
University of Twente

Master Thesis

Flow-based SSH Dictionary
Attack Detection:

the Effects of Aggregation

Mattijs Jonker

Date: August 27, 2014
Committee: prof. dr. ir. Aiko Pras

Rick Hofstede, M.Sc.
dr. Anna Sperotto

Faculty: Electrical Engineering, Mathematics and Computer Science (EEMCS)
Chair: Design and Analysis of Communication Systems (DACS)

Contents

1 Introduction 2
1.1 Assignment . 4
1.2 Research Topics . 7
1.3 Organisation . 10

2 Additional work 11
2.1 Bridging the gap . 11
2.2 SSH compromise detection . 14

2.2.1 Encrypted keystroke recognition 14
2.2.2 Encrypted interactive session detection 20
2.2.3 Real-time compromise detection 20

2.3 Application-level effects on flatness 23
2.4 Real-time detection . 27

2.4.1 TCP handshake real-time detection & algorithm assist 28
2.4.2 Active TCP close real-time detection & algorithm assist 30
2.4.3 Tool fingerprinting & signature-driven detection . . . 31

3 Assignment resultants 33
3.1 Flow exporter extension . 33

3.1.1 Source of input . 34
3.1.2 TCP analysis . 34
3.1.3 Filtering . 35
3.1.4 SSH Deep Packet Inspection (DPI) 35
3.1.5 EWMA/CUSUM based detection logic 36

3.2 Flow datasets . 39

4 Lessons learned 40

Bibliography 43

Appendices

A IEEE IM 2015 paper 48

1

Chapter 1

Introduction

While this document is titled Master Thesis, it is not a thesis in the tradi-
tional sense. This is because, in close agreement with the graduation com-
mittee, the research conducted for this Master assignment is reported on in
a paper. This paper is to be submitted to an established and well-known
conference in the field of computer science, namely the 14th IFIP/IEEE
Symposium on Integrated Network and Service Management (IM 2015)1.
IEEE IM is a conference to which the DACS chair frequently submits work.
It has an average SCImago Journal Rank (SJR) of 0.596 over the course
of the last three years2. This puts the conference well in line with other
frequently chosen conferences in terms of quality and reputation.

A paper is more of a collaborative effort than would be a traditional
Master Thesis when it comes to structure, wording, and the way in which
results are presented and emphasized. Notwithstanding, I have been closely
involved in every step of the research – that is, to put it broadly, its for-
mulation, planning, and execution. This includes the planning of dataset
collection and analysis, the evaluation of results and validation of work, as
well as many cycles of paper writing and reviewing. Furthermore, indepen-
dent efforts have been put in development of software that was an absolute
necessity for data collection, which adds an industry-oriented element to the
Master assignment. The choice for a paper thus does not in any way neg-
atively impact the process in which all requirements for the Master Degree
are met, but rather offered me the opportunity to do so in the common
academic setting in which research is shared with other researchers all over
the world.

This thesis outlines the Master assignment and explains how all require-
ments pertaining to quality are met, and briefly discusses the pending con-
ference submission. As the to be published paper works out in detail the
research, discussion related to its contents will, by design, be brief. How-

1http://im2015.ieee-im.org/.
2Information obtained from http://scopus.com/source/eval.url for 2011-2013.

2

http://im2015.ieee-im.org/
http://scopus.com/source/eval.url

ever, as not all work is included in the paper, yet has yielded specific and
promising results, part of this thesis will be dedicated to describing the work
that did not make it into the publication. The remainder of this chapter will
discuss the assignment, outline the research topics, and furthermore provide
an overview as to how the rest of this thesis is organized.

3

1.1 Assignment

Getting a Master Degree involves gaining advanced knowledge, and showing
a mastery of a specific field of study. The final part of fulfilling a Master
programme typically comes as a final project, in which a student is expected
to demonstrate advanced knowledge, analytical skills, the ability to think
critically, and to be able to work independently in solving complex problems.
Very often one shows that all requirements to obtain the degree have been
met in a Master Thesis. The EEMCS faculty of the University of Twente
has published in [1] a list of criteria for the Computer Science Master pro-
grammes. These criteria are key in earning a satisfactory result, and thus
in successfully completing a programme. As such, they would come for-
ward in a typical Master Thesis. Since the traditional thesis has in my case,
in close agreement with the graduation committee, made way for a paper,
these criteria must be discussed to ensure an equal level of quality is met by
the paper. This section describes how every aspect of coming to the paper
offered ample opportunity to meet the key criteria, and serves to show how
this opportunity was seized accordingly.

The criteria are listed next, each with a justification of how the partic-
ular criterium has been met:

Clearly formulate a problem statement
Before starting the Master assigmnent, a separate Research Topics course

has been completed. This undertaking resulted in identifying a few areas
based on literature in which contributions to the field could be made. After
brainstorming with, and receiving constructive feedback from supervisors,
an initial direction for the Master assignment was chosen. This choice was
followed by the formalization of several research questions, a research ap-
proach and the projected contributions. These efforts shaped and directed
the research from the get-go, and as such are to be considered a concise
formulation of the problem statement.

Identify relevant literature
After the problem statement had been clearly formulated, directions

for further literature research became apparent that had not already been
linked to a chosen problematic area as part of the Research Topics. This
included not only related work of research that contains approaches from
which lessons could be derived, but also literature in the form of protocol
standards, and reports the operation of protocols in practice. The theo-
retic background fundamental to parts of the research has been addressed
accordingly. Also, while the paper does not contain a dedicated related
work section as is often the case [2], relevant related works are mentioned
as part of its background discussion. Finally, over the course of the Master
assignment, the identified literature helped in making adjustments based on

4

intermediary results, when necessary.

Draw up a work plan
From the get-go, the end of the school year formed a deadline for the

research. This is in part because this ending is just two weeks ahead of the
submission deadline of the chosen conference. Key tasks were apparent in
the early stages. This includes, but is not limited to: further exploration of
literature; software development; extended periods of data collection, mon-
itoring and sampling to identify the possible need for adjustments; and the
projected time required for analysis, evaluation and going through cycles of
writing and reviewing the paper. Considering these tasks and the projected
deadline, a preliminary work plan was drawnn up in agreement with the
supervisors.

Adjust problem statement and work schedule in accordance with
interim evaluations

Several large datasets had to be collected in support of the research.
Preliminary analysis was possible as data became available. This led to
adjustments of the problem statement and work schedule for two reasons.
Firstly, based on early analysis, changes needed in the data collection process
became apparent. This was followed by modifications to the data collection
software, as well as alterations to the planned collection periods. Secondly,
some early results stood out in terms of being contributive. Based on con-
structive feedback from the graduation committe, the research questions and
approach were adjusted to work even more in-depth towards utilization of
these results. Beyond regular planned evaluations with the daily supervi-
sor, an interim colloquium of the ongoing work allowed other members of
the DACS chair to provide input, which too allowed for valuable fine-tuning
of parts of the research. Unforeseen factors such as a power outage, ar-
chitecture differences with a third-party data collection point, and bugs in
third-party tools also played their part in making required adjustments.

Analyse different possible solutions and motivate a choice between
them

During the early stages of research, literature studies and review of re-
lated work revealed several possible solutions to the (initial) research ques-
tions. Analysis of these solutions led to a narrowing of possibilities and
adjustment of the problem statement. Further analysis was made possible
by intermediate data and results coming in. This allowed well-thought-out
choices to be made over time. Constructive brainstorming sessions with the
daily supervisor were seamless in this process. Not all solutions that were
passed on or later deemed of lower priority are unpractical per se. Rather,
some were found to be unfitting within the research approach, or not suited
to be presented alongside other results.

5

Communicate the research and design activities both written and
in presentations

The choice for a paper publication rather than traditional Master thesis
is a clear effort to communicate the research and design activities to a broad,
world-wide audience of researchers. In a handful of informal evaluation ses-
sions with members of the graduation committee, ongoing research efforts
were presented so as to optimize the research process. Furthermore, during
many cycles of paper writing and reviewing, research activities were com-
municated to others at the university. An interim colloquium was also held
to communicate the ongoing efforts to other members of the DACS chair,
and peer Master students, in the form of a presentation. Finally, should the
paper be accepted to IEEE IM, a presentation opportunity at the conference
arises.

Show the ability of reflection on the problem, on the research/de-
sign approach, on the solution and on oneâĂŹs own performance

As has been explained for preceding criteria, interim evaluations were
held as preliminary results had become available. This allowed for reflection
on the problem and on the research design and approach, and was naturally
followed by making changes to the problem statement. Constructive feed-
back from the daily supervisor during the ongoing research allowed for me
to reflect on performance. I set soft deadlines for milestones that lined up
with the work plan. Whether or not goals were met in time, allowed for me
to reflect on my efficiency. Last but not least, during the many cycles of
paper writing and reviewing, iterations of feedback allowed for me to judge
whether I interpreted results from all possible angles. Especially for the
validation part of the publication, this feedback proved invaluable.

Demonstrate creativity and the ability to work independently
The research was performed full-time at the DACS chair, in an office

shared with the daily supervisor. This allowed for the frequent provision
of valuable feedback, as well as new ideas and insights. However, during
all stages of the research, a lot of independent work and creativity was re-
quired. Particular efforts related to dataset creation and analysis. This
included background research and design of dataset composition, cycles of
small-scale measurements and analysis, and evaluation of preliminary re-
sults. Moreover, software development was necessary to be able to gather
data to begin with. With the exception of a small feature request for de-
ployment at a third-party, development of this extensive project was done
independently. Finally, creativity was involved in independently coming up
with ideas for analysis and evaluation.

6

1.2 Research Topics

A variety of topics had to be researched in support of the work reported on
in the paper and this thesis. What follows is a list that outlines these topics.
Each topic is briefly described alongside an explanation as to how the topic
fits within the research context. Per topic, its relation to other topics is also
given.

• Intrusion Detection
This work, in the broadest sense, was performed within the field of
intrusion detection – particularly, flow-based intrusion detection. Lit-
erature on intrusion detection approaches, systems and more had to
be explored as part of this work. This went beyond – yet built on –
the Research Topics course that was performed prior to starting the
Master assignment, and involved specific studies of existing detection
algorithms and experiences. All in all, exploring literature on intrusion
detection was an essential part of working towards possible solutions
and making choices between them. Furthermore, while in the paper
the application of SSH comes forward as ‘just’ a case study, the SSH
context was clear from the beginning, as the Master assignment builds
on work performed in [3, 4].

• IP Flow Information Export (IPFIX)
Flow monitoring has become the prevalent method approach for mon-
itoring larger-scale, high-speed networks [5]. Example protocols for
flow export are IP Flow Information Export (IPFIX) [6] and Net-
Flow [7]. Intrusion detection is explicitly mentioned as a possibile
application of IPFIX [8], and state-of-the-art IDSs have shifted from
taking a payload-based approach to working with flows. During early
stages of this work, it had already become obvious that IPFIX would
be an integral part of the research. The main reason IPFIX was cho-
sen over NetFlow, is that IPFIX allows one to easily extend the set of
fields exported during flow export. It was used for dataset creation,
collection and analysis, and thereby also allowed the technology to be
validated as a solution to the problem statement of the research.

• Transmission Control Protocol (TCP)
A large amount of traffic sent daily over the Internet uses TCP [9], and
many networked applications rely on it for data transport. In taking
a network-based approach to detecting attacks on such applications,
knowledge of TCP is required. The same can be said for flow-based
intrusion detection. TCP had to be thoroughly studied for this work.
This includes extensions such as congestion control mechanisms [10],
Selective Acknowledgements (SACK) [11] and the Eifel algorithm [12].

7

• Flow export configuration, extension and deployment
Several large datasets with flow data were fundamental to the research.
In order to obtain these datasets, a flow exporter had to be extended,
configured and deployed. The elaborate extension had to be designed,
developed and repeatedly tested. This required becoming familiar with
INVEA-TECH’s FlowMon probe architecture [13], because the exten-
sion comes as several plugins that work within this architecture. Fur-
thermore, the ins and outs of probe configuration and deployment had
to be learned. In addition, detailed knowledge of the inner workings
of the Virtual Appliance product from INVEA-TECH was required.
With this product, development of extensions is made possible in a vir-
tualized environment. All this added an industry-oriented aspect to
the research, and led to a thorough understanding of all parts involved.

• Flow collector configuration and deployment
In order to collect large datasets consisting of flow data, a state-of-the-
art IPFIX collector had to be configured and deployed in a production
setting. IPFIXcol [14] was the tool of choice, which stores data in a
format specifically useful for academic purposes. Hands-on experience
was required with IPFIXcol, and additionally others tools used for
reading and parsing flow data after storage. This contributed towards
the industry-oriented part of the Master assignment.

• Secure Shell (SSH)
Secure Shell (SSH) [15] is one of the most widely used network pro-
tocols for remote system administration to networked computers. Re-
mote access is provided by means of an SSH server. Threats of SSH
intrusion have increased as of late [16, 17], and the consequences of
an intrusion can be severe [18]. In the to be published paper, dic-
tionary attacks against SSH are taken as a case study. Namely, SSH
is considered in terms of network traffic behavior of dictionary at-
tack activity at the transport-layer. Earlier on during the Master as-
signment, the application-layer behavior of SSH was also thoroughly
analyzed. Not only behavior of dictionary attacks, but also of authen-
ticated (interactive) sessions. Several protocol layers within the SSH
architecture [19, 20, 21] had to be studied in support of this work.
Furthermore, practical experiments and measurements had to be per-
formed. The following coarse subdivision of research can be identified
within this topic:

1. Packet and flow-level network traffic measurements – SSH
network traffic was studied in packet captures with full payload,
as well as flows. The full captures were required to analyze
plaintext parts of the connection, i.e., the data exchanged be-
fore encryption is negotiated. Measurements were performed in

8

an artificial setting at first, using network traffic created by sev-
eral popular brute-force tools and regular OpenSSH clients. Ex-
amples of included tools are Hydra 3, Ncrack 4, Medusa 5, and
Brutessh 6. Analysis of packet captures made while operating
these tools proved invaluable in reflecting on observations made
based on literature, because certain theorized phenomena of both
TCP and SSH coudl be validated this way. These efforts helped
in designing later data collection, and steps for data analysis and
validation.

2. Source code analysis – The source code of a small number of
brute-force tools and an SSH library was analyzed to study the
application-level behavior of said tools. For example, how the
‘client banner’ is chosen was studied, as well as how choices are
made for the negotiated algorithms during the SSH connection
setup. This analysis combined with observations made based on
artificial measurements allowed for solutions to be proposed and
reflected on.

3. Encryption methods and more – The SSH standard includes
support for a variety encryption ciphers, compression algorithms,
message authentication code algorithms, key exchange algorithms,
authentication methods and more. Background research and
practical experiments were performed to study how the network-
level behavior of several protocol layers within the SSH architec-
ture depends on these parts.

3http://www.thc.org/thc-hydra/
4http://nmap.org/ncrack/
5http://foofus.net/goons/jmk/medusa/medusa.html
6http://www.edge-security.com/

9

http://www.thc.org/thc-hydra/
http://nmap.org/ncrack/
http://foofus.net/goons/jmk/medusa/medusa.html
http://www.edge-security.com/

1.3 Organisation

The organization of this thesis is as follows. Performed research that yielded
results, but was too divergent to include in the paper is discussed in Chapter
2. Chapter 3 provides details on the software that was developed for both the
work included in the paper, and the additional work presented in this thesis.
Next, in Chapter 4, I reflect on the research process Master assignment as
a whole. Following some acknowledging words, the paper written as part of
this work can be found in Appendix A.

10

Chapter 2

Additional work

Over the course of the Master assignment, the research questions and ap-
proach were subjected to change. Choices were made that led to the shelv-
ing of partially completed research. Making choices is an intrinsic part
of research, and there are several reasons for them during the assignment.
Firstly, some preliminary results were already very promising, and the asso-
ciated approach was given priority over other approaches. Secondly, not all
approaches, despite their potential, were fit for bundling in the same paper
because of their divergence. Thirdly, personal preference weighed in. Due
to the choices made, some additional work is not reported on in the paper,
while still yielding results. This work is covered in this chapter. Section 2.1
explains the relation between the additional work and the paper. Next, in
Sections 2.2-2.4, the work itself is discussed.

2.1 Bridging the gap

The relation between the research reported in the paper and the additional
work that was done best be clarified before going into details on the addi-
tional work itself. This section explains the relation. It is assumed that the
reader has read the paper (see Appendix A).

While studying literature, three disadvantages of using flows for intrusion
detection were identified [22, 23, 24, 25, 26]. These are as follows:

1. Information loss – Flow exporters aggregate packets into flows. Due
to this aggregate nature, information about individual packets is, by
design, ‘lost’ during export. This loss can impede flow-based intrusion
detection.

2. Delay – Due to the flow cache expiration logic on flow exporters, there
is an inherent delay before flows are exported. Furthermore, flow col-
lectors typically rotate data to disk in intervals, introducing another
delay for tools that await interval completion before data is accessed.

11

For these reasons, flow data is usually not directly accessible for anal-
ysis ‘post-collection’.

3. Attack effects on the flow data infrastructure – The flow collector and
exporter can themselves become victims of an attack, either as direct
targets, or due to overload as attacks are ongoing.

From these three disadvantages, the first is addressed in the paper, while
the other two are not. Working towards solutions for all these disadvantages
was part of earlier research efforts. To understand how early research efforts
were guided, consider the following research questions, which were formal-
ized early on during the Master assignment to propose a direction:

1. Which information loss during the metering and export of IP flows
affects the flow-based detection of brute-force attacks?

2. Which custom information elements can we add to IP flows during
metering and export to overcome said information loss?

3. By how much can we improve the accuracy of existing flow-based
brute-force detection systems with custom information elements, and
at what cost?

4. How can we do detection of (SSH) brute-force attacks in (near) real-
time?

The fourth research question directed research of detection algorithms
that could work in real-time. Not only would such algorithms overcome the
delay disadvantage, but a real-time solution can provide immediate feedback
to the flow exporter and collector as well, thereby mitigating the effects of
attacks as soon as possible. These efforts, which relate to the second and
third disadvantages above, are not reported on in the paper, in any shape
or form.

Furthermore, as the Master assignment builds on work in [3, 4], the
context of flow-based detection of SSH dictionary attacks was a given from
the beginning. In the paper, though, the application of SSH is less profound,
as it ‘merely’ forms the case study of a more generic problem with flow-level
detection of dictionary attacks. This more generic problem is that network
traffic of dictionary attacks does not always exhibit ‘flat’ characteristics,
meaning that not every connection is similar in terms of bytes, packets and
duration, while that is expected. The datasets used in [4] confirm this, and
put forth TCP retransmissions as the suspected cause. The contributions of
retransmissions to features such as the number of Packets-Per-Flow (PPF)
can typically not be discriminated in flow data. This should be considered
a disadvantage of the aggregate nature of flow export, and thus is linked to
the first disadvantage that we have identified earlier on.

12

Scan

start

Brute-
force

start

Com-
promise

End

Figure 2.1: Brute-force attack phases.

Discussing the inability to discriminate retransmissions in flow data may
sound like rehashing of the paper, but this is not the case. In the paper,
only the detection of the ‘attempts’ part of dictionary attacks are evaluated
as part of the SSH case study. The detection of scans or compromises (a
successful brute-force authentication attempt) are not. Fig. 2.1 shows these
three different phases of dictionary attacks according to [3, 4]. The brute-
force phase in this model is only evaluated in the paper’s case study. Earlier
on during the assignment, however, other phases were considered as well,
both with real-time detection in mind, as well as the other disadvantages.

Moreover, from discussions with the authors of [3], it was learned that
the problem with network traffic flatness negatively impacted one of their
approaches to compromise detection (from Fig. 2.1). Namely, it impeded
detection of the transition moment from the brute-force to the compromise
phase, which was detected based on a deviation from previously flat behav-
ior, i.e., after brute-force activity had already been flagged. This knowledge
directed early research efforts not only towards addressing the network traf-
fic related issues, which would improve detection of the transition, but also
towards alternative methods of SSH compromise detection. Finally, while
TCP retransmissions are not typically deliberate from a malicious intent
point of view, the deliberate introduction of variability into flows, so-called
flow stretching, was also considered. From this point on, whenever ‘variabil-
ity’, ‘variable change’, ‘flatness effects’ or any similar terms are mentioned,
it relates to either unintentional or intentional effects on network traffic
flatness in terms of bytes or packets.

The remaining sections of this chapter describe research into the previ-
ously explained parts. In Section 2.2, research relating to an alternative SSH
compromise detection method is discussed. Then, in Section 2.3, research
into detectable and undetectable SSH application-level flow stretching or
unintentional effects on flatness is explained. Lastly, in Section 2.4, research
efforts towards real-time detection of all three attack phases is discussed.

13

2.2 SSH compromise detection

Research efforts earlier during the assignment focused on SSH compromise
detection. Not only in terms of real-time detection of compromises, but also
assisting existing flow-based compromise detection approaches by adding
information to flow data during export. Adding information during flow
export using a customizable flow exporter seemed feasible considering [24, 6],
and work such as [27] show that this can assist, or make possible to begin
with, flow-based monitoring solutions, such as intrusion detection.

With a flow exporter extension in mind, methods were considered that
could (partially) depend on payload-based information. Since payload is still
available on a flow exporter. Alternative methods were considered would
not necessarily rely on the flow-level number of PPF [3], or strictly operate
post flow data collection [4]. Extensive background research for alternative
methods was done. Eventually, progression has been made towards an al-
gorithm that is promising in terms of both real-time detection, as well as
‘post-collector’ assistance. This algorithm depends on the ability to detect
sessions within encrypted connections based on interactive keystroke recog-
nition.

In the next sections, all works towards a real-time compromise detection
algorithm is explained in layers. Section 2.2.1 details keystroke recognition in
encrypted connections. In Section 2.2.2, interactive session detection, which
is based on keystroke recognition, is explained. Afterwards, the compromise
detection considerations are discussed in Section 2.2.3.

2.2.1 Encrypted keystroke recognition

During the background research, work in [28, 29] was encountered. These
works show that keystrokes, i.e., interactive keys that a user sends, can be
recognized within encrypted SSH connections based on the payload size of
a packet. In these works, keystroke recognition is used for purposes such as
statistical analysis of inter-arrival time of keystrokes. This allows for timing
attacks on passwords, modelling of typed commands for user profiling, etc.
While modelling commands would be an approach to recognize sessions, this
was found to be impractical on a flow exporter for reasons such as requiring a
user profile database. A much simpler observation is that interactive sessions
can potentially be recognized based merely on the presence of keystrokes,
i.e., based on characteristic packet sizes.

Password keystrokes in [28] are recognized based on the fact that pass-
word characters are not ‘echoed’ back to the terminal, c.q., SSH client. In
other words, a packet of a characteristic size is observed from client to server,
with no response sent in return by the server. A fixed size of 20 B (excl.
TCP header) is used in [28]. Under the SSHv2 standard this approach is in-
feasible, as ‘fake echoes’ can be sent back by the server. The client does not

14

echo these, but a packet does traverse the network. Typical SSHv2 server
implementations send these fake echoes as passwords are typed to prevent
leaking that a password is being typed. The SSHv2 standard is well-suited to
protect against traffic analysis techniques. For example, it allows additional
random padding of packets. With additional random padding, a few more
cipher block sizes of random data are added to packets. Clearly, recognizing
keystrokes based on size would be impossible if this is used in practice on
keystroke packets. This prompted measurements, to investigate if popular
SSHv2 implementations of clients and servers apply additional padding to
keystroke packets.

Several packet captures of interactive sessions have been created and
studied to see if commonly used SSH implementations add additional ran-
dom padding to keystroke packets. Several versions of OpenSSH 1 client
and server implementations have been tested. OpenSSH is by far the most
widely used implementation2. For this reason we did not test other im-
plementations at this stage, such as the closed-source, commercial Tectia3

clients and servers.
Based on the interactive sessions measurements, two key observations

can be made:

1. None of the tested client and server implementations apply additional
padding to the keystroke packets sent, or its (fake) echo.

2. The characteristic size of keystroke packets are different, in compari-
son, for some of the clients and server tested.

With the positive first observation in mind, the cause for second obser-
vation was given a closer look. It has become clear that the difference in size
is influenced by the used encryption cipher, and the used keyed-hash mes-
sage authentication code (HMAC) algorithm. None of the tested clients and
servers are set to use compression by default, but further measurements with
alternative configurations have confirmed the understandable assumption
that compression also affects the characteristic size of a keystroke packet.
These results validate that keystroke packets are of a fixed size, and that
this size can be determined based on knowledge of used algorithms. This
prompted further research into this area.

As has been explained, keystroke recognition in client to server SSH con-
nections was found to be feasible based on literature and measurements. As
the used encryption cipher, HMAC algorithm, compression algorithm, etc.
affect the characteristic size of a keystroke packet, a compromise detection
algorithm requires these to be known for every connection. In the Transport
Layer Protocol [20] part of the SSH standard, it is explained how algorithms

1http://www.openssh.com/
2Information obtained from http://www.openssh.com/usage/graphs.html.
3http://www.ssh.com/products/tectia-ssh.

15

http://www.openssh.com/
http://www.openssh.com/usage/graphs.html
http://www.ssh.com/products/tectia-ssh

uint32 packet_length
byte padding_length
byte[n1] payload; n1 = packet_length - padding_length - 1
byte[n2] random padding; n2 = padding_length
byte[m] Message Authentication Code (MAC); m = mac_length

Figure 2.2: Binary Packet Protocol.

are negotiated as an SSH connection is set up. This requires both sides to
send a SSH_KEX_INIT packet. These packets are (initially) sent in plaintext.
While later renegotiation can occur under encryption, negotiated algorithms
are typically not changed in practice at all, or within a potential detection
period. In other words, given that payload is available, a potential algorithm
will have access to the information required to recognize interactive sessions.
This notion prompted the design and development of a detection algorithm,
to be implemented as flow exporter extension. At the heart of the detection
algorithm is mapping knowledge of the negotiated algorithms to the size of
a keystroke packet.

The design of the detection algorithm required a thorough understand-
ing of the Binary Packet Protocol of the SSHv2 [15] standard. This pro-
tocol dictates the format under which all messages are sent between SSH
endpoints, and thus factors into the size of keystroke packets. Fig. 2.2
shows the format of packets in this protocol. The first four packet_length
bytes indicate the length of the SSH packet, excluding the four bytes of the
packet_length field itself, and the Message Authentication Code (MAC)
bytes. Payload contains the packet payload, for example the keystroke in-
formation. Should compression be negotiated, the compression algorithm is
applied to the payload only, and this is done before encryption and MAC
calculation. According to the standard, when encryption is in effect, it is
applied to the packet_length, padding_length and payload. This untrue,
however, for certain variants of MAC algorithms, which are nowadays con-
figured as default in OpenSSH clients and servers. There are two types of
MAC algorithms that can be used:

• Mac-Then-Encrypt (MTE) – Under MTE, the message authenti-
cation code is calculated first. The input for the MAC algorithm are
the length fields, the payload and the random padding. The MAC
value is appended to this data, and then everything is encrypted.

• Encrypt-Then-Mac (ETM) – ETM is used by default nowadays,
and encryption is performed first, followed by MAC calculation and
appending. A noteworthy difference is that the four packet_length
bytes are not encrypted when ETM is used, because as the MAC is
verified first, it must be known where the encrypted data ends, and
the message authentication code starts.

16

Table 2.1: Keyed-hash message authentication codes (HMAC) & digest sizes
Algorithm Digest size (B) Support

none 0 optional
hmac-sha1 20 required

hmac-sha1-96 12 recommended
hmac-md5 16 optional

hmac-md5-96 12 optional
hmac-sha1-etm@open 20 optional*

hmac-sha1-96-etm@openssh.com 12 optional*
hmac-md5-etm@openssh.com 16 optional*

hmac-md5-96-etm@openssh.com 12 optional*
hmac-sha2-256 32 optional*
hmac-sha2-512 64 optional*

hmac-sha2-256-etm@openssh.com 32 optional*
hmac-sha2-512-etm@openssh.com 64 optional*

umac-64@openssh.com 8 optional*
umac-128@openssh.com 16 optional*

umac-64-etm@openssh.com 8 optional*
umac-128-etm@openssh.com 16 optional*

hmac-ripemd160 20 optional*
hmac-ripemd160@openssh.com 20 optional*

hmac-ripemd160-etm@openssh.com 20 optional*

In terms of keystroke packets, the keystroke payload is compressed if
compression is in use. Then, depending on whether ETM or MTE is used,
either encryption is applied first to the involved fields, or a MAC is calculated
over them. One final observation is that the encryption ciphers used in
SSH are block ciphers. Block ciphers transform full blocks of ‘plaintext’ to
‘ciphertext’. This is why, even if no additional random padding is added to
the binary SSH packet, there may still be some padding required. This pads
the size of the data input to the block cipher to the nearest natural multiple
of its block size.

With the background research of the Binary Packet Protocol in mind,
further research on ciphers and algorithms, as well as packet capture mea-
surements, could be performed to determine the influence of negotiated al-
gorithms on the characteristic size of a keystroke packet. Table 2.1 shows
keyed-hash message authentication code (HMAC) algorithms commonly used
by SSH implementations, and those referenced in the SSH standard. The
digest size of HMAC algorithm is given. This is the length in bytes of the
message authentication code that is calculated by the algorithm. Moreover,
it is shown if the SSH standard mandates support for the algorithm. Any
optional algorithm not referenced in the SSHv2 standard, is marked with

17

Table 2.2: Encryption ciphers & resulting keystroke bytes for HMAC types

Cipher Encrypted bytes SupportMTE ETM
3des-cbc 24 16 required
none - - optional

aes128-ctr 32 16 optional*
aes192-ctr 32 16 optional*
aes256-ctr 32 16 optional*
aes128-cbc 32 16 recommended
aes192-cbc 32 16 optional
aes256-cbc 32 16 optional
arcfour 24 16 optional

arcfour128 24 16 optional*
arcfour256 24 16 optional*
blowfish-cbc 24 16 optional
cast128-cbc 24 16 optional

rijndael-cbc@lysator.liu.se 32 16 optional*
aes128-gcm@openssh.com gcm optional*
aes256-gcm@openssh.com gcm optional*

an asterix. It should be clear that the chosen HMAC algorithm affects the
overall size of an SSH binary packet, and thus a keystroke packet in particu-
lar, due to the length of the MAC. For example, for the required hmac-sha1,
the digest size is 20 bytes, while for the recommended hmac-sha1-96, it is
12 bytes.

Table 2.2 shows encryption ciphers commonly used in SSH implemen-
tations. For most ciphers in combination with MTE and ETM, the size
in bytes of the encrypted part of an SSH binary packet that contains a
keystroke is shown. Just to be clear, this does not include the MAC di-
gest bytes, and for ETM the four packet_length bytes do not count as
encrypted part. Two things should be noted. Firstly, the chosen encryption
cipher has an effect on the encrypted part of the packet. This is because
of the resulting ciphertext. Any difference between ciphers is due to a dif-
ference in block size. Secondly, the choice for Mac-Then-Encrypt results in
more ‘ciphertext’ than Encrypt-Then-Mac. This is because for MTE, the
packet_length bytes are also encrypted as previously explained, and these
additional four bytes require an extra block size for encryption. Galois/-
Counter Mode (GCM) has implicit authentication of data integrity, and as
such is a special case for which no values can be listed that do not include
the ‘MAC bytes’. Moreover, few algorithms referenced in the SSH standard
are not shown, as sizes could not be determined with measurements due to
lack of support in popular SSH implementations. These are the ones in the

18

Table 2.3: Effects of compression on characteristic keystroke size
Cipher -∆block size count -∆bytes
3des-cbc 1 8
none 0 0

aes128-ctr 1 16
aes192-ctr 1 16
aes256-ctr 1 16
aes128-cbc 1 16
aes192-cbc 1 16
aes256-cbc 1 16
arcfour 1 8

arcfour128 1 8
arcfour256 1 8
blowfish-cbc 1 8
cast128-cbc 1 8

rijndael-cbc@lysator.liu.se 1 16
aes128-gcm@openssh.com 0 0
aes256-gcm@openssh.com 0 0

serpent and twofish families, and idea-cbc. Since none is not recom-
mended, and not supported in popular implementations, its values are left
out.

Given the effects of encryption ciphers and HMAC algorithms on the
size of a SSH binary packet containing a keystroke payload, one influential
part that remains is the chosen compression algorithm. The SSH standard
references two methods of compression. The first is none, i.e., no compres-
sion, and support for this is required. Secondly, zlib (LZ77) compression,
support for which is optional. The commonly used OpenSSH server and
client implementations use a ZLIB variant, zlib@openssh.com, that delays
compression until after user authentication. This is of no influence on rec-
ognizing keystrokes of interactive sessions, as interactive sessions occur after
authentication, and both compression variants are thus in effect at that time.
As has been discussed previously, compression, if negotiated, is applied to
the payload before MAC and encryption. This results in potentially reduc-
ing the number of plaintext block sizes that need to be encrypted. Based
on packet captures and measurements, it has been determined that in all
cases, compression reduces by one block size of bytes, with the exception
of GCM ciphers. That means for 3des-cbc, arcfour and so on, the size
of a keystroke packet is reduced by 8 bytes. For aes128-cbc etc., it is 16
bytes. Table 2.3 shows for all ciphers, the compression reduction in block
size count and bytes.

The result of all research discussed sofar, is that plausible keystroke

19

‘events’ can be recognized in encrypted connections when the chosen algo-
rithms and ciphers are known. We speak of plausible rather than certain,
because other SSH packets can end up with the same size. What that means
is that SSH packets that contain a non-keystroke payload may end up the
same size as a keystroke packet would. Preliminary measurements showed
that this is not often the case, and with this in mind extensive practical work
was done to recognize plausible keystrokes in network traffic automatically,
which involves determining the negotiated ciphers and algorithms to calcu-
late the characteristic keystroke packet size. The functional details of the
flow exporter extension in terms of configurability and so on that has been
developed will be discussed in Chapter 3. The interactive session detection,
which builds on the ability to recognize keystrokes in encrypted connections,
will be discussed next.

2.2.2 Encrypted interactive session detection

With the practical parts for automated keystroke recognition fully opera-
tional, further measurements were performed with many more combinato-
rial choices of ciphers and algorithms. These measurements support earlier
observations that implementations typically do not send non-keystrokes of
characteristic size often. Based on these findings, it was theorized that with
proper mathematical techniques and thresholds, keystroke event-driven ses-
sion detection can possibly be realized with reasonable accuracy. In other
words, it was believed that proper techniques could separate incidental non-
keystrokes packets from real keystrokes packets to determine ongoing in-
teractive sessions accurately. This prompted background research into tech-
niques such as those that involved the Exponential Weighed Moving Average
(EWMA) of events, c.q. process observations [30].

After background research on EWMA and other techniques, further prac-
tical work was done to realize event-driven session detection using these tech-
niques. All efforts discussed sofar led to not only the automated detection
of keystroke events, but also the feeding of these events to an EWMA al-
gorithm to evaluate threshold violations, ergo, determine ‘session detected’.
Because other additional work relies on the same mathematical techniques,
the theoretical background will not be discussed until later.

2.2.3 Real-time compromise detection

Full support for interactive session detection in real-time was now a given. A
further though towards compromise detection was as follows. If knowledge of
an ongoing session is combined with a blacklist of ‘bad hosts’, or knowledge
of previously flagged brute-force behavior from one of the hosts involved
in the detected session, it reasonable follows that this session is in fact a
compromise. This thought was shelved to focus on the work reported on in

20

Table 2.4: SSH dataset
Duration Packets Bytes Flows
17 hours 111.6 M packets 96.7 GiB 4.5 M

the paper, and never picked up again due to time limitations.

To showcase the research leading up to a potential compromise detection al-
gorithm, a seventeen-hour experimental dataset of SSH network traffic was
created. This dataset contains seventeen hours of SSH flow data, collected
on the University of Twente (UT) network. The details of the UT network
are in the paper. The dataset contains, among other things, information
on the occurrence and usage of various encryption ciphers, MAC algorithms
and compression algorithms. The information was added analogous to the
approach reported on in the paper, but with additional IPFIX informa-
tion elements that have been defined. Table 2.4 shows information on this
dataset. As can be seen, the dataset contains 4.5 M flows, 111.6 M packets
and 96.7 GiB. The reason for the limited measurement period is of a practi-
cal nature. To be more specific, the parts of the flow exporter extension that
add application-specific SSH information, which involves payload inspection,
were not enabled on account of optimization as the main datasets for the
paper were collected. Again, details on the functionality will be discussed
in Chapter 3.

Table 2.5 shows for the dataset the occurrences of encryption ciphers,
expressed in flows that contain the negotiated cipher. Table 2.5 shows the
same for MAC algorithm. As shown, the encryption cipher aes256-ctr is
atop as it is used in 44.78% of all flows. For MAC algorithm, hmac-sha1
wins with 81.68%. Table 2.7 shows the top compression algorithm choices,
which has less to choose from, obviously. Clearly, none compression is used
within 99.99% of all flows, which makes sense because that is typically
negotiated by default.

Table 2.8 shows for combinations of the top threes of encryption ciphers
and MAC algorithms the percentage of total flows in which this combi-
nation is negotiated. As can be seen, the combination of hmac-sha1 with
aes256-ctr occurs most, with 44.69%. We will show later that libsshlibssh4

uses this combination5 (Section 2.4.3). We will also show that libssh variants
are used a lot (Section 2.3). We suspect this explains why this combination
is way ahead of others.

4http://www.libssh.org/
5The client’s algorithm choices take precedende in the negotiation, as long as the server

supports the choices.

21

http://www.libssh.org/

Table 2.5: Encryption cipher usage
Encryption cipher Flows

aes256-ctr 313378 (44.78%)
aes128-ctr 246067 (35.16%)
aes128-cbc 68794 (9.83%)
3des-cbc 57917 (8.28%)
aes256-cbc 9840 (1.41%)
aes192-cbc 3722 (0.53%)
aes192-ctr 108 (0.02%)
blowfish-cbc 60 (0.01%)

Table 2.6: MAC algorithm usage
MAC algorithm Flows

hmac-sha1 571682 (81.68%)
hmac-md5 119458 (17.07%)

hmac-md5-etm@openssh.com 7380 (1.05%)
hmac-sha1-96 1232 (0.18%)
hmac-sha2-256 134 (0.02%)

Table 2.7: Top compression algorithms
Compression algorithm Flows

none 698872 (99.99%)
zlib@openssh.com 1002 (0.14%)

zlib 12 (<0.01%)

Table 2.8: Top three encryption ciphers & MAC algorithm combinations

Encryption cipher MAC algorithm
hmac-sha1 hmac-md5 hmac-md5-etm@openssh.com

aes256-ctr 44.69% <0.01% -
aes128-ctr 25.82% 8.17% 1.05%
aes128-cbc 9.16% 0.67% -

This concludes showcasing some fruits of the practical work that has
been done towards a real-time compromise algorithm. We have shown the
ability to detect encryption ciphers, MAC algorithms and compression al-
gorithms. Furthermore, by adding them to flow data not only can statistics
be presented as in the showcase, but the information can be used post flow
collection for any purpose deemed useful. As the preceding statistics on the
detected parts show, a multitude of combinations is used in the experimental
dataset. In order to make confident statements that this is representative
for the Internet, a longer dataset may be needed.

22

2.3 Application-level effects on flatness

Early research efforts were directed at the recognition of application-level
variability in terms of packets and bytes that may affect otherwise flat traffic.
Adding custom IPFIX information elements to flow data on application-
level variability would, alike adding information on TCP retransmissions as
reported on in the paper, possibly improve flow-based intrusion detection.
As part of this effort, theoretical opportunities for SSH application-level
effects on flatness were investigated. Not just ‘unintentional’ effects, but
also deliberate, i.e., flow stretching.

From previous explanations on the Binary Packet Protocol (Fig. 2.2),
it becomes clear that with the SSHv2 standard, adding a variable number
of bytes to traffic by means of padding is possible by design, and rather
straightforward. Moreover, as we will show, the packet type used to send a
fake echo when passwords are typed, provides a way to introduce additional
packets into SSH traffic. Since these messages are encrypted, they typically
cannot be discriminated from other network traffic part of the connection
between client and server. Considering the SSHv2 standard, the following
opportunities for application-level effects on flatness of network traffic have
been identified:

Random padding
The maximum number of randomly padded bytes is 255 per binary
packet. This means that without impeding standard protocol opera-
tion, one can technically stretch up to this many bytes, per packet. A
sophisticated brute-force tool could, for example, randomly pad pack-
ets containing authentication attempts, to ‘unflatten’ network traffic.

SSH_MSG_IGNORE
The SSHv2 standard allows SSH_MSG_IGNORE binary packets to be
sent, which must be ignored (or at least recognized as containing no
useful data) by the receiving side. This can be used, for example, to
send the fake keystroke echoes when passwords are typed. This packet
type enables one to unidirectionally introduce additional packets and
bytes in network traffic, ergo stretch both packets and bytes.

SSH_MSG_UNIMPLEMENTED
SSHv2 implementations must respond to unknown message codes with
a SSH_MSG_UNIMPLEMENTED message. This allows one side to trigger
the other side to send an additional packet by sending a bogus message
code. In other words, one can bidirectionally introduce additional
packets and bytes this way.

23

SSH_MSG_DEBUG
SSHv2 implementations must understand the debug message code, but
may choose to ignore it. This, much like SSH_MSG_IGNORE, allows the
introduction of additional packets and bytes unidirectionally.

Protocol Version Exchange (PVE)
After the TCP connection establishment between SSH client and server,
a mandatory protocol version exchange takes place. Both client and
server send, in no particular order, a packet that contains the SSH pro-
tocol version along with other information, such as the software used.
This packet contains at least one line that is terminated by a \cr\lf
at the very end of the packet. This line starts with the SSH- pre-
fix. The format of the line is SSH-protoversion-softwareversion
SP comments CR LF.

According to the SSHv2 standard, the PVE the very first binary
packet that must be sent by both sides after the TCP handshake.
The SSH- prefix is followed by the protocol version, a dash delim-
iter, the software version and, optionally, a comment. An example is:
SSH-2.0-OpenSSH_ 6.6.1p1 Ubuntu-2ubuntu2 \cr\lf. The maxi-
mum length of the PVE line is 255 bytes, but it may be preceded
by optional \cr\lf delimited lines within the same very first SSH bi-
nary packet. Therefore, the length of the protocol version exchange
packet can vary somewhat depending on the sent software version and
optional comment plus its length.

The presence of optional lines can affect the size of the binary packet
greatly. If many optional text lines are included in the binary packet
that carries the protocol exchange, its size could exceed the TCP Max-
imum Segment Size (MSS). This causes TCP to segment the data and
results in additional packets in the network traffic. Many TCP seg-
ments for a MSS, which is commonly around 1460 bytes, fit in a bi-
nary packet payload field of at least 32K bytes6. The result is that
one can deliberately stretch network traffic this way. Considering the
previously explained packet types, and how easy it is to use them for
deliberate stretching, the PVE packet seems a cumbersome approach
to take. A noteworthy difference is that, since the PVE packets are
exchanged in plaintext, this type of stretching can be detected.

Key EXchange init
After PVE exchange, the negotiation of encryption ciphers, MAC algo-
rithms and other information required for key exchange is initialized.
This is done by both sides sending a SSH_MSG_KEXINIT packet, which

6The SSHv2 standard mandates that implementations can handle at least 32K bytes
of payload, although support for a longer payload should be supported when required.

24

can be done in any order, but is usually done at about the same time.
This packet type contains name-lists of all supported algorithms such
as key exchange methods, encryption ciphers, MAC algorithms and
compression algorithms. Protocol rules dictate the negotiation out-
come.

Some of the name-lists of supported algorithms are given for the client-
to-server and server-to-client directions in separate lists, which allows
for different algorithms for these directions, should that be desired.
There are ten name-lists in total, and they are used to negotiate the
algorithms to use. The packet also contains some additional data with
mostly fixed length which is not relevant to this discussion. Each
name-list is preceded by a 32-bit integer that indicates the length of
the list. This allows both SSH endpoints to parse the received name-
lists, which are comma-delimited strings of supported algorithms that
appear in a fixed order in the binary packet.

What is important to note, is that the supported algorithm name-lists
can vary in length greatly, depending on the chosen algorithms. As
such, the SSH_MSG_KEXINIT message may or may not require more
than one TCP segment to be sent. Theoretically, one could use this
packet to stretch network traffic by appending additional algorithms,
the presence of which do not hamper protocol operation7. As with
the PVE message, this is a cumbersome approach to take, but as the
(initial) SSH_MSG_KEXINIT messages are sent in plaintext, this type of
stretching too can be detected.

In conclusion, several binary packet types of SSHv2 can affect the flatness
of network traffic from the application-level due to variability in size, and
number of packets (TCP segments). To our knowledge, no research has
investigated the SSHv2 standard from this angle. As the PVE and (initial)
SSH_MSG_KEXINIT packets are sent in plaintext, effect on flatness caused by
them can be recognized. Information on application-specific variability can
be exported, analogously to transport-layer protocol phenomena as is done
in the paper. This allows, to some extent, for application-level effects on
flatness to be corrected, which may ultimately lead to improved intrusion
detection, much like the case study in the paper. The practical component
that has been implemented as part of this effort is discussed in Chapter 3,
along further functional details of the flow exporter extension that has been
developed.

To showcase the research discussed in this section, all protocol version ex-
change messages for the seventeen-hour dataset of SSH flow data detailed

7As long as they are appended behind valid choices offered by the server, a negotiation
can take place.

25

Table 2.9: Top five client PVE strings
Client PVE Occurrences

SSH-2.0-libssh-0.4.8 126108 (51.26%)
SSH-2.0-libssh2_1.4.2 71519 (29.07%)
SSH-2.0-libssh-0.1 28361 (11.53%)

SSH-2.0-libssh2_1.4.3 6861 (2.79%)
SSH-2.0-libssh-0.2 5887 (2.39%)

Other 7288 (2.96%)
Total 246024

Table 2.10: Top five server PVE strings
Server PVE Occurrences

SSH-2.0-OpenSSH_6.0p1 Debian-4+deb7u1 44461 (17.00%)
SSH-2.0-OpenSSH_5.9p1 Debian-5ubuntu1.4 21540 (8.24%)

SSH-2.0-OpenSSH_5.3 18272 (6.99%)
SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu7 14358 (5.49%)

SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 12873 (4.92%)
Other 149927 (57.35%)
Total 261431

earlier have been inspected and recorded. Tables 2.9 and 2.10 show, respec-
tively for clients and servers, the top five occurrences of protocol version
exchange strings. As can be seen, libssh strings dominate the client top five.
An OpenSSH string is in the sixth position, suspectedly of a regular client.
Not many more libssh strings occur outside the top five. This leads to the
conclusion that many scripts and tools work with libssh, and include only
one of a small set of versions. For the server top five, OpenSSH implemen-
tations dominate. The first non-OpenSSH string is in the 24th position, and
it is SSH-2.0-dropbear_0.53.1 8. While 57.35% is not in the top five, the
absolute majority of the server to client flows have some version of OpenSSH.

In order to give a version-independent idea of occurrence of implementa-
tions, the version part of a PVE string should be ignored. Table 2.11 shows
the top three occurring SSH server implementations based on PVE string,
along with the position of its leading version. The third-placed WeOnlyDo9

is a commercial SSH server. Table 2.12 show similar information, but for
clients. The third-placed check_ssh is the PVE of a monitoring plugin10,
which allows one to monitor at intervals if an SSH server is still running.

8https://matt.ucc.asn.au/dropbear/dropbear.html.
9http://www.weonlydo.com/SSHServer/ssh-telnet-server.asp.

10https://www.monitoring-plugins.org/doc/man/check_ssh.html.

26

https://matt.ucc.asn.au/dropbear/dropbear.html
http://www.weonlydo.com/SSHServer/ssh-telnet-server.asp
https://www.monitoring-plugins.org/doc/man/check_ssh.html

Table 2.11: Top three server implementations based on PVE strings
Server type Occurrence (all) Top position (version)
OpenSSH 250562 (95.83%) 1
Dropbear 5602 (2.14%) 24
WeOnlyDo 1897 (0.73%) 25

Table 2.12: Top three client implementations based on PVE strings
Client type Occurrence (all) Top position (version)

libssh & libssh2 240434 (97.71%) 1
OpenSSH 4559 (1.85%) 6
check_ssh 637 (0.26%) 10

2.4 Real-time detection

In attempt to overcome the delay disadvantage of using flow data for intru-
sion detection, and to be able to mitigate attack effects on the flow exporter
and collector in the event of an ongoing attack, real-time detection meth-
ods were researched. Methods to detect all phases from Fig. 2.1 have been
investigated. The research efforts towards SSH compromise detection in
real-time have already been discussed in a preceding section, due to the
application-specific nature of these efforts. This leaves real-time detection
of scans and ongoing brute-force attempts to be discussed still. Research ef-
forts into these areas led to, as will be shown, results that are not all specific
to a given application.

To the end of finding suitable methods for real-time detection, much more
literature was studied. As has been explained previously, using a customiz-
able flow exporter to this end seemed feasible. Even though development of
a flow expoter extension was a given, stressing the flow exporter in terms of
resource usage was not. For this reason, all potential light-weight solutions
encountered in literature were considered. Anomaly-based approaches such
as in [31, 32] were considered among the best candidates after extensive
background research. The power of the work in [31] is generating signatures
for unknown attacks, at the flow-level. As stated by the authors, signatures
that are generated for known attacks, come close to signatures that already
exist for those known attacks. When focusing strictly on scans and dictio-
nary attacks, ergo known attacks, the potential benefit of this algorith thus
disappears and all that is left is extra overhead. Speaking of overhead, in
terms of computational resources required, the work in [31] allows reason-
able detection when required to process 2500 flows in a 20 second interval.
However, on the University of Twente (UT) network, a flow exporter that
processes only a subset of all traffic on the campus network already exports
1700 flows/s. Performance increases are realized by parallelization, but that

27

would violate that requirement for a light-weight solution. The work in [32]
was found to be suitable for scan detection, but no further research efforts
were spent on it due to the low priority of scan detection.

One of the lessons learned from the literature studies was that event-
driven detection of scans and brute-forcing would allow for a light-weight
solution, as long as determination of the particular event could be performed
at low cost. In other words, relatively easy to determine events such as the
number of flow records created per time interval [24] are viable, but a costly
machine learning algorithm requiring many cycles is not. It was believed
that detection could be performed with suspected little overhead, as long
as the proper events, mathematical techniques, and thresholds were used.
This conclusion had been drawn before the keystroke event was identified for
compromise detection, as discussed in Section 2.2. Mathematical techniques
identified for use were Exponential Weighed Moving Average (EWMA) [30]
techniques, and CUSUM algorithms [33, 34]. The work in [24] has shown
not only that using CUSUM logic with little overhead is feasible on a flow
exporter, but a CUSUM algorithm is very promising in terms of anomaly-
based detection.

The following three sections, Sections 2.4.1 and 2.4.3, discuss several
types of relatively easy to calculate events that have been identified to detect
scans and brute-force attacks.

2.4.1 TCP handshake real-time detection & algorithm assist

Packet information that can be calculated with relative little overhead if
packet headers are available are TCP header flags, such as the SYN bit.
The SYN bit is set during the synchronization (of sequence numbers) of a
TCP connection [9]. The sequence of packets involved in synchronization is
typically referred to as the three-way handshake. The three-way handshake
is required as a connection between SSH client and server is setup, and since
a dictionary attack from attacker to target requires an SSH connection, it
follows that a TCP handshake is a prerequisite for the brute-force phase
in Fig. 2.1. Moreover, the most common forms of scans (from Fig. 2.1),
namely the regular ‘connect’ and so-called ‘half-open’ (or stealth) scans11

require (part of) the synchronize sequence as well.
As has been discussed, the SYN bit in a three-way TCP handshake is a

prerequisite for the scan and brute-force phases in Fig. 2.1. Within INVEA-
TECH’s FlowMon probe architecture [13], TCP flags are accessible with
little overhead. With this in mind, the SYN bit ‘event’ has potential for
use in real-time detection for the two aforementioned phases. If the event
frequency is fed to an algorithm that can separate normal from anomalous,
perhaps scans or ongoing dictionary attacks can be recognized. The works

11http://nmap.org/book/man-port-scanning-techniques.html.

28

http://nmap.org/book/man-port-scanning-techniques.html

we have previously discussed on EWMA and CUSUM techniques to detect
anomalies based on event, c.q. process observations, have shown that with
the proper choice of events, such recognition is possible with fair accuracy.

After the previously discussed observations and literature review, it was
believed that with an efficient and properly tuned CUSUM implementation,
detecting anomalous SYN bits in real-time was possible. What else was
theorized, is that adding information regarding a possible anomaly to flow
data, may somehow be of assistance to detection algorithms that work with
flow data, c.q., post collection. The following two uses of SYN bits were
considered for the detection scans and brute-force attacks:

Scans – In order to detect the previously discussed forms of scans, the
number of SYN events between a given source and multiple destinations
could be subjected to EWMA/CUSUM techniques. It is unlikely that
a single host will trigger thousands of such SYN events in a short period.
Counting events this way and comparing the number to a threshold will
allow for reasonably accurate scan detection. To detect SSH network
scans, obviously the destination port filtered on would have to be 22.

Brute-force attempts – Counting SYN events between a given source
and fixed destination allows for an anomalous number of connections
in a short period to be detected between source and destination. This
could be indicative of an ongoing brute-force attack, i.e., many connec-
tions which a few authentication attempts are made. The word used
is could rather than is, as an anomaly is not synonymous with mali-
cious behavior. In other words, even though the number of connections
is anomalous, it does not mean the activity performed in those con-
nections is malicious per se. Despite this, early research efforts were
guided by the notion that knowledge of an anomaly could aid existing
brute-force detection approaches rather than single-handedly realize
detection. For example, given that flatness is assumed in works such
as [3, 4], and that a threshold of N flows with the same number of
PPF must be reached, it could be possible to improve accuracy. For
example, by allowing minor PPF deviations in case flows are marked
as probable anomalies, so that N is still reached even if traffic is not
entirely flat. This would require adding an IPFIX information element
which contains anomaly-related information to flow data, and then us-
ing it ‘post-collection’ to improve the algorithm. Another thought was
that if the algorithm from [4] is implemented on the flow exporter to
eliminate the delay disadvantage, and thus enable real-time detection,
then knowledge of an anomaly can help in the same manner.

29

2.4.2 Active TCP close real-time detection & algorithm as-
sist

A problem with SYN events is that regular connections follow the same three-
way handshake. A not-so-practical script that recursively secure copies (scp)
each file under a directory separately, would trigger an anomalous number of
SYN packets in the same fashion as an SSH brute-force tool would. Because
of this, further candidate events were investigated. The work in [33] notes
that under normal operation, an SSH server never actively closes a TCP con-
nection. Fig. 2.3 shows two possible sequences in which the server actively
closes the connection. Further details on how connections are terminated
can be found in the TCP standard [9].

Measurements with the attack tools and servers mentioned in Chap-
ter 1.2 have confirmed that the server indeed never actively closes the con-
nection during regular connections, secure copies, sftp etc. However, when
too many authentication attempts fail, it does. For example, the OpenSSH
server actively closes the connection, i.e., it is the first endpoint to send the
FIN bit, in two cases. Firstly, when a client has reached MaxAuthTries failed
authentication attempts. The MaxAuthTries server configuration directive
typically has a default value of 6. Secondly, when a client’s connection
violates the number of unauthentication connections that can be open, as
defined by MaxStartups. So contrary to SYN events, the sever-initiated FIN
event reveals more about the potential malice in a connection. The discrim-
inating difference is of course, the order in which packets with the header
flag set are sent.

The background research and practical measurements have confirmed
that if the server actively closes the connection, this event allows for the
detection of brute-force attempts. One important detail here is that only
a subset of the evaluated tools tries the maximum number of authentica-
tions per connection to the SSH server. Tests have shown, for example, that
Medusa, Hydra and Ncrack try as many authentication attempts per con-
nection as possible, and trigger a server-side initiated FIN (and sometimes
even RST) after MaxAuthTries attempts. Tools such as Brutessh, however,
perform only one attempt per connection. Moreover, command-line argu-
ments to Ncrack can configure the number of attempts per connection to
something lower than MaxAuthTries. In these latter cases, the client attack
tool actively closes the connection and thus, alike SYN events, the potential
in terms of attack detection diminishes as the order is no longer a discrimi-
nating factor with respect to benign connections.

For the previously discussed event-driven detection approaches based on
the SYN and FIN TCP header flags, the practical work for EWMA/CUSUM
detection has been completed. To be more specific, server-side initiated
FIN events and the brute-force variant of the SYN events are detected, sub-

30

FIN

FIN,ACK

ACK

FIN

ACK

FIN

ACK

Client Server Client Server

Three-way termination Four-way termination

Figure 2.3: Connection termination sequences.

jected to EWMA/CUSUM housekeeping & heuristics, and can trigger an
alarm when a configurable threshold is exceeded. While the functionality
is present, no effort has been done to fine-tune any algorithmic parameters.
This would have required making artificial datasets, or annotating datasets
with ground truth information, and then applying techniques such as grid
searches [35] to optimize detection results. This is where research efforts
were shelved as other promising results with regard to what is reported in
the paper had come in. More details on the implemented functionality is
described in more details when the flow exporter extension is discussed as a
whole, in Chapter 3.

2.4.3 Tool fingerprinting & signature-driven detection

One final brute-force detection approach was considered, which is more
application-specific than those based on TCP header flags. Namely, the
choice of supported algorithms in SSH’s key exchange messages, and the
sent banners in protocol version exchange messages, have been reviewed in
an attempt to fingerprint attack tools. The idea is that a signature of a
known attack tool can constitute an event for real-time detection.

The attack tools and regular clients that have been analyzed are the same
as in Chapter 1.2. Measurements have shown that typical SSH clients com-
municate many supported algorithms, which lead up to two TCP segments
per SSH_SG_KEXINIT message. On the other hand, some brute-foce tools
only negotiate one or a limited number of algorithms in each category. For
example, Medusa only indicates support for none compression, aes256-ctr
encryption and hmac-sha1 message authentication. As a second example,
Brutessh only negotiates about four commonly supported ciphers and MAC
algorithms, with no compression. In some cases the choices are hard-coded,
but can be easily changed prior to recompilation. In other cases the choices

31

cascade from included libraries, such as libssh12. Unfortunately, the chosen
algorithms are not discriminating enough to fingerprint attack tools. One of
the reasons is that libssh, for example, is included in a multitude of benign
SSH clients, such as monitoring tools.

Source code review of all the aforementioned attack tools has shown that
some of them have a clearly identifiable signature in the PVE message. For
example, Medusa sends the SSH-2.0-MEDUSA_1.x banner, and the Brutessh
tool sends SSH-2.0-paramiko_1.5.x. Despite these identifiable banners,
this approach to detect attacks in real-time was shelved for several reasons.
Firstly, Medusa allows an attacker to change the PVE with command-line
options, and other tools that allow this may exist. Secondly, and alike
algorithm choices, hard-coded parts can be changed. Thirdly, there are
suspectedly many underground tools and custom scripts, that we cannot
reasonably all fingerprint. Last, but definitely not least, a lot of malicious
tools include libssh, and thus cannot be distinguished from benign clients
based merely on the PVE string.

In conclusion, fingerprinting tools based on the above was considered
not potential enough for futher research. Furthermore, it did not fit well
with other research efforts. As shown in the section on flow stretching,
Section 2.3, the practical work to recognize and record PVE banners has
been completed nonetheless. Details on the functionality is in Chapter 3.

12http://www.libssh.org/.

32

http://www.libssh.org/

Chapter 3

Assignment resultants

A lot of work has been performed during the master assignment. Consider-
able results are reported on in the paper. However, the paper does not do
everything that has been done justice, as some of the assignment’s are not,
or only partially reported on in the paper. This chapter discusses these re-
sultants. In Section 3.1, the flow exporter extension that has been designed
and developed will be discussed in much more detail than in the paper.
Next, in Section 3.1, the deliverable datasets are discussed.

3.1 Flow exporter extension

As discussed in the paper and in other chapters of this thesis, an elaborate
flow exporter extension has been designed and developed. This added an
industry-oriented aspect to the Master assignment. The extension comes as
several plugins for INVEA-TECH’s FlowMon Probe platform, as stated in
the paper. Its implementation involved abundant amounts of background
research on a multitude of topics, test cycles, tool-assisted debugging of stack
traces, etc. According to the paper the extension realizes on-the-fly analysis
of TCP conversations and adds IPFIX information elements to flow data on
packet classifications, such as TCP retransmissions and confrol information.
It does not end there. This chapter explains in more detail the extension, as
it contains a lot of functionality that is not done justice in the paper. Because
the extension has been developed as part of the INVEA-TECH Community
Program, it will be released under the BSD license1 after the paper has been
published. It constitutes, therefore, a deliverable, and significant resultant
of the Master assignment.

Functionality of the plugins will be explained in the following sections,
Section 3.1.1-3.1.5.

1http://opensource.org/licenses/BSD-3-Clause/.

33

http://opensource.org/licenses/BSD-3-Clause/

3.1.1 Source of input

In support of the dataset creation for the paper, as well as for the other
research efforts discussed in this thesis, full access to packet payload is re-
quired. Within INVEA-TECH’s FlowMon Probe architecture this is typ-
ically best accessed in an input plugin. For this reason, a custom input
plugin had to be written, in addition to a custom process plugin.

The input plugin involved implementation of support for several packet
sources, as follows.

rawnetcap – To deploy the flow exporter extension on a live probe,
packets must be readable from a monitoring interface. INVEA-TECH’s
proprietary rawnetcap format is supported and used on their products
to capture at high speeds. Further benefits are nanosecond times-
tamp precision. While alternatives exist (see pcap below), support
for rawnetcap was implemented on account of optimization. The cus-
tom input plugin supports command-line configuration of multiple (si-
multaneous) capture interfaces, sampling, packet snapping, and fine-
tuning rawnetcap’s queue size.

pcap (live) – An alternative interface-based input for live capture
that uses libpcap2. Command-line parameter support is available for
configuration of the target interface, and setting packet snapping.

pcap (file) – For both development purposes and reading offline data,
support for reading packet captures, ergo pcap files, was necessary. To
this end, there is support for libpcap files in offline mode. The source
file is command-line configurable.

3.1.2 TCP analysis

In support of the work in the paper, the input plugin can analyze TCP
connections on-the-fly and add IPFIX information on packet and byte counts
of packet classes, such as TCP retransmissions. The TCP analysis module
can be disabled with a command-line argument, but it defaults to enabled.
Since the functionality of the module is reported on in the paper, it will
not be explained here except for one part that has not been mentioned
yet. This is that the input plugin can write TCP analysis statistics to disk,
aggregated into intervals at the end of each interval. This functionality is
useful when privacy (of flow data) is an issue, or when no IPFIX collector is
available (or can be reached). This functionality can be separately enabled
and configured with command-line parameters. Moreover, it requires the
main TCP analysis module to be enabled. The command-line parameters
are the time interval, and the path of the output file.

2http://sourceforge.net/projects/libpcap/.

34

http://sourceforge.net/projects/libpcap/

3.1.3 Filtering

In order to prevent unwanted flows from being exported, the processing plu-
gin part of the extension has command-line configurable support for two
filters. First of all, filtering on TCP-only flows is possible, which was re-
quired to manage dataset sizes for the paper. Furthermore, allowing through
only SSH flows is possible with a second filter. Technically speaking, the
application-specific filter works based on port and as such can allow through
non SSH traffic that runs over the same port.

3.1.4 SSH Deep Packet Inspection (DPI)

As discussed in preceding chapters, several SSH application-level packet
types are sent in plaintext, and information can be extracted therefrom.
The extension comes with fully functional DPI for these packets, that can
be configured individually from the command-line. Moreover, as has been
shown, for a subset of the inspected information, IPFIX information ele-
ments have already been defined and are being exported.

Given that SSH packets can be segmented at the transport-layer level,
received out-of-order and so on, the involved program logic to perform DPI is
quite sophisticated. Knowledge of negotiated encryption ciphers and other
algorithms for a given connection is kept in cache so the information is
retained in long-lived SSH flows, i.e., after the active timeout [5].

The packet types involved in the DPI related functionality are as follows.

The Key EXchange init packet – The SSH_KEX_INIT packet type
is recognized, its segments reassembled (if needs be), inspected, and
parsed. Payload-derived information and number of TCP segments
used to send the packet to begin with are known in program logic.
This includes, in particular, knowledge of the supported encryption
ciphers, compression algorithms, and MAC algorithms, as well as the
negotiation outcome. This information is used for the calculation of
the characteristic keystroke packet size, and the keystroke event is re-
quired for the alternative compromise detection approach, as discussed
in Section 2.2. Furthermore, the negotiated algorithms are exported
in IPFIX information elements that have been defined. Exporting
the negotiated algorithms is not required for compromise detection, as
that is done in program logic itself, in real-time. However, exporting
this information allowed for the information in Tables 2.5-2.7 to be de-
termined from flow data. The number of TCP segments used for the
packet type, i.e., packets that factor in the number of PPF of a flow,
are not exported. Should this be desired to compensate detectable
application-level effects on flatness, as discussed in Section 2.3, then
little additional development would be needed to realize this. DPI

35

and IPFIX export of the negotiated algorithms can be enabled and
disabled with command-line parameters to the input plugin.

The Protocol Version Exchange packet – The PVE messages
are recognized, their segments reassembled (if needs be), inspected,
and parsed. Payload-derived information such as the communicated
software version, comment, and protocol version is known in program
logic. Information on the number of TCP segments of the PVE packet
type is known in program logic also. The SSH protocol version has
an IPFIX information element defined for it, which is exported by the
extension. Furthermore, the input plugin allows for detected protocol
version exchange messages to be written to disk, which was used to
produce the results in Tables 2.9 and 2.10. Exporting this informa-
tion using IPFIX for further research such as fingerprinting of attack
tools (from Section 2.4.3) based on flow data is only a small step
away in terms of development. Moreover, so is exporting information
on the number of TCP segments used, for the further research sug-
gested in Section 2.3. DPI and protocol version export in flow data
is command-line configurable. Writing encountered PVE messages to
disk can independently be configured, along with the target path.

With the DPI functionality explained, two peculiarities that were en-
countered during DPI research efforts can be revealed. Firstly, one of the
attack tools was found to send SSH version 2 as part of its protocol ver-
sion, but it did not include a \cr in the PVE string. The SSHv2 standard
states that implementations may choose to not expect a carriage return, only
for backwards compatibility with older SSH versions. This is thus strange
behavior. Unfortunately, it was found not discriminating enough for finger-
printing purposes, because the tool in question, Hydra v7.6, includes the
widely used libssh library. Secondly, in the SSH dataset from 2.4, an FTP
server banner was found. It appears an FTP server was running on port 22.
FTP terminates lines with a \cr\lf also, but these lines do not have the
characteristic SSH- prefix. The encountered server was Gene6 FTP Server
v3.10.0 (Build 15)3.

3.1.5 EWMA/CUSUM based detection logic

The process plugin contains logic for EWMA and CUSUM techniques that
is used for three of the event-driven detection algorithms discussed in this
work. These are the characteristic keystroke packet size driven detection of
interactive sessions, the SYN bit event-driven detection of connection anoma-
lies, and the server-side initiated FIN bit event-driven detection of probably
brute-force connections. Previous sections have explained why works such

3http://www.g6ftpserver.com.

36

http://www.g6ftpserver.com

as [33, 34, 24] have led to the implementation of this functionality. The pur-
pose of this section is to explain the mathematical background of what has
been implemented, and to provide functional details such as command-line
parameters.

Each of the three detectors can be individually enabled and configured
and has separate housekeeping using a cache with eviction mechanism based
on last access time. Currently, only an alarm is output to the standard out
when thresholds are violated, but further detection logic can be implemented
and linked to violations of thresholds with ease. Obviously, the SSH session
detector requires the DPI of algorithms to be enabled. Similarly, the SYN
and FIN bit parts require the TCP analysis module to be enabled.

EWMA logic
The mathematical background for EWMA techniques can be found in [30].
Within the extension, the EWMA statistic is calculated as in Eq. 3.1. In this
equation, xi is the event intensity, tx is the time at which the xi event triggers
the update, and λ is the smooting factor. Finally, tzi−1 is the time at which
the previous EWMA statistic, zi−1, was calculated. xi is currently always
set to 1, but if detection logic requires multi-event triggered calculation, that
is possible.

zi = λxi + (1 − λ)(txi−tzi−1)zi−1 (3.1)

Using the previous smoothed event intensity, the one-step-ahead predic-
tion error, ei, can be calculated as in Eq. 3.2.

ei = xi − zi−1 (3.2)

With this prediction error, the smoothed variance estimation is calcu-
lated as in Eq. 3.3. In this equation, θe is the variance smoothing factor,
σ2e(i− 1) is previous smoothed variance, and the time values are analogous
to the smoothed event intensity calculation.

σ̂2e(i) = θee
2
i + (1 − θe)

(txi−tzi−1)σ2e(i− 1) (3.3)

Furthermore, a reasonable upper limit on the observed events, UCLx(i),
is calculated as in Eq. 3.4. If zi violates this threshold, an alarm is triggered.
Le is a constant, as in [30].

UCLx(i) = zi−1 + Leσe(i− 1) (3.4)

For each of the three real-time detectors, values for the smoothing fac-
tor, variance smoothing factor, and Le constant can be configured with
command-line parameters.

The real-time interactive session detector works merely with an adaptive
threshold based on the explained EWMA logic. This is by choice, because its

37

event are suspected keystrokes. Currently the detector inspects packets of
characteristic size only from client (potential attacker) to server. Checking
bidirectionally if the server responds also with a characteristic keystroke-
sized packet, may make more accurate the detection logic. This has not
been implemented to focus on the paper.

CUSUM logic
A drawback of an EWMA-based detection algorithm is that only violations
of the adaptive threshold are considered, and not the intensity of these vi-
olations. A CUSUM algorithm considers the extent by which a threshold
is violated, and thus considers the intensity of violations [34]. Because the
brute-force detectors have to deal with events quite differently from sus-
pected keystrokes, they use CUSUM techniques. The implemented logic for
this is based on [36] and is as follows.

The recursive version of non-parametric CUSUM algorithm is shown in
Eq. 3.5. In this equation, Y0 = 0 and Zn is defined as Zn = Xn − β. Xn is
the event intensity (per time slot), and it is transformed to have a negative
mean over time using the transformation constant, β. This transformation
is done, so that during normal event intensities, they will not accumulate
into the CUSUM value over time.

yn = max(yn−1 + Zn) (3.5)

The event intensity, Xn, is measured per time interval, Tn, and then
passed to the algorithm. The length of each time interval, ∆T , can be opti-
mized for the operational setting of the algorithm. Quite often CUSUM
implementations calculate the new value only after Tn has ended. The
CUSUM implementation in the extension, however, predicts the yn value
during the interval Tn. This is possible with event-driven recalculations and
some housekeeping. The predicted value will never be lower than the final
value, thus allowing detection even before a time window has passed. The
predicted value can be compared to a given threshold to see if an alarm must
be triggered.

For both detectors that currently use CUSUM logic, the values of the β
constants, length of the time window, ∆T , and CUSUM threshold can be
configured with command-line parameters. In the current implementation,
alarms are thus raised on an anomalous number of SYN connections, or
server-side initiated FIN bits. That is where research efforts halted.

Optimization of any of the parameters above based on training data
and other techniques such as grid searches [35] has not been done, due
to prioritization of research efforts for the paper. The brute-force detectors
depend on the TCP analysis module, which has proven to work in production
settings. The interactive session detector depends on SSH DPI, and the
performance thereof has not been evaluated in a production setting.

38

3.2 Flow datasets

The paper reports on the gathering and use of several datasets. These
datasets have been collected on the UT network and on peering links be-
tween the Czech National Research and Education Network (NREN) CES-
NET and, among others, the Austrian NREN ACOnet. The datasets are
used to measure the occurrence of TCP retransmissions and control infor-
mation in overall traffic, as well as SSH traffic. Should future work require
measurements for another specific application, such as HTTP, then a subset
of the datasets can be taken. This would save months of gathering data.
Furthermore, the UT datasets (the CESNET data is third-party) can be
anonymized and released to others, if desired. It should be said that these
plans currently do not exist, but are possible. For both these reasons, the
datasets are considered a deliverable.

The authentication logs of SSH servers, which serve as ground truth for
the research in the paper, can also be anonymized if desired. Therefore
these logs can be considered a deliverable as well. It should be noted that
the collection and processing was made much easier due to contributions
by the authors of [4], but specific work had to be done for additional post-
processing. One of the scripts used in [4] for ground truth processing has
been improved. Since this script is being maintained and published, the
contributions made to it are a deliverable.

39

Chapter 4

Lessons learned

In this chapter I reflect on the research process, and state the most important
lessons I feel that I have learned during the Master assignment. Perhaps I
will enjoy revisiting some personal annotations in some time to come, to see
if the lessons stuck.

Set reasonable goals – Looking back at early formalizations of re-
search questions, and my notes and ideas on which approaches I en-
visioned in addressing every single one of them as part of my Master
assignment, it becomes clear that I had considered taking on too much
action. Having to let some parts go was not an efficiency-related mat-
ter, but the nominal time available simply would not have allowed for
everything to be done. Moreover, some approaches were found to be
more interesting in terms of publishing than others. I’ve learned that
there are several angles to consider when setting goals, and that it
is important to reflect on them often enough down the road. There
is always the proverbial todo list that is the future work section of a
paper to show that you have considered it.

Publications are hard work – During my B.Sc and M.Sc curricula,
not many courses involved writing a paper. For the courses that did, I
cannot say I enjoyed the mandatory paper writing all that much. Ad-
mittedly, the idea of writing a paper as part of the Master assignment
was not my own, and I was somewhat hesitant at first. However, it
seemed a fitting challenge, and in hindsight I cannot say that I regret
agreeing to go down this road. It has been a good learning experience
in terms of collaborating with others who have different opinions at
times, thinking critically about how best to report on work, and how
to present results in a clear fashion.

Language barriers do not exist – Over the course of the assign-
ment I have learned to work with quite a few programming languages.
Parts of the research used Python and Ruby, languages with which

40

I had absolutely no prior experience. Moreover, the FlowMon Probe
extension was my first C project of significant size, which includes
advanced and challenging topics. Lastly, I can now write baffling awk
scripts in support of data analysis.

Debugging is painstaking – Having to develop in C provided me
ample opportunity to create memory leaks, and to encounter a mul-
titude of concurrency issues with memory access, etc. Even if every-
thing works smoothly in a local test environment, a much higher data
throughput in a production setting all of a sudden reveals race condi-
tions that had not been identified yet. What started with me learning
of Valgrind1 to help a third-party acquire some debug information,
ended with me gaining hands-on experience with it in terms of find-
ing memory leaks, reads/writes of freed memory etc. It has been an
educative journey.

Go with the flow – It would be odd for me to pick sides at this
very moment and join either the payload-based or flow-based intrusion
detection camp, since the Master assignment builds on strenghts of
both. Though, when it comes to flow-based monitoring approaches,
I have learned that they are fun to work with, and a good choice for
scalable solutions. As has been shown in this work, adding payload-
based information to flow data using IPFIX is a viable solution when
retainment of said information is necessary. So for strictly payload-
based advocates, I think the advantages of using flow technologies,
combined with the ability to retain information in a standardized way,
may come as a pleasant surprise.

1http://valgrind.org/

41

http://valgrind.org/

Acknowledgements

Before starting my Master assignment, my programme coordinator advised
me to search for an external graduation assignment. He based his advise in
part on his belief that, generally speaking for internal assignments, supervi-
sors only have time to schedule meetings once every few weeks. I am glad
that I did not follow his advise. At the DACS chair, I was given the opportu-
nity to work full-time on my assignment on location, in an office shared with
my daily supervisor. This proved incorrect the notion of students barely be-
ing given the chance to receive feedback. Moreover, it allowed me to be in
the good company of Ph.D. candidates, peer M.Sc and B.Sc students, and
interns. To top things off, group lunches with people from other offices,
and celebratory events that involved cake (even though I barely eat cake)
added to a pleasant working environment. I feel lucky for having been given
the chance to spend the last seven months this way, while working towards
achieving my own goals.

I would like to thank Rick, my daily supervisor, in particular. His guid-
ance and insights have been a great help in achieving results. I have enjoyed
working with him, and consider our collaboration a success. Aiko and Anna’s
feedback at a handful of planned occassions made key contributions to the
work and for that I am thankful. I am also appreciative of Luuk’s help with
practical problems at times. Finally, it was a blast sharing the same office
space, lunches and so on with Jair and Ricardo.

Several other parties made contributions to the research process. I would
like to thank Václav Bartoš for his allowing of, and assisting with, the col-
lection of the CESNET datasets. Thanks go out to the INVEA-TECH
Community Program, for providing parts of the measurement infrastruc-
ture used during this Master assignment. Finally, I would like to thank Petr
Velan for his valuable help with software he authored.

Mattijs

42

Bibliography

[1] University of Twente, “Master guide 2012/2013 (Study
guide),” July 2012, accessed on 10 Aug, 2014. [On-
line]. Available: http://www.utwente.nl/ewi/onderwijs/voorzieningen/
studiegidsen/2012-2013/programme_guide_master_csc.pdf

[2] A. Pras, “How to get your paper accepted,” in Proc. of the First Inter-
national Conference on Autonomous Infrastructure, Management and
Security (AIMS’2007), 2007.

[3] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “SSHCure: A Flow-Based SSH Intrusion Detection System,”
in Proceedings of the 6th IFIP WG 6.6 International Conference on
Autonomous Infrastructure, Management, and Security, AIMS’12, ser.
Lecture Notes in Computer Science, vol. 7279. Springer Berlin Hei-
delberg, 2012, pp. 86–97.

[4] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH Compromise
Detection using NetFlow/IPFIX,” ACM Computer Communication Re-
view, vol. 44, no. 4, 2014, (to appear).

[5] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to
Data Analysis with Netflow and IPFIX,” IEEE Communications Sur-
veys & Tutorials, 2014.

[6] B. Claise, B. Trammell, and P. Aitken, “Specification of the
IP Flow Information Export (IPFIX) Protocol for the Exchange
of Flow Information,” RFC 7011 (Internet Standard), Internet
Engineering Task Force, September 2013. [Online]. Available:
http://www.ietf.org/rfc/rfc7011.txt

[7] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954 (Memo), Internet Engineering Task Force, October 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3954.txt

[8] T. Zseby, E. Boschi, N. Brownlee, and B. Claise, “IP Flow
Information Export (IPFIX) Applicability,” RFC 5472 (Memo),

43

http://www.utwente.nl/ewi/onderwijs/voorzieningen/studiegidsen/2012-2013/programme_guide_master_csc.pdf
http://www.utwente.nl/ewi/onderwijs/voorzieningen/studiegidsen/2012-2013/programme_guide_master_csc.pdf
http://www.ietf.org/rfc/rfc7011.txt
http://www.ietf.org/rfc/rfc3954.txt

Internet Engineering Task Force, March 2009. [Online]. Available:
http://www.ietf.org/rfc/rfc5472.txt

[9] J. Postel, “Transmission Control Protocol,” RFC 793 (Internet
Standard), Internet Engineering Task Force, September 1981. [Online].
Available: http://www.ietf.org/rfc/rfc793.txt

[10] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
RFC 5681 (Internet Standard), Internet Engineering Task Force,
September 2009. [Online]. Available: http://www.ietf.org/rfc/rfc5681.
txt

[11] M. Mathis, D. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018 (Internet Standard),
Internet Engineering Task Force, October 1996. [Online]. Available:
http://www.ietf.org/rfc/rfc2018.txt

[12] L. Ludwig and M. Meyer, “The Eifel Detection Algorithm for TCP,”
RFC 3522 (Internet Standard), Internet Engineering Task Force, April
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3522.txt

[13] INVEA-TECH, “FlowMon Probe,” accessed on 10 Aug, 2014. [On-
line]. Available: https://www.invea.com/en/products-and-services/
flowmon/flowmon-probes

[14] Velan, Petr, “IPFIXcol,” accessed on 10 Aug, 2014. [Online]. Available:
https://www.liberouter.org/ipfixcol/

[15] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture,” RFC 4251 (Internet Standard), Internet Engineering
Task Force, January 2006. [Online]. Available: http://www.ietf.org/
rfc/rfc4251.txt

[16] SANS Institute, “SANS (SysAdmin, Audit, Network, Security)
Institute,” 1989, accessed on 13 jun 2014. [Online]. Available:
https://www.sans.org/

[17] Lechtermann, Michael, “The OpenBL.org project,” 2009, accessed on
14 jul 2014. [Online]. Available: http://www.openbl.org/

[18] Hill, Gavin, “YouâĂŹre Already Compromised: Exposing
SSH as an Attack Vector,” February 2014, accessed on 13
jun 2014. [Online]. Available: http://www.venafi.com/blog/post/
youre-already-compromised-exposing-ssh-as-an-attack-vector/

[19] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Authentication
Protocol,” RFC 4252 (Internet Standard), Internet Engineering Task
Force, January 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4252.txt

44

http://www.ietf.org/rfc/rfc5472.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc2018.txt
http://www.ietf.org/rfc/rfc3522.txt
https://www.invea.com/en/products-and-services/flowmon/flowmon-probes
https://www.invea.com/en/products-and-services/flowmon/flowmon-probes
https://www.liberouter.org/ipfixcol/
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt
https://www.sans.org/
http://www.openbl.org/
http://www.venafi.com/blog/post/youre-already-compromised-exposing-ssh-as-an-attack-vector/
http://www.venafi.com/blog/post/youre-already-compromised-exposing-ssh-as-an-attack-vector/
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4252.txt

[20] ——, “The Secure Shell (SSH) Transport Layer Protocol,” RFC 4253
(Internet Standard), Internet Engineering Task Force, January 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4253.txt

[21] ——, “The Secure Shell (SSH) Connection Protocol,” RFC 4254
(Internet Standard), Internet Engineering Task Force, January 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4254.txt

[22] S. Y. Lim and A. Jones, “Network Anomaly Detection System: The
State of Art of Network Behaviour Analysis,” in International Confer-
ence on Convergence and Hybrid Information Technology (ICHIT’08),
2008, pp. 459–465.

[23] R. Hofstede and A. Pras, “Real-Time and Resilient Intrusion Detec-
tion: A Flow-Based Approach,” in Proceedings of the 6th International
Conference on Autonomous Infrastructure, Management and Security
(AIMS’12), 2012, pp. 109–112.

[24] R. Hofstede, A. Sperotto, and A. Pras, “Towards Real-Time Intrusion
Detection for NetFlow and IPFIX,” in Proceedings of the 9th Interna-
tional Conference on Network and Service Management (CNSM’13),
2013, pp. 227–234.

[25] R. Sadre, A. Sperotto, and A. Pras, “The Effects of DDoS Attacks
on Flow Monitoring Applications,” in IEEE Network Operations and
Management Symposium (NOMS’12), April 2012, pp. 269–277.

[26] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal Analysis of Net-
work Traffic Anomalies,” in Proceedings of the second ACM SIGCOMM
Workshop on Internet measurment (IMW’02), 2002, pp. 71–82.

[27] P. Velan, T. Jirsík, and P. Čeleda, Design and Evaluation of HTTP
Protocol Parsers for IPFIX Measurement. Springer, 2013.

[28] D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes
and Timing Attacks on SSH,” in Proceedings of the 10th USENIX Se-
curity Symposium, 2001.

[29] R. Koch and G. Dreo Rodosek, “User identification in encrypted net-
work communications,” in Proceedings of the 6th IEEE/IFIP Interna-
tional Conference on Network and Service Management, CNSM’10, Oc-
tober 2010, pp. 246–249.

[30] N. Ye, C. Borror, and Y. Zhang, “EWMA techniques for computer in-
trusion detection through anomalous changes in event intensity,” Qual-
ity and Reliability Engineering International, vol. 18, no. 6, pp. 443–451,
November 2002.

45

http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4254.txt

[31] P. Casas, J. Mazel, and P. Owezarski, “Steps Towards Autonomous Net-
work Security: Unsupervised Detection of Network Attacks,” in Pro-
ceedings of the 4th IFIP International Conference on New Technologies,
Mobility and Security (NTMS’11), 2011, pp. 1–5.

[32] G. Fernandes and P. Owezarski, “Automated Classification of Network
Traffic Anomalies,” pp. 91–100, 2009.

[33] Z. M. Fadlullah, T. Taleb, N. Ansari, K. Hashimoto, Y. Miyake,
Y. Nemoto, and N. Kato, “Combating Against Attacks on Encrypted
Protocols,” in Proceedings of the 2007 IEEE International Conference
on Communications, ICC’07, June 2007, pp. 1211–1216.

[34] V. a. Siris and F. Papagalou, “Application of anomaly detection al-
gorithms for detecting SYN flooding attacks,” Computer Communica-
tions, vol. 29, no. 9, pp. 1433–1442, May 2006.

[35] B. Krishnamurthy, S. Sen, Y. Zhang, F. Park, and Y. Chen, “Sketch-
based Change Detection: Methods, Evaluation, and Applications,” pp.
234–247, 2003.

[36] T. Peng, C. Leckie, and K. Ramamohanarao, “Proactively Detecting
Distributed Denial of Service Attacks Using Source IP Address Moni-
toring,” pp. 771–782, 2004.

46

Appendices

47

Appendix A

IEEE IM 2015 paper

This appendix contains the paper that was written as part of the Master
assignment. It is titled Unveiling Flat Traffic on the Internet: An SSH
Attack Case Study. The included version is ready for the IEEE IM 2015
conference submission due date of September 15th, 2014. The track the
work will be submitted to is the Technical Paper Sessions. At the time of
this writing, the included paper is CONFIDENTIAL. Furthermore, this
version is subject to revision post-graduation, pending both further peer
review process, as well as the becoming available of extra datasets.

48

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

Unveiling Flat Traffic on the Internet:
An SSH Attack Case Study
Mattijs Jonker, Rick Hofstede, Anna Sperotto and Aiko Pras

Design and Analysis of Communication Systems (DACS)
Centre for Telematics and Information Technology (CTIT)

University of Twente, Enschede, The Netherlands
m.jonker-1@student.utwente.nl, {r.j.hofstede, a.sperotto, a.pras}@utwente.nl

Abstract—Many types of brute-force attacks are known to
exhibit a characteristic flat behavior at the network-level, mean-
ing that connections feature a similar number of packets and
bytes, and duration. Flat traffic is usually caused by repeating
similar application-layer actions, such as login attempts in a
brute-force attack. This characteristic is used by many intrusion
detection systems, both for identifying the presence of attacks
and – once detected – for observing deviations, pointing out
potential compromises, for example. However, the flatness of
network traffic may become indistinct when TCP retransmissions
and control information come into play. In this paper, we show
exactly that, based on an SSH attack case study. More specifically,
we show that our approach dramatically improves the number
of true detections of a state-of-the-art detection algorithm up to
20 percentage points, as well as increasing its accuracy – at no
cost for analysis applications.

I. INTRODUCTION

Flow monitoring has become the prevalent approach for
monitoring larger-scale, high-speed networks [1]. By aggre-
gating packets into flows, which are defined as sets of packets
that pass by an observation point in a network during a certain
time interval [2], flow monitoring is typically said to be more
scalable than monitoring approaches that rely on storing and
analyzing individual packets. The fact that many high-end
packet forwarding devices are already shipped with support
for flow export protocols like NetFlow [3] and IPFIX [2],
makes flow monitoring a cost-effective monitoring approach
at strategic observation points in the network. The scalability
advantages of flow monitoring however also come at a cost.
For example, it is widely known that measurement artifacts
may be present in flow data that affect the data’s accuracy in
a negative way [4]. Also, by design, all packets that belong
to a particular flow are accounted in the same way, making it
impossible to differentiate classes of packets within the same
flow.

Flow-based intrusion detection has become increasingly
popular during recent years, since its proven applicability for
various types of attacks [5]. One of these types of attacks
are dictionary attacks, which aim at compromising targets
by using lists of frequently-used login credentials (referred
to as dictionaries). These attacks are often launched against
SSH daemons, and the flow-based detection of these has been
researched in [6]–[10]. A consensus in these works is that
network traffic of such attacks exhibits ‘flat’ characteristics,

meaning that the number of packets and bytes, and the duration
of involved flows are alike. The problem with this notion is that
network traffic of dictionary is not always as flat as one would
expect, an observation that is supported by the datasets used
in [7]. Investigation of the network traffic at the packet-level
has revealed that TCP retransmissions and other TCP control
information are the suspected causes, which are typically not
identifiable at the flow-level.

Only two works so far have studied behavior of TCP
retransmissions and control information on the Internet. Both
works, published in the 1990’s, focus on the behavior of
TCP variants in terms of congestion control when facing
packet loss, reordering or unexpected delays [11], [12]. The
retransmissions in these works are introduced by means of
simulating the aforementioned events, rather than measuring
their occurrence on the Internet. To the best of our knowledge,
there are no recent Internet measurements on the number of
retransmissions and other variable TCP control packets. This
paper bridges this gap.

In this paper, we study the impact of TCP retransmissions
and other control information packets on network traffic in
general and SSH intrusion detection in particular, both in a
campus and backbone network. To do so, we have extended
the set of fields exported using the IPFIX protocol, commonly
referred to as IPFIX Information Elements (IEs), to include
per-flow statistics on retransmissions and control information.
Measurements have shown that we see up to 1 TiB and
5 TiB of retransmissions per week on typical campus and
backbone network links. This underlines the hypothesis that
supposedly flat traffic may turn non-flat. We study the effects
of retransmissions and control information packets on SSH
dictionary attacks, and compare the detection results of a state-
of-the-art dictionary attack detection algorithm when the added
information is used for detection instead of only traditional
packet and byte counters in flow records.

The organization of this paper is as follows. In Section II,
we provide background information on TCP retransmissions
and control information, and describe how TCP can affect the
‘flatness’ of network traffic. Then, in Section III, we discuss
the defined IPFIX IEs and the implementation needed for
measuring TCP retransmissions and control information. A
description of the acquired datasets and measurement results
are provided in Section IV. In Section V, we validate this work

49

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

Input plugin Processing &
filtering plugin

Export plugin

Fig. 1. INVEA-TECH FlowMon platform architecture, as of FlowMon
Probe 6.x.

in the context of SSH intrusion detection, after which we draw
our conclusions and state future work in Section VI.

II. BACKGROUND

To facilitate reliable data delivery between endpoints, TCP
uses a cumulative acknowledgement scheme in which se-
quence and acknowledgement numbers are used to signal the
reception of data. In the absence of any feedback from the data
receiver, a Retransmission TimeOut (RTO) is used to ensure
delivery, which is based on the estimated Smoothed Round-
Trip Time (SRTT). Due to unexpected delays or reordering
of packets in the network, retransmissions can occur spuri-
ously. For example, when a packet or its acknowledgement is
delayed unexpectedly rather than lost, the RTO timer expires
and the packet is retransmitted. Also, a fast retransmission
may be sent when a certain number of consecutive duplicate
acknowledgements is received, signalling the potential loss of
a packet to the sender. Due to reordering of packets, duplicate
acknowledgements may be sent even though no packet has
gotten lost. These duplicate acknowledgements can trigger
a spurious fast retransmission. In both examples, spurious
retransmissions and their duplicate acknowledgements cause
additional packets and bytes in network traffic and hence affect
the potential flatness of a connection.

To optimize network throughput while avoiding congestion
or overloading an endpoint, TCP uses several techniques, such
as a flow control mechanism based on a sliding window, and
the delayed ACK mechanism. The former requires the receive
window to be signalled from receiver to sender, and under the
latter data acknowledgements are held back for a brief delay
to save overhead. If data or additional control information
becomes available during the delay, the held back acknowl-
edgement can be combined with this information. For some
forms of control information, such as data acknowledgements
and receive window changes, the delayed ACK mechanism and
circumstances dictate whether a dedicated packet is sent to
carry the control information to the endpoint. For example,
if during a delayed ACK data is pushed down from the
application-layer, the held back acknowledgement can be pig-
gybacked with a data packet. This prevents sending a dedicated
acknowledgement with no payload. Also, the delayed ACK
mechanism allows for the cumulative acknowledgement of
two data packets received in rapid success. This too saves
sending a dedicated packet. If the receive window changes
at the receiver, this information can be combined with a

held back acknowledgement, again saving a dedicated packet.
Sometimes, however, the receive window expands when there
is no data to acknowledge, in which case a dedicated window
update needs to be sent. Whether or not such dedicated packets
are sent affects the flatness of network traffic.

There are also types of control information that are always
sent in separate packets: Zero Window probes and responses,
KeepAlive Probes and responses, and RST packets. Also,
depending on the TCP implementation, a three-way FIN close
sequence may not be supported, thereby potentially introduc-
ing an additional packet during the connection termination.
Any of these additional packets obviously affects the flatness
of network traffic as well.

It is important to note that the presence of the afore-
mentioned situations mostly depends on network conditions,
resource availability and scheduling on endpoints, whether or
not there is data to send or acknowledge, timing, etc.

III. IMPLEMENTATION

To export information that allows for the discrimination
of TCP retransmissions and control information in flow data,
several IPFIX Information Elements (IEs) have been defined
and implemented as part of a flow Metering Process. This
section describes these IEs and the accompanying software
that has been implemented.

We have defined IPFIX IEs for each of the TCP protocol
characteristics that have been discussed in Section II. To facil-
itate the export of these IEs, we have developed an extension
to INVEA-TECH’s FlowMon flow exporter. This platform was
chosen because of its highly customizable plugin architecture,
and because we have full control over it in our networks.
The complete architecture is shown in Fig. 1. It is based on
plugins for data input, flow record processing & filtering, and
export. Input plugins process data from a given source and
are responsible for creating flow cache entries. The flow cache
contains entries for each flow that is being metered. Process
plugins allow for manipulations of these cache entries once
they have been created, and are best suited for program logic
that does not necessarily require packet payload anymore. The
export plugin is responsible for exporting cache entries by
sending flow records to a collector using NetFlow or IPFIX.
From within these plugin types, actions can be hooked to when
flow entries are added to, updated in or expired from the cache.
Among these actions is the filtering of flow cache entries to
prevent them from being exported.

Our extension comes in the form of an input plugin. The
plugin measures TCP retransmissions and control information
packets, and stores and maintains related counters in the flow
cache. To recognize these particular packets, TCP conversa-
tions are analyzed in real-time by evaluating sequence and
acknowledgement numbers, timestamps, flags, receive window
sizes, and payload sizes. This implementation is heavily based
on the TCP packet dissector used by Wireshark.1

1http://www.wireshark.org/

50

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

TABLE I
DATASETS

Dataset Period Duration Packets Bytes Flows
Retransmissions Control Information

Packets Bytes Packets Bytes

UT1 June 2014 7 days 105.93 G 84.79 TiB 1.92 G
1.27 G 0.92 TiB 4.77 G 0.22 TiB
(1.20%) (1.09%) (4.50%) (0.25%)

CESNET1 June 2014 7 days 119.72 G 105.95 TiB 3.46 G
4.63 G 4.82 TiB 8.42 G 0.38 TiB
(3.87%) (4.55%) (7.03%) (0.36%)

UT2 July / August 2014 14 days 162.63 G 126.67 TiB 3.48 G
3.55 G 1.67 TiB 43.67 G 1.87 TiB
(2.18%) (1.31%) (26.85%) (1.47%)

CESNET2 July / August 2014 14 days 113.39 G 107.21 TiB 13.01 G
2.17 G 0.84 TiB 10.52 G 0.43 TiB
(2.08%) (0.87%) (10.12%) (0.44%)

For the TCP analysis to be accurate, it is crucial that
packets in both directions of a TCP conversation pass the
observation point. Otherwise, the housekeeping of sequence
and acknowledgement numbers may be affected, which obvi-
ously impairs the analysis. The same is true when packets are
lost downstream of the observation point. We are also aware
that the TCP packet dissector used by Wireshark cannot but
misclassify packets in its on-the-fly analysis in some cases,
especially when packets are reordered. To optimize our plugins
to work on high-speed links, e.g., of 10 Gbps and higher, we
accept these exceptional cases for the sake of performance.

IV. MEASURING TCP RETRANSMISSIONS
& CONTROL INFORMATION

Our first step towards understanding the impact of TCP
retransmissions and control information is to measure them in
two networks that are different in nature. Four datasets have
been collected, as shown in Table I, consisting of only TCP
flow data. Dataset UT1 and UT2 are collected on the campus
network of the University of Twente (UT). This network fea-
tures a publicly routable /16 network address block with con-
nections to faculty buildings, student and staff residences, etc.
Dataset CESNET1 and CESNET2 are collected on backbone
links of the Czech National Research and Education Network
(NREN); CESNET1 is collected on a link between CESNET
and the Austrian NREN ACOnet, while CESNET2 is collected
on a link between CESNET and the ‘commercial Internet’.
Due to the academic nature of these networks, the relative
amount of traffic during summer holidays is considerably
lower than during working days.

The remainder of this section is organized in two parts.
First, in Section IV-A, we analyze retransmissions and control
information in detail based on our measurements. After that,
we perform a similar analysis only for SSH traffic in Sec-
tion IV-B, given that the validation of this work (Section V)
will be performed in the context of SSH intrusion detection.

A. Overall Traffic

Details on the number of retransmitted packets and bytes,
and the amount of control information in terms of packets
and bytes are shown in Table I. Several observations can be
made. On the one hand, TCP control information is mostly

TABLE II
DISTRIBUTION OF RETRANSMITTED PACKETS AND BYTES

Dataset
Retransmissions Fast Retransmissions

Packets Bytes Packets Bytes

UT1 94.64% 90.83% 5.36% 9.17%

CESNET1 96.50% 95.46% 3.50% 4.54%

UT2 96.92% 91.78% 3.08% 8.22%

CESNET2 97.27% 90.41% 2.73% 9.59%

07/29 07/31 08/02 08/04 08/06 08/08 08/10

104

105

106

107

Time

R
et

ra
ns

m
itt

ed
pa

ck
et

s

Regular Fast

Fig. 2. Retransmissions over time.

visible in terms of packets. On the other hand, retransmissions
contribute more towards the percentage of bytes, relatively
speaking. Another observation is that there are many more
packets with control information than there are retransmitted
packets. This is mainly because many of the control informa-
tion packet types, such as those that result from the delayed
ACK mechanism, are sent under all network conditions, while
retransmissions appear more frequently during network con-
gestion, for example.

The distribution of retransmission types in terms of packets
and bytes is shown in Table II. As can be observed, most
retransmissions are regular retransmissions. Also, for each
dataset, the fraction of the total number of bytes for the
fast retransmission type is higher than the packet fraction.
We believe this is because regular retransmissions can also
contain no payload, e.g., retransmissions of TCP empty SYN

51

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

TABLE III
DISTRIBUTION OF CONTROL INFORMATION PACKETS

Type
Dataset

UT1 CESNET1 UT2 CESNET2

Duplicate ACK 35.53% 37.12% 5.20% 10.42%

Non-piggybacked
ACK

47.28% 41.16% 7.59% 35.01%

Consecutive empty
ACK

– – 83.23% –

Window Update 12.50% 12.27% 1.96% 5.75%

Zero Window
Probe

0.02% < 0.01% < 0.01% 7.84%

ZWP response 0.01% < 0.01% < 0.01% 7.78%

RST – – 0.91% –

Four-way close
packet

– – 0.10% 0.58%

KeepAlive Probe 2.54% 6.64% 0.54% 31.50%

KeepAlive
Response

2.12% 2.80% 0.46% 1.12%

and FIN segments bring down the average number of bytes
per retransmitted packet.

The number of retransmitted packets and fast retransmitted
packets within every five-minute interval in the first two weeks
of the UT2 dataset is shown in Fig. 2. A diurnal pattern can be
clearly identified, which follows the working hours at faculty
buildings, and the presence of on-campus residents. While
Table I provides absolute numbers, and as such is not specific
about the points in time at which events occur, Fig. 2 shows
that retransmissions occur at any time of the day. The two
outlying groups of retransmitted packets around 5 Aug 18:00
and 10 Aug 18:00 coincide with severe SSH dictionary attacks
from China that involve many retransmissions, which makes
these anomalies visible in our measurements. These attacks
will be discussed later, as part of the case study in Section V.

The distribution of the various types of control information
packets is shown in Table III. As can be seen, packets relating
to the delayed ACK mechanism, i.e., non-piggybacked ACKs
and consecutive empty ACKs, account for large percentages of
the total number of control information packets in each dataset.
For example, non-piggybacked ACKs take up 47.28% and
41.16% in UT1 and CESNET1, respectively. Another example
is the consecutive empty ACK, with 83.23% in UT2. It should
be noted that as some information was not exported in earlier
datasets, the distributions can vary due to missing IEs.

Given the significant presence of TCP retransmissions and
control information in our measurements in two networks
that are different in nature, we conclude that these packets
are omnipresent on the Internet. Also, we believe to have
demonstrated that the flatness of originally flat network traffic
on the Internet is likely affected by this omnipresence, as
theorized in Section II.

B. SSH Traffic

The SSH traffic considered in this paper has been obtained
by filtering the datasets presented in Table I for traffic on

TABLE IV
TCP RETRANSMISSIONS & CONTROL INFORMATION – SSH

Dataset
Retransmissions Control Information

Packets Bytes Packets Bytes

UT1
4.13 M 2.14 GiB 98.79 M 4.50 GiB
(0.08%) (0.04%) (1.81%) (0.08%)

CESNET1
2.32 M 1.61 GiB 13.39 M 0.64 GiB
(1.75%) (1.86%) (10.12%) (0.74%)

UT2
1466.33 M 157.11 GiB 1587.10 M 72.10 GiB
(16.79%) (2.95%) (18.18%) (1.35%)

CESNET2
72.52 M 10.23 GiB 665.01 M 27.64 GiB
(2.25%) (1.76%) (20.58%) (4.76%)

TABLE V
DISTRIBUTION OF RETRANSMITTED PACKETS AND BYTES – SSH

Dataset
Retransmissions Fast Retransmissions

Packets Bytes Packets Bytes

UT1 90.63% 75.38% 9.37% 24.62%

CESNET1 99.94% 99.89% 0.06% 0.11%

UT2 99.79% 97.25% 0.21% 2.75%

CESNET2 99.89% 99.14% 0.11% 0.86%

port 22. Details on the number of retransmissions and control
information packets and bytes are shown in Table IV. Several
observations can be made when comparing the results to the
full datasets (listed in Table I). First, considering that the
overall CESNET1 dataset is significantly larger than UT1, the
relative amount of SSH traffic in UT1 is much larger than
in CESNET1. For UT2 and CESNET2 the prior also contains
much more SSH traffic, even though the dataset is marigi-
nally larger in comparison. Second, the relative percentage
of retransmissions is generally lower for SSH than in the
full datasets for UT1 and CESNET1. For UT2, however, it is
much higher, namely 16.79% versus 2.55%. The reason behind
this is that the UT2 dataset contains several large-scale SSH
attacks, as discussed previously alongside Fig. 2. Third, and
similar to the full datasets, control information in the SSH
datasets is more dominant than retransmissions in terms of
packets and bytes.

As for retransmissions in SSH traffic, the distribution of
these in terms of packets and bytes is shown in Table V.
Compared to the distribution of retransmissions in the full
dataset, it can be observed that a higher percentage in the
SSH traffic is of the regular retransmission type. Taking the
UT2 dataset as an example, only 0.21% of retransmissions
are classified as fast retransmissions, in contrast to a figure of
3.08% in the full dataset. Relative differences between other
full datasets and their SSH-only traffic subset are following
the same trend. We believe that this is the case because it
is less common for SSH connections to have four or more
packets with payload sent by one side within a short period.
In other words, there are not enough consecutive data packets
to trigger a fast retransmission.

The distribution of control information in SSH traffic is

52

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

TABLE VI
DISTRIBUTION OF CONTROL INFORMATION PACKETS – SSH

Type
Dataset

UT1 CESNET1 UT2 CESNET2

Duplicate ACK 33.53% 4.71% 2.17% 2.68%

Non-piggybacked
ACK

64.34% 94.91% 7.82% 68.00%

Consecutive empty
ACK

– – 89.19% –

Window Update 2.11% 0.25% 0.39% 0.31%

Zero Window probe < 0.01% < 0.01% 0.00% 3.14%

ZWP response < 0.01% < 0.01% 0.00% 3.14%

RST – – 0.34% –

Four-way close
packet

– – 0.08% 1.87%

KeepAlive probe 0.02% 0.13% 0.00% 20.45%

KeepAlive response 0.02% < 0.01% 0.00% 0.41%

shown in Table VI. This distribution features several key
differences compared to the full datasets (see Table III). A
prime example is the significantly lower number of packets
related to KeepAlive. A possible explanation for this is that
the majority of SSH connections is short-lived, or otherwise
active enough to not trigger the TCP KeepAlive timer, which
is typically in the order of hours [13]. Another observation
is that while the distribution of control information types is
very similar within the full datasets collected with the same
version of the extension, this is not the case anymore for the
SSH datasets. For example, in the UT1 dataset, roughly 2% of
all SSH packets are Window Updates, while Window Updates
account for only 0.25% in CESNET1. Also, for CESNET1,
non-piggybacked ACKs are at a staggering 94.91%, whereas
in UT1 they account for 64.34%. We believe these differences
stem from the fact that a lot more data is sent within SSH
connections on the UT network. Furthermore, for the UT2
and CESNET2 datasets it can be seen that four-way close
features only very small percentages of control information
packets, namely 0.08% and 1.87%, respectively. This leads us
to believe SSH network traffic is typically not affected much
by this type of control information.

V. VALIDATION

In this section, we quantify and study the effects of TCP
retransmissions and control information in the context of flow-
based SSH intrusion detection. The case study, together with
its motivation, is presented in Section V-A. The validation
methodology is discussed in Section V-B. Finally, in Sec-
tion V-C, we present the validation results.

A. Case Study: SSH Intrusion Detection

Flow-based detection of dictionary attacks is typically per-
formed by comparing the characteristics of two or more flow
records to identify possible attacks. In [14], it is shown that
these attacks typically consist of three phases, as shown in
Fig. 3, which feature specific flow-level characteristics. During

Scan Brute-force Compromise

Start End

Fig. 3. Dictionary attack phases, from [1].

the scan phase, an attacker probes for the presence of specific
services on one or more hosts in a network. During the brute-
force phase, a high-intensity dictionary attack is performed
on one or more targets on which the service is found active.
The brute-force phase typically contains many flow records
with an equal number of Packets-Per-Flow (PPF), since flows
featuring an equivalent number of login attempts between the
same client and server typically consist of the same number of
packets. Should a compromise ensue, the compromise phase
is reached.

In this work, we focus on the brute-force phase, since it is
the only phase where ‘flat’ traffic should be predominant. The
concept of an equal number of PPF, i.e., flat traffic, for brute-
force attacks detection forms the basis of the state-of-the-art
brute-force phase detection algorithm presented in [7], which
considers the number of PPF in consecutive flow records. The
algorithm starts with a preselection of source and destination
IP address pairs for which flow records have a PPF value of
x ∈ [11, 51]. For each of these preselected address pairs, the
most frequently used PPF value is taken as the baseline for
determining brute-force behavior. This baseline is then used
for comparing consecutive flow records with identical PPF
values to. If at least N consecutive flows feature the baseline
number of PPF, a brute-force attack is recognized. We set the
threshold N to 52, and the result of the detection algorithm
is a list of attacks. In the remainder of this work, we define
an attack as a set of one or more targets featuring brute-force
behavior for a given attacker, i.e., where every target in the
set has reached N . A tuple is defined as a pair of attacker and
target, such that every attack consists of one or more tuples.

If more than N flow records feature the same number of
PPF, a dictionary attack is detected. On the one hand, false
negatives, i.e., undetected attacks, can occur in this context
when dictionary attack flows end up with diverse PPF values,
causing the threshold N to not be reached, even though
the application-layer activity remains the same. On the other
hand, false positives, i.e., false alarms, can occur when non-
dictionary attack flows end up with equal PPF values, enough
to reach the threshold N .

B. Methodology

We perform the validation of this work by executing the
state-of-the-art detection algorithm presented in [7] on the
datasets listed in Section I. Instead of only considering the
regular number of PPF in the detection algorithm, as would

2Note that 5 consecutive flow records with the same number of PPF would
represent 15 failed login attempts in a benign situation, as explained in [7],
which we consider highly unlikely.

53

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

8

12

16

20

24

Time

PP
F

Compensated PPF Retransmissions Control information

Fig. 4. Compensated brute-force flow records.

be the case in a regular flow monitoring setup, we also
consider a compensated number of PPF. The compensated
number of PPF consists of the number of the total number of
packets metered for each flow minus the number of packets
of all retransmissions and TCP control information fields.
Ultimately, this should result in flat traffic.

By comparing the detection results when using non-
compensated and compensated data, we can quantitatively
evaluate the gain of ‘flattening’ traffic in the context of
SSH intrusion detection. We perform the comparison in two
dimensions – attacks and tuples – as this allows us to discover
potential differences in the impact of compensation. Although
comparing the number of detections in terms of attacks and
tuples before and after compensation provides an indication
of the detection improvements, it does not reveal anything
about to accuracy of these detection outcomes. To assess these
accuracies, we have collected the authentication logs of 58
machines within the campus network of the UT – 56 servers
and 2 honeypots – to serve as the ground-truth for validation.
These authentication logs are the only means of validating
whether a machine has indeed been under attack. Since we
only have the logs for UT hosts, we only consider the UT1
and UT2 datasets in this part of the validation.

In the authentication logs, a minimum number of failed
attempts must be encountered for the behavior to be considered
a dictionary attack. Since the detection algorithm considers at
least N consecutive flow records, only N or more connections
to the SSH server that contain at least one failed attempt are
considered. This comes down to at least 5 sessions with one
or more authentication failures each. A list of attacks featuring
this property is used as the ground-truth for validation. We use
this ground-truth for expressing the accuracy of the detection
algorithm, both in terms of attacks and tuples, by comparing
detection results to the ground-truth based on the following
metrics:

• True Positives (TP) – Attacks/tuples correctly classified to
feature a brute-force phase, for which 5 or more sessions
with authentication failures are reported in the ground-
truth.

• False Positive (FP) – Attacks/tuples incorrectly classi-
fied to feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the

ground-truth.
• True Negatives (TN) – Attacks/tuples correctly classified

to not feature a brute-force phase, for which less than
5 sessions with authentication failures are reported in the
ground-truth.

• False Negatives (FN) – Attacks/tuples incorrectly classi-
fied to not feature a brute-force phase, for which 5 or
more sessions with authentication failures are reported in
the ground-truth.

Using these metrics, we can evaluate the differences in the
detection algorithm for the non-compensated and compensated
cases in terms of accuracy (Acc), which is defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

In addition, to understand the relation between TCP control
information and retransmissions, and geographical locations,
we determine the physical origin of attacks and tuples based
on a snapshot of the MaxMind GeoIP3 database at the time
of the measurements. The physical location can reveal why
certain attacks or the majority of tuples are more likely
to be detected only after compensation, as we hypothesize
that retransmissions are strongly bound to the geographical
distance between attackers and targets.

C. Results

The best way to visualize the achievements of this paper
is by means of a plot, as shown in Fig. 4. This figure
shows the traffic in terms of the number of PPF over time
between a single tuple of attacker and target. Clearly, the
original network traffic (i.e., the sum of the three series in
the figure) is not flat, but after compensating for control
information packets and retransmissions, traffic that is almost
flat remains. Occasional variations in the remaining number
of PPF after compensation are the result of the performance
trade-off discussed in Section III. We accept these variations,
considering that most attacks feature a large enough number
of flows to reach the threshold N .

The results of operating the detection algorithm on the
considered datasets, both with and without PPF compensation,

3We have used MaxMind’s GeoLite City database, which can be retrieved
from http://dev.maxmind.com/geoip/legacy/geolite/

54

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

TABLE VII
TOP FIVE ATTACK ORIGINS – ATTACKS

Dataset Country Non-compensated Compensated

UT1

China 370 494 (+34%)
Netherlands 63 72 (+14%)

Russian Federation 42 45 (+7%)
Other 142 159 (+12%)
Total 617 774 (+25%)

CESNET1

Canada 5 49 (+880%)
France 3 30 (+900%)

Germany 4 5 (+25%)
Other 14 19 (+36%)
Total 26 99 (+281%)

UT2

China 851 1089 (+28%)
Venezuela 190 222 (+17%)

Netherlands 151 319 (+111%)
Other 816 928 (+14%)
Total 2008 2558 (+27%)

TABLE VIII
DETECTION PERFORMANCE – ATTACKS

Dataset Logged
attacks TPR FPR TNR FNR Acc

UT1
125

0.696 0.041 0.959 0.304 0.839
compensated 0.880 0.061 0.939 0.120 0.912

UT2
423

0.671 0.081 0.919 0.329 0.803
compensated 0.811 0.085 0.915 0.189 0.866

are shown in Table VII for attacks and Table IX for tuples.
The number of detected attacks and tuples is considerably
higher after compensation for all datasets. In CESNET1, the
total number of detected attacks is almost four times higher
after compensation, i.e., from 26 to 99. The improvement in
terms of tuples is almost threefold, at 152%. The reason for
this high improvement in terms of attacks is that in many
cases, the effects of retransmissions and control information
hinder the detection for all tuples of an attack and, as such, the
attack itself is also not detected. The improvement in detecting
attacks and tuples after compensation is inverted for UT1,
where we see a gain of 25% in terms of attacks and 43%
in terms of tuples. Similarly, for UT2, the improvements are
27% and 48%. The reason for this inversion in UT datasets is
that for many attacks there is at least one target of the attack
that triggers detection of both its tuple and the attack as a
whole, even without compensation.

Since we assume that retransmissions depend in part on
the geographical location of and route between attacker and
target, we show for each dataset the three countries from which
most attacks originate, both in terms of attacks (Table VII)
and tuples (Table IX). The total number of countries involved
in attacks is 38 for UT1, 11 for CESNET1, and 51 for
UT2. Furthermore, we show the number of attacks and tuples
reported only after compensation for those countries.

Several observations can be made from the results. First,

TABLE IX
TOP FIVE ATTACK ORIGINS – TUPLES

Dataset Country Non-compensated Compensated

UT1

China 6137 10040 (+64%)
Vietnam 1048 1056 (+1%)

United States 638 658 (+3%)
Other 2027 8346 (+311%)
Total 9850 14074 (+43%)

CESNET1

Poland 1186 2365 (+99%)
France 10 613 (+6030%)
Canada 19 520 (+2637%)
Other 369 487 (+32%)
Total 1584 3985 (+152%)

UT2

China 12014 22888 (+91%)
Netherlands 4536 4811 (+3%)

United States 2029 2597 (+26%)
Other 8877 10340 (+16%)
Total 27456 40636 (+48%)

TABLE X
DETECTION PERFORMANCE – TUPLES

Dataset Logged
attacks TPR FPR TNR FNR Acc

UT1
794

0.623 0.021 0.979 0.377 0.810
compensated 0.786 0.033 0.967 0.214 0.881

UT2
2236

0.434 0.046 0.954 0.566 0.696
compensated 0.625 0.055 0.945 0.375 0.787

regarding UT1 and UT2, many attacks that are detected only
after compensation have the attacking host located in China,
with a figure of 124 attacks and 3903 tuples for UT1, and
238 attacks and 10874 tuples for UT2. While China easily
outperforms the other countries in terms of attacks and tuples,
the relative increase of the number of attacks and tuples not
reported until after compensation from China is also relatively
high in the UT datasets. These increases are 34% and 64% for
attacks and tuples in UT1, respectively. For UT2, the increase
in the number of attacks from China is 28%, and tuples is at a
staggering 91%. Second, we can observe even more extreme
patterns for CESNET1, where the overall number of attacks
and tuples reported only after compensation has increased by
281% and 152%, respectively. Canada is most dominant here
in terms of both attacks and targets, and China is missing
completely; since the peering link from which the CESNET1
dataset has been collected has no direct connection to China, it
carries only little Chinese traffic. All these observations make
us conclude that TCP control information and retransmissions
are indeed strongly bound to the distance in geographical
location between attacker and target.

Thus far we have shown the different detection results when
using compensated and non-compensated data. However, we
have yet to compare these detection results to our ground-truth,
authentication logs from 58 machines on the campus network
of the UT. Since the ground-truth covers only a subset of the

55

co
nfi
de
nt
ial

co
nfi
de
nt
ial

co
nfi
de
nt
ial

machines considered before, the number of attacks and tuples
reported in the remainder of this section is lower than reported
in Table VII and Table IX.

The detection performance of the detection algorithm in
terms of attacks is shown in Table VIII, where we again
divide the results in both compensated and non-compensated.
Analogously, the detection performance in terms of tuples in
shown in Table X. In both tables, we use the percentages
of the previously introduced evaluation metrics. For example,
the True Positive Rate (TPR) is the percentage of correctly
identified attacks/tuples for which 5 or more sessions with
authentication failures are reported in the ground-truth. The
overall conclusion of the results is that compensation of the
number of PPF yields a significantly improved TPR for both
attacks and tuples. The TPR for attacks has improved from
70% to 88% for UT1, and 67% to 81% for UT2. For tuples,
the figures are from 62% to 79%, and from 43% to 62%.
These major improvements come at a minor cost in terms of
false detections of roughly 1%. Also the accuracies for both
attacks and tuples have improved significantly, from 84% to
91%, and 81% to 88%, respectively, for UT1. For UT2, this is
from 80% to 87%, and 70% to 79%, respectively. We believe
that the slight increase of false detection is the case because
of misclassified packets, which in some cases cause benign
network traffic to mimic dictionary attacks by becoming flat.
These false positives are thus coupled to the performance
trade-offs made in the plugin, as explained in Section III.

VI. CONCLUSIONS

In this paper, we have measured the impact of TCP control
information and retransmissions both on networks in general,
and on flow-based intrusion detection in particular. We have
started by hypothesizing that these types of traffic may neg-
atively affect analysis applications that assume traffic to be
flat in terms of packets, bytes and duration. And yes, we
can confirm that such applications are indeed impaired by
retransmissions and control information, especially when the
application-layer activity is assumed to remain the same, such
as during dictionary attacks. This is also confirmed by our
measurements, which have shown that these types of traffic are
omnipresent in any network: In terms of bytes, retransmissions
can account for 1-5% of the total number of packets, while
control information contributes significantly more: 4-27%.

Besides measuring the presence of retransmissions and
control information, we have analyzed the impact of using
a compensated number of PPF in a state-of-the-art dictionary
attack detection algorithm for SSH. The results unmistakably
demonstrate that flow-based intrusion detection benefits from
a compensated number of PPF; the TPRs of the detection
algorithm have improved for attacks and tuples from 70% to
88%, and from 62% to 79%, respectively. Moreover, the ac-
curacies increased from 84% to 91%, and 81% to 88%. These
improvements come at no cost for the analysis application.

As future work, we consider analyzing variability in
application-layer protocols. This variability can be performed
both intentionally and unintentionally. In the former case,

protocols like SSH use padding, for example, to make sure that
all packets have a size required for the negotiated encryption
algorithms. In the latter case, these protocols also allow for
inserting additional packets, such that hardly two flows in an
attack appear similar. Detecting and using the described forms
of variability may aid in obtaining even flatter traffic patterns.

ACKNOWLEDGMENTS

Special thanks go to Václav Bartoš (CESNET) for his
valuable contributions to the research process, and the INVEA-
TECH Community Program for providing parts of the mea-
surement infrastructure used in this paper. This work was
partly funded by FLAMINGO, a Network of Excellence
project (ICT-318488), and SALUS, a STREP project (ICT-
313296), both supported by the European Commission under
its Seventh Framework Programme.

REFERENCES

[1] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with Netflow and IPFIX,” IEEE Communications Surveys &
Tutorials, 2014.

[2] B. Claise, B. Trammell, and P. Aitken, “Specification of the
IP Flow Information Export (IPFIX) Protocol for the Exchange
of Flow Information,” RFC 7011 (Internet Standard), Internet
Engineering Task Force, September 2013. [Online]. Available: http:
//www.ietf.org/rfc/rfc7011.txt

[3] B. Claise, “Cisco Systems NetFlow Services Export Version 9,”
RFC 3954 (Memo), Internet Engineering Task Force, October 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3954.txt

[4] R. Hofstede, I. Drago, A. Sperotto, R. Sadre, and A. Pras, “Measurement
Artifacts in NetFlow Data,” in Proceedings of the 14th International
Conference on Passive and Active Measurement, PAM’13, ser. Lecture
Notes in Computer Science, vol. 7799. Springer Berlin Heidelberg,
2013, pp. 1–10.

[5] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An Overview of IP Flow-Based Intrusion Detection,” IEEE Communi-
cations Surveys & Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[6] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “SSHCure: A Flow-Based SSH Intrusion Detection System,”
in Proceedings of the 6th IFIP WG 6.6 International Conference on
Autonomous Infrastructure, Management, and Security, AIMS’12, ser.
Lecture Notes in Computer Science, vol. 7279. Springer Berlin
Heidelberg, 2012, pp. 86–97.

[7] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH Compro-
mise Detection using NetFlow/IPFIX,” ACM Computer Communication
Review, vol. 44, no. 5, 2014, (to appear).

[8] J. Vykopal, “Flow-based Brute-force Attack Detection in Large and
High-speed Networks,” Ph.D. dissertation, Masaryk University, 2013.

[9] M. Drašar, “Protocol-Independent Detection of Dictionary Attacks,”
in Proceedings of the 19th EUNICE Open European Summer School,
EUNICE’13, 2013, pp. 304–309.

[10] M. Vizváry and J. Vykopal, “Flow-based detection of RDP brute-force
attacks,” in Proceedings of 7th International Conference on Security and
Protection of Information, SPI’13, 2013, pp. 131–138.

[11] J.-C. Bolot, “End-to-End Packet Delay and Loss Behavior in the
Internet,” ACM SIGCOMM Computer Communication Review, vol. 23,
no. 4, pp. 289–298, 1993.

[12] T. Lakshman and U. Madhow, “The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random Loss,”
IEEE/ACM Transactions on Networking, vol. 5, no. 3, pp. 336–350,
1997.

[13] R. Braden, “Requirements for Internet Hosts – Communication Layers,”
RFC 1122 (Internet Standard), Internet Engineering Task Force, October
1989. [Online]. Available: http://www.ietf.org/rfc/rfc1122.txt

[14] A. Sperotto, “Flow-Based Intrusion Detection,” Ph.D. dissertation, Uni-
versity of Twente, 2010.

56

	Introduction
	Assignment
	Research Topics
	Organisation

	Additional work
	Bridging the gap
	SSH compromise detection
	Encrypted keystroke recognition
	Encrypted interactive session detection
	Real-time compromise detection

	Application-level effects on flatness
	Real-time detection
	TCP handshake real-time detection & algorithm assist
	Active TCP close real-time detection & algorithm assist
	Tool fingerprinting & signature-driven detection

	Assignment resultants
	Flow exporter extension
	Source of input
	TCP analysis
	Filtering
	SSH Deep Packet Inspection (DPI)
	EWMA/CUSUM based detection logic

	Flow datasets

	Lessons learned
	Bibliography
	IEEE IM 2015 paper

