Tekenen en concept mappen voor beter tekstbegrip

Een onderzoek naar de representatievormen tekenen en concept mappen in het natuuronderwijs bij leerlingen uit groep 7 en 8.

Bachelorthese

Aniek Olthof

s1005987

Universiteit Twente

Eerste begeleider: Dr. A.H. Gijlers

Tweede begeleider: Dr. L. Bollen
Samenvatting

Het doel van dit onderzoek was het vergelijken van het effect van de instructievormen tekenen en concept mappen op het tekstbegrip van leerlingen in de bovenbouw van het basisonderwijs. Er werd hierbij rekening gehouden met de tekenvaardigheid van de leerlingen. Een kwart van de leerlingen werd gevraagd hardop te denken om inzicht te krijgen in de denkwijze van leerlingen. Hierdoor kon inzicht worden gekregen in hoe vaak leerlingen zich bezig houden met esthetische aspecten en of leerlingen relaties tussen concepten benoemen. Onzekerheid werd hier ook bij meegenomen. In totaal namen 64 leerlingen van 3 verschillende basisscholen uit Enschede deel. De leerlingen kregen twee kennislojes waarvan er een ook voor het onderzoek afgenomen werd om de tekstbegrip van de tekst over fotosynthese te meten. De leerlingen maakten de tekeningen en concept maps op een tekentablet. De resultaten toonden een leereffect aan van beide representatievormen, wat overeenkomt met de literatuur. Er zijn in tegenstelling tot de verwachtingen echter geen significante verschillen gevonden tussen tekenen en concept mappen op de kennisloes of op het aantal geregisseerde concepten en processen in de tekeningen en concept maps. Dit is interessant omdat leerlingen meer moeite hebben met het construeren van een concept map dan een tekening omdat leerlingen over het algemeen hier niet mee bekend zijn. Tekenen lijkt hiervoor een goede oplossing omdat het dezelfde resultaten geeft. De tekenvaardigheid bleek in dit onderzoek geen invloed te hebben en er is geen bewijs gevonden dat leerlingen in de concept map conditie meer relaties benoemen. Wel is gevonden dat leerlingen die tekeningen maken meer esthetische aspecten benoemen.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inleiding</td>
<td>5</td>
</tr>
<tr>
<td>Tekenen</td>
<td>5</td>
</tr>
<tr>
<td>Concept mapping</td>
<td>8</td>
</tr>
<tr>
<td>Verschillende types representaties en hun eigenschappen</td>
<td>9</td>
</tr>
<tr>
<td>Methode</td>
<td>11</td>
</tr>
<tr>
<td>Participanten</td>
<td>11</td>
</tr>
<tr>
<td>Leerdoemien en taak</td>
<td>12</td>
</tr>
<tr>
<td>Hardware en software</td>
<td>12</td>
</tr>
<tr>
<td>Tekentablets</td>
<td>12</td>
</tr>
<tr>
<td>Tekensoftware</td>
<td>12</td>
</tr>
<tr>
<td>Concept map software</td>
<td>13</td>
</tr>
<tr>
<td>Toetsen</td>
<td>14</td>
</tr>
<tr>
<td>Essaytoets</td>
<td>15</td>
</tr>
<tr>
<td>Analyse van de producten en processen</td>
<td>15</td>
</tr>
<tr>
<td>Tekeningen</td>
<td>15</td>
</tr>
<tr>
<td>Concept maps</td>
<td>16</td>
</tr>
<tr>
<td>Tekenvaardigheid</td>
<td>16</td>
</tr>
<tr>
<td>Hardop denken data</td>
<td>16</td>
</tr>
<tr>
<td>Procedure</td>
<td>17</td>
</tr>
<tr>
<td>Resultaten</td>
<td>20</td>
</tr>
<tr>
<td>Concept herkenningstoets</td>
<td>20</td>
</tr>
<tr>
<td>Essaytoets</td>
<td>21</td>
</tr>
<tr>
<td>Tekeningen en concept maps</td>
<td>22</td>
</tr>
<tr>
<td>Tekenvaardigheid</td>
<td>24</td>
</tr>
<tr>
<td>Hardop denken data</td>
<td>26</td>
</tr>
<tr>
<td>Conclusie en discussie</td>
<td>27</td>
</tr>
<tr>
<td>Mogelijke verklaringen voor de gevonden resultaten</td>
<td>28</td>
</tr>
<tr>
<td>Conclusies en toekomstig onderzoek</td>
<td>29</td>
</tr>
<tr>
<td>Referenties</td>
<td>31</td>
</tr>
<tr>
<td>Bijlagen</td>
<td>34</td>
</tr>
<tr>
<td>Bijlage A: Fotosynthese tekst</td>
<td>34</td>
</tr>
<tr>
<td>Bijlage B: Concept herkenningstoets nakijkmodel</td>
<td>35</td>
</tr>
<tr>
<td>Bijlage C: Essaytoets nakijkmodel</td>
<td>36</td>
</tr>
</tbody>
</table>
Bijlage D: Codeerschema uit het onderzoek van Van Dijk (2011) .. 38
Bijlage E: Tekenvaardigheid vragen ... 41
Bijlage F: Een van de brieven aan de ouders ... 42
Bijlage G: Tangram taak .. 44
Bijlage H: Watercyclus oefentekst .. 46
Inleiding

Tekenen

In veel natuur en techniek methoden voor het basisonderwijs worden teksten en afbeeldingen gecombineerd. Om de inhoud van een tekst te begrijpen moet de leerling een mentale representatie van de kernbegrippen en de relatie tussen deze vormen (Leopold en Leutner, 2011). Het creëren van een dergelijk mentale representatie wordt geassocieerd met dieper begrip van de
gelezen tekst. Het positieve effect van tekenen op tekstbegrip komt onder andere naar voren in een studie van Leopold en Leutner (2011). In hun onderzoek vergeleken zij verschillende groepen leerlingen die een tekst bestuderen aan de hand van verschillende strategieën. Zij vergeleken leerlingen die gebruik maakten van tekstgebaseerde strategieën en beeldgebaseerde strategieën met een controle groep. De tekstgebaseerde strategie was hier het selecteren van de hoofdgedachten uit de tekst, het maken van een beeldsamenvatting in de vorm van een tekening was hier de beeldgebaseerde strategie. Leopold en Leutner (2011) ontdekten verder dat het maken van een beeldsamenvatting in de vorm van een tekening resulteerde in een hogere mate van tekstbegrip. Tekenactiviteiten vragen de leerlingen een visuele voorstelling van de tekst te maken, waarbij leerlingen niet alleen informatie moeten selecteren maar de belangrijkste informatie ook aan elkaar moeten relateren en moeten koppelen aan de eigen voorkennis (Ainsworth, Nathan, Van Meter, z.d.). Leopold en Leutner (2011) vermoeden dat leerlingen die een tekstgebaseerde strategie hanteren voornamelijk gericht zijn op de informatie die letterlijk in de tekst staat, terwijl leerlingen in de tekengroep eerder geneigd zullen zijn een representatie te creëren die boven de letterlijke betekenis van de tekst uit stijgt. Door bijvoorbeeld relaties tussen verschillende onderwerpen te maken of voorkennis op te nemen in de tekening (McNamara, Ozuru, Best, en O’Reilly, 2007).

Soortgelijke positieve effecten van tekenen op tekstbegrip werden gevonden door Schwamborn, Mayer, Thillmann, Leopold & Leutner (2010). Zij onderzochten het effect van tekenen in het scheikundig onderwijs. Zij deden dit door het begrip te meten van een tekst over de wassende werking van zeep. Er werden vijf condities vergeleken. De eerste conditie werd geïnstrueerd de tekst te lezen en tekeningen voor elke paragraaf te maken met ondersteuning doordat de hoofdgedachten per paragraaf werden gegeven. In de tweede conditie moesten de leerlingen de tekst lezen, de hoofdgedachten zelf per paragraaf onderstrepen en een tekening maken door weer gebruik te maken van ondersteuning. De leerlingen in de derde conditie moesten de tekst lezen, een mentale voorstelling van de hoofdgedachten per paragraaf in de tekst maken en dan een tekening maken met ondersteuning. En in de vierde conditie moesten de leerlingen de
tekst lezen, de hoofdgedachten er paragraaf onderstrepen, een mentale voorstelling van de hoofdgedachten per paragraaf in de tekst maken en tot slot een tekening van de tekst maken met ondersteuning. De controlegroep las enkel de tekst. Resultaten toonden aan dat de controlegroep significant slechter presteerden dan de andere vier tekengroepen. Tussen de verschillende tekencondities werden geen significante verschillen gevonden. Wel werd een positief verband gevonden tussen de kwaliteit van de representatie en het tekstbegrip.

In het basisonderwijs tekenen leerlingen voornamelijk in de context van de creatieve vakken. De leerlingen zijn dan ook niet gewend aan het maken van beeldsamenvattingen. Het valt dan ook te verwachten dat dit proces niet vanzelf gaat en leerlingen behoefte hebben aan ondersteuning. Onderzoek van onder andere van Meter (2001) laat zien dat het ondersteunen van het tekenproces inderdaad een positief effect laat zien op het leerresultaat. Van Meter (2001) onderzocht het effect van ondersteuning in de context van een tekentaak met betrekking tot het zenuwstelsel. Leerlingen tussen de 10 en 12 jaar oud werden over drie condities verdeeld. In de eerste conditie kregen de leerlingen instructies om te tekenen, vervolgens kregen zij een aantal illustraties van het zenuwstelsel te zien waarna zij een aantal vragen kregen die de leerlingen moesten aansporen om de eigen tekening met de gegeven illustraties te vergelijken. Ook in de tweede conditie maakten de leerlingen eerst een eigen tekening en kregen zij vervolgens een aantal illustraties aangeboden, zij kregen echter geen ondersteuningsvragen. En in de derde conditie kregen de leerlingen enkel de instructie om te tekenen. De drie tekencondities werden vergeleken met een controle conditie waarin de leerlingen enkel de tekst kregen en geen tekening maakten. Uit de resultaten bleek onder andere dat als leerlingen gevraagd werd alles op te noemen wat ze van de tekst nog konden herinneren, het beter deden als ze getekend hadden en hier enigszins d.m.v. ondersteuningsvragen bij geholpen werden dan leerlingen die enkel de tekst hebben gelezen zonder te tekenen (Van Meter, 2001).

Zoals eerder al even benoemd is, is tekenen een laagdrempelige activiteit. Er is onderzoek gedaan naar de cognitieve belasting van tekenen door Leutner, Leopold, en Sumfleth (2009). Resultaten van het onderzoek waren echter dat tekenen tijdens het lezen van een
wetenschappelijke tekst de cognitieve belasting doet toenemen terwijl het mentaal voorstellen van de tekst de cognitieve belasting doet afnemen doordat bij tekenen er gewisseld moet worden tussen het lezen van de tekst en het maken van een tekening. Zij geven bij de discussie aan, dat het de vraag blijft of het vinden van het negatieve effecten van tekenen wat het tekstbegrip hindert door cognitieve belasting zouden verdwijnen wanneer het tekenen van de tekst niet zoveel cognitieve belasting zou kosten. Of als leerlingen meer ervaring hadden in tekenen er betere resultaten zouden worden gevonden en dat de focus moet worden gelegd op metacognitie.

Concept mapping

Concept mapping is als leermethode succesvol toegepast (zie meta-analyses van Horton, McConney, Gallo, Woods & Hamelin, 1993; Nesbit & Adesope, 2006). Nesbit & Adesope vergeleken concept mapping met het lezen van tekstpassages, het bijwonen van colleges en het
deelnemen aan klassikale discussies en vonden dat concept mapping effectiever was voor het behouden en overdragen van kennis. Zij stellen in hun onderzoek dat dit voordeel toegeschreven kan worden aan het feit dat leerlingen tijdens het concept mappen actiever met de informatie bezig zijn dan bijvoorbeeld tijdens het lezen van een tekst of het bijwonen van een college.

Verschillende types representaties en hun eigenschappen
In de voorgaande paragrafen hebben wij twee typen grafische representaties besproken die geschikt zijn voor het gebruik in het basisonderwijs: tekeningen en concept maps. Tijdens het maken van beide typen representaties zijn leerlingen actief bezig binnen het kennis domein. In deze paragraaf zetten wij de verschillen en overeenkomsten op een rijtje.

Beide typen representaties bieden de mogelijkheid de typologische relaties tussen componenten expliciet te maken en leerlingen dus te stimuleren na te denken over relaties tussen concepten. Hoewel het goed mogelijk is om typologische relaties in een tekening weer te geven (Leopold & Leutner, 2011) is een tekening in veel gevallen een vrijere representatie waarin leerlingen zich wellicht minder gedwongen voelen relaties weer te geven dan in een concept map. In een concept map worden gelabelde concepten met behulp van lijnen met elkaar verbonden waardoor relaties duidelijker worden gevisualiseerd (Larkin & Simon, 1987). De concept map lijkt als representatie dus met name geschikt voor het weergeven van relaties. Bij het maken van een concept map moeten leerlingen rekening houden met bepaalde restricties. Zij zijn gebonden aan de structuur. In de tekenconditie zijn leerlingen in staat om hun ideeën en gedachtes de vrije loop te laten. Voor hen is er een vrije vorm van representeren. Een aspect van het leren door te
tekenen is dat leerlingen zich sterk op esthetische aspecten richten en hierdoor wellicht te weinig tijd aan de inhoud besteden. In een onderzoek van Brooks (2009) werd duidelijk dat kinderen van 6 jaar er soms voor kiezen om een tekening mooi weer te geven in plaats van realistisch. Leerlingen besteden vaak overmatig veel tijd aan het perfectioneren van kleine details van de tekening.

Op basis van de literatuur verwachten wij allereerst dat leerlingen zich tijdens het maken van een concept map sterker zullen focussen op het weergeven van concepten en de relaties daartussen dan tijdens het maken van een tekening. Dit zal uiteindelijk resulteren in representaties waarin meer relaties tussen concepten worden weergegeven en in meer kennis over de relaties binnen het domein waardoor zij hoger zullen scoren op de kennistoetsen.

De tekenvaardigheid van leerlingen zal worden meegenomen in dit onderzoek voor zowel de concept map als de tekenconditie. De tweede verwachting is dat de ervaren tekenvaardigheid een voorspellende waarde zal hebben en meer effect heeft op de tekenconditie dan op de concept map conditie. Dit omdat het ontwikkelen van een concept map meer beperkingen met zich mee brengt waardoor er minder ruimte is voor esthetica en dus tekenvaardigheid ook minder effect zal hebben. Leerlingen die aangeven minder tekenvaardig te zijn zullen zich wellicht geremd voelen tijdens het maken van een tekening en zullen daardoor minder scoren op de kennistoetsen.

Een kwart van de leerlingen zal worden gevraagd om hardop te denken. Op deze manier kan inzicht worden gekregen in de denkwijze van de leerlingen. De derde verwachting is dat leerlingen in de concept map conditie meer zullen praten over relaties tussen concepten dan leerlingen in de tekenconditie en leerlingen in de tekenconditie meer zullen praten over esthetische kenmerken. De uiting van onzekerheid van de leerlingen zal hierbij ook worden meegenomen.
Methode

Participanten

In totaal hebben 86 leerlingen uit groep zeven en acht van drie verschillende basisscholen uit Enschede deel genomen aan dit onderzoek. Door externe omstandigheden waaronder doktersbezoeken en het vroegtijdig moeten stoppen met het onderzoek vielen er een aantal leerlingen uit. De uiteindelijke dataset bestaat uit 64 leerlingen. Onder hen zijn 32 meisjes en 32 jongens, 33 uit groep zeven en 31 uit groep acht. De leerlingen zijn random verdeeld over de condities, dit resulteerde in de verdeling die in Tabel 1 is weergegeven.

Binnen beide condities zijn random leerlingen gekozen die deelnamen aan de hardop denk variant van het onderzoek. Dit resulteerde in 12 leerlingen uit de tekenconditie en 7 leerlingen uit de concept map conditie.

| Tabel 1
Verdeling van de leerlingen

<table>
<thead>
<tr>
<th></th>
<th>Tekenconditie</th>
<th>Concept map conditie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Groep 7</td>
<td>Groep 8</td>
</tr>
<tr>
<td>Geslacht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meisjes</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Jongens</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Totaal</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Afnames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individuele afnames</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Groepsafnames</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Totaal</td>
<td>33</td>
<td>31</td>
</tr>
</tbody>
</table>
Leerdomein en taak

In dit onderzoek werd gebruik gemaakt van het les- en toetsmateriaal over fotosynthese dat ook is gebruikt in het onderzoek van Gijlers et al. (2012). De door Gijlers et al. ontwikkelde tekst is gebaseerd op materialen van SchoolTV. De reden dat er voor het onderwerp fotosynthese is gekozen is omdat het goed binnen het natuuronderwijs past en leerlingen vaak nog niet bekend zijn met het onderwerp fotosynthese. De tekst was een pagina lang. Hierin werd uitgelegd hoe een plant door middel van zonlicht, water en kooldioxide met de hulpmiddeltjes de wortels, stengels, bladeren, huidmondjes en bladgroenkorrels uiteindelijk zuurstof en suiker maakt. Uit de tekst konden de leerlingen concluderen dat zuurstof een afvalproduct is voor de plant en suiker een voedingsstof die de plant zelf houdt om van te groeien (de tekst is te vinden in Bijlage A). De leerlingen kregen de opdracht een tekening of concept map van fotosynthese te maken die een medeleerling zou kunnen begrijpen. Leerlingen in de tekenconditie mochten gebruik maken van pijlen en woorden om hun tekeningen te verduidelijken, het gebruik van zinnen was niet toegestaan. De leerlingen mochten de tekst tijdens het maken van een tekening of concept map ernaast houden.

Hardware en software

Tekentablets. Voor dit onderzoek werden tekentablets van het merk Wacom gebruikt. Ook werd gebruik gemaakt van laptops die gekoppeld werden aan de tablets waar de tekeningen en concept maps van de leerlingen op opgeslagen konden worden. Ainsworth et al. benoemen in hun onderzoek (2011) dat er meer onderzoek is naar hoe leren met nieuwe technologieën tekenen zou kunnen ondersteunen. Op deze manier kunnen de producten van de leerlingen makkelijker bewaard en meegegenomen worden. Daarbij is de ervaring dat leerlingen tablets erg leuk vinden om mee te werken en hebben zij snel door hoe ze met een tablet om moeten gaan. De tablets werden bediend met een stylus.

Tekensoftware. De tekensoftware die in dit onderzoek gebruikt werd is ‘Simsketch’. Een programma die werkt met Java ontwikkeld door Dr. L. Bollen van de Universiteit Twente. In
Figuur 1 is een schermafbeelding te zien. Aan de linkerkant staan vier symbolen waar het programma mee werkt. Het eerste symbool is een potlood en daaronder is een roze vierkantje te zien dat dient als gum. Het derde en vierde symbool zijn een lasso en een plusteken met pijtjes aan de uiteinden. Met de lasso kon de gebruiker het deel van de tekening dat hij of zij wenste te verplaatsen omcirkelen en daarmee selecteren, met het plusteken kon de gebruiker vervolgens dan het geselecteerde deel van de tekening naar de gewenste positie verplaatsen. Er zijn zes kleuren beschikbaar: zwart, blauw, groen, geel, oranje en rood. Door op het kruisje te klikken rechts bovenin beeld kon de gebruiker het programma afsluiten, de tekening werd dan automatisch opgeslagen.

Figuur 1. Schermafbeelding van het programma ‘Simsketch’

Concept map software. De software die gebruikt wordt voor het maken van de concept maps is ‘Scymapper’. Dit programma werkt met Java en is eveneens ontwikkeld door Dr. L. Bollen van de Universiteit Twente. In Figuur 2 is een schermafbeelding te zien. Ook hier zitten de knoppen aan de linkerkant. De eerste drie symbolen worden gebruikt om een concept te maken, dit kan in de vorm van een rechthoek, hexagoon en een cirkel. Hierin kon de gebruiker dan de
naam van een concept schrijven. Nadat er twee concepten zijn gemaakt kan er een verbinding tussen deze worden aangebracht om de relatie tussen beiden aan te geven, dit kan door middel van de drie pijlsymbolen. De eerste pijl wijst één kant op, de tweede wijst beide kanten op en de derde is enkel een streepverbinding. Door op het concept te klikken kon het concept eenvoudig verplaatst worden of groter of kleiner worden gemaakt. Daarbij verschijnen door op het concept te klikken links in beeld twee extra opties, met de eerste optie kan een concept een kleur worden gegeven en met de tweede optie kan een concept of verbinding verwijderd worden. De kleuren die aanwezig zijn zijn, wit, rozerood, donkerroze, oranje, geel, fel roze, lichtgroen, moerasgroen, blauwgroen, donkerblauw en beige.

Figuur 2. Schermafbeelding van het programma ‘Scymapper’.

Toetsen

Concept herkenningstoets. De concept herkenningstoets werd aan het begin en na het onderzoek afgenomen om de kennis omtrent fotosynthese te meten. Deze toets bestond uit een lijst van 36 woorden waarvan er 11 gerelateerd waren aan het fotosynthese proces, ook gebruikt in het onderzoek van Gijlers et al. (2012). De instructie voor de leerlingen was de woorden te
omcirkelen die volgens hen te maken hebben met het fotosyntheseproces. Leerlingen kregen een punt voor elk goed omcirkeld antwoord wat tot een maximale score van 11 punten kon leiden (het nakijkmodel staat in bijlage B).

Essaytoets. Van Meter en Garner (2005) geven aan dat als het effect van tekenen onderzocht wil worden, het van belang is tests te gebruiken die gevoelig zijn voor hogere orde kennis (e.g., Hall et al., 1997; Schwamborn et al., 2010; Van Meter, 2001). De essaytoets toetste deze hogere orde kennis door middel van 6 open vragen over aspecten van fotosynthese en het fotosyntheseproces. De essaytoets werd na het onderzoek afgenomen om te toetsen hoeveel leerlingen van een tekening of concept map hadden geleerd. Leerlingen konden een maximaal aantal punten per vraag krijgen, in totaal waren er 16,75 punten te behalen. Dit werd beoordeeld aan de hand van een nakijkmodel. Omdat tijdens het onderzoek een aantal onduidelijkheden omtrent het nakijkmodel naar voren is gekomen is in overleg met de begeleider het nakijkmodel aangevuld (zie bijlage C). De essaytoets is door de onderzoeker en door iemand die niets met het onderzoek te maken heeft voor een tweede keer nagekeken. Dit om te kijken hoe de interbeoordelaarsbetrouwbaarheid is. Dit houdt in dat getoetst wordt hoe de overeenstemming is tussen mensen die eenzelfde object beoordelen, in dit geval de antwoorden op de essaytoets. De Cohen’s kappa is .542. Dit betekent dat de interbeoordelaarsbetrouwbaarheid redelijk is.

Analyse van de producten en processen

Tekeningen. Het analyseren van de tekeningen werd gedaan door te kijken naar de aanwezigheid van de concepten en de weergaven van de relaties daartussen. Het beoordelen van de tekeningen werd gedaan door middel van het codeerschema die van Dijk (2011) ook in haar onderzoek heeft gebruikt (dit codeerschema staat in bijlage D). De leerlingen kregen een punt per getekend concept, proces of eigenschap. Er waren in totaal 13 concepten, 2 eigenschappen en 6 processen te presenteren in de tekening. De tekeningen zijn door de onderzoeker en een tweede beoordelaar nagekeken. Dit is zowel gedaan voor het aantal goede aanwezige concepten in de tekening als voor het aantal goede aanwezige processen. Met een Cohen’s kappa van .651 is de
interbeoordelaarsbetrouwbaarheid goed. Voor de processen is de Cohen’s kappa .627. Dit betekent dat de interbeoordelaarsbetrouwbaarheid van de processen ook goed is.

Concept maps. De concept maps werden op dezelfde manier beoordeeld als de tekeningen door te kijken naar het aantal aanwezige concepten, eigenschappen en processen. Het codeerschema van Van Dijk (2011) die gebruikt is om de tekeningen te analyseren werd hier als hulpmiddel gebruikt. Omdat het hier niet mogelijk is om met kleuren te tekenen werd hier gekeken of de leerling de concepten een kleur had gegeven. De concept maps zijn ook door de onderzoeker en een tweede beoordelaar nagekeken. De interbeoordelaarsbetrouwbaarheid voor de concepten is erg goed beoordeeld met een Cohen’s kappa van .846. De interbeoordelaarsbetrouwbaarheid voor de processen is goed beoordeeld met een Cohen’s kappa van .678.

Tekenvaardigheid. In de weken na het onderzoek werd aan alle leerlingen gevraagd op een schaal aan te geven hoe goed zij vonden dat ze kunnen tekenen, ook de docenten werden gevraagd om dit op een schaal aan te geven over hun leerlingen. Zo kon berekend worden wat de overeenstemming is tussen leerling en docent over de tekenvaardigheid van de leerling. De schaal bestond uit een balk die liep van links ‘heel slecht’ naar rechts ‘heel goed’, de leerlingen en docenten waren vrij waar op de balk een streep te zetten (de vragen voor de leerling en de docent zijn te vinden in bijlage E). Aan de hand van deze schaal werd een antwoordmodel ontwikkeld door de schaal in 10 gelijke stukken te verdelen waardoor de leerlingen een cijfer van 1 tot 10 kon worden toegekend. Door cijfers aan de tekenvaardigheid toe te kennen kunnen makkelijker metingen worden toegepast op de data. De leerlingen met de cijfers 1, 2 en 3 behoorden tot de groep leerlingen die aangeven weinig tekenvaardig te zijn. Leerlingen met de cijfers 4, 5, 6 en 7 behoorden tot de groep gemiddeld vaardige leerlingen. Leerlingen met de cijfers 8, 9 en 10 tot de groep leerlingen die aangeven hoog tekenvaardig te zijn. Hier is uitgegaan van de tekenvaardigheid die de leerlingen zich zelf hebben toegekend.

Hardop denken data. Alle leerlingen die individueel het onderzoek hebben uitgevoerd zijn opgenomen, dit waren in totaal 19 leerlingen. Tijdens het analyseren werd gelet op
esthetische aspecten benoemd door de leerling, het benoemen van relaties tussen concepten de uiting van onzekerheid. De hardop denken data van leerlingen werd uitgetypt, hierdoor kon worden bijgehouden hoe vaak een leerling een opmerking maakte over esthetica, dit werd gecodeerd als een ‘E’. Ook werd opgeteld hoe vaak een leerling een negatief of een positief aspect van de tekening of concept map benoemde, dit werd gecodeerd met een ‘P’ en een ‘N’. Als een leerling relaties tussen concepten benoemde werd dit geel gemaakte. In Tabel 2 zijn fragmenten te vinden van de hardop denken data met coderingen. Voor het opnemen van de stemmen van de leerlingen werd een mp-3 speler gebruikt.

Tabel 3

<table>
<thead>
<tr>
<th>Codering</th>
<th>Voorbeeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opmerking over esthetica</td>
<td>‘’(…) kan ik hier bijvoorbeeld nog een huisje neerzetten waar dan bijvoorbeeld een mens leeft. En daar zit dan ook bijvoorbeeld een hond bij..’’</td>
</tr>
<tr>
<td>Positief aspect van de tekening</td>
<td>Geen voorbeeld beschikbaar.</td>
</tr>
<tr>
<td>Negatief aspect van de tekening</td>
<td>‘’Mijn plant is helemaal mislukt.’’</td>
</tr>
<tr>
<td>Benoemd relaties tussen concepten</td>
<td>‘’Planten hebben wortels daarmee nemen ze water op.’’</td>
</tr>
</tbody>
</table>

Procedure

Alvorens het experiment plaatsvond werd met de scholen een afspraak gemaakt om het onderzoek in te leiden en afspraken te maken. Er werd uitgelegd hoe het onderzoek eruit zag en wat de tijdsindicatie was. De ouders van de leerlingen werd gevraagd om door middel van het ondertekenen van een geïnformeerde brief toestemming te geven voor deelname aan het onderzoek, deze brieven werden door de scholen verstuurd (er is een brief bijgevoegd in bijlage F). Leerlingen werden random toegewezen aan de conditie tekenen of concept map en de individuele of de groepsafnames. De leerlingen werden ingedeeld in groepen van ongeveer zeven
leerlingen. Het onderzoek werd opgedeeld in een oefenfase en een uitvoeringsfase. De tijdsindeling per onderdeel is te vinden in Tabel 3.

Een aantal leerlingen werd gevraagd hardop te denken. Deze leerlingen ontvingen een korte hardop denk training. De hardop denk training die in dit onderzoek is gebruikt is ontwikkeld en gebruikt in eerder onderzoek van Eysink en de Jong (2012). Het oefenen met hardop denken duurde 8 minuten, de leerlingen kregen een filmpje te zien van 1,5 minuut van een voorbeeld van iemand die hardop denkt waarna de leerling zelf hardop denken ging oefenen tijdens het maken van een tangram (de tangram taak en de oplossing zijn te vinden in bijlage G). Voor de leerlingen de tekst uitgedeeld kregen werd gevraagd of ze het goed vonden dat hun stem opgenomen werd met een opnameapparaatje, ook werd hen uitgelegd dat de opnames alleen door de onderzoekers worden gebruikt.

In de oefenfase werd uitgelegd hoe het tablet werkte en werd de leerlingen een oefentekst van circa een halve pagina uitgedeeld over de watercyclus (deze is te vinden in bijlage H), afkomstig uit het onderzoek van Van Dijk (2011). In de groepsafnames werd dit klassikaal met de onderzoeker geoefend, dit is gebaseerd op de training van Van Dijk (2011). De onderzoeker gaf de leerlingen eerst de tijd de tekst te lezen waarna gevraagd wie wist wat een belangrijk begrip kon zijn uit de tekst. Als zij het antwoord wisten konden de leerlingen hun hand op steken om vervolgens op de tablets de begrippen uit te werken. Tijdens het oefenen was er de mogelijkheid om vragen te stellen. Na het oefenen mochten de leerlingen bij de groepsafnames even met elkaar praten en bij elkaar op de tablets kijken. Vervolgens kregen de leerlingen de concept herkenningstoets uitgedeeld waarna de uitvoeringsfase van start ging en de leerlingen de tekst uitgedeeld kregen over fotosynthese. De leerlingen uit de concept map condities kregen langer de tijd om te oefenen omdat het programma meer uitleg nodig had. Tot slot kregen alle leerlingen weer de concept herkenningstoets en de essaytoets. De leerlingen mochten hun tekeningen en concept maps tijdens de tests er niet bij houden.
<table>
<thead>
<tr>
<th></th>
<th>Individuele afname</th>
<th>Groepsafname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tijdsduur tekenconditie</td>
<td>Tijdsduur concept map conditie</td>
</tr>
<tr>
<td>Oefenfase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uitleg hardop denken en oefenen</td>
<td>8 min.</td>
<td>8 min.</td>
</tr>
<tr>
<td>Oefenen met de watercyclus tekst</td>
<td>Max. 12 min.</td>
<td>Max. 14 min.</td>
</tr>
<tr>
<td>Totaal</td>
<td>Max. 20 min.</td>
<td>Max. 22 min.</td>
</tr>
<tr>
<td>Uitvoeringsfase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept herkenningstest voor</td>
<td>3 min.</td>
<td>3 min.</td>
</tr>
<tr>
<td>Tekeningen en concept maps produceren</td>
<td>8 min.</td>
<td>14 min.</td>
</tr>
<tr>
<td>Concept herkenningstoets na</td>
<td>3 min.</td>
<td>3 min.</td>
</tr>
<tr>
<td>Essaytoets</td>
<td>5 min.</td>
<td>5 min.</td>
</tr>
<tr>
<td>Totaal</td>
<td>19 min.</td>
<td>25 min.</td>
</tr>
</tbody>
</table>
Resultaten

In dit onderzoek wordt een vergelijking gemaakt tussen leerlingen die het onderwerp fotosynthese op twee verschillende manieren representeren. Om de kennisontwikkeling in kaart te brengen zijn twee kennistoetsen afgenomen, de concept herkenningstoets en de essaytoets. Het gemiddeld aantal goed omcirkelde woorden en de standaarddeviaties staan in Tabel 4. Er waren in totaal 11 woorden te omcirkelen die met fotosynthese te maken hadden. Het gemiddelde aantal goed omcirkelde woorden door de 64 leerlingen op de voortoets is 1,5 woord met een standaarddeviatie, ook wel SD van 1,808. Op de natoets zijn door de 64 leerlingen gemiddeld 8,33 woorden goed omcirkeld met een SD van 2,183.

Concept herkenningstoets

Er is geen significant verschil gevonden tussen de condities op de voortest van de concept herkenningstoets, $F(1, 62)=0.08, p=.392$. Om te meten of leerlingen hebben geleerd van het maken van een tekening of concept map werd een herhaalde metingen analyse uitgevoerd over de concept herkenningstoets. Uit de gevonden waarden $F=452.48$ en $p<.000$ blijkt dat er een leereffect is. Er is echter geen significant verschil gevonden tussen beide condities, $F=.077$ en $p=.782$.

Wat opvalt in Tabel 4 zijn de verschillen tussen de scholen, bij zowel de tekenaars als de concept mappers op de voor- en natoets. Om te testen of er daadwerkelijk een significant verschil is tussen de scholen werd ook hier een herhaalde metingen analyse uitgevoerd. Uit de waarden van $F=1.09$ en $p=.342$ wordt duidelijk dat er niet is aangetoond dat er een significant verschil is tussen de drie scholen ($p>.005$). Ook a priori is er geen verschil gevonden, $F(2,61)=1.10$ en $p=.170$.

Tabel 4

<table>
<thead>
<tr>
<th>Gemiddelden (en SD) van de concept herkenningstoets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tekenconditie</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

20
Essaytoets

Op de essaytoets waren in totaal 16,75 punten te behalen. Het gemiddelde aantal punten die alle leerlingen hebben gehaald op de essaytoets is 5,01 met een SD van 2,06. De resultaten van de essaytoets zijn te vinden in Tabel 5. Met een one-way Anova toets is getoetst of leerlingen die een concept map hebben gemaakt een significant hogere score hebben op de essaytoets dan de leerlingen die een tekening hebben gemaakt. Uit de resultaten bleek niet dat er een significant verschil is gevonden tussen de leerlingen, $F(1,62)=0.12$, $p=.371$.

Tabel 5

<table>
<thead>
<tr>
<th>Score Essaytoets</th>
<th>Tekenconditie</th>
<th>Concept map conditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 7</td>
<td>4.94 (0.39)</td>
<td>5.32 (0.51)</td>
</tr>
<tr>
<td>Groep 8</td>
<td>5.45 (0.76)</td>
<td>4.69 (0.52)</td>
</tr>
<tr>
<td>Jongens</td>
<td>5.07 (0.56)</td>
<td>5.21 (0.53)</td>
</tr>
<tr>
<td>Meisjes</td>
<td>5.16 (0.47)</td>
<td>4.64 (0.55)</td>
</tr>
<tr>
<td>School 1</td>
<td>4.83 (0.44)</td>
<td>5.13 (0.37)</td>
</tr>
</tbody>
</table>
Opvallend is dat de leerlingen erg laag scoren op de 6 individuele vragen van de essaytoets met erg hoge SD’s. Dit is vooral te zien aan het aantal mogelijk te behalen punten en het maximale wat de leerlingen hebben gehaald op die vraag vergeleken met het gemiddelde aantal behaalde punten. Vraag B2 en C1 zijn verreweg het slechtste gemaakt met gemiddeld 0,38 en 0,14 vragen goed terwijl er 4,5 en 3 punten te behalen waren. In Tabel 6 is dit schematisch weergegeven voor een beter overzicht.

Tabel 6
Weergaven van de 6 vragen van de essaytoets

<table>
<thead>
<tr>
<th>Vraag</th>
<th>Maximum mogelijk te behalen punten</th>
<th>Maximum behaalde punten</th>
<th>Gemiddelde</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vraag A1</td>
<td>3</td>
<td>3</td>
<td>1.52</td>
<td>(0.90)</td>
</tr>
<tr>
<td>Vraag A2</td>
<td>4</td>
<td>2</td>
<td>0.61</td>
<td>(0.55)</td>
</tr>
<tr>
<td>Vraag B1</td>
<td>3,5</td>
<td>3</td>
<td>1.48</td>
<td>(0.72)</td>
</tr>
<tr>
<td>Vraag B2</td>
<td>4,5</td>
<td>1,5</td>
<td>0.39</td>
<td>(0.43)</td>
</tr>
<tr>
<td>Vraag C1</td>
<td>2</td>
<td>1</td>
<td>0.14</td>
<td>(0.35)</td>
</tr>
<tr>
<td>Vraag C2</td>
<td>2,75</td>
<td>2,5</td>
<td>0.89</td>
<td>(0.46)</td>
</tr>
</tbody>
</table>

Tekeningen en concept maps

De leerlingen konden in totaal 13 concepten en 9 processen uit de tekst te halen en dit representeren in een tekening of concept map. Het gemiddelde aantal concepten die alle 64 leerlingen hebben geregistreerd is 6,39 met een SD van 2,08. Het gemiddelde aantal processen is een stuk lager met 1,17 en een SD van 1,74. Het aantal geregistreerde concepten en processen staan voor de tekeningen weergegeven in Tabel 7 en voor de concept maps weergegeven in Tabel 8. Om te toetsen of leerlingen die een concept map hebben gemaakt
significant meer processen representeren dan leerlingen die een tekening hebben gemaakt is een one-way Anova toets uitgevoerd. Uit de gevonden waardes $F(1,62)$=2.17 en $p=0.073$ is niet aangetoond dat de concept mappers meer processen goed hebben dan de tekenaars ($p>0.005$). Naast het aantal geregisteerde processen is er ook gekeken naar het aantal geregistreerde concepten in een tekening of concept map. Ook hier is een one-way Anova toets uitgevoerd en is geen significant verschil gevonden tussen de condities, $F(1,62)=0.20$, $p=0.658$.

Tabel 7
Gemiddelden (en SD) van de concepten en processen van de tekeningen

<table>
<thead>
<tr>
<th></th>
<th>Aantal concepten</th>
<th>Aantal processen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 7</td>
<td>6.50 (0.37)</td>
<td>1.50 (0.42)</td>
</tr>
<tr>
<td>Groep 8</td>
<td>6.50 (0.65)</td>
<td>1.42 (0.53)</td>
</tr>
<tr>
<td>Jongens</td>
<td>6.41 (0.44)</td>
<td>1.65 (0.45)</td>
</tr>
<tr>
<td>Meisjes</td>
<td>6.59 (0.49)</td>
<td>1.29 (0.48)</td>
</tr>
<tr>
<td>School 1</td>
<td>6.18 (0.41)</td>
<td>1.23 (0.42)</td>
</tr>
<tr>
<td>School 2</td>
<td>7.00 (1.53)</td>
<td>1.33 (0.88)</td>
</tr>
<tr>
<td>School 3</td>
<td>7.11 (0.48)</td>
<td>2.11 (0.63)</td>
</tr>
<tr>
<td>Individuele afnamen</td>
<td>7.18 (0.52)</td>
<td>1.55 (0.72)</td>
</tr>
<tr>
<td>Groepsafnamen</td>
<td>6.17 (0.40)</td>
<td>1.42 (0.35)</td>
</tr>
<tr>
<td>Totaal gemiddelde</td>
<td>6.50 (1.88)</td>
<td>1.47 (1.90)</td>
</tr>
</tbody>
</table>

Tabel 8
Gemiddelden (en SD) van de concepten en processen van de concept maps

<table>
<thead>
<tr>
<th></th>
<th>Aantal concepten</th>
<th>Aantal processen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groep 7</td>
<td>6.00 (0.83)</td>
<td>0.73 (0.47)</td>
</tr>
<tr>
<td>Groep 8</td>
<td>6.42 (0.48)</td>
<td>0.89 (0.35)</td>
</tr>
<tr>
<td>Jongens</td>
<td>6.07 (0.48)</td>
<td>0.47 (0.24)</td>
</tr>
<tr>
<td>Meisjes</td>
<td>6.47 (0.71)</td>
<td>1.20 (0.49)</td>
</tr>
<tr>
<td>School 1</td>
<td>6.50 (0.57)</td>
<td>1.28 (0.43)</td>
</tr>
<tr>
<td>School 2</td>
<td>5.00 (1.23)</td>
<td>0.20 (0.20)</td>
</tr>
<tr>
<td>School 3</td>
<td>6.57 (0.65)</td>
<td>0.14 (0.14)</td>
</tr>
<tr>
<td>Individuele afnamen</td>
<td>6.13 (0.93)</td>
<td>1.25 (0.56)</td>
</tr>
</tbody>
</table>
Hoewel er geen verschillen tussen het aantal geregistreerde processen en concepten gevonden zijn, zijn er wel verschillen gevonden met betrekking tot specifieke concepten die leerlingen weergaven. Alle leerlingen uit zowel de tekenconditie als de concept map conditie representeerden allemaal het concept plant. In de concept map conditie representeerden ook alle leerlingen het concept zuurstof en geen enkele leerling het concept grond. Alle leerlingen uit de tekenconditie representeerden het concept stengel. In deze conditie representeerden slechts 3 leerlingen het concept bladgroenkorrels en 2 leerlingen het concept huidmondjes.

Opvallend was ook het feit dat leerlingen over het algemeen weinig processen representeerden. En dan voornamelijk in de concept maps. Slechts 3 leerlingen benoemden dat zuurstof een afvalproduct is en dat water door de plant met de wortels uit de grond wordt gehaald. Slechts 2 leerlingen benoemden dat water van de wortel naar de stengel gaat en van de stengel naar de bladeren. Ook benoemden slechts 2 leerlingen dat de bladeren via de huidmondjes koolstofdioxide opnemen en dat de bladeren via de bladgroenkorrels licht opvangen. In de tekenconditie viel op dat geen enkele leerling in zijn tekening heeft vermeld dat suiker een voedingsstof is. Daarbij gaven slechts 4 leerlingen aan dat water van de stengels naar de bladeren gaat en slechts 4 leerlingen dat de bladeren via de huidmondjes koolstofdioxide opnemen.

Tekenvaardigheid

De leerlingen zijn cijfers van 1 tot 10 toegekend door middel van een schaal. De tekenvaardigheid van alle leerlingen is door zichzelf gemiddeld met 6,28 beoordeeld met een SD van 1,89. De docenten beoordden de tekenkwaliteit van alle leerlingen gemiddeld met 5,67 met een SD van 1,75. Dit is weergegeven in Tabel 9. Om te kijken in hoeverre de beoordeling van de leerling en de docent over de leerling overeenkomen is de correlatie tussen beide getest. Er is aangetoond dat
de beoordelingen significant overeenkomen ($r = .66, p < .01$). De correlatie tussen de beoordeling van de leerling en die van de docent over de leerling is groot omdat r groter is dan .50.

Tabel 9
Gemiddelden (en SD) van de tekenvaardigheid

<table>
<thead>
<tr>
<th></th>
<th>Tekenconditie</th>
<th>Concept map conditie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beoordeling</td>
<td>Beoordeling</td>
</tr>
<tr>
<td></td>
<td>zelf</td>
<td>docent</td>
</tr>
<tr>
<td>Groep 7</td>
<td>6.18 (0.46)</td>
<td>5.36 (0.36)</td>
</tr>
<tr>
<td>Groep 8</td>
<td>6.00 (0.54)</td>
<td>6.00 (0.37)</td>
</tr>
<tr>
<td>Jongens</td>
<td>5.53 (0.44)</td>
<td>5.00 (0.40)</td>
</tr>
<tr>
<td>Meisjes</td>
<td>6.71 (0.52)</td>
<td>6.18 (0.30)</td>
</tr>
<tr>
<td>School 1</td>
<td>6.05 (0.43)</td>
<td>5.68 (0.30)</td>
</tr>
<tr>
<td>School 2</td>
<td>4.67 (1.76)</td>
<td>4.00 (1.73)</td>
</tr>
<tr>
<td>School 3</td>
<td>6.78 (0.57)</td>
<td>5.89 (0.39)</td>
</tr>
<tr>
<td>Individuele afnamen</td>
<td>5.55 (0.55)</td>
<td>5.18 (0.57)</td>
</tr>
<tr>
<td>Groepsafnamen</td>
<td>6.39 (0.44)</td>
<td>5.78 (0.23)</td>
</tr>
<tr>
<td>Totaal gemiddelde</td>
<td>6.12 (2.04)</td>
<td>5.59 (1.56)</td>
</tr>
</tbody>
</table>

Om te testen of de tekenvaardigheid een voorspellende invloed heeft op leerlingen die een tekening maakten is een regressie analyse uitgevoerd over de beoordelingen van de tekenvaardigheid van de leerlingen zelf en de docent. Er is geen invloed van tekenvaardigheid op de score op de concept herkenningstoets gevonden, $F(2,61)=0.72, p=.246$. Voor de tekenconditie werden de waarden $F=1.22$ en $p=.154$ gevonden en voor de concept map conditie de waarden $F=.12$ en $p=.45$. Dit geldt ook voor de score op de essaytoets, $F(2,61)=1.10, p=.178$. Met voor de tekenconditie de waarden $F=0.34, p=.358$ en voor de concept map conditie de waarden $F=1.70, p=.101$. Daarbij is een herhaalde metingen analyse uitgevoerd over de concept herkenning voor- en natoets en de groepen waar de leerlingen in zijn gedeeld naar aanleiding van de tekenvaardigheid die zij zichzelf hebben toegekend. Hier is ook geen significant verschil gevonden, $F=0.74, p=.241$. Er is een one-way Anova toets uitgevoerd voor de score op de
essaytoets en de tekenvaardigheid groepen en ook hier is geen significant verschil gevonden, $F(2,61)=0.53, p=.123$.

Hardop denken data

Er is niet significant aangetoond dat leerlingen in de concept map conditie meer spreken over de relaties tussen concepten dan leerlingen in de tekenconditie, $F(1,17)=0.03, p=.439$. Er is wel significant aangetoond dat leerlingen in de tekenconditie vaker in hun monoloog spreken over esthetische aspecten van de tekening dan leerlingen in de concept map conditie, $F(1,17)=9.13, p=.004$. Opvallend is dat de leerlingen geen positieve aspecten van zijn of haar tekening of concept map hebben benoemd. Ook zijn er zeer weinig negatieve aspecten genoemd, de 19 leerlingen benoemden samen enkel 5 negatieve aspecten.
Conclusie en discussie

Het doel van dit onderzoek was het vergelijken van tekenen en concept mappen op het tekstbegrip van leerlingen uit groep 7 en 8. Er is in dit onderzoek een leereffect aangetoond na het maken van een tekening of een concept map. Dit wordt ondersteund door onderzoek van onder andere Van Meter (2001), Schamborn et al. (2010) en Nesbit en Adesope (2006).

Door het maken van een concept map worden kernbegrippen duidelijker in kaart gebracht (Fischer et al., 2002). Ook worden door het maken van een concept map relaties duidelijker gevisualiseerd (Larkin & Simon, 1987). Daarom was de eerste verwachting dat leerlingen die een concept map maakten meer processen of concepten zouden representeren dan leerlingen in de tekenconditie. Er zijn echter geen significante verschillen gevonden tussen de tekeningen en concept maps; dit geldt voor zowel de concepten als de processen. Ook werd verwacht dat leerlingen die een concept map maken, als resultaat meer kennis zouden hebben over de relaties binnen een domein en hogere scores zouden behalen op de kennistoetsen. Er is wel een leereffect aangetoond op de concept herkenningstoets maar er zijn geen verschillen gevonden tussen de condities. Ook zijn er geen significante verschillen gevonden tussen de scores op de essaytoets.

De tweede verwachting was dat de ervaren tekenvaardigheid een voorspellende waarde zou hebben en dat tekenvaardigheid een grotere invloed zou hebben op leerlingen die een tekening maken, omdat zij niet gebonden zijn aan restricties zoals leerlingen die een concept map maken. Resultaten toonden aan dat de invloed van de tekenvaardigheid op de concept herkenningstoets en de score op de essaytoets niet significant is.

Tot slot is de hardop denken data geanalyseerd. Er werd verwacht dat leerlingen in de concept map conditie meer zouden spreken over de relaties tussen concepten dan leerlingen in de tekenconditie. Ook hier is geen significant verschil gevonden tussen de condities. Daarbij werd verwacht dat leerlingen in de tekenconditie vaker denken of spreken over esthetische aspecten van de tekening en hier is wel een significant verschil gevonden. Leerlingen in de tekenconditie spraken vaker over esthetische aspecten. Het benoemen van positieve en negatieve aspecten van leerlingen werd ook meegenomen in dit onderzoek. Omdat leerlingen in dit onderzoek zeer
weinig positieve en negatieve aspecten benoemden was het niet mogelijk hier analyses op uit te voeren.

Mogelijke verklaringen voor de gevonden resultaten

In tegenstelling tot onze verwachting op basis van de literatuur zijn er weinig verschillen gevonden tussen de kennis die verworven is door middel van het maken van een tekening of een concept map. Er is wel een leereffect aangetoond, maar er zijn geen verschillen gevonden tussen de condities. Leerlingen hadden meer moeite met het maken van een concept map dan het maken van een tekening. De leerlingen hebben langere tijd nodig gehad om met de concept maps te oefenen omdat zij hier niet bekend mee waren vergeleken met het maken van een tekening omdat dit voor hen natuurlijker was. Ook waren er verscheidene leerlingen die na het onderzoek kwamen vragen of zij nog even mochten tekenen omdat zij een concept map hebben gemaakt en tekenen toch eigenlijk ook heel leuk vonden. Tekenij lijkt hierdoor een goede oplossing te zijn want het leidt tot evenveel tekstbegrip.

Er werd geen significant verschil gevonden tussen de beide condities in het representeren van het aantal goede concepten en processen. Zoals Leopold en Leutner (2011) in hun onderzoek benoemden is het goed mogelijk typologische relaties in een tekening weer te geven. In dit onderzoek is geen aanleiding gevonden dat leerlingen meer relaties weergeven in een concept map dan in een tekening. Uit de hardop denken data kwam ook niet naar voren dat leerlingen uit de concept map conditie meer spraken over relaties tussen concepten. Er is echter niet gekeken of er leerlingen waren die de relaties wel benoemden maar niet in hun tekening of concept map representeerden. Opvallend was dat zeer weinig leerlingen processen representeerden, het gemiddelde aantal is 1,47 van de in totaal 9 mogelijke processen. Ondersteuningsvragen of begeleiding met het lezen zouden dit kunnen ondersteunen, zo heeft van Meter (2001) dit onderzocht voor leerlingen die tekeningen maakten.

De essaytoets, die hogere orde kennis toetst, is erg slecht gemaakt. Van de totaal 16,75 mogelijk te behalen punten zijn door de condities gemiddeld 5,01 punten behaald. Een verklaring
zou kunnen zijn dat de essaytoets te moeilijk was voor de leerlingen. Vooral vraag B2 en C1 zijn erg slecht gemaakt. Deze toets is eerder gebruikt in andere pilotstudies met wisselende resultaten. Een andere verklaring omtrent tekenen is dat in het onderzoek van Leutner, Leopold en Sumfleth (2009) wordt benoemd dat het leren van een tekst zou kunnen lijden onder het maken van een tekening omdat de leerlingen hier teveel cognitieve belasting van zouden kunnen ondervinden. Dit zou hier ook een rol kunnen hebben gespeeld. Tekenvaardigheid had in dit onderzoek echter geen invloed op de scores op de kennis-toetsen.

Er werd in dit onderzoek gebruik gemaakt van tablets. De leerlingen waren erg enthousiast over de elektronische apparaaten en wilden er graag mee aan het werk. Verondersteld kan worden dat zij hier druk van kunnen hebben ondervonden om een mooie tekening te maken. Dit geldt ook voor de concept map conditie. Tot slot zijn externe omstandigheden waaronder doktersbezoeken en het vroegtijdig moeten stoppen met het onderzoek van invloed geweest op de uiteindelijke dataset, er zijn 22 leerlingen uitgevallen.

Conclusies en toekomstig onderzoek

Het gevonden leereffect van het maken van een tekening of een concept map was in overeenstemming met de verwachting. Er zijn echter nog geen aanleidingen gevonden dat leerlingen die concept maps maken meer relaties tussen concepten representeren en meer kennis omtrent deze zullen ontwikkelen binnen een domein in vergelijking met leerlingen die tekenen. Tekenen lijkt de voorkeur te hebben doordat leerlingen er al bekend mee zijn. De mogelijke prestatiedruk en de moeilijkheid van de essaytoets zou een rol kunnen hebben gespeeld in dit onderzoek. Wellicht zou het onderzoek in de toekomst kunnen worden uitgevoerd met ondersteuningsvragen voor zowel de tekenconditie als de concept map conditie om het aantal gerepresenteerde processen te verhogen. Ook zou er meer onderzoek kunnen worden gedaan naar hardop denken. Of leerlingen relaties misschien wel benoemen maar dit niet in hun tekening of concept map zetten. Ook is het interessant om te kijken naar het benoemen van negatieve en positieve aspecten en de invloed op de scores op de kennis-toetsen. En de correlatie tussen het...
benoemen van negatieve en positieve aspecten en de tekenvaardigheid van leerlingen. Dit zijn goede aanknopingspunten voor onderzoek in de toekomst.

Ainsworth, S., Nathan, M.J., Van Meter, P. (z.d.). Learning about Dynamic Systems by Drawing. Verkregen op 20 september, 2012 via https://docs.google.com/viewer?a=v&q=cache:lAbUQ38hEwcJ:www.psychology.nottingham.ac.uk/staff/sea/drawing_icls_2010.pdf+&hl=nl&gl=nl&pid=bl&srcid=ADGEESjBVLNepFCZ5017tFc1pDnBMN0vPlxjys4lU67Yk83FaiX_0dQx8Wh_CzBPk3_S2BXNhN9EB1MJo6nCSsg9LTfncClslUqMj6qzyjsjM0095mCogV5fcUZTD8uZMeugsczAYfT&sig=AHIEtbT7n45h30fOKn7rWS66b6ezPHEva6Q

Bijlagen

Bijlage A: Fotosynthese tekst

Fotosynthese

Groene planten, onmisbaar voor het leven van mens en dier! Om te overleven hebben mensen en dieren zuurstof nodig. Groene planten zorgen hiervoor in een proces dat fotosynthese wordt genoemd.

Zuurstof zit in de lucht, maar het komt daar niet vanzelf. Zuurstof wordt gemaakt door planten. Een plant is eigenlijk een zuurstoffabriek. Dit doet hij door gebruik te maken van zonlicht, water en koolstofdioxide (ook een stof in de lucht). Hierbij wordt niet alleen zuurstof aangemaakt, maar ook suiker.

Die suikers, daar is het een plant eigenlijk om te doen. Suiker is een voedingsstof voor de plant zelf, en slaat de plant dus op in zichzelf om van te groeien en om vruchten mee te maken. Zuurstof, dat tegelijkertijd ontstaat, is voor de plant eigenlijk een afvalproduct.

De drie stoffen, zonlicht, water en kooldioxide, komen natuurlijk niet zomaar in een plant.

Daarvoor heeft hij een paar hulpmiddeltjes: de wortels, de stengels en de bladeren. Met de wortels haalt een plant water uit de grond. Van de wortels gaat het water naar de stengel, en vervolgens van de stengel naar de bladeren.

Het belangrijkste stuk gereedschap dat een plant bij het maken van zuurstof en suiker gebruikt is het bladgroen. Planten zijn groen omdat ze in hun bladeren allemaal groene korrels hebben zitten. Dit zijn bladgroenkorrels. In deze korrels vind de fotosynthese plaats.

Bladeren kunnen zelf lucht opnemen. In de blaadjes zitten kleine openingen: de huidmondjes. Met die huidmondjes haalt een plant kooldioxide uit de lucht.

Voor het opnemen van licht gebruikt de plant ook de bladeren. De bladgroenkorrels in de blaadjes vangen het licht op.

Als de grondstoffen de plantenfabriek zijn binnengehaald kan het proces beginnen. Met behulp van het zonlicht, de stroom voor de fabriek, wordt van kooldioxide en water in de bladgroenkorrels suiker gemaakt. Die suiker houdt de plant zelf, om van te groeien en om lekkere zoete vruchten mee te maken. De zuurstof verdwijnt als afval door de “schoorsteen” (de huidmondjes) naar buiten.
Bijlage B: Concept herkenningstoets nakijkmodel

FOTOSYNTHESE

Naam:

Om cirkel in onderstaande lijst de woorden die, volgens jou, te maken hebben met het fotosynthese-proces.

MINERALEN	MODDER
FOTOCAMERA	FOTOBOEK
ZUURSTOF	OCEAAN
GROEI	WATER
GROENE PLANTEN	FLITS
CHOCOLADE	FOTO
INFILTRATIE	SUIKER
AARDE	ATMOSFEER
EXPLOSIE	BLADEREN
HELIUM	LIMONADE
GELUID	ZONLICHT
STENGELS	LIEVEHEERSBEESTJE
KRINGLOOP	BLADGROEN
VERDAMPING	BALKON
HERFST	KOOLSTOFDIOXIDE
VOEDING	VET
WATERDAMP	TEMPERATUUR
HUIDMONDjes	VOETBAL
Bijlage C: Essaytoets nakijkmodel

Naam:

A. Vragen over mensen

A1. Wat heeft een mens nodig om te kunnen groeien?

Voedsel (glucose, zetmeel) (dus ook drinken en eten)
Zuurstof en vocht.

3 p (voor iedere een puntje)
(Buitenlucht fout rekenen)

A2. Hoe komen mensen aan deze stoffen?

Planten en dieren eten wij op.
Zuurstof uit de lucht.
Vocht water uit de omgeving, sap uit vruchten en melk van dieren.

3 p (voor ieder een puntje)
1 p extra voor het benoemen dat de planten de zuursof en glucose voor een deel leveren
(1p voor natuur)

B. Vragen over planten.

B1. Wat heeft een groene plant nodig om te kunnen groeien?

Kooldioxide, water, glucose (en zuurstof)

3,5p in totaal te krijgen.

1p kooldioxide
1p water
0,5p glucose
0,5p zuurstof (lucht is geen zuurstof dus fout)
0,5p zonlicht
B2. Hoe komen planten aan deze groeistoffen?

Kooldioxide en zuurstof uit de lucht (zuurstof ’s nachts)
Glucose en zuurstof maakt de plant zelf door middel van fotosynthese.
Water komt uit de bodem.

Kooldioxide lucht 0,5
Zuurstof lucht 0,5
Zuurstof zelf 1
Glucose zelf 0,5
Water bodem 0,5 (regen of wolken is ook goed. Waterdamp is fout)
Zonlicht van de zon in de lucht (0,5p)
1 punt voor het benoemen van fotosynthese proces in relatie met zuurstof of glucose

C. Combinatie vragen

C1. Als wij een perzik eten krijgen wij energie. Hoe komt de energie in de perzik?

Glucose (suiker). De perzik bevat opgeslagen glucose. Die de perzik heeft gemaakt tijdens het fotosynthese proces.

Glucose (opgeslagen) 1 p
Gemaakt tijdens foto synthese 1p

C2. Zuurstof is belangrijk voor mensen. Zonder zuurstof kan de mens niet leven. Waar komt zuurstof vandaan?

Planten maken tijdens het fotosynthese proces zuurstof uit kooldioxide en water onder andere met behulp van zonlicht, bladgroenkorrels en huidmondjes.

Fotosynthese 1p
Uitleg met daarin kooldioxide, water, zonlicht (1,5 punt, 0,5 voor elk puntje)
Aanvullingen (bladgroen, huidmondjes 0,25)

(Voor planten en bomen 1p)
(Als ze zeggen dat zuurstof wordt gemaakt maar niet benoemen dat het hier gaat om fotosynthese 1p)
Vragenlijst

Concepten
1. Is er een representatie van de plant getekend? Is deze geannoteerd?
 - (Groene) plant
2. Wordt zuurstof geregenseerd? Is dit geannoteerd?
 - Zuurstof
3. Wordt zonlicht geregenseerd? Is dit geannoteerd?
 - Zonlicht
4. Wordt water geregenseerd? Is dit geannoteerd?
 - Water
5. Wordt (kool)stofdioxide geregenseerd? Is dit geannoteerd?
 - Kool(stof)dioxide
6. Wordt suiker geregenseerd? Is dit geannoteerd?
 - Suiker
7. Worden de wortels geregenseerd? Zijn deze geannoteerd?
 - Wortels
8. Wordt de stengel geregenseerd? Is dit geannoteerd?
 - Stengel
9. Worden de bladeren geregenseerd? Zijn deze geannoteerd?
 - Bladeren
10. Is er een representatie van de bladgroenkorrels getekend? Is deze geannoteerd?
 - Bladgroenkorrels
11. Wordt lucht geregenseerd? Is dit geannoteerd?
 - Lucht
12. Is er een representatie van de huidmondjes geregenseerd? Is deze geannoteerd?
 - Huidmondjes
13. Wordt grond geregenseerd? Is dit geannoteerd?
 - Grond

Eigenschappen
14. Wordt zuurstof als afvalproduct geregenseerd? Wordt dit geannoteerd?
 - Zuurstof als afvalproduct
15. Wordt suiker als voedingsstof gerepresenteerd? Wordt dit geannoteerd?
 - Suiker als voedingsstof

Proces
16. Haalt de plant met de wortels water uit de grond? Wordt dit geannoteerd?
 - Water wortels → grond
17. Verplaatst het water zich vanaf de wortels naar de stengel? Wordt dit geannoteerd?
 - Water wortels → stengel
18. Verplaatst het water zich vanaf de stengel naar de bladeren? Wordt dit geannoteerd?
 - Water stengel → bladeren
19. Zuigen de bladeren (via de huidmondjes) kool(stof)dioxide op? Wordt dit geannoteerd?
 - Kool(stof)dioxide bladeren (huidmondjes)
20. Vangen de bladeren (via de bladgroenkorrels) het licht op? Wordt dit geannoteerd?
 - Bladeren licht (bladgroenkorrels)
21. Verdwijnt zuurstof als afval door de “schoorsteen” van de plant (de huidmondjes) naar buiten, en is dit het product van de plant? Wordt dit geannoteerd?
 - Zuurstof huidmondjes → buiten

Coderingsregels
- **Algemeen** → Een proces hoeft niet per se afgebeeld te worden aan de hand van een pijl (mág wel), zolang maar duidelijk is dat het proces afgebeeld is (dit mag/kan bijvoorbeeld ook aan de hand van een annotatie). Wanneer het echter door het ontbreken van de pijl niet duidelijk wordt wat er bedoeld wordt, dan wordt dit niet als het proces in kwestie beoordeeld.
- **Algemeen** → Een representatie in de vorm van een afbeelding moet wel duidelijk zijn en ergens op slaan. Zo niet, dan wordt het niet goedgekeurd. Ook niet wanneer de annotatie aangeeft wat het getekende zou moeten zijn. *Representaties moeten geen betekenis worden gegeven door de beoordelaar, maar moeten voor zich spreken.*
 o Bijv. Wanneer wortels getekend zijn en er staat stengel bijgeschreven, dan klopt dit niet. Of wanneer er geen onderscheid gemaakt kan worden tussen bladeren of bladgroenkorrels.
- **Algemeen** → De annotatie moet duidelijk met de representatie verbonden zijn. Het is dus niet voldoende als de annotatie zomaar ergens op het blad staat geschreven. Hiermee kunnen we niet aantonen of bedoeld is dat deze ‘het getekende anoteert’.
Vraag 1 ➔ Er moet tenminste één plant getekend zijn. Andere vegetatie, zoals een boom of een bloem, kunnen op dezelfde manier worden geclassificeerd. Dit geldt zowel voor beide representatievormen.

Vraag 2 ➔ Zuurstof is niet zichtbaar in fysische vorm, dus mag ook worden weergegeven aan de hand van een annotatie.

Vraag 3 ➔ Alleen een afbeelding van een zon is niet voldoende. Wanneer alleen de ‘zon’ geannoteerd wordt, is dit ook niet voldoende. ‘Zonlicht’ zelf moet ook worden geannoteerd. De zonnestralen moeten worden weergegeven aan de hand van pijlen, of lange (gerichte) lijnen.

Vraag 4 ➔ Het maakt niet uit waar het water vandaan komt en in welke vorm het wordt weergegeven. Zo is regen ook een goede representatie, en voldoet een annotatie ook aan de eisen.

Vraag 5 ➔ Kool(stof)dioxide is niet zichtbaar in fysische vorm, dus mag ook worden weergegeven aan de hand van een annotatie.

Vraag 6 ➔ Suiker mag ook worden weergegeven aan de hand van een annotatie.

Vraag 10 ➔ De bladgroenkorrels hoeven niet op elk blad te zijn gerepresenteerd.

Vraag 11 ➔ Lucht is niet zichtbaar in fysische vorm, dus mag ook worden weergegeven aan de hand van een annotatie. De verwijzing ‘wind’ is hierbij niet afdoende. Dit is namelijk niet hetzelfde, en wordt ook niet genoemd in de tekst.

Vraag 12 ➔ De huidmondjes hoeven niet op elk blad te zijn gerepresenteerd.

Vraag 14 ➔ Omdat dit waarschijnlijk niet makkelijk af te beelden is in de tekening, wordt een annotatie ook goed gerekend als representatie.

Vraag 15 ➔ Omdat dit waarschijnlijk niet makkelijk af te beelden is in de tekening, wordt een annotatie ook goed gerekend als representatie.

Vraag 19 ➔ Kool(stof)dioxide moet door de plant worden opgenomen. Hierbij hoeven niet specifiek de huidmondjes voor worden gebruikt.

Vraag 20 ➔ Zonlicht moet in dit geval gericht zijn op de bladeren/plant, niet per se op de bladgroenkorrels.

Vraag 21 ➔ ‘Schoorsteen’ hoeft niet als zodanig benoemd te worden. Als het proces dat zuurstof door de plant (via de huidmondjes) naar buiten gaat gerepresenteerd is, is dit voldoende.
Naam....

Hoe goed vind je dat jij kan tekenen?
Zet een streepje in de balk om aan te geven hoe goed jij vindt dat je kan tekenen.
Als je denkt dat je slecht kan tekenen zet je het streepje meer aan de linkerkant van de balk,
vindt je dat je goed kan tekenen zet je een streepje meer aan de rechterkant. Jij mag
beslissen waar op de balk jij een streepje zet.

Heel slecht Heel goed

Naam...

Hoe goed vindt u dat de leerling kan tekenen?
Zet een streepje om aan te geven hoe goed u vindt dat de leerling kan tekenen.
Als u denkt dat de leerling slecht kan tekenen zet u het streepje meer aan de linkerkant van
de balk, vindt u dat de leerling goed kan tekenen zet u een streepje meer aan de rechterkant.
De keuze is aan u waar u het streepje zet.

Heel slecht Heel goed
Bijlage F: Een van de brieven aan de ouders

05-11-2012

Beste ouder(s)/ verzorger(s) van de leerlingen van groep 7 en 8,

De (naam school) heeft toestemming gegeven voor een onderzoek naar het effect van verschillende instructievormen in het natuur & techniek onderwijs. Het betreft een onderzoek van de Universiteit Twente, faculteit gedragswetenschappen. Ten behoeve van mijn opleiding psychologie. Het onderzoek zal worden uitgevoerd op twee achtereenvolgende vrijdagochtenden.

Uit onderzoek is gebleken dat tekenen en mind mappen (grafische vormgeven) twee succesvolle instructievormen zijn. Beide instructievormen helpen de leerlingen een tekst visueel weer te geven waardoor de relaties die in de tekst beschreven worden voor leerlingen concreter worden. Wij willen de effecten van en de verschillen tussen beide instructievormen graag nader onderzoeken.

Voor dit onderzoek krijgen leerlingen een tekst te lezen en gaan daarna actief met deze tekst aan het werk door op een tekentablet een tekening of mind map te maken over de inhoud van de tekst.

Het onderzoek zal naar schatting 35 minuten per leerling in beslag nemen. Om beter inzicht te krijgen in het leerproces zullen wij een aantal leerlingen vragen hardop te praten terwijl zij een tekening of mind map maken. Het hardop denken van deze leerlingen zal worden opgenomen en anoniem worden geanalyseerd.

De resultaten van dit onderzoek zullen anoniem worden verwerkt en niet aan derden worden verleent.

Als u bezwaar heeft tegen deelname kunt u onderstaand strookje invullen.

Voor vragen of opmerkingen kunt u gerust contact opnemen met een van onderstaande onderzoekers.

Namens,

Aniek Olthof
Studente psychologie
Uitvoerend onderzoeker
e-mail: a.j.e.olthof@student.utwente.nl

Dr. A.H. Gijlers
Wetenschappelijke staf Universiteit Twente
Begeleidster onderzoek
e-mail: a.h.gijlers@utwente.nl
Wij willen niet dat onze zoon/dochter deel neemt aan dit onderzoek

Ondertekende Handtekening

.. ...
Bijlage G: Tangram taak

Hardop denken oefenen met een tangram

Opdracht: je krijgt zeven stukjes, waarvan je onderstaande figuur moet maken terwijl je hardop aan het nadenken bent. Let op: het figuur is niet op ware grootte.
Oplossing:
Bijlage H: Watercyclus oefentekst

Watercyclus

De energie die nodig is voor de waterkringloop wordt geleverd door de zon. Ongeveer de helft van de zonne-energie die het aardoppervlak bereikt, wordt gebruikt voor de verdamping van water. Wanneer dus boven de zee de zon schijnt, verdampt het water van de zee. Deze waterdamp gaat omhoog, waar het zich een wolk vormt. Deze wolk wordt door de wind naar het land geblazen, waar boven het land de waterdamp afkoelt. De damp wordt nu weer druppeltjes en het gaat regenen. Alle regen die uit de lucht valt, komt terecht op het land.

Zo zie je dat de kring maar rond gaat... De circulatie van water via de atmosfeer (lucht) de rivieren en de ondergrond wordt de kringloop van het water genoemd. Kort gezegd: de waterkringloop.