
Combining Multiple Malware Detection
Approaches for Achieving Higher Accuracy

Master’s thesis

University of Twente

Author:
Jarmo (J.M.) van Lenthe

Graduation committee members:
Prof. dr. ir. Aiko Pras

dr. Anna Sperotto

Rick Hofstede M.Sc.
Jair Santanna M.Sc.

January 23, 2014

As malware poses a major threat on the Internet, malware detection
and mitigation approaches have been developed and used in the bat-
tle against malware. Some malware samples elude these approaches,
while some benign software is marked malicious. Having looked
at the state of the art in detection approaches, we have combined
three, namely honeypots, DNS data analysis and flow data analysis.
All three are widely used in corporate networks and can be exerted
for detecting malware. By conducting experiments in which a work-
station in a closed environment gets infected by malware samples,
we have observed that a honeypot is not an effective approach for
malware detection, because no malware tried to reach our honeypot.
However, DNS data analysis and flow data analysis can be combined
to achieve synergy, by providing more information about whether a
workstation is infected by malware, leading to more informed deci-
sions.

C O N T E N T S

1 introduction 1

2 honeypots 3

2.1 Background 3

2.2 State of the art 5

2.2.1 Medium-interaction honeypots 5

2.2.2 High-interaction honeypots 7

2.2.3 Conclusion 8

3 dns 11

3.1 Background 11

3.2 State of the art 11

3.3 Conclusion 16

4 flow data 17

4.1 Background 17

4.2 State of the art 18

4.3 Conclusion 20

5 experiment setup 21

5.1 Workflow 22

5.2 Honeypot 23

5.3 DNS server 23

5.4 Flow data 25

5.5 Workstation 25

6 experiment results 27

6.1 Honeypot 27

6.2 DNS data 29

6.3 Flow data 33

6.4 Correlating the results 35

6.5 Samples that stood out 35

7 conclusions 37

7.1 Future work 38

a list of malware samples 47

b dissection of domain generating algorithm 59

c script for executing malware 61

d lvm and kvm setup 63

III

L I S T O F F I G U R E S

Figure 1 Classification of honeypots. 4

Figure 2 How DNS works: a system resolving google.com. 12

Figure 3 Statistical similarity between domain names is
greatest with botnets. Source: Choi et al. [14] 16

Figure 4 How flow data is exported, saved and queried. 18

Figure 5 The network overview of our closed environ-
ment. 22

Figure 6 The LVM setup used in our measurements. 63

Figure 7 The KVM setup used in our measurements. 63

V

L I S T O F TA B L E S

Table 1 Literature classification of detecting malware
with honeypots. 10

Table 2 Features to classify DNS records. Source: Bilge
et al. [7] 13

Table 3 Example of domain names generated by a Do-
main Generating Algorithm (DGA). Source: New-
man [49] 15

Table 4 Aspects on which the results are analysed. 28

Table 5 List of queried domain names and the amount
of requests to that domain (over all malware
samples). The domain names shown in bold
face are queried by more than one malware
sample. The domain names shown in italic
face are candidates to be generated by DGAs. 30

Table 6 NXDOMAIN method results, executed on 2013-
12-11. 32

Table 7 Port numbers of connections to 1.2.3.4 and their
assigned uses. 34

Table 8 List of the 997 malware samples executed on
the workstation. 47

VII

L I S T I N G S

Listing 1 Example log rule created by PassiveDNS. 24

Listing 2 Example result of a query executed with nf-
dump. 26

Listing 3 Dissection of Domain Generating Algorithm used
by Conficker A. Source: [53]. 59

Listing 4 The script executed to generate the data set. 61

IX

1
I N T R O D U C T I O N

Malware poses a major threat on the Internet [12]. Malware is de-
fined as software that is created to do unwanted action on a com-
puter, and includes worms, Trojan horses, viruses, and bots [43]. De-
tection and mitigation of malware is essential, and because of that,
approaches for detecting it have been proposed [13, 12, 10]. Honey-
pots, DNS data analysis and flow data analysis are such approaches,
which are widely used and can be exerted for detecting malware on
networks [44, 20, 64]. This is because most malware will try to prop-
agate itself to other systems or, in case of botnet malware, will try to
download commands from a Command & Control (C&C) server.

Honeypots were originally created to learn the methods attackers
use, but are now also used for catching and analysing malware [44].
They are a traditional tool in the ongoing defence against attackers
and malware. DNS data analysis is used by network administrators
to, for instance, list what websites are visited with a higher frequency
than others, but can be exerted for malware detection [20, 77]. Pat-
terns in amount of DNS replies over time exist in DNS data that can
point to a botnet infection [59]. Flow data analysis was originally pro-
posed to gain information about flows in a network, for instance for
billing and maintenance purposes, and is standardized in the capac-
ity of IPFIX [32]. It can be used to detect malware by marking certain
characteristics in the network traffic caused by malware [64]. In gen-
eral, each approach is applied to detect a specific set of malware types
in a specific kind of dataset.

The effectiveness of an approach can be measured in terms of ac-
curacy, which is the ratio of correct classified samples divided by
all samples. The accuracy of multiple approaches may improve by
letting them work together, creating synergy. Therefore, we intu-
itively believe that we can achieve a higher accuracy by combining
approaches for detecting malware compared to the accuracy of the
individual approaches.

In this research, we will combine existing approaches that are widely
used by network administrators [70]. We will correlate information
from honeypot data, DNS data and flow data analysis. We will
run detection systems that generate this data in parallel in order to
minimize the false positives and false negatives and thus achieve a
higher accuracy. For example, when quasi-random domain names
are queried, which can be observed using DNS data analysis, and the
system subsequently connects to the corresponding IP address on un-
usual ports, which can be detected by flow data analysis, we have

1

two reasons to mark the system as infected by malware. In this way,
the certainty that the system is infected by malware increases.

The goal of this research is to investigate how the combination of
multiple approaches of malware detection systems improves the ac-
curacy. This gives us our main research question:

How does combining multiple approaches of malware de-
tection systems improve the malware detection accuracy?

To answer the main question, we will do a literature study and con-
duct experiments. This gives us the following preliminary research
questions.

• What is the state of the art on identifying malware-infected sys-
tems with honeypots, DNS data analysis, and flow data analy-
sis?

• What types of malware can be detected with the combined ap-
proaches?

For each dataset, we will study the state of the art of the existing
approaches in Chapter 2, Chapter 3, and Chapter 4. In Chapter 5

and Chapter 6, we will conduct an experiment in which we will run
malware samples on a closed environment, while collecting informa-
tion from different detection approaches. This will give us data sets
for each approach. In this way, we can make an unbiased conclu-
sion. At last, we show that using multiple approaches of identifying
malware-infected systems increases the accuracy of the malware de-
tection approaches. In the literature study, we will focus on what
types of malware the approach can detect, how it detects the mal-
ware, and how accurate the approach is. A malware classification is
needed for this. This will come from existing research, such as Grégio
et al. [24]. The experiment we conduct consists of running malware in
a closed environment while gathering information from the different
detection approaches. We will analyse the results on the basis of the
analysis methodss described in the state of the art.

2

2
H O N E Y P O T S

In this section, we will first describe what honeypots are, which types
exist and what their respective uses are in Section 2.1. We will then
describe the state of the art of using honeypots for malware detection
in Section 2.2.

2.1 background

Honeypots are vulnerable systems that are placed in a network to be
compromised [67]. These vulnerabilities are present on purpose. Ho-
neypot systems are always observed to learn from the methods that
attackers use to compromise a system and what they do when they
have succeeded. A honeypot can be compromised in two ways [81].
The first is when an attacker get into the honeypot. The other is when
a piece of malware propagates itself over the Internet and places a
copy of itself on the honeypot. The scope of this thesis excludes
the first from this research, because we focus on detecting malware.
Because honeypots have no production value, every connection to a
honeypot has to be considered suspicious. This means that terms like
false positives and false negatives are not applicable to honeypots [4].
A connection can be benign or malicious. If a honeypot is reached
by accident, and no further action is taken against it, it is benign.
Uploading a file to a honeypot however, is malicious. In classifying
attacks or malware as benign or malicious, there can be false positives
and negatives.

The most high-level classification of honeypots can be made on the
basis of activity level and interaction level. This is shown schemati-
cally in Figure 1. Based on activity, we differentiate two types of hon-
eypots: client honeypots and server honeypots [29]. Server honeypots
are the traditional, passive honeypots that expose vulnerable services
and wait for a connection to be made to them, reacting on an attack.
Client honeypots are active honeypots, crawling the network or visit-
ing URLs that may be a source of malware infections [36]. This defini-
tion contradicts the global honeypot definition, because this honeypot
does not get compromised by an attacker, but rather compromises it-
self by downloading malware explicitly. The scope of this thesis is on
server honeypots, because they enable us to detect malware activity
in the network. Honeypots can be anomaly-based or signature-based.
Anomaly-based means that it acts on everything that is out of the
ordinary. Most honeypots are anomaly-based, as it is placed in a net-
work to detect all kinds of attacks. Signature-based means that the

3

Honeypot

ServerClient

High-interaction

Medium-interaction

Low-interaction

Figure 1: Classification of honeypots.

honeypot will only act when something happens that complies to a
certain signature. When a honeypot is anomaly-based but performs
analysis based on hashes (which is signature-based analysis), it can-
not identify unknown malware, but it does catch it for later, manual,
processing.

Server honeypots come in three different interaction levels: high,
medium and low [42]. The interaction level is the level of interaction
that the malware can have with the honeypot system. It brings in a
trade-off between the need of monitoring the honeypot and the qual-
ity of the information that can be retrieved from the honeypot. A
higher interaction level is more risky to get compromised, and must
therefore be monitored more intensely, as compromised systems can
be used to do damage to other systems. Low-interaction honeypots
listen to a port and write everything that gets sent to it to a file, but do
not need much monitoring. Medium-interaction honeypots are sys-
tems that run honeypot software packages which simulate services
or vulnerabilities. Examples of these packages are Kippo1, Dionaea2

and Glastopf 3. Instead of giving the attacker a full-fledged system
with which they can interact, they simulate a normal system. The
softwarer calculates an expected response and returns that to the at-
tacker. Because medium-interaction honeypots interact with the at-
tacker, more information is gathered about the attack, which brings
risk, so the system must monitored more intense than low-interaction
honeypots. High-interaction honeypots are full-fledged systems in
which run normal services, so nothing is simulated. They offer the
most information, when configured correctly, but need to be highly
monitored, as the risk of exposing a complete system is highest.

1 https://code.google.com/p/kippo/
2 http://dionaea.carnivore.it/
3 http://glastopf.org/

4

https://code.google.com/p/kippo/
http://dionaea.carnivore.it/
http://glastopf.org/

2.2 state of the art

Detection of malware by using honeypots has been an already widely
investigated subject in the past years [81, 23, 63, 65]. The solutions
proposed in literature differ greatly, in terms of how the analysis of
malware samples found is done, whether one or more honeypots are
used and the interaction levels of those honeypots. It describes pro-
posals for medium-interaction and high-interaction honeypots. As
low-interaction honeypots cannot interact with the attacker, they do
not yield much information, and are therefore not described in litera-
ture. This section is divided per interaction level.

2.2.1 Medium-interaction honeypots

Most of the literature describes medium-interaction honeypots to de-
tect malware. In Göbel [23], the honeypot software package Amun4

is used to catch malware. Amun analyses all malware samples found
with its Shellcode Analyzer. One of the first steps that are taken by
the analyser, is looking through the uploaded malware code to find
URLs. It is likely that new malware or instructions for the uploaded
malware is located at those URLs. It will then download from these
URLs. From the malware samples it gathers from there, Amun can
make Snort rules. Snort5 is a rule-based and host-based intrusion
detection system. The fact that the Snort rules are created on the ho-
neypot, makes that these rules are all correctly classifying intrusions,
as there are no false positives. Of course, these rules must be very
strict, in order to block as less benign traffic as possible.

Wichersky from Kaspersky Labs has researched how mwcollect6,
another medium-interaction honeypot packages functions when de-
ployed on the Internet [78]. Mwcollect emulates multiple services and
receives malware via those services. The malware gets run in libemu,
a library which emulates shell code and responds with expected re-
sults, that is, results that would be yielded when issuing the same
shell code on the real software package. Mwcollect monitors the be-
haviour of malware by detecting calls to the API of the operating
system, such as Windows’ URLDownloadToFileA. In that way, ev-
ery connection to other systems can be detected.

Honeypots can work together in a network. This is called a hon-
eynet [41]. They can be used to detect how malware behaves in a
network. In Hassan et al. [28], multiple Nepenthes7 honeypot software
packages are deployed. The honeypots all send the data they cap-
ture to a central server. The central server parses all information and

4 http://amunhoney.sourceforge.net/
5 http://www.snort.org/
6 http://mwcollect.org
7 http://nepenthes.carnivore.it/

5

http://amunhoney.sourceforge.net/
http://www.snort.org/
http://mwcollect.org
http://nepenthes.carnivore.it/

stores it in a database. With a Web site front-end to this database,
statistics can be calculated from the information, such as a reputation
list of IP addresses and a geo-location map of the origin of the attacks.

In Grégio et al. [24], a distributed honeynet of honeyd honeypots is
deployed. Honeyd is a honeypot package that can emulate many vul-
nerabilities of many different services. A distributed honeynet means
that the honeypots are in different networks. The honeyd honeypots
do not process any data, but rather proxy all traffic on the open ports
to Nepenthes, previously described, honeypots. The Nepenthes hon-
eypots do the actual accepting and analysis of the malware. They
have compared their solution with a single Nepenthes honeypot on
the average downloads per day. The single honeypot downloaded 20

malware samples per day, while the distributed network downloaded
70 per day.

Adachi et al. [1] describe BitSaucer, which can generate a number
of virtual honeypots on demand. BitSaucer uses process-level virtuali-
sation, rather than machine-level virtualisation. In that way, more than
1000 virtual executions of a malware sample can take place on one
machine. This allows BitSaucer to emulate a large network of sys-
tems on one system, which enables the created honeynet to observe
malware behaviour in a network.

Musca et al. [44] have combined the medium-interaction honeypots
honeyd and metasploitable. Metasploitable is an intentionally vulnerable
Linux virtual machine that is primarily used for security training, test-
ing of security tools, and practice penetration testing techniques [50].
Using the data of this honeynet, they are able to generate rules for
the intrusion detection system Snort. This is an example of how hon-
eypots may directly influence other systems, so that malware can be
stopped more quickly.

Krueger et al. [34] use a Web application honeypot called Glastopf 8.
They have developed Automated, Semantics-aware Analysis of Pay-
loads (ASAP), which is another approach of analysing malware, to
work with the data from the honeypot. Krueger et al. [34] focus on
three contributions of this ASAP framework. They extract an alpha-
bet of strings from network payloads, which “concisely characterizes
the network traffic by filtering out unnecessary protocol or volatile
information via a multiple testing procedure and embeds the pay-
loads into a vector space”. This collection of vector spaces is then op-
timized using matrix factorization. This optimized matrix are used as
basis for communication templates, which classifies and formats data
from honeypots to make them clear for human interpretation. As
said, they have applied this approach to network traffic captured by
Glastopf. This honeypot was deployed for two months and collected
an average of 3400 requests per day. From the requests that the ho-
neypot has gathered, the researchers have used 1000 requests to val-

8 http://glastopf.org/

6

http://glastopf.org/

idate their proposition. From the traffic of these requests, ASAP has
extracted communication templates on semantics of malware, vulner-
abilities and attack sources. This part handles the detection of mal-
ware. ASAP can also be used for malware communication analysis. It
can detect the HTTP component in the malware sample, so it detects
Internet activity of a malware sample, such as where the malware
gets its command from or where it can find its most recent version.
IRC components get detected as well, so botnet malware that commu-
nicates over IRC can be found.

Malware is more and more becoming self-modifying, for it can then
bypass anti-virus software [9]. To prevent this bypassing, Pauna pro-
posed a self-adaptive honeypot system [51]. It is based on game the-
ory and is able to detect rootkit malware [37]. Spitzner [66] described
the adaptive honeypot as: "You simply plug it in and the honeypot
does all the work for you. It automatically determines how many hon-
eypots to deploy, how to deploy them, and what they should look like
to blend in with your environment. Even better, the deployed honey-
pots change and adapt to your environment". The self-adaptive ho-
neypot used is the Adaptive Honeypot Alternative (AHA). AHA may
adopt behavioural strategies that can allow or block the execution of
a program, substitute the program that will be executed or insult the
attacker when he tries to issue a command, to irritate him so he will
reveal his intentions.

Another honeynet is described by Szczepanik et al. [73]. When one
honeypot gets infected by malware, another, identical but clean, ho-
neypot checks what processes are running. By making a comparison
of the running processes on the infected honeypot and the clean ho-
neypot, processes that are started by the malware can be detected.
This list is a helpful tool to analyse the behaviour of the malware.

A high-interaction honeypot system named Jingu is described in
Chen et al. [11]. In that paper, Jingu is compared to the medium-
interaction honeypot honeyd, a honeypot that simulates several known
vulnerabilities. In two years of deployment, Jingu caught more than
500 intrusion events and 81 suspicious downloads. Jingu can be used
to detect known exploits, but also zero-day malware, malware that is
so new that there do not exist any signatures for it yet.

2.2.2 High-interaction honeypots

Another distributed honeynet can be found in Drozd et al. [18], who
have combined honeyd honeypots with the high-interaction honey-
pot Argos9 [54]. Although Argos is a software package, it is still a
high-interaction honeypot, as it runs on a host machine with virtual
machines that are the actual honeypot. Argos is based on memory-
tainting techniques: the memory status of a clean honeypot is used

9 http://www.few.vu.nl/argos/

7

http://www.few.vu.nl/argos/

as starting point. All changed memory by the honeypot is marked
tainted and should never be executed. Using memory-tainting, the re-
searchers have detected malware that uses buffer overflows, an anomaly
in a program in which a write action overruns the buffer’s boundary
and thus overwrites memory it should not access, causing the pro-
gram’s flow to be altered to the extend of the system being compro-
mised. Drozd et al. have used a dataset similar to the NoAH project’s
dataset [46].

Kohlraush [33] has used the dataset of the NoAH project. In his
research, the detection and analysis of the W32.Conficker [60] worm
by the use of the Argos honeypot is investigated. He followed the ap-
proach of the NoAH project. First, well-known attacks are performed,
which are guaranteed to be recognized to establish a learning base set,
from which workflows are calculated for less well-known attacks, the
test set, which follow the well-known attacks.

Brunner et al. [8] have created AWESOME, the Automated Web
Emulation for Secure Operation of a Malware-Analysis Environment.
In AWESOME, medium-interaction and high-interaction honeypots
can collaborate: novel attacks or malware samples are sent to the
high-interaction honeypot, which is Argos in this research, while at-
tacks and malware samples that have been seen before are sent to
the medium-interaction honeypot. Argos runs in a virtual machine.
The system on which it runs uses virtual machine introspection (VMI),
pausing the execution of the VM to enable extraction and alteration
of the program flow during runtime. Thus, all actions the malware
performs can be monitored.

Srinivasan et al. [68] propose Timescope, a honeypot framework that
is able to replay the infection of malware that has entered the machine
on a virtual environment. By running the malware multiple times,
and then investigating what aspects are overlapping, they find traces
of what the malware caused and can exclude coincident changes.

2.2.3 Conclusion

From the literature described in this chapter, we conclude that for the
automated execution of our experiment, we want to use a medium-
interaction server honeypot. A client honeypot would not detect mal-
ware that is already on the network, but rather download and anal-
yse new malware from the Internet. It must be medium-interaction,
as the trade-off of being hacked and yielding useful information is
best with medium-interaction honeypot for a corporate network. An
additional advantage is that we don’t have a full-fledged machine to
be compromised, but only a robust program that we can still rely
on after one infection. A further requirement is that the honeypot is
anomaly-based, as we want to detect as many malware samples as
we can from a remote honeypot system, and not only the ones that

8

trigger a specific vulnerability. In Table 1, an overview of all methods
described in this chapter can be found.

9

Ta
bl

e
1

:L
it

er
at

ur
e

cl
as

si
fic

at
io

n
of

de
te

ct
in

g
m

al
w

ar
e

w
it

h
ho

ne
yp

ot
s.

M
e
t
h

o
d

Pa
c

k
a

g
e

n
a

m
e

Si
n

g
l
e

o
r

m
u

l
t
i
-

p
l
e

h
o

n
e
y
p
o

t
s

In
t
e
r

a
c

t
i
o

n
l
e
v

e
l

Si
g

n
a

t
u

r
e

o
r

a
n

o
m

a
l
y
-b

a
s
e
d

A
n

a
l
y
s
i
s

o
n

G
öb

el
[2

3
]

A
m

un
Si

ng
le

M
ed

iu
m

A
no

m
al

y
Sh

el
lc

od
e

an
al

ys
is

H
as

sa
n

et
al

.[
2
8
]

N
ep

en
th

es
M

ul
ti

pl
e

M
ed

iu
m

A
no

m
al

y
M

D
5

ha
sh

W
ic

he
rs

ki
[7

8
]

M
w

co
lle

ct
Si

ng
le

M
ed

iu
m

A
no

m
al

y
lib

em
u

Sz
cz

ep
an

ik
et

al
.[

7
3
]

n/
a

M
ul

ti
pl

e
M

ed
iu

m
A

no
m

al
y

&
si

gn
a-

tu
re

Pr
oc

es
s

lis
ts

A
da

ch
ie

ta
l.

[1
]

Bi
tS

au
ce

r
M

ul
ti

pl
e

M
ed

iu
m

A
no

m
al

y
n/

a

G
ré

gi
o

et
al

.[
2
4
]

ho
ne

yd
&

N
ep

en
th

es
M

ul
ti

pl
e

M
ed

iu
m

A
no

m
al

y
M

D
5

ha
sh

M
us

ca
et

al
.[

4
4
]

ho
ne

yd
&

M
et

as
pl

oi
ta

bl
e

M
ul

ti
pl

e
M

ed
iu

m
A

no
m

al
y

n/
a

K
ru

eg
er

et
al

.[
3
4
]

G
la

st
op

f
Si

ng
le

M
ed

iu
m

A
no

m
al

y
W

eb
re

qu
es

ts

Pa
un

a
[5

1
]

A
H

A
Si

ng
le

M
ed

iu
m

A
no

m
al

y
Sy

st
em

ca
lls

Br
un

ne
r

et
al

.[
8
]

A
W

ES
O

M
E

M
ul

ti
pl

e
H

ig
h

&
M

ed
iu

m
A

no
m

al
y

M
em

or
y-

ta
in

ti
ng

C
he

n
et

al
.[

1
1

]
Ji

ng
u

M
ul

ti
pl

e
H

ig
h

Si
gn

at
ur

e
Sh

el
lc

od
e

an
al

ys
is

D
ro

zd
et

al
.[

1
8
]

A
rg

os
M

ul
ti

pl
e

H
ig

h
A

no
m

al
y

M
em

or
y-

ta
in

ti
ng

K
oh

lr
au

sh
[3

3
]

A
rg

os
M

ul
ti

pl
e

H
ig

h
A

no
m

al
y

M
em

or
y-

ta
in

ti
ng

Sr
in

iv
as

an
et

al
.[

6
8
]

Ti
m

es
co

pe
Si

ng
le

H
ig

h
A

no
m

al
y

Sy
st

em
ca

lls
&

sh
el

l-
co

de
an

al
ys

is

10

3
D N S

In this section, we will describe what DNS is, how it works, why it
is important to look at DNS data for malware detection in Section 3.1
and what the state of the art of the latter is in Section 3.2.

3.1 background

The Domain Name System (DNS) is a vital infrastructure within the
Internet [15]. It is used to translate the more human-readable domain
names to the corresponding computer-understandable IP address, as
illustrated in Figure 2. A user wants to search on Google, so he
types google.com in his browser. The browser doesn’t know how
to contact Google, because it only understands IP addresses. So the
system first issues a DNS query to google.com. It sends this query
to the primary DNS server that is configured in his operating system.
Then there are two possibilities, the DNS knows the IP address of
Google and sends it back to the system of the user, or it doesn’t know
Google’s IP address. In that case, it will traverse the DNS server
tree until it gets the IP address of Google authoritive DNS server, the
server which knows the IP address of all domains ending in google.
com. From this server, the user’s primary DNS server will receive the
IP address of google.com and sends it back to the user’s system.
The browser of the user’s system can then browse google.com.

DNS data analysis allows network administrators to analyse traffic
to external systems [16]. When internal systems try to resolve a do-
main name, they send a DNS request to the DNS server. The response
of the server can be classified in two classes. One is a positive answer,
an IP address to which the domain name resolves, for instance A,
AAAA, and CNAME records. The other class is a negative answer,
mostly NXDOMAIN responses [77], which means that the requested
domain name is not registered at its namespace’s registrar.

Botnet malware make extensive use of DNS [49]. As botnets are
an increasing trend, with 25% of all online computers being part of a
botnet in 2008 and 35% in 2010 [40], DNS data analysis is a possible
detection approach for malware.

3.2 state of the art

In the arms race of botnets between attackers and botnet detectors,
the attackers are constantly developing new techniques to evade the

11

google.com
google.com
google.com
google.com
google.com
google.com

Primary DNS server
Root DNS servers

.com namespace

Authoritive DNS of Google

User system

1. IP address of

google.com?

2. Primary DNS does

not have record of

Google, asks root.

3. Ask .com namespace

on address x.x.x.x

4. Asks .com

namespace

5. Ask Google's

DNS server on

address y.y.y.y

6. Where can I �nd

google.com?

7. google.com is on z.z.z.z

8. google.com is

on z.z.z.z

Figure 2: How DNS works: a system resolving google.com.

12

Table 2: Features to classify DNS records. Source: Bilge et al. [7]

Category # Feature

Time-based 1 Short life

2 Daily similarity

3 Repeating patterns

4 Access ratio

DNS answer-based 5 Number of distinct IP addresses

6 Number of distinct countries

7 Number of domains share the IP ad-
dress with

8 Reverse DNS query results

TTL value-based 9 Average TTL

10 Standard Deviation of TTL

11 Number of distinct TTL values

12 Number of TTL change

13 Percentage usage of specific TTL
ranges

Domain name-based 14 % of numerical characters

15 % of the length of the Longest Mean-
ingful Substring

detectors. In this section, we will investigate state of the art of using
DNS data analysis for malware detection.

DNS traffic can be qualified on fifteen features, according to Bilge
et al. [7] (see Table 2). They built EXPOSURE, a DNS data classifier.
The fifteen features are categorised in four types, namely time-based
features, DNS answer-based features, TTL value-based features and
domain name-based features. Higher up in the DNS hierarchy, at the
Top Level Domain DNS servers (such as the .com namespace from
Figure 2) and Authoritative DNS servers, another system may detect
malware-related domain names, namely Kopis [2]. This system makes
use of the global visibility obtained from DNS traffic at the upper lev-
els of the hierarchy and detects the malware-related domains based
on several DNS resolution patterns.

What holds and must always hold, is that bots receive their com-
mands from a Command & Control (C&C) server. In order to receive
those, the bot must contact a C&C server periodically. If a C&C server
is located at one IP address, the bot is easily turned into a zombie by
blocking traffic to the C&C server’s IP address from the infected sys-
tem. Randomizing IP addresses is a hard task for attackers, as IP
addresses are given out by ISPs from their pool, so the attacker can-
not choose, and are hard to predict, especially when you need a lot

13

of them. As an alternative, domain names can be used. When a C&C
server is located at one domain name, it can be put on a blacklist and
never be reached again [55]. Therefore, attackers have implemented
Domain Generating Algorithms (DGAs) [49]. DGAs generate a list
of domain names like in Table 3. Different DGAs generate domain
names with different patterns. DGAs take a seed, like the first word
of today’s newspaper or, for instance, the current time to generate a
different list every period of time [53]. Attackers and bots generate
the same list of domain names. The attacker requires to register only
one domain per period of time. The bot will try to connect to the
C&C server by connecting to domains from the list. DNS requests for
so many generated domains will result in NXDOMAIN responses,
except for the domain that is registered. Detecting anomalous recur-
ring NXDOMAIN reply rates is a way of using this technique to find
bots in a network [59]. We refer to this method as the NXDOMAIN
method. Botnets that use DGAs include: Bobax [71], Kraken [58],
Sinowal (Torpig) [72], Srizbi [61], Conficker [52, 53], and Murofet [62].
Conficker-A, for instance, generates 250 domain names every three
hours [53], of which only one has to be registered in that same pe-
riod. The dissection of the DGA used by Conficker A [53], a specific
type of the Conficker botnet malware, can be found in Listing 3. A
methodology for algorithmically detecting DGA-generated domains
is proposed by Yadav et al. [79], who use several statistical measures
such as Kullback-Leibler divergence [35], Jaccard index [57], and Lev-
enshtein edit distance [38]. This domain-fluxing, frequently changing
the domain name on which the C&C server is located, which is in-
vestigated many times [3, 74, 72, 26, 79], and DGAs are used as a
take-down evasion technique for botnets. Other malware can use
DNS just as a normal computer user does, for instance to resolve a
single domain name to signal an attacker that the infected system is
compromised.

A measurement study on the NXDOMAIN method has been exe-
cuted by Villamarín-Salomón et al. [76]. They have collected 11GB of
DNS traffic data from the University of Pittsburgh. Almost all do-
main names that were found by studying abnormally high rates of
NXDOMAIN responses, had been independently reported as suspi-
cious by others.

Antanokakis et al. [3] have proposed a prototype called Pleiades for
detecting bots in a network by passively processing DNS replies at the
DNS server. When a cluster of NXDOMAIN requests is detected, it
applies statistical learning techniques to build a model of the DGA.
From this model, it can later detect systems that try to connect to
the C&C server. The statistical learning techniques look whether the
domain names have the same structure. Clients connecting to the
DGA generated domains are suspect to be infected by bot malware.

14

Table 3: Example of domain names generated by a Domain Generating Al-
gorithm (DGA). Source: Newman [49]

Domain name

mtizok-omik.ru

mpodod-axoz.ru

mdyhib-etop.ru

mbugaw-ewaq.ru

mkyqe-wukop.com

mfikyw-ybew.ru

mcali-fokaz.com

mbykyv-eceb.ru

mbavij-yris.ru

mmyqa-zezuv.com

mhapub-uluz.ru

mpibob-urok.ru

mrevoc-evyt.ru

msewo-xehem.com

Hao et al. [27] apply, with the NXDOMAIN technique in mind,
the initial DNS behaviour after registration of a domain. From Do-
main Name Zone Alert systems, their system gets notified when a
new domain is registered. From these domains, their system collects
nameserver (NS), address (A), and mail server (MX) records. Their
method focuses on botnets that are sending spam, but this technique
can also be applied to other types of botnets, such as botnets that get
instructions from a C&C server to initiate a Denial of Service (DoS)
attack. From collected DNS records of the domains, their system
looks at the distribution across IP address spaces, distribution across
Asynchronous Systems (AS), in which the Internet divided, and the
reputation of those ASes in light of hosting spam domains, and how
much time passes before large amounts of queries are done to those
DNS records. The theory is that legitimate domains are not as popu-
lar as spam domains after two days, but take more time. The theory
of amounts of DNS queries over a period of time was also a part of
the research done by Villamarín-Salomón et al. [76], but proved far
less accurate than the NXDOMAIN method in that research.

In Choi et al. [14], DNS queries are examined and there is a track
record for each domain name of how many hosts try to resolve that
domain name per hour. 80% of the domains were visited by only
one host per hour. The domains that were visited by more than 5

hosts per hour were only 7.5%. Within these domains, the greatest
statistical similarity between domain names existed between domain

15

Figure 3: Statistical similarity between domain names is greatest with bot-
nets. Source: Choi et al. [14]

names that are used by botnets, see Figure 3. This information can be
used to correctly cluster multiple NXDOMAIN replies, as is done in
the NXDOMAIN method.

3.3 conclusion

From the literature described in this chapter, we have seen that the
NXDOMAIN method is an effective malware detection method, which
can be implemented in corporate networks without the need for extra
machines. The features that are used with EXPOSURE can be used
to classify the DNS requests that are observed.

16

4
F L O W D ATA

In this section, we will investigate how malware can be detected with
the use of flow data analysis, a technology for passive network mea-
surements. We will describe in Section 4.1 how flow data is generated
and how it can be analysed. In Section 4.2, we will discuss the state
of the art in using flow data to detect malware.

4.1 background

A flow is a set of IP packets that pass through an observation point
during a certain time interval [47]. A packet belongs to a flow if it
satisfies all the defined properties of the flow, such as the packets all
having the same source IP address or another set of . After being
developed for network traffic accounting, usage for network foren-
sics, and incident handling, flow data analysis is now also being used
to discover malware [75]. Before flow data analysis, network traffic
analysis was primarily done with packet analysis, which is still per-
formed on specific types of network traffic, of which more details
must be retained. Due to the large amounts of traffic that passes
through networks today, this trends more and more to flow data [70].
Because flows are an aggregation of the traffic, it scales better to large
networks. In addition, in many packet forwarding devices, Cisco’s
NetFlow [48], a flow export technology, is implemented. In order to
export flow data on flow export supporting forwarding devices, flow
exporters, it just requires to be configured in the device. Most corpo-
rate forwarding devices support flow data export. There is no need
for extra forwarding devices or meters. This is another reason for
trend towards the use of flow information. Flow exporters send the
flow information to a flow collector, such as nfcapd, a part of the nfdump
toolkit1, which can be placed anywhere in the network. The flow col-
lector receives all flow information, which is then available for all
types of analysis, either manually or automatically. An illustrative
explanation is shown in Figure 4.

Trivially, the flow data of a network contains more than the traf-
fic information of just malware samples, but literature describes that
malware-induced traffic has certain characteristics [64, 75], such as
connecting to the same IP address, sending the same amount of bytes,
every hour. By detecting those characteristics, malware-infected sys-
tems can be identified.

1 http://nfdump.sourceforge.net/

17

http://nfdump.sourceforge.net/

Flow collector

Flow exporter

Flow exporter

Flow exporter

User

Automated queries

Figure 4: How flow data is exported, saved and queried.

4.2 state of the art

The challenge with detecting malware on flow data is classifying cer-
tain traffic specifics are suspicious. Bilge et al. [6] have developed fea-
tures for classifying flows, which are categorised as flow size-based fea-
tures, client access pattern-based features, and temporal features, which
are defined as follows. The flow size-based features indicate how
many bytes are transferred. Flows that carry botnet commands have
to be as small as possible in order to minimize their observable im-
pact on the network. Flow sizes tend to not to vary greatly, because of
the limited number of commands that are available in a C&C proto-
col. Conversely, flow sizes of benign servers tend to fluctuate greatly.
With the client access patterns-based features, it is assumed that many
bots run the same version of the malware. This makes the expecta-
tion that all the bots access the C&C server in the same manner very
plausible. Benign servers are contacted in many different ways, due
to human actions. Classification on the temporal features is based
on the fact that bots try to contact the C&C server periodically and
with relatively short intervals. Therefore, bots also try to make con-
tact with the C&C server when normal client do not use the network
a lot, for instance, at night. This classification system is what Disclo-
sure [6] focuses on. Because flow data provides less information than
a full packet capture, this approach could more likely contain false
positives. They conclude that Disclosure can be tweaked to decrease
the false positive rate to less than 0.5%, but in the large amounts
of traffic of today, that is too much. Disclosure therefore includes a
module to correlate data from other malware detection sources.

Berthier et al. [5] developed Nfsight, a tool which, apart from visu-
alising traffic information, carries a heuristic-based intrusion detec-
tion and alerting system. The system was tested on 30 minutes of
data from a border router of a university network. The information

18

Nfsight generates is structured with the use of rules, which are orga-
nized in three categories, namely malformed flows, one-to-many re-
lationships and many-to-one relationships. The information is used
to create communication structures, which are used to detect intru-
sions, but can also be applied in detecting peer-to-peer (P2P) or bot-
net malware. This classifying on the basis of one-to-many and many-
to-one relationships relate to the client access pattern-based features
proposed by Bilge et al..

For the discovery of botnets, Gu et al. [25] have proposed BotMiner,
which analyses network traffic via two monitors, one with flow data
and one with the intrusion detection system Snort2. In the flow data
monitor, flows from or to IP addresses of popular websites, such as
Google of Facebook, are filtered, as well as traffic that only goes in one
direction, because it is unlikely that contact with C&C servers behaves
that way. For the remaining flows, the number of flows per hour, the
number of packets per flow, the average number of bytes per packet,
and the average number of bytes per second are calculated. Then a
clustering of the flows is made, consisting of normal and suspicious
flows. Gu et al. conclude that their framework can detect any kind
of botnet, with very low false positive rates; a maximum of 0.3% was
measured in their dataset. The classification features they use can be
categorised as flow size and client access pattern-based features of
Bilge et al..

In Skrzewski [64], a system using flow count with regard to flow
duration is proposed, and can therefore be grouped under the tem-
poral features from Bilge et al.. An application makes several flows
to the outside worlds. By counting the flows after settings several
thresholds in the duration of the flows, differences prove to exist be-
tween infected and clean systems. Infected systems generate more
flows that have a short duration.

Detection of P2P botnets using flow data is combined with using
PageRank3 in François et al. [21]. PageRank is Google’s way to stating
the relative importance of a website. It is based on two factors, the
amount of links to the page on other pages, and the relative impor-
tance of the linking pages. They have experimented their method on
three types of botnet topologies. The false positive rate in each of
the experiments was 6% or less. As in Yen et al. [80], the hard part
of marking clusters of systems as malicious is making the distinction
between file-sharing P2P networks and P2P botnets, i.e. benign and
malicious. The methodology for this is making distinctions on traffic
volume, peer churn, and whether the network is human or machine
driven.

2 http://snort.org
3 http://www.google.com/competition/howgooglesearchworks.html

19

http://snort.org
http://www.google.com/competition/howgooglesearchworks.html

4.3 conclusion

From the literature discussed in this chapter, we have seen that there
are many different features on which flows can be classified in or-
der to mark them as originating from malware. The classification of
Bilge et al. is the most detailed classification proposed to the best of
our knowledge, which makes it an informative disquisition of flow
characteristics.

20

5
E X P E R I M E N T S E T U P

In this chapter, analysis of a honeypot, DNS data, and flow data are
combined to achieve synergy in detecting malware. We will first de-
scribe the general setup of our experiment environment, after which
we will explain the different parts of the setup more specific.

In order to analyse the accuracy of multiple malware detection ap-
proaches, we have set up a closed environment, which is illustrated
in Figure 5. It consists of four machines, one host system with three
Kernel Virtual Machine guests (KVM). The three KVM virtual ma-
chines are a honeypot, a DNS server and a workstation (a detailed
description of our KVM structure can be found in Appendix D). The
workstation will be infected by a total of 997 samples of malware,
which is a collection of all available 64-bit executables malware sam-
ples for Windows put together on July 13, 2013 on VirusShare, which
we downloaded on November 21, 2013. We chose 64-bit systems be-
cause 64-bit systems are a trend [45]. There are some of these mal-
ware sample repositories, such as malware.lu, frame4.net, offensive-
computing.net and virusshare.com, but we could only get an account
at virusshare.com. At the date of accessing the VirusShare, the 21st of
November, there were 14.5 million samples in the repository, which
increases every day. A list of the malware samples we use can be
found in Appendix A. In this section, we will first show the work-
flow of our experiment (Section 5.1). Second, we will explain the
choices of data collection for the honeypot, DNS server and flow data
(Section 5.2, Section 5.3, and Section 5.4), and lastly, we will explain
the setup of the workstation (Section 5.5).

The host machine takes care of the networking. The host has a
bridge device, which acts like a switch in normal network. The bridge
can be connected to the physical network interface card of the host,
providing the virtual machines with access to the Internet. During
the preparation of the experiment, this connection is available. In this
way, the honeypot and DNS server can access the Internet to down-
load software. At the time of executing the malware, the connection
to the Internet is switched off, to ensure that the system won’t infect
other systems on the network of the University of Twente. This limits
our validation experiment, as the malware samples cannot connect to
the servers to which it wants to connect, so we cannot get the same
traffic characteristics. The other three systems are also connected to
the bridge, resulting in a small network. This network setup resem-
bles a corporate network, which is the reason that the system that is
going to be infected is a workstation.

21

Internet Network Interface Card

Bridge

Workstation

Honeypot DNS server

Flow information

Dionaea

honeypot data
PassiveDNS logs

Figure 5: The network overview of our closed environment.

5.1 workflow

To generate a results set, the traffic characteristics of all malware sam-
ples, a script (see Appendix C) has been written to infect the worksta-
tion by running a piece of malware. It then waits for three minutes
to allow the malware to infest the Windows workstation and the net-
work. This should be enough time for malware to initialize itself, as
malware tends to infest workstation in mere seconds [56]. In case
of botnet malware, it should also be enough time to download com-
mands from a C&C server. After this time, the script kills the worksta-
tion virtual machine and restores it to a snapshot of the pre-infected
state. The process then repeats itself for the next sample. If the time
of three minutes is not enough to yield viable results, we run the pro-
cess again with the execution time of one hour. The script logs the
timestamp it starts the infection of the workstation and the timestamp
when the machine gets killed. These are used for matching data from
the detection approaches later on. It is important that the clocks of
the systems are synchronised for this to succeed, to match the times-
tamps from the script to that of the logs of the detection approaches.
On our systems, this is not a problem, because the hardware clock of
the physical machine is used in all systems. Restoring the worksta-
tion virtual machine is done in Logical Volume Manager (LVM). After

22

restoring the snapshot, the workstation is booted again for the next
infection. The LVM setup of our system can be found Appendix D.

5.2 honeypot

The honeypot virtual machine runs a vanilla, pre-compiled Dion-
aea1 package on Ubuntu2. As described in Chapter 2, Dionaea is
a medium-interaction honeypot software package, a successor of Ne-
penthes and mwcollect, that is designed to collect malware. As a
server-based honeypot, it waits for infected clients (or attackers) to
connect to it, it does not visit malicious websites itself to see whether
it can find malware, as that is what a client honeypot does. It runs
the following services:

• FTP, port 21, used for file sharing;

• Samba, port 445, used for Samba file sharing and AD services;

• TFTP, port 69, used for file sharing;

• HTTP(S), port 80 & 443, used for serving Web pages;

• MSSQL, port 1433, used for MSSQL databases;

• MySQL, port 3306, used for MySQL databases; and

• SIP, port 5901, used for Internet telephony.

Dionaea can be classified as an anomaly-based honeypot, because
it does not depend on a set of signatures. It therefore complies to
our requirements set in Section 2.2.3. Dionaea can use the signature
database of virustotal.com to provide extra information to the admin-
istrator by querying VirusTotal3 with the MD5 hash of the malware
sample, which is commonly used as an identification of the malware
sample. Dionaea logs all connection and malware uploads in a sqlite
database, and saves timestamps on every network interaction of the
honeypot. These timestamps can be matched with the timestamps
that are logged by the script, so we know which malware sample
made which connection to the honeypot. In 2012, the European Net-
work and Information Security Agency (ENISA) qualified Dionaea as
an essential tool for Computer Emergency Response Teams [19].

5.3 dns server

The DNS server runs dnsmasq (a pre-compiled package for Debian),
which is a DNS forwarder, which can have pre-configured DNS en-
tries. By configuring the DNS server as the default DNS server on

1 http://dionaea.carnivore.it
2 http://www.ubuntu.org/
3 http://virustotal.com/

23

http://dionaea.carnivore.it
http://www.ubuntu.org/
http://virustotal.com/

Listing 1: Example log rule created by PassiveDNS.

#timestamp||dns-client||dns-server||RR class||Query||
Query Type||Answer||TTL||Count

1322849924.408856||10.1.1.1||8.8.8.8||IN||upload.
youtube.com.||A||74.125.43.117||46587||5 �

the workstation, we ensure that all DNS queries that are done by the
workstation which do not specify a DNS server themselves, are han-
dled by our DNS server. To every DNS A query, the server responds
that that domain name is associated with the IP address 1.2.3.4, rather
than a NXDOMAIN. This ensures that the malware is convinced that
the queried domain name is registered, so it will try to connect to
the received IP address. On the DNS server, we run PassiveDNS4,
which analyses all traffic on the network adapter of the DNS server
and logs every DNS reply that passes there, which in this case are the
replies made by our dnsmasq. PassiveDNS creates logs rules like in
Listing 1. It does not log the requests, as for every request, a reply
is generated, which contains the request as well as the answers. In
this way, we can investigate what domain names are queried. By also
logging the timestamp, we can again match the reply to a specific
malware sample. As the closed environment does not have access to
the Internet, we cannot apply the NXDOMAIN method directly to the
domain names that pass by the bridge. However, we can apply the
NXDOMAIN method in retrospect to the logs generated by Passive-
DNS. For example, as shown in Listing 1, ‘ttupload.youtube.com is
queried by 10.1.1.1 at server 8.8.8.8 and we see DNS server’s answer
that the domain name is associated with the IP address 74.125.43.117.

In order to obtain the domain names that were not queried at our
DNS server, but rather by another DNS server of which the IP address
was hardcoded in the malware, we have captured all packets that pass
through the bridge with tcpdump in standard PCAP format. In real
networks, collecting all DNS replies can be achieved by placing an
additional PassiveDNS instance close to the border gateway, which we
could not do, because we only have a switch, so no border gateway. In
that way, DNS replies originating from external DNS servers are still
passing through the system that runs PassiveDNS. By also running
PassiveDNS on the internal DNS server, one can ensure not to miss
any DNS replies.

4 http://github.com/gamelinux/passivedns

24

http://github.com/gamelinux/passivedns

5.4 flow data

On the bridge in the host system, we export NetFlow data. We only
use the source and destination IP addresses, ports, and the start time
of the flow, the latter for matching the flows to the malware sample.
To export the flows, we have used nProbe5, a software flow exporter,
in combination with nfcapd. nProbe sends the flow data to the spec-
ified collector. It runs nfcapd to receive the flow data and writes it
to nfdump-readable files. There are more flows passing our bridge
than from the workstation alone, such as flows from the honeypot,
announcing its services, so we cannot match every flow to a malware
sample, but we can look up the flows of the workstation during the
period the malware sample was active. We have the start and stop
time of the malware execution script in its log. An example result of
a query we execute with nfdump is showed in Listing 2. In the exam-
ple, eight flows are shown. The first six flows consist of DNS traffic.
Our DNS server returned 1.2.3.4 as an DNS reply, as it does for all re-
quests, which is observed as the last two flows from our workstation
have that IP address as destination on port 1337.

5.5 workstation

The workstation is a Windows XP 64-bit machine, without any up-
dates or service packs, as installing service packs is often delayed in
corporate networks [22]. Since Q4 2012, Windows 7 is getting a larger
market share than Windows XP [45], making it the most installed op-
erating system today. However, the malware collection that we use
contains mostly samples from the time that Windows XP was the
most installed operating system, so we chose to work with Windows
XP. By installing a SSH server (WinSSHd6) on this machine, we are
able to run malware samples on it by issuing a command from the
host machine.

5 http://www.ntop.org/products/nprobe/
6 http://www.bitvise.com/winsshd

25

http://www.ntop.org/products/nprobe/
http://www.bitvise.com/winsshd

Listing 2: Example result of a query executed with nfdump.

Date flow start Duration Proto Src IP Addr:Port Dst IP
Addr:Port Packets Bytes Flows

2013-11-20 20:39:43.923 0.000 UDP 192.168.1.2:1033 ->
192.168.1.3:53 1 67 1

2013-11-20 20:39:43.717 0.000 UDP 192.168.1.3:53 ->
192.168.1.2:1033 1 83 1

2013-11-20 20:39:40.182 3.532 UDP 192.168.1.2:1029 ->
192.168.1.3:53 2 134 1

2013-11-20 20:39:40.182 3.532 UDP 192.168.1.3:53 ->
192.168.1.2:1029 2 166 1

2013-11-20 20:39:40.257 0.000 UDP 192.168.1.2:1030 ->
192.168.1.3:53 1 67 1

2013-11-20 20:39:40.257 0.000 UDP 192.168.1.3:53 ->
192.168.1.2:1030 1 83 1

2013-11-20 20:39:43.718 1.640 TCP 192.168.1.2:1032 ->
1.2.3.4:1337 2 96 1

2013-11-20 20:39:40.258 3.047 TCP 192.168.1.2:1028 ->
1.2.3.4:1337 2 96 1

Summary: total flows: 8, total bytes: 792, total
packets: 12, avg bps: 1224, avg pps: 2, avg bpp: 66

Time window: 2013-11-20 20:38:43 - 2013-11-20 20:43:29
Total flows processed: 41, Blocks skipped: 0, Bytes

read: 2160
Sys: 0.032s flows/second: 1281.2 Wall: 0.017s flows/

second: 2314.6 �

26

6
E X P E R I M E N T R E S U LT S

In this chapter, we will show and discuss the results of our exper-
iments. Firstly, we will show an overview of the aspects that we
analyse on (Chapter 6). Secondly, we will explain the results per de-
tection approach: honeypot (Section 6.1), DNS data (Section 6.2), and
flow data (Section 6.3). Thirdly, we discuss the results of combining
the approaches in Section 6.4. Finally, we show examples of samples
that induced traffic which we did not expect (Section 6.5).

We analyse multiple aspects on which we can validate the results,
which are derived from the propositions we have chosen from litera-
ture. We have aspects per detection approach and for the combined
solution. An overview of the aspects is in Table 4. The general aspect
will be analysed in this section, the approach-specific aspects in their
respective sections.

Of all the 997 malware samples we have analysed, only 82 inter-
acted with the network in the first three minutes after infection. As
all network traffic is logged in the flow data, this is something we can
easily obtain. Of the 82 samples that interacted, zero malware sam-
ples contacted our honeypot. 68 samples have queried at least one
domain name. 50 of those directed their queries to our DNS server
and were thus detected using PassiveDNS.

6.1 honeypot

We have a number of aspects that we analyse on in the honeypot,
as described in Table 4. To observe the most popular services, the
first aspect is whether a malware sample connected to the honeypot.
The second is to which service the malware sample tried to connect.
The last is whether it tried to upload a file (e.g. a replication of the
malware itself) to the honeypot. Systems that make connections, or
interact with the honeypot and ultimately systems that transfer files
to a honeypot are suspected to be infected with malware. We have
had zero connections to the honeypot, in other words: no malware
sample attempted to connect to the honeypot. Therefore, the other
two aspects also have zero malware samples that correspond to it. A
reason for which no connections are made to the honeypot, is that the
malware starts to connect to the local network machines after three
minutes of execution time, the time that we concluded was enough
time for the malware sample to infest the workstation and the net-
work (see Section 5.2). To validate that this is not related to the three
minutes execution time, we ran the first 50 malware samples for a

27

Table 4: Aspects on which the results are analysed.

Category Aspect # samples

General Interacted with network 82

Honeypot Connected to honeypot 0

What services are reached by mal-
ware

0

Uploaded file to honeypot 0

DNS data Issued DNS request 68

Issued DNS request at our server 67

Issued DNS request at another
server

1

Domain name is candidate for
DGA

5

Does the domain name request
yield a NXDOMAIN

38

Flow Only issued DNS request 1

data Connected to IP address without
issuing a DNS request

14

Issued DNS request before con-
necting

68

Connected to 1.2.3.4 67

Connected to other IP address 27

Connected to non-standard port 28

28

second time, now with one hour execution time, the execution time
that we would try in case the three minutes proved not to be enough.
In this second run, there where still no connections to the honeypot.
This leads us to the conclusion that today a server honeypot is not an
efficient tool to detect malware on a network.

6.2 dns data

The set of domain names in the logs of the tcpdump packet capture
is a superset of those contained in the logs of PassiveDNS. We have
supplemented the PassiveDNS logs with the DNS replies from the
packet capture that were not directed to our DNS server. As described
in Section 5.3, this is the same result as obtained by running two
instances of the PassiveDNS tool, one close to or on the DNS server,
the other close to or on the border gateway and then matching the
information of both logs files to each other. Doing this results in a
complete overview of all DNS requests that are done in the closed
environment.

Of all 82 samples that interacted with the network, 68 queried a
DNS server, ours (67 samples) or a remote one (one sample), for re-
solving a domain name. The domain names that were queried are
listed in Table 5. The number of times we have seen the domain
names adds up to more than the amount op samples that have ac-
cessed the network. This is because a malware sample queries one or
more domain for one or more times within its execution time. There
were eight domain names that were queried by more than one sam-
ple. These are the bold domain names listed in Table 5. Only two of
them resolve on January 14, 2014.

As botnet malware is getting more and more common [21], and
botnets using more and more DGAs [3], we had expected to see
more malware samples that query DGA-generated domain names,
but there are only five such candidate domain names in the list, the
ones that are unpronounceable. They are listed in Table 5, showed
italic. The other domain names suggest their self-describing their
goals. There are a lot of domains that end in no-ip.org, which is
a well-known provider of Dynamic DNS. Dynamic DNS is a service
that points a domain name to a dynamic IP address, so this technique
can be used for IP-fluxing [52, 79, 69, 26], switching the IP address in
an A DNS record of a domain very frequently, in order to evade IP
blocking.

We first describe our results in light of the feature classification
of Bilge et al. (see Table 2), as described in Section 5.3. Their DNS
answer-based and TTL value-based are not applicable to our experi-
ment, because in our experiment, the network does not have a connec-
tion to the Internet. From our own DNS server, the workstation gets
fake DNS answers, so the workstation does not get provided with

29

no-ip.org

Table 5: List of queried domain names and the amount of requests to that
domain (over all malware samples). The domain names shown in
bold face are queried by more than one malware sample. The do-
main names shown in italic face are candidates to be generated by
DGAs.

Domain name Amount Domain name Amount

adf.ly 2 airforce.dyndns.biz 2

api.wipmania.com 6 childhe.com 6

core.mochibot.com 2 customer.cc.at.paysafecard.com 2

darnnlogs.no.ip.org 14 df5.no-ip.info 14

doser.no-ip.info 16 downloads.fcuked.me.uk 16

dveskrepki.ru 2 findcopper.org 2

findwarm.org 2 firstnationarts.com 2

ftp.drivehq.com 4 ftp.tripod.com 4

furzkissen.selfip.com 4 hawet.zapto.org 4

holderman.hopto.org 2 hstnm1.dontexist.net 2

imarcoseduardo.no-ip.org 36 img193.imageshack.us 36

img580.imageshack.us 2 irc.webchat.org 2

kabutokiller.no-ip.info 16 ksamapepito.no-ip.org 16

l3asel.no-ip.org 16 markinyourdark.no-ip.org 16

maxrepjoaki.no-ip.biz 10 mise1.zapto.org 10

monzterddos.no-ip.info 12 movieartsworld.com 12

mqcbpkzjghjt.com 6 mqcbpkzjghjt.net 6

please23.zapto.org 14 poni.no-ip.biz 14

promos.fling.com 1 r2crystal.narod.ru 1

ratmehard.no-ip.org 2 relaxedclick.com 2

searchdepressed.org 7 searchelastic.org 7

searchfertile.org 3 securytbr4455.sytes.net 3

smtp.gmail.com 1 sportfishingarts.com 1

sssss.no-ip.biz 24 track.installtrack.info 24

tudoafro.com 4 ulisessoft.info 4

update-key.com 4 visualbasic.pro.br 4

wootwootrs.no-ip.org 2 www.aamailsoft.com 2

www.google.at 1 www.mochiads.com 1

x.mochiads.com 2 xgukreqwpbqte.com 2

xgukreqwpbqte.net 8 xz69.no-ip.info 8

yah-crackers.no-ip.org 12

30

real DNS records. The time-based and domain name-based features
are based on the client-side of DNS, as they consist of features like
the frequency a client requests that domain name. Time-based fea-
tures include the frequency of querying a domain, which we cannot
base conclusion on, because we only run a sample for three min-
utes. Nevertheless, there are malware samples that do repeatedly
query a domain name. For instance, one malware sample queried
l3asel.no-ip.org eighteen times in three minutes (whilst only
trying to make a connection to the remote system only nine times)
and another queried xz69.no-ip.info 24 times whilst only con-
necting to the server six times. It could be that the malware expects
a certain IP address when resolving a domain name, and therefore
keeps trying. The domain name-based features include the ratio of
numerical characters and the ratio of the length of the Longest Mean-
ingful Substring (LMS). The numerical character method is used for
domains that look like being generated by a DGA. As this method
looks for the ratio of numerical characters to alphabetical characters,
this method will not yield us DGA-generated domain names, as the
domain names in our dataset do not have large differences in this
ratio. The LMS method yields results. This method is based on
the meaning of DNS: providing human-readable names for IP ad-
dresses. This means that the website of a company will most likely
have the name of the company in the domain name. To have an ex-
ample, it is likely that the Bank of Ireland uses the domain name
bankofireland.com. Using Google to match a domain name with
the title of the website can be useful for looking whether a domain
name that is frequently requested, should be requested that often [7].
In our data set, almost all domain names do not have a long LMS in it,
so automated detection would more likely mark the domain names
to be involved with malware.

Applying the NXDOMAIN method from literature [3, 27, 76] , did
not yield reliable results. 38 of the total 62 domain names did not
resolve to an IP address in our experiments. A possibility is that the
services, that were once located at one of the not resolving domains,
are now moved to another domain, or taken down. Either way, ap-
plying the NXDOMAIN method in retrospect does not have to yield
the same result as when the malware was active on the Internet. The
DNS Census 2013 dataset contains DNS records that were registered
in the past, which enables one to apply the NXDOMAIN method in
retrospect [17]. We cannot conclude why domain names do not re-
solve at this time. Which domain names did and did not resolve is
stated in Table 6. By applying the NXDOMAIN method in retrospect,
we cannot base conclusions on this, as domains that did resolve at
the time that the malware was in the wild, may not be reached at this
time.

31

l3asel.no-ip.org
xz69.no-ip.info
bankofireland.com

Table 6: NXDOMAIN method results, executed on 2013-12-11.

NXDOMAIN Resolving

airforce.dyndns.biz adf.ly

darnnlogs.no.ip.org api.wipmania.com

df5.no-ip.info childhe.com

downloads.fcuked.me.uk core.mochibot.com

findwarm.org customer.cc.at.paysafecard.com

firstnationarts.com doser.no-ip.info

furzkissen.selfip.com dveskrepki.ru

hawet.zapto.org findcopper.org

holderman.hopto.org ftp.drivehq.com

hstnm1.dontexist.net ftp.tripod.com

imarcoseduardo.no-ip.org img193.imageshack.us

imarcoseduardo.no-ip.org img580.imageshack.us

kabutokiller.no-ip.info irc.webchat.org

ksamapepito.no-ip.org poni.no-ip.biz

ksamapepito.no-ip.org promos.fling.com

l3asel.no-ip.org r2crystal.narod.ru

maxrepjoaki.no-ip.biz relaxedclick.com

mise1.zapto.org gmail-smtp-msa.l.google.com

monzterddos.no-ip.info sssss.no-ip.biz

movieartsworld.com ulisessoft.info

mqcbpkzjghjt.com www.aamailsoft.com

mqcbpkzjghjt.net www.google.at

please23.zapto.org a90.g.akamai.net

please23.zapto.org x.mochiads.com

ratmehard.no-ip.org

searchdepressed.org

searchelastic.org

searchfertile.org

securytbr4455.sytes.net

sportfishingarts.com

track.installtrack.info

tudoafro.com

update-key.com

visualbasic.pro.br

wootwootrs.no-ip.org

xgukreqwpbqte.net

xz69.no-ip.info

yah-crackers.no-ip.org

32

6.3 flow data

The obtained flow data contains all network traffic that traversed the
bridge from the start of each experiment until the end. This shows
that there were 82 samples that interacted with the network. As said
in the previous section, many of these make use of DNS, and could
be identified by that detection approach. As our closed environment
is not connected to the Internet, we cannot apply the flow size-based
features proposed by Bilge et al. [7]. The fact that we only run the
malware samples for three minutes, restricts our use of the tempo-
ral features. However, we can apply the client access pattern-based
features, by looking at IP addresses and port numbers to which the
malware samples connect.

In the flow data, there are 14 samples that did not make use of
DNS, but did interact with the network. These samples have a pre-
configured IP address in their source code. This means that the mal-
ware does not use fluxing, and can therefore be easily blocked by
blocking the IP address. The other 68 samples first issued a DNS
request. 67 of these connected to our forged 1.2.3.4 IP address there-
after. 27 malware samples connected to another IP address (partly
the same samples). These samples make use of domain names, so
can be using fluxing.

The flow data gives us another piece of information that the other
detection approaches do not, namely the port numbers. After having
received an IP address from a DNS server, the malware will start
to connect to that IP address. The port numbers are very different,
although the transport protocol is always TCP. Some malware uses
port 80, the HTTP port, but port 60, 8080, 81, 3174, and 1604 are also
present in our data set. The port numbers we have seen connections
to on our forged IP address 1.2.3.4, and their assigned uses [30, 31]
are in Table 7. As we know for sure we only deal with malware, we
can safely say that the ports are not used for their assigned purpose.
We can hold this list next to the most used ports list of nmap1, a
famous port scanner. It lists port 80, 23, 443, 21, 22, 25, 3389, 110, 445,
and 139 as the top 10 used TCP ports. We define ports not on this list
as non-standard ports, of which it is unlikely that normal software
would use these ports. The list shows that most of the port numbers
in our dataset are non-standard, which means that they are suspect
to be used for malicious activities. 28 malware samples connected to
one or more non-standard ports.

We have also seen IRC botnet malware. These samples first query
the IRC server irc.webchat.org, and after getting the IP address,
connect to that IP address on port 6667 (the assigned port for IRC).
This is the traditional example of C&C malware [39], and is therefore
suspicious.

1 http://nmap.org/

33

irc.webchat.org
http://nmap.org/

Table 7: Port numbers of connections to 1.2.3.4 and their assigned uses.

Port Assigned use

0 Reserved

21 FTP

80 HTTP

81 Unassigned

91 MIT Dover Spoiler

200 IBM System Resource Controller

443 HTTPS

465 URL Rendesvous Directory for SSM

888 AccessBuilder

999 Unassigned

1337 menandmice DNS

1604 icabrowser

2000 Cisco SCCp

3085 PCIHReq

3086 JDL-DBKitchen

3170 SERVERVIEW-ASN

3174 ARMI Server

3175 T1_E1_Over_IP

4662 OrbitNet Message Service

5312 Permabit Client-Server

5315 HA Cluster UDP Polling

5317 HP Device Monitor Service

6667 IRC

6697 Unassigned

25567 Unassigned

34

6.4 correlating the results

In this subsection, we will assess the synergy of combining the detec-
tion approaches, as is the goal of this work. The combined approach
can be used next to the detection approaches on their own, like the
NXDOMAIN method from the DNS data and the characteristics from
the flow data.

As the honeypot did not receive any connections from the mal-
ware samples, but the DNS server and the flow data exporter did,
we can hypothesize that the focus of malware today is more on C&C
or phone-home technology. Domain names ending in no-ip.org
(see Table 5) are example suspects of C&C servers. When the honey-
pot would have received connections, that information could also be
correlated to the DNS and flow data like in Section 6.4.

DNS and flow data can be combined to give a better impression
of infected systems in a network. As we have seen in Listing 1, the
PassiveDNS log shows the domain name that is queried and the IP
address it results in. These IP addresses can be matched to those
in the flow data. When traffic is seen to non-standard ports (like
in Listing 2, with port 1337) or traffic that is characteristic for botnet
malware, there is an additional reason to qualify the system in the net-
work the traffic originates from is infected with malware. An example
from our dataset first issued a DNS query to furzkissen.selfip.
com, to which our DNS server responds with 1.2.3.4. The malware
subsequently connects to 1.2.3.4:1337. Our PassiveDNS reports that
selfip.com is used, another known Dynamic DNS provider, while
the flow data sees traffic to 1.2.3.4 on port 1337. Our combined ap-
proach can link the domain name information and the flow data and
conclude that there are multiple reasons for marking the workstation
as infected, and therefore isolate the workstation from the network,
ensuring it cannot connect to the Internet any longer, and rendering
it unable to infect other machines.

6.5 samples that stood out

Some samples generated some results that were unlike the other re-
sults. In this subsection, we will describe what made these samples
stand out, and give an explanation.

In the whole data set, there were only seven samples that are can-
didate to use a DGA. Because of all the recent research into malware
that uses DGAs and the fact that these botnets were recently discov-
ered and taken down (e.g. Conficker), we had expected to see more
of these generated domain names in our DNS data set.

One malware sample connected to crl.microsoft.com and crl.
verisign.com. These are the Certificate Revocation List servers of
Microsoft and Verisign, which are used as one of many methods to

35

no-ip.org
furzkissen.selfip.com
furzkissen.selfip.com
selfip.com
crl.microsoft.com
crl.verisign.com
crl.verisign.com

check whether SSL certificates are no longer valid. An explanation
that these servers appear, is that the malware uses the SSL library of
Windows XP, and that Windows XP, on its part, checks these lists.

There was one malware sample that tried to connect to smtp.gmail.
com, on port 465, the port that Gmail uses for SMTP over SSL. This
means that the malware is probably trying to send an email. Google
requires users of the SMTP server to login, so it also means that the lo-
gin credentials for the SMTP server must be included in the malware,
or that sending an email will always fail.

As seen in Table 4, there was one malware sample that only issued
a DNS request. It is the same malware sample as the one that did not
use our DNS server for resolving a domain name. As the external
DNS servers could not be reached, no DNS answer was received by
the sample, making it impossible to know to which IP address it
should connect.

36

smtp.gmail .com
smtp.gmail .com

7
C O N C L U S I O N S

In the past pages, several malware detection approaches are discussed,
and combining them in order to achieve synergy in detecting mal-
ware is investigated. We looked at the state of the art of detecting
malware infected systems by using honeypots, DNS data and flow
data and conducted an experiment in which we mimicked a corpo-
rate network with a workstation that got infected with malware. Our
honeypot did not receive any connections, but the DNS data and the
flow data can be combined to base the decision whether a system
is infected or not on the results of multiple approaches. From our
results, we conclude that combining multiple malware detection ap-
proaches can give information for a better informed decision whether
a workstation is infected with malware or not, by marking it as in-
fected by more than one approach, and correlating these sources of
information.

In Chapter 2, Chapter 3, and Chapter 4, we investigated the lit-
erature on detecting malware with honeypots, DNS data and flow
data. We concluded that for honeypots, there are numerous kinds of
honeypots, and that we needed a server honeypot, that is medium-
interaction. When running our experiment, we have had zero con-
nections to our honeypot, and we conclude that a honeypot is not an
effective tool for malware detection. For the DNS data in a closed
environment, applying the NXDOMAIN method was not applicable
to our dataset. We have looked at domain names suspected of being
generated by DGAs and statistical properties of the domain names,
and have concluded that DNS data analysis is a helpful tool for mal-
ware detection. Being in a closed environment cannot yield the same
traffic characteristics as being on the Internet, as the malware samples
cannot reach the servers they can reach on the Internet. Therefore, we
looked at port numbers to which the malware connects, and whether
the IP addresses to which the samples connect were hardcoded in the
malware or requested via DNS. We have seen that 28 of 82 malware
connects to non-standard ports.

Combining flow data analysis and DNS data analysis achieves a
better informed decision whether a system in the network is infected
by malware. Systems that issue a DNS request for a suspicious do-
main name, and moments later try to connect to the associated IP
address on a port that is non-standard, provide the our combined ap-
proach with multiple reasons to conclude that the system is infected
by malware.

37

7.1 future work

This research can be carried on by combining the same approaches on
a real network, not using a set of malware samples, but normal traffic,
in which malware is included. This way, the NXDOMAIN method can
be used directly on the data, which gives accurate results. In the flow
data, more characteristics, such as described in Gu et al. [25] than
just the used port numbers can be found, because the malware will
connect to the right servers, instead of our forged IP address 1.2.3.4.

Another idea for future work consists of choosing other detection
approaches, such as SNMP data analysis, to detect malware. In this
research, we have chosen three approaches that are already widely
used in corporate networks. Combining other approaches may prove
to be very efficient in detecting malware correctly.

38

B I B L I O G R A P H Y

[1] Y. Adachi and Y. Oyama. Malware Analysis System using
Process-level Virtualization. In 2009 IEEE Symposium on Com-
puters and Communications, number Vmm, pages 550–556. IEEE,
July 2009.

[2] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and
D. Dagon. Detecting Malware Domains at the Upper DNS Hier-
archy. In USENIX Security Symposium, 2011.

[3] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-
Nimeh, W. Lee, and D. Dagon. From Throw-Away Traffic to
Bots: Detecting the Rise of DGA-Based Malware. In Proceedings
of the 21st USENIX Security Symposium, 2012.

[4] R. Baumann and C. Plattner. Honeypots. Technical report, Swiss
Federal Institute of Technology, 2002.

[5] R. Berthier, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder,
D. Sheleheda, P. Ave, and F. Park. Nfsight: NetFlow-based Net-
work Awareness Tool. In Proceedings of the 24th USENIX LISA,
2010.

[6] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel.
Disclosure: Detecting Botnet Command and Control Servers
Through Large-Scale NetFlow analysis. In Proceedings of the 28th
Annual Computer Security Applications Conference, pages 129–138.
ACM, 2012.

[7] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE:
Finding Malicious Domains Using Passive DNS Analysis. In
NDSS, 2011.

[8] M. Brunner, C. M. Fuchs, and S. Todt. AWESOME - Automated
Web Emulation for Secure Operation of a Malware-Analysis En-
vironment. In SECURWARE 2012 , The Sixth International Con-
ference on Emerging Security Information, Systems and Technologies,
number c, pages 68–71, 2012.

[9] D. Bruschi, L. Martignoni, and M. Monga. Detecting Self-
mutating Malware Using Control-Flow Graph Matching. In
Detection of Intrusions and Malware \& Vulnerability Assessment,
pages 129—-143. Springer, 2006.

[10] S. Campbell, S. Chan, and J. R. Lee. Detection of Fast Flux Ser-
vice Networks. In Proceedings of the Ninth Australasian Information
Security Conference - Volume 116, pages 57–66, 2011.

39

[11] C.-m. Chen, S.-t. Cheng, and R.-y. Zeng. A Proactive Approach
to Intrusion Detection and Malware Collection. Security and Com-
munication Networks, 6(7):844–853, July 2013.

[12] D. Chiba, K. Tobe, T. Mori, and S. Goto. Detecting Mali-
cious Websites by Learning IP Address Features. In 2012
IEEE/IPSJ 12th International Symposium on Applications and the In-
ternet, pages 29–39. IEEE, July 2012.

[13] D. Chiba, K. Tobe, T. Mori, and S. Goto. Analyzing Spatial Struc-
ture of IP Addresses for Detecting Malicious Websites. Journal of
Information Processing, 21(3):539–550, 2013.

[14] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet Detection by
Monitoring Group Activities in DNS Traffic. In 7th IEEE Inter-
national Conference on Computer and Information Technology (CIT
2007), pages 715–720. IEEE, Oct. 2007.

[15] R. Curtmola, A. Del Sorbo, and G. Ateniese. On the Performance
and Analysis of DNS Security Extensions. In 4th International
Conference, CANS 2005, Xiamen, China, December 14-16, 2005. Pro-
ceedings, pages 288–303. Springer Berlin Heidelberg, 2005.

[16] L. Deri. nProbe: an Open Source NetFlow Probe for Gigabit
Networks. In TERENA Networking Conference (TNC 2003), Zagreb,
Croatia, 2003.

[17] DNS Census. DNS Census 2013, 2013.

[18] M. Drozd, M. Barabas, M. Gregr, and P. Chmelar. Buffer Over-
flow Attacks Data Acquisition. In Proceedings of the 6th IEEE In-
ternational Conference on Intelligent Data Acquisition and Advanced
Computing Systems, pages 775–779. IEEE, Sept. 2011.

[19] European Network and Information Security Agency. Proactive
Detection of Security Incidents II - Honeypots, 2012.

[20] M. Feily, A. Shahrestani, and S. Ramadass. A Survey of Bot-
net and Botnet Detection. In 2009 Third International Conference
on Emerging Security Information, Systems and Technologies, pages
268–273. IEEE, 2009.

[21] J. François, S. Wang, R. State, and T. Engel. BotTrack: Tracking
Botnets Using NetFlow and PageRank. pages 1–14, 2011.

[22] J. Giles. Conficker: the Enemy Within. New Scientist,
202(2712):36–39, 2009.

[23] J. Göbel. Amun: Automatic Capturing of Malicious Software,
2010.

40

[24] A. R. A. Grégio, I. L. Oliveira, R. D. C. Santos, A. M. Can-
sian, and P. L. de Geus. Malware Distributed Collection and
Pre-classification System using Honeypot Technology. In B. V.
Dasarathy, editor, Proc. SPIE volume 7344, volume 7344, pages
73440B–73440B–8, Apr. 2009.

[25] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clus-
tering Analysis of Network Traffic for Protocol- and Structure-
Independent Botnet Detection. In USENIX Security Symposium,
pages 139–154, 2008.

[26] F. Haddadi and A. N. Zincir-Heywood. Analyzing String
Format-Based Classifiers For Botnet Detection: GP and SVM. In
2013 IEEE Congress on Evolutionary Computation, pages 2626–2633.
IEEE, June 2013.

[27] S. Hao, N. Feamster, and R. Pandrangi. Monitoring the Initial
DNS Behavior of Malicious Domains. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference -
IMC ’11, pages 269–278, New York, New York, USA, 2011. ACM
Press.

[28] A. Hassan and M. A. Ali. Collecting Malware from Distributed
Honeypots — Honeypharm. In 2011 IEEE GCC Conference and
Exhibition (GCC), pages 351–352. IEEE, Feb. 2011.

[29] Honeynet Project. Server Honeypots vs. Client Honeypots.
http://www.honeynet.org/node/158, 2008. Accessed on
2013-12-04.

[30] IANA. IANA Service Names and Port
Numbers. https://www.iana.org/
assignments/service-names-port-numbers/
service-names-port-numbers.txt, 2013. Accessed
on 2013-12-11.

[31] Internet Engineering Task Force. RFC6335: Internet Assigned
Numbers Authority (IANA) Procedures for the Management of
the Service Name and Transport Protocol Port Number Registry.
http://www.ietf.org/rfc/rfc6335.txt, 2011. Accessed
on 2013-12-11.

[32] Internet Engineering Task Force. RFC7011: Specification of
the IP Flow Information Export (IPFIX) Protocol for the Ex-
change of Flow Information. http://tools.ietf.org/
html/rfc7011.html, 2013. Accessed on 2014-01-07.

[33] J. Kohlrausch. Experiences with the NoAH Honeynet Testbed to
Detect new Internet Worms. In 2009 Fifth International Conference
on IT Security Incident Management and IT Forensics, pages 13–26.
IEEE, 2009.

41

http://www.honeynet.org/node/158
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://www.ietf.org/rfc/rfc6335.txt
http://tools.ietf.org/html/rfc7011.html
http://tools.ietf.org/html/rfc7011.html

[34] T. Krueger, N. Krämer, and K. Rieck. ASAP: Automatic
Semantics-Aware Analysis of Network Payloads. In Privacy and
Security Issues in Data Mining and Machine Learning, pages 50–63.
2011.

[35] S. Kullback. The Kullback-Leibler distance. The American Statis-
tican, 41(4):340–341, 1987.

[36] S. Kumar, R. Sehgal, and J. S. Bhatia. Hybrid Honeypot Frame-
work for Malware Collection and Analysis. 2012 IEEE 7th In-
ternational Conference on Industrial and Information Systems (ICIIS),
pages 1–5, Aug. 2012.

[37] E. Lacombe, F. Raynal, and V. Nicomette. Rootkit modeling and
experiments under Linux. Journal in Computer Virology, 4(2):137–
157, Oct. 2007.

[38] V. Levenshtein. Efficient reconstruction of sequences. IEEE Trans-
actions on Information Theory, 47(1):2–22, 2001.

[39] H.-C. Lin, C.-M. Chen, and J.-Y. Tzeng. Flow Based Botnet De-
tection. In 2009 Fourth International Conference on Innovative Com-
puting, Information and Control (ICICIC), pages 1538–1541. IEEE,
Dec. 2009.

[40] P. R. Marupally and V. Paruchuri. Comparative Analysis and
Evaluation of Botnet Command and Control Models. In 2010
24th IEEE International Conference on Advanced Information Net-
working and Applications, pages 82–89. IEEE, 2010.

[41] B. McCarty. The Honeynet Arms Race. IEEE Security & Privacy
Magazine, 1(6):79–82, Nov. 2003.

[42] I. Mokube and M. Adams. Honeypots: Concepts, Approaches,
and Challenges. In Proceedings of the 45th annual southeast regional
conference on - ACM-SE 45, pages 321—-326, New York, New
York, USA, 2007. ACM Press.

[43] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execu-
tion Paths for Malware Analysis. In 2007 IEEE Symposium on
Security and Privacy (SP ’07), pages 231–245. IEEE, May 2007.

[44] C. Musca, E. Mirica, and R. Deaconescu. Detecting and Ana-
lyzing Zero-Day Attacks Using Honeypots. In 2013 19th Interna-
tional Conference on Control Systems and Computer Science, pages
543–548. IEEE, May 2013.

[45] Net Applications.com. Desktop Operating System
Market Share. http://netmarketshare.com/
operating-system-market-share.aspx, 2013. Accessed
on 2013-11-25.

42

http://netmarketshare.com/operating-system-market-share.aspx
http://netmarketshare.com/operating-system-market-share.aspx

[46] Network of Affined Honeypots Project. European Network of
Affined Honeypots. http://www.fp6-noah.org/, 2005. Ac-
cessed on 2013-12-15.

[47] Network Working Group. RFC3917: Requirements for IP Flow
Information Export (IPFIX). http://www.ietf.org/rfc/
rfc3917.txt, 2004. Accessed on 2013-12-09.

[48] Network Working Group. RFC3954: Cisco Systems NetFlow
Services Export Version 9. http://tools.ietf.org/html/
rfc3954.html, 2004. Accessed on 27-10-2013.

[49] S. Newman. How & Why DGA’s Evade Your Corporate Security
Controls. http://www.prodevmedia.com/FSISAC/2012/
fall/21_StephenNewman_Stopping_the_New_Wave.pdf,
2012. Accessed on 2013-07-01.

[50] Offensive Security Ltd. Metasploitable. http://www.
offensive-security.com/metasploit-unleashed/
Metasploitable, 2013. Accessed on 30-10-2013.

[51] A. Pauna. Improved Self Adaptive Honeypots Capable of De-
tecting Rootkit Malware. In 2012 9th International Conference on
Communications (COMM), pages 281–284. IEEE, June 2012.

[52] P. Porras. Inside Risks: Reflections on Conficker. Communications
of the ACM, 52(10):23, Oct. 2009.

[53] P. Porras, H. Saïdi, and V. Yegneswaran. A Foray into Conficker’s
Logic and Rendezvous Points. In USENIX Workshop on Large-
Scale Exploits and Emergent Threats, 2009.

[54] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator
for Fingerprinting Zero-Day Attacks. In Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, pages 15—-27, New York, New York, USA, 2006. ACM
Press.

[55] A. Ramachandran, N. Feamster, and D. Dagon. Revealing Botnet
Membership Using DNSBL Counter-Intelligence. In Proc. 2nd
USENIX Steps to Reducing Unwanted Traffic on the Internet, pages
49–54, 2006.

[56] K. Ramachandran and B. Sikdar. Modeling Malware Propaga-
tion in Networks of Smart Cell Phones with Spatial Dynamics.
In IEEE INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications, pages 2516–2520. IEEE, 2007.

[57] R. Real and J. M. Vargas. The Probabilistic Basis of Jaccard’s
Index of Similarity. Systematic Biology, 45(3):380, Sept. 1996.

43

http://www.fp6-noah.org/
http://www.ietf.org/rfc/rfc3917.txt
http://www.ietf.org/rfc/rfc3917.txt
http://tools.ietf.org/html/rfc3954.html
http://tools.ietf.org/html/rfc3954.html
http://www.prodevmedia.com/FSISAC/2012/fall/21_StephenNewman_Stopping_the_New_Wave.pdf
http://www.prodevmedia.com/FSISAC/2012/fall/21_StephenNewman_Stopping_the_New_Wave.pdf
http://www.offensive-security.com/metasploit-unleashed/Metasploitable
http://www.offensive-security.com/metasploit-unleashed/Metasploitable
http://www.offensive-security.com/metasploit-unleashed/Metasploitable

[58] P. Royal. Analysis of the Kraken Botnet, 2008.

[59] A. Schonewille and D.-J. van Helmond. The Domain Name Service
as an IDS. PhD thesis, 2006.

[60] V. Sharma. An Analytical Survey of Recent Worm Attacks.
International Journal of Computer Science and Network Security,
11(11):99–103, 2011.

[61] S. Shevchenko. Srizbi’s Domain Calculator.
http://blog.threatexpert.com/2008/11/
srizbis-domain-calculator.html, 2008. Accessed
on 29-10-2013.

[62] S. Shevchenko. Domain name generator for muro-
fet. http://blog.threatexpert.com/2010/10/
domain-name-generator-for-murofet.html, 2010.
Accessed on 29-10-2013.

[63] M. Skrzewski. Monitoring Malware Activity on the LAN Net-
work. In Computer Networks, pages 253–262. 2010.

[64] M. Skrzewski. Flow Based Algorithm for Malware Traffic Detec-
tion. In Computer Networks, pages 271–280. 2011.

[65] M. Skrzewski. Network Malware Activity – A View from Ho-
neypot Systems. In Computer Networks, pages 198–206. 2012.

[66] L. Spitzner. Dynamic Honeypots. http://www.symantec.
com/connect/articles/dynamic-honeypots, 2003. Ac-
cessed on 2013-10-24.

[67] L. Spitzner. Honeypots: Definitions and Value of Hon-
eypots. http://www.tracking-hackers.com/papers/
honeypots.html, 2003. Accessed on 2013-10-24.

[68] D. Srinivasan and X. Jiang. Time-Traveling Forensic Analysis of
VM-Based High-Interaction Honeypots. In Security and Privacy
in Communication Networks, pages 209–226. 2012.

[69] E. Stalmans and B. Irwin. A Framework for DNS Based Detec-
tion and Mitigation of Malware Infections on a Network. In 2011
Information Security for South Africa, pages 1–8. IEEE, Aug. 2011.

[70] J. Steinberger, L. Schehlmann, S. Abt, and H. Baier. Anomaly De-
tection and Mitigation at Internet Scale: A Survey. 7th IFIP WG
6.6 International Conference on Autonomous Infrastructure, Manage-
ment, and Security, AIMS 2013, Barcelona, Spain, June 25-28, 2013.
Proceedings, pages 49–60, 2013.

[71] J. Stewart. Bobax trojan analysis. SecureWorks, 17(May), 2004.

44

http://blog.threatexpert.com/2008/11/srizbis-domain-calculator.html
http://blog.threatexpert.com/2008/11/srizbis-domain-calculator.html
http://blog.threatexpert.com/2010/10/domain-name-generator-for-murofet.html
http://blog.threatexpert.com/2010/10/domain-name-generator-for-murofet.html
http://www.symantec.com/connect/articles/dynamic-honeypots
http://www.symantec.com/connect/articles/dynamic-honeypots
http://www.tracking-hackers.com/papers/honeypots.html
http://www.tracking-hackers.com/papers/honeypots.html

[72] B. Stone-gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your Botnet is My Bot-
net : Analysis of a Botnet Takeover. In Proceedings of the 16th
ACM conference on Computer and communications security, pages
635–647, 2009.

[73] M. Szczepanik and I. Jóźwiak. Detecting Malwares in Honeynet
Using a Multi-agent System. In Networked Digital Technologies,
pages 396–401. 2010.

[74] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel. BotFinder: Finding
Bots in Network Traffic Without Deep Packet Inspection. In Pro-
ceedings of the 8th international conference on Emerging networking
experiments and technologies - CoNEXT ’12, pages 349–360, New
York, New York, USA, 2012. ACM Press.

[75] P. Čeleda, J. Vykopal, T. Plesník, and J. Novotný. Malware Detec-
tion From The Network Perspective Using NetFlow Data. In 3rd
NMRG workshop on NetFlow/IPFIX usage in network management,
2010.

[76] R. Villamarín-Salomón and J. C. Brustoloni. Identifying Botnets
Using Anomaly Detection Techniques Applied to DNS Traffic. In
Consumer Communications and Networking Conference, 2008. CCNC
2008. 5th IEEE, number 1, pages 476–481, 2008.

[77] B. Weymes. DNS anomaly detection: Defend against sophisti-
cated malware. http://www.net-security.org/article.
php?id=1844, 2013. Accessed on 30-10-2013.

[78] G. Wicherski. Placing a low-interaction honeypot in-the-wild: A
review of mwcollectd. Network Security, 2010(3):7–8, Mar. 2010.

[79] S. Yadav, A. K. K. Reddy, a. N. Reddy, and S. Ranjan. Detecting
Algorithmically Generated Malicious Domain Names. Proceed-
ings of the 10th annual conference on Internet measurement - IMC
’10, pages 48–61, 2010.

[80] T.-F. Yen and M. K. Reiter. Are Your Hosts Trading or Plotting?
Telling P2P File-Sharing and Bots Apart. In 2010 IEEE 30th Inter-
national Conference on Distributed Computing Systems, pages 241–
252. IEEE, 2010.

[81] M. N. Yusuff. Honeypots Revealed, 2005.

45

http://www.net-security.org/article.php?id=1844
http://www.net-security.org/article.php?id=1844

A
L I S T O F M A LWA R E S A M P L E S

Table 8: List of the 997 malware samples executed on the workstation.

MD5 hashes

002485852df093134f18288492ea1a59 0032469d1f8ca921f1f14ec04ef0b209

003e845bdcc5367220bf13f7170da16f 00c28cee9c6874302982045b5faff846

00c9833a35b0a8bd957dd85c41fce5b9 00e6af8a522259b83fa317b7a2f8f161

010025ab068e4744a644d1ad29e981a1 014a9cb92514e27c0107614df764bc06

01652609d8c786fe8b39c7aded8b8fdf 017bea72340e230c96dbbcac36031fa2

01aa11d5a865a9c34270b56e5a542a86 01ae30f6635fc661a7f3a4995962e83f

01db10a317194fe7c94a58fae14f787c 02b94f96e0f1bc9189b756edd8b64318

02cf380fa8ff92dc6e74eaf188575f3e 02fb8545f6940114e4d5c10ed777a04c

03201a9f9c06e42159d98ccf2719d8af 035c26c52bb1ead2ddea66b9f0ec9261

0380643698ce56a7f614021b0856c5d5 03831a13d480daed3d2b63201cb6bcc5

03e5b8d5b2696cf34359e1b8d2243da0 04085a9bdd41dd53c40056f2ebb0ea8e

0410d705efb224a007bd5b675ef42169 0455dafdfd07a9849b143209db253b56

04b3194bce294556586c87b627ccdae3 04c5850be571a95b1ca5563e7498c7be

04cf0389139862f627dfa7ab643d2655 04d2ddc47267352028cad0070d4e9ac4

04d56751f25d6169005395ccd13eae55 04d6066541c0292dc6e9897b4f85593f

0546abe6293ba40348e1734fafca47ec 055fa0bb647b4f2277c9236e2310795c

0579133b12b454ab568d60609f041d32 05887d3c42e7f186f2a59fce85af6e75

05b6f4b41231d437216c87f7c752dc8d 05cf6e4558cf04c2d546df2da9d57e76

0605cb4765c0036e7f6b46d016a1bd1c 063996fd1db100ea7501d7af9847e1ba

06453466ed8f14941cd211388ee00fa2 064ae6c4099945f77249566a57c8564a

067bed758bf971259c2c039ae8ed7193 06988c2a3f0bd9a8b10279191fb9039c

06b125b04dd69a5aabf76e2cf48f4b0f 06e54162b8b0324232fbf820c0c22496

0709fd721e486fc3091542ff7e4a0b49 070d303c95856722bea316d01b42df46

07df3e2401936a063ab27fcdb32dac99 07f398af7e2b789d550b8b3e6f0465e4

0809eb81c3d061d637df4ca6f3ae62fb 08152df537bceb359d9ef3178e29fa5a

0826f81f22867a464021aa2f94576693 082afd83fc8bfe64479651a7bc924a20

084fca631cba38858ae3a00cf0001882 085412f65a35d71d8ffba5bec6632997

0854d8197846b12e6ea64e83007f50d9 088565f653b5d95e33adfd4833e12ee6

08b7da45b3a9dd5d4108f42708e64203 08daa9d5d81e6f12f8995f5162d7e415

09511410b0c4333c2399703c56e36868 095df20ced77e89ab1ff0c01b490f622

0979d6e554e66a421ee7b6675ab409a9 097c051268fc5929773a9c3cff788c1c

09be8c337ac66ab525bd5f715547f9fa 09d49c997fa5df14cbefd9b745e04acf

09fdf5ee81408995fe6538dc826b554a 0a13612f52c6ceb541c0144d3cdb1947

0a83777e95be86c5701aaba0d9531015 0ac8ae925d4e7d6b754c6533068b6e06

0ac9b76b75dc91d42e0ca83a4890cbe0 0b147d5f4fcf4c665f142d6209fa1cb2

0b346b201da259377ba11438504bbd9e 0b3dbac1f5461615b288e1c9076e7176

0b644ebe34259c653f7ca3c340af4da9 0b978cd6214cdf20e1ae2cce0ba173df

0bb0eb44a8d7505e44b03633fe9c4259 0bdfd0a6b3533222ae9e86fb5f19f111

0be7c6f82bc7b3cfecd8a158ca2ef9ad 0c16055804fcb734a0bcb0bf9bac98b5

0c440c4536f18ef5258b5ab4c65d02e8 0c558b3f646c7e8cb1ac0a17ac9db924

Continued on next page

47

Table 8 – continued from previous page

MD5 hashes

0cec129e2693cea14b83b121a7250f1c 0d6ce9c25d44e198e3f96c846c472227

0d9c6f4beaf23a35b74c1c9f0927105e 0dd7e0e00ecb6b23449e720d2f6fcb5e

0e15851d24b2b4d208c96523ff98b6c0 0e7be3bb556309a1310bedce7924bdc1

0ec2a2f82efdb8f163f3fde5ac0012f6 0f0554e3a8dc4938a2dff13b6cb080a9

0f068e82a6e139884f691c4211292213 0f104f52e701132268f2ebfdd0d3de25

0f1b37d10c2b7a148b4fa329041e0675 0f4813e358687324b9de239011d822a6

0f4ae8eaa21463cc59abc83611517eaf 0f5993c32b042816e1f3deb08b6e2af3

0f6441892cfd2ab54bd5dae53e92239e 0f9561f26e4ee69b31f6bdb57f9e6c8d

0fef3c0c12f89c20ea09d99f5f6ead0a 0ffae323037b4845e1c2dd8a11e0af01

101a14dbfd11b04551dc661228b99e3b 1060d4dde3d693284d4665696776a54d

107ac0e409ded4e6bc358167f2b76e75 109bf42d3a6c45ed704bf0c62bcf7b89

10f60a69da1dcd91b69d71b831d41feb 114d598405fc691ce652323d14e496c7

11765af7e1f7c0ddeeaaacd245c6d42d 118f67cfdbed578a729ef633cc19325a

119c71e12bc9bf6b0f26d09c82d38d60 121201bd8ec4b48031566b8195694954

12224937103c1d0fa3efd808bc491c4e 123675f34b782e33d45a3a00f9c3a350

123c27059bb48cf72f253da31f67575f 126e17d9b096b8ecf9afcb89a43d35b7

128879f57b59cf7f1db2038f539db945 12cecc3c14160f32b21279c1a36b8338

12d2388a8ce019ca6792b9a87deea374 130b6895069434a86dfa55d2f785b4d1

13196e1139e2dbadd3db97d335d517b7 1379b9ce1475834e672b90fc2611ef6f

137d7b025ad99a60024dfed7e8b8b101 13f90b323b0acdece64fe7f41126e675

1426fe0324624ace16d4b769778f0bf2 14546231ec7e0c7dea099633d95f0072

148891362ae542a3163d37bceface0de 14c2946528e8ea084c39de37afb14b98

14cd24f0f7c32f942c8e16f5eac2bbba 15075aba80fc63b613e07ddf9cc2159c

154ad2f8b8bf6df37e684e14b0ffe3f6 154ce466aedbe66ef86f6bc60b05c8be

1574ee69c6445bf8e0fd26f2e9a703c0 16237f5b7e7d7bd7b2d1d26d37073a6c

16495486e03ae792a2221ebea069dff5 1666316c1db9e6051990574e3e25edee

1690cab8d0502df13ac27e15867c806f 16a6955696ef375f1efb1d371cd9928c

16f5796cd816eb27dbb5786fd63b00b7 16fa006e5b5d50cf16dc8ded41ecafe1

17b8809764f6c1122c19e730f9ad4540 17cd16dcbb45bf64317e638ac4b4c675

186920c608674943292030114d7e3ae8 18764f36686a678263c72d2451f636ef

18a61b6cf8a8feae6480de1def07e282 199a96e64e86492bb1c3a617decd66d8

19a90a060e71b81c0b2cd21b1d092e38 19b911c5e0f4c36ac3d511306b29878e

19d279af28135c865fab6103b9b32cc7 19d5ad2adb3038238f877e430bc7727d

1a5d3021db16ee2670c8e3d3b9a0771f 1a6031959d62cc35e0c9d95a8eadfa38

1a7ab67a80403956bf10ca84a8410cb6 1a985147e4ab082a3f4da52a27525aa4

1ab5e53c6524fddc8b793bcea1f47d5f 1abae8bece6b2aa93173df4b08b65ada

1ae1f009df1679433057d09b7a4e1c4f 1b2dc2331e6dce4f8a6edc0a335b3a55

1b5b95995db845cc1e4b1b5d9d952198 1b7c0b64ba5d97af1374f6a7e353867e

1bced6319358f60260ad018823113e94 1c0e7503ac0c45086c98302d10ad9887

1c8195a15d83a969e1c7615c108d3035 1cb102e7fd171ec78ab0b2224f102225

1ce5e870656a9cd7b9fcd6d7f63a7771 1d45c718da2b2f7c3c9774eaf5a624b2

1dbd5aec1486919d7a38a3803d1fbcc5 1e134bbfe3a537424a2ccd13d4ed7ea9

1e34b50b8af8dbeb750c291981428053 1e56bc24d8fe21348b29709029add906

1e86e2fdff9c1089b2883fc3ed12b212 1e872bdb352dc6574fc484c7011d892b

1e9509e8363b719d482581cd6ee23f32 1eba72886b84f84ef9d95e93c95465d4

1ecdc7455e30797fbe62a591cd119cd2 1ee8fe3d329999bb7cc1d019eacce75a

1ef1463cb5cd677b3b73e414dc2998af 1f04389bfb1dfaf813a2f67d5cad092b

1f69d3bc800f9f00968b42b49f4ea03b 202c58d508248629244df57603291772

Continued on next page

48

Table 8 – continued from previous page

MD5 hashes

2036b2d410630fa85b5a5e53f93289b0 203dd1e8960afd68bde851b682e88c6a

204d8ccdfb33a315760a554a978317e3 20d47409829148715bcce170357810cf

217687daa0a13d4ad824b26225e66c79 22202d6c56cb7ea09ae1ecdce08c71a4

22b5f47308af3841e772d20ef75a235a 22cf18696872ba3975978f4484b89654

231a9252e539ac732d2bd4bac0627ed5 23538b9ee5114655f05b0ce50e3e90d4

23b5e1ddd14b03452af26019d90447b0 23bfb72beae785c3ed75c8f8287a19e3

240aaac273014815852c451d7c016ba9 2465ac937f8d6fc512af438665ecb5c4

24c639a18297db41949983f59e4054fa 24f7bc6eef81a32f620392f8de13ca65

250ea87b50b7cfa2d499b4ab5e2651cc 250fa29286a4022b17ec045c6fe0c1f1

25d4e9e52fe16e5f44237a711d8c6acf 26018892aec8e40915ef9a65265810ee

26083b3d94cb4abe0b1aa443494c0466 260a7503f7d26636ee08fe2ce1264c47

26392892f86b4de826e56eaf8a59d574 265494ea5c259da01a4d77fa84f15d36

26654751cb2e98f5f67aff78d19800eb 267e02cf17f1d34f473a1849fe86011b

26d848591f92601ea328ec86e216aded 26e9b7b495e302fbc6cd160be32602b5

2780d6b4f3f4c4034770a96dea69fc1c 27854044479b7af9acee7d5442b6d720

27b831e93697d45d978796198b421033 27c17e3b1111fc5c3d4f6d779b15d4da

2826ec1db9dd35d4dcfe718a8a4f2115 2867c6976892dc4ec71bcdc6ad933dbc

28b0d90d37faeaa92f937447a82f6313 28c5ada9bdc5ddbbe78b6227c63f0e05

28daf983522cf87af524d22932152d00 28e44bf092f8fa193992fa50aee92c4a

28e8434b81565a4aea9438caf465553a 28f170f63555bbacc1bb30ae058f165b

293906befa51c3ab72a9a94001a69dcb 295c509f093ce76792ab687c0cfb5fa4

29748f96daca16266b9ded60531f916e 299b40e3abdd646f64888cbc450fc637

29b1f56767b437247fe8b1bb81d7de16 29b424c380f8a9015e8877a6aca1d6e6

2a65046feb272b7b5bd825a0a0e57c53 2ac98a19bcb4d9e1061b6e683f59c490

2ae55514d4fd2e80146cdbb1e6941e60 2af3aa23286a216c8995c178490593fc

2b0ca356af63176d70cb976cce626021 2b1bcb854057da7c3b61315af1d65920

2b488c84030f7fe71563793aba9db07f 2bac879b6cdf577969d2f51d4e435289

2bd25e9cf861f0a65e5fbbf0e0b7ab29 2c01a9b096bb1ad949d309c921a8b811

2c174fe0b07600deb5e6c9cf45bd1fa0 2c503bebe612e4f0a590dcde41eafa21

2c75605732e53ab5eda618bcc2a1042d 2c965739bd89c08ea54d886e5babbf7a

2ca1ccd1389576d7a8b6c912320d5faa 2cbffba65a4eb05e79db51579306e988

2cc557e2c58932f2e0c18b683770ba8b 2cca7f7cdcd80e4db2ff923d80b79ac9

2cfa0b1c7ff49727a28c222fd524fc2c 2d3a56e6d3e9e1db867ec24ebb5b9502

2d42417903d1f674b40f7b758da59741 2d6bb17d536a89c08a93ed8055b5d419

2d7839f3fc66dceee05dd4da03474675 2da18dbc1a09de089f53c00cb55544e2

2dcefe60b902897bf4279c041a065bcc 2e0e5bad6caee56856970420c0a996d9

2e4982325d6d34d52ebafa0dd495b466 2ea216e792ef906fef47402a72222763

2ebe59105a5a955361ab3dd16158746d 2f34659e48f529ea4883cfe11c326078

2f3ea5dbb6e57ccdc0d74248f8e9486b 2fceaab4d2f77e4e321130d7c13764e1

301fffbab8f7a6df2da5c892a0e390f7 30428ba182b35376a1564544ab2c562b

30628e8ba8cb728856db1c0a728c6005 3087a840a97c80231d78767ae09bde10

308c2897607d78d6f493f913b627235c 310b183e5cd2318c55a1538741847c1c

311c1c570a45f64739d75cd7c084b50d 3134f4bda9f2bf514b180921b6f3eb0c

31379be1e4c68d5ca66d03c859e7af5f 313f8429df0f599c94ba9fad28b0c5d0

3145dd202cc76c7c3d43b6e572c7643e 314b8a36f24141924d1faa6938088db6

318092c434ce7b8e815085e11955cf8d 31adfb8f43f1598e19249bed709826b3

32881867f46497b5a8db4081d4e8e267 32996bf10133391f0d6b49fa101495d0

32b04c3efcad380eac5e47af09d86937 3300309f0709837d0e6ae2854a39098b

Continued on next page

49

Table 8 – continued from previous page

MD5 hashes

33122a5200ff5bab1e5881d5c295c460 3404d4a68ec2082be814d9c80a6a22a2

348dbff2593df965f068aef6b2b6b413 348eaf73445326b0b37538f00e4ee0b2

34f8be2690fe183de0f87af9d01022a3 351956d8e5106c081578a571fd356e0b

351f0fe5c039917c0d5a74091998e57a 35536d66121709a9e6602380582f8be7

356b12f98e7252629947de9f589c3012 358b57a19413088874df6f6b8369f07d

35a493467338537f3060a5f915921f6b 35aba21c5f039c225e828453b44bc176

35b24360817300c5d10de016902f36a6 35f4a67d05b74a73d915a89d6a278514

361e591bb738480b0a5eb1864c803baa 36281406e48e64684b49701ebb4f35e5

368f43d3b2d68a5c1d44885c77bcb338 36eb62f3c873098cb488dfcb179eba3c

3705ce6f473e0d9e6350a371df46cd79 372a8c167b23813cc7ce63e9edbf64e6

37435ddc3ff4a1b3d76139bf2ff2a76e 3757b1abdebdf770e0213ef5f5495903

37a442aa2d9b63d85fe347b07b78110b 37aeb77c8b692565246f54fb7f2b5e44

37d0288f3538ec2012dba2c9bb6bec1d 37d65dc2f6ef7875a35cb7fd4575657e

37f523b7fcce4f147794cdc58e8feea3 3816c598720a93d8135cbe4ba530de37

381e952d81c9e18f7bf71c719629bc91 38eab493be24864abd4f65d93cb47d50

38fd07e154564aefdcd90891ac2da03c 391eb8239cde073b48f0c8afe32eaa76

398aa52575995a05003e696d30469a08 39bb07b4ead8b860d59086ee2020f4f7

3a152ef073000d460d9264d60f878123 3a190241881976ff5de19cd6c0cafcd0

3a717a1531ab1bab3da31d936efdd6c6 3abfc9971b0244bd8b3fd71bae538450

3b73aae72c644a583165345b1399bdeb 3b8bdc98c5f68f2515f46cb4e4e4ac0f

3b92e27b5ef6a539a37e857c03fb7e4d 3c2208941f2143faecd139598f7f600e

3c4c5b0218ccda6d928f5f17716b0e7a 3cb8c0ef9f090031a0102ea83b6746f6

3d0ad91352862096e1ec32fa9d263ee4 3d817f455e399ff0697bee202ee4624a

3df41d5755cdf49d0e4f3c7013b60f33 3e52728bd5477a5a55be4a0acf7d179b

3eac43d6d2823e96ec667e1b9aab6a73 3f041d0879df5f0a9011c247388462ca

3f9b091c227c556b625a112ae350e18b 405be7e2fb88f903abb9794937af3271

4079940929bcafeb62f2c77c8b107d53 409497aad8478b1f108d2c5dbce033ab

412f88a68e7f55ada514409a5a91ad07 415b1760a16e726ed41d51dbeaa4838f

4169ee85761b8249842e4ac3600643fa 41e7a67d6c7db42da0b2003052370054

41f5d44dd76b28af30b99f870d4cae0e 4230892c9a8a71ca5c16cf9648a87862

425faea3000b09d41cae5dab7b2f1a88 4289d22df5d1cc0954855cf2deb8334c

42caf927592375aa9d333f7178c8b690 42d5853289447d2c305ca6bc2c8cae65

43fb81c8a21da02c255b52226b38e69d 440f402a1d01e00e432b006f19d53984

447139f9f9ccbdc74b20b9bf529188b4 44a15e0eb1500f8dc5735e2f4df3afaa

450baba3ab2d45f36367c8d4b126959e 45265b9acb1185375d25c31a450df367

45325a7ecb100ead34b1118820650dab 4560fad15f456e351235ebe0368903d5

456f219ffd2e37df764355731746352b 4591d01a291b700efbc5b263c67a266c

4625556d1816142a1f8250bed15a834e 465dcf7b76fe5f096c8dedfa0cb07b98

4662c55431945f4fe0a09126aef5954b 4675b57fad56fd88bf34de076a7f39a0

46ab2971fe0c350486423b576a02f867 472f8afad528637170f19b23349c2a0a

473817b99403435b882f15f1c2eee92a 4759ec5c0a3723a44042a9a96ece3632

47be408472d47d7be5eb752e8513e76b 47e20a7f61eab0c70674b0ddf4e88979

482f683d8dab749cc3960421effdc7cb 48438d89ff24114b997de4d755216d3a

487abbadd74e843ddaa0da3af36769e5 4890ddcfd7270850711d8a00e8882f33

48bc80580308e62815fe2772f8f19698 48ecf8b999503ddbc10cfa534c2a343c

48fe83acfbd761b8a58e452e64bb1905 491a1c28a538a1fca31c39cd1e97cff0

4970b1306b05839117f41ad8e89af98f 49e7c66386b012f11cda865fe1b2b006

4a06811ba1b7ddee6183b96b0ecee352 4a07b8971b8b9a915ec5e2d77a6275dc

Continued on next page

50

Table 8 – continued from previous page

MD5 hashes

4a45262f75e06d4274c13d84d95214a7 4abeff74ef244747bfd002d6679ea025

4ac034bd7aec18af141c983ef6680c29 4aee8b48db04c5fe06284ef5da3e7239

4b428890778717c635f4fdf37e0c476e 4b882f26874fffd4caa6d768c1cbae9b

4bb936cef907ff44e0fd02b38b59b21f 4bc75c43ca502fc6251b08939be62941

4bf7765cda5fe17a1a14223cb379b44d 4c6a970497053090a98963bd0fea5431

4c8401f098965da00884231dd3460eb8 4cea477a5ed4fef9bcfa4d940e64a681

4cef2e575f765f9d2e847cee1af02b28 4cfbeb83f8dde134367709978db7201c

4d796194d32a6beeebeab0c96159602d 4dce51ac7341f854ade157f355af61ad

4e024fc6077966c9fb8f801e2458705c 4e0c0f6f721542d75b0fab90a1aebf2e

4e10b9cc5f9e32a4c782910b3cefe8e8 4e55869c4e3c6b1b5f58c10d4374bde9

4e80c948a46555705242b8ee562c46c8 4ebf42aadd1250e0e7872f090e9b1746

4f0c3021fa48a97d895e55f5d5c52806 4f7c4e13b5b80d5d5f63012440a5f050

4f9af5e1e7c6280b51e31eba35f654ab 4f9ea8df7af1ff43192fc06a8d8dfd71

4fef7c78f2336481091880daa527bd53 505db1b1035e0fae5de4960923c479b2

5085bf6efd8c1a0d8ae451cb98ceb589 50b28f7d71f5bc9e737e835ea1ce31b4

51047b312858c836bf8ed26481227f76 51e12adc70d90dd1827de80e979cc7ca

528a0d36fc6cc0d9d6c5911490795694 52afc1ef9c791c9b8370a57e71412239

532433a4c7b7017a48eb3e3469bf5a82 533425012942babb54542e61da671ce0

536bae7366943b3646027e1d5eec9cb1 536c4eabcefab22767da35676d712e6b

537bdf5599a0cd626ce23cb8b88942c2 5395f4b2998466929ed2a1ef6e2d7d57

53ce61071aa8a3d370324c0e4dd61466 53cfd02336c3a3176a5cc684fbac9b50

542d64cca238a631f9de90638860b664 54b1541096563b135ce7d49c68758b67

54b513ceacc56a011b9f523f196c4c46 54b63721c3487153864ce4b2e14892e2

54e04e505f40ba95c5ee2a340e331b5e 55234c043067e04a8303756a151f71b1

555b488d3a0cd0b4a96c98da59958c90 55bb3e16ce3651523ffddbb80556f922

55da827a2e1e53de9a99a5a7be8e6e80 5623bffc4a7c27a52499d4df91782aab

562b8e74dc5057c94db988dd1459cf1d 563d3e8d86a40ae3667d69ca4f0c61ca

56efb8733b3c014357a425faa76d07ec 5754c50403653d1e0a9c5a78750c7f53

582a0939db7ccaec722b695b82a71f15 583854135f05ec762885453dcbcfb258

58804f544d9e46c37e827568d5c35e86 58923e5e041047bea09ebde52615e46f

58d2d80edd037c580eb295071bef7f64 58e249abfd86fb07616372720cd9d392

592a3be9058c142c49ce8d369988a247 59481c38f59246062ca61d517a54e007

59e796eb656a8eeaef04ffc056d50343 5a01fb04c2d8da48e396883872221063

5a52b06836d60bae062ac4dcb9443134 5a63842f2f8a028c6fdd0b25fbd155b3

5b4a3cefa671039761fa46685a3ffeae 5b69fb3ed4b2343067462fe275b6a417

5badcba70a209a8902f65fde60f7d268 5bcf90204c2ea4e7404f0ad7fedd711f

5bd34fdfa77eac6ff1b1e1d7bec0f855 5c8636cf007ffff178c6c758395be859

5c8846befc08e672ca2997f443819d07 5cf8435ac2789e4c45acaba573719356

5d4df67fbc367497180305e7052007ba 5d77fe1694451b676a3355d850b6fb8f

5daca16e8ddda624b4066844053ce2c0 5db47a927bd78a49edcdf8b89b5be062

5de5d62a5e9408990eb5c6cdaaee0c44 5debe91e20fe06cd62a42a89a7464e77

5df31e5ab1f18abb6988c6a1baaf565b 5e682fcf7b7aae18780c6708a38339b9

5e99cbdbae0367d1582feb6b3545da84 5ed2ad24d08f6de8707be62dac8b87d5

5f6d0846dc2509936aa97afc0f2fed14 5f96ba85212f512d3a831e269eaa1a2a

5f992dcdf94a3ae1a19afb2d685410e7 602034bb7ebd33838d8d1dc69a25d59c

6090f8064149df3c1312e3480908fa76 60a9cdb30d576658bff5bcc22d423ebf

6129635ef5b27365f74cacfbac5c3a7e 63432acbe243613b85e2396e6f1dab5b

636c78cad73733d6b8b5d0f429a1bd65 63b22c816e9fc48c58bc564300bece7b

Continued on next page

51

Table 8 – continued from previous page

MD5 hashes

642cfdcac70e9a7f26d478e891ccbdfa 642e0166f03f3353fd1a112507c65b81

64b816007c77d52ed709b39d9068ee31 659c6c75bc33eb082d190f7ec3d7dc88

65a7354887d20d2e5390758e4ab22327 66cf4157605d7c274fac57f382c81c50

6702c668b5a7915040f29799f0bff9f8 676df385a8867b88b70008d5fde5a029

678a52cc3c8ff5de68650ca429ccb39e 678c155ab6ded113732106f1e77594f1

67c4d827a9938fb603e9554b9053ba93 68f15dd40a1b77560ba6a2140328949b

6902a4fce7c6d5541cfedd925d887489 6986c2febf0f4881874c149ed845fc88

69afb814ffd217c8cff57a8b0fd099e1 6a6e781b430e96c2a68ddf069774f590

6a84f185b902b8fc97c139f096c1fd33 6ad76f2b1b2bbede5c9e2aa481100f97

6ae6862863b405a4cacc0d4710de0d00 6b104f777ace354e32f1f0ad86e4d622

6b26b953fc279e0883d5ee11354b8661 6bd0085d57593d91bf2c1987143192c4

6d0e467d2bb49bfd9a56eaa726848bc4 6d2452e526c51e90810ab76ffc67ade4

6dd910e051b6baaa857af6faa33bbb90 6de9a01aabe01cada53168a6046dac3a

6e2d6d499c0fef5e03d66368abfb4b3b 6e6ada214d40a58c73a40d53a93e31ad

6ef7f933c16b5a88bbcdf5b45fdbcaa1 6efb83de57620f423d797bffccc174fb

6f1cc4ecf8dc7edb512cff16cbd7cb9e 6f6d555dc1b403889ac83d2f10538589

6fc73251c49be187fed376cdff1fb521 6fdfdffeb4b1be2d0036bac49cb0d590

6ff72efba531ebff2cc701a67bb7d2b0 709e6924c2a02282fef00663bd1f7ad8

70d6b3d2aad144c5960adcf167662277 7112c8c3ca8753ee29dad31dfc17c247

71e764948548141d9a3404ca62422696 721c13f0826e0ef081e96e67052d58a7

724bc114b01c5d660b95dd34d6932190 728b67ca6196ad196a0045b2da1755b0

729b4e4215add22f0a9f46666010b2c4 73555509028ef8d62f50b1a57ad3c809

735616922c8f6d12c77fe8380cc45c63 73a2907611ee9ae8fb91f1c5295e10c9

73cb1fb669dae3e830b4c3ef800750db 7460a492eec81d3ff7d0b9d0cda7ad98

74667ccb3e7f090d565cfeba0c1dc480 7466cd69198c0b58ac8a9e0aef095828

749cf4eb854bc589101f15bcb3b9e820 74a9d2afe4c02a48f68b7ae8c1bedbbf

74b70f99af35965cedb6e443a40ee85f 74c015b3d73bec0046fdb53b5199e286

751070e0d3b13c818116cb756e9c8739 7521cc7ed62795b4b317cba652358e88

753455178be69c892ad555cf1d635e3b 7626b255965e014a33f0cd51240c28d4

764e2334fc93270fb0b6085e6d98860c 766928cfde67f943fc4498d48a9c84ea

77a1573086a94a6204302a6c4a402e8e 7800b7642d557b785800e1c482d68066

787bdd1de6c524a6ec49041560b68138 78d03e55a867428e3a678f804f1d871c

78eaa0b308025bfd70036e5fa2cb6fee 78f8a28871449eee80df24df4d09bf74

7902f3110fe867e6949f42cf45cba443 7926a3a1708da681d54dd1a6ea45be37

7970c24a511a6e6ae6b7c21a2deb371e 79932e306e412b725e7f30cb26b77943

79b85b30ea285520897bd877b4344b1a 79d3310ec654f485ab78ece9abb9dfb0

7a1c2c9cdd7b0d68f1f0925edfae401c 7a1fcc3046dcc5daaa4ce5f6abb0566d

7a598e26d7959b528e9a7a875303d6ad 7a9c74897b08ec343779f0e10e5cfd65

7b1d27d1ea4da6f2f489c151fac41590 7b32f51e6b00947c33bd7b5a3bccc882

7b961b72e35a535de5f2f3b9ec11da15 7c2638759f661e5ae8f50f641d9e21ca

7cf887cfa2fcd898626a284684851b81 7d426e2827126392a664058f8ac7407b

7d4cacd8f627840c7bc8e5aa6b3130c5 7dc39daa8f8ba620503effa9a756649f

7dc51c42a4c864c9dcd3597e4016b19b 7e0ea94c38643e3fba3dc63042f38b06

7edf08d433c160770d5d9dd4ecaa1680 7f4b30daaa62a00fabb9d92a4dacbe58

7f882517f15b9d2e9d6d3d01bc25b707 7fe9df44100806be5e9c676e68fce782

7ff4438c54f7abc5ee61da0b14028f8f 807767735a05a4f27b65a4b349278622

8080c1ee8d67dc36575bf4beddb50e66 80c784392c2890805d0592a914b3899b

80d87ad5b6c761b2a6bba8b4a5801903 810cfd1328811e211d7d43a1ab2a936c

Continued on next page

52

Table 8 – continued from previous page

MD5 hashes

8129798d6b993fbddb06b557501096fd 81a2868c4858e00462d2937398069068

821e4c194c721f6f40b6a63b71229677 82591cb671019951c9afa493e8bd81cf

828141c315099a62c97d8dfd814a5350 829398cf7e84ef7f645863022acd2705

82f792a1a4abab93058f916e70283252 8388c2abd789563f9762c9d7beab4140

83f306dad45143effc639943d8d5bbe3 83f88691bd0a571bc65c971e153877c2

8452649012c7f2546c71f71518a06812 8461295b201f45835406380af587c1bc

849bc79b15efc6e0e552a1dcf9635ee8 84b153c0f074e4286be1bd704c20cd50

84cfe7687705b1cbc1c2a2eafc9c6636 8508de9e731b1b53e44c6f3339b85116

85b499d1b73b7c4728c577410b47b752 85b8504e8c075d2a1cb20319dbde1ece

86094f463472dab508385b1f16a4797b 8629fc041466b6b51fc13d6e9a293d12

8726f8d6889474aabe8e6fa235415f75 87ca29e17722011cf27d54e57065f8a5

87e7443b671b0422caa6aa81175f28c9 88078f889ac9990889753ca594416170

882701961690b3c93913228895224788 886b8028ad216be965cdb00cd69b21fc

88d67a43d0a595f20e91e021b94b59fa 88ebfe19f13b2663e242a2421e5498be

89045d06eb6c0a45e47bc00658251699 89a6428bb7e1174e9e4e8ac99f7b7af8

89aa9cf40eea5af42a3f98e606990f1c 89de2036b5c82a442cc2451850247d4f

8a45306096c9495a2d0b04674a1901c7 8a67923a4b152305bbdedde79db5da5d

8a7bdb50251b559e715a4dc93c28b060 8aa4d18f9a19c281b8eae72a7bdceda9

8ab94d7a4d4429777a7799b00f9bd531 8b79567a25204f5c4160940fc62cd19e

8b8a263fd021bd5d1496031e711e8727 8b967007497fcd46f3cb703a70df6b7c

8bbddc0197e41c61a1397aef39a79d25 8c651ef402aece272d5b9d99f7cfab73

8d1551ce12859b97b4106a3c195aec4a 8dc665525e8c08937f7ee0ae977abbfb

8df99949944269e3185005d0d175c244 8e0059ab10294517c433d8ee58a52347

8e01e390bbbe011cd06b71fc01e69f43 8e371ef40e97f4e7a9310339300864b0

8e5432b455b945cdbb4d81a7da4d292d 8ee8b6db5c0dfecd0b052d39bad8d503

8ef2cca3b6380c097cb81d5ede5b0d8b 8f09aa0b381297123fd2d29cba0ef57b

8f91fe881fe19704b40f135f3a9bd930 9077ed6af5b65705fc4e65b58f4547ac

90825b4778d2f4f90cd3e5174a163162 90aa2cc39e10ce43f7f31e90961f0b5e

911a14e0c36f55a364e7798f576bbe2d 9129f199be8ca182a541336bbaaeafb0

9143e250a9c2f3d0d0636151c1cd997c 91cb657385df8f51876f5e1fd88f0352

92e8bad1cbccf8024761dcf7dd154e86 9335b6b91fbf6b7d72fa0ee18ee16795

93c19feed3dc74df766f41ec67c5e9b4 93fff21615665e21817ccb6e94f7eca8

941f3287588ec29e5837b0d491997d85 948f810bc2101d8ded70226c91726e72

94c0972b06c75456ed574dd46417b1d8 95fee6047fe07b93ad4ad6ebb2343abb

961631315188600460458d44141364e5 96a7f60ef339d586b35754cb8106dd86

96b30e3c9fb8fccf794a7ba40c6051c0 9715bbe0c4f594da9bbd99d2887f2061

973eb04047271413b719e2518e421362 9768289d64c7f08b4e2bdad7c7fe014b

9778598d05904172cd4b45565c1a3f82 9789089b434b5d4f23b7c7aaee61fadc

980df59d789e70e3744d811cd3528904 981e82f907d1943f3ee06e05aecf7c31

985441750ce4c52e4f72d2bdac629d8b 987fef059b1de2791ae99876c864d26b

9881b40faf335c3424660e996d003ea5 988f08c71b487bb22b9228638056f698

9898a0d14d3e18117e86e1e90f075efb 9900a18be22e3cea0c515d198159d22c

9a3375be7f530447efdbe21d5ac4c683 9a4707222ec9730a7cca2ea4e7dda688

9a601627690a1963cf95c6a361a63a6d 9a87b59dabf265d46325caf5056ce103

9aba0491c23dbc4c1de4efc7c74ed2f4 9b5f7921acf75bb8c816c64d95ac5402

9bc194ee89c100daeaeeb5e7b6eafaf9 9bccb77b40407891eacb940ac606e3dc

9c2cdc8a4f83f4a4e1af1c5e93fdb169 9c404b8462e525393bf43f9faec04964

9c6f3f69163133fb8e56ac4a6e163452 9d045fb3df82c2296f3934f045dddebe

Continued on next page

53

Table 8 – continued from previous page

MD5 hashes

9d1c1b63633698e6cd6d9a9e4fc0415d 9d7c3389efcb75fc3f08bc8e289256e0

9db1743f4d0578531fd929063372c6a5 9e38bb2fad42a4fff7084e2e22768de8

9e4cccd5b22c6d6eca552c4008a46d5e 9e7a09776b0fcda37f3d232325e71422

9f148789adacb0c97358c4ed010c9b8d 9f43af191437cc10ae78fb9a924fea47

9f69d25294f319783b283d4b946a869c 9fb83f7dc4c4fad27922c25caeea6677

a014a59ab22a459d4a95a914502b157e a0232db9969b9aa5ee85397a90a95e57

a03041f33d032c6550d6f78712c8153b a09d5b3376a8fddb03667c7896a6ab40

a10fe5fa3f861d6f3faf705013e43045 a1233745dc77c2ca801bc3a97c6a7ffc

a231dba1d6e47f7664e4299836f0277f a27d0483015c0c03c63d72ef35bb8cbc

a2c8a63a043cfcadbc334066bf597ad0 a2edb82bbef539df5ad7201b9e290208

a304e76bfca925d521934c67c3f2648a a37dba2ba1d9e0b4be37e7ebf82579f5

a3805ab6b4df44000de89ae9998335ea a3a823abd653691227bf8d35c88e2b0c

a3d0856589da38ef3acb65e0e06df850 a44366ea0764087efbfb21132fb96a65

a501120d70f03c123b02825dd61fc2c8 a538ed02f51a3ffd834ceb5e1fa4cf76

a555609372d8f3ecd324dcd216d7e5e8 a756fd2efa1e84718486d1b1b79a2243

a7a3dbf9dd16606262d647c7d5814be1 a7c33bf6cbd0079e4d07d9ead4453ed6

a7d14e6b8b3f2fe2ae870bd7b166dbd1 a81d7d49b08430c7e113938fe8a39059

a84ff0576453a0df594e47dfe0b445dd a8681b151753d0c40fb8506c4bcaa5f3

a878ba26000edaac5c98eff4432723b3 a9002a1a2b9bf1082b5d7971887a7f2e

a90a54ee776288220f6f3aaed42a261f a94a4ad349fbbae6a85836f9124a5720

a94e97bf0a80b715ed60daa627b29b2d a98e7bc2ffad6d49f152686f96788dc3

a9ac8ba20b970d019ba77afed8cf50f9 a9cf441025a55b22bb56f5dbc32074ab

a9e662104e3954c8bb0b02c6dae0e3f3 aa47f80e669d593af7aca3757ffc8203

aa5faa049c93871b67283355a9acc401 aa66c8087c05c7f45601d6243ac98b0c

aa6c72571a71989e5c973a42c043d8e1 aacb735438150b870fc8e3acb0fa7745

aba2a43121c8e22d2ad43afbeecc9815 abe30af73dc9139bb15f416eeb77d2a1

ac15e6623ad86c11a714a50a04674aef ac5ff80a85123df0d49056032bee3178

ac6ceb302e40c0ddb9170b5c6614ec0d ad07beae6755922e6053427bce7d9ed0

ad11a0bc29f205436c892b3f9a1e5070 ad16f818470d09beb9757b873d3feb27

ad7bffe4fde25c9a4e6b72e4b69bb9d5 adac1e3ee33539259c0247c2ecd2b69e

ae6af24501520d8e9e069cf6e85fb87a aec1554bd6d16a309187809d658cf34f

aec479b1c2c3f47a0fa24c93ca45f602 aedaf8bcb483b96fb498c41e90f678e4

aeeb4ffd2daeead3968c64a6fd7f9071 af34cdc7d8967e7633fdc1a0355b30e7

afd47151d0fb1dd6ff2f3502e8cb79ad b00c6a1bdac52b817defafad27560bf3

b085420cf29be8eeda7c214c3fb12c04 b11cdaef763c2b3735749375c87da51b

b12e68c50f2729b72dcf9c7fcb9f65a6 b163c5000cd9e08c41982188f3f4c802

b173c0ffeedaa760a88f6322bd68644a b1c59fefcda733c97c50092068cc110a

b22d79daf95796dc3b210132fbbec188 b245ed377508f01bf6a70dd2d550c6c5

b2e221eee320a6c7468dc8865f7b4ea6 b2e6f28df5466e9a37c60650ebed5e21

b40278658c74c98dc303da4eb6fbd838 b464459e265de6c10cc3f70491315b82

b4c7546afdbdeb8198569d250bb06500 b550ac758f5c3bae3a1113fa1d772780

b5d1bee5a22623b0419b2205467f8d6a b6091e07815030444f8a9a777ffb72e5

b62d7a722e38f08684292926e57c2cdb b65d46c0ebfdcb53b371fe651ca6f31b

b67a53fb73514d9ff24b185ce25d4f26 b6a4e2c5ae1baa851b8abbb0f6528a2f

b6c9fdb500ab54d53f5c59990d1a2297 b6e43cb2184baf4ca08086ff2264eec1

b799cee7ca88e32b23867ad61da498e0 b7b01831ab619765b1fb3589e4dd3565

b82e00dce4e8c479d1231007d39a040e b8c3ef0497de79446a0bb4a8b242a8c2

b8d0d6278e30f2143062206027b947f9 b8e1be3732343d63cb8c4fd84228c9ca

Continued on next page

54

Table 8 – continued from previous page

MD5 hashes

b8f414b2c6b539f2cc310dd9513c4fd7 b8f8b8ed005e571de982ccfe70c36e42

b9c9af53dac38888bd07e3f5da5b9ccd b9e7e85faaecdcb25ec0ac8478cc09a5

baed21297974b6adf3298585baa78691 bb3c3d56c936b77920f72bd9c4958cfc

bb8d8f3dc0bc261118b3e52d6850c0e7 bbac5c1813c43845344726e549ddb1b8

bc04730a1877c79299f3cc5124b9eb1d bce0fec4b42d6964a88e097311bf655c

bd45fe39d359ac635fa87e209149a084 bd563a18e5fc36acad88599e16ef0cb8

bd9a2895d87ed60fc0017fd2213119ea bda2c02b8ae5de607227459f60f5392c

bdbe835094406aa6ea837ad6b0d3b6c2 bdc31b71eb76a8356183a8716b3e036b

bdf46368154be6327f5830bf959d36cf be713bb1f92715d30560e3932fcc06cb

bf5023ce4f49edc19b77ac972bf4742a bfc3900c9b50dc8d63d48e8072399b2b

bfcd395ef32a6a4cb210dddf0f32b0d0 bff890000110d2407c98362f49054b5b

c0785f417aaf685af51c1212a0aa955c c0c5b181c0f1220b05134f186b73449f

c0d0b41a38ec4e69bdd99bbbdcfada66 c0d0d27ad4403a31e24f674146cd619d

c1d81be7cb3cdcee745e5c6d07002e14 c206992f7c6836ec6a227a6e29ae7609

c297eee5ee9f8489519ca3d888e4c16b c307b109901ca566d4244eb319d642de

c3d7a19824da82aa97056400b6b7ba38 c3e6a3ec71c952f1098389b7c3e2594e

c41d0febd6a9eae9eff5ee3f96d72cbd c4489745d1d871523961995a9ba00246

c45a6ecc0e115ccafbdb624f60d291f8 c4828afdd0e365d9a699c83aa93f0137

c56d5e988b72166651cc925a0f203ce9 c5938b91184c188fb5ced8738bcfa2f3

c5aee1e60e4183e7eda5ea6fe53bc540 c6713b1c6db25dd962cbb4d23e8cd35a

c694832a7b0625ac90fd2cdc312fea89 c71929da3ea3da497f1f89199c77d1ac

c72238b422cf8c73589159aca65bc4e0 c729d202af55e981fe987dd3a2131bcc

c74d96e1d8181ce5bd9d435d54bf47ce c78120aa5124274b458ebbdce5cd60ce

c7b338d97488367276f1bce4a6245cca c7be67c63a9698c17230d369e36d5eff

c7cccfa2500b537adbedcce469fa3480 c80acb98bb2fc370d21877c215765e82

c8241996203399e271bb3591dbde255a c86439ecd578a5878f99986275bcb785

c867554929d2cf5bf5b0453979bfaa6f c8eba4713e9aa73517cb580667cdf06b

c96a9e3d8d1984cbdbcc208a8f65de0c c9f28696fb0365abcc2adf61a2ffbeb5

ca76f21c17ac39166a9965f98ceb5a37 caa4f218a0ad6331e31aa948931b9c57

caa6f226d043938a3d1ea71dcbbedf18 cadb6eccee60be126c2725b561833c75

caef45377fba37f9839f89b87e09a51c caf65a2e4dc715a2a77e2ddcc53b40f5

cb0ad75e725eff6ae358b7b32098f800 cb8c89fbb6f9066486d628efe3630809

cc4027dbfe32d73626da1ab41f34ce43 cc62c38670d0c89be0319d4b74e79947

cc69aae4c2ea987a1d718cb039bebfa2 cc755bfe842d44f14d87b77848e4ed6d

cccc302257610082f064ee7d743095b8 cd49f1e0f70cb74976fa741316081c9a

cd70eec9255ea47aca61a32921800fba cdcc63adaa351be416b61da0dffb2c2c

cdd42d224cabb9b5455a660796e98b52 cdf33e1ef314e6928eac9ae9f6ff3660

cdf59503c968048b5a5359cdeb4c2d84 ce78f54b8409ae1ecce6f53a63a87bf5

ce8d8f47969e704a7e3602a9cb1536a4 cebfc2e11ef6e6155b42893a386066ed

cedbe40f5114a561da596afd24dabdf1 cf596eef42ab2e866825779b10380e66

cf68f6c8bb88d7d716863c187e8959af d0034f9e2cbd4b1588d31fdcf4a8a8b3

d050737ba5783673142da45ff521987e d0595f53a68e289e55c9aa37546c6c89

d0672bc0b23ed15ea25fdac808cab771 d0f1015c0aa6ef6ca260b807e452a311

d146984e4e4d33f6c9925c44649c732c d158304f091f1e994120082cc5103e5d

d199468856457236221f132c8a222a1d d20ad5c65e12d01fde9c5d332baee48d

d22791312dff3f12401bb1f2f37b5b87 d277417d04f5e8377b6d211679772364

d3367aef91417ee4991ed7680c0ca5df d33e50c227aa01ec4d8d225144b8f6f9

d369380616c2d38b934f57eab8b706e2 d3c4a6a57c91bc8f54ebd945b6dd3437

Continued on next page

55

Table 8 – continued from previous page

MD5 hashes

d416917130eb38a3f47ebd351809578c d41f06f5901cad65f6b3d06409095809

d485471c1f5da4caddcdaa9e06397933 d4dbf6e2f4cbacd647bcbff8ac4ed34e

d522acef1c11bc2b5d00fcf7fee5609d d55ea67f328f0431e971317a8390b020

d5b6ddaa188fbd95cd14f50d69204b7e d60f28c5414bebaaa358d14dd79bf8b3

d67f0e1fc1334e548d0a993200535ebe d6cbe2f164dc0236df2dfac91d5bc961

d6d93848388714b90f16caf7e80ba6b5 d7013c912e48b10dcb651a52f87d7c27

d74f59d6986794a8d08f43a590aefd5a d7994b8dc70c86682fb2c6d9df1307a7

d7c4cf80641fcf022c5e4fc9768cce00 d7d8cc5c1cfaae6a6dbb123d936a7610

d7d9a9cc107f9db783446e39bff8db09 d809535cb0d49a1d0aefdcb5794c7a09

d826f06397d887cb4e59f437295ce312 d86db1f18ab3e1d48f97212beeedd7c3

d8ccfeff07bc987441b96eac152809bc d953180001a27c8d93ccd3956499802d

d9568a04f480050576d275af369d9c14 d95d22f3312cc34e4d23f5bef393d62b

d9c296ba93ffa14b70fc5d8eac458fb0 d9cc7c96d37030d9b3ee8c0a51137356

d9d2956dfd94cf2b59d60150da7578ae d9e333a988eb7e147318d3b3e8ba4cb9

da906889ec48dd94ba4cd2bc0f94b3b5 dabf42a499293991b1d95fe6022341de

db286906dae31bd10511f9ecc53a0c78 db5088b2f8addb295646530580c86abe

dbc308fc61be6c071342e9678a65d788 dbdc638def1aa026556381dbfc365b2f

dc2f523754ac143dad541d64bc0b31ed dc4389744f753fd5bf2b0e0f61047129

dcfa0b5305640443622edd8d7a983af4 dd2c55b030659ba383ee9bc5bf438f5e

dda16b2129a691051b49acd241c5465f ddc81b7546bec1fb8abef356f5c2454f

de2f97d310faeb6470c3de93b5f58af0 de8112218bba2334fcbc5c1d400cb005

df3d9698ae3d2d19127d25ca35211971 df610829fe276fc3ac41a4a67fbfa0b9

df702cb209aea14d728e334cf80309b5 df99c7ad2b879d4e5e0842d118b429b5

dfc7ad1a64c8c9a54dba25395cdd6a7f dffac79ef676d4ab0f0791575dde37b4

e03881219a1cae25cbdcffc319fb129d e0697461cd6961ea62daf1571e68bfca

e0f6ef60c2d34dd49042ed5b287ce087 e109836a2e7146ac1cf54f62800563c1

e1615caacbc9bc9f332735ac21c5a037 e1b435a2b0d201149fc4a2be883dc319

e1c3b0474914f52381b054c8fef9e140 e1ce3da256b2654cdfdf03d6b4be177f

e27eb6cc5ad18ace1c1591026a368bfe e2c82a0891c23d5afc86cfd6115e6b7c

e35ec35ffe86238a3a7b99851f9fb084 e35edb8ad7b18dd38256ec6f0360b7ad

e3baaf38a44fe84445edf5fdfc6f5339 e3d80c62ea1b9395b7fa369d70889a2d

e3f4c8f58bad76531f012cc9e2b2e25e e413393560638c6ff4e6dfde531ecbee

e423de9d506d6bd964aa57ce9f239ea1 e4b82b59b52787f2b7fdff6fc6518bc4

e542190dc5058a8902b217e46edc88ff e564a2643af6840734ce5a7ea1e93179

e5a481d09e735747f8c46d7df92b32e1 e5b5cf460953ed11f006153941a6cc9b

e5e8c17801f7c27d506e0906ab734ec7 e621488cc9863e368c1b765a609b1e80

e6e612aa05da6a2cf4f1caf485518fe5 e6e7d456512f492dd78b905d6ce2a133

e6eb3eb37df62da9813c75d43a1fcb8f e714ac071c6bb3853ae6e61720bb8ae1

e7e5cf3698683455744529eba5a358a2 e89c3063a53479bed27324ac5f420a5a

e8a8c5877f0512d0728f1262a0b47314 e8ad005205a3b7a52bfa73134915114a

e8cbc216cc2edafca5825d2d65054cc5 e93f4cdd1d173cf2886bebca186cf821

e97f8501805f6df0db440a4ac3af06e4 ea7a606cace4fb3e16c1664c8acabc9e

ea9ec94611d790063b3d48427af837a9 eaa570561523f1759bab32c85f9ae267

eb1a16854915bf5d3d10f0f22ee9d237 eb40fe2dc7178a07dc52f24390a575e9

eb4c0e8744ed09671af7d8373c717efc ec5a5b4420810494c18367bc97a4a8b5

ed42fb2c20b2b366995a812ad466be59 ed4e5953c74f95c1250337e4a700d438

ed8721d5865f2393cfff18f7ef18895c ed988cbcf5a73dcd1d4fea277635a3f6

edb7c7f26adec4bd34e890673d0dbfab edf1aa187f3f47fe6b44d0b17097568e

Continued on next page

56

Table 8 – continued from previous page

MD5 hashes

ee083fc36481b93367c87f818ce903a4 ee2f7450e1d3e9e25d50cd8e623a53f2

ef7947f659f74e2b5a1ed6b8b367cd46 ef8b1fa39882889a44ef2e41b4270158

efe183c9a23b96f321f235e87717a4b8 f0193f89eb2d7505e9af1ea444585304

f01f523dcae2960898d68b811b8f3558 f0354d733bc57021594dba4c16194320

f04d843bd0d36aeab213aeef86553adb f0cb9c2245f039c56c3339453e8dc868

f104c1cdb772b8f2ff5c9d7cf7db6267 f10b77de13fff9bd80281526f0d1b7e6

f196e2d85eb00c87dc2461ca85846d35 f1b181aeea9d09c510e641b5599adb1d

f26518fa9e4404333a3163904723c17a f308d8bdcc6dfbd79dc95676553fb2a2

f33a6e7a62700f495072d38d23e2f131 f3cdb0e349a7388996039daa3aec1b17

f481dacd53a72b4f7a9405068c0408c5 f4b8fad139e06829bffbcfe0fb85d45f

f531a20326f16ea9a1667c02970e8798 f57be4d55d95fee56d892c8acf82a4d1

f58f6b22f6cdd4228fe4c987cacaaba8 f5a3a06c99e01b856e55b3a178cedd51

f62dd9ad2b95a4a77b4da42c01052a03 f6343a86cf40def075a94f4145b4cca9

f65abbafa86ddf2249074c9fcc4eec98 f6c9f9a5e791306a9a23c50fabfd9257

f6d61302d769fb29d380435e4f6e0edb f6f8360523c986ad759ee7cfd1b15d2f

f74f63be63d4caa0a46249f461285bcf f7d17be815abf0c384b0969bebff26fa

f7e02bd8390984ae14dd6cb1362a9881 f84c09d2f84e993ab05762a513b1021d

f97fcc229d20bae904c8f12cc7fe9aae f99bc9b65c058bdd470bda7c7bf6de80

faace938224be13f0e4a61353086b21c fae62b1e0ac190d25084d8d8ab70e358

fb2ac457078e986b0fb27355e783bdd1 fc620d986b44c666d4fa1dca3671dca7

fcaf47a1d4dc8dde3f35ecfd4ace9962 fd22b70257316b2863f07a36bffc5d8f

fd736f06d95b164c50a996f27d23265f fdbd4b86bd358188e90da24f17e17eb6

fdbde2e1fb4d183cee684e7b9819bc13 fe13da4349c2b8e6bd4f381a77739812

fe9a74f637d72cf1aad54409f4777a78 fec6d5047337d0c926415f741f63bb8e

ff106baf4e1c35ec2796ff930264f750 ff11067e2ad7731e41f89896ebe44a0f

ffd51c078232fbd9b3b507b43bfe72c8 ffdcb4f37374c7b4b26cacf838b26c56

fff09529e2bb5e7dc7cc4250c8b80613

57

B
D I S S E C T I O N O F D O M A I N G E N E R AT I N G
A L G O R I T H M

Listing 3: Dissection of Domain Generating Algorithm used by Conficker A.
Source: [53].

void sub_generate_domains () {

GetSystemTime ((s t r u c t _SYSTEMTIME *)&SystemTime) ;

5 i f (! (SystemTime > 2008 || month > 11 || day > 25))
re turn ;

seed_random_gen () ;
get_t ime_from_popular_s i te () ;

10 succesful_download = 0 ;

f o r (i n t c t r =0 ; c t r < 2 5 0 ; c t r ++) {
p r e f i x = GlobalAlloc (6 4 , 32) ;
domains [c t r] = p r e f i x ;

15 length = PRNG() % 4 + 8 ; //range 5-11

f o r (i n t i =0 ; i < length ; i ++) {
p r e f i x [i] = abs (PRNG()) % 26 + ’ a ’ ;

}
20

p r e f i x [length] = 0 ;
s t r c a t (pre f ix , TLDs_array [PRNG() % 5]) ;

}

59

C
S C R I P T F O R E X E C U T I N G M A LWA R E

Listing 4: The script executed to generate the data set.

!/ usr/bin/python
This s c r i p t runs the malware on a KVM machine .
The s c r i p t w i l l fol low t h i s order f o r each malware sample :
1 . START malware <malware> on <datetime > (log)

5 # 2 . EXECUTE malware on workstat ion
3 . WAIT f o r x minutes
4 . KVM_DESTROY workstat ion
5 . STOP malware <malware> on <datetime > (log)
5 . LVM merge c lean snapshot

10 # 6 . KVM_START workstat ion

from datetime import datetime
from time import s leep
import subprocess

15

Declare v a r i a b l e s here
s t a r t t i m e = datetime . now ()
logf i le_name = " malware%s . log " % s t a r t t i m e
malwarelist_name = " malware . l i s t "

20 minutes = 3

DEBUG = False

Some help−f u n c t i o n s
def log (msg) :

25 " " " P r i n t s msg to the log and the stdout " " "
l o g f i l e . wri te ("%s\n" % msg)
p r i n t ("%s " % msg)

Open the log f i l e and s e t the s t a r t .
30 l o g f i l e = open (logfi le_name , ’ a ’)

log (" S t a r t e d s c r i p t on %s " % datetime . now ())

Open the malware l i s t and s t a r t the for−loop
malware l i s t = open (malwarelist_name , ’ r ’)

35

l i n e s = [l i n e . s t r i p () f o r l i n e in malware l i s t]
num = 0

f o r malwarename in l i n e s :
40 num += 1

log ("START malware %s name %s on timestamp %s datetime %s "
% (num, malwarename , datetime . now () . s t r f t i m e ("%s ") ,

datetime . now ()))

log ("EXECUTE malware %s on workstat ion " % malwarename)
i f DEBUG:

61

45 subprocess . Popen ([" ssh " , "−p" , " 2222 " , "
Administrator@192 . 1 6 8 . 1 . 2 " , " echo 1 "])

e l s e :
subprocess . Popen ([" ssh " , "−p" , " 2222 " , "

Administrator@192 . 1 6 8 . 1 . 2 " , "C:\ malware\%s " %
malwarename])

log ("WAITING")
50 i f DEBUG:

s leep (minutes) # s leep <minutes > seconds (f o r debug)
e l s e :

s leep (6 0 * minutes) # a c t u a l l y s leep <minutes > minutes

55 log ("KVM_DESTROY workstat ion ")
subprocess . c a l l ([" v i r sh " , " destroy " , " workstat ion "])

log ("STOP malware %s name %s on timestamp %s datetime %s "
% (num, malwarename , datetime . now () . s t r f t i m e ("%s ") ,
datetime . now ()))

60 log ("MERGING LVM clean snapshot on workstat ion ")
subprocess . c a l l ([" lvconver t " , "−−merge " , "/dev/ewi1439/

workstat ioncleansnap "])

log ("LVM_SNAPSHOT")
subprocess . c a l l ([" l v c r e a t e " , "−−s i z e " , " 5G" , "−s " , "−n" , "

workstat ioncleansnap " , "/dev/ewi1439/workstat ion "])
65

log ("KVM_START workstat ion ")
subprocess . c a l l ([" v i r sh " , " s t a r t " , " workstat ion "])
Wait f o r s t a r t
while (0 != subprocess . c a l l ([" ssh " , "−p" , " 2222 " , "

Administrator@192 . 1 6 8 . 1 . 2 " , "−o " , " ConnectTimeout=1 " ,
" echo 1 "])) :

70 log ("KVM_WAIT f o r s t a r t ")
s leep (5)

log ("KVM_STARTED")

log (" ")
75

i f DEBUG and num == 1 : # Run num times .
break

malware l i s t . c l o s e ()
80 log (" Malwarel is t c losed . Done , shut t ing down . ")

l o g f i l e . c l o s e ()

vim : s e t s t s =4 sw=4 t s =4 a i e t :

62

D
LV M A N D K V M S E T U P

Snapshots in LVM work with modification tables. The original Logi-
cal Volume (LV) keeps writing the data, but from the moment a snap-
shot is made, the snapshot volume also keeps track of every change
to the original LV. When a merge (revert) of a snapshot is requested,
the changes that are in the snapshot volume will be reverted in the
original LV. This changes the state of the original LV back to the state
that is was in at the moment the snapshot was created.

A Kernal Virtual Machine (KVM) guest can be assigned an LV as
hard disk. On our test system, there are six LVs present: the root
filesystem and swap of the host system, three for the KVM guests,
and one for the snapshot of the workstation. KVM is a virtualisation
tool which works like Xen, VirtualBox, and VMWare. The hypervisor
is a software package called QEMU. An overview of the disk division
of the test system is in Figure 6 and the the KVM overview is in
Figure 7.

Physical disk

Primary partition Volume Group
LV LV LV LV...

Figure 6: The LVM setup used in our measurements.

Host system

QEMU
DNSWSHP

WS Snap

Figure 7: The KVM setup used in our measurements.

63

	1 Introduction
	2 Honeypots
	2.1 Background
	2.2 State of the art
	2.2.1 Medium-interaction honeypots
	2.2.2 High-interaction honeypots
	2.2.3 Conclusion

	3 DNS
	3.1 Background
	3.2 State of the art
	3.3 Conclusion

	4 Flow data
	4.1 Background
	4.2 State of the art
	4.3 Conclusion

	5 Experiment setup
	5.1 Workflow
	5.2 Honeypot
	5.3 DNS server
	5.4 Flow data
	5.5 Workstation

	6 Experiment results
	6.1 Honeypot
	6.2 DNS data
	6.3 Flow data
	6.4 Correlating the results
	6.5 Samples that stood out

	7 Conclusions
	7.1 Future work

	A List of malware samples
	B Dissection of Domain Generating Algorithm
	C Script for executing malware
	D LVM and KVM setup

