to the surface of the plate accurately. It should be possible to set 

the height within a margin less than a tenth of a millimetre. Take notion the Hot Wire probe is able to 

fit to the Blasius solution is a less firm conclusion than when we would be able to find the exact height 

of the surface of the plate. In this case we can only investigate the potential of following the curve and 
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we cannot draw conclusions about the actual measuring of the velocity on particular positions. Current 

set-up is too inaccurate for this.   
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5  Conclusions and Recommendations 

5.1  Main Conclusions 

In the present study analytical, numerical and experimental data has been obtained and analysed 

concerning the laminar boundary layer over a flat plate at zero degree incidence. In figure 3.6 the 

comparison between Blasius’ solution, the Integral Momentum equation based on von Karman’s 

integral momentum method and the numerical approach is presented. It is clear that the numerical 

approach produces a velocity distribution that compares very well with Blasius’ solution. This 

numerical approach can be used in situations for which analytical results are not available. 

Experiments in the wind tunnel showed that Hot Wire Anemometry measurements are able to fit 

Blasius’ solution. This fitting is presented in figure 4.10. With the use of the flap at the trailing edge, 

we were able to vary the stagnation point at the leading edge such that the experiments could be 

compared properly with the theory. Due to the limitations of positioning the probe accurately, we 

cannot draw the conclusion that the Hot Wire is able to measure the velocity distribution in the 

boundary layer. However, we can conclude that the results of the measurements with the Hot Wire fit 

to Blasius’ solution and therefore it is expected that in the case of more accurate positioning of the 

probe, the Hot Wire is able to measure the velocity distribution within the boundary layer.  

5.2  Recommendations 

The most important limitation of this experiment was the positioning of the probe with respect to the 

surface of the flat plate.  On one hand the Hot Wire is very fragile and may not touch the wall, on the 

other hand the laminar boundary layer was less than      thick. Since we are working in this thin 

boundary layer, a difference in position of only a tenth of a millimetre has a significant impact on the 

results. In section 4.3 we discussed the used method to position the probe and the shortcomings of this 

method. We will discuss a number of suggestions for improving positioning of the probe. 

There are two ways for to position the probe more accurate. First way is to look for a Hot Wire where 

its lengths are known with small margins of error. In this case, the probe support should be fixed more 

firmly. With these two conditions, we can calibrate the position of the probe with less margin of error. 

When these probes are not available, we should find another method to determine the height of the 

probe with respect to the surface of the plate. Since the probe is so fragile, we should either calibrate 

the probe contactless or make contact with the surface such that the probe will not break. A specially 

designed magnetic cube could be mounted to the wall. It should be magnetic to attach it to the wall. 

This cube has at a specific height a hole of diameter less than        from which air is flowing. With 

the Hot Wire, we can detect the location of this flow and then the position of the probe is at a certain 

distance from the wall of the plate. This is positioning the probe contactless. Another option is to 

develop a probe support with some sort of antenna. The antenna can touch the wall to measure the 

height of the probe to the wall. The difference between the height of the antenna and the probe itself 

should then be measured, possibly using lasers. 

When the positioning of the probe can be carried out more accurately, it is recommended to carry out 

more experiments with Hot Wire Anemometry. We can draw conclusions more firmly whether the 

Hot Wire can indeed be used for measuring the velocity distribution in the boundary layer. 
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