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Modeling & Control of a Ball-Balancing Robot

Abstract

A Ball-Balancing Robot (BBR) is an omni-directional robot balancing on a single ball, which
makes it inherently unstable. This project follows the goal of developing a model and a controller
for this robot in order to make it balance and move around as a demonstrator on fairs.
To achieve this goal, the three-dimensional dynamic behaviour of the robot is approximated by
three independent two-dimensional models. Due to neglected dependencies between the two-
dimensional models and the conversions that had to made from the two-dimensional models
to the three-dimensional system, a three-dimensional model is developed to describe the full
dynamic behaviour of the BBR and it is linearized around the position the BBR stands upright.
Based on the linearized three-dimensional model, a linear controller is designed. The controller
calculates the appropriate motor torques based on the measured tilt angle, required to keep the
BBR dynamically stable. First a simple, easily implementable controller is designed with LQR
control theory to make the BBR ‘fair ready’ as soon as possible. Later a more advanced controller
is designed with SISO loopshaping. Simulations prove that the performance of the system with
regard to balancing is significantly higher with the controller, designed with SISO loopshaping.
During the implementation of the first controller, it turns out that noisy sensor data forms a
serious restriction on the performance of the BBR. In particular, noisy gyroscope data limits
the magnitude of the controller gains. The noise is significantly reduced by attenuating system
vibrations, oversampling of the gyroscope and filtering the motor inputs, which results in a robot
that is able to balance.
Furthermore, based on the developed three-dimensional model, research is done to investigate
under what requirements the system remains stable with the developed controller. The aim of
this research is to analyze the influence of uncertainties in the developed model and to predict
the influence of future changes on the stability of the system.
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Modeling & Control of a Ball-Balancing Robot 1. Introduction

1. Introduction

1.1 Motivation

Traditional wheeled mobile robots are equipped with two independent driving wheels. Since
these robots have two degrees of freedom (DOFs), they can rotate about any point, but cannot
perform immediate motion in every direction. To overcome this type of motion limitation,
omni-directional mobile robots were proposed. They can move in an arbitrary direction without
changing the direction of the wheels, because they can achieve three DOF-motion on a two-
dimensional plane. A special kind of such a robot is a Ball-Balancing Robot (BBR). This system
is inherently unstable, as it will immediately fall down when no active control is applied to the
wheels on the ball.

ALTEN Mechatronics is developing such a robot for promotional purposes. The robot shall be a
dynamically stable robot, designed to balance on a ball and to move in every direction. It shall
also be designed to be robust to disturbances and to navigate autonomously. In the future, more
intelligence will be added, such as following and approaching people.

Figure 1.1: The BBR as demonstrator on a fair.

1



Modeling & Control of a Ball-Balancing Robot 1.2 Description of the BBR

1.2 Description of the BBR

The BBR is a robot on top of a ball, that drives the ball using three actuators. The BBR is
balancing by measuring its tilt angle and calculating the appropriate motor torques needed to
keep the BBR upright. The ball is a medicine ball and the actuators are three 2-row omni-wheels
driven by brushless DC motors. The body of the robot includes the battery at the top, the Inertia
Measurement Unit (IMU) that measures the angles and angular rates of the body of the robot
with a sample rate of 200 Hz, see Fig. 1.2 and a microprocessor that receives data from the IMU
to control the actuators. Furthermore, the body includes the motor encoders that measure the
angles of the omni-wheels (see also Fig. 1.2), which are needed to derive the position of the ball
for position control of the BBR.

Figure 1.2: Sketch of the BBR and the relevant outputs.

1.3 Goal

The goal of the internship project is to develop a model of the BBR’s dynamic behaviour. The
goal of the master thesis is to design and implement a controller that stabilizes the system, such
that the BBR is able to balance with tilt angles of at most 10◦ and is able to track given position
set points. Furthermore, research will be done to investigate under what requirements the system
will remain stable with the developed controller.

1.4 History of BBR’s

Several BBR’s have already been developed. On the following BBR’s quite some research is
done:

1. The first BBR (shown in Fig. 1.3a)) is developed in 2006 at Carnegie Mellon University
(CMU) in the United States [8]. The robot has about human size with the aim to let it
interact with humans. Later also arms were added to the BBR [17]. Special about this

2
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BBR is that is has three legs for static stability and that it has a drive mechanism that
consists of four rollers: two active rollers, driven by DC motors, that actuate the ball and
two spring-loaded passive rollers opposite the drive rollers, that apply a force to the ball
to maintain contact between the drive rollers and the ball. That implies that the robot
cannot rotate around the vertical axis. Later, the two passive rollers were replaced by two
active rollers, due to unequal friction for forward and backward motion and also a drive
system was added for rotation around the vertical axis [15]. This means that in total 5
DC motors were needed, which is quite expensive. A lot of research has been done on this
BBR, which can be found in [8],[15],[13],[16].

2. The Tohoku Gakuin University (TGU) in Japan developed a BBR (shown in Fig. 1.3b)) in
2008 [7],[6]. This one is small compared to the BBR of CMU, but special about this BBR
is that it can perform the same motion (including rotation around the vertical axis) with
only three motors connected to three omni-wheels that drive the ball. Also this robot can
carry loads of at least 10 kg.

3. The University of Adelaide (UA) in Australia developed a BBR using LEGO Mindstorms
NXT (shown in Fig. 1.3c)) in 2009 [3]. It is a small robot of about 20 cm high, completely
built of LEGO. It has only two wheels to drive the ball.

4. The National Chung Hsing University in Taiwan developed a BBR (shown in Fig. 1.3d))
in 2012, similar to the one of the TGU [19]. It also has three omni-wheels and is of about
the same height.

5. ETH Zürich in Switzerland developed a BBR, called Rezero (shown in Fig. 1.3e)), in 2010.
Like the robot of TGU, it has three omni-wheels to drive the ball. It has a high dynamic
robustness, achieves a linear speed of up to 2 m/s and a tilt angle of 20◦ [2].f

1.5 Structure of the report

The report consists of seven chapters, including this chapter. In Chap. 2, a two-dimensional
(2D) dynamical model of the BBR is derived. Due to shortcomings of the 2D model, a three-
dimensional (3D) dynamical model is derived in Chap. 3. In Chap. 4, a controller for the BBR
is designed, which stabilizes the system, such that the BBR is able to track given position set
points. The implementation of this controller is described in Chap. 5. In Chap. 6, research is
done to investigate under what requirements the system will remain stable with the developed
controller. Finally, conclusions and recommendations can be found in Chap. 7.

3
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a) BBR CMU. b) BBR TGU.

c) BBR UA. d) BBR Taiwan.

e) BBR Rezero.

Figure 1.3: Overview of different BBR’s.
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2. 2D Model

A dynamical model is required to get a deeper insight in the system. Also to control the BBR,
equations of motion are required, which can be derived using a dynamical model of the BBR.
The aim of this chapter is to model the 3D system as three 2D models and to verify if the
combination of 2D models is representative for the three-dimensional system.
Different 2D models for a BBR are already derived by [3], [2], [15]. However, it is still useful to
derive the 2D models to get a qualitative understanding of the dynamics of the BBR.

In the first paragraph assumptions will be made. In the second paragraph a description of the
2D models is given. After that coordinates will be defined in the third paragraph. In the fourth
paragraph the equations of motion for the vertical planes will be derived. The equations of
motion for the horizontal plane will be derived in the fifth paragraph. In the sixth paragraph
the relation between the torques of the virtual motors and the torques of the real motors will
be derived. Several parameters of the model, including the moments of inertia, are estimated in
the seventh paragraph. Finally, in the eighth paragraph, simulations with the 2D models will be
done.
The values of the parameters used in this chapter can be found in Appendix A. Extensive
derivations of equations in this chapter can be found in Appendix B.1.

2.1 Assumptions

Before a model of the BBR can be made, some assumptions will be made in this paragraph.

Independent vertical planes

When modeling the two-dimensional planes, the vertical planes are assumed to be indepen-
dent.

Rigid bodies/floor

The total system is assumed to consist of two rigid bodies, namely the ball, the body of the
robot with the drive system and the omni-wheels attached to it. The assumption of rigid bodies
neglects deformation of the bodies. Furthermore, also deformation of the floor is neglected.

Friction

It is assumed that, besides static friction, all other types of friction, like rolling and kinetic
friction, are negligible.

No slip

It is assumed that there is no slip between the ball and the floor and between the ball and the
omni-wheels. This assumption implicates that

7
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� The applied torques of the motors are restricted to the range in which there occurs no slip
between the ball and the omni-wheels.

� It has to be guaranteed that the static friction is high enough, i.e. that the static friction
never will be overcome, because then slipping will happen. Particularly, high static friction
that prevents the ball to rotate around the vertical axis has to be guaranteed by limiting
the torque around the vertical axis.

� The ball is always in contact with the floor, so no jumping occurs. Also the floor is rough
enough to prevent slipping and it has to be taken care off that there are no obstacles present
that cause the ball to slip.

Horizontal floor

It is assumed that the floor, on which the BBR moves, is horizontal, which implicates that the
ball has no potential energy.

Negligible time delay

It is assumed that the time delay between the measurements of the sensors and the control of
the actuators is negligible.

Omni-wheels

It is assumed that the 2-row omni-wheels, which have more than one contact point, can be
modeled as 1-row omni-wheels that have a single contact point.

2.2 Description of 2D model

Fig. 2.1 shows the cross section of the 3D system.

In order to make adequate 2D models of the 3D system, the following modeling choices are
made:

� The omni-wheels and the motors are modeled as virtual actuating wheels that include the
motors, like is done in [2]. Each 2D model contains one virtual actuating wheel that rotates
around the axis orthogonal to that plane. The relation between the torques of the real and
virtual system will be derived later in section Sec. 2.6.

� The 2D models of the different planes only model 2D motion that is described by the
generalized coordinates of that plane. So the 2D models are not a projection of the 3D
motion in 2D spaces, but they describe the 2D motion in 2D spaces. For example, the 2D
model of the xy-plane does not describe the translational motion of the ball, but only the
rotational motion around the z-axis of the body.

The next modeling choices only hold for the model of the vertical planes:

� The body is modeled as a solid cuboid. Obviously the mass of the body is not uniformly
distributed. This is modeled by dividing the body into an upper and lower part that both
have a uniform mass distribution, but a different density. This makes it possible to model a

8
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Figure 2.1: Modeling the 3D system with three 2D models.
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centre of mass (COM) that is not exactly in the middle of the body. This modeling choice
doesn’t have influence on the model for the xy-plane.

� The ball is modeled as a disk that only rotates around the axis orthogonal to the plane. The
COM of the body is attached to the rotation axis of the disk with a rigid rod. The virtual
actuating wheel is also attached to this rod. The body can rotate around the rotation axis
of the disk independent of the rotation of the disk.

The next modeling choice only holds for the horizontal plane:

� In the horizontal plane, the ball is modeled as a disk with radius rS . The virtual actuating
wheel is connected to the vertical axis of the disk with a rod and the body is attached to
the rod, such that the COM of the body has the same x- and y-coordinates as the centre
of the disk.

The 2D models are sketched in Fig. 2.2, one model for the yz-plane and one model for the
xy-plane. The model for the xz-plane is identical to the model for the yz-plane, so only the
model for the yz-plane will be treated here and the equations of motion for the yz-plane can be
easily converted to the equations of motion for the xz-plane. A description of the parameters,
used in Fig. 2.2, can be found in Table 2.1.

a) Model for the yz-plane. b) Model for the xy-plane.

Figure 2.2: Sketches of the 2D models.
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Table 2.1: Description of parameters used in sketches of 2D models.

Parameter Description

rS Radius of the ball
rW Radius of virtual actuating wheel
IS Moment of inertia of the ball
IW Moment of inertia of the virtual actuating wheel in the yz-/xz-plane
IW,xy Moment of inertia of the virtual actuating wheel in the xy-plane
IB Moment of inertia of the body of the robot in the yz-/xz-plane
IB,xy Moment of inertia of the body of the robot in the xy-plane
l Distance between COM of the ball

and COM of the body of the robot

2.3 Coordinates

To derive the equations of motion, coordinates need to be defined. The coordinates are defined
like they are shown for the yz-plane and the xy-plane in Fig. 2.2, where θx and θy indicate the
orientation of the ball, ψx, ψy and ψz indicate the orientation of the body and φx, φy and φz
indicate the orientation of the virtual actuating wheels. From θx and θy the translation of the
ball along the x- and y-axis can be easily derived.
The vertical planes have both two DOFs, namely the rotation/translation of the ball and the
rotation of the body. The horizontal plane has only one DOF, namely the rotation of the
body, because it is assumed that the ball does not rotate around the vertical axis, see Sec. 2.1.
Therefore the minimal coordinates for the three different planes are defined as

qyz =

[
θx
ψx

]
,qxz =

[
θy
ψy

]
,qxy =

[
ψz
]
. (2.1)

2.3.1 Cartesian coordinates yz-plane

Now the minimal coordinates are defined, the positions, expressed in cartesian coordinates, of
the ball (denoted by yS and zS), the body (denoted by yB and zB) and the virtual actuating
wheel (denoted by yW and zW ) can be written as functions of these minimal coordinates. The
coordinate frame is chosen such that its origin is on the same height as the centre of the ball,
see Fig. 2.2. [

yS
zS

]
=

[
rSθx

0

]
[
yB
zB

]
=

[
rSθx + l sin(ψx)

l cos(ψx)

]
[
yW
zW

]
=

[
rSθx + (rS + rW ) sin(ψx)

(rS + rW ) cos(ψx)

]
.

(2.2)

Those coordinates are needed for calculating the equations of motion for the yz-plane.
A description of the used parameters can be found in Table 2.1.
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2.3.2 Cartesian coordinates xy-plane

In the xy-plane, the coordinate frame is chosen such that its origin is located in the centre of
the ball. The only minimal coordinate is ψz, so only motion that depends on ψz is taken into
account in the 2D model for the xy-plane. That means that only the motion of the virtual
actuating wheel and the body is of importance for the equations of motion. The body only
rotates and doesn’t move in the xy-plane, which implies that only the position of the virtual
actuating wheel needs to be determined. The position of the virtual actuating wheel is expressed
in cartesian coordinates and denoted by xW,xy and yW,xy. Writing xW,xy and yW,xy as functions
of the minimal coordinate ψz yields[

xW,xy
zW,xy

]
=

[
(rS + rW ) cos(ψz)
(rS + rW ) sin(ψz)

]
. (2.3)

Those coordinates are needed for calculating the equations of motion for the xy-plane.

2.4 Equations of motion for YZ/XZ-plane

In this section the equations of motion for the yz-plane will be derived. In the same way,
equations of motion for the xz-plane can be derived.

2.4.1 Lagrangian method

The equations of motion are derived using the Lagrangian method. This method consists of the
following steps:

1. Express the kinetic energy (denoted with T ) and potential energy (denoted with V ) of all
rigid bodies as functions of the minimal coordinates.

2. Express all external (or non-potential) torques (denoted as τext) as functions of the minimal
coordinates.

3. Define the Lagrangian L as L(q,q̇) = T −V (where q is the vector of minimal coordinates).

4. Calculate the Euler-Lagrange equations d
dt (

∂L
∂q̇i

) − ∂L
∂qi

= τext,i with i = 1,...,n where n is
the length of the vector q.

This will result in the equations of motion.

2.4.2 Kinetic and potential energy of the system

Energy ball
The kinetic energy of the ball is defined as the sum of the translational and rotational kinetic
energy:

TS,yz =
1

2
mSv

T
S,yz · vS,yz︸ ︷︷ ︸

Translation

+
1

2
IS θ̇

2
x︸ ︷︷ ︸

Rotation

(2.4)
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where mS denotes the mass of the ball and where vS,yz denotes the velocity of the ball and
vTS,yz · vS,yz is defined as

vTS,yz · vS,yz = |vS,yz|2

= ẏ2
S + ż2

S

= r2
S θ̇

2
x.

Substituting vTS,yz · vS,yz in Eq. (2.4) yields the equation for the kinetic energy of the ball

TS,yz =
1

2
mSr

2
S θ̇

2
x +

1

2
IS θ̇

2
x. (2.5)

The potential energy of the ball is zero, because it is assumed that the ball only moves over
horizontal surfaces:

VS,yz = 0. (2.6)

Energy body
Analogous, the kinetic energy of the body is defined as

TB,yz =
1

2
mBv

T
B,yz · vB,yz +

1

2
IBψ̇

2
x

where mB denotes the total mass of the body and where vTB,yz · vB,yz is defined as

vTB,yz · vB,yz = ẏ2
B + ż2

B

= r2
S θ̇

2
x + 2rSlθ̇xψ̇x cosψx + l2ψ̇2

x.

(The derivation of vTB,yz · vB,yz can be found in AppendixB.1).

Analogous to the calculation of the kinetic energy of the ball and the virtual actuating wheel,
this yields the equation for TB,yz

TB,yz =
1

2
mB(r2

S θ̇
2
x + 2rSlθ̇xψ̇x cosψx + l2ψ̇2

x) +
1

2
IBψ̇

2
x

=
1

2
mB(r2

S θ̇
2
x + 2rSlθ̇xψ̇x cosψx) +

1

2
(IB +mBl

2)︸ ︷︷ ︸
I′B

ψ̇2
x.

(2.7)

IB is the moment of inertia of the body about the axis going through its COM. According to the
Parallel Axis Theorem1, I ′B denotes the moment of inertia of the body about the axis the body
rotates, namely the axis through the centre of the wheel. I ′B will be estimated in Sec. 2.7.

The potential energy of the body of the robot is defined as

VB,yz = MBgl cos(ψx). (2.8)

1The Parallel Axis Theorem states that if a body is rotating around a new axis that is parallel to the original
axis that goes through the COM, with a distance d between the two axes, then the moment of inertia about the
new axis is related to the moment of inertia about the original axis (denoted by ICOM ) by I = ICOM + md2,
where m denotes the total mass of the body [12].
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Energy virtual actuating wheel
Analogous to the kinetic energy of the ball, the kinetic energy of the virtual actuating wheel is
defined as

TW,yz =
1

2
mW v

T
W,yz · vW,yz +

1

2
IW φ̇

2
x

where mW denotes the mass of the virtual actuating wheel and where vTW,yz · vW,yz is defined
as

vTW,yz · vW,yz = ẏ2
W + ż2

W

= r2
S θ̇

2
x + 2rS(rS + rW )θ̇xψ̇x cosψx + (rS + rW )2ψ̇2

x

and where φ̇x is defined as

φ̇x =
rS
rW

(θ̇x − ψ̇x). (2.9)

(The derivation of vTW,yz · vW,yz and φ̇x can be found in Appendix B.1).

This yields the equation for the kinetic energy of the virtual actuating wheel

TW,yz =
1

2
mW

(
r2
S θ̇

2
x + 2rS(rS + rW )θ̇xψ̇x cosψx + (rS + rW )2ψ̇2

x

)
+

1

2
IW

(
rS
rW

(θ̇x − ψ̇x)

)2

.

(2.10)

The potential energy of the virtual actuating wheel is defined as

VW,yz = mW g(rS + rW ) cos(ψx). (2.11)

2.4.3 External torques

The only external torque of the system is the torque of the virtual motor. The torque of the
virtual motor transfers a torque to the virtual actuating wheel, denoted by τVW,yz. ‖τVW,yz‖ is
the input of the model and because τVW,yz only has a component in the x-direction (denoted
by τx), the input is ‖τVW,yz‖ = τx. A relation between the input torque and the torques that
directly controls the minimal coordinates, which form the external torques of the model, will be
derived in this section.
In Fig. 2.3 the external torques of the model are shown together with the forces that generate
these torques and the levers in case θx = ψx = 0.

Using the relation between φ̇x and the rates of the minimal coordinates θ̇x and ψ̇x, the geometric
Jacobian (denoted by J), which maps joint velocities to ‘end-effector‘ velocities, can be derived.
This transpose of this Jacobian can be used to derive a relation between the input torque τx and
the torques that directly control the minimal coordinates.

The relation between φ̇x and the joint velocities θ̇x and ψ̇x is given by

φ̇x =
rS
rW

(θ̇x − ψ̇x)

=
[ rS
rW

− rS
rW

]︸ ︷︷ ︸
J

[
θ̇x
ψ̇x

]
(2.12)
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(a) Torque of the ball. (b) Torque of the body.

Figure 2.3: Sketch of ball torque and body torque, generated by the virtual motor torque, the
tangential forces and corresponding levers in yz-plane.
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The relation between the input torque τx and the torques that directly control the minimal
coordinates is thus given by

τext =

[
τθx
τψx

]
= JT τx

=

[ rs
rw
− rs
rw

]
τx.

(2.13)

2.4.4 Lagrangian and Euler-Lagrange equations

Define the Lagrangian as

L(θx, ψx,θ̇x,ψ̇x) = TS,yz + TB,yz + TW,yz − VS,yz − VB,yz − VW,yz. (2.14)

Calculating the Euler-Lagrange equations

d

dt
(
∂L

∂θ̇x
)− ∂L

∂θx
= τθx

d

dt
(
∂L

∂ψ̇x
)− ∂L

∂ψx
= τψx

and ordering them results into the following equations of motion:

M(qyz)q̈yz + C(qyz,q̇yz)q̇yz +G(qyz) = τext (2.15)

where the first term represents the inertial forces due to accelerations, the second term represents
the Coriolis and centrifugal forces, the third term represents the gravitational forces and the
right-hand side represents the external torques.

The matrices M(qyz), C(qyz,q̇yz) and G(qyz) are defined as

M(qyz) =

IS + r2
Smtot +

r2S
r2W
IW rSλ cos(ψx)− r2S

r2W
IW

rSλ cos(ψx)− r2S
r2W
IW r2

totmW +
r2S
r2W
IW + I ′B

 (2.16)

C(qyz,q̇yz) =

[
0 −rSλψ̇x sin(ψx)
0 0

]
(2.17)

G(qyz) =

[
0

−λg sin(ψx)

]
(2.18)

where
mtot = mS +mW +mB

rtot = rS + rB

λ = mW (rS + rW ) +mBl.
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2.4.5 Linearization

In the previous paragraph the equations of motion are derived using the Lagrangian method.
For controlling purposes, the equations of motion will be linearized in this paragraph.

The state vector x (for the yz-plane) is defined as

x =

[
qyz
q̇yz

]
=


θx
ψx
θ̇x
ψ̇x

 (2.19)

whereas the input of the system is defined as u = τx.

The system will be linearized around the unstable equilibrium point, where all state variables
and the input are zero, i.e.

x̄ =


θ̄x
ψ̄x
¯̇
θx
¯̇
ψx

 =


0
0
0
0

 (2.20)

and

ū = 0. (2.21)

The linearization results in the linear state space representation, defined as

ẋ = A · x +B · u
y = C · x

(2.22)

where the matrices A, B and C are defined as

A =


0 0 1 0
0 0 0 1

∂θ̈x
∂θx

∣∣∣
(x,u)=(x̄,ū)

∂θ̈x
∂ψx

∣∣∣
(x,u)=(x̄,ū)

∂θ̈x
∂θ̇x

∣∣∣
(x,u)=(x̄,ū)

∂θ̈x
∂ψ̇x

∣∣∣
(x,u)=(x̄,ū)

∂ψ̈x
∂θx

∣∣∣
(x,u)=(x̄,ū)

∂ψ̈x
∂ψx

∣∣∣
(x,u)=(x̄,ū)

∂ψ̈x
∂θ̇x

∣∣∣
(x,u)=(x̄,ū)

∂ψ̈x
∂ψ̇x

∣∣∣
(x,u)=(x̄,ū)



B =


0
0

∂θ̈x
∂u

∣∣∣
(x,u)=(x̄,ū)

∂ψ̈x
∂u

∣∣∣
(x,u)=(x̄,ū)

 , C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
(2.23)

Implicitly differentiating the equations of motion w.r.t. the state variables followed by linearizing
them, will result into the following equations:(

∂M(qyz)

∂xi
q̈yz +M(qyz)

∂q̈

∂xi
+
∂C(qyz,q̇yz)

∂xi
q̇yz +

∂G(qyz)

∂xi

)∣∣∣∣
(x,u)=(x̄,ū)

= 0

⇔ M(q̄yz)
∂q̈

∂xi
+
∂G(qyz)

∂xi

∣∣∣∣
(x,u)=(x̄,ū)

= 0

(2.24)
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for all i = 1,2,3,4, where xi denotes the ith element of the state vector x.

Solving these equations for ∂q̈
∂xi

yields the elements of matrix A.

Implicitly differentiating them w.r.t. the input u followed by linearizing them results into the
following equations: (

M(qyz)
∂q̈

∂u

)∣∣∣∣
(x,u)=(x̄,ū)

=

(
∂τext
∂u

)∣∣∣∣
(x,u)=(x̄,ū)

⇔ M(q̄yz)
∂q̈

∂u
=

(
∂τext
∂u

)∣∣∣∣
(x,u)=(x̄,ū)

.

(2.25)

Solving these equations for ∂q̈
∂u yields the elements of matrix B.

Substituting all parameters into the matrices A and B yields the state space representation

ẋ =


0 0 1 0
0 0 0 1
0 −75.5784 0 0
0 34.1594 0 0

x +


0
0

25.6412
−6.4570

u (2.26)

y =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x +


0
0
0
0

u. (2.27)

Calculations with this state space model in Matlab show that the controllability matrix and
observability matrix of this system both have full rank. This means that the system is totally
controllable and observable.

2.5 Equations of motion for XY-plane

2.5.1 Energies

In the xy-plane, the only motion of the BBR is the rotation around the z-axis. Due to the no slip
assumption, the ball doesn’t rotate around the z-axis, so the kinetic energy of the ball (denoted
by TS,xy) is equal to zero. The body only has rotational kinetic energy, which is defined as

Tb,xy =
1

2
IB,xyψ̇

2
z (2.28)

Analogous to the energy calculations for the yz-plane, the kinetic energy of the virtual actuating
wheel is defined as the sum of the rotational and translational kinetic energy:

Tw,xy =
1

2
Iw,xyφ̇

2
z +

1

2
mW v

T
W,xy · vW,xy

where vTW,xy · vW,xy is defined as

vTW,xy · vW,xy = ẋ2
W,xy + ẏ2

W,xy

= (rS + rW )2ψ̇2
z
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and where φ̇z is defined as

φ̇z = − rS
rW

ψ̇z. (2.29)

(The derivation of vTW,xy · vW,xy and φ̇z can be found in Appendix B.1).

This yields the equation for the kinetic energy of the virtual actuating wheel

Tw,xy =
1

2
Iw,xy(− rS

rW
ψ̇z)

2 +
1

2
mW (rS + rW )2ψ̇2

z

=
1

2

(
Iw,xy(

rS
rW

)2 +mW (rS + rW )2

)
ψ̇2
z .

(2.30)

It is assumed that the BBR will always stay in contact with the floor, so there is no potential
energy present in the xy-plane.

2.5.2 External torques

Analogous to the calculations for the external torques in the yz-plane, the only external torque is
the torque of the virtual motor, which transfers a torque to the virtual actuating wheel, denoted
by τVW,xy. ‖τVW,xy‖ is the input of the model and because τVW,xy only has a component in the
z-direction (denoted by τz), the input is ‖τVW,xy‖ = τz. A relation between the input torque
and the torque that directly controls the minimal coordinate, which forms the external torque
of the model, will be derived in this section.
The external torque of the model is shown in Fig. 2.4 together with the force that generates this
torque and the lever in case ψz = 0.

Analogous to the calculations for the external torques in the yz-plane, the relation between φ̇z
and ψ̇z is given by the geometric Jacobian. The transpose of the geometric Jacobian relates the
input torque τz to the torque that directly controls ψz.

The relation between φ̇z and ψ̇z is given by

φ̇z = − rS
rW︸ ︷︷ ︸
J

ψ̇z.
(2.31)

The relation between the input torque τz and the torque that directly controls ψz is thus given
by

τext,xy = JT τz

= − rs
rw
τz.

(2.32)

2.5.3 Lagrangian and Euler-Lagrange equation for the xy-plane

Define the Lagrangian as

L(ψx,ψ̇x) = Tb,xy + Tw,xy. (2.33)
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Figure 2.4: Sketch of body torque, generated by the virtual motor torque, the tangential force
and corresponding lever in xy-plane.

Calculating the Euler-Lagrange equation

d

dt
(
∂L

∂ψ̇x
)− ∂L

∂ψx
= τext,xy

results into the following equation of motion:

M(qxy)q̈xy = τext,xy (2.34)

where the left-hand side represents the inertial forces in the xy-plane due to accelerations and
the right-hand side represents the external torque.

The matrix M(qxy) is defined as

M(qxy) = IB,xy +mW (rS + rW )2 +
rS
rW

2
IW,xy. (2.35)

Define the following state vector x (for the xy-plane):

x =

[
ψz
ψ̇z

]
. (2.36)

Define as input of the system u = τz. Solving Eq. (2.34) for ψ̈z results in a linear differential
equation:

ψ̈z =
−rSu

IB,xyr2
W +mW r2

W (rS + rW )2 + IW,xyr2
S

. (2.37)
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Then the linear state space representation is given by:

ẋ = A · x+B · u
y = C · x+D · u

(2.38)

where the matrices A, B, C and D are defined as:

A =

[
0 1
0 0

]
, B =

[
0

−22.2295

]
(2.39)

C =

[
1 0
0 1

]
, D =

[
0
0

]
. (2.40)

2.6 Torque conversion

(a) Side view. (b) Top view.

Figure 2.5: Sketch of body torques, generated by the real motor torques, the tangential forces
and the corresponding levers.

In the previous paragraphs linear state space models were derived for the different planes. But
these models still include virtual variables, namely the torques of the virtual actuating wheels.
In this section a relation between the torques of the virtual actuating wheels and the torques
of the real omni-wheels will be derived. This relation can be derived using the fact that the
resulting torque of the body is conserved (as demonstrated in [2]):

τB,x + τB,y + τB,z = τB,1 + τB,2 + τB,3 (2.41)
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(a) Side view. (b) Top view.

Figure 2.6: Sketch of body torques, generated by the virtual motor torques, the tangential forces
and the corresponding levers.
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where τB,i is defined as the torque vector of the body, generated by the torque of the omni-wheel
i (whose magnitude is denoted by τi) with i = 1,2,3 and where τB,j is defined as the torque
vector of the body, generated by the torque of the virtual actuating wheel in de direction of the
j-axis (whose magnitude is denoted by τj) with j = x,y,z.

Define FB,i as the force, orthogonal to τB,i, acting on the body, which is generated by the torque
of omni-wheel i, and define rB,i as the lever corresponding to FB,i.
Also define FB,j as the force, orthogonal to τB,j , acting on the body, which is generated by the
torque of the virtual actuating wheel, and define rB,j as the lever corresponding to FB,j .
Furthermore define α as the angle that sets the vertical position of the omni-wheels and define β
as the angle that sets the horizontal position of the first omni-wheel with respect to the x-axis.
The position of the second and the third omni-wheel are then defined by respectively the angle
β + 2π

3 and the angle β − 2π
3 .

In Fig. 2.5 and Fig. 2.6 sketches of respectively the real and the virtual system are shown.

The torque vectors can be calculated as follows:

τS,i = rS,i × FS,i, i = 1,2,3 (2.42)

τS,j = rS,j × FS,j , j = x,y,z. (2.43)

Substituting these torques in Eq. (2.41) results in three equations that can be solved for the
torques of the omni-wheels as functions of the torques of the virtual actuating wheels and vice
versa.

2.6.1 Calculation of torques of the body τB,i generated by the real drive sys-
tem

In the real system, the forces acting on the body can be derived using the fact that the forces
generated by the omni-wheels, are the same forces. Using Fig. 2.5, the forces can be easily
derived:

FB,1 =
τ1
rW

 sin(β)
− cos(β)

0


FB,2 =

τ2
rW

 sin(β + 2π
3 )

− cos(β + 2π
3 )

0


FB,3 =

τ3
rW

 sin(β − 2π
3 )

− cos(β − 2π
3 )

0

 .
(2.44)
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The levers are defined as

rB,1 = rS

sin(α) cos(β)
sin(α) sin(β)

cos(α)


rB,2 = rS

sin(α) cos(β + 2π
3 )

sin(α) sin(β + 2π
3 )

cos(α)


rB,3 = rS

sin(α) cos(β − 2π
3 )

sin(α) sin(β − 2π
3 )

cos(α)

 .
(2.45)

Substituting these forces and levers into Eq. (2.42), yields the following torque vectors of the
body, generated by the real drive system

τB,1 =


rS cos(α)τ1 cos(β)

rW
rS cos(α)τ1 sin(β)

rW

− sin(α)rSτ1
rW



τB,2 =


rS cos(α)τ2 cos(β+ 2π

3 )

rW
rS cos(α)τ2 sin(β+ 2π

3 )

rW

− sin(α)rSτ2
rW



τB,3 =


rS cos(α)τ3 cos(−β+ 2π

3 )

rW

− rS cos(α)τ3 sin(−β+ 2π
3 )

rW

− sin(α)rSτ3
rW

 .

(2.46)

2.6.2 Calculations torques of the body τB,j generated by virtual drive system

In the virtual system, the forces acting on the body can be derived using the fact that the forces
generated by the virtual actuating wheels are the same forces. Using Fig. 2.6, the forces can be
easily derived:

FB,x =
τx
rW

 0
−1
0


FB,y =

τy
rW

1
0
0


FB,z =

τz
rW

 sin(β)
− cos(β)

0

 .
(2.47)
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The levers are defined as

rB,x = rS

0
0
1


rB,y = rS

0
0
1


rB,z = rS

cos(β)
sin(β)

0

 .
(2.48)

Analogous with the calculations for the real system, this yields the following torque vectors of
the body, generated by the virtual drive system

τB,x =

 rSτxrW
0
0


τB,y =

 0
rSτy
rW
0


τB,z =

 0
0

− rSτzrW

 .
(2.49)

Substituting Eq. (2.46) and Eq. (2.49) into Eq. (2.41) and solving it for the real motor torques
τ1, τ2 and τ3 as functions of the virtual motor torques τx, τy and τz in matrix form yields

τ1τ2
τ3

 =


2 cos(β)
3 cos(α)

2 sin(β)
3 cos(α)

1
3 sin(α)

− cos(β)+
√

3 sin(β)
3 cos(α)

− sin(β)+
√

3 cos(β)
3 cos(α)

1
3 sin(α)

− cos(β)+
√

3 sin(β)
3 cos(α) − sin(β)+

√
3 cos(β)

3 cos(α)
1

3 sin(α)

 ·
τxτy
τz

 . (2.50)

Solving Eq. (2.41) for the virtual motor torques τx, τy and τz as functions of the real motor
torques τ1, τ2 and τ3 in matrix form yieldsτxτy

τz

 =

cos(α) cos(β) − cos(α)[cos(β)+
√

3 sin(β)]
2 − cos(α)[cos(β)−

√
3 sin(β)]

2

cos(α) sin(β) − cos(α)[sin(β)−
√

3 cos(β)]
2 − cos(α)[sin(β)+

√
3 cos(β)]

2
sin(α) sin(α) sin(α)

 ·
τ1τ2
τ3

 . (2.51)

2.7 Calculation of parameters

In the previous paragraphs linear state space models were derived for the different planes and
relations between virtual variables and real variables were derived. Before simulations can be
done with the 2D-models, several parameters need to be calculated, which will be done in this
paragraph.
Firstly, the moments of inertia of the different parts of the virtual system will be estimated. The
total virtual system consists of five rigid parts, namely the ball, the body of the robot and the
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three virtual actuating wheels. Moreover, the moments of inertia of the body of the robot and
the virtual actuating wheel have horizontal and vertical components. Except when explicitly
specified, the moment of inertia is about the axis that goes through the COM.
Secondly, the parameters mW and l will be calculated. Finally, the choice of the value of α will
be explained.

2.7.1 Estimation of moment of inertia of the ball

As mentioned in Sec. 1.2, the ball on which the robot will stand is a medicine ball. Therefore to
model the ball, it will be approximated by a hollow sphere. The moment of inertia I of a hollow
sphere with mass m and radius r is given by [11]

I =
2mr2

3
. (2.52)

The mass of the medicine ball is denoted by mS its radius by rS . So the moment of inertia of
the ball, denoted by Is, is defined by

IS =
2mSr

2
S

3
. (2.53)

2.7.2 Estimation of moment of inertia of the body in yz-/xz-plane

As mentioned in Sec. 2.2, the body will be approximated by a solid cuboid that consists of an
upper and lower part with different density to approximate the non-uniform mass distribution.
But the rotation axis of the body does not go through its COM. Therefore, estimating the
moment of inertia of the body in the yz-plane will be done in the following three steps:

1. Estimate the moments of inertia of the upper and lower parts of the body about their
COM.

2. Calculate the moments of inertia of the body parts about the axis the body rotates around,
using the Parallel Axis Theorem, introduced in Sec. 2.4.2.

3. The total moment of inertia is the sum of the different moments of inertia in case that
all parts rotate around the same axis. So the total moment of inertia is the sum of the
moments of inertia of the body parts.

This method is illustrated in Fig. 2.7.

Step 1: Estimate IB1 and IB2

The moment of inertia of the two parts of the body are estimated by the moment of inertia of
a cuboid with square base. The moment of inertia of a solid cuboid with mass m, height h and
width w (which is equal to the depth) about the x- and y-axis is given by [11]

I =
m(w2 + h2)

12
. (2.54)

So the moments of inertia of the two parts of the body are estimated by

IB1 =
mB1(w2

B + h2
1)

12
(2.55)

IB2 =
mB2(w2

B + h2
2)

12
. (2.56)
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Figure 2.7: Illustration of the method used to estimate the moment of inertia of the body about
the rotation axis.

Table 2.2: Description and values of parameters used for the estimation of the moment of inertia
of the body.

Parameter Description Value

mB1 Mass of the upper part of the body 6.2 kg
mB2 Mass of the lower part of the body 0.935 kg
mB Total mass of the body 7.135 kg
h1 Height of the upper part of the body 0.66 m
h2 Height of the lower part of the body 0.14 m
wB Width of the body 0.2 m
rS Radius of the ball 0.115 m
IW Moment of inertia of the virtual actuating wheel in yz-/xz-plane 1.90 ·10−3 kgm2

I ′B Moment of inertia of the body about rotation axis 2.40 kgm2

IB1 Moment of inertia of the upper body part about COM 2.46 ·10−1 kgm2

IB2 Moment of inertia of the lower body part about COM 4.64 ·10−3 kgm2
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The values of the different parameters can be found in Table 2.2.

Step 2: Calculate the moments of inertia about the axis the body rotates around
The moments of inertia about the axis the body rotates around are calculated using the Parallel
Axis Theorem. The distances between the axis through the COM and the axis the body rotates
around for each part are be derived using Fig. 2.7

dB1 = rS + h− h1

2

dB2 = rS +
h2

2
.

(2.57)

So the moments of inertia of the two body parts about the axis the body rotates around are
given by

I ′B1 = IB1 +mB1d
2
B1

I ′B2 = IB2 +mB2d
2
B2.

(2.58)

Step 3: Calculate the moment of inertia of the whole body
Then the moment of inertia of the whole body in the vertical planes is given by

I ′B = I ′B1 + I ′B2. (2.59)

2.7.3 Estimation of moment of inertia of the body in xy-plane

The moment of inertia of a solid cuboid with mass m, height h and width w about the z-axis is
given by [11]

I =
mw2

6
. (2.60)

So the moment of inertia of the body about the z-axis is estimated by

IB,xy =
mBw

2
B

6
. (2.61)

2.7.4 Estimation moments of inertia of virtual actuating wheel

The omni-wheels and the motors are modeled together as a virtual actuating wheel, so based on
the moments of inertia of the omni-wheels and the motors, the moments of inertia of the virtual
actuating wheels have to be estimated. This can be done by comparing the rotational energy
around an axis in the virtual system to the rotational energy around the same axis in the real
system (as demonstrated in [2]).
The rotational energy of rotations around the x-, y-, and z-axis, in the real system, will be
calculated separately. Then, by equating it to the corresponding rotational energy of the virtual
system, the desired moments of inertia can be derived. For simplicity, β will be taken zero.

In order to calculate the rotational energies of the real motors and the omni-wheels, the angular
rates of the omni-wheels around each axis have to be calculated. These angular rates are derived
using Fig. 2.8, where ωWi,j denotes the angular rate of omni-wheel i around axis j (i = 1,2,3
and j = x,y,z).
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(a) Side view. (b) Top view.

Figure 2.8: Sketch of the decomposed angular rates of the omni-wheels.
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The angular rates of the omni-wheels around the x-axis are formulated as

ωW1,x = φ̇x cos(α)

ωW2,x = ωW3,x = cos(
π

3
)(−φ̇x) cos(α)

= −1

2
φ̇x cos(α).

(2.62)

The angular rates of the omni-wheels around the y-axis are formulated as

ωW1,y = 0

ωW2,y = sin(
π

3
)φ̇y cos(α)

=
1

2

√
3φ̇y cos(α)

ωW3,y = sin(
π

3
)(−φ̇y) cos(α)

= −1

2

√
3φ̇y cos(α).

(2.63)

The angular rates of the omni-wheels are around the z-axis formulated as

ωW1,z = ωW2,z = ωW3,z = cos(
π

2
− α)φ̇z

= sin(α)φ̇z.
(2.64)

Before the moments of inertia of the virtual actuating wheels can be calculated, some notation
has to be introduced. The moment of inertia of the rotor of the real motor is denoted by IM .
Furthermore, the reduction of the gear box is denoted by k, so the angular velocity of the omni-
wheel is reduced with a factor k compared to the angular velocity of the motor. The moment
of inertia of the gear rotor is not taken into account, because it is negligible compared to the
moments of inertia of the motor and the omni-wheel.

The moment of inertia of a omni-wheel, denoted by IOW , is estimated by approaching the omni-
wheel as a solid cylinder. The moment of inertia of a solid cylinder with mass m, height h and
radius r, about the rotation axis, is given by [11]

I =
mr2

2
. (2.65)

The mass of the omni-wheel (denoted by mOW ) consists of three parts, namely the mass of the
omni-wheel itself (denoted by momni), the mass of the clamping bush (denoted by mcb) and the
mass of the flange (denoted by mf ). The radius of the omni-wheel is denoted by rOW .
So the moment of inertia of a omni-wheel IOW will be estimated by

IOW =
mOW r

2
OW

2

=
(momni +mcb +mf )r2

OW

2
.

(2.66)

The moments of inertia of the virtual actuating wheel (Iw,x, Iw,y and Iw,z) can now be calculated
by equating the rotational energy of the virtual actuating wheel to the corresponding energy of
the omni-wheels and real motors. This is done in Appendix B.1.
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The vertical component of the moment of inertia of the virtual actuating wheel (denoted by IW )
is defined as

IW = IW,x = IW,y

=
3

2
cos(α)2(IOW + k2IM ).

(2.67)

The horizontal component of the moment of inertia of the virtual actuating wheel (denoted by
IW,xy) is defined as

IW,xy = IW,z

= 3 sin(α)2(IOW + k2IM ).
(2.68)

2.7.5 Calculation of mW

In the virtual drive system, the motors (including gearheads) and omni-wheels are modeled as
virtual actuating wheels. Therefore, the mass of the virtual actuating wheel mW can be estimated
by the sum of the masses of the different parts of the virtual actuating wheel. So mW is defined
as

mW = mgh +mM +mOW (2.69)

where mgh denotes the mass of the gearhead and mM denotes the mass of the motor.

2.7.6 Calculation of l

The parameter l denotes the length between the COM of the ball and the COM of the body as
is shown in Fig. 2.2a). It is defined as

l =
mB1dB1 +mB2dB2

mB1 +mB2
(2.70)

where dB1 and dB2 are defined in Eq. (2.57). Substituting the expressions for dB1 and dB2 yields
the following expression for l:

l =
mB1(rS + h− h1

2 ) +mB2(rS + h2

2 )

mB1 +mB2
. (2.71)

2.7.7 Choice of α

The angle α determines the vertical position of the omni-wheels on the ball as is shown in Fig.
2.5a). It is a significant parameter, because it determines the ratio between the rotation of the
omni-wheel and the rotation of the ball and it determines the support of the body.
When α is chosen close to 90◦, rotation around the x- and y-axis is almost impossible, while
rotation around the z-axis can be easily obtained. When α is chosen close to 0◦, the body quickly
falls down, because the supporting triangle is so narrow and rotation of the body around the
z-axis becomes difficult. This reasoning is confirmed by Eq. (2.46).
Based on this reasoning, an angle of 45◦ is chosen for the BBR to have sufficient support for the
body and also make rotation around the x- and y-axis easily possible.
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2.8 Simulation of 2D model

In the previous paragraphs linear state space models were derived for the different planes and
relations between virtual variables and real variables were derived. Also several parameters were
calculated. Therefore, it is now possible two simulate the 2D models.
The aim of this paragraph is to analyze the nonlinear 2D model of the vertical planes and
furthermore to see how accurate the linearized model approximates the nonlinear model. Also
the 2D model for the horizontal plane will be analyzed.

2.8.1 Simulations

Firstly, the free response (i.e. nonzero initial conditions and no external torques) of the nonlinear
model for the yz-plane is simulated for 10 seconds with an initial pitch angle of 0.1◦. For the
first 1.2 seconds, also the free response of the linear model is shown. The results are shown in
Fig. 2.9.

Fig. 2.9 shows that the robot will fall down and start to oscillate around the centre of the ball.
As the floor is not defined, the robot will go through the plane z = 0 and the amplitudes of the
oscillations do not decrease, because no energy loss or dynamic friction is modeled.

Fig. 2.9 also shows that the response of the linear model is almost indistinguishable from the
nonlinear model with regard to the pitch angle ψx, within a range of 20◦ of the linearization point,
which is confirmed by the fact that the error percentage of the linear model is only 3.16 ·%, when
ψx = 20◦ .
However, the response of the linear model with regard to θx, the angle rotated by the ball,
has already an error of 27.62% when θx = −90◦ (which is equal to a displacement of about 20
cm).

Secondly, the forced response (i.e. zero initial conditions and nonzero external torques) of the
linear and nonlinear model for the yz-plane are simulated for 1.2 seconds with a constant external
torque of 0.01 Nm. The results are shown in Fig. 2.10.

Fig. 2.10 shows that, also in this case, the response of the linear model is almost indistinguish-
able from the nonlinear model with regard to the pitch angle ψx, within a range of 20◦ of the
linearization point. This is confirmed by the fact that the error percentage of the linear model
is only 3.13%, when ψx = 20◦ .
Also in this case, the response of the linear model with regard to θx, the angle rotated by the
ball, has already an error of 23.06% when θx = −90◦ (which is equal to a displacement of about
20 cm). Therefore, the linearized model seems to be unreliable with regard to the position of the
ball, but it should be noted that the position of the ball depends on the pitch and roll angles.
Moreover, the relation between the position of the ball and the pitch and roll angles is linear,
which can be derived from Eq. (B.3). So for values of the pitch and roll angles for which the
linear model is a reliable approximation of the nonlinear model, the linear model should also be
reliable with regard to the position of the ball. This is confirmed by Fig. 2.9 and Fig. 2.10,
where the linear model for the y-position of the ball becomes unreliable when the pitch angle ψx
is more than 20◦.

Thirdly, the forced response of the model for the xy-plane is simulated for 1 second with a
constant external torque of 0.3 Nm and the results are shown in Fig. 2.11.

As expected, a constant external torque results in an angle that increases quadratically and

32



Modeling & Control of a Ball-Balancing Robot 2.8 Simulation of 2D model

a angular velocity that increases linearly, because the torque is proportional to the accelera-
tion.

2.8.2 Shortcomings 2D model

The 2D models describe the main dynamical behaviour of the BBR. However, it is assumed that
the vertical planes and the horizontal plane are independent in order to simplify the modeling.
But in reality, these planes are not fully independent. For example, the 3D system contains a
centrifugal force, because of rotation around the vertical axis, which is not modeled in any of the
2D models.
Moreover, the 2D models contain several virtual parts in order to approximate the 3D system.
Therefore, a full 3D model will be developed in the next chapter, which will form a more reliable
basis for the design of the controller.
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Figure 2.9: Free response of the linear and nonlinear 2D model for the yz-plane with an initial
pitch angle of 0.1◦.
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Figure 2.10: Forced response of the linear and nonlinear 2D model for the yz-plane with a
constant external torque of 0.01 Nm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−100

0

100

200

Angle ψ
z
 versus time

Time (s)

A
ng

le
 ψ

z (
de

g)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−400

−200

0

200

400
Angular velocity versus time

Time (s)

A
ng

ul
ar

 v
el

oc
ity

 (
de

g/
s)

Figure 2.11: Forced response of the 2D model for the xy-plane with a constant external torque
of 0.3 Nm
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3. 3D Model

Modeling the BBR as three 2D models has several shortcomings as mentioned in Sec. 2.8.2.
Therefore a full 3D model will be made in this chapter.

In the first paragraph assumptions will be made. In the second paragraph a description of the
model will be given. After that coordinates will be defined in the third paragraph. In the
fourth paragraph the main variables of the system will be derived. Some parameters will be
derived in the fifth paragraph. Finally, in the sixth paragraph the equations of motion will be
derived.

3.1 Assumptions

The 3D model is based on the same physical system as the 2D model is based on, i.e. the
assumptions made for the 3D model are the same as the assumptions made for the 2D model,
except the assumption of the independent vertical planes. In short, the assumptions were:

� Rigid bodies/floor

� No slip

� No rolling or kinetic friction

� Horizontal floor

� No time delay

� Simplified omni-wheels

These assumptions are described in more detail in Sec. 2.1.

3.2 Description of 3D-model

The 3D model consists of two rigid bodies, namely the ball and the body of the robot. The body
of the robot includes the drive system with the omni-wheels attached to it, see Fig. 3.1 for a
sketch.

The ball is modeled as a hollow sphere, the body of the robot is modeled as a solid cuboid and
the omni-wheels are modeled as solid disks. Analogous to the 2D model for the yz-plane, the
non-uniform mass distribution of the body is modeled by dividing the body into an upper and
lower part that both have a uniform mass distribution. This makes it possible to set the height
of the COM of the body.

3.3 Coordinates

To derive the equations of motion, coordinates need to be defined. The coordinates are defined
based on the DOF of the system. The system has five DOFs, namely two DOFs for the translation
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Figure 3.1: Sketch of the 3D model.

of the ball and three DOFs for the rotation of the body. For the ball it is only necessary to know
its translation. Therefore, define as minimal coordinate vector

q =
[
xS yS ψx ψy ψz

]T
(3.1)

where analogous to the 2D model, ψx, ψy and ψz indicate the orientation of the body. And xS
and yS indicate the translation of the ball along respectively the x- and y-axis.

Coordinate frames are used to define the position of the ball and the orientation of the body. The
coordinate frames that define the orientation of the body are defined using Tait-Bryan angles (a
variation on Euler angles). Define the following six coordinate frames:

� Inertial frame I The inertial frame of reference is denoted by I.

� Coordinate frame 1 Translating the inertial frame with xS along its x-axis yields coor-
dinate frame 1.

� Coordinate frame 2 Translating coordinate frame 1 with yS along its y-axis yields coor-
dinate frame 2. Coordinate frame 2 has its origin located in the centre of the ball.

� Coordinate frame 3 Rotating coordinate frame 2 around its z-axis with an angle ψz
counterclockwise yields coordinate frame 3.

� Coordinate frame 4 Rotating coordinate frame 3 around its y-axis with an angle ψy
counterclockwise yields coordinate frame 4.

� Coordinate frame 5 Rotating coordinate frame 4 around its x-axis with an angle ψx
clockwise together with a constant translation of l m along its z-axis yields coordinate
frame 5, which has its origin located in the COM of the body.

All these coordinate frames are sketched in Fig. 3.2, where Ψi denotes coordinate frame i.
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Figure 3.2: Sketch of the different coordinate frames.
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3.3.1 Transformations between coordinate frames

The transformations from one coordinate frame to another can be expressed using homogeneous
matrices. Homogeneous matrices describe the rotation and translation between different coordi-
nate frames. A homogeneous matrix from Ψi to Ψj is defined as

Hj
i =

[
Rji oji
03 1

]
(3.2)

where Rji denotes the rotation matrix from Ψi to Ψj , o
j
i denotes the origin of Ψi expressed in

Ψj and where 03 = [0, 0, 0].

The homogeneous matrices that describe the transformations between consecutive frames are
defined as:

H1
I =


1 0 0 −xS
0 1 0 0
0 0 1 0
0 0 0 1



H2
1 =


1 0 0 0
0 1 0 −yS
0 0 1 0
0 0 0 1



H3
2 =


cos(ψz) sin(ψz) 0 0
− sin(ψz) cos(ψz) 0 0

0 0 1 0
0 0 0 1



H4
3 =


cos(ψy) 0 sin(ψy) 0

0 1 0 0
− sin(ψy) 0 cos(ψy) 0

0 0 0 1



H5
4 =


1 0 0 0
0 cos(ψx) − sin(ψx) 0
0 sin(ψx) cos(ψx) −l
0 0 0 1

 .

(3.3)

With these matrices given, all the other homogeneous matrices, that describe the transformations
between different coordinate frames, can be calculated.

3.4 Variables

Now the coordinates and the coordinate frames are defined, the variables, that are needed for
the calculation of the equations of motion, can be derived. But before these variables can be
derived, some notation needs to be introduced.

3.4.1 Notation

Due to different notations in literature, it is important to define the used notation in this chapter.
The notation and description of the different variables used in this chapter can be found in Table
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3.1.
The theory and notation used in this chapter is based on [9].

Table 3.1: Description and notation of variables and parameters used in the 3D model.

Notation Description

Hj
i Homogeneous matrix from Ψi to Ψj

Rji Rotation matrix from frame Ψi to Ψj

oji Position of origin of Ψi expressed in Ψj

ri,jk Position of Ψk w.r.t. Ψj , expressed in Ψi

vi,jk Linear velocity of Ψk w.r.t. Ψj , expressed in Ψi

ωi,jk Angular velocity of Ψk w.r.t. Ψj , expressed in Ψi

T i,jk Twist of Ψk w.r.t. Ψj , expressed in Ψi

AdHji
Adjoint matrix of Hj

i that maps twists from Ψi to Ψj

IiO Inertia tensor of an object O about its COM, chosen in Ψi

IO Moment of inertia of an object O about its COM

IO
′

Moment of inertia of an object O about its rotation axis

3.4.2 Twists

A twist T i,jk ∈ R6×1 is defined as

T i,jk =

[
ωi,jk
vi,jk

]
(3.4)

where ωi,jk is the angular velocity of Ψk w.r.t. Ψj , expressed in Ψi and where vi,jk is the linear
velocity of Ψk w.r.t. Ψj , expressed in Ψi.

A coordinate change of a twist T i,jk to coordinate frame n is defined as

T n,jk = AdHni · T
i,j
k (3.5)

where AdHni ∈ R6×6 is the adjoint matrix of Hn
i , which is defined as

AdHni =

[
Rni 03×3

õni ·Rni Rni

]
. (3.6)

where 03x3 denotes a 3-by-3 matrix of zeros and where õni is the tilde form of oni . The tilde form
of oni is defined as

oni =

oxoy
oz

⇒ õni =

 0 −oz oy
oz 0 −ox
−oy ox 0

 (3.7)

The twists of the different bodies w.r.t. the inertial frame need to be derived in order to be able
to calculate the total energy of the system.

Ball velocities
The linear velocity of the ball w.r.t. ΨI , expressed in ΨI is defined as the linear velocity of Ψ2
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w.r.t. ΨI , expressed in ΨI :

vI,I2 =

ẋSẏS
0

 . (3.8)

Figure 3.3: Twist of the ball.

The angular velocity ωI,I2 (which is not the angular velocity of the ball) is equal to zero, because
Ψ2 doesn’t rotate w.r.t. ΨI .

So the twist of Ψ2 w.r.t. ΨI , expressed in ΨI is defined as

T I,I2 =


0
0
0
ẋS
ẏS
0

 . (3.9)

Now also the twist of Ψ2 w.r.t. ΨI expressed in Ψ2 (denoted by T 2,I
2 ) can be calculated. It is

defined by

T 2,I
2 = AdH2

I
· T I,I2 . (3.10)

For later calculations also the linear velocity of the ball w.r.t. the inertial frame, expressed in
frame 5 (denoted by v5,I

2 ) is needed. Using the fact that

T 5,I
2 = AdH5

I
· T I,I2 (3.11)

an expression for v5,I
2 can be easily derived:

v5,I
2 = õ5

I ·R5
I · ω

I,I
2 +R5

I · v
I,I
2 . (3.12)
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For calculating the angular velocity of ball, define rT as the vector from the centre of the ball to
the point on top of the ball (denoted by T), see Fig. 3.3:

rT =

 0
0
rS

 . (3.13)

The angular velocity of the ball cannot be defined as the angular velocity of the coordinate
frames, so the angular velocity of the ball w.r.t. ΨI , expressed in Ψ2 will be denoted by ω2,I

S

and it is defined as

ω2,I
S =

rT × v2,I
2

‖rT ‖2

=

 ẏS
rS

− ẋSrS
0

 . (3.14)

Body velocities
The twist of the body w.r.t. ΨI , expressed in ΨI is defined as

T I,I5 = J · q̇j (3.15)

where J is the Jacobian that maps the joint velocities q̇j to the end-effector (i.e. the part that
is connected to the end of a robot ‘arm‘) velocities. The end-effector is in this case the body of
the BBR.
The vector of joint velocities q̇j is defined as

q̇j =
[
ẋS ẏS ψ̇z ψ̇y ψ̇x

]T
. (3.16)

The Jacobian is defined as

J =
[
T I,I1 T I,12 T I,23 T I,34 T I,45

]
=
[
T I,I1 AdHI1 · T

1,1
2 AdHI2 · T

2,2
3 AdHI3 · T

3,3
4 AdHI4 · T

4,4
5

] (3.17)

where the twists can be derived using Fig. 3.2. They are defined as

T I,I1 =
[
0 0 0 1 0 0

]T
T 1,1

2 =
[
0 0 0 0 1 0

]T
T 2,2

3 =
[
0 0 1 0 0 0

]T
T 3,3

4 =
[
ω3,3

4

(
ω3,3

4 ×R3
4 ·
[
0 0 l

]T)]
=
[
0 1 0 l 0 0

]T
T 4,4

5 =
[
ω4,4

5

(
ω4,4

5 ×R4
5 ·
[
0 0 l

]T)]
=
[
−1 0 0 0 l 0

]T

(3.18)

where ω3,3
4 =

[
0 1 0

]T
and ω4,4

5 =
[
−1 0 0

]T
.
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Now also the twist of the body of the robot w.r.t. ΨI expressed in Ψ5 (denoted by T 5,I
5 ) can be

calculated. It is defined by

T 5,I
5 = AdH5

I
· T I,I5 . (3.19)

Angular rate of the omni-wheels
The omni-wheels are attached to the body of the robot, so only the rotational motion of the
omni-wheels has to be calculated. And because the omni-wheels are fixed to the body of the
robot, only the angular rate is relevant for the model.
Define φ̇i as the angular rate of omni-wheel i about the motor axis for i = 1,2,3, where a positive
angular rate means counterclockwise rotation of the omni-wheels.

The angular rate of the omni-wheels can be expressed in the minimal coordinates using the
fact that due to the no slip assumption, the circumferential speed of the ball in the direction
of the omni-wheel is the same as the circumferential speed of the omni-wheel. To calculate the
circumferential speed of the ball, first the angular velocity of the ball w.r.t. the body needs to
be calculated.
The angular velocity of the ball w.r.t the body expressed in frame 5 is defined as

ω5,5
S = ω5,I

S − ω
5,I
5

= R5
2 · ω

2,I
S − ω

5,I
5 .

(3.20)

To calculate the circumferential speed of the ball, first define the vectors from the centre of the
ball to the contact points with the omni-wheels (see Fig. 3.4a)) as

rW1 = rS

sin(α)
0

cos(α)


rW2 = rS

 − 1
2 sin(α)

1
2

√
3 sin(α)

cos(α)


rW3 = rS

 − 1
2 sin(α)

− 1
2

√
3 sin(α)

cos(α)


(3.21)

which are already derived in Sec. 2.6. The angle β, that determines the horizontal position of
the omni-wheels (see Fig. 2.5), is chosen to zero.

Furthermore, define the unit vectors, that give the direction of the circumferential speed of
the omni-wheels in the point of contact with the ball, in case of a positive angular rate of the
omni-wheels, (see Fig. 3.4b)) as

uW1 =

0
1
0


uW2 =

− 1
2

√
3

− 1
2

0


uW3 =

 1
2

√
3

− 1
2

0

 .
(3.22)

44



Modeling & Control of a Ball-Balancing Robot 3.5 Parameters

(a) (b)

Figure 3.4: Sketch of the position of the omni-wheels.

Now the circumferential speed of the ball in the direction of the omni-wheel can be equated to
the circumferential speed of the omni-wheel:

(ω5,5
S × rWi

) · uWi = φ̇irW , i = 1,2,3. (3.23)

So the angular rates of the omni-wheels expressed in the minimal coordinates are given by

φ̇i =
1

rW
(ω5,5

S × rWi
) · uWi, i = 1,2,3. (3.24)

3.5 Parameters

In the previous paragraphs coordinates and coordinate frames were defined and variables were
derived. Before the equations of motion can be derived, some parameters need to be calculated.
Most of the parameters used in the 3D model are calculated and defined in Chap. 2 and the
values can be found in Table A.1, but some additional parameters have to be calculated for the
3D model. Those additional parameters are the inertia tensors (i.e. the matrix that contains
the moments of inertia and the inertia products about the three coordinate axes) of the ball and
the body and the distance between the centre of the ball and the COM of the body (denoted by
l).
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3.5.1 Calculation of inertia tensor of the ball

The inertia tensor of the ball is defined as

I2
S =

IS 0 0
0 IS 0
0 0 IS

 (3.25)

and IS is estimated in Sec. 2.7.1.

3.5.2 Calculation of inertia tensor of the body

In contrast with the estimation of the moments of inertia of the 2D model, the estimation of the
moment of inertia of the body also takes into account the motors, gearheads and omni-wheels
by adding the masses of the motors, gearheads and omni-wheels to the mass of the lower part of
the body. This simplifies the calculation for the energies of the omni-wheels, because now only
the rotational energy of the omni-wheels needs to be calculated and the translational energy of
the omni-wheels is not taken into account with the calculation of the translational energy of the
body.

The inertia tensor of the body is defined as

I5
B =

IB,x 0 0
0 IB,y 0
0 0 IB,z

 (3.26)

where IB,j is the moment of inertia of the body about the j-axis of the coordinate frame centered
in its COM, for j = x,y,z. And because the inertia tensors are chosen in the coordinate frame
centered in the COM, the inertia products become zero.
But IB,j cannot be calculated directly because of the non-uniform mass distribution of the body.
The moments of inertia of the two parts of the body can only be added if they are the moments
of inertia about the axis they both rotate around. So first the moments of inertia of the two
parts of the body about the axis through their COM will be calculated. After that the moments
of inertia of the two parts of the body about the rotation axis will be calculated and added.
Finally, IB,j can be calculated using the Parallel Axis Theorem. For more details about these
steps, see Sec. 2.7.2 and Fig. 2.7.

Step 1: Estimate IB1,j and IB2,j

The moments of inertia of the two parts of the body are estimated by the moment of inertia of
a cuboid with square base. The moment of inertia of a solid cuboid with mass m, height h and
width w about the x- or y-axis is given by [11]

I =
m(w2

B + h2)

12
. (3.27)

The moment of inertia of a solid cuboid with mass m, height h and width w about the z-axis is
given by [11]

I =
mw2

B

6
. (3.28)
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In contrast with the calculations for the 2D model, the mass of the lower part of the body now
also includes the mass of the motors, gearheads and omni-wheels:

mB2,tot = mB2 + 3 (mM +mgh +mOW ) (3.29)

So the moments of inertia of the two parts of the body about their COM for the axis j are
estimated by

IB1,j =


mB1(w2

B+h2
1)

12 , if j = x
mB1(w2

B+h2
1)

12 , if j = y
mB1w

2
B

6 , if j = z

IB2,j =


mB2,tot(w

2
B+h2

2)
12 , if j = x

mB2,tot(w
2
B+h2

2)
12 , if j = y

mB2,totw
2
B

6 , if j = z

.

(3.30)

Step 2: Calculate the moments of inertia about the axis the body rotates around
The moments of inertia about the x- and y-axis were calculated about their COM, although
they do not rotate around their COM. The moments of inertia about the axis the body rotates
around are calculated using the Parallel Axis Theorem. The distances between the axis through
the COM and the axis the body rotates around for each part are be derived in Sec. 2.7.2 and
given by Eq. (2.57).

So the moments of inertia of the two body parts about the axis the body rotates around are
given by

I ′B1,j =


IB1,j +mB1d

2
B1, if j = x

IB1,j +mB1d
2
B1, if j = y

IB1,j , if j = z

I ′B2,j =


IB2,j +mB2,totd

2
B2, if j = x

IB2,j +mB2,totd
2
B2, if j = y

IB2,j , if j = z

.

(3.31)

Step 3: Calculate the moment of inertia of the whole body about each rotation axis
Now the moment of inertia of the whole body about each rotation axis j is given by

I ′B,j = I ′B1,j + I ′B2,j , j = x,y,z. (3.32)

Finally, the moments of inertia of the body about its COM can be calculated using the Parallel
Axis Theorem again, which states that

I ′B,j =


IB,j +mBl

2, if j = x

IB,j +mBl
2, if j = y

IB,j , if j = z

. (3.33)

Therefore the moments of inertia of the body about its COM are defined as

IB,j =


I ′B,j −mBl

2, if j = x

I ′B,j −mBl
2, if j = y

I ′B,j , if j = z

. (3.34)
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3.5.3 Calculation of height COM

The parameter l, which is the height of the COM of the body of the robot, is defined as

l =
mB1dB1 +mB2,totdB2

mB1 +mB2,tot
. (3.35)

(Later this parameter has been measured in experiments and the estimated value has been
replaced by the measured value.)

The values of all the parameters used in this paragraph can be found in Table A.1.

3.6 Equations of motion

In the previous paragraphs coordinates and coordinate frames were defined, variables were de-
rived and parameters were calculated. In this section the equations of motion for the 3D system
will be derived. Again the Lagrangian method is used as defined in Sec. 2.4.1.

3.6.1 Kinetic and potential energy of the system

Energy ball
The kinetic energy of the ball is defined as:

TS =
1

2
T 2,I

2

T
·
[
I2
S 03x3

03x3 mS · Id3

]
· T 2,I

2 +
1

2
ω2,I
S

T
· I2
S · ω

2,I
S

=
1

2
ω2,I

2

T
· I2
S · ω

2,I
2 +

1

2
mSv

2,I
2

T
· v2,I

2 +
1

2
ω2,I
S

T
· I2
S · ω

2,I
S

=
1

2
mSv

2,I
2

T
· v2,I

2 +
1

2

(
R2
I · ω

I,I
S

)T
· I2
S ·
(
R2
I · ω

I,I
S

) (3.36)

where Id3 denotes the 3-by-3 identity matrix and ω2,I
2 =

[
0 0 0

]T
.

The potential energy of the ball is zero, because it is assumed that the ball only moves over
horizontal surfaces:

VS = 0. (3.37)

Energy body
Analogous, the kinetic energy of the body is defined as

TB =
1

2
T 5,I

5

T
·
[
I5
B 03x3

03x3 mS · Id3

]
· T 5,I

5

=
1

2
ω5,I

5

T
· I5
B · ω

5,I
5 +

1

2
mBv

5,I
5

T
· v5,I

5

(3.38)

The potential energy of the body is defined as

VB = mB

0
0
g

RI5
0

0
l

 . (3.39)
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Energy omni-wheels
The kinetic energy of the omni-wheels only consists of rotational energy, which is defined as

TWi =
1

2
IOWφ

2
i +

1

2
IM (kφi)

2, i = 1,2,3. (3.40)

3.6.2 External torques

The system is actuated by the omni-wheels and motors, so the external torques are the torques
of the motors which transfer a torque to the omni-wheels. Define the magnitude of the torque
of omni-wheel i (denoted by τi for i = 1,2,3) as the inputs of the 3D model. As shown in Chap.
2 for the 2D model, the external torques are given by the transpose of the geometric Jacobian
that maps the rates of the minimal coordinates to the angular rates of the omni-wheels. Using
the expressions for the angular rates of the omni-wheels, given in Eq. (3.24), this Jacobian can
be derived: φ̇1

φ̇2

φ̇3

 = J ·


ẋS
ẏS
ψ̇x
ψ̇y
ψ̇z

 . (3.41)

So the external torques of the model (denoted by τ ext) are given by

τ ext = JT ·

τ1τ2
τ3

 . (3.42)

3.6.3 Lagrangian and Euler-Lagrange equations

Define the Lagrangian as

L(q,q̇) = TS + TB + TW1 + TW2 + TW3 − VB . (3.43)

Calculate the Euler-Lagrange equations

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= τext,i, i = 1,..,5. (3.44)

The same notation as for the 2D model is used to display the equations of motion for the 3D
model:

M(q)q̈ + C(q,q̇)q̇ +G(q) = τ ext. (3.45)

Due to their complexity the matrices M(q), C(q,q̇) and G(q) are not displayed here.

3.6.4 Linearization

For balancing the BBR the equations of motion are only needed around the position the BBR
stands upright. Therefore a linearized model, that is linearized around the position the BBR
stands upright, is used to model the dynamics of the BBR. In Sec. 3.7 it will be verified whether
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the linearized model is a valid approximation of the nonlinear model. First, the states and inputs
need to be defined.

Define the state x as

x =

[
q
q̇

]
=
[
xS yS ψx ψy ψz ẋS ẏS ψ̇x ψ̇y ψ̇z

]T
. (3.46)

and define the inputs u as

u =

u1

u2

u3

 =

τ1τ2
τ3

 . (3.47)

The system will be linearized around the unstable equilibrium, where all state variables and
inputs are zero:

x̄ =
[
0 0 0 0 0 0 0 0 0 0

]T
ū =

[
0 0 0

]T
.

(3.48)

Analogous to the 2D model, the equations of motion for the 3D model will be implicitly lin-
earized, which is explained in detail in Sec. 2.4.5. This results in the linear state space represen-
tation:

ẋ = A · x +B · u
y = C · x

(3.49)

where the matrices A and B are defined as

A =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 −13.78 0 0 0 0 0 0
0 0 −13.78 0 0 0 0 0 0 0
0 0 25.58 0 0 0 0 0 0 0
0 0 0 25.58 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



B =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 −3.73 3.73

4.30 −2.15 −2.15
−6.16 3.08 3.08

0 5.34 −5.34
−20.99 −20.99 −20.99



(3.50)

and where C is the 10-by-10 identity matrix.

Calculations with this state space model in Matlab show that the system is totally controllable
and observable.
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3.7 Simulation of 3D model

In the previous paragraphs a complete 3D dynamical model was derived and linearized around
the position the BBR stands upright. In this paragraph, simulations with this 3D model will be
done to analyze the nonlinear 3D model. Furthermore, the accuracy of the linearized model will
be investigated.

3.7.1 Simulations

The same kind of simulations will be done for the 3D model as have been done for the 2D model
in Sec. 2.8.1.
So firstly, the free response (i.e. nonzero initial conditions and no external torques) of the
nonlinear model is simulated for 10 seconds with an initial pitch angle of 0.1◦. For the first
2.25 seconds, also the free response of the linear model is shown. The results are shown in Fig.
3.5.

Fig. 3.5 shows that the robot will fall down and start to oscillate around the centre of the ball.
As the floor is not defined, the robot will go through the plane z = 0 and the amplitudes of the
oscillations do not decrease, because no energy loss or dynamic friction is modeled.

Analogous to the simulations of the 2D model, Fig. 3.5 shows that the response of the linear
model is almost indistinguishable from the nonlinear model with regard to the pitch angle ψx,
within a range of 20◦ of the linearization point and the error percentage of the linear model is
only 4.12%, when ψx = 20◦.
Also, the response of the linear model with regard to yS , the y-position of the ball, has already
an error of 27.00% when yS = 35 cm.

Secondly, the forced response (i.e. zero initial conditions and nonzero external torques) of the
linear and nonlinear model are simulated for 2 seconds with a constant external torque of 0.01
Nm. The results are shown in Fig. 3.6.

Analogous to the simulations of the 2D model, Fig. 3.6 shows that, also in this case, the response
of the linear model is almost indistinguishable from the nonlinear model with regard to the pitch
angle ψx, within a range of 20◦ of the linearization point, which is confirmed by the fact that
the error percentage of the linear model is only 3.56%, when ψx = 20◦.
Again, the response of the linear model with regard to yS has already a high error of 44.04%
when yS is only 35 cm.

So, from the results shown in Fig. 3.5 and Fig. 3.6, it can be concluded that the linear model
is reliable with regard to the orientation of the body of the BBR when the tilt angle is at most
20◦. Analogous to the 2D model, the linear model seems to be unreliable with regard to the
position of the ball. However, as also mentioned in Sec. 2.8.1, the position of the ball is linear
dependent on the pitch and roll angles, so the linear model with regard to the position of the
ball is only reliable if the pitch and roll angles are at most 20◦, which is confirmed by Fig. 3.5
and Fig. 3.6.
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Figure 3.5: Free response of the linear and nonlinear 3D model with an initial pitch angle of 0.1◦.
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Figure 3.6: Forced response of the linear and nonlinear 3D model with a constant external torque
of 0.01 Nm.
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4. Design of a controller

In this chapter, a controller will be designed, based on the derived dynamical 3D model. The
controller will control the 3D orientation of the body and the position of the BBR, which includes
both station keeping and tracking of given set points.

In the first paragraph, the results of a literature research on designed BBR controllers will be
shown. The controller requirements will be formulated in the second paragraph together with
a controller design approach. A static LQR controller will be designed in the third paragraph
that controls the orientation of the body and the position of the BBR simultaneously. In the
fourth paragraph, a SISO cascade controller will be designed with manual loopshaping, which
consists of an inner loop for controlling the orientation of the body and an outer loop for position
control. In the fifth paragraph, it will be explained how the position of the BBR is derived from
the measurements. Finally, a short conclusion can be found in the sixth paragraph.

4.1 Literature review

Different approaches have been taken in the design of a balancing controller for a Ball-Balancing
Robot. These approaches can be roughly divided into two groups. The first group consists of
controllers whose design is based on a nonlinear model of the BBR, like is done in [5], [13] and
[15]. The second group consists of controllers whose design is based on the linearized model of the
BBR, as shown in [3], [7] and [19]. In that case, the 3D system is often modeled by independent
planar models of the vertical planes, which are controlled by independent controllers. It is also
possible to use a combination of linear controllers (based on a full 3D model), which results in a
nonlinear controller, as demonstrated in [2].
The most common position controller approach consists of simultaneously controlling the orien-
tation and the position of the BBR by using LQR control theory, as shown in [2], [5], [7] and [19].
Out of these approaches [2] and [5] also use feedforward (FF) control to improve tracking of set
points. Also cascade control systems are used, where the balancing controller and the position
controller are designed separately, see [13]. In this case, the control system consists of and inner
loop for balancing control and an outer loop for position control.
In the next section, an overview is given of both the balancing and the position controllers found
in literature.

4.1.1 Overview of controllers

University: Carnigie Mellon University (2006 and 2009).
Balancing controller: PID controller.
Position controller: PID controller + offline trajectory planning.

The BBR of Carnigie Mellon University, shown in Fig. 1.3a) was first controlled by a con-
trol system that consisted of an inner loop and an outer loop, described in [8] (published in
2006):

� Inner loop: The inner loop consisted of a PI controller that was used for control of the
angular velocity of the ball. This inner loop automatically compensated for the various
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frictional torques that had to be overcome to achieve velocity tracking, thus reducing the
effect of the unmodeled static and dynamic friction.

� Outer loop: The outer loop consisted of a LQR controller that used full state feedback.

With these controllers, the system was able to keep position and track set points, although the
performance was poor. In 2009, two other papers were published ([15], [14]), in which these
controllers were replaced by a PID controller for balancing and a PID controller for station
keeping and tracking set points, where the output of the position controller is used for the input
of the balancing controller. Also an offline trajectory planning algorithm is proposed that plans
trajectories, which are used as reference, for the body angle in order to move the ball to the
desired position.

University: Tohoku Gakuin University (2009).
Balancing controller: PD controller.
Position controller: PD controller.

The BBR of Tohoku Gakuin University, shown in Fig. 1.3b), is controlled by two PD controllers,
that control the pitch and roll angle and the position of the BBR simultaneously [7]. The posi-
tion controller is used for both station keeping and tracking set points, so the problem of station
keeping and tracking set points is reduced to one regulation problem.
The inputs of the plant are decoupled in x-, y- and z-direction, so the controllers do not control
the omni-wheels directly, but control virtual wheels that lie in the same plane as the sensors
for the pitch and roll angle. Accelerations are used as controller outputs, which are integrated
to velocities and the velocities are used as plant inputs. The gains of the PD controllers are
tuned experimentally. In the first experiments, a basketball was used, but although the robot
could balance, the behaviour was unsteady. This seems to happen due to insufficient stiffness
of the basketball. Therefore, the basketball was replaced by a more rigid ball, which showed a
satisfying behaviour. Experiments also showed that the BBR was able to transport loads of at
least 10 kg.

University: University of Adelaide (2009).
Balancing controller: LQR controller (PD).
Position controller: LQR controller (PID), only used for station keeping.

The BBR of University of Adelaide is built from LEGO and shown in Fig. 1.3c), is controlled by
a LQR controller that uses full state feedback. In contrast with many other papers, the states
consist of all the quantities that can be directly measured, i.e. the body angles and the motor
shaft angles. In addition, they also introduced two extra states, which are the integral of the
motor shaft angles around the x- and y-axis. This results in a LQR controller which is in fact a
PID controller for the motor shaft angles and a PD controller for the pitch and roll angles [3].
The controller for the motor shaft angles allows controlling the position of the BBR, but it is
only used for station keeping.
Experiments showed that the controller stabilized the system and provided satisfying distur-
bance attenuation. However, the performance of the robot was limited by nonlinearities that
were present in the system, in particular nonlinearities present in the motor dynamics.

University: National Chung Hsing University (2012).
Balancing controller: LQR controller (PD).
Position controller: LQR controller (PD).
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The BBR of National Chung Hsing University, shown in Fig. 1.3d), is also controlled by a LQR
controller that used full state feedback [19], which is in fact a PD controller for the body angles
and a PD controller for the position of the BBR. Like is done in [7], the problem of station
keeping and tracking set points is reduced to one regulation problem.
This paper also shows the capabilities of LQR controller theory for a robot that is not built from
LEGO.

University: ETH Zürich (2010).
Balancing controller: nonlinear controller based on LQR control theory.
Position controller: nonlinear controller based on LQR control theory + feedforward.

The BBR of ETH Zürich, called Rezero and shown in Fig. 1.3e) and f), is controlled by a
nonlinear controller, that consists of a combination of different LQR controllers, based on different
linearization points. Gain scheduling is used to combine the different linear controllers to a
nonlinear controller. The idea of gain scheduling is to design a linear controller at different
operating points and to interpolate the controller gains for the current states during operation
[2]. Also feedforward is used.
Experiments show that the controller stabilizes the system and Rezero has been presented in
public for several times, showing the full potential of moving on a single ball.

University: Bilkent University & Middle East Technical University (2012).
Balancing controller: Inverse dynamics controller + PD controller.
Position controller: Inverse dynamics controller + PD controller.

Inal et al. [5] developed a nonlinear 3D model for a BBR. An inverse dynamics controller is used
in combination with a PD controller to control the body angles and the position.
Simulations show that these controllers are capable of sustaining dynamic behaviours such as
circular trajectories in a robust and stable way. However, as their paper lacks results, it is unsure
whether these controllers have ever been implemented and tested.

4.2 Control approach

Simulations in Sec. 3.7 showed that the linearized model is a reliable approximation of the
nonlinear model with regard to the orientation angles of the body, provided that the tilt angle
is at most 20◦. Moreover, the literature review in the previous section showed that for many
BBR’s, both the orientation angles of the body and the position of the ball could be controlled
with linear controllers. Based on these arguments, it is decided to design a linear controller for
controlling both the orientation angles of the BBR and the position of the ball.

There are mainly three controller design techniques in classical and modern control theory for
designing a linear controller, namely SISO loopshaping, LQR control theory and H∞ control
theory.
SISO loopshaping is a controller design technique that manually shapes the transfer function
from an input to an output. It gives good insight in the design of a controller, but it works only
to MIMO systems that can be decoupled into independent SISO subsystems. Also, for large
MIMO systems that can be decoupled, SISO loopshaping can be a time consuming technique,
because all transfer functions between different inputs and outputs need to be controlled sepa-
rately.
LQR control theory is a controller design technique that designs an optimal controller by min-
imizing a quadratic cost function subject to the system dynamics. It has the advantage that
it can be applied to MIMO systems. A disadvantage of LQR control theory is that the control
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parameters of LQR control theory are often not directly related to control requirements, which
makes it more difficult to find the optimal controller that satisfies all the controller requirements.
Finally, H∞ control theory is a controller design technique that designs a controller based on the
minimization of the peak magnitude of a suitable closed loop system transfer function. It has
the advantage that it can be applied to MIMO systems and it also has the advantage to include
robustness constraints explicitly in the criterion.

Before a controller design approach will be formulated, the controller requirements will to be
formulated.

4.2.1 Controller requirements

In order to have a well-designed control system, the controller should be designed such that:

1. It makes the system internally stable (i.e. all the closed loop poles have negative real parts)
with a gain margin of at least 6 dB and a phase margin of at least 30◦.

2. It attenuates disturbances up to 2 Hz for at least 80% (which is equal to an attenuation
with at least −14 dB).

3. The closed loop system attenuates frequencies above 100 Hz for at least 80% (because
the IMU has a sampling frequency of 200 Hz and the Nyquist-Shannon sampling theorem
states that perfect reconstruction of a signal is possible when the sampling rate is greater
than twice the maximum frequency of the signal).

4. The settling time2 of the inverse step response3 of the pitch and roll angle is between 2
and 4 seconds in case it is station keeping at (xS , yS)=(0, 0), to prevent that the system
will behave too slow or too aggressive (so this controller requirement only holds for the
controller that controls the pitch and roll angle).

5. Torque saturation is minimized.

4.2.2 Controller design approach

There are many possibilities in the design of a controller for the BBR, which is clearly visible
in the literature overview, shown in Sec. 4.1. Different approaches are taken, based on e.g. the
dynamics and size of the BBR or the purpose of the BBR.
The purpose of this BBR is to use it as a demonstrator on fairs as soon as possible. Therefore,
the approach taken in this report is to design first a simple, static controller, which is easily im-
plementable and has a short design time to make the BBR fair ready as soon as possible. For this
controller, simplicity is more important than performance. Secondly, a more advanced dynamic
controller will be designed, which will have a longer design time and might be more difficult to
implement, but has more possibilities to address specific behaviour of the BBR and focuses more
on performance. These controllers will be implemented and based on their performance it will
be decided if it is necessary to design another controller, for example a nonlinear controller as is
done in [2].

2The time after which the output remains within a range of 0.5◦ from 0◦
3An inverse step response is a step response with an input offset of 10◦ and step amplitude of −10◦ at t = 0.

It is used, because it is a response to a more natural disturbance than in case of a normal step response.
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The controllers can both be designed with all three linear controller design techniques mentioned
earlier in this section. In the design of the simple static controller, LQR control theory is chosen as
controller design technique, because with LQR control theory a static controller can be calculated
in a relatively short time. Although it is more difficult to find the optimal controller with LQR
control theory (because the control parameters are not directly related to most of the controller
requirements) it is relatively easy to find a suboptimal controller. LQR control theory is preferred
above SISO loopshaping, because using SISO loopshaping as controller design technique results in
a cascade controller, which makes the controller more complex. Moreover, designing a controller
with SISO loopshaping takes more time, which is not in accordance with the design approach of
the first controller to design a simple controller in a short time. LQR control theory is preferred
above H∞ control theory, because LQR control theory is more suitable for the design of a static
controller in a relatively short time.

In the design of the more advanced dynamic controller, SISO loopshaping is chosen as controller
design technique. SISO loopshaping is possible because of a static decoupling of the inputs of
the system. SISO loopshaping is preferred above LQR control theory, because for the design of a
more advanced dynamic controller, it is desirable that the control parameters are directly related
to most of the controller requirements to be able to achieve maximal performance, which is not
the case for LQR control theory. Moreover, LQR control theory is based on the minimization
of the L2-norm4 of the error and input signals, which means that the peak values of the errors
are not specifically taken into account. Also, Parseval’s theorem5 states that the L2-norm of
a signal in time domain is proportional to the L2-norm of that signal in frequency domain.
This means that also in frequency domain, peak values are not specifically taken into account,
which is undesirable for the design of a more advanced dynamic controller. Furthermore, SISO
loopshaping is preferred above H∞ control theory, because of its possibilities to manually shape
the controller, although H∞ control theory also is a suitable controller design technique for the
design of this controller.

4.3 Design of a LQR controller

In this section a LQR controller will be designed that controls the orientation of the body and
the position of the BBR simultaneously.

4.3.1 LQR control theory

The LQR controller consists of a feedback gain matrixK, which will be implemented as u = −K·e
in the state space representation of the system, given in Eq. (3.49), where e is the error defined
as e = xref − x, with xref denoting the reference states. This results in a closed loop system
with the reference states as input, shown in Fig. 4.1, for which the state space representation is
given by

ẋ = (A−B ·K) · x +B ·K · xref
y = C · x

(4.1)

where C is again the 10-by-10 identity matrix.

4The L2-norm of a time function f(t) is defined as ‖f(t)‖L2
= (

∫∞
−∞‖f(t)‖22dt)

1
2 , where ‖·‖2 is the Euclidean

norm.
5Parseval’s theorem states that for a time function f(t) holds that

∫∞
−∞|f(t)|2dt = 1

2π

∫∞
−∞|F (iω)|2dω, where

F (iω) is the Fourier transform of f(t).
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Figure 4.1: The closed loop system with a LQR controller.

The feedback gain matrix K is calculated such that u = −K · e minimizes the quadratic cost
function

J(u) =

∫ ∞
0

(
eT ·Q · e + uT · ρ ·R · u

)
dt (4.2)

subject to the system dynamics
ẋ = A · x +B · u (4.3)

where Q is defined as Q = NT ·Q′ ·N , with N defining the plant outputs that need to be controlled
and where Q′ is the weighting matrix corresponding to these controlled outputs. Furthermore, R
is the weighting matrix corresponding to the controller outputs and ρ is a positive constant.

In case ρ ·R� Q, the cost function is dominated by the control effort u, so the controller focuses
on minimizing the control action. In case ρ ·R� Q, the cost function is dominated by the errors
e, so the controller focuses on minimizing the errors of the states. So ρ is a scale factor that sets
the ratio between optimizing the control effort and optimizing the states.

There is no such thing as a standard method of finding Q, R and ρ. Bryson’s rule [4] is used
for an initial value of the matrices Q′ and R. With Bryson’s rule, Q′ and R are chosen diagonal
with

Q′ii =
1

e2
i,max

Rjj =
1

u2
j,max

(4.4)

where ei,max is the maximum acceptable absolute value of the error with respect to the reference
value of the controlled state i and uj,max is the maximum acceptable absolute value of input
j. In fact, Bryson’s rule normalizes the variables e and u to improve equal penalization of
variables.

4.3.2 LQR control theory applied to the BBR

In order to apply the theory of LQR control to the BBR, the weighting matrices need to be
determined together with control parameter ρ, such that the controller satisfies the controller
requirements. Firstly, all states will be controlled, so N is a 10-by-10 identity matrix. Secondly,
the maximum acceptable absolute values of the errors need to be estimated. In fact, of all the
minimal coordinates (xS , yS , ψx, ψy and ψz), only the pitch and roll angle have a critical bound
on the maximum acceptable absolute error and the other values need to be roughly estimated.
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Therefore, the maximum error for the position of the ball is chosen to be 0.5 m and the maximum
error for the pitch and roll angle is chosen to be 10◦. There is no maximum error for the yaw
angle required, so maximum error for the yaw angle is chosen to be the maximum possible error,
which is 180◦. The maximum errors for the derivatives of the minimal coordinates are taken
thrice as much as the maximum errors of the minimal coordinates, which results in the following
matrix Q′:

Q′ =



1
0.52 0 0 0 0 0 0 0 0 0
0 1

0.52 0 0 0 0 0 0 0 0

0 0 1802

(10π)2 0 0 0 0 0 0 0

0 0 0 1802

(10π)2 0 0 0 0 0 0

0 0 0 0 1
π2 0 0 0 0 0

0 0 0 0 0 1
1.52 0 0 0 0

0 0 0 0 0 0 1
1.52 0 0 0

0 0 0 0 0 0 0 1802

(30π)2 0 0

0 0 0 0 0 0 0 0 1802

(30π)2 0

0 0 0 0 0 0 0 0 0 1
3π2


. (4.5)

The maximum torque of an omni-wheel is 3.75 Nm, which results in the following matrixR:

R =

 1
3.752 0 0

0 1
3.752 0

0 0 1
3.752

 . (4.6)

The feedback gain matrix K can now be calculated with Matlab and optimized by changing ρ.
Furthermore, a reference generator is implemented, which generates 4th order reference signals
for the desired position of the ball to improve the position control.

The controlled system will be simulated for different values of ρ. The initial conditions for the
states of Eq. (4.1) are chosen zero, except for the pitch angle ψx, which is chosen to be 10◦ to
approximate the inverse step response, mentioned in controller requirement 4).
The results of the described simulation for the pitch angle is shown in Fig. 4.2 for ρ = 0.01, 0.1,
1, 10, 100.

Inspection of Fig. 4.2 shows that choosing ρ is a trade-off between aggressive motion resulting
in a low settling time and smooth motion resulting in a higher settling time. Only for ρ = 100
and ρ = 10 the settling time does not satisfy controller requirement 4), but for all other values
of ρ, the settling time is between 2 and 4 seconds. Therefore, to satisfy controller requirement 4)
and also minimize the control effort, ρ is chosen as high as possible, provided that the settling
time is between 2 and 4 seconds. Based on this reasoning, ρ is chosen to be 1, which results in
the following gain matrix K:

K =

 0 −6.1237 −40.0104 0 −0.6892 0 −10.7974 −16.6234 0 −0.2780
5.3033 3.0619 20.0052 34.6500 −0.6892 9.3485 5.3974 8.3117 14.3963 −0.2780
−5.3033 3.0619 20.0052 −34.6500 −0.6892 −9.3485 5.3974 8.3117 −14.3963 −0.2780

 .
(4.7)

In fact, this LQR controller is a sum of PD controllers for the minimal coordinates.

Whether the controller satisfies the other controller requirements will be analyzed in the frequency
domain. To make the analysis in frequency domain easier, the plant inputs will be decoupled in
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Figure 4.2: The inverse step response of the pitch angle simulated for different values of ρ, that
determines the ratio between optimizing the control effort and optimizing the states.

x-, y- and z-direction and the LQR controller will be converted such that it controls the torques
in x-, y- and z-direction. This makes it possible to convert the LQR controller to independent
PD controllers for each of the minimal coordinates.

4.3.3 Decoupling of torques

The transformation matrix that decouples the torques in x-, y- and z-direction has already been
derived in Sec. 2.6 for the 2D model and is given by Eq. (2.50). However, τz was defined
clockwise for the 2D model, but counterclockwise for the 3D model, so the last column of the
transformation matrix needs to be multiplied by −1, because the controller design will be based
on the 3D model. Substituting α = 45◦ and β = 0◦, yields the following decoupling matrix
M

M =

 2
√

2
3 0 −

√
2

3

−
√

2
3

√
6

3 −
√

2
3

−
√

2
3 −

√
6

3 −
√

2
3

 (4.8)

such that τ1τ2
τ3

 = M ·

τxτy
τz

 . (4.9)

The state space representation of the system was given by Eq. (3.49) in Sec. 3.6. Post-multiplying
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matrix B with M results in a state space model with the new inputs τx, τy and τz

ẋ = A · x +B ·M · ũ
y = C · x

(4.10)

with ũ =
[
τx τy τz

]T
and where C is the 10-by-10 identity matrix.

4.3.4 Verification of controller requirements in frequency domain

The plant transfer matrix P can now be calculated by taking the Laplace Transform of the state
space model, which is defined as

P = C · (s · Id−A)−1 ·B ·M (4.11)

where Id denotes the 10-by-10 identity matrix.

Pre-multiplying the controller gain matrix K with M−1 results in a controller that controls the
torques in x-, y- and z-direction. Combining the gains of the minimal coordinates and their
derivatives into one controller for each of the minimal coordinates results in a PD controller for
each of the minimal coordinates. With these PD controllers, together with the plant transfer
functions given in Eq. (4.11), all the different transfer functions, needed for the verification of
the controller requirements, can be calculated.

To check whether the controller satisfies the second controller requirement, the sensitivity func-
tions of the minimal coordinates are plotted in Fig. 4.3.
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Figure 4.3: Bode magnitude plot of the sensitivity functions of the minimal coordinates (in case
ρ = 1).
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Fig. 4.3 shows that for none of the minimal coordinates, the controller satisfies controller require-
ment 2), because all the sensitivity functions cross the −14 dB line before 2 Hz. For controlling
the yaw angle, this problem is solved by reducing the maximum error for the yaw angle from
180◦ to 60◦. For controlling the other four minimal coordinates, this problem can be solved by
increasing the bandwidth (as little as possible). This can be done by decreasing ρ from 1 to
0.25, which is proved in Fig. 4.4 (Note that the sensitivity functions SxS and Sψx are identical
to respectively SyS and Sψy ).
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Figure 4.4: Bode magnitude plot of the sensitivity functions of the minimal coordinates (in case
ρ = 0.25).

To check whether the controller also satisfies the third controller requirement, the closed loop
transfer functions are plotted in Fig. 4.5. Fig. 4.5 shows that all of the closed loop transfer
functions satisfy controller requirement 3), because they attenuate frequencies above 100 Hz with
at least −14 dB.

To make sure that torque saturation is minimized with this controller, three scenarios will be
considered.
The first scenario is that torque saturation will never happen. In that case the controller auto-
matically satisfies controller requirement 5) and no additional actions need to be taken.
The second scenario is that torque saturation will happen sometimes. In that case it needs to
be investigated how frequently torque saturation happens and based on that it can be decided if
additional actions need to be taken.
The third scenario is that torque saturation will often happen and in that case additional actions
definitely need to be taken to minimize the torque saturation.

To predict which scenario will be most probable for the BBR, two different situations will be
simulated. In the first simulation a natural situation will be simulated to get an indication how
large the average needed torque is. In the second simulation an exceptional situation will be

64



Modeling & Control of a Ball-Balancing Robot 4.3 Design of a LQR controller

10
−2

10
−1

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

10

M
ag

ni
tu

de
 (

dB
)

 

 
Closed loop transfer functions

Frequency  (Hz)

T
x

S

=T
y

S

Tψ
x

=Tψ
y

Tψ
z

Figure 4.5: Bode magnitude plot of the closed loop transfer functions of the minimal coordinates
(in case ρ = 0.25).

simulated to get an indication whether or not the torque will saturate in these kind of situations.
In the first simulation, the closed loop system is simulated with the nonlinear model in Simulink
for 5 seconds with a sinusoidal disturbance d for the roll angle, with a frequency of 0.5 Hz and
an amplitude of 5◦, which is for now assumed to be a natural disturbance signal for the BBR.
The references are set to zero for all states, which means that the BBR is balancing and station
keeping at the position (xS , yS)=(0, 0). The disturbance signal together with the torque required
to stabilize the system in this situation, is shown in Fig. 4.6.
The dotted gray lines indicate the nominal torque of 1.74 Nm and the dotted red lines indicate
the maximum torque of 3.75 Nm.

In the second simulation, the closed loop system is simulated with the nonlinear model in Simulink
for 5 seconds with a sinusoidal disturbance d for the roll angle, with a frequency of 0.5 Hz and
an amplitude of 15◦, which is for now assumed to represent an exceptional situation for the
BBR. The references are set to zero for all states, which means that the BBR is balancing and
station keeping at the position (xS , yS)=(0, 0). The disturbance signal together with the torque
required to stabilize the system in this situation, is shown in Fig. 4.7.

Fig. 4.6 shows that in case of a natural disturbance signal, the required torques stay far under the
nominal torque. Furthermore, Fig. 4.7 shows that in case of an exceptional disturbance signal,
the required torques stay far under the maximum torque. So the results of these simulations give
a strong indication that the first scenario is most probable for the BBR. Therefore, no additional
actions seem to be needed to improve the minimization of torque saturation and the controller
satisfies controller requirement 5).

The last controller requirement that needs to be satisfied is controller requirement 1). Therefore,
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Figure 4.6: The required torque in case of a natural disturbance signal with a frequency of 0.5
Hz and an amplitude of 5◦.
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Figure 4.7: The required torque in case of a exceptional disturbance signal with a frequency of
0.5 Hz and an amplitude of 15◦.
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the closed loop poles are calculated and given by (in rad/s)

s = −0.9284± 0.6942i

s = −0.9284± 0.6942i

s = −3.0005

s = −3.0005

s = −3.0023

s = −45.9959

s = −45.9959

s = −77.4180

(4.12)

which proves that the closed loop system is stable. Also, LQR controllers have an infinite gain
margin and a phase margin of at least 60◦ (see [18] for the proof), so the controller also satisfies
controller requirement 1).
The final gain matrix K is given by

K =

 0 −12.2474 −74.7196 0 −4.1350 0 −21.2709 −31.5757 0 −1.4307
10.6066 6.1237 37.3598 64.7091 −4.1350 18.4212 10.6355 15.7878 27.3453 −1.4307
−10.6066 6.1237 37.3598 −64.7091 −4.1350 −18.4212 10.6355 15.7878 −27.3453 −1.4307

 .
(4.13)

Finally, the closed loop system will be simulated with a initial position of (0,0) and a desired
position of (3,1) to illustrate the performance of the position controller. The results are shown
in Fig. 4.8.
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Figure 4.8: Simulation of position of the BBR from position (0,0) to (3,1) with the LQR con-
troller.
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Fig. 4.8 shows that the desired position (3,1) is reached in about 6 seconds, which means that
the BBR has a linear speed of about 0.5 m/s.

4.4 Design of a SISO controller

In this section a controller, denoted as a SISO controller, will be designed with manual loop-
shaping of the transfer functions between the different inputs and outputs, that controls both
the orientation of the body and the position of the ball.

In order to design a SISO controller, the inputs of the plants will be decoupled in the x-, y- and
z-direction, like is done in Sec. 4.3.3. This results in a diagonal plant matrix, which makes it
possible to control each of the minimal coordinates separately. The control system consists of an
inner loop that controls the orientation angles of the body and an outer loop that controls the
position of the ball.
The inner control loop consists of three SISO controllers for the pitch, roll and yaw angle. Firstly,
a SISO controller will be designed for the pitch angle ψx with manual loopshaping using ShapeIt6.
The controller for the roll angle ψy is then obtained by multiplying the controller for the pitch
angle ψx by -1. Secondly, a SISO controller will be designed for the yaw angle.
After that the outer control loop will be designed, which consists of two SISO controllers for the
x- and y-coordinates of the ball. These position controllers actuate the pitch and roll angle in
order to move the BBR to the desired position.
A sketch of this control system can be found in Fig. 4.9.

Figure 4.9: Sketch of the closed loop system with a SISO controller.

4.4.1 Calculation of SISO plant transfer functions

The inputs of the plant can be decoupled in the x-, y- and z-direction using the decoupling
matrix M , like is explained in Sec. 4.3.3. In this case, C is defined as

C =

0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

 (4.14)

such that the pitch, roll and yaw angles are the only outputs.

The transfer matrix P, that maps the inputs to the outputs, can be found by taking the Laplace
Transform of this state space model. It is defined as

P = C · (s · Id−A)−1 ·B ·M (4.15)

6http://cstwiki.wtb.tue.nl/index.php?title=Home of ShapeIt
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where Id denotes the 10-by-10 identity matrix. Calculating this transfer matrix P with Matlab
gives the following input/output-representationψxψy

ψz

 =

 −3.544
s2−11.49 0 0

0 3.544
s2−11.49 0

0 0 26.5
s2

 ·
τxτy
τz

 . (4.16)

This proves that, because of the decoupling, the plant matrix is diagonal and the pitch, roll and
yaw angle can be controlled independently.

4.4.2 Controller design for pitch and roll angle

The transfer function from τx to the pitch angle ψx (denoted by Pψx) is thus given by

Pψx(s) =
−3.544

(s+ 3.3894)(s− 3.3894)
(4.17)

which has no zeros and poles at s = ±3.3894 rad/s. A Bode plot of Pψx is shown in Fig. 4.10.
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Figure 4.10: Bode plot of plant transfer function Pψx(s).

Now a controller will be designed for this plant. By using a pure gain controller, with gain
Kψx = −100, the Bode plot of the closed loop transfer function Tψx = PψxKψx · (1 +PψxKψx)−1

shows satisfactory tracking of reference signal by the output signal up to a frequency of about 1
Hz, as can be seen in Fig. 4.11. However, Tψx also has a large peak at about 3 Hz and the phase
margin is 0◦. This problem can be solved by introducing a lead compensator of the form

Kψx(s) =
n

2πωB
s+ 1

1
2πnωB

s+ 1
(4.18)
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Figure 4.11: Bode plot of closed loop transfer function Tψx(s).

where n sets the frequencies where the zero and pole are placed and where ωB denotes the
bandwidth7. This form of lead compensator makes sure that the maximum phase lead occurs
at the bandwidth ωB . It is important to keep the bandwidth as low as possible, because of
unmodeled vibrations, risk of amplification of measurement noise and large control signals. Based
on the requirements that disturbances up to 2 Hz need to be rejected, a bandwidth of 3 Hz is
used as a starting point.

Based on a bandwidth of 3 Hz, a lead compensator is designed for different n. The impulse
response of Tψx and a Bode plot of the sensitivity function Sψx = (1 + PψxKψx)−1 are shown in
Fig. 4.12 for n = 2,3,4,5,6.
To prevent the system from reacting too aggressive on disturbances, the first peak of the impulse
response of Tψx , shown in Fig. 4.12a) should be as low as possible. Also, the higher this peak
is, the more control effort is needed, so this peak should be minimized to satisfy controller
requirements 4) and 5). Inspection of Fig. 4.12a) shows that for n = 3 the peak is minimal and
that it increases if n increases. So, based on this reasoning, n = 3 would be the best choice.

Inspection of Fig. 4.12b) shows that, in order to minimize the peak of Sψx , n should be chosen
as high as possible. However, minimizing the peak of Sψx causes an increase of Sψx at low
frequencies, which is called the ’waterbed effect’. In order to satisfy controller requirement 2), n
can be at most 5 to attenuate disturbances up to 2 Hz with at most −14 dB. So, based on this
reasoning, n = 5 would be the best choice.

So choosing n is a trade-off between optimizing the settling time and minimizing the overshoot
on the one hand and having a ideally shaped sensitivity function to prevent amplification of noise

7In this report, the bandwidth ωB is defined as the frequency, expressed in Hz, where the open loop gain is
unity.

70



Modeling & Control of a Ball-Balancing Robot 4.4 Design of a SISO controller

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
5

0

5

10

15

20

Impulse response

Time (seconds)

A
m

p
lit

u
d
e
 (

ra
d
)

n=2

n=3

n=4

n=5

n=6

0 0.05
15

16

a)

−25

−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

0

45

90

135

180

P
ha

se
 (

de
g)

 

 

Sensitivity function

Frequency  (Hz)

n=2
n=3
n=4
n=5
n=6

b)

Figure 4.12: Simulation for different values of n, that sets the frequencies of the pole and the zero
of the lead compensator. a) The impulse response of the closed loop transfer function Tψx(s).
b) Bode plot of the sensitivity function Sψx(s).
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on the other hand. For n = 4, the impulse response of Tψx converges and the first peak is of
about the same height as for n = 3, compared to other values of n. Also, for n = 4, peaking of
Sψx is acceptable. Therefore, n is chosen to be 4.
Furthermore, Fig. 4.12b) shows that the bandwidth needs to be increased to satisfy controller
requirement 2), i.e. to achieve a disturbance attenuation of at least 80% up to disturbances of
2 Hz. Simulations show that the bandwidth needs to be increased to 9 Hz, which is proved by
Fig. 4.13.
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Figure 4.13: Bode magnitude plot of the sensitivity function Sψx(s).

This results in the following controller:

Kψx(s) = −226 · 0.07074s+ 1

0.004421s+ 1
(4.19)

where the gain has been adjusted to −226 to achieve the required bandwidth of 9 Hz.

To check whether the controller satisfies also the third controller requirement, the closed loop
transfer function Tψx is plotted in Fig. 4.14.

Fig. 4.14 shows that the closed loop system attenuates frequencies above 100 Hz with at least -30
dB, which is equal to an attenuation for at least 95%, so the controller clearly satisfies controller
requirement 3).

The next thing that will be verified, is the stability of the closed loop system to check whether the
controller satisfies controller requirement 1). Therefore, the closed loop poles will be calculated.
They are given by (in rad/s)

s = −147.6878

s = −57.4668

s = −21.0401

(4.20)
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Figure 4.14: Bode magnitude plot of closed loop transfer function Tψx(s).

which proves that the closed loop system is stable. Furthermore, it has an infinite gain margin
and a phase margin of 62◦, so the controller also satisfies controller requirement 1). So until now,
it has been proved that the controller for the pitch and roll angle satisfies controller requirements
1) up to 3). Controller requirements 4) and 5) will be verified later with the total controlled
system.

4.4.3 Controller design for yaw angle

The transfer function from τz to the yaw angle ψz (denoted by Pψz ) is given by

Pψz (s) =
26.5

s2
(4.21)

which has no zeros and two poles at s = 0 rad/s. A Bode plot of Pψz is shown in Fig. 4.15.

Inspection of Fig. 4.15 shows that phase margin is 0◦. Analogous to the design of a controller
for the pitch and roll angle, this is solved by introducing a lead compensator of the form

Kψz (s) =
4

2πωB
s+ 1

1
2π4ωB

s+ 1
. (4.22)

Also, a bandwidth of 3 Hz is used as a starting point, which results in the following con-
troller:

Kψz (s) = 3.35 · 0.2122s+ 1

0.01326s+ 1
. (4.23)

where the gain has been chosen such that the bandwidth is 3 Hz.
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Figure 4.15: Bode plot of plant transfer function Pψz (s).

In Fig. 4.16 the sensitivity function Sψz is plotted to check whether the controller satisfies
controller requirement 2).
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Figure 4.16: Bode magnitude plot of the sensitivity function Sψz (s) with a bandwidth of 3 Hz.
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Inspection of Fig. 4.16 shows that frequencies up to 2 Hz are not attenuated for at least 80%.
This problem is solved by increasing the bandwidth to 9 Hz, which is proved by Fig. 4.17. This
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Figure 4.17: Bode magnitude plot of the sensitivity function Sψz (s) with a bandwidth of 9 Hz.

results in the following controller:

Kψz (s) = 30.15 · 0.07074s+ 1

0.004421s+ 1
. (4.24)

where the gain has been chosen such that the bandwidth is 9 Hz.

To check whether the controller satisfies controller requirement 3), the closed loop transfer func-
tion Tψz is plotted in Fig. 4.18.

Fig. 4.18 shows that the closed loop system attenuates frequencies above 100 Hz for more than
80%, so the controller also satisfies controller requirement 3).

Finally, the stability of the closed loop system needs to be verified. Therefore, the closed loop
poles are calculated and they are given by (in rad/s)

s = −148.1320

s = −56.4505

s = −21.6122

(4.25)

which proves that the closed loop system is stable. Furthermore, it has an infinite gain margin
and a phase margin of 62◦, so the controller also satisfies controller requirement 1).
So controller requirements 1) up to 3) are satisfied now and controller requirement 4) and 5) will
be verified later with the total controlled system.
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Figure 4.18: Bode magnitude plot of closed loop transfer function Tψz (s).

4.4.4 Controller design for position of the ball

In this paragraph, controllers will be designed that control the x- and y-position of the ball
by setting the reference of the pitch and roll angle. Therefore, the transfer function from the
reference signals of the pitch and roll angle to the position of the ball need to be calculated.
The transfer function from rψy to the x-position of the ball xS (denoted by PxS ) is defined as

the transfer function from rψy to ψy (denoted by Tψy =
PψyKψy

1+PψyKψy
) multiplied by the transfer

function from ψy to xS (denoted by Pψy 7→xS ), which can be seen from the closed loop system of
xS in Fig. 4.19. PxS is given by

PxS (s) =
12815s+ 181169

s3 + 226.2s2 + 12804s+ 178570︸ ︷︷ ︸
Tψy

· −0.8485s2 + 4.029

s2︸ ︷︷ ︸
Pψy 7→xS

(4.26)

where Pψy 7→xS is defined as

Pψy 7→xS =
Pτy 7→xS
Pτy 7→ψy

(
Transfer function from τx to xS
Transfer function from τx to ψy

)
. (4.27)

The transfer function from rψx to the y-position of the ball yS (denoted by PyS ) is identical to
PxS and therefore only PxS will be considered in this paragraph.

A Bode plot of PxS is shown in Fig. 4.20. It has zeros (in Hz) at

s = ±0.34683

s = −2.25
(4.28)
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Figure 4.19: Sketch of the closed loop system for xS .
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Figure 4.20: Bode plot of plant transfer function PxS (s).
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and poles (in Hz) at
s = 0

s = 0

s = −3.3486

s = −9.1461

s = −23.505.

(4.29)

Due to the right-half plane (RHP) zero, PxS is non-minimum phase. This constrains the perfor-
mance of the system as the frequency over which effective disturbance attenuation is possible,
without excessive peaking of the sensitivity function (denoted by SxS ), is constrained from above
by the magnitude of the smallest RHP zero [1], i.e. 0.34683 Hz. The RHP zero thus also con-
strains the maximum bandwidth.
To make sure that excessive peaking of SxS is prevented, an additional requirement is intro-
duced by requiring a modulus margin of at least 0.5, because the modulus margin is defined as

1
max|SxS (s)| . This means that SxS must be at most 6 dB.

Inspection of Fig. 4.20 shows that PxS has a phase of between 90◦ and 180◦ in the crossover
region, which makes the closed loop system unstable with a unity controller. Moreover, zooming
in the Bode magnitude plot of PxS , see Fig. 4.21, shows that PxS crosses the 0 dB line multiple
times, which causes peaking of the sensitivity function SxS and the closed loop transfer function
TxS . Adjusting the gain does not solve the problem of multiple crossing of the 0 dB line, because
increasing the gain results in a too high bandwidth and decreasing the gain results in excessive
peaking of both SxS and TxS . Therefore, a pole is added by introducing a low-pass filter:

Klp,xS (s) =
1

1
2πωlp

s+ 1
(4.30)

where ωlp is the frequency of the pole of the low-pass filter. The frequency of the pole is chosen
to be the same frequency as the frequency of the RHP zero of PxS to minimize peaking of both
SxS and TxS , which results in a slope of -1 in the crossover region. The Bode plot of the resulting
open loop transfer function LxS is shown in Fig. 4.22.

However, adding this pole causes even more phase lag in the crossover region, as can be seen in
Fig. 4.22. To add phase to the system, a lead compensator is introduced of the form

Klc,xS (s) =
1

2πωz
s+ 1

1
2πωp

s+ 1
(4.31)

where ωz is the frequency of the zero and where ωp is the frequency of the pole, both expressed in
Hz. To maximize the phase lead, the frequencies of the zero and the pole should not be too close.
Moreover, Fig. 4.22 shows that the phase of LxS decreases as the frequency increases. Therefore
to achieve a phase margin of at least 30◦, the phase of LxS must be at least 120◦ at the frequency
at which maximum phase lead will occur, so the maximum frequency at which maximum phase
lead may occur is 0.59 Hz. Note that a double lead compensator is not preferred, because it
again creates a resonance in the crossover region.

Finding the optimal values of ωp and ωz is not straightforward. Initially, ωp is set to a frequency
that is for sure higher than the maximum bandwidth, e.g. 2 Hz. Then, for different values of
ωz the Bode plot of LxS is shown in Fig. 4.23 together with the step response of the closed
loop system. For each value of ωz, the gain was increased until the requirement for the modulus
margin was violated to increase the bandwidth as much as possible.
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Figure 4.21: Bode magnitude plot of plant transfer function PxS (s), zoomed in around the
crossing of the 0 dB line.
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Figure 4.22: Bode plot of the open loop transfer function LxS (s).
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Figure 4.23: Simulations for different values of ωz. a) Bode plot of the open loop transfer function
LxS (s). b) The step response of the closed loop transfer function TxS (s).
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Inspection of Fig. 4.23b) shows that for all values of ωz the system is stabilized. Furthermore,
choosing the frequency of the zero of the lead compensator is mainly a trade-off between a low
settling time8 and a low overshoot, which makes it difficult to choose the optimal controller,
because there are no critical requirements on the settling time and overshoot. Moreover, the use
of feedforward control will be analyzed and feedforward control might influence the performance
of the system. Therefore, three different controllers are proposed and after implementing feed-
forward control, a controller will be chosen, based on the performance of the total system. The
following three controllers are proposed:

1. The first controller (K1xS ) is designed such that the bandwidth is about 0.12 Hz, the
overshoot is about 20% and the settling time is between 10 and 11 seconds.

2. The second controller (K2xS ) is designed such that the bandwidth is about 0.15 Hz, the
overshoot is about 30% and the settling time is between 7 and 8 seconds.

3. The third controller (K3xS ) is designed such that the bandwidth is about 0.18 Hz, the
overshoot is about 40% and the settling time is between 5 and 6 seconds.

This results in the following controllers:

K1xS = 0.032 · 1

( 1
2π·0.35 )s+ 1

·
( 1

2π·0.03 )s+ 1

( 1
2π·2 )s+ 1

K2xS = 0.062 · 1

( 1
2π·0.35 )s+ 1

·
( 1

2π·0.05 )s+ 1

( 1
2π·2 )s+ 1

K3xS = 0.1 · 1

( 1
2π·0.35 )s+ 1

·
( 1

2π·0.07 )s+ 1

( 1
2π·2 )s+ 1

(4.32)

The step response of these three controllers is shown in Fig. 4.24. In the next calculations and
simulations on feedforward control, only the results with feedback controller K1xS are shown.

Analogous to LQR control theory, a reference generator is implemented, which generates 4th

order reference signals for the desired coordinates of the ball to reduce the undershoot of the
step response, which can be seen in Fig. 4.24. The reference signal is generated with a maximum
velocity of 1 m/s and a maximum acceleration of 4 m/s2, which are in accordance with the motor
capabilities of the BBR. For controller K1xS , the response of the system to the reference signal
is compared with the response of the system to a step input and the results are shown in Fig.
4.25.

Fig. 4.25 shows that the implementation of a reference generator drastically reduces the un-
dershoot of the response, while the settling time is hardly affected. To reduce the error exS
even more, feedforward control is implemented, by adding the reference acceleration signal to
the reference signal of the body angle. The reference acceleration signal is chosen as feedforward
control, because it matches the error profile of exS . To make the feedforward transfer function
proper, a second order low-pass filter is added of the form

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(4.33)

where ωn is called the natural frequency (in rad/s) and ζ is called the damping ratio. Here ωn
is chosen equal to the closed loop bandwidth and ζ is chosen 1

2

√
2, which implies that the poles

8The time after which the output remains within a range of 2.5% of the reference value.
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Figure 4.24: The step response of the closed loop transfer function TxS (s) for three different
feedback controllers.
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Figure 4.25: The step response versus the response to a 4th order reference signal of the closed
loop transfer function with controller K1xS .
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are critically damped.
Fig. 4.25 also shows that there is a large delay between the reference signal and the response,
because the response of the system is limited by the non-minimum phase behaviour of the plant.
To have a more realistic reference position signal, the same low-pass filter, as used for feedforward
control, is added to the reference position signal. The resulting control system is shown in Fig.
4.26.

Figure 4.26: Sketch of the closed loop system including a 4th order reference signal and feedfor-
ward control.

In order to find the optimal value of the feedforward gain, the system is simulated for different
values of the feedforward gain and the response is shown in Fig. 4.27.
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Figure 4.27: The x-position of the ball moving from x-position 0 to 1, including a 4th order
reference signal and feedforward control, displayed for feedforward gains from 0.1 until 0.5.

Fig. 4.27 shows that the optimal feedforward gain is somewhere between 0.2 and 0.3, because
then the overshoot and the settling time are both minimal. However, with a gain between 0.2
and 0.3 the optimal gain is often a trade-off between a low settling time and a low undershoot,
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as shown in Fig. 4.28. Based on a low settling time in combination with a low error, the optimal
gain is chosen to be 0.26.
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Figure 4.28: The x-position of the ball moving from x-position 0 to 1, including a 4th order
reference signal and feedforward control, displayed for feedforward gains from 0.2 until 0.3.

Similarly, the optimal feedforward gains for controllers K2xS and K3xS were found to be 0.25
and 0.24 respectively, where the natural frequency ωn of the low-pass filter was adjusted to the
closed loop bandwidth corresponding to the controllers.

Now feedforward control is implemented for all three feedback controllers, their performance will
be compared. Therefore, their response to a 4th order reference signal from position 0 to 1 is
plotted in Fig. 4.29.

Fig. 4.29 shows that K2xS and K3xS clearly have a lower settling time than K1xS . Of K2xS
and K3xS , K2xS has both the lowest undershoot and the lowest overshoot, so K2xS is chosen
to have the best performance. So the final feedback controller KxS is

KxS = K2xS =
5.454s+ 1.713

s2 + 14.77s+ 27.63
(4.34)

and the feedforward controller KFF is

KFF = 0.25s2 · 0.8883

s2 + 1.333s+ 0.8883︸ ︷︷ ︸
low-pass filter

. (4.35)
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Figure 4.29: Comparison of the response of the system in moving from x-position 0 to 1, with
feedback controllers K1xS , K2xS and K3xS .

4.4.5 Verification of controller requirements

In this section it will be verified whether the position controller satisfies controller requirement
1) and whether the total controlled system verifies controller requirement 4) and 5).

Firstly, to check whether the outer control loop is also stable, the closed loop poles are calculated.
They are given by (in rad/s)

s = −0.61324± 0.31637i

s = −7.4705

s = −15.512

s = −72.624

s = −141.93

(4.36)

which proves that the outer control loop is also stable. Furthermore, it has an infinite gain
margin and a phase margin of 44◦, so the position controller also satisfies controller requirement
1).

Secondly, it will be verified whether the total controlled system satisfies controller requirement
4). The system is simulated in Simulink, but setting the initial value of the pitch angle to 10◦

doesn’t approximate the inverse step response good enough. Therefore the inverse step response
is approximated with an inverse step function as reference signal for the pitch angle. The results
of the described simulation are shown in Fig. 4.30.

Fig. 4.30 shows that the settling time is just above 2 seconds, so the designed controllers satisfy
controller requirement 4).
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Figure 4.30: The inverse step response of the pitch angle.

Thirdly, it will be verified whether the total controlled system satisfies controller requirement 5).
Analogous to the design of a LQR controller, controller requirement 5) is verified by considering
the three scenarios, described in Sec. 4.3.4. Again, to predict which scenario will be most
probable for the BBR, two different situations will be simulated. They are also described in
Sec. 4.3.4, but for sake of clarity, they will be repeated here. In the first simulation, the closed
loop system is simulated with the nonlinear model in Simulink for 5 seconds with a sinusoidal
disturbance d for the roll angle, with a frequency of 0.5 Hz and an amplitude of 5◦, which is
for now assumed to be a natural disturbance signal for the BBR. The references are set to zero
for all states, which means that the BBR is balancing and station keeping at the position (xS ,
yS)=(0, 0). The disturbance signal together with the torque required to stabilize the system in
this situation, is shown in Fig. 4.31.
The dotted gray lines indicate the nominal torque of 1.74 Nm and the dotted red lines indicate
the maximum torque of 3.75 Nm.

In the second simulation, the closed loop system is simulated with the nonlinear model in Simulink
for 5 seconds with a sinusoidal disturbance d for the roll angle, with a frequency of 0.5 Hz and
an amplitude of 15◦, which is for now assumed to represent an exceptional situation for the
BBR. The references are set to zero for all states, which means that the BBR is balancing and
station keeping at the position (xS , yS)=(0, 0). The disturbance signal together with the torque
required to stabilize the system in this situation, is shown in Fig. 4.32. The dotted gray lines
again indicate the nominal torque of 1.74 Nm.

Fig. 4.31 shows that in case of a natural disturbance signal, the required torques stay under the
nominal torque, except for the first 0.03 seconds where it has a small peak of about 2.6 Nm.
Furthermore, Fig. 4.32 shows that in case of an exceptional disturbance signal, the required
torques also stay under the maximum torque, except for the first 0.07 seconds where two of the
three torques saturate. So the results of these simulations give an indication that the second
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Figure 4.31: The required torque in case of a natural disturbance signal with a frequency of 0.5
Hz and an amplitude of 5◦.
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Figure 4.32: The required torque in case of a exceptional disturbance signal with a frequency of
0.5 Hz and an amplitude of 15◦.
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scenario will most probable for the BBR. But the torque saturation only happens shortly at
the beginning and there is no indication that it will make the system unstable, so no additional
actions seem to be needed to improve the minimization of torque saturation and the controller
satisfies controller requirement 5).

Finally, the closed loop system will be simulated with a initial position of (0,0) and a desired
position of (3,1) to illustrate the performance of the position controller. The results are shown
in Fig. 4.33.
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Figure 4.33: Simulation of position of the BBR from position (0,0) to (3,1) with the SISO
controller.

Fig. 4.33 shows that the desired position (3,1) is reached in about 6 seconds, which means that
the BBR has a linear speed of about 0.5 m/s.
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4.5 Derivation of the ball’s position

The orientation angles of the body are directly measured by the sensors in contrast with the
translation and velocity of the ball. The translation and velocity of the ball can be derived from
the data of the motor encoders, that measure the absolute angular position of the omni-wheels.
This derivation of the translation of the ball will be done in the following steps:

1. Find the decoupled angular velocities of the omni-wheels in x-, y- and z-direction as func-
tions of the angular velocities of the omni-wheels, using the Jacobian.

2. Integrate the decoupled angular velocities to the traveled angles.

3. Calculate the traveled angles of the ball from the traveled angles of the omni-wheels, which
depend on the pitch and roll angles.

4. Calculate the traveled distance in x- and y-direction of the ball from the traveled angles of
the ball.

5. Transform the variables to the right coordinate frame.

The velocity of the ball in x- and y-direction is calculated by differentiating the translation of
the ball.

A relation between the angular rates of the omni-wheels φ̇1, φ̇2 and φ̇3 and the decoupled angular
rates φ̇x, φ̇y and φ̇z can be easily derived, based on the relation between the torques, given by the
decoupling matrix M in Eq. (4.8). The decoupling matrix M is in fact a Jacobian that relates
the torques of the joints to the torques of the end-effectors.
So the angular rates in x, y and z-direction as functions of the angular rates of the omni-wheels
are given by the transpose of this decoupling matrix M :φ̇xφ̇y

φ̇z

 = MT ·

φ̇1

φ̇2

φ̇3


=

 2
√

2
3 −

√
2

3 −
√

2
3

0
√

6
3 −

√
6

3

−
√

2
3 −

√
2

3 −
√

2
3

 ·
φ̇1

φ̇2

φ̇3

 .
(4.37)

Integrating Eq. (4.37) yields φxφy
φz

 = MT ·

φ1

φ2

φ3

 . (4.38)

Now the angles of the ball θx, θy and θz can be derived from φx, φy and φz based on the fact
that the traveled distances are equal and the angle orientations are opposite:

rS ·

θxθy
θz

 = −rW ·

φxφy
φz

 . (4.39)
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From the angles θx, θy and θz the x- and y-position of the ball can be derived:[
xS
yS

]
=

[
rSθy
−rSθx

]

=

[
0 −rW 0
rW 0 0

]
·

φxφy
φz


=

[
0 −rW 0
rW 0 0

]
·MT ·

φ1

φ2

φ3

 .
(4.40)

Until now, the angles φx, φy and φz are defined in coordinate frame Ψ5, while they in fact
should be defined in coordinate frame ΨI , because xS and yS are defined in coordinate frame
ΨI . However, the influence of ψx and ψy is assumed to be negligible, because the BBR should
be upright at both the starting point and end point.
But the influence of ψz is of course important, because ψz determines the direction in which the
BBR is moving. To let the BBR keep the right direction, the right-hand side of Eq. (4.40) needs
to be pre-multiplied by the upper left part of the rotation matrix R2

3 (which takes into account
the rotation of the BBR around the z-axis) corresponding to the x- and y-position.

So the final x- and y-position of the ball as functions of the angles of the omni-wheels, are given
by [

xS
yS

]
= R2

3(1 : 2, 1 : 2) ·
[

0 rW 0
−rW 0 0

]
·MT ·

φ1

φ2

φ3

 . (4.41)

where R2
3 is defined as  cos(ψz) sin(ψz) 0

− sin(ψz) cos(ψz) 0
0 0 1

 . (4.42)

4.6 Conclusion

This chapter has described the design of a controller. Based on the linearized 3D model, a
linear controller is designed. The approach taken in the design of this controller is to design
first a simple, easily implementable controller that has a short design time to make the BBR
‘fair ready’ as soon as possible and later design a more advanced controller that focuses more
on performance. To achieve this, first a static controller is designed with LQR control theory,
which controls all states simultaneously. Later, a dynamic cascade controller is designed with
SISO loopshaping, which consists of an inner loop for controlling the orientation angles of the
body and an outer loop for position control. Both controllers satisfy all controller requirements.
However, the maximum bandwidth of the position controller, designed with SISO loopshaping,
is limited by the non-minimum phase behaviour of the plant, which means that the desired
performance of the position controller is limited.

Several simulations show the differences in these controllers. Firstly, comparing the inverse step
response of the pitch angle with both controllers, the difference in performance of the controllers
is clearly visible. The settling time with the LQR controller is about 3.5 seconds (see Fig. 4.2),
where the settling time with the SISO controller is about 2 seconds (see Fig. 4.30).
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Secondly, comparing the response of both controllers to disturbance signals shows that the re-
quired torque, calculated by both controllers, differs significantly. The required torque with the
LQR controller, which can be found in Fig. 4.6 and Fig. 4.7, is significantly lower than the
required torque with the SISO controller, which can be found in Fig. 4.31 and Fig. 4.32.
However, comparing the settling time of the simulations where the BBR moves from position
(0,0) to (3,1), the difference in performance of the controllers is hardly visible. The settling time
with the LQR controller is about 5.20 seconds (see Fig. 4.8), where the settling time with the
SISO controller is about 5.15 seconds (see Fig. 4.33). This is due to the non-minimum phase
behaviour of the system, which limits the performance of the position controller, designed with
SISO loopshaping.
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5. Controller implementation

In the previous chapter, two controllers were designed, the LQR controller and the SISO con-
troller. This chapter describes how the LQR controller is implemented. The SISO controller will
only be implemented if the implementation of the LQR controller is successful.

During the tests, the robot will be attached to a moving test frame, see Fig. 5.1 and all relevant
variables will be saved to a data file.

Figure 5.1: The BBR attached to the moving test frame.

To have the ideal situation for the implementation of a controller, especially two things are
required:

1. Accurate sensor measurements.

2. Accurate tracking of controller output by the actuators.

The development and implementation of the sensor fusion algorithm and the tuning of the motors
is done by ALTEN consultants. A brief overview will be given of the sensor fusion algorithm and
the control of the motors.

Sensor fusion algorithm
The IMU contains a accelerometer and a gyroscope. The accelerometer measures linear accel-
erations of the robot for the x-, y- and z-axis and generally contains high frequency noise. The
gyroscope measures the angular rates around the x-, y- and z-axis and generally contains low
frequency noise.
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The pitch, roll and yaw angular rates are directly based on the gyroscope data. The pitch and
roll angles are derived using a complementary filter. A complementary filter tries to get the best
data from both the accelerometer and the gyroscope and combines it. How a complementary
filter works, is illustrated in Fig. 5.2.

Figure 5.2: Sketch of the working of a complementary filter.

This yields the following equation for each angle:

ψi = γ · (ψi,gyro + ψ̇i ·
1

fs
) + (1− γ) · ψi,acc, i = x,y (5.1)

where ψi,gyro is the current value of the integrated angular rate around axis i measured by the
gyroscope, ψi,acc is the angle around the i-axis calculated from the accelerometer data, fs denotes
the sample rate (200 Hz) and γ is a coefficient for the high- and low-pass filters, which is chosen
to be 0.99.

Finally, the yaw angle is derived by integrating the yaw angular rate.

Current control of the motors
The three motors are brushless DC motors, controlled by three motor drivers. The three input
torques for the motors, calculated by the controller, are converted to currents and the control
of the motors consists of a current controller that compares the actual motor current with the
applied set value. In case of deviation, the motor current is dynamically readjusted.

5.1 LQR controller for balancing

The design of the LQR controller is based on the continuous-time system, so to implement the
LQR controller, it must be recalculated for the discrete-time system. Furthermore, firstly the
controller will only be implemented for the pitch and the roll angle and angular rates and if they
are successfully implemented and make the BBR balance, the controllers for the other states will
be implemented step by step.
However, the gains for the pitch and roll angle and angular rates highly depend on the control
of the position of the ball, so they will be different in case of only controlling the pitch and roll
angle and angular rates. Therefore, to implement only the controller for the pitch and the roll
angle and angular rates, the matrix N , defined in Sec. 4.3.1, will be adjusted such that the pitch
and roll angles and angular rates are the only controlled plant outputs.
Based on the discrete-time system and the adjusted matrix N , the gain matrix K is recalculated,
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which results in:

K =

0 0 −34.3698 0 0 0 0 −11.2363 0 0
0 0 17.1849 29.7651 0 0 0 5.6182 9.7309 0
0 0 17.1849 −29.7651 0 0 0 5.6182 −9.7309 0

 . (5.2)

5.1.1 Encountered problems

Trembling of omni-wheels
Implementing this gain matrix results in heavy trembling of the omni-wheels, such that the omni-
wheels lose grip with the ball within a second. The trembling reduces, when the gains for the
pitch and roll angular rates are decreased, so the trembling seems to be related to the angular
rates. To find out whether the pitch and roll angular rates are the main cause of the trembling,
a new test is done where the gains for the pitch and roll angular rates are chosen to be about
25% of its nominal value, to reduce the trembling in order to be able to analyze the cause of the
trembling. In this test, the pitch angle is kept around 0◦ and the roll angle is varied.
The angular rates φ̇i (with i = 1,2,3) of the omni-wheels are shown in Fig. 5.3. For sake of clarity,
the angular rates are expressed in rounds per second, instead of degrees per second.
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Figure 5.3: The angular rates of the omni-wheels.

Fig. 5.3 clearly shows the trembling of the omni-wheels, because the angular rates of the omni-
wheels constantly switch between a zero rate and a nonzero rate. To discover what the cause is
of the trembling of the omni-wheels, the torques calculated by the controller are plotted in Fig.
5.4.

Fig. 5.4 shows that the torques are also very noisy, so the trembling of the omni-wheels seems to
be mainly caused by noisy sensor data. Therefore, the pitch and roll angle together with their
rates are plotted in Fig. 5.5.

Fig. 5.5 shows that especially the angular rates are very noisy, which confirms the presumption
that the trembling is related to the angular rates. However, it should be noted that this sensor
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Figure 5.4: The torques generated by the LQR controller.

noise is a mix of both the noise that causes the trembling and the noise that is a result of the
trembling.
The pitch and roll angular rates are directly based on the gyroscope data, so the noise is coming
from the gyroscope data, but it is not easy to find out what the main cause is of the noisy
gyroscope data. The noise can be caused by:

� The gyroscope itself.

� Vibrations of the system, which are measured by the gyroscope.

Gyroscope
To find out if noise caused by the gyroscope itself could play a significant role in the noisy sensor
data, the BBR without the ball is attached to the moving test frame, such that the robot is
hanging and does not touch the floor. Firstly, a test is done in which the motors are switched
off and the robot is given a little push. Secondly, the test is repeated, but now the motors
are switched on to see whether the vibrations of the motors influence the gyroscope data. The
magnitude spectra of the resulting pitch and roll angular rates are shown in Fig. 5.6.

Fig. 5.6 shows that the magnitude spectra are very similar for both tests, so switching on the
motors doesn’t result in significant vibrations measured by the gyroscope. Furthermore, the
magnitude spectra all have mainly two peaks, one at about 2.5 Hz and the other at about 10 Hz.
By comparing the magnitude spectra to the angular rates in time domain, it can be identified
whether these peaks represent noise or not. Therefore, the pitch and roll angular rates of the
second test (where the motors were switched on) are shown in Fig. 5.7.

Comparing Fig. 5.7 to Fig. 5.6 shows clearly that in Fig. 5.6 the peaks at about 2.5 Hz represent
the real signal and the peaks at about 10 Hz represent noise. So noise, caused by the gyroscope
itself could seriously play a role in the noisy sensor data.

System vibrations
On the other hand, it is also likely that vibrations of the system play a role in noisy sensor data.
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Figure 5.5: a) The pitch and roll angle. b) The pitch and roll angular rates.
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Figure 5.6: The magnitude spectra of the pitch and roll angular rates of the tests, where the
BBR is hanging in the moving test frame.
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Figure 5.7: The pitch and roll angular rates of the test, where the BBR is hanging in the moving
test frame, with the motors switched on.
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For example, taking a close look at the omni-wheels, see Fig. 5.8, shows that there are gaps
between the rollers of the omni-wheels that could easily be the cause of vibrations in the system,
which will be measured by the gyroscope.

Figure 5.8: The omni-wheels, where the gap between the rollers is clearly visible.

So it is very likely that both noise caused by the gyroscope itself and vibrations of the system
play a role in noisy sensor data. However, it is difficult to say with certainty what the main
cause of the noisy sensor data is.

5.1.2 Applied solutions

In any event, it is important to find out which frequencies play a role in the noisy sensor data,
when the BBR is trying to balance. Therefore, a test is done in which the BBR is trying to balance
and the magnitude spectra of the pitch and roll angular rates are shown in Fig. 5.9.

Fig. 5.9 shows that, compared to Fig. 5.6, there is significantly more noise, especially between
20 and 50 Hz. Again, it should be noted that this noise between 20 and 50 Hz can be a mix
of both the noise that is a result of vibrations of the mechanical system and the noise that is a
result of noisy gyroscope data that causes the omni-wheels to tremble.

Different solutions are tried to reduce the noise of the gyroscope data. Due to limited time
available, only simple solutions are considered that are easily implementable. As a first solution,
foam is placed under the sensorboard to attenuate vibrations of the system. As a second solution,
the sample rate of the gyroscope is increased to about four times the sample rate of the IMU,
which is 200 Hz, and multiple samples are averaged to one output sample. Filtering the pitch
and roll angular rates with a low-pass filter is tried as a third solution.

These solutions both affect the pitch and roll angles and the pitch and roll angular rates. There-
fore, it is chosen to analyze the effects of the different solutions by means of the magnitude
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Figure 5.9: The magnitude spectra of the pitch and roll angular rates of the test, where the BBR
is trying to balance.

spectra of the torques, calculated by the LQR controller. To be able to compare the results of
the applied solutions to the previous test, in which the BBR was trying to balance, the magnitude
spectra of the torques of this test are shown in Fig. 5.10.
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Figure 5.10: The magnitude spectra of the torques of the test, where the BBR is trying to
balance.

Foam
Firstly, foam is placed under the sensorboard to attenuate vibrations of the system that might
be measured by the gyroscope. To analyze the reduction of noise due to the addition of foam,
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a test is done in which the BBR again tries to balance. The resulting magnitude spectra of the
torques are shown in Fig. 5.11.
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Figure 5.11: The magnitude spectra of the torques of the test, where the BBR is trying to balance
after the foam is added.

Comparing the magnitude spectra of Fig. 5.11 to the magnitude spectra, shown in Fig. 5.10,
where the BBR is trying to balance, shows a significant reduction of noise. This is also visible
in the test itself, where the trembling of the omni-wheels significantly decreased and the BBR is
able to balance for several seconds.

Averaging gyroscope data
Secondly, the sample rate of the gyroscope is increased to 760 Hz and multiple samples are
averaged to one output sample to reduce the noise, caused by the gyroscope itself. To analyze
the effect of averaging the gyroscope data, again a test is done in which the BBR tries to balance
and the resulting magnitude spectra of the torques are shown in Fig. 5.12.

Comparing the magnitude spectra of Fig. 5.12 to the magnitude spectra, shown in Fig. 5.11,
where the BBR is trying to balance after the foam was added, shows that also the averaging of
the gyroscope data significantly reduces the noise. This results in a robot that is now able to
balance for a longer time, although trembling of the omni-wheels still limits the performance of
the robot.

Low-pass filter
Thirdly, a low-pass filter is designed to filter the torques, calculated by the LQR controller.
Inspection of Fig. 5.12 shows that especially between 30 and 40 Hz the noise is significant, so a
low-pass filter will be designed that especially attenuates the torques between 30 and 40 Hz.
This low-pass filter is designed with the Filter Design Toolbox of Matlab, which uses either
an Infinite Impulse Response (IIR) filter or a Finite Impulse Response (FIR) filter as design
method. It is chosen to design a FIR filter, because it can better address specific frequencies.
The resulting FIR filter is a 4th order filter with a passband up to 17 Hz and a stopband starting
at 28 Hz. A Bode magnitude plot of the filter is shown in Fig. 5.13.
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Figure 5.12: The magnitude spectra of the torques of the test, where the BBR is trying to balance
after averaging the gyroscope data.
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Figure 5.13: Bode magnitude plot of the 4th order FIR filter, used to filter the torques.
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To see the effect of the filter, the unfiltered and the filtered torque are plotted together for motor
one in Fig. 5.14.
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Figure 5.14: The unfiltered and filtered torque of motor one.

Fig. 5.14 shows that the noise is significantly reduced. After the implementation of this FIR
filter, the trembling of the omni-wheels has almost disappeared and performance of the robot
is further improved with regard to balancing, although the robot is now driving away with a
relatively high velocity. To proof the effect of the FIR filter, the magnitude spectra of the
torques are shown in Fig. 5.15 of a test after the implementation of the FIR filter.
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Figure 5.15: The magnitude spectra of the torques of a test, after the FIR filter is implemented.

Comparing the magnitude spectra of Fig. 5.15 to the magnitude spectra, shown in Fig. 5.12,
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shows that the peaking around 37 Hz in Fig. 5.12 is significantly reduced due to the FIR filter.
However, between 10 and 20 Hz, the noise significantly increased. Most likely, this is due to the
fact that the robot is driving away, which results in an increase of system vibrations.

Finally, the gains for the pitch and roll angle are slightly increased to make the system respond
a little faster to a nonzero tilt angle. This results in the following gain matrix K:

K =

0 0 −39.4254 0 0 0 0 −3.1443 0 0
0 0 19.7127 34.1434 0 0 0 1.5671 2.7143 0
0 0 19.7127 −34.1434 0 0 0 1.5671 −2.7143 0

 . (5.3)

Due to the fact that the controller mainly penalizes the errors in pitch and roll angles and only
slightly penalizes the errors in pitch and roll angular rates, the BBR is only able to balance
within small variations of the pitch and roll angles.

5.2 LQR controller for yaw control

Now the BBR is able to balance, the controller gains for the yaw angle and angular rate can be
implemented. The gains for the yaw angle and angular rate can be found in Eq. (4.13) and are
given by respectively −4.1350 and −1.4307. In Fig. 5.16 the results of a test in which yaw control
is not applied are shown together with the results of a test in which yaw control is applied.

Fig. 5.16 shows that the controller gains for the yaw angle and angular rate are successfully
implemented. However, the trembling of the omni-wheels slightly increased after implementing
the gains for the yaw angle and angular rate, so it has to be considered if it is really necessary
to control the yaw angle and angular rate.

5.3 LQR controller for position control

In order to control the position and velocity of the ball, the BBR must be able to cope with
changes in pitch and roll angles. However, as mentioned in Sec. 5.1, at this moment the BBR
is only able to balance with small variations in pitch and roll angles, due to the fact that the
controller mainly penalizes the errors in pitch and roll angles and only slightly penalizes the
errors in pitch and roll angular rates. So in order to be able to control the position and velocity
of the ball, higher controller gains for the pitch and roll angular rates are required.

5.4 Conclusion

This chapter has described the implementation of the LQR controller. For the controller to be
implemented as desired, it is especially important that the controller receives accurate sensor
measurements as input and that the controller output is accurately tracked by the motors and
omni-wheels.

5.4.1 Balancing control

However, during the implementation of the LQR controller, it turned out that noisy sensor data
limits the controller implementation. In particular, the magnitude of the controller gains for the
pitch and roll angular rates is seriously limited by noisy gyroscope data.
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Figure 5.16: The pitch, roll and yaw angle in case: a) Yaw control is applied. b) Yaw control is
not applied.
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Different solutions are tried to reduce the noisy gyroscope data. Firstly, foam is placed under
the sensorboard to attenuate vibrations of the system that might be measured by the gyroscope.
Secondly, the sample rate of the gyroscope is increased to about four times the sample rate of
the IMU and multiple samples are averaged to one output sample, in order to reduce the noise
caused by the gyroscope itself.
Furthermore, a FIR low-pass filter is implemented to reduce the consequences of the noisy gyro-
scope data and to smoothen the torque inputs of the motors.
The implementation of these solutions significantly reduces the noise of the sensor data and
results in a BBR that is able to balance.

5.4.2 Control of yaw motion

The controller gains for the yaw angle and angular rate are successfully implemented, but this
slightly increases the trembling of the omni-wheels. Therefore, it is recommended to leave out
the controller gains for the yaw angle and angular rate if control of the yaw angle and angular
rate is not strictly necessary for the purpose of the robot.

5.4.3 Position control

To be able to control the position of the BBR, the BBR must be able to cope with large variations
in pitch and roll angles in order to move around. However, the controller now mainly penalizes
the errors in pitch and roll angles and only slightly penalizes the errors in pitch and roll angular
rates. This implies that the BBR is only able to balance within small variations of the pitch and
roll angle. Therefore, position control is impossible as long as the magnitude of the gains for the
pitch and roll angular rates is limited by noisy sensor data.

5.4.4 SISO controller

Finally, it is recommended to only implement the SISO controller if the LQR controller is suc-
cessfully implemented for all states. Therefore, the implementation of the SISO controller is left
as future work.
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6. System stability research

In this chapter, research will be done under what requirements the system will remain stable
with the developed controller, assuming that the developed controller will stabilize the system.
For example, in the future new features might be added to the BBR that increase the mass of
the robot and therefore influence the stability of the system. It is therefore important to know
whether the implemented controller can still stabilize the system if system parameters change.
In the first paragraph the approach of this research will be formulated. In the second paragraph
a sensitivity analysis of the system will be done with the LQR controller. In the third paragraph
a sensitivity analysis of the system will be done with the SISO controller. Finally, in the fourth
paragraph, the results will be summarized in a short conclusion.

6.1 Research approach

6.1.1 The aim of the research

This research will investigate under what requirements the system remains stable with the devel-
oped controller. To be able to answer this question, especially three things are important:

1. Firstly, to find out the influence of unmodeled parameters/phenomena on the stability of
the system with the developed controller.

2. Secondly, to find out the influence of uncertainties in estimated model parameters on the
stability of the system with the developed controller.

3. Thirdly, to predict whether future changes on the robot will destabilize the system with
the developed controller or not.

First of all, it is important to make clear what is meant with stability. Stability in this case does
not only mean that the closed loop poles have a negative real part, but means that the BBR is
able to balance with tilt angles of at most 10◦. Therefore, also the required torque will be taken
into account in this research, because it might be possible that with certain parameter values,
the closed loop poles of the system all have a negative real part, but that the motors are not
strong enough to let the BBR balance.
Of course, being able to balance also means that things like the maximum motor load must
be taken into account, but the research on this chapter will only focus on stability in terms
of closed loop poles and the required torque, because they depend on the developed controller.
Stability requirements that are controller independent will not be taken into account in this
research.

Secondly, it is important to make clear which parameters/phenomena are relevant for this re-
search. For example, based on the aim of this research an analysis on the effect of the slope of
the floor is thought to be irrelevant for the stability of the system. The parameters/phenom-
ena can be divided into two groups, namely unmodeled parameters/phenomena and modeled
parameters.
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6.1.2 Unmodeled parameters/phenomena

The unmodeled parameters can mainly be derived from the assumptions made for developing the
3D model, which can be found in Sec. 3.1. These unmodeled parameters/phenomena are

� Deformation of the ball and the body of the BBR.

� Slip between the omni-wheels and the ball or between the ball and the ground.

� Rolling and kinetic friction.

� The slope of the floor.

� A time delay between the measurements of the sensors and the control of the actuators.

� The effect of 2-row omni-wheels instead of the modeled 1-row omni-wheels.

Based on the goal of this research and the current performance of the system, most of these
unmodeled parameters/phenomena are thought to be irrelevant for this research, because their
influence on the stability of the system is negligible. But some of them, like deformation of the
ball, slip and rolling friction could possibly play a role in future changes, such as replacing the
ball or increasing the maximum tilt angle from 10◦ to 15◦.

6.1.3 Modeled parameters

All modeled parameters can be found in Appendix A. Most of these parameters are accurately
measured and will not change in future, but some of these parameters are estimated (like the
moments of inertia) and other parameters might probably change in future (like the mass of the
upper part of the robot and the height of the COM). These uncertain parameters are relevant
for this research. An overview of the uncertain model parameters, together with their nominal
values, is given in Table 6.1.

Table 6.1: Description of the uncertain model parameters with their nominal value.

Parameter Description Nominal value

IS Moment of inertia of the ball 2.82 ·10−2 kgm2

IM Moment of inertia of the rotor of the motor 2.42 ·10−6 kgm2

IOW Moment of inertia of the omni-wheel 6.94 ·10−4 kgm2

IB,x Moment of inertia of the body about the x-axis of the
coordinate frame centered in its COM 8.76 ·10−1 kgm2

IB,y Moment of inertia of the body about the y-axis of the
coordinate frame centered in its COM 8.76 ·10−1 kgm2

IB,z Moment of inertia of the body about the z-axis of the
coordinate frame centered in its COM 6.67 ·10−2

mS Mass of the ball 3.2 kg
mB1

a Mass of the upper part of the body 6.2 kg
l Distance between COM of the ball and COM of the

body of the robot 0.405 m
α Angle the omni-wheels make with the top of the ball 45◦

amB2 is chosen to be the mass of the drive system, which will remain fixed. Therefore,
all the mass that will be added to the body of the BBR will be taken into account in mB1.
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From all the uncertain parameters, mentioned in Table 6.1, IM and IOW have a very low nominal
value and the influence of uncertainty in IM and IOW is therefore assumed to be negligible.

6.1.4 Execution of the research

Due to the fact that the BBR is not stable with regard to the position of the ball at the moment,
it is impossible to do meaningful experiments with the real system. Therefore, it is chosen to
do the research with the developed dynamical model. The research in this chapter will therefore
only focus on the second and third point of the aim of the research, mentioned in Sec. 6.1.1 and
an analysis on the influence of unmodeled parameters/phenomena on the stability of the system
with the developed controller, is left as future work.
Therefore, no quantitative conclusions can be made, based on this research, but the results of
the simulations only give an indication for the real system.

In the next sections, a sensitivity analysis will be done on these uncertain model parameters
with the LQR controller and the SISO controller. Firstly, the system will be simulated for
uncertainties in each of the moments of inertia IS , IB,x, IB,y and IB,z. Secondly, the system will
be simulated for a combined uncertainty in the parameters mB1 and l, because l mostly depends
on mB1. Thirdly, the system will be simulated for an uncertainty in the parameters mS and
α.

In most of these simulations the focus will be threefold:

1. Firstly, it will be analyzed whether the total system is stable or not, based on the closed
loop poles of the system.

2. Secondly, the stability of the balancing controller will be analyzed by means of the gain and
phase margin, provided that the uncertain parameter influences the balancing controller
(which is not the case for IB,z).

3. Thirdly, in simulations of possible future changes also the required torque will be calculated
for an inverse step response (with a starting angle of 10◦) of the roll angle to check whether
torque saturation might destabilize the system. These simulations will be executed for a
stable worst-case scenario and in these simulations no position control will be applied.

6.2 Sensitivity analysis with LQR controller

In this paragraph the sensitivity analysis, as described in Sec. 6.1, will be done with the developed
LQR controller.

6.2.1 Uncertainties in IS, IB,x, IB,y and IB,z

Firstly, the system is simulated from 20% up to 500% of the nominal value of IS , IB,x and IB,z
(IB,x and IB,y are identical, so the simulation for IB,y is left out). It turns out that for all of
these uncertainties in IS , IB,x and IB,z the total system remains stable.
Also, for analyzing the stability of the balancing controller, the gain and phase margin are
calculated. For all uncertainties in IS and IB,x the gain margins are infinite and the phase
margins are shown in Fig. 6.1.
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Figure 6.1: LQR controller: The phase margin for different values of the moment of inertia. a)
IS . b) IB,x.
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Fig. 6.1 shows that the deviation in phase margin from the nominal value for both IS and IB,x
is at most 2%. These results prove that the system is robust to decreases of more than 80% and
increases of more than 500% of the nominal values of IS , IB,x and IB,z.
The required torque for an inverse step response of the roll angle will not be calculated in this
case, because this simulation only analyzes uncertainties in estimated model parameters and does
not analyze possible future changes.

6.2.2 Uncertainties in mB1 and l

Secondly, the system is simulated for a large range of values of mB1 and l. The results are
displayed in a grid, shown in Fig. 6.2, where the gray region indicates the values of mB1 and l
for which the system remains stable.

Figure 6.2: LQR controller: Stability of the system for uncertainties in model parameters mB1

and l.

Fig. 6.2 shows that increasing the mass of the upper part of the robot up to 30 kg doesn’t
influence the stability of the robot, provided that the height of the COM is between 10 and 85
cm. However, increasing the height of the COM above 85 cm quickly results in instability for
almost all values of the mass of the upper part of the robot.
Concerning the balancing controller, the gain margin is infinite for all values of mB1 and l for
which the system is stable and the phasemargin is shown in Fig. 6.3.

Fig. 6.3 shows that for the values of mB1 and l for which the system is stable, the phase margin
remains close to its nominal value. Fig. 6.3 also shows that for values of l above about 90 cm,
the stability of the total system seems to be determined by either the position controller or the
controller for the yaw angle.
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Figure 6.3: LQR controller: The phase margin for different values of mB1 and l.

There is no obvious stable worst-case scenario to check whether torque saturation will destabilize
the system, but an increase of mass is assumed to be more likely than an increase of the height of
the COM. Therefore, the worst-case scenario is chosen to be the stable situation with maximal
mass and the corresponding maximal height of the COM, because this seems to be the most
realistic worst-case scenario. This corresponds to mB1 = 30 kg and l = 85 cm. The required
torque for an inverse step response of the roll angle is calculated for this scenario and is shown
in Fig. 6.4 together with the inverse step response of the roll angle. According to Fig. 6.4,
torque saturation will not destabilize the system, so (based on the developed model) increasing
the mass of the upper part of the robot up to 30 kg with a height of the COM of at most 85 cm
is possible with the current motors.

6.2.3 Uncertainties in mS and α

Thirdly, the system is simulated for values of mS between 0.5 kg and 5 kg. It turns out that
for all values of mS the system remains stable. Concerning the balancing controller, the gain
margin is infinite for all values of mS and the phase margin is shown in Fig. 6.5.

Fig. 6.5 shows that the maximal deviation in phasemargin from the nominal value of mS is only
1%.
The required torque for an inverse step response of the roll angle has been calculated for the
case mS = 5 kg and is shown in Fig. 6.4 together with the inverse step response of the roll
angle.

According to Fig. 6.4, torque saturation will not destabilize the system, so (based on the devel-
oped model) replacing the ball by a lighter or heavier ball is fine with these motors, as long as
the ball is rough and stiff enough and has the same diameter as the original ball.
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Figure 6.4: LQR controller: Required torque for the inverse step response of the roll angle with
mB1 = 30 kg and l = 85 cm.
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Figure 6.5: LQR controller: The phase margin for different values of mS .
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Figure 6.6: LQR controller: Required torque for the inverse step response of the roll angle with
mS = 5 kg.

The system is also simulated for α between 0◦ and 90◦. For α = 0◦ the system is of course
unstable, because it is impossible to control the yaw angle. Moreover, it is practically impossible
with three omniwheels. For α > 0◦ the system remains stable up to α = 87◦. Concerning the
balancing controller, the gain margin is infinite for all values of α and the phase margin is shown
in Fig. 6.7.

Fig. 6.7 shows that the phasemargin concerning α stays close to its nominal value for α up to
80◦. Above 85◦ the system quickly becomes unstable.
The stable worst-case is the situation in which α = 87◦, but this will never happen in practice,
because in that case it is hardly possible to control the pitch and roll angle. To have a more
realistic stable worst-case scenario, α is chosen to be 80◦. The required torque for an inverse
step response of the roll angle is calculated for this scenario and is shown in Fig. 6.8 together
with the inverse step response of the roll angle.

According to Fig. 6.8, torque saturation will not destabilize the system, so (based on the devel-
oped model) increasing the angle α up to 80◦ is possible with the current motors.

6.3 Sensitivity analysis with SISO controller

In this paragraph the sensitivity analysis, as described in Sec. 6.1, will be done with the developed
SISO controller.
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Figure 6.7: LQR controller: The phase margin for different values of α.
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Figure 6.8: LQR controller: Required torque for the inverse step response of the roll angle with
α = 80◦.
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6.3.1 Uncertainties in IS, IB,x, IB,y and IB,z

Firstly, the system is simulated from 20% up to 500% of the nominal value of IS , IB,x and IB,z
(IB,x and IB,y are identical, so the simulation for IB,y is left out). It turns out that for all of
these uncertainties in IS , IB,x and IB,z the total system remains stable.
Also, for analyzing the stability of the balancing controller, the gain and phase margin are
calculated. For all uncertainties in IS and IB,x the gain margins are infinite and the phase
margins are shown in Fig. 6.9.

Fig. 6.9 shows that the deviation in phase margin from the nominal value for both IS and IB,x
is at most 8%. These results prove that the system is robust to decreases of more than 80% and
increases of more than 500% of the nominal values of IS , IB,x and IB,z.
Analogous to the simulations with the LQR controller, the required torque for an inverse step
response of the roll angle will not be calculated in this case, because this simulation only analyzes
uncertainties in estimated model parameters and does not analyze possible future changes.

6.3.2 Uncertainties in mB1 and l

Secondly, the system is simulated for a large range of values of mB1 and l. The results are
displayed in a grid, shown in Fig. 6.10, where the gray region indicates the values of mB1 and l
for which the system remains stable.

Fig. 6.10 shows that increasing the mass of the upper part of the robot up to 30 kg doesn’t
influence the stability of the robot, provided that the height of the COM is between 10 and 95
cm. If the height of the COM is above 95 cm, the stability of the system depends on the value
of the mass of the upper part of the robot.
Concerning the balancing controller the gain margin is infinite for all values of mB1 and l for
which the system is stable and the phasemargin is shown in Fig. 6.11.

Fig. 6.11 shows that for the values of mB1 and l for which the system is stable, the phase margin
remains between about 30◦ and its nominal value of about 62◦. Fig. 6.11 also shows that the
stability of the total system seems to be determined by the balancing controller, in contrast to
the LQR controller.

Analogous to the simulations with the LQR controller, the worst-case scenario is chosen to be
the stable situation with maximal mass and the corresponding maximal height of the COM. This
corresponds to mB1 = 30 kg and l = 95 cm. The required torque for an inverse step response
the roll angle is calculated for this scenario and is shown in Fig. 6.12 together with the inverse
step response of the roll angle.

According to Fig. 6.12, torque saturation will destabilize the system, so (based on the developed
model) increasing the mass of the upper part of the robot up to 30 kg with a height of the COM
of 95 cm seems to be impossible with the current motors. It turns out that with mB1 = 30 kg,
torque saturation does not happen for the inverse step response of the pitch angle, if the height
of the COM is at most 92 cm.

6.3.3 Uncertainties in mS and α

Thirdly, the system is simulated for values of mS between 0.5 kg and 5 kg. For all values of mS

the system remains stable. Concerning the balancing controller, the gain margin is infinite for
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Figure 6.9: SISO controller: The phase margin for different values of the moment of inertia. a)
IS . b) IB,x.
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Figure 6.10: SISO controller: Stability of the system for uncertainties in plant parameters mB1

and l.
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Figure 6.11: SISO controller: The phase margin for different values of mB1 and l.
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Figure 6.12: SISO controller: Required torque for the inverse step response of the roll angle with
mB1 = 30 kg and l = 95 cm.

all values of mS and the phase margin is shown in Fig. 6.13.

Fig. 6.13 shows that the deviation in phasemargin from the nominal value of mS is at most 12%.
The required torque for an inverse step response of the roll angle has been calculated for the
case mS = 5 kg and is shown in Fig. 6.14 together with the inverse step response of the roll
angle.

According to Fig. 6.14, torque saturation will not destabilize the system, so (based on the
developed model) replacing the ball by a lighter or heavier ball is fine with these motors, as long
as the ball is rough and stiff enough and has the same diameter as the original ball.

The system is also simulated for α between 0◦ and 90◦. For α = 0◦ the system is of course
unstable, because it is impossible to control the yaw angle. Moreover, it is practically impossible
with three omniwheels. For α > 0◦ the system remains stable up to α = 88◦. Concerning the
balancing controller, the gain margin is infinite for all values of α and the phase margin is shown
in Fig. 6.15.

Fig. 6.15 shows that the phasemargin concerning α stays close to its nominal value for α up to
65◦. Above 85◦ the system quickly becomes unstable.

Analogous to the simulations with the LQR controller, the required torque for an inverse step
response of the roll angle has been calculated for the case α = 80◦ and is shown in Fig. 6.16
together with the inverse step response of the roll angle.

According to Fig. 6.16, torque saturation will not destabilize the system, so (based on the
developed model) increasing the angle α up to 80◦ is possible with the current motors.
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Figure 6.13: SISO controller: The phase margin for different values of mS .
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Figure 6.14: SISO controller: Required torque for the inverse step response of the roll angle with
mS = 5 kg.
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Figure 6.15: SISO controller: The phase margin for different values of α.

0 0.5 1 1.5 2 2.5 3
−5

0

5

10
Inverse step response

Time (s)

R
ol

l a
ng

le
 (

de
g)

0 0.5 1 1.5 2 2.5 3
−5

0

5
Required torque

Time (s)

T
or

qu
e 

(N
m

)

 

 
Torque 1
Torque 2
Torque 3

Figure 6.16: SISO controller: Required torque for the inverse step response of the roll angle with
α = 80◦.
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6.4 Conclusion

The aim of this chapter was to investigate under which requirements the system remains stable
with the developed controller. Due to the fact that the real system is not stable, the research
is done with the developed dynamical model. This means that no quantitative conclusions can
be made for the real system, based on this research. The results of this research only give an
indication for the real system.

The sensitivity analysis shows that uncertainties in estimations of the moments of inertia do not
influence the stability of the system, so the system is robust to uncertainties in the moments of
inertia.
With regard to possible future changes, it can be concluded that adding some mass to the real
system will most likely be no problem. Also, increasing the height of the COM also does not
seem to be a problem for the stability of the system. Furthermore, replacing the ball with a
lighter or somewhat heavier ball is fine, as long as the ball is rough and stiff enough and has the
same diameter as the original ball. Finally, a small change for the angle α is fine, but for large
changes no conclusions can be made for the real system.

Comparing the results of the sensitivity analysis done with the LQR controller to the results of
the sensitivity analysis done with the SISO controller concerning the balancing controller shows
that the system with the LQR controller is more robust to uncertain parameters, with regard
to the phase margin, than the system with the SISO controller. This is mainly caused by the
extra pole that is introduced by the lead compensator, which results in a lower maximum of
phase lead and a faster decrease of phase above the bandwidth. Also, torque saturation happens
more frequently with the SISO controller than with the LQR controller, which is in line with
the expectations, because the SISO controller focuses on performance and will therefore use the
motors maximally to have maximal performance.
On the other hand, comparing the settling time of the inverse step responses with the LQR
controller and the SISO controller, proves that the settling time is much lower with the SISO
controller, which proves that the performance of the system with regard to balancing is signifi-
cantly higher with the SISO controller.

124







Modeling & Control of a Ball-Balancing Robot 7. Conclusion & Recommendations

7. Conclusion & Recommendations

7.1 Conclusion

The goal of this project is to model and control a Ball-Balancing Robot, such that it is able
to balance and move around as a demonstrator on fairs. To achieve this goal, the dynamical
behaviour of the robot is approximated by three independent 2D models. The motors and omni-
wheels are modeled as virtual motors and wheels in order to approximate the 3D behaviour
in a 2D model and conversions are made for the torques and moments of inertia. Due to the
conversions that need to made and the neglected dependencies between the 2D models, like
centrifugal forces, a 3D model is developed to describe the full dynamical behaviour of the BBR
and it is linearized around the position the BBR stands upright.

Based on this linearized 3D model, a linear controller is designed. The approach taken in the
design of the controller is to design first a simple, easily implementable controller to make the
BBR ’fair ready’ as soon as possible. Later, a more advanced controller is designed, which focuses
on performance.
The first controller is a static controller, designed with LQR control theory, which controls all
states simultaneously. The second controller is a dynamic cascade controller, designed with SISO
loopshaping, which consists of an inner loop for controlling the orientation angles of the body
and an outer loop for position control.
Simulations proved that the performance of the system with regard to balancing is significantly
higher with the controller, designed with SISO loopshaping, compared to the performance of the
system with the controller, designed with LQR control theory. However, the performance of the
system with regard to position control is similar for both controllers, because the performance is
limited by the non-minimum phase behaviour of the robot.

During the implementation of the LQR controller, it turned out that noisy sensor data prevents
the controller from being implemented as desired. More specifically, the magnitude of the con-
troller gains for the pitch and roll angular rates is seriously limited by noisy gyroscope data.
To reduce the noise of the gyroscope data, different solutions are tried like placing foam under
the sensorboard to attenuate system vibrations and oversampling of the gyroscope in order to
average multiple samples to one sample to reduce the noise. Furthermore, a FIR low-pass filter is
implemented to limit the consequences of the noisy gyroscope data and to smoothen the torque
inputs of the motors.
The implementation of these solutions significantly reduces the noise of the sensor data and
results in a BBR that is able to balance.

Due to the fact that the controller mainly penalizes the errors in pitch and roll angles and only
slightly penalizes the errors in pitch and roll angular rates, the BBR is only able to cope with
small variations in pitch and roll angle. However, to be able to control the position of the BBR,
such that the BBR is able to move around, the BBR must be able to cope with large variations
in pitch and roll angles. Therefore, position control is impossible as long as the magnitude of
the gains for the pitch and roll angular rates is limited by noisy sensor data.

Based on the performance of the system with the developed controller, it can be concluded that
the developed model has proved to be a sufficient representation of reality for the design of a
controller. The different experiments have shown that none of the model assumptions imposed
a fundamental restriction on the performance of the robot.
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Finally, research is done to investigate under what requirements the system remains stable with
the developed controller. The research is done with the developed 3D model, so the results of the
research are only indicative for the real system. From this research, it can be concluded that the
system is robust to large variations in model parameters with the developed controller. Based
on the 3D model, the system will most likely remain stable when new features are added to the
robot in the future that will increase the mass of the robot and the height of the COM.

7.2 Recommendations & Future work

For further improvements on the performance of the BBR, several recommendations can be
made.
First of all, to further reduce the noise of the sensor data and improve the performance of the
system, it is recommended to design and implement a more advanced and effective filter to filter
the sensor data, like for example a Kalman filter.
Secondly, it is recommended to improve the attenuation of system vibrations, to prevent them
from being measured by the gyroscope.
Thirdly, brackets around the ball are recommended to increase the grip between the omni-wheels
and the ball, which makes slip less likely to happen and makes it possible to allow larger tilt
angles for higher performance.
Fourthly, system identification is recommended to improve the developed dynamical model, pro-
vided that the system is robustly stable.

Furthermore, the implementation of position control is left as future work. After a successful
implementation of position control, the controller, designed with SISO loopshaping, can be im-
plemented to increase the performance of the robot.
Also, an elaborate analysis on the influence of unmodeled parameters/phenomena (like deforma-
tion of the ball, slip and rolling friction) on the stability of the system with the developed con-
troller, is left as future work, because a stable system is required to do useful experiments.
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A. Parameters

Table A.1: Model parameters.

Parameter Description Value

General
mS Mass of the ball 3.2 kg
mOW Mass of an omni-wheel (including clamping bush and flange) 0.555 kg
mgh Mass of a gearhead 0.160 kg
mM Mass of a motor 0.240 kg
rS Radius of the ball 0.115 m
wB Width of the body of the robot 0.2 m
h Height of the body of the robot 0.80 m
h1 Height of the upper part of the body 0.66 m
h2 Height of the lower part of the body 0.14 m
IS Moment of inertia of the ball 2.65 ·10−2 kgm2

IM Moment of inertia of the rotor of the motor 2.42 ·10−6 kgm2

IOW Moment of inertia of the omni-wheel 6.94 ·10−4 kgm2

l Distance between COM of the ball and COM of the body 0.405 m
g Gravitational constant 9.81 m/s2

α Angle the omni-wheels make with the top of the ball 45◦

β Angle that determines the horizontal position of the omni-wheels 0◦

2D model
mB Mass of the body 7.135 kg
mB1 Mass of the upper part of the body 6.2 kg
mB2 Mass of the lower part of the body 0.935 kg
mW Mass of a virtual actuating wheel 0.995 kg
rW Radius of virtual actuating wheel 0.050 m
IW Moment of inertia of the virtual actuating wheel in yz-/xz-plane 1.90 ·10−3 kgm2

IW,xy Moment of inertia of the virtual actuating wheel in xy-plane 3.81 ·10−3 kgm2

I ′B Moment of inertia of the body about rotation axis in yz-/xz-plane 2.40 kgm2

IB,xy Moment of inertia of the body in xy-plane 4.76 ·10−2 kgm2

3D model
mB Mass of the body 10.0 kg
mB1 Mass of the upper part of the body 6.2 kg
mB2 Mass of the lower part of the body 0.935 kg
mB2,tot Mass of the lower part of the body 3.8 kg
rW Radius of omni-wheel 0.050 m
IB,x Moment of inertia of the body about the x-axis of the

coordinate frame centered in its COM 8.76 ·10−1 kgm2

IB,y Moment of inertia of the body about the x-axis of the
coordinate frame centered in its COM 8.76 ·10−1 kgm2

IB,z Moment of inertia of the body about the x-axis of the
coordinate frame centered in its COM 6.67 ·10−2 kgm2
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Table A.2: Model variables.

Variable Description

General
ψj Angle of the body of the robot around the j-axis j = x,y,z

ψ̇j Angular rate of the body of the robot around the j-axis j = x,y,z
φi Angle of omni-wheel i i = 1,2,3

φ̇i Angular rate of omni-wheel i i = 1,2,3
τi Torque of omni-wheel i i = 1,2,3

2D model
θj Angle of the ball around the j-axis j = x,y

θ̇j Angular rate of the ball around the j-axis j = x,y
φj Angle of the virtual actuating wheel around the j-axis j = x,y,z

φ̇j Angular rate of the virtual actuating wheel around the j-axis j = x,y,z
τj Torque of the virtual actuating wheel around the j-axis j = x,y,z

3D model
xS Translation of the ball along the x-axis
ẋS Linear speed of the ball along the x-axis
yS Translation of the ball along the y-axis
ẏS Linear speed of the ball along the y-axis

Hj
i Homogeneous matrix from Ψi to Ψj

Rji Rotation matrix from frame Ψi to Ψj

oji Position of origin of Ψi expressed in Ψj

ri,jk Position of Ψk w.r.t. Ψj , expressed in Ψi

vi,jk Linear velocity of Ψk w.r.t. Ψj , expressed in Ψi

ωi,jk Angular velocity of Ψk w.r.t. Ψj , expressed in Ψi

T i,jk Twist of Ψk w.r.t. Ψj , expressed in Ψi

AdHji
Adjoint matrix of Hj

i that maps twists from Ψi to Ψj
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B. Derivations

In this section derivations will be shown of equations, from which only the results were stated in
Chap. 2 and Chap. 3.

B.1 Derivations 2D model

Derivation of vTW,yz · vW,yz

vTW,yz · vW,yz = |vW,yz|2

= ẏ2
W + ż2

W

= [
d

dt
(rSθx + (rS + rW ) sinψx)]2 + [

d

dt
((rS + rW ) cosψx)]2

= [rS θ̇x + (rS + rW )ψ̇x cosψx]2 + [−(rS + rW )ψ̇x sinψx]2

= r2
S θ̇

2
x + 2rS(rS + rW )θ̇xψ̇x cosψx + (rS + rW )2ψ̇2

x cos2 ψx

+ (rS + rW )2ψ̇2
x sin2 ψx

= r2
S θ̇

2
x + 2rS(rS + rW )θ̇xψ̇x cosψx + (rS + rW )2ψ̇2

x.

Derivation of φ̇x

Before φ̇x can be derived, first φx needs to be found and expressed in the generalized coordinates.
The virtual actuating wheel rotates either when the ball rotates or when the body rotates. It
rotates in positive direction when the ball rotates in positive direction. Equating the traveled
distance yields

rWφx = rSθx. (B.1)

The virtual actuating wheel rotates in positive direction when the body rotates in negative
direction. Equating the traveled distance yields

rWφx = −rSψx. (B.2)

Combining Eq. (B.1) and Eq. (B.2) yields the following equation for the traveled distance of the
virtual actuating wheel:

rWφx = rSθx − rSψx
= rS(θx − ψx).

(B.3)

Dividing by rw and taking the time derivative yields the following equation for φ̇x:

φ̇x =
rS
rW

(θ̇x − ψ̇x).
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Derivation of vTB,yz · vB,yz

vTB,yz · vB,yz = |vB,yz|2

= ẏ2
b + ż2

b

= [
d

dt
(rSθx + l sinψx)]2 + [

d

dt
(l cosψx)]2

= [rS θ̇x + lψ̇x cosψx]2 + [−lψ̇x sinψx]2

= r2
S θ̇

2
x + 2rSlθ̇xψ̇x cosψx + l2ψ̇2

x cos2 ψx + l2ψ̇2
x sin2 ψx

= r2
S θ̇

2
x + 2rSlθ̇xψ̇x cosψx + l2ψ̇2

x.

Derivation of vTW,xy · vW,xy

vTW,xy · vW,xy = |vW,xy|2

= ẋ2
W,xy + ẏ2

W,xy

= [
d

dt
((rS + rW ) cos(ψz))]

2 + [
d

dt
((rS + rW ) sinψz)]

2

= [−(rS + rW )ψ̇z sinψz]
2 + [(rS + rW )ψ̇z cosψz]

2

= (rS + rW )2ψ̇2
z sin2 ψz + (rS + rW )2ψ̇2

z cos2 ψz

= (rS + rW )2ψ̇2
z .

Derivation of φ̇z

Analogous to the derivation of φ̇x, first an expression for φz as a function of the generalized
coordinate ψz needs to be found. This can be done by equating the traveled distances:

rWφz = −rS sin(α)ψz.

Dividing by rw and taking the time derivative yields the following equation for φ̇z:

φ̇z = − rS
rW

sin(α)ψ̇z.

Derivations of moments of inertia of virtual actuating wheel

Energy equilibrium of rotational energies around x-axis:

1

2
IW,xφ̇

2
x =

1

2
IOW (φ̇x cos(α))2 +

1

2
IM (kφ̇x cos(α))2

+ 2(
1

2
IOW (−1

2
φ̇x cos(α))2 +

1

2
IM (−k 1

2
φ̇x cos(α))2)

=
1

2
[IOW cos(α)2]φ̇2

x +
1

2
[IMk

2 cos(α)2]φ̇2
x

+
1

2
[2IOW

1

4
cos(α)2]φ̇2

x +
1

2
[2IM

1

4
k2 cos(α)2]φ̇2

x.

(B.4)
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This yields the following formula for the moment of inertia of the virtual actuating wheel Iw,x
around the x-axis:

IW,x = cos(α)2(IOW + k2IM +
1

2
IOW +

1

2
k2IM )

=
3

2
cos(α)2(IOW + k2IM ).

(B.5)

Energy equilibrium of rotational energies around y-axis:

1

2
IW,yφ̇

2
y =

1

2
IOW (

1

2

√
3φ̇y cos(α))2 +

1

2
IM (k

1

2

√
3φ̇y cos(α))2

+
1

2
IOW (−1

2

√
3φ̇y cos(α))2 +

1

2
IM (−k 1

2

√
3φ̇y cos(α))2

=
1

2
[2IOW

3

4
cos(α)2]φ̇2

y +
1

2
[2IMk

2 3

4
cos(α)2]φ̇2

y.

(B.6)

Analogous to IW,x, the formula for IW,y will be

IW,y =
3

2
IOW cos(α)2 +

3

2
IMk

2 cos(α)2

=
3

2
cos(α)2(IOW + k2IM ).

(B.7)

Energy equilibrium of rotational energies around z-axis:

1

2
IW,zφ̇

2
z = 3(

1

2
IOW (sin(α)φ̇z)

2 +
1

2
IM (k sin(α)φ̇z)

2)

=
1

2
[3IOW sin(α)2]φ̇z +

1

2
[3IMk

2 sin(α)2]φ̇z.

(B.8)

Analogous to IW,x and IW,y, the formula for IW,z will be

IW,z = 3 sin(α)2(IOW + k2IM ). (B.9)
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