Combining Multiple Malware Detection
Approaches for Achieving Higher Accuracy

Master’s thesis

University of Twente

Author: Graduation committee members:

Jarmo (J.M.) vAN LENTHE Prof. dr. ir. Aiko Pras
dr. Anna SPEROTTO

Rick HorsTEDE M.Sc.
Jair SANTANNA M.Sc.

January 23, 2014

As malware poses a major threat on the Internet, malware detection
and mitigation approaches have been developed and used in the bat-
tle against malware. Some malware samples elude these approaches,
while some benign software is marked malicious. Having looked
at the state of the art in detection approaches, we have combined
three, namely honeypots, DNS data analysis and flow data analysis.
All three are widely used in corporate networks and can be exerted
for detecting malware. By conducting experiments in which a work-
station in a closed environment gets infected by malware samples,
we have observed that a honeypot is not an effective approach for
malware detection, because no malware tried to reach our honeypot.
However, DNS data analysis and flow data analysis can be combined
to achieve synergy, by providing more information about whether a
workstation is infected by malware, leading to more informed deci-
sions.

CONTENTS

g N ® »

INTRODUCTION 1
HONEYPOTS 3

2.1 Background 3
2.2 State of the art 5

2.2.1 Medium-interaction honeypots 5
2.2.2 High-interaction honeypots 7
2.2.3 Conclusion 8

DNS 11

3.1 Background 11

3.2 State of the art 11

3.3 Conclusion 16

FLOW DATA 17

4.1 Background 17

4.2 State of the art 18

4.3 Conclusion 20
EXPERIMENT SETUP 21

5.1 Workflow 22

5.2 Honeypot 23

5.3 DNS server 23

5.4 Flow data 25

5.5 Workstation 25
EXPERIMENT RESULTS 27

6.1 Honeypot 27

6.2 DNS data 29

6.3 Flow data 33

6.4 Correlating the results 35
6.5 Samples that stood out 35

CONCLUSIONS 37

7.1 Future work 38

LIST OF MALWARE SAMPLES 47

DISSECTION OF DOMAIN GENERATING ALGORITHM 59
SCRIPT FOR EXECUTING MALWARE 61

LVM AND KVM SETUP 63

I

LIST OF FIGURES

Figure 1 Classification of honeypots. 4
Figure 2 How DNS works: a system resolving google.com. 12
Figure 3 Statistical similarity between domain names is

greatest with botnets. Source: Choi et al. [14] 16
Figure 4 How flow data is exported, saved and queried. 18
Figure 5 The network overview of our closed environ-

ment. 22
Figure 6 The LVM setup used in our measurements. 63
Figure 7 The KVM setup used in our measurements. 63

LIST OF TABLES

Table 1

Table 2

Table 3

Table 4
Table 5

Table 6
Table 7

Table 8

Literature classification of detecting malware
with honeypots. 10

Features to classify DNS records. Source: Bilge

et al. [7] 13

Example of domain names generated by a Do-
main Generating Algorithm (DGA). Source: New-
man [49] 15

Aspects on which the results are analysed. 28
List of queried domain names and the amount

of requests to that domain (over all malware
samples). The domain names shown in bold
face are queried by more than one malware
sample. The domain names shown in italic
face are candidates to be generated by DGAs. 30
NXDOMAIN method results, executed on 2013-
12-11. 32

Port numbers of connections to 1.2.3.4 and their
assigned uses. 34

List of the 997 malware samples executed on
the workstation. 47

vl

LISTINGS

Listing 1
Listing 2

Listing 3

Listing 4

Example log rule created by PassiveDNS. 24
Example result of a query executed with nf-
dump. 26

Dissection of Domain Generating Algorithm used

by Conficker A. Source: [53]. 59
The script executed to generate the data set.

61

IX

INTRODUCTION

Malware poses a major threat on the Internet [12]. Malware is de-
fined as software that is created to do unwanted action on a com-
puter, and includes worms, Trojan horses, viruses, and bots [43]. De-
tection and mitigation of malware is essential, and because of that,
approaches for detecting it have been proposed [13, 12, 10]. Honey-
pots, DNS data analysis and flow data analysis are such approaches,
which are widely used and can be exerted for detecting malware on
networks [44, 20, 64]. This is because most malware will try to prop-
agate itself to other systems or, in case of botnet malware, will try to
download commands from a Command & Control (C&C) server.

Honeypots were originally created to learn the methods attackers
use, but are now also used for catching and analysing malware [44].
They are a traditional tool in the ongoing defence against attackers
and malware. DNS data analysis is used by network administrators
to, for instance, list what websites are visited with a higher frequency
than others, but can be exerted for malware detection [20, 77]. Pat-
terns in amount of DNS replies over time exist in DNS data that can
point to a botnet infection [59]. Flow data analysis was originally pro-
posed to gain information about flows in a network, for instance for
billing and maintenance purposes, and is standardized in the capac-
ity of IPFIX [32]. It can be used to detect malware by marking certain
characteristics in the network traffic caused by malware [64]. In gen-
eral, each approach is applied to detect a specific set of malware types
in a specific kind of dataset.

The effectiveness of an approach can be measured in terms of ac-
curacy, which is the ratio of correct classified samples divided by
all samples. The accuracy of multiple approaches may improve by
letting them work together, creating synergy. Therefore, we intu-
itively believe that we can achieve a higher accuracy by combining
approaches for detecting malware compared to the accuracy of the
individual approaches.

In this research, we will combine existing approaches that are widely
used by network administrators [70]. We will correlate information
from honeypot data, DNS data and flow data analysis. We will
run detection systems that generate this data in parallel in order to
minimize the false positives and false negatives and thus achieve a
higher accuracy. For example, when quasi-random domain names
are queried, which can be observed using DNS data analysis, and the
system subsequently connects to the corresponding IP address on un-
usual ports, which can be detected by flow data analysis, we have

two reasons to mark the system as infected by malware. In this way,
the certainty that the system is infected by malware increases.

The goal of this research is to investigate how the combination of
multiple approaches of malware detection systems improves the ac-
curacy. This gives us our main research question:

How does combining multiple approaches of malware de-
tection systems improve the malware detection accuracy?

To answer the main question, we will do a literature study and con-
duct experiments. This gives us the following preliminary research
questions.

* What is the state of the art on identifying malware-infected sys-
tems with honeypots, DNS data analysis, and flow data analy-
sis?

* What types of malware can be detected with the combined ap-
proaches?

For each dataset, we will study the state of the art of the existing
approaches in Chapter 2, Chapter 3, and Chapter 4. In Chapter 5
and Chapter 6, we will conduct an experiment in which we will run
malware samples on a closed environment, while collecting informa-
tion from different detection approaches. This will give us data sets
for each approach. In this way, we can make an unbiased conclu-
sion. At last, we show that using multiple approaches of identifying
malware-infected systems increases the accuracy of the malware de-
tection approaches. In the literature study, we will focus on what
types of malware the approach can detect, how it detects the mal-
ware, and how accurate the approach is. A malware classification is
needed for this. This will come from existing research, such as Grégio
et al. [24]. The experiment we conduct consists of running malware in
a closed environment while gathering information from the different
detection approaches. We will analyse the results on the basis of the
analysis methodss described in the state of the art.

HONEYPOTS

In this section, we will first describe what honeypots are, which types
exist and what their respective uses are in Section 2.1. We will then
describe the state of the art of using honeypots for malware detection
in Section 2.2.

2.1 BACKGROUND

Honeypots are vulnerable systems that are placed in a network to be
compromised [67]. These vulnerabilities are present on purpose. Ho-
neypot systems are always observed to learn from the methods that
attackers use to compromise a system and what they do when they
have succeeded. A honeypot can be compromised in two ways [81].
The first is when an attacker get into the honeypot. The other is when
a piece of malware propagates itself over the Internet and places a
copy of itself on the honeypot. The scope of this thesis excludes
the first from this research, because we focus on detecting malware.
Because honeypots have no production value, every connection to a
honeypot has to be considered suspicious. This means that terms like
false positives and false negatives are not applicable to honeypots [4].
A connection can be benign or malicious. If a honeypot is reached
by accident, and no further action is taken against it, it is benign.
Uploading a file to a honeypot however, is malicious. In classifying
attacks or malware as benign or malicious, there can be false positives
and negatives.

The most high-level classification of honeypots can be made on the
basis of activity level and interaction level. This is shown schemati-
cally in Figure 1. Based on activity, we differentiate two types of hon-
eypots: client honeypots and server honeypots [29]. Server honeypots
are the traditional, passive honeypots that expose vulnerable services
and wait for a connection to be made to them, reacting on an attack.
Client honeypots are active honeypots, crawling the network or visit-
ing URLs that may be a source of malware infections [36]. This defini-
tion contradicts the global honeypot definition, because this honeypot
does not get compromised by an attacker, but rather compromises it-
self by downloading malware explicitly. The scope of this thesis is on
server honeypots, because they enable us to detect malware activity
in the network. Honeypots can be anomaly-based or signature-based.
Anomaly-based means that it acts on everything that is out of the
ordinary. Most honeypots are anomaly-based, as it is placed in a net-
work to detect all kinds of attacks. Signature-based means that the

Honeypot

/\

Client Server

Low-interaction High-interaction

Medium-interaction

Figure 1: Classification of honeypots.

honeypot will only act when something happens that complies to a
certain signature. When a honeypot is anomaly-based but performs
analysis based on hashes (which is signature-based analysis), it can-
not identify unknown malware, but it does catch it for later, manual,
processing.

Server honeypots come in three different interaction levels: high,
medium and low [42]. The interaction level is the level of interaction
that the malware can have with the honeypot system. It brings in a
trade-off between the need of monitoring the honeypot and the qual-
ity of the information that can be retrieved from the honeypot. A
higher interaction level is more risky to get compromised, and must
therefore be monitored more intensely, as compromised systems can
be used to do damage to other systems. Low-interaction honeypots
listen to a port and write everything that gets sent to it to a file, but do
not need much monitoring. Medium-interaction honeypots are sys-
tems that run honeypot software packages which simulate services
or vulnerabilities. Examples of these packages are Kippo', Dionaea*
and Glastopf3. Instead of giving the attacker a full-fledged system
with which they can interact, they simulate a normal system. The
softwarer calculates an expected response and returns that to the at-
tacker. Because medium-interaction honeypots interact with the at-
tacker, more information is gathered about the attack, which brings
risk, so the system must monitored more intense than low-interaction
honeypots. High-interaction honeypots are full-fledged systems in
which run normal services, so nothing is simulated. They offer the
most information, when configured correctly, but need to be highly
monitored, as the risk of exposing a complete system is highest.

1 https://code.google.com/p/kippo/
2 http://dionaea.carnivore.it/
3 http://glastopf.org/

https://code.google.com/p/kippo/
http://dionaea.carnivore.it/
http://glastopf.org/

2.2 STATE OF THE ART

Detection of malware by using honeypots has been an already widely
investigated subject in the past years [81, 23, 63, 65]. The solutions
proposed in literature differ greatly, in terms of how the analysis of
malware samples found is done, whether one or more honeypots are
used and the interaction levels of those honeypots. It describes pro-
posals for medium-interaction and high-interaction honeypots. As
low-interaction honeypots cannot interact with the attacker, they do
not yield much information, and are therefore not described in litera-
ture. This section is divided per interaction level.

2.2.1 Medium-interaction honeypots

Most of the literature describes medium-interaction honeypots to de-
tect malware. In Gobel [23], the honeypot software package Amun*
is used to catch malware. Amun analyses all malware samples found
with its Shellcode Analyzer. One of the first steps that are taken by
the analyser, is looking through the uploaded malware code to find
URLs. It is likely that new malware or instructions for the uploaded
malware is located at those URLs. It will then download from these
URLs. From the malware samples it gathers from there, Amun can
make Snort rules. Snort> is a rule-based and host-based intrusion
detection system. The fact that the Snort rules are created on the ho-
neypot, makes that these rules are all correctly classifying intrusions,
as there are no false positives. Of course, these rules must be very
strict, in order to block as less benign traffic as possible.

Wichersky from Kaspersky Labs has researched how mwcollect®,
another medium-interaction honeypot packages functions when de-
ployed on the Internet [78]. Mwcollect emulates multiple services and
receives malware via those services. The malware gets run in libemu,
a library which emulates shell code and responds with expected re-
sults, that is, results that would be yielded when issuing the same
shell code on the real software package. Mwcollect monitors the be-
haviour of malware by detecting calls to the API of the operating
system, such as Windows” URLDownloadToFileA. In that way, ev-
ery connection to other systems can be detected.

Honeypots can work together in a network. This is called a hon-
eynet [41]. They can be used to detect how malware behaves in a
network. In Hassan et al. [28], multiple Nepenthes” honeypot software
packages are deployed. The honeypots all send the data they cap-
ture to a central server. The central server parses all information and

4 http://amunhoney.sourceforge.net/
5 http://www.snort.org/

6 http://mwcollect.org

7 http://nepenthes.carnivore.it/

http://amunhoney.sourceforge.net/
http://www.snort.org/
http://mwcollect.org
http://nepenthes.carnivore.it/

stores it in a database. With a Web site front-end to this database,
statistics can be calculated from the information, such as a reputation
list of IP addresses and a geo-location map of the origin of the attacks.

In Grégio et al. [24], a distributed honeynet of honeyd honeypots is
deployed. Honeyd is a honeypot package that can emulate many vul-
nerabilities of many different services. A distributed honeynet means
that the honeypots are in different networks. The honeyd honeypots
do not process any data, but rather proxy all traffic on the open ports
to Nepenthes, previously described, honeypots. The Nepenthes hon-
eypots do the actual accepting and analysis of the malware. They
have compared their solution with a single Nepenthes honeypot on
the average downloads per day. The single honeypot downloaded 20
malware samples per day, while the distributed network downloaded
7o per day.

Adachi et al. [1] describe BitSaucer, which can generate a number
of virtual honeypots on demand. BitSaucer uses process-level virtuali-
sation, rather than machine-level virtualisation. In that way, more than
1000 virtual executions of a malware sample can take place on one
machine. This allows BitSaucer to emulate a large network of sys-
tems on one system, which enables the created honeynet to observe
malware behaviour in a network.

Musca et al. [44] have combined the medium-interaction honeypots
honeyd and metasploitable. Metasploitable is an intentionally vulnerable
Linux virtual machine that is primarily used for security training, test-
ing of security tools, and practice penetration testing techniques [50].
Using the data of this honeynet, they are able to generate rules for
the intrusion detection system Snort. This is an example of how hon-
eypots may directly influence other systems, so that malware can be
stopped more quickly.

Krueger et al. [34] use a Web application honeypot called Glastopf®.
They have developed Automated, Semantics-aware Analysis of Pay-
loads (ASAP), which is another approach of analysing malware, to
work with the data from the honeypot. Krueger et al. [34] focus on
three contributions of this ASAP framework. They extract an alpha-
bet of strings from network payloads, which “concisely characterizes
the network traffic by filtering out unnecessary protocol or volatile
information via a multiple testing procedure and embeds the pay-
loads into a vector space”. This collection of vector spaces is then op-
timized using matrix factorization. This optimized matrix are used as
basis for communication templates, which classifies and formats data
from honeypots to make them clear for human interpretation. As
said, they have applied this approach to network traffic captured by
Glastopf. This honeypot was deployed for two months and collected
an average of 3400 requests per day. From the requests that the ho-
neypot has gathered, the researchers have used 1000 requests to val-

8 http://glastopf.org/

http://glastopf.org/

idate their proposition. From the traffic of these requests, ASAP has
extracted communication templates on semantics of malware, vulner-
abilities and attack sources. This part handles the detection of mal-
ware. ASAP can also be used for malware communication analysis. It
can detect the HTTP component in the malware sample, so it detects
Internet activity of a malware sample, such as where the malware
gets its command from or where it can find its most recent version.
IRC components get detected as well, so botnet malware that commu-
nicates over IRC can be found.

Malware is more and more becoming self-modifying, for it can then
bypass anti-virus software [9]. To prevent this bypassing, Pauna pro-
posed a self-adaptive honeypot system [51]. It is based on game the-
ory and is able to detect rootkit malware [37]. Spitzner [66] described
the adaptive honeypot as: "You simply plug it in and the honeypot
does all the work for you. It automatically determines how many hon-
eypots to deploy, how to deploy them, and what they should look like
to blend in with your environment. Even better, the deployed honey-
pots change and adapt to your environment". The self-adaptive ho-
neypot used is the Adaptive Honeypot Alternative (AHA). AHA may
adopt behavioural strategies that can allow or block the execution of
a program, substitute the program that will be executed or insult the
attacker when he tries to issue a command, to irritate him so he will
reveal his intentions.

Another honeynet is described by Szczepanik et al. [73]. When one
honeypot gets infected by malware, another, identical but clean, ho-
neypot checks what processes are running. By making a comparison
of the running processes on the infected honeypot and the clean ho-
neypot, processes that are started by the malware can be detected.
This list is a helpful tool to analyse the behaviour of the malware.

A high-interaction honeypot system named Jingu is described in
Chen et al. [11]. In that paper, Jingu is compared to the medium-
interaction honeypot honeyd, a honeypot that simulates several known
vulnerabilities. In two years of deployment, Jingu caught more than
500 intrusion events and 81 suspicious downloads. Jingu can be used
to detect known exploits, but also zero-day malware, malware that is
so new that there do not exist any signatures for it yet.

2.2.2 High-interaction honeypots

Another distributed honeynet can be found in Drozd et al. [18], who
have combined honeyd honeypots with the high-interaction honey-
pot Argos? [54]. Although Argos is a software package, it is still a
high-interaction honeypot, as it runs on a host machine with virtual
machines that are the actual honeypot. Argos is based on memory-
tainting techniques: the memory status of a clean honeypot is used

9 http://www.few.vu.nl/argos/

http://www.few.vu.nl/argos/

as starting point. All changed memory by the honeypot is marked
tainted and should never be executed. Using memory-tainting, the re-
searchers have detected malware that uses buffer overflows, an anomaly
in a program in which a write action overruns the buffer’s boundary
and thus overwrites memory it should not access, causing the pro-
gram’s flow to be altered to the extend of the system being compro-
mised. Drozd et al. have used a dataset similar to the NoAH project’s
dataset [46].

Kohlraush [33] has used the dataset of the NoAH project. In his
research, the detection and analysis of the W32.Conficker [60] worm
by the use of the Argos honeypot is investigated. He followed the ap-
proach of the NoAH project. First, well-known attacks are performed,
which are guaranteed to be recognized to establish a learning base set,
from which workflows are calculated for less well-known attacks, the
test set, which follow the well-known attacks.

Brunner et al. [8] have created AWESOME, the Automated Web
Emulation for Secure Operation of a Malware-Analysis Environment.
In AWESOME, medium-interaction and high-interaction honeypots
can collaborate: novel attacks or malware samples are sent to the
high-interaction honeypot, which is Argos in this research, while at-
tacks and malware samples that have been seen before are sent to
the medium-interaction honeypot. Argos runs in a virtual machine.
The system on which it runs uses virtual machine introspection (VMI),
pausing the execution of the VM to enable extraction and alteration
of the program flow during runtime. Thus, all actions the malware
performs can be monitored.

Srinivasan et al. [68] propose Timescope, a honeypot framework that
is able to replay the infection of malware that has entered the machine
on a virtual environment. By running the malware multiple times,
and then investigating what aspects are overlapping, they find traces
of what the malware caused and can exclude coincident changes.

2.2.3 Conclusion

From the literature described in this chapter, we conclude that for the
automated execution of our experiment, we want to use a medium-
interaction server honeypot. A client honeypot would not detect mal-
ware that is already on the network, but rather download and anal-
yse new malware from the Internet. It must be medium-interaction,
as the trade-off of being hacked and yielding useful information is
best with medium-interaction honeypot for a corporate network. An
additional advantage is that we don’t have a full-fledged machine to
be compromised, but only a robust program that we can still rely
on after one infection. A further requirement is that the honeypot is
anomaly-based, as we want to detect as many malware samples as
we can from a remote honeypot system, and not only the ones that

trigger a specific vulnerability. In Table 1, an overview of all methods
described in this chapter can be found.

sIsATeue apod

-[PYS 2 S[[ed WISAg ATewouy Y3 9[3urg adoosawr], [g9] ‘v 7o UeSEAIULIG
Sumyure)-A1owLN ATewrouy Y31y ardnmn so31y [£€] ysnerpyod]
Sunure}-A10WIN ATewouy Y3y ardum so31y [81] 1v 12 pzOoIQq

SISATeue apod[[dYS arnjeudig Y3y ordnmy n3ur([r1] v 72 wBYD
Sunurey-A1owan ATewouy WINIpIA 3 Y31 ardumn AINOSAMY [8] ‘v 32 19UUNIg
S[Ted> wa)sAg ATewouy WNIPaN a13uig VHV [1S] eune
sysanbar qopm ATewouy WNIPa]N a13uIg jdoysern [V€] ‘v 10 198anny
e/u ATewrouy WINIPIA ordnmiN arqeyordselsin 2 pAsuoy [VY] v 32 eOSNIN
ysey SQN Arewouy WNIPIN ardnmn saqyuadap 29 pAauoy [t2] ‘v 12 013315
e/u ATewouy WNIPa]N ardnmn I0negig [1] v 12 yoRPY
aImy

SISI] SS001J -eudIs 1y AJewouy WINIPaN ardum e/u [€4] v 30 yruedazozg
nwaqr[Arewouy WINIPaA a1duig JO[[OOMA [84]ysIoydIM
ysey SN Arewouy WINIPaN ardnmy sayjuadaN [82] ‘v 1o uessely
SIsATeue apod[[ays ATewouy WNIPIN a13uig unwy [€2] 299D

aasvea-XIVINONV SLOJXEINOH A'1d
NO SISXIVNY YO TINIVNDIG THATT NOIIOVYAIN] -ILINWN YO TIONIG TNVN OVIOV] QOHIAN

‘sjodAauoy y3im aremrewr SUnoajep JO UOTJEIYISSE]D 9INJeId)] I S[qe],

10

DNS

In this section, we will describe what DNS is, how it works, why it
is important to look at DNS data for malware detection in Section 3.1
and what the state of the art of the latter is in Section 3.2.

3.1 BACKGROUND

The Domain Name System (DNS) is a vital infrastructure within the
Internet [15]. It is used to translate the more human-readable domain
names to the corresponding computer-understandable IP address, as
illustrated in Figure 2. A user wants to search on Google, so he
types google.com in his browser. The browser doesn’t know how
to contact Google, because it only understands IP addresses. So the
system first issues a DNS query to google. com. It sends this query
to the primary DNS server that is configured in his operating system.
Then there are two possibilities, the DNS knows the IP address of
Google and sends it back to the system of the user, or it doesn’t know
Google’s IP address. In that case, it will traverse the DNS server
tree until it gets the IP address of Google authoritive DNS server, the
server which knows the IP address of all domains ending in google.
com. From this server, the user’s primary DNS server will receive the
IP address of google.com and sends it back to the user’s system.
The browser of the user’s system can then browse google.com.

DNS data analysis allows network administrators to analyse traffic
to external systems [16]. When internal systems try to resolve a do-
main name, they send a DNS request to the DNS server. The response
of the server can be classified in two classes. One is a positive answer,
an IP address to which the domain name resolves, for instance A,
AAAA, and CNAME records. The other class is a negative answer,
mostly NXDOMAIN responses [77], which means that the requested
domain name is not registered at its namespace’s registrar.

Botnet malware make extensive use of DNS [49]. As botnets are
an increasing trend, with 25% of all online computers being part of a
botnet in 2008 and 35% in 2010 [40], DNS data analysis is a possible
detection approach for malware.

3.2 STATE OF THE ART

In the arms race of botnets between attackers and botnet detectors,
the attackers are constantly developing new techniques to evade the

11

google.com
google.com
google.com
google.com
google.com
google.com

User system
=

1. IP address of

google.com? 8. google.com is

on z.z.z.z
2. Primary DNS does
not have record of Authoritive DNS of Google
Google, asks root. 7. google.com is on z.z.z.z

EIEII EIEII
6. Where can | find

on address x.x.x.x Primarv DNS server 5
Root DNS servers y google.com’

3. Ask .com namespace

5. Ask Google's
DNS server on
address y.y.y.y

4. Asks .com
namespace

.cOm namespace

Figure 2: How DNS works: a system resolving google.com.

12

Table 2: Features to classify DNS records. Source: Bilge et al. [7]

CATEGORY # FEATURE
Short life

Time-based

)

2 Daily similarity
3 Repeating patterns
4 Access ratio
DNS answer-based 5 Number of distinct IP addresses
6 Number of distinct countries
7 Number of domains share the IP ad-
dress with
8 Reverse DNS query results

TTL value-based 9 Average TTL
10 Standard Deviation of TTL
11 Number of distinct TTL values
12 Number of TTL change

13 Percentage wusage of specific TTL
ranges

Domain name-based 14 % of numerical characters

15 % of the length of the Longest Mean-
ingful Substring

detectors. In this section, we will investigate state of the art of using
DNS data analysis for malware detection.

DNS traffic can be qualified on fifteen features, according to Bilge
et al. [7] (see Table 2). They built EXPOSURE, a DNS data classifier.
The fifteen features are categorised in four types, namely time-based
features, DNS answer-based features, TTL value-based features and
domain name-based features. Higher up in the DNS hierarchy, at the
Top Level Domain DNS servers (such as the .com namespace from
Figure 2) and Authoritative DNS servers, another system may detect
malware-related domain names, namely Kopis [2]. This system makes
use of the global visibility obtained from DNS traffic at the upper lev-
els of the hierarchy and detects the malware-related domains based
on several DNS resolution patterns.

What holds and must always hold, is that bots receive their com-
mands from a Command & Control (C&C) server. In order to receive
those, the bot must contact a C&C server periodically. If a C&C server
is located at one IP address, the bot is easily turned into a zombie by
blocking traffic to the C&C server’s IP address from the infected sys-
tem. Randomizing IP addresses is a hard task for attackers, as IP
addresses are given out by ISPs from their pool, so the attacker can-
not choose, and are hard to predict, especially when you need a lot

13

of them. As an alternative, domain names can be used. When a C&C
server is located at one domain name, it can be put on a blacklist and
never be reached again [55]. Therefore, attackers have implemented
Domain Generating Algorithms (DGAs) [49]. DGAs generate a list
of domain names like in Table 3. Different DGAs generate domain
names with different patterns. DGAs take a seed, like the first word
of today’s newspaper or, for instance, the current time to generate a
different list every period of time [53]. Attackers and bots generate
the same list of domain names. The attacker requires to register only
one domain per period of time. The bot will try to connect to the
C&C server by connecting to domains from the list. DNS requests for
so many generated domains will result in NXDOMAIN responses,
except for the domain that is registered. Detecting anomalous recur-
ring NXDOMAIN reply rates is a way of using this technique to find
bots in a network [59]. We refer to this method as the NXDOMAIN
method. Botnets that use DGAs include: Bobax [71], Kraken [58],
Sinowal (Torpig) [72], Srizbi [61], Conficker [52, 53], and Murofet [62].
Conficker-A, for instance, generates 250 domain names every three
hours [53], of which only one has to be registered in that same pe-
riod. The dissection of the DGA used by Conficker A [53], a specific
type of the Conficker botnet malware, can be found in Listing 3. A
methodology for algorithmically detecting DGA-generated domains
is proposed by Yadav et al. [79], who use several statistical measures
such as Kullback-Leibler divergence [35], Jaccard index [57], and Lev-
enshtein edit distance [38]. This domain-fluxing, frequently changing
the domain name on which the C&C server is located, which is in-
vestigated many times [3, 74, 72, 26, 79], and DGAs are used as a
take-down evasion technique for botnets. Other malware can use
DNS just as a normal computer user does, for instance to resolve a
single domain name to signal an attacker that the infected system is
compromised.

A measurement study on the NXDOMAIN method has been exe-
cuted by Villamarin-Salomén et al. [76]. They have collected 11GB of
DNS traffic data from the University of Pittsburgh. Almost all do-
main names that were found by studying abnormally high rates of
NXDOMAIN responses, had been independently reported as suspi-
cious by others.

Antanokakis et al. [3] have proposed a prototype called Pleiades for
detecting bots in a network by passively processing DNS replies at the
DNS server. When a cluster of NXDOMAIN requests is detected, it
applies statistical learning techniques to build a model of the DGA.
From this model, it can later detect systems that try to connect to
the C&C server. The statistical learning techniques look whether the
domain names have the same structure. Clients connecting to the
DGA generated domains are suspect to be infected by bot malware.

14

Table 3: Example of domain names generated by a Domain Generating Al-
gorithm (DGA). Source: Newman [49]

DOMAIN NAME

mtizok-omik.ru
mpodod-axoz.ru
mdyhib-etop.ru
mbugaw-ewaq.ru
mkyqge-wukop.com
mfikyw-ybew.ru
mcali-fokaz.com
mbykyv-eceb.ru
mbavij-yris.ru
mmyqa-zezuv.com
mhapub-uluz.ru
mpibob-urok.ru
mrevoc-evyt.ru

msewo-xehem.com

Hao et al. [27] apply, with the NXDOMAIN technique in mind,
the initial DNS behaviour after registration of a domain. From Do-
main Name Zone Alert systems, their system gets notified when a
new domain is registered. From these domains, their system collects
nameserver (NS), address (A), and mail server (MX) records. Their
method focuses on botnets that are sending spam, but this technique
can also be applied to other types of botnets, such as botnets that get
instructions from a C&C server to initiate a Denial of Service (DoS)
attack. From collected DNS records of the domains, their system
looks at the distribution across IP address spaces, distribution across
Asynchronous Systems (AS), in which the Internet divided, and the
reputation of those ASes in light of hosting spam domains, and how
much time passes before large amounts of queries are done to those
DNS records. The theory is that legitimate domains are not as popu-
lar as spam domains after two days, but take more time. The theory
of amounts of DNS queries over a period of time was also a part of
the research done by Villamarin-Salomén et al. [76], but proved far
less accurate than the NXDOMAIN method in that research.

In Choi et al. [14], DNS queries are examined and there is a track
record for each domain name of how many hosts try to resolve that
domain name per hour. 80% of the domains were visited by only
one host per hour. The domains that were visited by more than 5
hosts per hour were only 7.5%. Within these domains, the greatest
statistical similarity between domain names existed between domain

15

“similarity” -~
0.8 == e e e e e
(threshold = 0.8)

0.6

Simliarity

Domain Name

Figure 3: Statistical similarity between domain names is greatest with bot-
nets. Source: Choi et al. [14]

names that are used by botnets, see Figure 3. This information can be
used to correctly cluster multiple NXDOMALIN replies, as is done in

the NXDOMAIN method.

3.3 CONCLUSION

From the literature described in this chapter, we have seen that the
NXDOMAIN method is an effective malware detection method, which
can be implemented in corporate networks without the need for extra
machines. The features that are used with EXPOSURE can be used

to classify the DNS requests that are observed.

16

FLOW DATA

In this section, we will investigate how malware can be detected with
the use of flow data analysis, a technology for passive network mea-
surements. We will describe in Section 4.1 how flow data is generated
and how it can be analysed. In Section 4.2, we will discuss the state
of the art in using flow data to detect malware.

4.1 BACKGROUND

A flow is a set of IP packets that pass through an observation point
during a certain time interval [47]. A packet belongs to a flow if it
satisfies all the defined properties of the flow, such as the packets all
having the same source IP address or another set of . After being
developed for network traffic accounting, usage for network foren-
sics, and incident handling, flow data analysis is now also being used
to discover malware [75]. Before flow data analysis, network traffic
analysis was primarily done with packet analysis, which is still per-
formed on specific types of network traffic, of which more details
must be retained. Due to the large amounts of traffic that passes
through networks today, this trends more and more to flow data [70].
Because flows are an aggregation of the traffic, it scales better to large
networks. In addition, in many packet forwarding devices, Cisco’s
NetFlow [48], a flow export technology, is implemented. In order to
export flow data on flow export supporting forwarding devices, flow
exporters, it just requires to be configured in the device. Most corpo-
rate forwarding devices support flow data export. There is no need
for extra forwarding devices or meters. This is another reason for
trend towards the use of flow information. Flow exporters send the
flow information to a flow collector, such as nfcapd, a part of the nfdump
toolkit", which can be placed anywhere in the network. The flow col-
lector receives all flow information, which is then available for all
types of analysis, either manually or automatically. An illustrative
explanation is shown in Figure 4.

Trivially, the flow data of a network contains more than the traf-
fic information of just malware samples, but literature describes that
malware-induced traffic has certain characteristics [64, 75], such as
connecting to the same IP address, sending the same amount of bytes,
every hour. By detecting those characteristics, malware-infected sys-
tems can be identified.

1 http://nfdump.sourceforge.net/

17

http://nfdump.sourceforge.net/

Flow exporter K

P >

==
===

i _—

Flow exporter Flow collector
= / v
S== \
U \\ =

Flow exporter

:

Automated queries

Figure 4: How flow data is exported, saved and queried.

4.2 STATE OF THE ART

The challenge with detecting malware on flow data is classifying cer-
tain traffic specifics are suspicious. Bilge et al. [6] have developed fea-
tures for classifying flows, which are categorised as flow size-based fea-
tures, client access pattern-based features, and temporal features, which
are defined as follows. The flow size-based features indicate how
many bytes are transferred. Flows that carry botnet commands have
to be as small as possible in order to minimize their observable im-
pact on the network. Flow sizes tend to not to vary greatly, because of
the limited number of commands that are available in a C&C proto-
col. Conversely, flow sizes of benign servers tend to fluctuate greatly.
With the client access patterns-based features, it is assumed that many
bots run the same version of the malware. This makes the expecta-
tion that all the bots access the C&C server in the same manner very
plausible. Benign servers are contacted in many different ways, due
to human actions. Classification on the temporal features is based
on the fact that bots try to contact the C&C server periodically and
with relatively short intervals. Therefore, bots also try to make con-
tact with the C&C server when normal client do not use the network
a lot, for instance, at night. This classification system is what Disclo-
sure [6] focuses on. Because flow data provides less information than
a full packet capture, this approach could more likely contain false
positives. They conclude that Disclosure can be tweaked to decrease
the false positive rate to less than 0.5%, but in the large amounts
of traffic of today, that is too much. Disclosure therefore includes a
module to correlate data from other malware detection sources.
Berthier et al. [5] developed Nfsight, a tool which, apart from visu-
alising traffic information, carries a heuristic-based intrusion detec-
tion and alerting system. The system was tested on 30 minutes of
data from a border router of a university network. The information

18

Nfsight generates is structured with the use of rules, which are orga-
nized in three categories, namely malformed flows, one-to-many re-
lationships and many-to-one relationships. The information is used
to create communication structures, which are used to detect intru-
sions, but can also be applied in detecting peer-to-peer (P2P) or bot-
net malware. This classifying on the basis of one-to-many and many-
to-one relationships relate to the client access pattern-based features
proposed by Bilge et al..

For the discovery of botnets, Gu et al. [25] have proposed BotMiner,
which analyses network traffic via two monitors, one with flow data
and one with the intrusion detection system Snort. In the flow data
monitor, flows from or to IP addresses of popular websites, such as
Google of Facebook, are filtered, as well as traffic that only goes in one
direction, because it is unlikely that contact with C&C servers behaves
that way. For the remaining flows, the number of flows per hour, the
number of packets per flow, the average number of bytes per packet,
and the average number of bytes per second are calculated. Then a
clustering of the flows is made, consisting of normal and suspicious
flows. Gu et al. conclude that their framework can detect any kind
of botnet, with very low false positive rates; a maximum of 0.3% was
measured in their dataset. The classification features they use can be
categorised as flow size and client access pattern-based features of
Bilge et al..

In Skrzewski [64], a system using flow count with regard to flow
duration is proposed, and can therefore be grouped under the tem-
poral features from Bilge et al.. An application makes several flows
to the outside worlds. By counting the flows after settings several
thresholds in the duration of the flows, differences prove to exist be-
tween infected and clean systems. Infected systems generate more
flows that have a short duration.

Detection of P2P botnets using flow data is combined with using
PageRank3 in Frangois et al. [21]. PageRank is Google’s way to stating
the relative importance of a website. It is based on two factors, the
amount of links to the page on other pages, and the relative impor-
tance of the linking pages. They have experimented their method on
three types of botnet topologies. The false positive rate in each of
the experiments was 6% or less. As in Yen et al. [80], the hard part
of marking clusters of systems as malicious is making the distinction
between file-sharing P2P networks and P2P botnets, i.e. benign and
malicious. The methodology for this is making distinctions on traffic
volume, peer churn, and whether the network is human or machine
driven.

2 http://snort.org
3 http://www.google.com/competition/howgooglesearchworks.html

19

http://snort.org
http://www.google.com/competition/howgooglesearchworks.html

4.3 CONCLUSION

From the literature discussed in this chapter, we have seen that there
are many different features on which flows can be classified in or-
der to mark them as originating from malware. The classification of
Bilge et al. is the most detailed classification proposed to the best of
our knowledge, which makes it an informative disquisition of flow
characteristics.

20

EXPERIMENT SETUP

In this chapter, analysis of a honeypot, DNS data, and flow data are
combined to achieve synergy in detecting malware. We will first de-
scribe the general setup of our experiment environment, after which
we will explain the different parts of the setup more specific.

In order to analyse the accuracy of multiple malware detection ap-
proaches, we have set up a closed environment, which is illustrated
in Figure 5. It consists of four machines, one host system with three
Kernel Virtual Machine guests (KVM). The three KVM virtual ma-
chines are a honeypot, a DNS server and a workstation (a detailed
description of our KVM structure can be found in Appendix D). The
workstation will be infected by a total of 997 samples of malware,
which is a collection of all available 64-bit executables malware sam-
ples for Windows put together on July 13, 2013 on VirusShare, which
we downloaded on November 21, 2013. We chose 64-bit systems be-
cause 64-bit systems are a trend [45]. There are some of these mal-
ware sample repositories, such as malware.lu, frame4.net, offensive-
computing.net and virusshare.com, but we could only get an account
at virusshare.com. At the date of accessing the VirusShare, the 21st of
November, there were 14.5 million samples in the repository, which
increases every day. A list of the malware samples we use can be
found in Appendix A. In this section, we will first show the work-
flow of our experiment (Section 5.1). Second, we will explain the
choices of data collection for the honeypot, DNS server and flow data
(Section 5.2, Section 5.3, and Section 5.4), and lastly, we will explain
the setup of the workstation (Section 5.5).

The host machine takes care of the networking. The host has a
bridge device, which acts like a switch in normal network. The bridge
can be connected to the physical network interface card of the host,
providing the virtual machines with access to the Internet. During
the preparation of the experiment, this connection is available. In this
way, the honeypot and DNS server can access the Internet to down-
load software. At the time of executing the malware, the connection
to the Internet is switched off, to ensure that the system won’t infect
other systems on the network of the University of Twente. This limits
our validation experiment, as the malware samples cannot connect to
the servers to which it wants to connect, so we cannot get the same
traffic characteristics. The other three systems are also connected to
the bridge, resulting in a small network. This network setup resem-
bles a corporate network, which is the reason that the system that is
going to be infected is a workstation.

21

Internet @ Network Interface Card

Bridge (N~ Flow information

A\

v — v~
Honeypot EEI I[S] - EEI DNS server

Workstation

Dionaea

Passive DNS |
honeypot data assiveDNS logs

Figure 5: The network overview of our closed environment.

5.1 WORKFLOW

To generate a results set, the traffic characteristics of all malware sam-
ples, a script (see Appendix C) has been written to infect the worksta-
tion by running a piece of malware. It then waits for three minutes
to allow the malware to infest the Windows workstation and the net-
work. This should be enough time for malware to initialize itself, as
malware tends to infest workstation in mere seconds [56]. In case
of botnet malware, it should also be enough time to download com-
mands from a C&C server. After this time, the script kills the worksta-
tion virtual machine and restores it to a snapshot of the pre-infected
state. The process then repeats itself for the next sample. If the time
of three minutes is not enough to yield viable results, we run the pro-
cess again with the execution time of one hour. The script logs the
timestamp it starts the infection of the workstation and the timestamp
when the machine gets killed. These are used for matching data from
the detection approaches later on. It is important that the clocks of
the systems are synchronised for this to succeed, to match the times-
tamps from the script to that of the logs of the detection approaches.
On our systems, this is not a problem, because the hardware clock of
the physical machine is used in all systems. Restoring the worksta-
tion virtual machine is done in Logical Volume Manager (LVM). After

22

restoring the snapshot, the workstation is booted again for the next
infection. The LVM setup of our system can be found Appendix D.

5.2 HONEYPOT

The honeypot virtual machine runs a vanilla, pre-compiled Dion-
aea' package on Ubuntu®. As described in Chapter 2, Dionaea is
a medium-interaction honeypot software package, a successor of Ne-
penthes and mwecollect, that is designed to collect malware. As a
server-based honeypot, it waits for infected clients (or attackers) to
connect to it, it does not visit malicious websites itself to see whether
it can find malware, as that is what a client honeypot does. It runs
the following services:

e FTP, port 21, used for file sharing;

e Samba, port 445, used for Samba file sharing and AD services;

TFTP, port 69, used for file sharing;

HTTP(S), port 8o & 443, used for serving Web pages;

MSSQL, port 1433, used for MSSQL databases;

MySQL, port 3306, used for MySQL databases; and
e SIP, port 5901, used for Internet telephony.

Dionaea can be classified as an anomaly-based honeypot, because
it does not depend on a set of signatures. It therefore complies to
our requirements set in Section 2.2.3. Dionaea can use the signature
database of virustotal.com to provide extra information to the admin-
istrator by querying VirusTotal? with the MDs5 hash of the malware
sample, which is commonly used as an identification of the malware
sample. Dionaea logs all connection and malware uploads in a sqlite
database, and saves timestamps on every network interaction of the
honeypot. These timestamps can be matched with the timestamps
that are logged by the script, so we know which malware sample
made which connection to the honeypot. In 2012, the European Net-
work and Information Security Agency (ENISA) qualified Dionaea as
an essential tool for Computer Emergency Response Teams [19].

5.3 DNS SERVER

The DNS server runs dnsmasq (a pre-compiled package for Debian),
which is a DNS forwarder, which can have pre-configured DNS en-
tries. By configuring the DNS server as the default DNS server on

1 http://dionaea.carnivore.it
2 http://www.ubuntu.org/
3 http://virustotal.com/

23

http://dionaea.carnivore.it
http://www.ubuntu.org/
http://virustotal.com/

Listing 1: Example log rule created by PassiveDNS.

#timestamp| |dns—-client | |dns—-server| |RR class]| |Query] |
Query Type| |Answer | |TTL| |Count

1322849924.4088561110.1.1.1118.8.8.8||IN| |upload.
youtube.com. | |[A]|[|74.125.43.117|146587]|15

the workstation, we ensure that all DNS queries that are done by the
workstation which do not specify a DNS server themselves, are han-
dled by our DNS server. To every DNS A query, the server responds
that that domain name is associated with the IP address 1.2.3.4, rather
than a NXDOMAIN. This ensures that the malware is convinced that
the queried domain name is registered, so it will try to connect to
the received IP address. On the DNS server, we run PassiveDNS4,
which analyses all traffic on the network adapter of the DNS server
and logs every DNS reply that passes there, which in this case are the
replies made by our dnsmasq. PassiveDNS creates logs rules like in
Listing 1. It does not log the requests, as for every request, a reply
is generated, which contains the request as well as the answers. In
this way, we can investigate what domain names are queried. By also
logging the timestamp, we can again match the reply to a specific
malware sample. As the closed environment does not have access to
the Internet, we cannot apply the NXDOMAIN method directly to the
domain names that pass by the bridge. However, we can apply the
NXDOMAIN method in retrospect to the logs generated by Passive-
DNS. For example, as shown in Listing 1, ‘ttupload.youtube.com is
queried by 10.1.1.1 at server 8.8.8.8 and we see DNS server’s answer
that the domain name is associated with the IP address 74.125.43.117.

In order to obtain the domain names that were not queried at our
DNS server, but rather by another DNS server of which the IP address
was hardcoded in the malware, we have captured all packets that pass
through the bridge with tcpdump in standard PCAP format. In real
networks, collecting all DNS replies can be achieved by placing an
additional PassiveDNS instance close to the border gateway, which we
could not do, because we only have a switch, so no border gateway. In
that way, DNS replies originating from external DNS servers are still
passing through the system that runs PassiveDNS. By also running
PassiveDNS on the internal DNS server, one can ensure not to miss
any DNS replies.

http://github.com/gamelinux/passivedns

24

http://github.com/gamelinux/passivedns

5.4 FLOW DATA

On the bridge in the host system, we export NetFlow data. We only
use the source and destination IP addresses, ports, and the start time
of the flow, the latter for matching the flows to the malware sample.
To export the flows, we have used nProbe5, a software flow exporter,
in combination with nfcapd. nProbe sends the flow data to the spec-
ified collector. It runs nfcapd to receive the flow data and writes it
to nfdump-readable files. There are more flows passing our bridge
than from the workstation alone, such as flows from the honeypot,
announcing its services, so we cannot match every flow to a malware
sample, but we can look up the flows of the workstation during the
period the malware sample was active. We have the start and stop
time of the malware execution script in its log. An example result of
a query we execute with nfdump is showed in Listing 2. In the exam-
ple, eight flows are shown. The first six flows consist of DNS traffic.
Our DNS server returned 1.2.3.4 as an DNS reply, as it does for all re-
quests, which is observed as the last two flows from our workstation
have that IP address as destination on port 1337.

5.5 WORKSTATION

The workstation is a Windows XP 64-bit machine, without any up-
dates or service packs, as installing service packs is often delayed in
corporate networks [22]. Since Q4 2012, Windows 7 is getting a larger
market share than Windows XP [45], making it the most installed op-
erating system today. However, the malware collection that we use
contains mostly samples from the time that Windows XP was the
most installed operating system, so we chose to work with Windows
XP. By installing a SSH server (WinSSHd6) on this machine, we are
able to run malware samples on it by issuing a command from the
host machine.

5 http://www.ntop.org/products/nprobe/
6 http://www.bitvise.com/winsshd

25

http://www.ntop.org/products/nprobe/
http://www.bitvise.com/winsshd

Listing 2: Example result of a query executed with nfdump.

Date flow start Duration Proto Src IP Addr:Port Dst IP
Addr:Port Packets Bytes Flows

2013-11-20
192.168.
2013-11-20
192.168.
2013-11-20
192.168.
2013-11-20
192.168.
2013-11-20
192.168.
2013-11-20
192.168.
2013-11-20
1.2.3.4:
2013-11-20

20:39:43.
1.3:53 1
20:39:43.
1.2:1033
20:39:40.
1.3:53 2
20:39:40.
1.2:1029
20:39:40.
1.3:53 1
20:39:40.
1.2:1030
20:39:43.

923 0.000 UDP 192.

67 1

717 0.000
1831
182 3.532
134 1

182 3.532
2 166 1
257 0.000
67 1

257 0.000
1831
718 1.640

1337 2 96 1

20:39:40.

258 3.047

1.2.3.4:1337 2 96 1

Summary:
packets:
Time window

Total flows processed:
2160
0.032s flows/second:

read:
Sys:
second:

total flows:

12, avg

8,
bps:

1224,

UDP

UDP

UDP

UDP

UDP

TCP

TCP

192.

192.

192.

192.

192.

192.

192.

total bytes:
avg pps:

168.1.2:1033 —>

168.

168.

168.

168.

168.

168.

168.1.

792,

2,

: 2013-11-20 20:38:43 - 2013-11-20 20:43:29

2314.6

41,

1281.2 Wall:

Blocks skipped:

.3:53 —>
.2:1029 —>
.3:53 —>
.2:1030 —>
.3:53 —>
.2:1032 —>
2:1028 —>
total
avg bpp: 66
0, Bytes

0.017s flows/

26

EXPERIMENT RESULTS

In this chapter, we will show and discuss the results of our exper-
iments. Firstly, we will show an overview of the aspects that we
analyse on (Chapter 6). Secondly, we will explain the results per de-
tection approach: honeypot (Section 6.1), DNS data (Section 6.2), and
flow data (Section 6.3). Thirdly, we discuss the results of combining
the approaches in Section 6.4. Finally, we show examples of samples
that induced traffic which we did not expect (Section 6.5).

We analyse multiple aspects on which we can validate the results,
which are derived from the propositions we have chosen from litera-
ture. We have aspects per detection approach and for the combined
solution. An overview of the aspects is in Table 4. The general aspect
will be analysed in this section, the approach-specific aspects in their
respective sections.

Of all the 997 malware samples we have analysed, only 82 inter-
acted with the network in the first three minutes after infection. As
all network traffic is logged in the flow data, this is something we can
easily obtain. Of the 82 samples that interacted, zero malware sam-
ples contacted our honeypot. 68 samples have queried at least one
domain name. 50 of those directed their queries to our DNS server
and were thus detected using PassiveDNS.

6.1 HONEYPOT

We have a number of aspects that we analyse on in the honeypot,
as described in Table 4. To observe the most popular services, the
first aspect is whether a malware sample connected to the honeypot.
The second is to which service the malware sample tried to connect.
The last is whether it tried to upload a file (e.g. a replication of the
malware itself) to the honeypot. Systems that make connections, or
interact with the honeypot and ultimately systems that transfer files
to a honeypot are suspected to be infected with malware. We have
had zero connections to the honeypot, in other words: no malware
sample attempted to connect to the honeypot. Therefore, the other
two aspects also have zero malware samples that correspond to it. A
reason for which no connections are made to the honeypot, is that the
malware starts to connect to the local network machines after three
minutes of execution time, the time that we concluded was enough
time for the malware sample to infest the workstation and the net-
work (see Section 5.2). To validate that this is not related to the three
minutes execution time, we ran the first 50 malware samples for a

27

Table 4: Aspects on which the results are analysed.

CATEGORY ASPECT # SAMPLES
General Interacted with network 82
Honeypot Connected to honeypot 0
What services are reached by mal- o
ware
Uploaded file to honeypot 0
DNS data Issued DNS request 68
Issued DNS request at our server 67
Issued DNS request at another 1
server
Domain name is candidate for 5
DGA
Does the domain name request 38
yield a NXDOMAIN
Flow Only issued DNS request 1
data Connected to IP address without 14
issuing a DNS request
Issued DNS request before con- 68
necting
Connected to 1.2.3.4 67
Connected to other IP address 27
Connected to non-standard port 28

28

second time, now with one hour execution time, the execution time
that we would try in case the three minutes proved not to be enough.
In this second run, there where still no connections to the honeypot.
This leads us to the conclusion that today a server honeypot is not an
efficient tool to detect malware on a network.

6.2 DNS DATA

The set of domain names in the logs of the tcpdump packet capture
is a superset of those contained in the logs of PassiveDNS. We have
supplemented the PassiveDNS logs with the DNS replies from the
packet capture that were not directed to our DNS server. As described
in Section 5.3, this is the same result as obtained by running two
instances of the PassiveDNS tool, one close to or on the DNS server,
the other close to or on the border gateway and then matching the
information of both logs files to each other. Doing this results in a
complete overview of all DNS requests that are done in the closed
environment.

Of all 82 samples that interacted with the network, 68 queried a
DNS server, ours (67 samples) or a remote one (one sample), for re-
solving a domain name. The domain names that were queried are
listed in Table 5. The number of times we have seen the domain
names adds up to more than the amount op samples that have ac-
cessed the network. This is because a malware sample queries one or
more domain for one or more times within its execution time. There
were eight domain names that were queried by more than one sam-
ple. These are the bold domain names listed in Table 5. Only two of
them resolve on January 14, 2014.

As botnet malware is getting more and more common [21], and
botnets using more and more DGAs [3], we had expected to see
more malware samples that query DGA-generated domain names,
but there are only five such candidate domain names in the list, the
ones that are unpronounceable. They are listed in Table 5, showed
italic. The other domain names suggest their self-describing their
goals. There are a lot of domains that end in no-ip.org, which is
a well-known provider of Dynamic DNS. Dynamic DNS is a service
that points a domain name to a dynamic IP address, so this technique
can be used for IP-fluxing [52, 79, 69, 26], switching the IP address in
an A DNS record of a domain very frequently, in order to evade IP
blocking.

We first describe our results in light of the feature classification
of Bilge et al. (see Table 2), as described in Section 5.3. Their DNS
answer-based and TTL value-based are not applicable to our experi-
ment, because in our experiment, the network does not have a connec-
tion to the Internet. From our own DNS server, the workstation gets
fake DNS answers, so the workstation does not get provided with

29

no-ip.org

Table 5: List of queried domain names and the amount of requests to that
domain (over all malware samples). The domain names shown in
bold face are queried by more than one malware sample. The do-
main names shown in italic face are candidates to be generated by

DGAs.
Domain name Amount Domain name Amount
adfly airforce.dyndns.biz
api.wipmania.com childhe.com 6
core.mochibot.com 2 customer.cc.at.paysafecard.com 2
darnnlogs.no.ip.org 14 dfs.no-ip.info 14
doser.no-ip.info 16 downloads.fcuked.me.uk 16
dveskrepki.ru 2 findcopper.org 2
findwarm.org 2 firstnationarts.com 2
ftp.drivehq.com 4 ftp.tripod.com 4
furzkissen.selfip.com 4 hawet.zapto.org 4
holderman.hopto.org 2 hstnm1.dontexist.net 2
imarcoseduardo.no-ip.org 36 img193.imageshack.us 36
imgs58o.imageshack.us 2 irc.webchat.org 2
kabutokiller.no-ip.info 16 ksamapepito.no-ip.org 16
13asel.no-ip.org 16 markinyourdark.no-ip.org 16
maxrepjoaki.no-ip.biz 10 mise1.zapto.org 10
monzterddos.no-ip.info 12 movieartsworld.com 12
mqcbpkzjghjt.com 6 mqcbpkzjghjt.net 6
please23.zapto.org 14 poni.no-ip.biz 14
promos.fling.com 1 racrystal.narod.ru 1
ratmehard.no-ip.org 2 relaxedclick.com 2
searchdepressed.org 7 searchelastic.org 7
searchfertile.org 3 securytbrg4s5.sytes.net 3
smtp.gmail.com 1 sportfishingarts.com 1
s5585.n0-ip.biz 24 track.installtrack.info 24
tudoafro.com 4 ulisessoft.info 4
update-key.com 4 visualbasic.pro.br 4
wootwootrs.no-ip.org 2 www.aamailsoft.com 2
www.google.at 1 www.mochiads.com 1
x.mochiads.com 2 xgukreqwpbgte.com
xgukreqwpbgqte.net xz69.no-ip.info
yah-crackers.no-ip.org 12

30

real DNS records. The time-based and domain name-based features
are based on the client-side of DNS, as they consist of features like
the frequency a client requests that domain name. Time-based fea-
tures include the frequency of querying a domain, which we cannot
base conclusion on, because we only run a sample for three min-
utes. Nevertheless, there are malware samples that do repeatedly
query a domain name. For instance, one malware sample queried
13asel.no-ip.org eighteen times in three minutes (whilst only
trying to make a connection to the remote system only nine times)
and another queried xz69.no-1ip.info 24 times whilst only con-
necting to the server six times. It could be that the malware expects
a certain IP address when resolving a domain name, and therefore
keeps trying. The domain name-based features include the ratio of
numerical characters and the ratio of the length of the Longest Mean-
ingful Substring (LMS). The numerical character method is used for
domains that look like being generated by a DGA. As this method
looks for the ratio of numerical characters to alphabetical characters,
this method will not yield us DGA-generated domain names, as the
domain names in our dataset do not have large differences in this
ratio. The LMS method yields results. This method is based on
the meaning of DNS: providing human-readable names for IP ad-
dresses. This means that the website of a company will most likely
have the name of the company in the domain name. To have an ex-
ample, it is likely that the Bank of Ireland uses the domain name
bankofireland.com. Using Google to match a domain name with
the title of the website can be useful for looking whether a domain
name that is frequently requested, should be requested that often [7].
In our data set, almost all domain names do not have a long LMS in it,
so automated detection would more likely mark the domain names
to be involved with malware.

Applying the NXDOMAIN method from literature [3, 27, 76] , did
not yield reliable results. 38 of the total 62 domain names did not
resolve to an IP address in our experiments. A possibility is that the
services, that were once located at one of the not resolving domains,
are now moved to another domain, or taken down. Either way, ap-
plying the NXDOMAIN method in retrospect does not have to yield
the same result as when the malware was active on the Internet. The
DNS Census 2013 dataset contains DNS records that were registered
in the past, which enables one to apply the NXDOMAIN method in
retrospect [17]. We cannot conclude why domain names do not re-
solve at this time. Which domain names did and did not resolve is
stated in Table 6. By applying the NXDOMAIN method in retrospect,
we cannot base conclusions on this, as domains that did resolve at
the time that the malware was in the wild, may not be reached at this
time.

31

l3asel.no-ip.org
xz69.no-ip.info
bankofireland.com

Table 6: NXDOMAIN method results, executed on 2013-12-11.

NXDOMAIN RESOLVING
airforce.dyndns.biz adfly
darnnlogs.no.ip.org api.wipmania.com
dfs.no-ip.info childhe.com

downloads.fcuked.me.uk
findwarm.org
firstnationarts.com
furzkissen.selfip.com
hawet.zapto.org
holderman.hopto.org
hstnm1.dontexist.net
imarcoseduardo.no-ip.org
imarcoseduardo.no-ip.org
kabutokiller.no-ip.info
ksamapepito.no-ip.org
ksamapepito.no-ip.org
13asel.no-ip.org
maxrepjoaki.no-ip.biz
mise1.zapto.org
monzterddos.no-ip.info
movieartsworld.com
mgqcbpkzjghjt.com
mqcbpkzjghjt.net
please23.zapto.org
please23.zapto.org
ratmehard.no-ip.org
searchdepressed.org
searchelastic.org
searchfertile.org
securytbr44s5.sytes.net
sportfishingarts.com
track.installtrack.info
tudoafro.com
update-key.com
visualbasic.pro.br
wootwootrs.no-ip.org
xgukreqwpbqte.net
xz69.no-ip.info

yah-crackers.no-ip.org

core.mochibot.com
customer.cc.at.paysafecard.com
doser.no-ip.info
dveskrepki.ru

findcopper.org
ftp.drivehq.com
ftp.tripod.com
img193.imageshack.us
imgs8o.imageshack.us
irc.webchat.org
poni.no-ip.biz
promos.fling.com
racrystal.narod.ru
relaxedclick.com
gmail-smtp-msa.l.google.com
sssss.no-ip.biz

ulisessoft.info
www.aamailsoft.com
www.google.at
ago.g.akamai.net

x.mochiads.com

32

6.3 FLOW DATA

The obtained flow data contains all network traffic that traversed the
bridge from the start of each experiment until the end. This shows
that there were 82 samples that interacted with the network. As said
in the previous section, many of these make use of DNS, and could
be identified by that detection approach. As our closed environment
is not connected to the Internet, we cannot apply the flow size-based
features proposed by Bilge et al. [7]. The fact that we only run the
malware samples for three minutes, restricts our use of the tempo-
ral features. However, we can apply the client access pattern-based
features, by looking at IP addresses and port numbers to which the
malware samples connect.

In the flow data, there are 14 samples that did not make use of
DNS, but did interact with the network. These samples have a pre-
configured IP address in their source code. This means that the mal-
ware does not use fluxing, and can therefore be easily blocked by
blocking the IP address. The other 68 samples first issued a DNS
request. 67 of these connected to our forged 1.2.3.4 IP address there-
after. 27 malware samples connected to another IP address (partly
the same samples). These samples make use of domain names, so
can be using fluxing.

The flow data gives us another piece of information that the other
detection approaches do not, namely the port numbers. After having
received an IP address from a DNS server, the malware will start
to connect to that IP address. The port numbers are very different,
although the transport protocol is always TCP. Some malware uses
port 8o, the HTTP port, but port 60, 8080, 81, 3174, and 1604 are also
present in our data set. The port numbers we have seen connections
to on our forged IP address 1.2.3.4, and their assigned uses [30, 31]
are in Table 7. As we know for sure we only deal with malware, we
can safely say that the ports are not used for their assigned purpose.
We can hold this list next to the most used ports list of nmap”, a
famous port scanner. It lists port 80, 23, 443, 21, 22, 25, 3389, 110, 445,
and 139 as the top 10 used TCP ports. We define ports not on this list
as non-standard ports, of which it is unlikely that normal software
would use these ports. The list shows that most of the port numbers
in our dataset are non-standard, which means that they are suspect
to be used for malicious activities. 28 malware samples connected to
one or more non-standard ports.

We have also seen IRC botnet malware. These samples first query
the IRC server irc.webchat.org, and after getting the IP address,
connect to that IP address on port 6667 (the assigned port for IRC).
This is the traditional example of C&C malware [39], and is therefore
suspicious.

1 http://nmap.org/

33

irc.webchat.org
http://nmap.org/

Table 7: Port numbers of connections to 1.2.3.4 and their assigned uses.

PorT ASSIGNED USE

0 Reserved

21 FTP

8o HTTP

81 Unassigned

91 MIT Dover Spoiler

200 IBM System Resource Controller
443 HTTPS

465 URL Rendesvous Directory for SSM
888 AccessBuilder

999 Unassigned

1337 menandmice DNS

1604 icabrowser

2000 Cisco SCCp

3085 PCIHReq

3086 JDL-DBKitchen

3170 SERVERVIEW-ASN

3174 ARMI Server

3175 T1i_E1i_Over_IP

4662 OrbitNet Message Service
5312 Permabit Client-Server
5315 HA Cluster UDP Polling
5317 HP Device Monitor Service
6667 IRC

6697 Unassigned

25567 Unassigned

34

64 CORRELATING THE RESULTS

In this subsection, we will assess the synergy of combining the detec-
tion approaches, as is the goal of this work. The combined approach
can be used next to the detection approaches on their own, like the
NXDOMAIN method from the DNS data and the characteristics from
the flow data.

As the honeypot did not receive any connections from the mal-
ware samples, but the DNS server and the flow data exporter did,
we can hypothesize that the focus of malware today is more on C&C
or phone-home technology. Domain names ending in no-ip.org
(see Table 5) are example suspects of C&C servers. When the honey-
pot would have received connections, that information could also be
correlated to the DNS and flow data like in Section 6.4.

DNS and flow data can be combined to give a better impression
of infected systems in a network. As we have seen in Listing 1, the
PassiveDNS log shows the domain name that is queried and the IP
address it results in. These IP addresses can be matched to those
in the flow data. When traffic is seen to non-standard ports (like
in Listing 2, with port 1337) or traffic that is characteristic for botnet
malware, there is an additional reason to qualify the system in the net-
work the traffic originates from is infected with malware. An example
from our dataset first issued a DNS query to furzkissen.selfip.
com, to which our DNS server responds with 1.2.3.4. The malware
subsequently connects to 1.2.3.4:1337. Our PassiveDNS reports that
selfip.com is used, another known Dynamic DNS provider, while
the flow data sees traffic to 1.2.3.4 on port 1337. Our combined ap-
proach can link the domain name information and the flow data and
conclude that there are multiple reasons for marking the workstation
as infected, and therefore isolate the workstation from the network,
ensuring it cannot connect to the Internet any longer, and rendering
it unable to infect other machines.

6.5 SAMPLES THAT STOOD OUT

Some samples generated some results that were unlike the other re-
sults. In this subsection, we will describe what made these samples
stand out, and give an explanation.

In the whole data set, there were only seven samples that are can-
didate to use a DGA. Because of all the recent research into malware
that uses DGAs and the fact that these botnets were recently discov-
ered and taken down (e.g. Conficker), we had expected to see more
of these generated domain names in our DNS data set.

One malware sample connected to crl.microsoft.comand crl.
verisign.com. These are the Certificate Revocation List servers of
Microsoft and Verisign, which are used as one of many methods to

35

no-ip.org
furzkissen.selfip.com
furzkissen.selfip.com
selfip.com
crl.microsoft.com
crl.verisign.com
crl.verisign.com

check whether SSL certificates are no longer valid. An explanation
that these servers appear, is that the malware uses the SSL library of
Windows XP, and that Windows XP, on its part, checks these lists.

There was one malware sample that tried to connect to smtp.gmail.
com, on port 465, the port that Gmail uses for SMTP over SSL. This
means that the malware is probably trying to send an email. Google
requires users of the SMTP server to login, so it also means that the lo-
gin credentials for the SMTP server must be included in the malware,
or that sending an email will always fail.

As seen in Table 4, there was one malware sample that only issued
a DNS request. It is the same malware sample as the one that did not
use our DNS server for resolving a domain name. As the external
DNS servers could not be reached, no DNS answer was received by
the sample, making it impossible to know to which IP address it
should connect.

36

smtp.gmail .com
smtp.gmail .com

CONCLUSIONS

In the past pages, several malware detection approaches are discussed,
and combining them in order to achieve synergy in detecting mal-
ware is investigated. We looked at the state of the art of detecting
malware infected systems by using honeypots, DNS data and flow
data and conducted an experiment in which we mimicked a corpo-
rate network with a workstation that got infected with malware. Our
honeypot did not receive any connections, but the DNS data and the
flow data can be combined to base the decision whether a system
is infected or not on the results of multiple approaches. From our
results, we conclude that combining multiple malware detection ap-
proaches can give information for a better informed decision whether
a workstation is infected with malware or not, by marking it as in-
fected by more than one approach, and correlating these sources of
information.

In Chapter 2, Chapter 3, and Chapter 4, we investigated the lit-
erature on detecting malware with honeypots, DNS data and flow
data. We concluded that for honeypots, there are numerous kinds of
honeypots, and that we needed a server honeypot, that is medium-
interaction. When running our experiment, we have had zero con-
nections to our honeypot, and we conclude that a honeypot is not an
effective tool for malware detection. For the DNS data in a closed
environment, applying the NXDOMAIN method was not applicable
to our dataset. We have looked at domain names suspected of being
generated by DGAs and statistical properties of the domain names,
and have concluded that DNS data analysis is a helpful tool for mal-
ware detection. Being in a closed environment cannot yield the same
traffic characteristics as being on the Internet, as the malware samples
cannot reach the servers they can reach on the Internet. Therefore, we
looked at port numbers to which the malware connects, and whether
the IP addresses to which the samples connect were hardcoded in the
malware or requested via DNS. We have seen that 28 of 82 malware
connects to non-standard ports.

Combining flow data analysis and DNS data analysis achieves a
better informed decision whether a system in the network is infected
by malware. Systems that issue a DNS request for a suspicious do-
main name, and moments later try to connect to the associated IP
address on a port that is non-standard, provide the our combined ap-
proach with multiple reasons to conclude that the system is infected
by malware.

37

7.1 FUTURE WORK

This research can be carried on by combining the same approaches on
a real network, not using a set of malware samples, but normal traffic,
in which malware is included. This way, the NXDOMAIN method can
be used directly on the data, which gives accurate results. In the flow
data, more characteristics, such as described in Gu et al. [25] than
just the used port numbers can be found, because the malware will
connect to the right servers, instead of our forged IP address 1.2.3.4.

Another idea for future work consists of choosing other detection
approaches, such as SNMP data analysis, to detect malware. In this
research, we have chosen three approaches that are already widely
used in corporate networks. Combining other approaches may prove
to be very efficient in detecting malware correctly.

38

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Y. Adachi and Y. Oyama. Malware Analysis System using
Process-level Virtualization. In 2009 IEEE Symposium on Com-
puters and Communications, number Vmm, pages 550-556. IEEE,
July 2009.

M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and
D. Dagon. Detecting Malware Domains at the Upper DNS Hier-
archy. In USENIX Security Symposium, 2011.

M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-
Nimeh, W. Lee, and D. Dagon. From Throw-Away Traffic to
Bots: Detecting the Rise of DGA-Based Malware. In Proceedings
of the 21st USENIX Security Symposium, 2012.

R. Baumann and C. Plattner. Honeypots. Technical report, Swiss
Federal Institute of Technology, 2002.

R. Berthier, M. Cukier, M. Hiltunen, D. Kormann, G. Vesonder,
D. Sheleheda, P. Ave, and F. Park. Nfsight: NetFlow-based Net-
work Awareness Tool. In Proceedings of the 24th USENIX LISA,
2010.

L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel.
Disclosure: Detecting Botnet Command and Control Servers
Through Large-Scale NetFlow analysis. In Proceedings of the 28th
Annual Computer Security Applications Conference, pages 129-138.
ACM, 2012.

L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE:
Finding Malicious Domains Using Passive DNS Analysis. In
NDSS, 2011.

M. Brunner, C. M. Fuchs, and S. Todt. AWESOME - Automated
Web Emulation for Secure Operation of a Malware-Analysis En-
vironment. In SECURWARE 2012 , The Sixth International Con-
ference on Emerging Security Information, Systems and Technologies,
number c, pages 6871, 2012.

D. Bruschi, L. Martignoni, and M. Monga. Detecting Self-
mutating Malware Using Control-Flow Graph Matching. In
Detection of Intrusions and Malware \& Vulnerability Assessment,
pages 120—-143. Springer, 2006.

S. Campbell, S. Chan, and J. R. Lee. Detection of Fast Flux Ser-
vice Networks. In Proceedings of the Ninth Australasian Information
Security Conference - Volume 116, pages 57-66, 2011.

39

[11] C.-m. Chen, S.-t. Cheng, and R.-y. Zeng. A Proactive Approach
to Intrusion Detection and Malware Collection. Security and Com-
munication Networks, 6(7):844-853, July 2013.

[12] D. Chiba, K. Tobe, T. Mori, and S. Goto. Detecting Mali-
cious Websites by Learning IP Address Features. In 2012
IEEE/IPS] 12th International Symposium on Applications and the In-
ternet, pages 29—39. IEEE, July 2012.

[13] D. Chiba, K. Tobe, T. Mori, and S. Goto. Analyzing Spatial Struc-
ture of IP Addresses for Detecting Malicious Websites. Journal of
Information Processing, 21(3):539—550, 2013.

[14] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet Detection by
Monitoring Group Activities in DNS Traffic. In 7th IEEE Inter-
national Conference on Computer and Information Technology (CIT
2007), pages 715-720. IEEE, Oct. 2007.

[15] R. Curtmola, A. Del Sorbo, and G. Ateniese. On the Performance
and Analysis of DNS Security Extensions. In 4th International
Conference, CANS 2005, Xiamen, China, December 14-16, 2005. Pro-
ceedings, pages 288—303. Springer Berlin Heidelberg, 2005.

[16] L. Deri. nProbe: an Open Source NetFlow Probe for Gigabit
Networks. In TERENA Networking Conference (TNC 2003), Zagreb,
Croatia, 2003.

[17] DNS Census. DNS Census 2013, 2013.

[18] M. Drozd, M. Barabas, M. Gregr, and P. Chmelar. Buffer Over-
flow Attacks Data Acquisition. In Proceedings of the 6th IEEE In-
ternational Conference on Intelligent Data Acquisition and Advanced
Computing Systems, pages 775-779. IEEE, Sept. 2011.

[19] European Network and Information Security Agency. Proactive
Detection of Security Incidents II - Honeypots, 2012.

[20] M. Feily, A. Shahrestani, and S. Ramadass. A Survey of Bot-
net and Botnet Detection. In 2009 Third International Conference
on Emerging Security Information, Systems and Technologies, pages
268—-273. IEEE, 2009.

[21]]J. Frangois, S. Wang, R. State, and T. Engel. BotTrack: Tracking
Botnets Using NetFlow and PageRank. pages 1-14, 2011.

[22] J. Giles. Conficker: the Enemy Within. New Scientist,
202(2712):36-39, 2009.

[23] J. Gobel. Amun: Automatic Capturing of Malicious Software,
2010.

40

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

A. R. A. Grégio, I. L. Oliveira, R. D. C. Santos, A. M. Can-
sian, and P. L. de Geus. Malware Distributed Collection and
Pre-classification System using Honeypot Technology. In B. V.
Dasarathy, editor, Proc. SPIE volume 7344, volume 7344, pages

73440B—73440B-8, Apr. 2009.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clus-
tering Analysis of Network Traffic for Protocol- and Structure-
Independent Botnet Detection. In USENIX Security Symposium,

pages 139-154, 2008.

F. Haddadi and A. N. Zincir-Heywood. Analyzing String
Format-Based Classifiers For Botnet Detection: GP and SVM. In
2013 IEEE Congress on Evolutionary Computation, pages 2626—2633.
IEEE, June 2013.

S. Hao, N. Feamster, and R. Pandrangi. Monitoring the Initial
DNS Behavior of Malicious Domains. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference -
IMC ’11, pages 269—278, New York, New York, USA, 2011. ACM
Press.

A. Hassan and M. A. Ali. Collecting Malware from Distributed
Honeypots — Honeypharm. In 2011 IEEE GCC Conference and
Exhibition (GCC), pages 351—352. IEEE, Feb. 2011.

Honeynet Project. Server Honeypots vs. Client Honeypots.
http://www.honeynet.org/node/158, 2008. Accessed on
2013-12-04.

IANA. TANA Service Names and Port
Numbers. https://www.iana.org/
assignments/service-names—-port—-numbers/
service—names-port—numbers.txt, 2013. Accessed
on 2013-12-11.

Internet Engineering Task Force. RFC6335: Internet Assigned
Numbers Authority (IANA) Procedures for the Management of
the Service Name and Transport Protocol Port Number Registry.
http://www.ietf.org/rfc/rfc6335.txt, 2011. Accessed
on 2013-12-11.

Internet Engineering Task Force. RFCypoi1: Specification of
the IP Flow Information Export (IPFIX) Protocol for the Ex-
change of Flow Information. http://tools.ietf.org/
html/rfc7011.html, 2013. Accessed on 2014-01-07.

J. Kohlrausch. Experiences with the NoAH Honeynet Testbed to
Detect new Internet Worms. In 2009 Fifth International Conference

on IT Security Incident Management and IT Forensics, pages 13—26.
IEEE, 2009.

41

http://www.honeynet.org/node/158
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://www.ietf.org/rfc/rfc6335.txt
http://tools.ietf.org/html/rfc7011.html
http://tools.ietf.org/html/rfc7011.html

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

42

T. Krueger, N. Krdamer, and K. Rieck. = ASAP: Automatic
Semantics-Aware Analysis of Network Payloads. In Privacy and
Security Issues in Data Mining and Machine Learning, pages 50-63.
2011.

S. Kullback. The Kullback-Leibler distance. The American Statis-
tican, 41(4):340-341, 1987.

S. Kumar, R. Sehgal, and J. S. Bhatia. Hybrid Honeypot Frame-
work for Malware Collection and Analysis. 2012 IEEE 7th In-
ternational Conference on Industrial and Information Systems (ICIIS),
pages 1-5, Aug. 2012.

E. Lacombe, F. Raynal, and V. Nicomette. Rootkit modeling and
experiments under Linux. Journal in Computer Virology, 4(2):137-
157, Oct. 2007.

V. Levenshtein. Efficient reconstruction of sequences. IEEE Trans-
actions on Information Theory, 47(1):2—22, 2001.

H.-C. Lin, C.-M. Chen, and].-Y. Tzeng. Flow Based Botnet De-
tection. In 2009 Fourth International Conference on Innovative Com-
puting, Information and Control (ICICIC), pages 1538-1541. IEEE,
Dec. 2009.

P. R. Marupally and V. Paruchuri. Comparative Analysis and
Evaluation of Botnet Command and Control Models. In 2010
24th IEEE International Conference on Advanced Information Net-
working and Applications, pages 82-89. IEEE, 2010.

B. McCarty. The Honeynet Arms Race. IEEE Security & Privacy
Magazine, 1(6):79-82, Nov. 2003.

I. Mokube and M. Adams. Honeypots: Concepts, Approaches,
and Challenges. In Proceedings of the 45th annual southeast regional
conference on - ACM-SE 45, pages 321—-326, New York, New
York, USA, 2007. ACM Press.

A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execu-
tion Paths for Malware Analysis. In 2007 IEEE Symposium on
Security and Privacy (SP 07), pages 231—245. IEEE, May 2007.

C. Musca, E. Mirica, and R. Deaconescu. Detecting and Ana-
lyzing Zero-Day Attacks Using Honeypots. In 2013 19th Interna-
tional Conference on Control Systems and Computer Science, pages
543-548. IEEE, May 2013.

Net Applications.com. Desktop Operating System
Market Share. http://netmarketshare.com/
operating-system—-market-share.aspx, 2013. Accessed
on 2013-11-25.

http://netmarketshare.com/operating-system-market-share.aspx
http://netmarketshare.com/operating-system-market-share.aspx

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Network of Affined Honeypots Project. European Network of
Affined Honeypots. http://www.fp6-noah.org/, 2005. Ac-
cessed on 2013-12-15.

Network Working Group. RFC3917: Requirements for IP Flow
Information Export (IPFIX). http://www.ietf.org/rfc/
rfc3917.txt, 2004. Accessed on 2013-12-09.

Network Working Group. RFC3954: Cisco Systems NetFlow
Services Export Version 9. http://tools.ietf.org/html/
rfc3954.html, 2004. Accessed on 27-10-2013.

S. Newman. How & Why DGA'’s Evade Your Corporate Security
Controls. http://www.prodevmedia.com/FSISAC/2012/
fall/21_StephenNewman_Stopping_the_New_Wave.pdf,
2012. Accessed on 2013-07-01.

Offensive Security Ltd. Metasploitable. http://www.
offensive-security.com/metasploit-unleashed/
Metasploitable, 2013. Accessed on 30-10-2013.

A. Pauna. Improved Self Adaptive Honeypots Capable of De-
tecting Rootkit Malware. In 2012 9th International Conference on
Communications (COMM), pages 281-284. IEEE, June 2012.

P. Porras. Inside Risks: Reflections on Conficker. Communications
of the ACM, 52(10):23, Oct. 2009.

P. Porras, H. Saidi, and V. Yegneswaran. A Foray into Conficker’s
Logic and Rendezvous Points. In USENIX Workshop on Large-
Scale Exploits and Emergent Threats, 2009.

G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator
for Fingerprinting Zero-Day Attacks. In Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, pages 15—27, New York, New York, USA, 2006. ACM
Press.

A. Ramachandran, N. Feamster, and D. Dagon. Revealing Botnet
Membership Using DNSBL Counter-Intelligence. In Proc. 2nd
USENIX Steps to Reducing Unwanted Traffic on the Internet, pages

49-54, 2006.

K. Ramachandran and B. Sikdar. Modeling Malware Propaga-
tion in Networks of Smart Cell Phones with Spatial Dynamics.
In IEEE INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications, pages 2516—2520. IEEE, 2007.

R. Real and J. M. Vargas. The Probabilistic Basis of Jaccard’s
Index of Similarity. Systematic Biology, 45(3):380, Sept. 1996.

43

http://www.fp6-noah.org/
http://www.ietf.org/rfc/rfc3917.txt
http://www.ietf.org/rfc/rfc3917.txt
http://tools.ietf.org/html/rfc3954.html
http://tools.ietf.org/html/rfc3954.html
http://www.prodevmedia.com/FSISAC/2012/fall/21_StephenNewman_Stopping_the_New_Wave.pdf
http://www.prodevmedia.com/FSISAC/2012/fall/21_StephenNewman_Stopping_the_New_Wave.pdf
http://www.offensive-security.com/metasploit-unleashed/Metasploitable
http://www.offensive-security.com/metasploit-unleashed/Metasploitable
http://www.offensive-security.com/metasploit-unleashed/Metasploitable

[58] P. Royal. Analysis of the Kraken Botnet, 2008.

[59] A.Schonewille and D.-J. van Helmond. The Domain Name Service
as an IDS. PhD thesis, 2006.

[60] V. Sharma. An Analytical Survey of Recent Worm Attacks.
International Journal of Computer Science and Network Security,
11(11):99-103, 2011.

[61] S. Shevchenko. Srizbi’s Domain Calculator.
http://blog.threatexpert.com/2008/11/
srizbis—-domain—-calculator.html, 2008. Accessed

on 29-10-2013.

[62] S. Shevchenko. Domain name generator for muro-
fet. http://blog.threatexpert.com/2010/10/
domain—-name—generator-for-murofet.html, 2010.

Accessed on 29-10-2013.

[63] M. Skrzewski. Monitoring Malware Activity on the LAN Net-
work. In Computer Networks, pages 253—262. 2010.

[64] M. Skrzewski. Flow Based Algorithm for Malware Traffic Detec-
tion. In Computer Networks, pages 271—280. 2011.

[65] M. Skrzewski. Network Malware Activity — A View from Ho-
neypot Systems. In Computer Networks, pages 198-206. 2012.

[66] L. Spitzner. Dynamic Honeypots. http://www.symantec.
com/connect/articles/dynamic-honeypots, 2003. Ac-
cessed on 2013-10-24.

[67] L. Spitzner. Honeypots: Definitions and Value of Hon-
eypots. http://www.tracking-hackers.com/papers/
honeypots.html, 2003. Accessed on 2013-10-24.

[68] D. Srinivasan and X. Jiang. Time-Traveling Forensic Analysis of
VM-Based High-Interaction Honeypots. In Security and Privacy
in Communication Networks, pages 209-226. 2012.

[69] E. Stalmans and B. Irwin. A Framework for DNS Based Detec-
tion and Mitigation of Malware Infections on a Network. In 2011
Information Security for South Africa, pages 1-8. IEEE, Aug. 2011.

[70]]. Steinberger, L. Schehlmann, S. Abt, and H. Baier. Anomaly De-
tection and Mitigation at Internet Scale: A Survey. 7th IFIP WG
6.6 International Conference on Autonomous Infrastructure, Manage-
ment, and Security, AIMS 2013, Barcelona, Spain, June 25-28, 2013.
Proceedings, pages 49—-60, 2013.

[71] J. Stewart. Bobax trojan analysis. SecureWorks, 17(May), 2004.

44

http://blog.threatexpert.com/2008/11/srizbis-domain-calculator.html
http://blog.threatexpert.com/2008/11/srizbis-domain-calculator.html
http://blog.threatexpert.com/2010/10/domain-name-generator-for-murofet.html
http://blog.threatexpert.com/2010/10/domain-name-generator-for-murofet.html
http://www.symantec.com/connect/articles/dynamic-honeypots
http://www.symantec.com/connect/articles/dynamic-honeypots
http://www.tracking-hackers.com/papers/honeypots.html
http://www.tracking-hackers.com/papers/honeypots.html

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

B. Stone-gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your Botnet is My Bot-
net : Analysis of a Botnet Takeover. In Proceedings of the 16th
ACM conference on Computer and communications security, pages

635—647, 2009.

M. Szczepanik and I. J6zwiak. Detecting Malwares in Honeynet
Using a Multi-agent System. In Networked Digital Technologies,
pages 396—401. 2010.

E. Tegeler, X. Fu, G. Vigna, and C. Kruegel. BotFinder: Finding
Bots in Network Traffic Without Deep Packet Inspection. In Pro-
ceedings of the 8th international conference on Emerging networking
experiments and technologies - CONEXT 12, pages 349—360, New
York, New York, USA, 2012. ACM Press.

P. Celeda, J. Vykopal, T. Plesnik, and J. Novotny. Malware Detec-
tion From The Network Perspective Using NetFlow Data. In 3rd
NMRG workshop on NetFlow/IPFIX usage in network management,
2010.

R. Villamarin-Salomén and J. C. Brustoloni. Identifying Botnets
Using Anomaly Detection Techniques Applied to DNS Traffic. In
Consumer Communications and Networking Conference, 2008. CCNC
2008. 5th IEEE, number 1, pages 476—481, 2008.

B. Weymes. DNS anomaly detection: Defend against sophisti-
cated malware. http://www.net-security.org/article.
php?id=1844, 2013. Accessed on 30-10-2013.

G. Wicherski. Placing a low-interaction honeypot in-the-wild: A
review of mwecollectd. Network Security, 2010(3):7-8, Mar. 2010.

S. Yadav, A. K. K. Reddy, a. N. Reddy, and S. Ranjan. Detecting
Algorithmically Generated Malicious Domain Names. Proceed-
ings of the 1oth annual conference on Internet measurement - IMC
'10, pages 48-61, 2010.

T.-F. Yen and M. K. Reiter. Are Your Hosts Trading or Plotting?
Telling P2P File-Sharing and Bots Apart. In 2010 IEEE 30th Inter-
national Conference on Distributed Computing Systems, pages 241—
252. IEEE, 2010.

M. N. Yusuff. Honeypots Revealed, 2005.

45

http://www.net-security.org/article.php?id=1844
http://www.net-security.org/article.php?id=1844

LIST OF MALWARE SAMPLES

Table 8: List of the 997 malware samples executed on the workstation.

MDs5 HASHES

002485852df093134f18288492ea1a59
003e845bdcc5367220bf13f7170da16f
00c9833a35boa8bdgs7dd85c41fcesbg
010025ab068e4744a644d1ad29eg81a1
01652609d8c786fe8b39cyaded8b8fdf
o1aa11dsa865a9c34270bs6e5a542a86
o1dbioa317194feycgqas8fae14fy87c
02cf38ofa8ffg2dcbey4eaf188575f3e
03201a9f9co6e42159d98ccf2719d8af
0380643698ce56a7f614021bo856¢c5d5
03e5b8d5b2696¢f34359e1b8d2243dao
0410d705efb224a007bdsb675ef42169
04b3194bce294556586c87b627ccdae3
04cf0389139862f627dfayab643d2655
04d56751f25d6169005395ccd13€ae55
0546abe6293bag0348e1734fafcagyec
0579133b12bg54ab568d60609fo41d32
05b6f4b41231d437216c87f7c752dc8d
0605cb4765c0036e7f6bg6do16a1bdic
06453466ed8f14941cd211388ee00faz
067bed758bfg71259c2c039ae8ed7193
06b125bogdd6gasaabfz6e2cf48f4bof
0709fd721e486fc3091542ff7e4aobg9
o7df3e2401936a063ab27fcdb32dacgg
0809eb81c3do61d637df4cabf3ae62fb
0826{81f22867a464021aa2f94576693
084fca631cba38858ae3a00cf0001882
0854d8197846b12e6eab4e83007f50d9g
o08bydagsb3agddsd4108f42708e64203
09511410b0C4333¢2399703¢56€36868
0979d6e554e66a421ee7b6675abgq09a9
ogbe8c337ac66abs25bdsfy15547f9fa
o09fdfsee81408995fe6538dc826bs54a
0a83777e95be86¢c5701aabaodg531015
oacgb76by5dcg1d42eoca83as89ocbeo
ob346b201da259377ba11438504bbdge
obb644ebe34259c653f7ca3c340af4dag
obboebg44a8d7505e44b03633fegcq259
obeyc6f82bcyb3cfecd8a158cazefgad
0c440c4536f18ef5258b5abgc65do2e8

0032469d1f8cag21f1fi4ecoqefob209
00c28cee9c6874302982045b5faff846
ooebaf8a522259b83faz17bya2{8f161
014a9cbg2514€27c0107614df764bco6
o17beay2340e230c96dbbcac36031fa2
o1ae30f6635fc661a7f3a4995962e83f
02bg4fg6eof1bcg189by56edd8b64318
02fb8545f6940114e4d5c10ed777a04¢
035c26c52bb1ead2ddeabb6bgfoecg261
03831a13d480daed3d2b63201cbbbecs
04085a9bdd41dd53c40056f2ebboea8e
0455dafdfdo7ag849b143209db253b56
04c¢5850bes71a95b1cas563e7498c7be
04d2ddcg7267352028cadooyod4egacq
04d6066541c0292dc6e9897b4{85593f
o55faobb647b4f2277c9236e2310795¢
05887d3c42e7f186f2a59fce85afbeys
o5cf6e4558cfo4c2d546df2dagdsyer6
063996fd1db100eay501d7afg847e1ba
064a€6c4099945f77249566a57c8564a
06988c2a3fobdga8b10279191fbgo39c
06e54162b8b0324232fbf820c0c22496
070d303¢95856722bea316do1bg2dfs6
07f398af7e2b789d550b8b3e6fo465e4
08152df537bceb359dgef3178e29fasa
082afd83fc8bfe64479651a7bcg24a20
085412f65a35d71d8ffbasbec6632997
088565f653b5d95e33adfd4833e12ee6
o08daagdsd81e6f12f8995f5162d7e415
095df2oced77e8gab1ffoco1bggof622
097¢c051268fc5929773a9c3cff788c1c
09d49c997fasdfi4cbefdgby45e04act
oa13612f52c6cebs541c0144d3cdb1947
oac8aeg25d4e7d6b754c6533068b6e06
ob147d5f4fcf4c665f142d6209fa1cb2
ob3sdbac1f5461615b288e1cgoy6e7176
obg78cd6214cdf20e1ae2cceoba1y3df
obdfdoa6b3533222ae9e86fbsfigf111
0c16055804fcb734aobcbobfgbacg8bs
0c558b3f646c7e8cb1acoaiyacgdbg2y

Continued on next page

47

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

ocec129e2693cea14b83bi21ay250f1ic
odgcbfgbeaf23a35b74c1c9f0927105€
0e15851d24b2bgd208c96523ffg8b6c0
oec2a2f82efdb8f163f3fdesacoo12f6
ofo68e82a6e139884f691c4211292213
of1b3yd1oc2bya148b4fa329041€0675
ofgae8eaa21463cc59abc83611517€af
0f6441892cfd2abs4bdsdaes3eg2239e
ofef3coc12f89c20eaogdggfsfoeadoa
101a14dbfd11bog551dc661228bggesb
107acoeq09ded4eb6bc358167f2by6e75
10f60a69daidcdgib6gd71b831d41feb
11765af7e1f7coddeeaaacd245c6d42d
119c71€12bcgbf6bof26dogc82d38d60
12224937103c1dofazefd8o8bcg91cqe
123¢27059bb48cf72f253da31f67575f
128879f57b59cf7f1db2038f539dbgg5
12d2388a8ceo19caby92bga8ydeeasy4
13196e1139e2dbadd3dbgyd335d517by
137d7bo25ad99a60024dfed7e8b8b1o1
1426fe0324624ace16d4by69778fobf2
148891362ae542a3163d37bcefaceode
14cd24fof7c32f942c8e16f5eac2bbba
154ad2f8b8bf6df37e684e14boffe3f6
1574ee69c6445bf8eofd26f2e9a703c0
16495486e03ae792a2221ebeaobgdffs
1690cab8dos02df13ac27e15867c806f
16f5796cd816eb27dbbs786fd63booby
17b8809764f6c1122c19€e730f9ad4540
186920c608674943292030114d7e3ae8
18a61b6cf8a8feaeb480de1defoye282
19a90a060e71b81cob2cd21b1dog2e38
19d279af28135c865fab6103bgb32cc7
1a5d3021db16ee2670c8e3d3bgaoyy1f
1a7ab67a80403956bf10ca84a8410cb6
1abse53c6524fddc8byg93bceaifsydsf
1ae1foogdf1679433057dogbyage1cqf
1bsbg5995db845cc1e4b1b5dgdg52198
1bced6319358f60260ad018823113€94
1c8195a15d83a969e1c7615c108d3035
1ce5e870656a9cdybofcdb6dyf63a7771
1dbdsaec1486919d7a38a3803d1fbecs
1e34bs0b8af8dbeby50c291981428053
1e86e2fdffgc1089b2883fc3zed12b212
1€9509e8363b719d482581cd6ee23f32
1ecdcy455e30797fbeb2a591cd119cd2
1ef1463cb5cd677b3b73e414dc2998af
1f69d 3bc800f9fo0968b42b49f4ea03b

od6cegc25d44e198e3f96c846c472227
oddyeoeooecb6b23449e720d2f6fcbse
oe7besbbs56309a1310bedce7924bdc1
ofos54e3a8dc4938a2dff13b6cbo8oag
of104f52e701132268f2ebfddod3dez25
0f4813e358687324bgde239011d822a6
0f5993c32bo42816e1f3debo8b6e2af3
ofg561f26e4ee69b31f6bdbs7fge6c8d
offae323037b4845e1c2dd8a11eoafor
1060d4dde3d693284d4665696776a54d
109bf42d3a6¢c45ed704bfoc62bcf7b8g
114d598405fc691ce652323d14€496¢7
118f67cfdbeds78a729ef633cc19325a
121201bd8ec4b48031566b8195694954
123675f34b782e33d45a3a00f9c3a350
126e17d9gbog6b8ecfgatfcb89as3d3sby
12cecc3c14160f32b21279c1a36b8338
130b6895069434a86dfas5d2f785bgd1
1379bgce1475834€e672bgofc2611ef6f
13fgob323boacdeceb4ferf41126e675
14546231ec7eocy7deaogg633dgs5fooy2
14¢2946528e8ea084c39de37afb14bg8
15075aba8ofc63b613e07ddfgcc2159¢
154ce466aedbe66ef86f6bc6obosc8be
16237f5b7e7d7bd7b2d 1d26d37073a6¢
1666316c1dbge6051990574€e3e25edee
16a6955696ef375f1efb1d371cd9928¢
16faoo6esbsdsocf16dc8ded41ecafer
17cd16dcbb45b{64317e638ac4b4c675
18764£36686a678263c72d2451{636ef
199a96e64e86492bb1czab17decd66d8
19bg11c5€0f4c36ac3d511306b29878e
19d5ad2adb3038238{877e430bc7727d
1a6031959d62cc35e0c9dg5a8eadfas8
1a985147e4abo82a3fgdas2a27525aa4
1abae8bece6b2aag31y73df4bo8b6sada
1b2dc2331e6dcesqf8abedcoas3sbiass
1bycob6gbasdgyafi3y4f6aze353867e
1c0e7503ac0c45086c98302d10ad9g887
1cb1o2eyfd171ec78abob2224f102225
1d45c718dazb2f7c3cg774eaf5a624b2
1e134bbfe3a537424a2ccd13d4edyeag
1e56bc24d8fe21348b29709029addgo6
1e872bdb352dc6574fc484c7011d892b
1eba72886b84f84efgdg5e93c95465d4
1ee8fe3d329999bbyccidoigeacceysa
1fo4389bfb1dfaf813a2f67d5cadog2b
202¢58d508248629244df57603291772

Continued on next page

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

2036b2d410630fa85b5a5e53f93289bo
204d8ccdfb33a315760a554a978317€e3
217687daaoa13d4ad824b26225e66¢79
22b5f47308af3841e772d20ef75a235a
231a9252e539acy32d2bdgbaco627eds
23bserddd14bo3452af26019d90447bo
240aaac273014815852c451dyco16bag
24¢639a18297db41949983f59e4054fa
250ea87bsobycfazd499bgabse2651cc
25d4ege52fe16e5f44237a711d8cbact
26083b3dg4cbgabeobiaag43494c0466
26392892f86b4de826e56eaf8a59d574
26654751cb2e98f5f67aff78d19800eb
26d848591fg2601ea328ec86e216aded
2780d6b4f3f4c4034770a96deabofcic
27b831e93697d45d978796198b421033
2826ec1dbgdd3sd4dcfey18a8agf2115
28bodgod3yfaecaag2f937447a82f6313
28daf983522cf87af524d22932152doo
28e8434b81565a4aea9438caf465553a
293906befas1ic3aby2ag9ag4001a69dch
29748f96daca16266bgded60531f916€
29b1f56767b437247fe8b1bb81d7de16
2a65046feb272b7bsbd825a0a0e57¢53
2ae55514d4fd2e80146cdbb1e69q1e60
2boca3s6af63176d70cbg76cce626021
2b488c84030f7fe71563793abagdbo7f
2bd25e9cf861foab5esfbbfoeobyab2g
2c174feoboy60odebsebegefg5bd1fao
2c75605732e53absedab18bec2atogad
2ca1ccd1389576d7a8b6cg12320d5faa
2cc557e2c58932f2e0c18b683770ba8b
2cfaobi1cyff49727a28c222fd524fcac
2d42417903d1f674b40f7b758da59741
2d7839f3fc66dceeeosdd4dao3474675
2dcefe60bgo2897bf4279c041a065bcc
2e4982325d6d34d52ebafaodd495b466
2ebesg105a5a955361ab3dd16158746d
2fzeasdbb6esyccdcody4248{8e9486b
301fffbab8f7a6df2dasc892a0e390f7
30628e8ba8cb728856db1coay28c6005
308c2897607d78d6£493f913b627235¢
311c1¢570a45f64739d75cd7co84bs0d
31379be1e4c68d5ca66do3c859e7af5f
3145dd202cc76c7c3d43bbe57207643€
318092¢434ce7b8e815085e11955cf8d
32881867f46497b5a8db4081d4e8e267
32bogc3efcad38oeacse47afogd86937

203dd1e8960afd68bde851b682e88c6a
20d47409829148715bcce170357810cf
22202d6¢56cb7eaogaetecdceo8cy1ag
22¢f18696872ba3975978f4484b89654
23538bgees114655fo5boces0e3e9od4
23bfby2beae785c3edy5c8f8287a19e3
2465ac937{8d6fc512af438665ecbsc4
24f7bc6eef81a32620392f8de13cabs
250fa29286a4022b17ecoq5c6feocifi
26018892aec8e40915efgab5265810ee
260a7503f7d26636ee08fe2ce1264c47
265494ea5c259dao1aqdyyfa84f15d36
267e02cf17f1d34f473a1849fe86011b
26e9b7b495e302fbcb6ed160be32602bs
27854044479b7afgacee7ds5442b6d720
27c17e3bi111fe5c3d4f6dy79b15dgda
2867c6976892dc4ec71bedcbadg33dbe
28csadagbdcsddbbey8b6227c¢63foeos
28e44bfog2f8fa193992fasoaeeg2cqa
28f170f63555bbaccibb3oaeos8f165b
295¢509f093ce76792ab687coctbsfag
299bg0e3abdd646£64888cbcg50fc637
29bg24c380f8ag9o15e8877a6aca1dbe6
2ac98a19bcbgdge1061b6e683f59c490
2af3aa23286a216c8995c178490593fc
2b1bcb854057dayc3b61315af1d65920
2bac879b6cdf577969d2f51d4e435289
2co1agbogbbbiadg49d309c921a8b811
2c503bebeb12e4foasgodcdegieafazt
2¢965739bd89gco8ea54d886e5babbfya
2cbffba6sagebose79dbs1579306€988
2cca7fycded8oeqdb2ffg23d8obygacg
2d3as56e6d3ege1db867ec24ebbsbgs02
2d6bb17d536a89co8ag93ed8o55b5d419
2da18dbciaogdeo89f53coocb55544€2
2eoesbad6caee56856970420c0a996d9g
2eaz16e792efgobfef47402a72222763
2f34659e48f529ea4883cfe11c326078
2fceaabgqd2fyyeqe321130d7c13764€1
30428ba182b35376a1564544ab2c562b
3087a840a97c80231d78767aeogbde1o
310b183e5cd2318c55a1538741847c1c
3134f4bdagf2bf514b180921b6f3eboc
313f8429dfof599c94bagfad28bocsdo
314b8a36f24141924d1faa6938088db6
31adfb8f43f1598e19249bed709826b3
32996bf10133391fod6bggfa101495do
3300309f0709837doebae2854a39098b

Continued on next page

49

50

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

33122a5200ff5bab1e5881d5c295¢460
348dbff2593dfg65f068aef6b2bbbg13
34f8be269gofe183deof87afgdo1022a3
351fofe5co39917codsay4091998e57a
356b12f98e7252629947degf589c3012
35a493467338537f3060a5{915921f6b
35b24360817300c5d10deo169o2f36a6
361e591bb738480boaseb1864c803baa
368f43d3b2d68as5c1d44885c77bcb338
3705ce6f473e0dge6350a371df46cd79
37435ddc3ffga1b3d76139bf2ff2a76e
37a442aa2dgb63d85fe347boyb78110b
37d0288f3538ec2012dbazcgbbbbecid
37f523b7fcce4f147794cdc58e8feeas
381e952d81c9e18f7bfy1c719629bCg1
38fdoye154564aefdcdgo891acadaosc
398aa52575995a05003e696d 30469208
3a152ef073000d460d9264d60f878123
3ay17ai531abibab3da31dg36efdd6co
3b73aaey2c644a583165345b1399bdeb
3bg2e27bsef6a539a37e857co3fbyesd
3c4c5b0218ccdabd928f5f17716boeya
3doad91352862096e1ec32fagd263ee4
3dfg1d5755cdf49doeqf3c7013b60f33
3eac43d6d2823e96ec667e1bgaabbays
3fgbog1c227c556b625a112ae350e18b
4079940929bcafeb62f2c77c8b1o7ds53
412f88a68e7f55ada514409a5a91adoy
4169ee85761b8249842e4ac3600643fa
41f5d44ddy6b28af30bggf870d4caece
425faea3zooobogdgicaesdabyb2f1a88
42caf927592375aa9d333f7178c8b69o
43fb81c8az21dan2c255b52226b38e69d
447139f9fgccbdc74b20bgbf529188b4
450baba3zab2d45f36367c8d4b126959€
45325a7ecb1ooead34b1118820650dab
456f219ffd2e37df764355731746352b
4625556d1816142a1f8250bed15a834€
4662055431945f4fecaog126aef5954b
46ab2971fe0c350486423b576a02{867
473817b99403435b882f15f1c2€€922
47be408472d47d7beseb752e8513e76b
482f683d8daby49cc3960421effdcycb
487abbaddy4e843ddaaodasaf36769e5
48bc80580308e62815fe2772f8f19698
48fe83acfbdy61b8as8e452e64bb1905
4970b1306b05839117f41ad8e89afg8f
4a06811ba1byddee6183bg6boeceess2

3404d4a68ec2082be814dgc8oabaz2a2
348eaf73445326bob37538fooe4eeob2
351956d8e5106c081578a571fd356e0b
35536d66121709a9e6602380582{8bey
358b57a19413088874df6{6b8369fo7d
35aba21c5f039c225e828453b44bc176
35f4a67dosby4a73dg15a89d6a278514
36281406e48e64684b49701ebb4f35e5
36eb62f3c873098cb488dfcb179ebaszc
372a8c167b23813cc7ce63e9edbf64e6
3757b1abdebdf770e0213ef5f5495903
37aeby7c8b692565246f54fb7f2bseq4
37d65dc2f6ef7875a35cb7fd4575657¢
3816¢598720a93d8135cbegbas3odesy
38eab493be24864abd4f65d93cbg7ds50
391eb8239cdeoy3bg8foc8afe32eaay6
39bboybsead8b86od59086ee2020f4f7
3a190241881976ff5de19cd6cocafcdo
3abfcggy1bo244bd8bsfdy1bae538450
3b8bdcg8c5{68f2515f46cbge4e4acof
3¢2208941f2143faecd139598f7f600e
3cb8coefgfogoo31aoiozea83b6746f6
3d817f455e399ffob6g7bee202ee4624a
3e52728bd5477a5a55beqaoacfyd 179b
3fo41do879dfsfoago11c247388462ca
405beye2fb88fgo3abbgy94937af3271
409497aad8478b1f108d2c5dbceossab
415b1760a16e726ed41d51dbeaas838f
41e7a67d6c7dbg2daob2003052370054
4230892c9a8ay1ca5c16cf9648a87862
4289d22df5d1cco954855cf2deb8334¢
42d5853289447d2c305cabbc2c8caebs
440fg02a1do1eooe432boo6f19d53984
44a15e0eb1500f8dc5735e2f4df3afaa
45265bgacb1185375d25c31a450d{367
4560fad15f456e351235ebe0368903d5
4591do1a291byooefbcsb263c67a266¢
465dcf7by6fesfogbc8dedfaocboybg8
4675b57fad56fd88bf34deoy6azf3g9ao
472f8afad528637170f19b23349c2a0a
4759ec5c0a3723a44042a9a96ece3632
47e20a7f61eaboc70674boddf4e88979
48438d89ff24114bgg7de4d755216d3a
4890ddcfd7270850711d8a00e8882133
48ecf8bgggs03ddbcrocfas34c2a3q3c
491a1c28a538a1fcaz1ic3gediegycffo
49e7¢66386bo12f11cda865fe1b2boob
4a07b89g71b8bgag15ecse2dy7ab275dc

Continued on next page

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

4a45262f75e06d4274c13d84dg5214a7
4aco34bdyaeci8af141c983ef6680c29
4b428890778717c635f4fdf37€0c476€
4bbg36cefgorffg4eofdozb38bsgb21f
4bfy765cdasferyatai4223cb3y9bgqd
4¢8401f098965da00884231dd3460eb8
4cef2e575f765f9d2e847cee1rafo2b28
4d796194d32a6beeebeabocg6159602d
4e024fc6077966c9fb8f801e2458705¢
4e1obgccsfgeszagey82910b3cefe8e8
4€800948a46555705242b8ee562c46c8
4foc3021fag8a97d895e55f5d5c52806
4fgafse1eyc628obs1e3iebassf654ab
4fef7c78f2336481091880daas27bd53
5085bf6efd8c1aod8ae451cbg8cebs89
51047b312858c836bf8ed26481227f76
528a0d36fc6ccodgd6c5911490795694
532433a4c7by017a48eb3e3469bf5a82
536baey366943b3646027e1d5eecocb1
537bdf5599a0cd626ce23cb8b88942c2
53ce61071aa8a3d370324coe4dd61466
542d64cca238a631f9dego638860b664
54bs13ceacc56a011bof523f196c4c46
54€e04e505f40bagscsee2a3z4oe331bse
555b488d3aocdobgagbcg8das9958c9o
55da827aze1e53degaggasaybe8e6e8o
562b8e74dc5057c94dbg88dd1459cf1d
56efb8733b3c014357a425faaz6doyec
582a0939dbyccaecy22b6gsb82ay1fis
58804f544d9e46c37e827568d5c35e86
58d2d8oeddo37c580eb295071bef7f64
592a3bego58c142c49ce8d369988a247
59e796eb656a8eeaefosffco56d50343
5a52bo6836d6obaeob2acqdcbgq43134
5bga3cefab671039761fa46685a3ffeae
sbadcbayoa209a89o2f65fde6of7d 268
sbd34fdfayyeacoffibierdybecof8ss
5c8846befco8e672ca2997f443819doy
5d4df67fbc367497180305e7052007ba
sdaca16e8ddda624b4066844053ce2co
5desd62a5e9408990ebsc6cdaaeeocsqq
5df31esabi1f18abb6988c6aibaaf565b
5e99cbdbaeo367d1582feb6b3545da84
5f6d0846dc2509936aagyafcof2fed14
5f992dcdfg4azaeratgafb2d685410e7
6090f8064149df3c1312€3480908fa76
6129635efs5b27365f74cacfbacsc3aye
636c78cad73733d6b8bsdof429a1bd6s

4abeffyqef244747bfdoo2d6679eao25
4aee8b48dbogcsfeo6284efsdaser239
4b882f26874fffd4caabd768c1cbaegb
4bcysc43ca502fc6251b08939be62941
4c6a970497053090a98963bdofeas431
4ceaq77asedgfefgbcfagdgqoe64a681
4cfbeb83f8dde134367709978dby201¢
4dces1acy341f854ade1syf355af61ad
4eocof6f721542d75bofabgoataebf2e
4e55869c4e3c6b1bsf58c10d4374bdeg
4ebfg2aadd1250eo0e7872fogoegb1746
4f7cqe13bsb8odsdsf63012440a5f050
4fgea8dfrafi1ff43192fco6a8d8dfdy1
505db1b1035e0faesde4960923c479b2
50b28f7d71f5bcge737e835ea1ce31bg
51e12adcyodgodd1827de8oeg79ccyca
52afciefgcy91cgb8370a57e71412239
533425012942babb54542e61dab71ceo
536c4eabcefab22767da35676d712e6b
5395f4b2998466929ed2a1ef6e2d7ds5y
53cfdo2336c3a3176a5cc684fbacgbso
54b1541096563b135ce7d49c68758b67
54b63721c3487153864ce4b2e14892e2
55234€043067€04a8303756a151f71b1
55bb3e16ce3651523ffddbb8o556f922
5623bffcqayc27a52499d4dfg1782aab
563d3e8d86a40ae3667d69gcagfocbica
5754C50403653d1e0a9c5a78750¢7{53
583854135f05ec762885453dcbcfb258
58923e5e041047beaogebde52615e46f
58e249abfd86fboy616372720cdgd 392
59481¢38f59246062cab1d517a54€007
5a01fbogc2d8dag8e396883872221063
5a63842f2f8a028c6fddob2sfbd155b3
5b6gfb3zed4b2343067462fe275b6az17
5bcfgo204c2eagqey404foadyfeddyiif
5c8636cfooyffff178c6¢758395be859
5cf8435ac2789e4c45acabas73719356
5d77fe1694451b676a3355d850b6fb8f
5dbg7a927bd78a49edcdf8b8gbsbeo62
sdebeg1e2ofeobcdb2a42a89a7464e77
5e682fcfybyaae18780c6708a38339bg
sed2ad24do8f6de87o7be62dac8b8yds
5fg6ba85212f512d3a831e269eaa1aza
602034bb7ebd33838d8d1dc69az25d59c
60agcdb30ds76658bffsbec22d423ebf
63432acbe243613b85e2396e6f1dabsb
63b22c816e9fc48c58bcs564300bece7b

Continued on next page

51

52

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

642cfdcacyoegayf26d478e891ccbdfa
64b816007c77d52ed709b39d9068ee31
65a7354887d20d2e5390758e4ab22327
6702c668b5a7915040f29799fobffgf8
678a52cc3c8ff5de68650cag29ccb3ge
67c4d827a9938fb603e9554b9053bag3
6902a4fce7c6d5541cfeddg25d887489
69afb814ffd217c8cff57a8bofdogge1
6a84f185bgo2b8fcgyc139fogbec1fdss
6ae6862863b405a4caccod4710deodoo
6b26bgs3fc279e0883d5ee11354b8661
6doe467d2bbggbfdgas6eaay26848bcy
6ddg10eo51bbbaaa8s7af6faazsbbbgo
6e2d6d499cofefs5e03d66368abfbgbsb
6ef7fg933c16b5a88bbedfsbgsfdbeaal
6f1ccqect8dcyedbsi2cff16cbdycbge
6fc73251c49be187fed376cdff1fbs21
6ff72efbas31ebff2ccyo1ab7bbyd2bo
7od6b3d2aad144c5960adcf167662277
71e764948548141d9a3404ca62422696
724bc114bo1c5d660bg5dd34d6932190
729bge4215add22foagf46666010b2c4
735616922c8f6d12c77fe8380cc45¢63
73cb1fb66gdae3e830bsc3ef8ooy50db
74667ccb3e7fogod565cfebaocidcg8o
749cf4eb854bc589101f15bcb3bge820
74b70fggaf35965cedbbes43a40ee85f
751070e0d3b13c818116¢cb756e9c8739
753455178be69c892ad555cf1d635€e3b
764€2334fc93270fbob6085e6d98860¢
77a1573086a94a6204302a6c4a402e8e
787bdd1debc524a6ec49041560b68138
78eaaob308025bfd70036e5fa2cbbfee
7902f3110fe867e6949f42cf45cbaz43
7970c24a511a6ebaebbyc21a2debsyie
79b85b30ea285520897bd877b4344b1a
7aiczcgcddybod68f1fog2sedfaeqo1c
7a598e26d7959b528eg9a7a875303d6ad
7b1d2yd1eagda6bf2f489c151facqg1590
7bg61b72e35a535de5f2f3bgeci1dais
7¢cf887cfa2fcd898626a284684851b81
7d4cacd8f627840c7bc8esaabb3130cs
7dcs1c42a4c864c9dcd3597e4016b1gb
7edfo8d433c160770d5d9dd4ecaa1680
7£882517f15bgd2e9d6d3do1bc25by07
7ff4438c54f7abcsee61daob14028{8f
808oc1ee8d67dc36575bf4beddbs0e66
80d87adsb6c761b2a6bba8bgas801903

642e0166f03f3353fd1a112507c65b81
659c6¢75bc33ebo82d190f7ec3dydc88
66cf4157605d7c274fac57382c81c50
676d{385a8867b88b70008d5fde5a029
678c155abbded113732106f1€77594f1
68f15dd40a1by7560baba2140328949b
6986c2febfof4881874c149ed845fc88
6a6e781b430e96c2a68ddfo69774f590
6ad76f2bib2bbedescge2aag81100f97
6b104f777ace354e32f1foad86e4d622
6bdoo85d57593d91bf2c1987143192c4
6d2452e526c51e90810aby6ffc67ades
6degaoiaabeoicadas3168a6o46dac3a
6ebada214d40a58c73a40d53a93e31ad
6efb83des7620f423d797bffccc174(b
6f6ds555dc1bg03889ac83d2f10538589
6fdfdffebgbibe2doosbbacggcbods9o
709e6924c2a02282fefoo663bd 1f7ad8
7112c8c3ca8753ee29dad31dfciyc247
721c13f0826e0efo81e96e67052d58a7
728b67cab1gbad196aoo45b2da1ys5bo
73555509028ef8d62f50b1a57ad3c809
73a2907611eeg9ae8fbg1fic5295e10c9
7460a492eec81d3ffydobgdocdayadg8
7466cd69198cobs8ac8ageoaefog5828
74a9d2afeqco2a48f68byae8cibedbbf
74c015b3d73becoo46fdbs3b5199€286
7521cc7ed62795b4b317cba652358e88
7626b255965e014a33focd51240c28d4
766928cfde67f943fc4498d48a9c84ea
7800b7642d557b785800e1c482d68066
78do3e55a867428e3a678{804f1d871c
78{8a28871449eee8odf24df4dogbf74
7926a3a1708da681d54dd1abeagsbesy
79932e306e412b725e7f30cb26b77943
79d3310ec654f485aby8ecegabbgdfbo
7aifcc3zo46dcecsdaaagcesfobabbos66d
7a9c74897bo8ec343779foe1o0e5cfd65
7b32f51e6b00947c33bd7b5a3bccc882
7¢2638759f661e5ae8f50f641dge21ca
7d426€2827126392a664058f8acy407b
7dc39daa8f8ba620503effagay56649f
7eoea94c38643e3fba3zdc63042£38bob
7f4b3odaaa62aoofabbgdg2agdacbes8
7fegdf44100806beseqct76e68fce782
807767735a05a4f27b65a4b349278622
80c784392c2890805d0592a914b3899b
810cfd1328811e211d7d43a1ab2a936¢

Continued on next page

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

8129798d6bgg3fbddbobbs57501096fd
821e4c194c721f6f40b6a63b71229677
828141c315099a62c97d8dfd814a5350
82f792a1agababg3058f916€70283252
83f306dad45143effc639943d8dsbbes
8452649012c7f2546¢71f71518a06812
849bc7gb15efcbeces52a1dcfg635ee8
84cfey687705b1cbcic2azeafcgc6636
85b499d1b73b7c4728¢577410b47b752
86094f463472dabs508385b1f16a4797b
8726{8d6889474aabe8e6fa235415f75
87e7443b671b0422caabaa81175f28c9
882701961690b3c93913228895224788
88d67a43doas95f20e91e021bg4bs9fa
89045do6eb6coagse47bcoo658251699
89aagcfgoeeasafq2a3fg8e60699ofic
8a45306096c9495a2dobo4674a1901¢7
8a7bdbs0251b559e715a4dc93c28bo60
8abgsdy7a4d4429777a7799boofobd531
8b8a263fdo21bdsd1496031e711€8727
8bbddco1gye41cb1a1397aef39ay9d2s
8d1551ce12859bgybg106a3c195aecqa
8d£99949944269e3185005dod 175¢244
8eo1e390bbbeo11cdobby1fco1e69f43
8e5432b455bg45cdbbgd81aydagd292d
8ef2ccazb6380cog7cb81dsedesbod8b
8fg1fe881fe19704bg0f135f3a9bdg30
90825b4778d2f4fgocd3e5174a163162
911a14eo0c36f55a364e7798f576bbe2d
9143e250a9c2f3dodo636151c1cd99yC
92e8bad1cbecf8o24761dcfydd154€86
93c19feed3dcy4df766f41ec67c5e9b4
941f3287588ec29e5837bod491997d85
94c0972bob6cy5456ed574dd46417b1d8
961631315188600460458d44141364€5
96b30e3c9fb8fccfy94aybagqoc6051co
973ebo4047271413b719e2518e421362
9778598d05904172cd4b45565c1a3{82
980df59d789e70e3744d811cd3528904
985441750ce4c52e4f72d2bdac629d8b
9881bgofaf335c3424660e996doo3eas
9898aod14d3e18117e86e1egofoysefb
9a33y75beyf530447efdbe21d5acqc683
9a601627690a1963cfg5c6a361a63a6d
9abaog91c23dbcgcideqefcycysed2fs
gbc194ee8gcioodaeaeebseybbeafafg
9c2cdcBayf83fgage1aficseg3fdbibg
9c6f3f69163133fb8e56acqabe163452

81a2868c4858e00462d2937398069068
82591cb671019951c9afag93e8bd81cf
829398cf7e84ef7f645863022acd2705
8388c2abd789563f9762c9d7beabg140
83£88691bdoas71bcb5c971€153877c2
8461295b201f45835406380af587c1bc
84b153c0fo74e4286be1bd7o4c20cd50
8508dege731b1b53e44c6f3339b85116
85b8504e8co75d2a1cb20319dbde1ece
8629fco41466b6bs1fc13d6egazg3d12
87ca2g9e17722011cf27d54€57065f8as5
88078£889ac9990889753ca594416170
886b8028ad216begb5cdboocdbgb21fc
88ebfe19f13b2663€242a2421e5498be
89a6428bb7e1174e9e4e8acgof7b7af8
89de2036b5c82a442cc2451850247d4f
8a67923a4b152305bbdeddeygdbsdasd
8aagd18fga19c281b8eaey2aybdcedag
8b79567a25204f5c4160940fc62cd19e
8bg67007497fcd46f3cb703a70df6b7c
8cb51efg02aece272d5bgdgofycfaby3
8dc665525e8c08937f7eeoaegy7abbfb
8e0059ab10294517¢433d8ee58a52347
8e371efq40e97f4€7a9310339300864bo
8ee8b6dbscodfecdobos2d3gbad8dso3
8fogaaob381297123fd2d29cbacefs7b
9077ed6af5b65705fc4e65b58f4547ac
goaazcc3ge1oce43f7f31e90961fobse
9129f199be8ca182a541336bbaaeafbo
91cb657385d{8f51876f5e1fd88f0352
9335b6b9g1fbf6byd72facee18ee16795
93fff21615665e21817ccbbeg4freca8
948f810bc2101d8dedy0226c91726€72
95fee6047feoybg3adgadbebb2343abb
96a7f60ef339d586b35754cb8106dd86
9715bbeoc4f594dagbbdggd2887f2061
9768289d64c7fo8bge2bdadycyfeo14b
9789089b434bs5d4f23b7cy7aaeeb1fadc
981e82f907d 1943f3ee06e05aecf7c31
987fefos9b1de2791ae99876c864d26b
988f08c71b487bb22b9228638056f698
9900a18be22e3ceaoc515d198159d22¢c
9a4707222ec9730ayccazeaqeydda688
9a87bsg9dabf265d46325caf5056ce103
9bsf7921acf75bb8c816c64dg5ac5402
9bccby77b40407891eacbgqoac6o6e3dc
9c404b8462e525393bf43fgfaeco4964
9do45fb3df82c2296f3934f045dddebe

Continued on next page

53

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

9d1c1b63633698e6cd6dgagesfcoq15d
9db1743f4do578531fd929063372c6a5
9e4ccedsb22c6dbecas52c4008a46d5e
9f148789adacbocgy358c4edo1ocgb8d
9f69d25294f319783b283d4bg46a869c
ao14a59ab22a459d4a95a914502b157e
a03041f33d032c6550d6f78712c8153b
arofesfa3f861d6f3fafyo5013e43045
a231dba1db6e47f7664e4299836f0277f
a2c8a63ao43cfcadbe334066bfsg7ado
a3o4e76bfcag25d521934c67c3f2648a
a3805abbbgdf44000de89aeg998335ea
a3do856589das8ef3zacb65e0e06df850
a5o1120d70fo3c123b02825dd61fc2c8
a555609372d8f3ecd324dcd216d7e5e8
aya3dbfgdd16606262d647c7d5814be1
aydi14e6b8b3f2fez2ae87obdyb166dbd1
a84ffo576453a0df594e47dfeobgqsdd
a878baz6oooedaacscg8eff4432723b3
agoas4eey76288220f6f3aaed42a261f
ag4egybfoa8oby15ed6odaab2yb2gbad
agac8ba2obgyodo1gbayyafed8cfsofg
age662104e3954c8bbobo2cbdaeoesf3
aasfaa049c93871b67283355a9acc401
aabcy2571a71989e5c973a42c043d8e1
aba2a43121c8e22d2ad43afbeeccg815
ac15e6623ad86c11a714a50a04674aef
ac6eeb3o2e40coddbgi7obsc6614ecod
ad11aobc29f205436c892b3fgaies5070
adybffeqfde2s5cgagqebby2e4bbgbbgds
aebaf24501520d8ege069cf6e85fb87a
aecq79b1c2c3fgyaofazqcg3cag 5602
aeebyffd2daeead3968c64a6fd7f9o71
afd47151dofb1dd6ff2f3502e8cby9ad
bo85420cf29be8eedayc214c3fbi2co4
b12e68c50f2729b72dcfgcyfcbof65a6
b173coffeedaaz60a886322bd68644a
b22dy9dafgs796dc3b210132fbbec188
b2e221eee320a6c7468dc8865f7bgeab
b40278658c74c98dc303dageb6fbd838
b4cy546afdbdeb8198569d250bbo6500
bsd1beesa22623bo419b2205467f8d6a
b62dyay22e38{08684292926e57c2cdb
b67a53fb73514doff24b185ce25d4f26
b6cofdbsooabs4ds53f5c59990d1a2297
b799cee7ca88e32b23867ad61dag98eo
b82eoodcegqe8cq79d1231007d39a040e
b8dod6278e30f2143062206027b947f9

9dyc3389efcby5fc3fo8bc8e289256e0
9e38bbzfad42a4fff7084e2e22768de8
9e7aogy76bofcdasyf3d232325e71422
of43af191437cc10aey8fbgaga4feasy
9fb83f7dcgcqfad2y922c25caeeabbyy
a0232dbggbgbgaasee85397a90agses7
aogdsb3376a8fddbo3667c7896a6abgo
a1233745dcyyc2ca8oibe3agycbayffc
a27d0483015coc03c63d72ef35bb8cbe
azedb82bbef539dfsad7201bge290208
az7dbazbaidgeobgbe3ye7ebf82579f5
a3a823abd653691227bf8d35c88e2boc
a44366ea0764087efbfb21132fbgbabs
a538edozfs1asffd834cebseifagcf76
ay56fd2efa1e84718486d1bibygaz2243
ayc33bf6cbdooygeqdoydgeads453ed6
a81dyd49bo8430c7e113938fe8a39059
a8681b151753docq0fb8506c4bcaasfs
agoo2a1a2bgbf1082b5d7971887ayf2e
ag4agads49fbbae6a85836f9124a5720
ag8erbc2ffad6d49f152686f96788dc3
agcfg41025a55b22bbs6f5dbe32074ab
aa47f8oe669d593afyaca3y5y{fc8203
aab6c8087co5c7f45601d6243ac98boc
aacb735438150b870fc8e3acbofay745
abe3oafy3dcg139bb1isf416eebyyd2a1
ac5ff80a85123dfod49056032bee3178
adoybeae6755922e6053427bce7dgedo
ad16{818470dogbebg757b873d3feb2y
adacie3ee33539259c0247c2ecd2b6ge
aec1554bd6d16a309187809d658cf34f
aedaf8bcb483bg6fbg98c41e90f678e4
af34cdcyd8967e7633fdc1ao355b30e7
boocbaibdacs2b817defafad2y560bf3
bi1cdaef763c2b3735749375c87das1b
b163c5000cd9eo8c41982188f3f4c802
bicsofefcday33cgyc50092068cc11oa
b245ed377508fo1bf6azodd2ds50c6¢c5
b2e6f28df5466e9a37c60650ebedse21
b464459e265deb6c10cc3f70491315b82
bsso0acy58f5c3baesat113faidyy2780
b6091e07815030444f8ag9a777{fb72e5
b65d46coebfdcbs3bsyife651cabf31b
b6age2cs5ae1baa851b8abbbof6528a2f
b6e43cb2184baf4cao8086ff2264eect
bybo1831ab619765b1fb3589e4dd3565
b8c3efoq97der9446aobbga8b242a8c2
b8e1be3732343d63cb8c4fd84228cgca

Continued on next page

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

b8f414b2c6bs39f2cc310dd951304fd7
bocgaf53dac38888bdoyesfsdasbgccd
baed21297974b6adf3298585baay8691
bb8d8f3dcobc261118b3e52d6850c0ey
bcog730a1877¢79299f3cc5124bgeb1d
bd4sfezg9d3s9ac635fa87e209149a084
bdga2895d87ed6ofcoo17fd2213119€ea
bdbe835094406aa6ea837ad6bod3b6c2
bdf46368154be6327f5830bfg59d36cf
bfs023ce4fg9edcigby7acg72bfg742a
bfcd3gsef32abagcb210dddfof32bodo
co785f417aaf685af51c1212a0aa955¢
codobg1a38ec4e69bddggbbbdcfada66
c1d81beycb3cdceey45e5c6doyooze14
c297eee5ee9f8489519ca3d888e4c16b
c3dya19824da82aagy056400b6bybasz8
c41dofebdbageaegeffsee3fgbdy2cbd
c45a6eccoe115ccafbdb624f60d2918
c56d5e988b72166651cc925a0f203ce9
csaee1e6o0e4183e7edaseabfes3bes40
694832a7bo625acgofd2cdc312fealg
c72238b422cf8c73589159acab5bcqeo
cy74dg6e1d8181ce5bdgd435d54bfgyce
c7b338d97488367276f1bceqab245cca
cycecfazsoobs37adbedceces69fazq8o
8241996203399e271bb3591dbde255a
c867554929d2cf5bfsbo453979bfaa6bf
cgbage3d8d1984cbdbec208a8f65deoc
cay6f21c17ac39166a9965f98cebsasy
caabf226do43938a3d1eayidcbbedf18
caef45377fba37f9839f89b87e0ga51c
cboadyse725eff6ae358b7b32098f800
ccq027dbfe32d73626daiabg1f34ces3
ccb69aaeqc2eag87a1dy18cbozgbebfaz
cccc302257610082fo64ee7d743095b8
cdyoeecg255ea47acab1a32921800fba
cdd42d224cabbgbs455a660796e98b52
cdf59503c968048b5a5359cdeb4c2d84
ce8d8f47969e704a7e3602a9cb1536a4
cedbegofs114a561dasgbafd24dabdf1
cf68{6c8bb88d7d716863c187e8959af
dos0737ba5783673142da45ff521987e
do672bcob23ed15ea25fdac8o8cabyy1
d146984e4e4d33f6c9925044649c732¢
d199468856457236221f132c8a222a1d
d22791312dff3f12401bb1f2f37b5b87
d3367aefg1417ee4991ed7680cocasdf
d369380616c2d38bg34f57eab8b706e2

b8f8b8edoosesy71deg82ccfe7oc36e42
boeye85faaecdcb25secoac8478ccogas
bb3c3d56c936b77920f72bdgc4958cfc
bbacsc1813¢43845344726e549ddb1b8
bceofecqb42d6964a88e097311bf655¢
bds63a18e5fc36acad88599e16efocb8
bdaz2coz2b8aesdeb07227459f60f5392¢
bdc31b71eb76a8356183a8716b3e036b
be713bb1fg2715d30560e3932fccobcb
bfc3900cgbs0dc8d63d48e8072399b2b
bff89oo00110d2407c98362f49054b5b
cocsb181cof1220b05134f186b73449f
codod27ad4403a31e24f674146cd619d
€206992f7c6836ecba227a6e29ae7609
c307b109901ca566d4244eb319d642de
c3ebazecy1c952f1098389byc3e2594e
c4489745d1d871523961995a9ba00246
c4828afddoe365d9ab9g9c83aag3fo13y
¢5938b91184c188fb5ced8738bcfazf3
c6713b1c6db25dd962cbbgd23e8cd35a
c71929da3easda497f1f89199cy7d1ac
cy29d202af55e981feg87dd3az131bce
cy8120aa5124274b458ebbdcescd6oce
c7beb7c63a9698c17230d369e36d 5eff
c8oacbg8bb2fc3y70d21877c215765€82
c86439ecd578a5878f99986275bcb785
c8ebag713e9aay3517cb580667cdfo6b
c9f28696fbo3b65abcc2adf61a2ffbebs
caagf218a0ad6331e31a2948931bgcsy
cadb6ecceebobe126c2725b561833¢75
caf65a2e4dcy15a2ay7e2ddccs3bgof5
cb8c89fbb6{f9066486d628efe3630809
cc62c38670doc8gbeo319d4br4e79947
ccy55bfe842d44f14d87b77848e4ed6d
cdg9f1eofyocb74976fa741316081c9a
cdcc63adaassibeqibb61daodffbacac
cdf33e1ef314e6928eacgaeqf6ff3660
ce78f54b8409ae1ecce6f53a63a87bfs
cebfc2e11ef6e6155b42893a386066ed
cfsg6eefs2ab2e866825779b10380e66
doo34fge2cbdgb1588d31fdcfsa8a8bs
dos95f53a68e289e55c9aa37546c6c89
dof1o15c0aabef6caz60b807e452a311
d158304fo91f1€994120082cc5103e5d
d2oadsc65e12do1fdegesd332baees8d
d277417d0o4f5e8377b6d211679772364
d33es0c227aao1ec4d8d225144b8f6fg
d3cgabas7cg1be8fs54ebdgqs5b6dd3437

Continued on next page

55

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

d416917130eb38a3f47ebd351809578¢
d485471c1f5dagcaddcdaagen6397933
ds22acefici1be2bsdoofcfyfees609d
dsb6ddaa188fbdgscd14f50d69204b7e
d67foe1fc1334e548doagg3200535ebe
d6d93848388714bgof16cafye8obabbs
d74£59d6986794a8d08f43a590aefdsa
d7c4cf80641fcfo22c5e4fc9768cceoo
d7dgagcec107f9dby83446e39bff8dbog
d826f06397d887cbge59f437295ce312
d8ccfeffoybcg87441bgbeac152809bc
d9568a04f480050576d275af369dgc14
dgc296bagsffai4byofcsd8eacs58fbo
dgd2956dfdg4cfabs9dbois0days78ae
dago6889ecq8ddggbagcd2beofgqbsbs
db2869go6dae31bdios11fgeccs3aocy8
dbc308fc61bebcoy1342e9678a65d788
dcaf523754ac143dads41d64bcob31ed
dcfaob5305640443622edd8d7ag83afs
ddai16b2129a691051b49acd241c5465f
de2fg7d310faebb470c3deg3bsfs8afo
df3dg698ae3dadi9127d25ca3z5211971
dfyo2cb20gaea14dy28e334cf80309bs
dfcyad1a64c8c9as4dbazs395cddbayf
e03881219a1cae25cbdcffc319fb129d
eof6ef6oc2d34ddq9042ed5b287ceo08y
e1615caacbcgbcgf332735ac21c5a037
e1c3bo474914f52381bos4c8fefge140
e27eb6ccsad18ace1c1591026a368bfe
e35ec35ffe86238a3a7bg9851f9fbo84
e3baaf38ag4fe84445edfsfdfc6f5339
e3f4c8f58bady6531fo12ccge2b2e2se
e423degds06d6bdgbgaasycegf239eat
e542190dc5058a8902b217e46ed c88ff
esa481dogey35747f8cq46dydfgabs2er
ese8c17801f7c27d506e0906ab734ecy
ebeb12aao5dabazcf4ficaf485518fes
ebeb3eb3ydf62dag813cy5d43a1fcb8f
e7e5cf3698683455744529¢ebasa358a2
e8a8c5877fo512do728f1262a0b47314
e8cbc216¢cc2edafcas825d2d65054¢cc5
e97{8501805f6dfodb440a4ac3afobes
eagec94611d790063b3d48427af837a9
eb1a16854915bf5d3d10fof22ee9d237
eb4coe8744edogby1af7d8373c717efc
ed42fb2c20b2b366995a812ad466besg
ed8721d5865f2393cfff18f7ef18895¢
edbrycyf26adecqbd34e890673dodbfab

d41fo6f5901cad65f6b3d06409095809
dgdbf6e2fgcbacd647bcbff8acqeds4e
dssea67f328f0431e971317a8390b020
d6of28c5414bebaaa358d14ddy9bf8bs
d6cbe2f164dco236df2dfacg1dsbegb
dyo13c912e48b10dcbb51a52f87d7c27
d7994b8dc70c86682fb2c6dgdf1307ay
d7d8ccscicfaae6abdbbi23dg36ay610
d809535cbodg9a1doaefdcbs794c7a0g
d86db1f18ab3e1d48fg7212beeeddyc3
dg53180001a27c8d93ccd3956499802d
dogsd22f3312cc34e4d23f5bef393d62b
dgcc7c96d37030dgbsee8coas1137356
dge333a988ebre147318d3b3e8bagcbg
dabf42a499293991b1dgsfe6022341de
db5088b2f8addb295646530580c86abe
dbdc638def1aan26556381dbfc365b2f
dc4389744f753fdsbf2boeof61047129
dd2c55bo30659ba383eegbcsbfs38f5e
ddc81b7546becifb8abef356f5c2454f
de8112218bba2334fcbcscid4oocboos
df610829fe276fc3ac41a4a67fbfaobg
dfggcyad2b879d4e5e0842d118bg29bs
dffacyg9ef676d4abofoy91575dde37bg
e0697461cdb6gb1eab2daf1571e68bfca
e109836a2e7146ac1cf54f62800563c1
e1b435a2bod201149fc4a2be883dc319
e1ce3da256b2654cdfdfozd6bgbe1yyf
e2c82a0891c23d5afc86cfdb115e6b7C
e35edb8adybi18dd38256ec6foz60byad
e3d8oc6b2ea1bg3gsbyfaz69dyo88gazd
€413393560638c6ffge6dfdes31ecbee
e4b82bsgbs2787f2b7fdff6fc6518bcg
e564a2643af6840734ce5ay7eaieg3179
esbscf460953ed11f006153941a6cc9b
€621488cc9863e368c1by65a609b1e80
ebeyd456512f492ddy8bgosdbceza1s3s
e714aco71c6bb3853ae6e61720bb8ae1
e89c3063a53479bed27324acs5f420a5a
e8adoos205a3byas2bfay3134915114a
e93fqcdd1di173cf2886bebca186cf821
eayabobcace4fb3e16c1664c8acabege
eaa570561523f1759bab32c85fgae267
ebgofe2dcy178a07dc52f24390a575e9
ec5a5b4420810494¢18367bcgyaza8bs
ed4es5953c74f95c1250337e4a700d438
edg88cbcfsay3ded1d4feazyy635a3f6
edfiaa18yf3f47fe6bg4dob17097568e

Continued on next page

TABLE 8 — CONTINUED FROM PREVIOUS PAGE

MDs5 HASHES

eeo083fc36481b93367c87{818cego3as
ef7947f659f74e2bsa1ed6b8b367cd46
efe183c9a23bg6f321f235e87717a4b8
fo1f523dcae2960898d68b811b8f3558
fo4d843bdod36aeab213aeef86553adb
f1o4c1cdby72b8f2ff5c9d7cf7db6267
f196e2d85ebooc87dc2461ca85846d35
f26518fage4404333a3163904723c17a
f33a6e7a62700f495072d38d23e2f131
f481dacds3ay2bgfrag405068c0408¢5
f531a20326f16€a9a1667c02970e8798
f58f6b22f6cdd4228feq4c987cacaaba8
f62ddgad2bgsagayybgdag2co1052a03
f6sabbafa86ddf2249074c9fccqeeco8
f6d61302d769fb29d380435e4f6e0edb
f74f63be63d4caaoaq6249f461285bct
f7e02bd8390984ae14dd6cb1362a9881
fg7fcca29d20baegogc8fi2ccyfegaae
faace938224be13foeqab1353086b21c
fb2ac457078e986bofb27355e783bdd 1
fcafq7a1d4dc8ddesf3secfdgacegg62
fd736fo6d95b164c50a996f27d23265f
fdbdeze1fbgd183cee684e7b9819bc13
fegaz4f637d72cf1aads4409f4777a78
ff1o6bafge1c3sec2796ff930264f750
ffd51c078232fbdgb3bs07b4g3bfer2c8
fffog529e2bbse7dcycc4250c8b80613

ee2fy450e1d3ege25d50cd8e623a532
ef8b1fa39882889a44ef2e41b4270158
fo193f8geb2dys05e9af1ea444585304
fo354d733bcs7021594dbagc16194320
focbgc2245f039¢56¢3339453e8dc868
fiobyyde13fffgbd80281526fod1b7e6
fibi81aeeagdogcs10e641b5599adbid
f308d8bdcc6dfbd79dcg5676553fb2a2
f3cdboe349a7388996039daazaecibiy
f4b8fad139e06829bffbcfeofb85d45f
f57begds5dgsfee56d892c8act82aqd1
fsa3zao6cggeo1b856e55b3a178cedds1
f6343a86cf40defoy5a94f4145b4ccag
fécofgaser913o6agaz3csofabfdg2sy
f6£8360523c986ady59ee7cfdibisdaf
frd17be815abfoc384bogbgbebff26fa
f84co9d2f84e993abos762a513b1021d
fggbcgb65c058bdd470bdaycybféde8o
fae62b1eoac19od25084d8d8abyoe358
fc620d986b44c666d4fatdcazbyidcay
fd22b70257316b2863f07a36bffc5d8f
fdbd4b86bd358188egodaz4f17e17eb6
fe13dag349c2b8e6bd4f381a77739812
fec6d5047337doc9g26415f741f63bb8e
ff11067e2ad7731e41{89896€ebe44aof
ffdcb4f37374c7b4b26cacf838b26c56

57

10

15

20

DISSECTION OF DOMAIN GENERATING
ALGORITHM

Listing 3: Dissection of Domain Generating Algorithm used by Conficker A.
Source: [53].

void sub_generate_domains () {
GetSystemTime ((struct _SYSTEMTIME +)&SystemTime) ;

if (!(SystemTime > 2008 || month > 11 || day > 25))
return;

seed_random_gen () ;
get_time_from_popular_site () ;
succesful_download = o;

for (int ctr=o0; ctr < 250; ctr++) {
prefix = GlobalAlloc (64, 32);
domains[ctr] = prefix;
length = PRNG() % 4 + 8; //range 5-11

for(int i=o; i < length; i++) {
prefix[i] = abs(PRNG()) % 26 + ’a’;
}

prefix[length] = o;
strcat (prefix , TLDs_array[PRNG() % 5]);

59

10

15

20

25

30

35

40

SCRIPT FOR EXECUTING MALWARE

Listing 4: The script executed to generate the data set.

#!/usr/bin/python

This script runs the malware on a KVM machine.

The script will follow this order for each malware sample:
1. START malware <malware> on <datetime> (log)

2. EXECUTE malware on workstation

3. WAIT for x minutes

4. KVM_DESIROY workstation

5. STOP malware <malware> on <datetime> (log)

5. LVM merge clean snapshot

6. KVM_START workstation

from datetime import datetime
from time import sleep
import subprocess

Declare variables here

starttime = datetime.now()
logfile_name = "malware%s.log" % starttime
malwarelist_name = "malware. list"

minutes = 3
DEBUG = False

Some help—functions

def log(msg):
""" Prints msg to the log and the stdout """
logfile . write ("%s\n" % msg)
print("%s" % msg)

Open the log file and set the start.
logfile = open(logfile_name, 'a’)
log ("Started script on %s" % datetime.now())

Open the malware list and start the for—loop
malwarelist = open(malwarelist_name, ’r’)

lines = [line.strip () for line in malwarelist]
num = o

for malwarename in lines:
num += 1
log ("START malware %s name %s on timestamp %s datetime %s"
% (num, malwarename, datetime.now().strftime ("%s"),
datetime .now ()))

log ("EXECUTE malware %s on workstation" % malwarename)
if DEBUG:

61

45

50

55

60

65

70

75

8o

subprocess.Popen(["ssh", "—p", "2222",
Administrator@192.168.1.2", "echo 1"])
else:
subprocess.Popen(["ssh", "—p", "2222",
Administrator@192.168.1.2", "C:\malware\%s" %
malwarename])

log ("WAITING")
if DEBUG:

sleep (minutes) # sleep <minutes> seconds (for debug)
else:

sleep (6o*minutes) # actually sleep <minutes> minutes

log ("KVM_DESTROY workstation")
subprocess.call (["virsh", "destroy", "workstation"])

log ("STOP malware %s name %s on timestamp %s datetime %s"
% (num, malwarename, datetime.now().strftime ("%s"),
datetime .now ()))

log ("MERGING LVM clean snapshot on workstation")
subprocess.call (["lvconvert", "—merge", "/dev/ewiig39/
workstationcleansnap"])

log ("LVM_SNAPSHOT")
subprocess.call (["lvcreate", "—size", "5G", "—s", "-—m",
workstationcleansnap", "/dev/ewii439/workstation"])

log ("KVM_START workstation")
subprocess. call (["virsh", "start", "workstation"])
Wait for start

while (o != subprocess.call(["ssh", "—p", "2222", "
Administrator@192.168.1.2", "—0", "ConnectTimeout=1",
"echo 1"])):
log ("KVM_WAIT for start")
sleep (5)

log ("KVM_STARTED")

log ("")

if DEBUG and num == 1: # Run num times.
break

malwarelist. close ()
log ("Malwarelist closed. Done, shutting down.")
logfile.close ()

vim:set sts=4 sw=4 ts=4 ai et:

"

62

LVM AND KVM SETUP

Snapshots in LVM work with modification tables. The original Logi-
cal Volume (LV) keeps writing the data, but from the moment a snap-
shot is made, the snapshot volume also keeps track of every change
to the original LV. When a merge (revert) of a snapshot is requested,
the changes that are in the snapshot volume will be reverted in the
original LV. This changes the state of the original LV back to the state
that is was in at the moment the snapshot was created.

A Kernal Virtual Machine (KVM) guest can be assigned an LV as
hard disk. On our test system, there are six LVs present: the root
filesystem and swap of the host system, three for the KVM guests,
and one for the snapshot of the workstation. KVM is a virtualisation
tool which works like Xen, VirtualBox, and VMWare. The hypervisor
is a software package called QEMU. An overview of the disk division
of the test system is in Figure 6 and the the KVM overview is in
Figure 7.

wv | w | w | 1.
Primary partition Volume Group
Physical disk

Figure 6: The LVM setup used in our measurements.

WS Snap

| HP WS DNS
QEMU

Host system

Figure 7: The KVM setup used in our measurements.

63

	1 Introduction
	2 Honeypots
	2.1 Background
	2.2 State of the art
	2.2.1 Medium-interaction honeypots
	2.2.2 High-interaction honeypots
	2.2.3 Conclusion

	3 DNS
	3.1 Background
	3.2 State of the art
	3.3 Conclusion

	4 Flow data
	4.1 Background
	4.2 State of the art
	4.3 Conclusion

	5 Experiment setup
	5.1 Workflow
	5.2 Honeypot
	5.3 DNS server
	5.4 Flow data
	5.5 Workstation

	6 Experiment results
	6.1 Honeypot
	6.2 DNS data
	6.3 Flow data
	6.4 Correlating the results
	6.5 Samples that stood out

	7 Conclusions
	7.1 Future work

	A List of malware samples
	B Dissection of Domain Generating Algorithm
	C Script for executing malware
	D LVM and KVM setup

