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Glossary

Term  Meaning

MMAC(S) Million Multiply-ACcumulate operations (per Second)

GFLOP(S) Giga (109) FLoating point OPerations (per Second)

ADC Analog to Digital Converter

MPSoC Multi-Processor System-on-Chip

FPGA Field Programmable Gate Array

TDP Thermal Design Power

DMA Direct Memory Access 

MSB Most Significant Bit

KB / MB / GB Kilo (103), Mega (106) and Giga (109) Byte 

KiB / MiB / GiB Kibi (210), Mebi (220) and Gibi (230) Byte

FMADD Fused Multiply-Add (multiplies two arguments and adds the result to a third)

MS/s Mega-Samples / second. A sample can be of arbitrary bit-length

VLIW Very Large Instruction Word

RFD Reconfigurable Fabric Device

GPP General Purpose Processor

GP_GPU General Purpose Graphics Processing Unit

DRAM Dynamic Random Access Memory

eMesh On-Chip Network of the Epiphany Architecture

eLink Off-Chip Link of the Epiphany Architecture

eCore Epiphany Processing Node

FPGA Field Programmable Gate Array

SDK Software Development Kit

FFT Fast Fourier Transform

IALU / FPU Integer Arithmetic and Logic Unit / Floating-Point Unit

DSP Digital Signal Processor
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Abstract

In this research we investigate the use of the Adapteva Epiphany Architecture, a modern many-core
architecture, as a power efficient alternative to current signal processing solutions in phased-array radar
systems. This research is performed using a E16G301 processor, which is a 16-core instantiation of the
Epiphany  architecture.  Several  micro-benchmarks  are  designed  and  performed  to  evaluate  the
processor,  network and power performance of  the E16G301. Based on the results  of  these micro-
benchmarks a front-end receiver is implemented consisting of a Hilbert filter, a bandpass filter and a
beam-former task.

The micro-benchmark results in chapter 5 show that it is difficult to achieve maximum performance for
the on-chip and off-chip networks of the Epiphany architecture. For on-chip and off-chip communication
only 1445MB/s out of 4.8GB/s and 306MB/s out of 600MB/s were achieved respectively. The low on-
chip communication performance is partly caused by an errata item limiting the peak bandwidth to
2.4GB/s instead of 4.8GB/s.

The peak throughput achieved for the Hilbert filter is 53.1% of the theoretical peak performance, for the
bandpass filter and beam-former this is 73.1% and 64.2% respectively. The measured power efficiency
of are 14.35 GFLOPS/Watt for the Hilbert filter and 19.47 GFLOPS/Watt and 16.22 GFLOPS/Watt for
the bandpass filter and beam-former respectively. It is expected that some performance gain is still
possible through further optimization of the compiler generated code.

When mapping all the tasks on the E16G301 to form a front-end receiver chain, a sustainable input
throughput of 34.4MS/s for four channels was achieved, forming 8 partial output beams for two sets of
two  input  channels.  This  achieved  a  power  efficiency  of  15.8  GFLOPS/Watt,  excluding  off-chip
communication and IO rail standby power. 

Finally a summary of observations on the architecture specifics and provided tools is presented. This
shows that the deterministic routing scheme has some disadvantages in terms of dependability,  as
components quickly become critical for correct operation. Also, not much hardware support is provided
for health monitoring.
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INTRODUCTION  1 Introduction

1 Introduction

Radar systems have found many uses over the past decades. For some types of radar systems, such
as air-surveillance systems, tracking of multiple possibly fast moving objects is desired. To achieve
this, these systems typically use phased-array antenna's which support fast tracking, allow monitoring
multiple directions simultaneously, and feature high antenna gain. 

Phased-array antennas are made out of many smaller antenna elements. By applying a phase-shift to
all individual antenna elements they can be made to sum constructively for signals coming from certain
directions, and destructively for others. The process of applying the phase shifts to set the antenna
radiation pattern is known as beam-forming, which can be done in both the analog and digital domain. 

When beam-forming is done in the digital domain, it is possible to form multiple beams simultaneously
by applying different phase-shifts on the same set of data. However, digital beam-forming requires
very large amounts of signal processing. Part of this processing is typically done very close to the
antenna elements to  reduce the bandwidth of  the data that  needs to  be transported through the
system. This introduces additional thermal and power constraints.

These large amounts of data and strict thermal constraints in phased-array radar systems require an
efficient hardware solution. Currently this is mainly the domain of FPGA devices complemented by
DSP processors, typically followed by of-the-shelf GPP/GP-GPU processing platforms. For a number
of application domains, such as mobile radar systems, the current solutions are not always appropriate
because of high power consumption, large development effort, and/or high component costs. 

Recently,  platforms  with  multiple  processors  and  on-chip  networks  are  rapidly  gaining  popularity.
These Multiprocessor Systems-on-Chip (MPSoC) feature highly integrated hardware to offer a cost
and energy efficient solution for the processing demands of an application. A special class of MPSoC
are the many-core processors, which feature large numbers of processing cores to be able to fully
exploit task level parallelism. 

This thesis presents an evaluation of  the Adapteva Epiphany Architecture  [1],  a recent many-core
architecture, that could be a power efficient alternative to current solutions. The focus of this report is
on the front-end radar processing stages, where power and processing requirements are most strict.

1.1 HISTORY AND MOTIVATION

Prior to this project, two large research projects have been conducted in cooperation with Thales,
where, among other topics, the possibility of using many-core processors in high throughput streaming
applications was investigated. 

1. CRISP  [2] (Cutting  edge  Reconfigurable  IC's  for  Stream  Processing,  2008-2011):
The CRISP project researched optimal utilization, efficient programming and dependability of
reconfigurable many-cores for streaming applications.

2. STARS  [3] (Sensor  Technology  Applied  in  Reconfigurable  Systems,  2011-2014):  
STARS is a large research project with several themes. One theme focused on how many-core
architectures could be used in reconfigurable high-throughput streaming systems.

7 / 82



INTRODUCTION  1.1 History and Motivation

During these projects a custom many-core platform was developed, called the Recore Xentium RFD.
This platform was used to demonstrate the use of  MPSoC in a scalable,  dependable solution for
stream processing. A beam-former application was implemented as a case-study.

The focus thus far has been mostly on scalability,  reconfigurability and dependability properties of
MPSoC. What remains to be investigated is how the raw performance and power efficiency of MPSoC
systems will compare to that of current FPGA solutions. Although the Recore Xentium RFD could be
used to research this further, it has a few limitations that introduce the desire to also look at other
architectures. The most important are listed here:

• Precision: The Recore Xentium RFD excels at 16bit fixed point arithmetic, but lacks floating-
point performance. Future applications might require larger bit-widths or floating point support.

• Performance:  The silicon design was realized in a non-competitive (90 nm) technology  [4],
limiting the clock speed and power efficiency.

• Programming  Model  and Tool  Support: Software  is  currently  hand-written  using  C and
assembly. This might give an unrealistic view of the development effort required for many-core
systems in general.

• Architecture: Currently, only the Recore Xentium RFD has been evaluated for the use in radar
systems. Researching a different architecture could provide more information on the important
aspects of many-core architecture for this application.

A survey  [5] of possible alternative architectures was made by Thales during the STARS project, of
which the results are listed in appendix  A (p.73). Here, the Adapteva Epiphany G4 shows the best
power-efficiency of the processors listed, is tuned for 32bit floating point performance and features a
C/C++ and OpenCL development environment. Unfortunately, the G4 was not available for purchase
so instead the E16G301, a 16-core version of the same architecture, is used for the research.

1.2 RESEARCH GOALS

The goal of this research is to answer the following question:

“Can we use the Adapteva Epiphany Architecture as a power efficient  alternative in the front-end
processing chain of phased-array radar systems”

To answer this question, we will focus on three main topics for this research:

1. Performance:

◦ What throughput and power efficiency can be expected from the Epiphany Architecture?

◦ How does this throughput and power efficiency compare to existing systems?

2. Programming Model and Tool Support:

◦ How can we best develop software for the Epiphany architecture? 

◦ What are the strengths and weaknesses of the provided development environment?

3. Architecture: 

◦ What is the impact of the differences between the Epiphany Architecture and the Recore
Xentium RFD on earlier results obtained in the CRISP and STARS projects?

8 / 82



INTRODUCTION  1.2 Research Goals

1.2.1 Thesis Outline 

To answer the questions stated above, first, the general approach taken in this research is presented
in more detail and the relevant background information is given. This includes a description of beam-
forming in general, the domain requirements and an overview of the Epiphany and Recore Xentium
RFD architectures. 

Next, related work is presented and several missing benchmarks are identified and implemented. The
results of these benchmarks are discussed in chapter 5. In chapter 6, the design and optimization of
several tasks typical for the front-end receiver chain are discussed.

Based on the  micro-benchmark  results,  and the achieved performance of  the  individual  front-end
receiver  tasks,  a mapping of  the front-end receiver  on the E16G301 processor is  presented.  The
design choices and performance numbers for this implementation can be found in chapter 7.

We end this report with a short discussion on the experiences with the provided tools and libraries, and
the  benefits  and  limitations  of  this  architecture  for  reconfigurable  systems.  All  the  results  are
summarized in the conclusions, and finally, recommended future work is presented.
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2 Research Approach

2.1 PERFORMANCE ANALYSIS

In order to evaluate the Epiphany architecture, first, the theoretical peak performance is determined.
This is done based on the specifications provided by Adapteva, and will  serve as a reference point
throughout this research. After this, the maximum achievable throughput and power efficiency of the
Epiphany architecture are evaluated on the E16G301. 

The  main  goal  of  evaluating  this  performance  is  to  allow  for  a  comparison  to  existing  solutions.
Comparing performance of computing systems is typically done using industry standard benchmarks.
These benchmarks can be roughly divided into two classes:

• Micro  Benchmarks: Specifically  tuned  software  is  used  to  test  individual  features  or
components of a system. For instance, a program with specific memory access patterns can be
used to test cache performance. Micro benchmarks are typically used for verifying and tuning
the performance of separate system components. 

• Application Benchmarks:  A set of full applications or application kernels is used to test the
overall system performance. For an application benchmark to be useful, it is very important that
it is representative of the desired application domain, and that it is implemented in a similar way
to how the real-world application would be implemented [6].

For this research, first, several micro-benchmarks will be built to estimate the achievable percentage of
the peak performance presented by Adapteva for real-world applications. These benchmarks will focus
on  the  performance  and  power  efficiency  of  the  on-chip  network,  off-chip  network  and  individual
processor components separately. The details of related research, and the design of these benchmarks
are presented in chapter 4.

Actual application performance will depend on many factors such as partitioning, scheduling, memory
requirements, data-dependencies and compiler efficiency. It is not uncommon to only achieve small
fractions of peak performance for real-world applications, as shown in [7] where for a 2D-Fast Fourier
Transform (FFT) application, only 13% of peak performance on the Epiphany architecture is achieved,
versus 85% of peak performance for a matrix multiplication problem. This means the result of the micro-
benchmarks alone will not say much about the overall performance of an application. 

For a good estimate of the achievable throughput a suitable application benchmark is required that can
be run on all the platforms that are to be compared. Implementing new software on the Recore Xentium
RFD and other platforms will be very time consuming and outside the scope of this research, therefore
this research will focus on applications that have already been implemented. One case that is often
used to  represent  the front-end radar  processing domain,  and has been implemented on both the
Recore Xentium RFD and other platforms, is the front-end receiver, consisting of channel filters and a
digital beam-former [8].

For  this  research  the  digital  beam-former  and  channel  filters  are  implemented  on  the  Epiphany
architecture. The beam-former and filter background and requirements are introduced in chapter  3.1.
The implementation and mapping of the beam-former and channel filters are discussed in chapter  6
and chapter 7.
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RESEARCH APPROACH  2.2 Programming Model and Tool Support

2.2 PROGRAMMING MODEL AND TOOL SUPPORT

The following paragraph is taken from  [1], and describes the programming model for the Epiphany
architecture as presented by Adapteva:

“The Epiphany architecture is programming-model neutral and compatible with most popular parallel-
programming methods,  including Single Instruction Multiple  Data (SIMD),  Single Program Multiple
Data (SPMD), Host-Slave programming, Multiple Instruction Multiple Data (MIMD), static and dynamic
dataflow,  systolic  array,  shared-memory  multi-threading,  message-passing,  and  communicating
sequential processes (CSP)”

Essentially this says; anything is possible. It is left to the programmer to determine what best suits the
need for the desired application. In this research we will investigate the advantages and disadvantages
of several of the mentioned design approaches to determine what can be best used for the digital
beam-former in chapter 7.

Adapteva  provides  an  Eclipse  C/C++  based  development  environment.  Alternatively,  Brown  Deer
technology provides an OpenCL environment with Epiphany architecture support.  In this research,
only the C/C++ based environment will be used since the Brown-Deer environment uses the libraries
and compiler of the official Adapteva SDK in the background, and will therefore not likely introduce any
performance benefits. 

2.3 ARCHITECTURE

During  the  STARS  and  CRISP project,  less  tangible  properties  of  a  system such  as  scalability,
reconfigurability  and dependability  were investigated.  These properties  are  important  in  real-world
solutions where products need to be verifiable, are used for multiple products for cost reasons, and
need to be relied upon in critical systems.

In [9], the definitions of a few key properties are presented, which are summarized below:

• Reconfigurability: The ability of a system to change its behaviour at design or run-time by
changing hardware and/or software configurations.

• Dependability: This  describes  the  trustworthiness  of  a  system.  It  consists  of  both  health
monitoring capabilities and robustness of the design.

• Scalability: The ability of a system to handle growing amounts of work gracefully or its ability
to be enlarged to accommodate that growth.

The effect of the differences between the Epiphany architecture and the Recore Xentium RFD on
these properties will be discussed in chapter 8.
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3 Relevant Background

In this chapter the application domain and Epiphany architecture are introduced to better understand
the relevance of some of the topics discussed in this research. First, the basic concepts of phased-
array radar systems, beam-forming and their typical requirements are introduced. Then an overview of
the Epiphany architecture is presented. A more detailed description of the Epiphany architecture can be
found in the Epiphany architecture reference [1].

3.1 RADAR PROCESSING AND BEAM-FORMING

The processing requirements in radar systems depend strongly on the application. In [9], an overview is
given of several common radar applications and their processing needs. The processing solutions for
these systems are divided into a transmit and a receive chain. This research will focus on the front-end
processing stages in the receive chain of a radar, throughput and processing requirements are most
strict.

Figure 1 shows an overview of  a typical  phased-array radar receiver  processing setup.  Here each
antenna element is connected to a transmit-receive module that filters and mixes the antenna signal to
an intermediate frequency in the analog domain. These modules also convert the resulting signals to
the digital domain. The digital streams are sent to the processing front-end, where channel filtering is
applied and beam-forming is done. The resulting beams are sent to the processing back-end where
algorithms for detection, extraction, classification and tracking are implemented [9].
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Figure 1: Phased-array antenna receive chain processing overview [9]
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RELEVANT BACKGROUND  3.1 Radar Processing and Beam-Forming

3.1.1 Channel Filtering: Hilbert and Bandpass Filter

The first step of the digital channel filtering in the front-end is to transform the real-valued sample
streams from the transmit-receive modules into complex representations using the Hilbert transform
[10]. Complex-valued samples offer more convenient access to important signal characteristics such
as instantaneous amplitude, phase and frequency. After the Hilbert filter, a bandpass filter is applied to
select the desired frequency band and equalize small differences in the individual antenna elements.

A decimation factor can applied in both filter stages, meaning all input samples are used for the filter
operation, but only part of the output samples are computed. Decimation decreases the filter output
rate, thereby decreasing the filter processing requirements while preserving more information of the
original signal in the output signal than would be achieved if the sample-rate were simply reduced.

On the Recore Xentium RFD, both the Hilbert and the bandpass filter are implemented through direct-
form convolution. Efficient FFT based convolution algorithms exist [11], however, additional memory is
required for the storage of intermediate frequency domain signals and for small signals lengths, the
performance gain is minimal. Since memory is limited on the Epiphany, the extra FFT memory footprint
is undesirable. Also decimation will likely result in a relatively small amount of samples to process. For
these reasons a  direct-form convolution approach is  used in  this  research,  similar  to  the Recore
Xentium RFD implementation.

3.1.2 Digital Beam-forming

The  beam-forming  stage  is  responsible  for  introducing  the  desired  phase-shifts  for  phased-array
operation, and for summing all the antenna output channels to form the beam output. The phase-shifts
can be applied independently to all channels and the ordering of summation does not matter. This
allows concurrent processing of the workload by dividing the channels, and splitting up the channel
summation in multiple stages. An example of this is shown in Figure 2.

The beam-former works on a complex valued input stream. Equations (1) and (2) show that multiplying
a complex  sample  with  a complex coefficient  results  in  the magnitudes being multiplied,  and the
phases being added. In practice, this means a phase-shift can be realized by multiplying each complex
sample with a suitable complex coefficient.
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Figure 2: Beam-former variations. Left: Single process adds all channels. 
Right: Summation is spread over two stages, three processes
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RELEVANT BACKGROUND  3.1 Radar Processing and Beam-Forming

z1 = r1 ⋅ e
j⋅φ1 ⋮⋮ z2 = r2 ⋅ e

j⋅φ 2 (1)

z1⋅ z2 =r1⋅e
j⋅φ1⋅r2⋅e

j⋅φ2 = r1⋅r2⋅e
j⋅(φ1 + φ2) (2)

3.1.3 Front-End Throughput and Processing Requirements

In  [9], the processing requirements are specified in terms of throughput and the number of required
operations per task. Although the requirements for the front-end processing differ strongly between
applications, all the receive chains perform the same tasks. The requirements for a specific application
depend on the input sample rate (FS), the number of input channels (NC), the filter decimation factors
(DHF, DBPF) the number of filter taps (NT) and the number of output beams (NB). For both the throughput
and processing requirements a relation between the above parameters and the requirement can be
determined.

Throughput Requirements

The throughput requirements per task depend on the output rate of the preceding task, as shown
graphically in  Figure 3. Here HF and BPF are the Hilbert and bandpass filter respectively, and BF
denotes  the  beam-former  stage.  The  output  throughput  of  each  task  can  differ  from  the  input
throughput depending on filter  decimation factors and the number of beams that  are formed. The
throughput requirements between all tasks scale linearly with the input sample rate.

Processing Requirements

The processing requirements per task depend on the required throughput per task, and the number of
operations required to process each sample for a given task. In [9], some estimates are made on the
processing requirements based on a direct-form 32 tap FIR filter implementation of the filters. These
are defined as the required number of multiply-accumulates (MACs), and are determined by using the
following costs for processing operations:
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Figure 3: Throughput requirements per tasks in the front-end receiver processing chain.
(HF=Hilbert filter, BPF=Bandpass filter, BF=Beam-Former, BE=Back-end)
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RELEVANT BACKGROUND  3.1 Radar Processing and Beam-Forming

• Complex Multiply(MCMUL): 4 (multiply) + 2 (add) = 4 MACs

• Complex Add (MCADD): 2 (add) = 2 MACs

• Complex Multiply Accumulate (MCMAC): 4 (multiply), 4(add) =  4 MACs

• Hilbert Filter FIR tap (MHF_FIR): 2 (multiply) + 2(add) = 2 MACs

• Bandpass Filter FIR tap (MBPF_FIR): 1 (CMAC) = 4 MACs

Based on the costs of these operations, the processing costs per task can be defined. This is done in
equations (3), (4) and (5) where CHF CBPF and CBF denote the number of MACs required for each task,
the MHF_FIR, MBPF_FIR and MCMAC terms represent the number of MACs requires for a specific operation,
and NT is the number of filter taps.

CHF= N C⋅
FS
DHF

⋅ NT ⋅M HFFIR (3)

CBPF= NC ⋅
FS

DHF ⋅ DBPF

⋅ NT ⋅MBPF FIR (4)

CBF= NC ⋅
FS

DHF ⋅ DBPF

⋅ N B ⋅MCMAC (5)

Note that the Hilbert filter and Bandpass filter implementations differ in processing costs since the
Hilbert filter operates on a real-valued input stream, and the bandpass filter operates on a complex
input stream as shown in Figure 3. 

Equations (3), (4) and (5) will be used to determine the absolute peak performance we can achieve for
the front-end receiver on the E16G301 processor. In section 3.1.3 an initial peak performance estimate
for the E16G301 is given, which is used as a reference throughout this report. Before this is discussed
we first introduce the Epiphany architecture, and the Parallella board that is used for this research.
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RELEVANT BACKGROUND  3.2 Epiphany Architecture

3.2 EPIPHANY ARCHITECTURE

The Epiphany architecture is a recent many-core architecture design by Adapteva aiming at power
efficiency. It features a homogeneous grid of processing nodes, known as mesh-nodes, connected by
a Network-on-Chip (NoC). Each node consists of a processor core, local memory, a network interface
and a DMA engine. For this research a 16-node variant called the E16G301 is used, which comes on a
small computer board called the Adapteva Parallella [12]. 

The Parallella uses a Xilinx Zync 7000 series device which contains two hardware ARM processors,
several peripherals and some FPGA fabric. The FPGA is used to instantiate a link to the E16G301
processor. An overview of this board and the E16G301 is given in Figure 4. 

3.2.1 Memory Layout

All mesh-nodes in the Epiphany architecture share the same 32 bit address space, and it is possible to
read and write directly to each node's local memory. Each node is assigned a 1MiB block of memory in
this address space. Currently, for the E16G301, only 32KiB of this 1MiB space is used per node, likely
to reduce the chip-area requirements.

The twelve most significant bits in an address are used to identify the node the memory belongs too.
To avoid having to recompile software every time it is run on a different node, the 1MiB address space
of a node is locally aliased to the [0x00000000 … 0x000FFFFF] address range. This memory layout is
shown more clearly in Figure 5.

Part of the 1GiB DRAM on the Parallella board is mapped to the Epiphany address space, and is
accessible by both the ARM cores and the E16G301. This allows for communication between the
E16G301 and the ARM processor. It is also possible for the ARM processors to write and read directly
from the local  memory of  the mesh-nodes. All  transactions with local  and shared memory on the
E16G301 are handled by the Network-on-Chip.
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Figure 4: Adapteva Parallella Board and Epiphany architecture overview
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3.2.2 eMesh Network-On-Chip

All mesh-nodes are connected by a packet-switched Network-on-Chip. Data is sent as 8-64bit packets
accompanied by a destination address. The network consists of three independent 2D-Mesh networks,
each with a specific function:

1. cMesh: The cMesh is used for write transactions to on-chip mesh-nodes. It has a maximum
bandwidth of 4.8 GB/s up, and 4.8GB/s down in each of the four routing directions. 

2. rMesh: The rMesh is used for all  read transactions. Read transactions do not contain any
data, but instead travel across the rMesh until the destination node is reached. Here, a write
transaction is initiated to transport the data back to the requesting node. The rMesh can issue
one read transaction every 8 clock cycles, resulting in 1/8th of the maximum cMesh bandwidth.

3. xMesh: The xMesh is  used  for  write  transactions  destined for  off-chip  resources  and for
passing through transactions destined for another chip in a multi-chip configuration. It is split in
a North-to-South and an East-to-West network. The bandwidth of the xMesh is matched to the
off-chip links of the architecture (600MB/s up, and 600MB/s down for the E16G301).

The nodes in the Epiphany architecture only see the global memory space and are not aware of the
specifics of this network. Transactions destined for off-node memory addresses are put on the network
and routed to the proper destination automatically. The processor pipeline is stalled accordingly if it
has to wait on the network due to congestion or long routes.

The on-chip network is terminated at the edges with an off-chip interface known as the eLink. Multiple
chips  can be connected together  to  form systems with  larger  core  counts.  Both  the G4 and the
E16G301 feature four eLinks, one on each side of the eMesh (north, south, east and west).
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Figure 5: Epiphany architecture local and global memory address space
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Network Routing Scheme and Coordinate System

The network is organized as a grid of a maximum of 64x64 mesh-nodes, with a 1MiB address spaces
assigned to each node. Each node is identified by its top twelve bits, which are used to represent a
(row,column) coordinate. The first 6 bits represent the row, and the lower 6 bits represent the column
of the destination node, using the numbering conventions shown in Figure 6:

The mesh networks use XY routing, meaning that a packet is first routed east or west (x-axis) until it
reaches  the  destination  column,  and  is  then  routed  north  or  south  (y-axis)  until  it  reaches  the
destination row. The XY routing scheme is deterministic (routes are fixed) and deadlock free [13]. 

A consequence  of  this  routing  scheme  is  that  transactions  between  nodes  take  different  routes
depending on which node is sending the data (shown in Figure 6). Also, transactions can only arrive at
an off-chip interface when the top twelve bits of the destination address represents an off-chip row or
column. This means that  for  the Parallella board where only the east  eLink is available,  only the
memory DRAM locations that represent a node east of the E16G301 nodes can be accessed. This
leaves the addressable DRAM memory space fragmented.

3.2.3 The Epiphany eCore

The Epiphany processing cores (eCores) are custom dual-issue RISC processors with a 64-word
register file. Each eCore features an integer arithmetic logic unit (IALU) for basic integer and memory
operations and a floating-point unit (FPU). FPU and IALU instructions can be issued simultaneously
each clock-cycle, as long as the instructions don't both use the same registers. Control instructions,
such as  branching  and register  data  movements  cannot  be  issued in  parallel  with  IALU or  FPU
instructions. Instructions are executed in-order in a pipelined fashion, but can finish out of order. 

Whenever an instruction executes, the target operand registers are locked until completion. If another
instruction tries to access this register during this time, the pipeline will stall to ensure the use of valid
data by all instructions. A simplified overview of the eCore hardware is given in Figure 7.
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Figure 6: E16G301 Coordinate system conventions and example routes for node
(0,2) and (2,0) up and down traffic
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It is important to note that the IALU only supports data load/store, shift operations, addition, subtraction
and  bitwise  operations.  Integer  multiplication  and  division,  as  well  as  floating-point  division,  are
emulated in software. These emulated operations are retrieved from external memory when called,
and introduce both a large memory and processing overhead. These operations should be avoided. 

Each  eCore  is  accompanied  by  a  DMA engine  featuring  two  independent  channels,  capable  of
transferring 64 bits every clock cycle. More detailed information on the DMA engines and the eCore
instruction set can be found in [1]. 

3.2.4 Maximizing Epiphany Performance 

The specified peak performance for the Parallella board is listed in Table 1. These peak performance
numbers are only valid under specific conditions, which are discussed in this section. One important
thing to note is that although technically the E16G301 supports clock rates up to 1GHz, it runs at only
600MHz on the Parallella board. 

Specification Value

 Zync Frequency 667MHz

 E16G301 Frequency 600MHz 

 E16G301 Peak Floating Point Performance 19.2 GFLOPS

 Peak Bandwith Zync – E16G301 600 MB/s up, 600MB/s down

 DDR3 Memory 1GiB

 Power Consumption E16G301 0.69W@0.86V, 600MHz [14]

Table 1: Adapteva E16G301 / Parallella peak performance specification summary
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Figure 7: simplified eCore hardware overview, showing dual-issue capability
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Maximizing Memory Performance

The local memory of a node in the E16G301 is split into four banks of 8KiB. The local memory banks
are 64 bits wide and can be accessed once every clock cycle for 8 to 64bit transfers. This means
maximum performance for local memory is obtained when 64 bits are read or written every clock cycle
[1]. For 600MHz this would equal 4.8GB/s for each bank simultaneously. 

The  DMA  engine,  instruction  fetch  stage  and  IALU  can  access  separate  memory  banks
simultaneously, so for optimal performance, different memory banks should be used for the program
instructions and input and output data. 

Accessing off-chip memory is typically very slow and should be avoided whenever possible.

Maximizing Network Performance

The network is optimized for on-chip writes over the cMesh. This allows an 8-to-64bit transaction every
clock-cycle. Maximum performance is achieved for 64bit transactions every clock-cycle, leading up to
4.8GB/s per link at 600MHz. 

For the E16G301 specifically, an errata item in the datasheet states that the DMA engine can only
issue a transfer every other clock cycle, limiting the maximum performance to 2.4GB/s per link at
600MHz. A 1.5 clock-cycle latency is introduced for every router that is passed in the network, so
routes should be kept short if latency is important. How the 1.5 cycle can occur is not elaborated.

Each eLink can send and receive 8 bits  per clock-cycle simultaneously,  and every eLink transfer
requires a 40-bit header per data payload of 32-64 bits. For 64bit transfers with increasing address
order only (0x0..0x4..0x8 etc..) the eLink can enter a burst mode, omitting the packet header until the
sequence is broken. At 600MHz this results in 600MB/s per eLink in each direction simultaneously. For
non-burst and read transfers, only 1/4th of this bandwidth can be achieved ([14]).

Maximizing eCore Performance

The maximum eCore performance is  achieved by using fused multiply-add (FMADD) instructions.
These instructions will first multiply two arguments and accumulate the result with a third. They can be
issued every clock cycle, and are counted as two floating-point operations, resulting in the specified
1.2 GFLOPS/eCore at 600MHz.

To keep the processor busy at this rate, any operations stalling the pipeline, such as branches and
memory  or  network  stalls  should  be  avoided.  The  IALU  can  be  used  to  load  the  floating-point
arguments from memory and store the results while the FPU is processing the data.
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3.2.5 Initial E16G301 Performance Estimates

Now that the requirements of the application domain and the specifics of the Epiphany architecture
have been introduced, an initial peak performance estimate of the beam-former and channel filters on
the Epiphany architecture can be made. For this we start with the following assumptions:

1. The ADC input stream consists of 16-bit fixed-point samples. 

2. The output type of any stage is a complex number. A single precision (2x 32bit) floating point
representation will be used since that is most efficient on the Epiphany architecture.

3. Every component can be used at it's peak performance at 600MHz

4. A MAC can be performed by one fused-multiply add/subtract instruction every clock cycle

Based on these assumptions,  the  cost  equations  for  the  tasks  (p.16)  and the  peak  performance
numbers of the Epiphany architecture, we can determine the peak throughput per task, as is shown in
Table 2. These are the absolute maximum rates we can expect for the eLink and eCore at 600MHz,
and they scale linearly with the system clock-rate.

Specification Value

Peak eLink ADC sample throughput (16-bit) 300MS/s per eLink

Peak eLink complex sample throughput (64-bit) 75MS/s, per eLink

Peak Hilbert filter output samples/s per eCore 600 / (NT * MHF) = 9.38 MS/s

Peak bandpass filter output samples/s per eCore 600 / (NT * MBPF) = 4.69 MS/s

Peak beam-former input samples/s per eCore 600 / MCMAC= 150 MS/s

Peak beam-former output samples/s per eCore 150 MS/s / #Channels

Table 2: Epiphany architecture peak throughput per front-end receiver task

The numbers presented in Table 2 are peak performance numbers that can only be maintained in very
specific situations. The actual peak performance of the tasks and the network is likely to be different.
In the next chapters the expected performance of the components for real-world applications, and how
this is achieved for our beam-former application is discussed.
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3.3 CRISP / RECORE XENTIUM RFD SUMMARY

The  closest  available  platform  in  terms  of  architecture  to  which  we  can  compare  the  Epiphany
architecture is the Recore Xentium RFD. This is a many-core processor developed and used during
the CRISP project ([2]) to determine the feasibility of a fault-tolerant and scalable front-end processing
system ([15],[4]). An overview of the Recore Xentium RFD is given in Figure 8:

The  Recore  Xentium  RFD  features  nine  Xentium  processor  nodes  [XE0..XE8],  a  dependability
manager  (DM)  and two memory  nodes  (MEM).  The processor  nodes  are  based around a  VLIW
architecture, with a data-path that can execute four 16-bit  MACs/cycle. Five Recore Xentium RFD
processors are combined to form a single CRISP platform with a combined processing power of 180
16-bit MACs per clock cycle ([4]), or 36 GMACS at 200MHz.

Recore Xentium RFD Network-On-Chip

The Recore Xentium RFD on-chip network uses a 2D mesh topology,  with one additional  link as
shown in Figure 8. It is a packet-switched network with wormhole type flow-control, and allows for 4
virtual channels ([16], chapter 1.4) per physical network link. 

Instead of XY routing, adaptive source routing is used, where routes are not fixed, but determined at
run-time in supporting hardware and software. Routers can be configured to assign different weights to
each virtual  channel  in  order  to  asymmetrically  distribute  the available  bandwidth  over  the  active
connections. 

Off-chip data communication is done through six independent off-chip connections that function as
transparent links to and from the NoC. There is a difference in clock frequency between the on- and
off-chip networks (50MHz off-chip vs. 200MHz on-chip) resulting in one quarter of the bandwidth per
off-chip link compared to the on-chip links (800Mbit/s vs 3200Mbit/s at 200MHz).
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Figure 8: Recore Xentium RFD architecture overview (Taken from [15])
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3.3.1 Front-End Receiver Mapping and Performance

During the CRISP project, a front-end receiver with 16 input channels, using 32-tap filters with a Hilbert
filter decimation factor of 8 and 8 output beams was implemented on the CRISP platform ([17]). The
mapping used for this implementation is shown in Figure 9:

In  Figure 9, the filtering is performed by four out of the five Recore Xentium RFD processors. Each
RFD processes four input channels. Beam-forming is done in several stages on the fifth Xentium RFD.
First,  the  four  output  channels  of  a  single  filtering  Xentium RFD are  multiplied  with  the  suitable
coefficients in the partial beam-forming task (PF). The resulting channels are summed in the partial
summing (PS) and final summing (FS) tasks. 

All processing is done using a 16-bit data representation of each real valued sample, and two 16-bit
values for  complex valued samples. This allows the efficient  use of  the parallel  data-paths of  the
Recore Xentium RFD, but also requires proper scaling of the coefficients and input samples to avoid
overflow and loss of precision. 

The final implementation can sustain an input sample rate of 25MS/s per channel. To achieve this, the
filters and beam-former have been optimized and implemented in the assembly language. In order to
determine the bottleneck and slack-time in this implementation, several performance measurements
where performed, of which the results are repeated in Table 3. 
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Figure 9: Front-end receiver mapping on CRISP processing platform featuring five Recore Xentium RFDs
(NC=16, DHF=8, DBPF=1, NT=32, FS = 22MS/s @ 200MHz)
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Task to Process
Input

Samples
Output

Samples
Processing

Time
Idle Time (waiting

on data)

Filtering

Hilbert Filter (HF) 1024 128 12 μs 29 μs

Bandpass Filter (BPF) 128 128 14 μs 26 μs

Beam-Forming

Partial Beam-Forming (PF) 256 512 10 μs 12 μs

Partial Summing (PS) 512 512 2.5 μs 20 μs

Final Summing (FS) 512 512 2.5 μs 20 μs

Table 3: Recore Xentium RFD performance details for front-end receiver implementation

Table 3 shows that a lot of processor time is spent waiting on input data to arrive. Also, it is interesting
to note that the bandpass filter takes only marginally longer to process than the Hilbert filter, even
though at least twice as many calculations need to be performed for this filter task. This suggests that
the implementation of the bandpass filter is more efficient than that of the Hilbert filter task. 

Based on the initial peak-performance estimates for the E16G301 in  Table 2 (p.22), the processing
times of the filters for the same data lengths can be determined. These are given here in Table 4:

Task to Process
Input

Samples
Output

Samples
Recore Xentium
Processing Time

Expected E16G301
Processing Time

Hilbert Filter 1024 128 12 μs 13.7 μs

Bandpass Filter 128 128 14 μs 27.3 μs

Table 4: E16G301 and Recore Xentium RFD initial performance comparison (estimated)

Table 4 shows that in the best-case, a single eCore at 600MHz cannot keep up with a single Xentium
processor tile at 200MHz. This is mainly due to the large amount of parallel execution units on the
Xentium processors, allowing up to four MACs per clock cycle. A single eCore can only perform a
single MAC per clock cycle. 

Unfortunately no information is available on the power consumption of the Recore Xentium RFD or
CRISP platform. The performance estimates so far are based on peak-performance numbers provided
by Adapteva. In the following chapters the achievable performance for a real-world implementation is
investigated.
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4 Benchmarking & Related Work

Thus-far,  we have presented the peak performance numbers for the Epiphany architecture given in
Table 1 and  Table 2, which are derived from the Epiphany architecture specifications. However, it is
unclear what percentage of this peak performance can realistically be achieved. In this chapter the
expected peak performance for real-world applications is investigated by looking at related work. Based
on the results, several missing benchmarks are identified. The missing benchmarks are implemented
and the results are presented in chapter 5.

4.1 RELATED WORK

During  this  research,  five  other  research  papers  discussing  the  performance  of  the  Epiphany
architecture have been published. In  [18],  a very detailed description of the development of a high
performance matrix multiplication application on the Epiphany architecture is given. The authors of [19]
and  [20] compare  the  Epiphany  architecture  to  a  custom  many-core  processor  and  an  Intel-I7
processor,  and in  [21] and  [7],  the use of  a standardized Message-Passing-Interface (MPI)  on the
Epiphany architecture is investigated. The most relevant results in these research projects are repeated
here for convenience.

4.1.1 eCore performance

The performance achieved for the application built  in  [18] are shown in  Table 5. Here large matrix
multiplication problems are split into smaller pieces over multiple eCores. The results include on-chip
communication,  but  not the time required to get the operands from off-chip memory. A very strong
dependence of performance on the problem size is observed. For small matrix sizes a large software
and communication overhead limits the performance to only 26% of peak. In the best case 85% of peak
performance is achieved. 

Matrix Size
(per-eCore)

Number of eCores used and total GFLOPS achieved

2x2 4x4 8x8

GFLOPS %-Peak GFLOPS %-Peak GFLOPS %-Peak

8x8 1.25 26.1 5.07 26.4 20.30 26.4

16x16 3.12 65.1 12.76 66.5 51.41 66.9

20x20 3.58 74.7 14.36 74.8 57.62 75.0

24x24 3.84 80.1 15.43 80.4 62.17 81.0

32x32 4.06 84.7 16.27 84.7 65.32 85.1

Table 5: Epiphany G4 matrix-multiplication peak performance when using on-chip memory ([18])
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When the total matrix size is increased such that the operands no long fit in local memory, additional
communication over the eLink is required. Table 6 shows the results for a few of these cases. Here it
become very clear that even through the local eCore problem sizes allow high computation efficiency,
the bottleneck for these applications is the communication over the eLink interface.

Matrix Size
(per eCore, total)

Total
GFLOPS

% of Peak
%-Time spent on

computation
%-Time spent on
communication

32x32 per eCore
512x512 total

8.32 10.8 12.8 87.2

32x32 per eCore
1024x1024 total

8.52 11.1 13.1 86.9

24x24 per eCore
1536x1536 total

6.34 8.2 10.9 89.1

Table 6: Epiphany G4 matrix-multiplication peak performance when using shared memory ([18])

The results in Table 5 and Table 6 were obtained for a highly optimized assembly implementation on
the Epiphany G4 processor. The authors note that implementation was time consuming, but achieving
maximum performance with the GCC compiler proved difficult. However, in  [7], the authors present
four applications implemented in the C language for the E16G301 with the use of a special FMADD C
function that reaches similar performance levels. The peak performance for each application in [7] is
summarized in Table 7.  

Application GFLOPS % of Peak
%-Time spent

on computation
%-Time spent on
communication

(32x32 per eCore, 128x128
total) Matrix-Multiplication

12.02 62.6 63 37

N-Body Particle Interaction 8.28 43.1 99 1

Heat-Stencil 6.25 32.6 45 55

2D-FFT Transform 2.5 13.0 60 40

Table 7: E16G301 peak performance and computation/communication 
ratio achieved in [7] for four different applications 

The results  Table 5,  Table 6 and  Table 7 include inter-node communication. The peak performance
achieved during computation only for the 32x32 matrix multiplication in Table 5 is roughly 95% of peak
according to the authors. For the matrix multiplication application in Table 7, achieving 12.02 GFLOPS
when only 63% of the time spent is used for computation means that 99.4% of the 19.2 GFLOPS peak
performance for all eCores was achieved during computation. These high percentages indicate that it
is possible to come very close to the peak performance of the eCores, however, as Table 7 shows, this
percentage of peak performance is very dependent on the application.

28 / 82



BENCHMARKING & RELATED WORK  4.1 Related Work

4.1.2 eMesh Performance

The E16G301 used by [7] and the G4 used by [18] both suffer from a problem with a FIFO buffer in the
network interface of the mesh-nodes. According to the data-sheets this only affects the maximum
outgoing bandwidth of a mesh-node. Unfortunately, it is unclear how much the performance is affected
by this. Also a problem with the DMA engines on the E16G301 only allows a data transfer every other
clock cycle, effectively halving the maximum achievable bandwidth.

Despite these errata, a peak DMA performance of 1963.6MB/s (82% of 2.4GB/s for 32bit transfers) is
obtained in [18]. In [21] a peak transfer rate of 1262MB/s is achieved for 64bit direct-writes. Finally, in
[7], a peak rate of 1000MB/s is achieved. The results of [21] and [18] are shown in Figure 10. Here a
start-up behaviour is observed. This is likely caused by the DMA start-up time and direct-write software
overhead. Interestingly,  the direct transfer rates achieved in  [21] are much higher than the results
shown for direct writes in [18]. 

The data sizes presented in both graphs in Figure 10 are somewhat ambiguous. In [18], it is unclear
what the message size actually denotes, since 48KiB does not fit in local memory. It is assumed that
this is the total data transferred by all 64 mesh-nodes, as their test routes packets through all mesh-
nodes. In this case the 49152 byte transfer results would be for 768 byte transfers per node.

In  [21], data is transferred in 512-byte blocks, and only total data sent changes by sending multiple
packets sequentially. It is noted that the measurement was done for the transfer of all sub-matrices per
node. For a 32x32 matrix multiplication, both matrix operands would be divided into sixteen 8x8 sub-
matrices, resulting in two 8x8 matrices per node. Each elements takes up 4 bytes, resulting in a total
transferred size of 512 bytes per node for this case.

Both representations in  Figure 10 are relatively hard to translate to a new application,  where the
interest would mainly be in the time it takes to transfer a certain amount of data from node to node. A
clearer representation is given in [7], however much lower bandwidths are achieved. 

Neither [18] or [21] achieve peak-performance, nor use 64bit DMA transfers required to meet this peak
performance. The effect of sharing links on this performance, or how the DMA performance is affected
when both channels are used simultaneously also has not yet been investigated. 
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Figure 10: Left: cMesh Bandwidth - DMA vs Direct Write (as presented in [18])
Right: Direct-Write MPI bandwidth using 512-byte transfers  (as presented in [21])
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4.1.3 eLink Performance

Table 8 shows the achieved bandwidth per node in [18], when four nodes send 2KiB packets over the
same eLink simultaneously during two seconds. The total bandwidth achieved is 150MB/s, one quarter
of the maximum achievable bandwidth of 600MB/s. This is expected, as burst transfers for 32bit writes
are not possible. The results show that the bandwidth is not equally divided, in fact, the authors claim
that for the G4 starvation can occur when even more nodes share an eLink.

Source Node Sent Packets eLink Share (%) Bandwidth (MB/s)

[0,0] 61307 41.8 62.8

[0,1] 48829 33.3 50.0

[1,0] 24414 16.6 25.0

[1,1] 12207 8.3 12.5

Table 8: eLink bandwidth per node when four nodes send 2KiB packets during 
a two second period (as presented in [18])

The total bandwidth achieved in  Table 8 is 150MB/s for 32bit transfers, suggesting that sharing an
eLink does not influence the eLink performance. However, when multiple nodes attempt to perform
64bit burst transfers over the same eLink, it is likely that the eLink will alternate communication slots
between nodes. This would effectively break the burst-mode capability of the eLink, limiting the peak
bandwidth to 150MB/s instead of 600MB/s. This would have a large impact on application design, as
only one node should be allowed to communicate over an eLink at any given time.

4.1.4 Epiphany Power Consumption

Currently there is very little information available on the actual power consumption of the Epiphany
architecture. The only power consumption numbers available are those from the E16G301 datasheet
[14]. Figure 11 shows a more convenient representation of the values in [14]. Also the peak efficiency
is shown for these results, assuming peak performance was achieved for the values in [14].
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Figure 11: E16G301 Power consumption and GFLOPS / Watt versus frequency at 
minimum core voltage. Results are derived from [14]
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Figure 11 shows that 32 GFLOPS/watt can only be achieved at 400MHz. At 1GHz, this reduces to
roughly 21GFLOPS/watt. This result differs from the performance of 32GFLOPS/watt at 1GHz shown
in the STARS multi-core survey ([9],  Table 12 p.73). The details of the power measurements in  [14]
(Achieved GFLOPS, network load, part contributed by the separate components) are not given. This
means no information is available on the actual achieved performance per watt for a real-world test-
case. Also, the effect of core voltage on the power consumption is not known at this point.

4.1.5 Remaining Work

So  far  we  have  seen  that  the  achievable  performance  on  the  eCore  depends  heavily  on  the
application. In order to determine a realistic measure of peak performance of our application, the front-
end receiver tasks should be implemented and analysed.

For  both  the  eMesh  and  eLink,  the  related  work  has  shown  some  interesting  behaviour  and
performance numbers, however, it is unclear what causes the observed DMA start-up behaviour, and
also the performance for 64bit DMA transfers over the eMesh and eLink is still unknown. To investigate
this and other topics further, several custom micro benchmarks will be developed. The design of these
benchmarks is discussed in the next section, which will cover the following topics:

1. Message Size vs. Bandwidth: Here the effect of total transfer size on the achieved bandwidth
on both the eMesh and eLink, using DMA and direct-write transfers is measured. The goal is to
find the cause of the start-up behaviours observed in  Figure 10, and to determine the best
method to use for each message size to use for our application.

2. eLink Bandwidth Sharing: The peak off-chip bandwidth is  only maintainable using burst-
mode transfer. We expect sharing the eLink will break the burst mode transfer, however this is
not documented or tested in related work. 

3. eMesh Bandwidth Sharing: The links in the cMesh should support 4.8GB/s, however the
results so far show that this bandwidth is not easily achieved. It is interesting to investigate
how the eMesh handles sharing of network bandwidth, as this determines for a large part the
freedom of placement of tasks on the Epiphany platform.

4. E16G301  Power  Consumption: In  order  to  determine  the  real-world  efficiency  of  the
E16G301,  eCore,  eLink  and  eMesh  power  consumption  will  be  measured  along  with  the
achieved GFLOPS and bandwidths. Doing this at different core voltages will give insight in the
dependence of the core voltage on the architecture efficiency.
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4.2 CUSTOM MICRO-BENCHMARKS

In this section, several custom micro-benchmarks are introduced to give some insight in the open
topics presented previously. In addition, a simple benchmark program provided by Adapteva ( [22])  is
run to test the Parallella board network bandwidths. The results of the benchmarks presented here are
given in chapter 5.

4.2.1 Message Size vs. Bandwidth

The effect of the total transfer size on the effective bandwidth of the DMA engine is tested using one
sending mesh-node. This node will send increasing packet sizes up to 8KiB using 64bit DMA transfers.
The time it takes to configure the DMA engine is measured, as well as the total time to perform the
transfer. This is done for both configurations shown in Figure 12.

4.2.2 eLink Bandwidth Sharing 

Measuring the effect of sharing an eLink during maximum performance operation will be addressed by
introducing  the  three  different  configurations  shown  in  Figure  13.  All  active  nodes  will  send  a
continuous stream of 8KiB packets using 64bit DMA transfers. The time required to send each packet
is measured. 

First,  the four  nodes closest  to  the eLink  send data simultaneously.  Here it  is  expected that  the
bandwidth will be shared equally amongst all nodes, but drops significantly. Second, four nodes with
varying distance to the eLink, will send data. This should introduce similar starvation as shown in Table
8, but shown for 64bit transfers. Finally all sixteen nodes will send data simultaneously. This allows
comparing  the  bandwidth  achieved with  one,  four  and sixteen nodes  to  see if  significant  routing
overhead is introduced when sharing an eLink. 
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Figure 12: DMA transfer size micro-benchmark test-cases. Left: Data is sent over eMesh
Right: Data is sent over eLink to shared memory
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4.2.3 eMesh Bandwidth Sharing

Here we introduce two cases in Figure 14. First, four nodes in a cross will send a continuous stream of
8KiB packets towards a single node. The achieved bandwidth per node is measured. Here we expect
that the total bandwidth is limited by the receiver memory, and that the remaining bandwidth is shared
equally among the senders.

In the second case in Figure 14, crossing traffic is introduced. One node continuously sends data to a
receiving node from East to West on the cMesh. This traffic is then crossed by one to four other
transfers from North to South. The effect on the achieved bandwidth from East to West is measured. 
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Figure 13: eLink micro-benchmark test-cases. A: Four nodes closest to the eLink send packets. B: Four nodes
with varying distance to the eLink send packets. C: All nodes send packets.

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

SEND 
8KiB

2 3

0

1

2

3

0

1

2

3

0

1

2 30 1

EAST  eLink

2 30 1

C.B.A.

Figure 14: eMesh sharing configurations. Left: four nodes in a cross send to a receiver. Right: Four
sets of nodes send from North to South, effect on performance from East to West is measured
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4.2.4 E16G301 Power Consumption

The power supply of the E16G301 is split into a core power and IO power section. Both need to be
measured to determine the total power. Unfortunately the IO power rail is shared with many other
devices on the Parallella board, and cannot be easily decoupled. For useful measurements a method
is  required that  allows separation of  the E16G301 power and that  of  the other devices.  Also,  the
measurements  need  to  be  properly  synchronized  with  the  software  to  be  sure  that  the  power
measurements don't include possible idle times of the E16G301.

The E16G301 runs at 1 Volt on the Parallella. The datasheet shows that for 600MHz, the E16G301
can go down to as low as 0.86 Volt. This has a very large impact on the power consumption. For a fair
minimum power consumption measurement, ideally we would like to vary the E16G301 core voltage to
see the effect of this on the power consumption.

The issues with the power measurements are addressed by building a small measurement circuit that
reports measured power over an on-board I2C bus. The I2C bus can also be used to configure the
core voltage regulator for the E16G301, allowing us to set the E16G301 core voltage from software.
The details of this measurement circuit are given in Appendix C: Power measurement setup. 

Several test cases will be measured, each at multiple E16G301 core voltages:

• eCores: eCore power consumption will be measured by measuring core-power consumption
during  execution  of  a  heavy  load  micro-benchmark.  No  data  is  transferred  during  this
benchmark keeping the eLinks and eMesh networks idle during this measurement.

• eMesh: The eMesh power consumption will be measured increasing the distance of a transfer
between nodes, without changing the number of active nodes or the amount of data sent. The
increase in power consumption over distance is contributed by the increased network activity.

• eLink: the eLinks are powered by the IO power-rail shared with multiple devices. To measure
the eLink power consumption, we let a single node repeatedly send and stop sending data
over the East eLink. The measured variation in the power consumption on the IO power-rail
should reflect the active power consumption of the eLink. Also, the eLinks can be switched off
by hardware, by repeatedly switching the North/South/West eLink on and off simultaneously,
we can determine the standby power of the eLinks.

Based on these results, estimates can be made of power consumption under different load cases. The
power consumption during execution of the front-end receiver chain on the Epiphany architecture is
also measured. 
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5 Micro-Benchmark Results

In this chapter we present the results for the micro-benchmarks on the E16G301. We start by looking at
a small benchmark application provided by Adapteva [22]. This benchmark copies 8KiB from multiple
sources to several destinations, and measures the time it takes for this transfer to complete. The results
for the E16G301 and the Parallella board are shown in Table 9. 

From To Type Time (us) / 8Kb Bandwidth (MB/s) % of Peak

ARM eCore Read 1255.3 6.5 4.4

ARM eCore Write 586.9 14.0 2.3

ARM DRAM Copy 42.3 193.8 ?

eCore DRAM Read 89.2 91.8 61.2

eCore DRAM Write 32.4 252.5 42.1

eCore eCore Read 20.0 409.0 68.2

eCore eCore Write 6.1 1342.2 28.0

Table 9: Parallella communication performance measured by Adapteva benchmark application
(average of 50 measurements)

On the parallella board, there are two ways to get data onto the E16G301 from shared memory. This is
either through a write transaction from the host processors, or through a read transaction from the
mesh-nodes.  Table 9 shows that the fastest method to get data onto the E16G301 on the Parallella
board is through a read transaction initiated by a mesh-node, which achieves 91.8 MB/s. This is much
lower than the maximum achievable bandwidth of 600MB/s at 600MHz, and also lower than the limited
150MB/s that should be possible for eLink read transactions. 

It is not entirely clear what causes this, but a read transaction has to travel over the eLink twice, first as
a read transaction of 9 bytes, and then as a write transfer of 9 to 13 bytes (depending on the transfer
size) from the host returning the data. The time it takes to process the read-request on the host-side will
influence the achieved bandwidth.

The direct transfers from the ARM processors to the E16G301 are very slow (14.0 MB/s), possibly due
to the use of the memcpy() function by the provided host library which can cause a lot of overhead on
the eLink transfers, or due to the overhead introduced of reading from memory first, and then writing the
result  over the same AXI bus to the FPGA eLink hardware.  These low host-to-mesh-node transfer
speeds are only applicable for the Parallella board and not for the Epiphany architecture in general,
demonstrated by the much higher rates when the eCores transfer data over the same eLink.

The inter-node read and write rates of 409MB/s and 1342MB/s are significantly lower than the specified
peak performance, but similar to the results presented in [18],  [21] and [7]. This is likely caused by a
combination of the errata items mentioned in the previous chapter and the DMA start-up time.
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5.1.1 Message Size versus Bandwidth

The results for the DMA and direct-write transfer size micro-benchmark measurements are shown in
Figure 15. First the DMA transfer function provided by the SDK library was tested over the eMesh and
eLink for different transfer sizes, capturing both the total transfer time and start-up time. Here we see a
very large portion of the time spent sending data can be attributed to starting up the DMA engine
(65.2% to 6.9%). 

This large overhead is mainly due to many nested function calls and switch statements in the provided
library functions to keep them generic. One such call is the calculation of the core global address
several times, to determine the global addresses of registers to write to. For a custom implementation,
where the DMA channel and core address are set only once on start-up, we managed to realize a
start-up overhead of only 0.7% for 8KiB transfers at 1445MB/s. These results are shown in  Figure 15
C. and Figure 15 D.
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Figure 15: Data transfer size versus bandwidth and overhead for A/B: Library provided DMA transfer. 
C/D: Custom built DMA transfer. E/F: Custom direct-write transfer
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For  Figure 15 E. and F., the DMA calls are replaced with a direct-write implementation which writes
64bit values in a loop, unrolled 8 times. The software overhead for these direct-writes is higher than
the start-up overhead measured for the DMA engine, however, similar bandwidths are achieved. This
suggests the actual achieved transfer rate is higher than what is achieved by using the DMA engine.
Also,  in practice,  the software overhead needed to send the data can be masked by transferring
results directly during calculation as is done in [21], instead of saving them to local memory first. 

None of the eMesh transfer implementations achieve the expected peak transfer rates.  There are
multiple possible causes for this, such as the errata items for the E16G301, memory access during
transfer,  the 1.5 cycle routing latency per router and alternating load and store instructions in the
direct-write case. However, since all approaches, including those of related work, come close to the
figures presented in Figure 15, it is assumed that this is a realistic representation for the achievable
bandwidth in real-world applications, and this is not investigate further.

For the eLink transfers, a peak rate of 600MB/s is expected, but only roughly 306MB/s is achieved.
This is likely related to the Parallella board hardware, and not necessarily a limit of the E16G301. A
direct copy of data in the DRAM initiated by the ARM processors achieves only 194MB/s (shown in
Table 9 p.35)). This copy only involves the DRAM, showing that memory bandwidth might be a limiting
factor.  Also the Zync host  processor and the E16G301 run at  different  clock speeds which might
influence the achievable bandwidth over the eLink.

5.1.2 eLink Bandwidth Sharing:

The 306MB/s over the eLink is achieved for 64bit sequential transfers. Theoretically this peak off-chip
bandwidth  is  only  maintainable  using  burst-mode transfer,  since  in  all  other  cases only  150MB/s
should be achievable in the best case. The effect of sharing the eLink using 64bit sequential transfers
is shown in Figure 16, where nodes simultaneously send an 8KiB packet over the same eLink. 
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Figure 16: eLink bandwidth sharing result for the row-to-eLink (blue), column-to-eLink (green) 
and all-to-eLink (yellow) configurations shown in Figure 13 (p.33)
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When  the  four  nodes  in  the  column  closest  to  the  eLink  (nodes  [0-3,3])  issue  64bit  transfers
simultaneously,  the  bandwidth  is  very  evenly  divided,  however,  as  expected,  the  total  bandwidth
achieved is only 142MB/s, much less than 306MB/s. When we let four nodes in a row (nodes [0,0-3])
send 8KiB simultaneously, the bandwidth is no longer equally divided. This is a consequence of round-
robin arbitration in the routers, as shown in Figure 17:

Although it  seems the total  bandwidth exceeds 150MB/s (70.1+46.9+35.3+35.3 = 187.6MB/s),  we
cannot simply add these figures, as the nodes finish at a different point in time. Figure 18 shows the
expected  division  of  bandwidth  over  time  in  this  situation,  and  shows  that  the  bandwidth  never
exceeds a certain maximum bandwidth, which is only twice the bandwidth achieved by node (0,3). 

This behaviour is captured in equations (6) and (7), where T[r,c] denotes the finish time for node (row,
column), N is the number of bytes sent and BW[r,c] is the average bandwidth of a node. Note that these
equations only apply if  all  nodes use the maximum available bandwidth, as in other situations the
bandwidth share per router might not be equal for both nodes. Since the eLink bandwidth is much
lower than that of the cMesh and nodes, this is the case here.
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Figure 17: Round-robin bandwidth sharing in routers where bandwidth up-stream is
limited by the East eLink
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T [ r ,c ] = T [ r ,c +1] +

1
2
N

1
2
BWmax

, T [r , 4 ] =
N

BW max

, T [r ,0 ] = T [ r ,1 ] (6)

BW [ r ,c ] =
N
T [r ,c]

= ( BW [r ,c+1 ] ⋅ BWmax

BW [r ,c+1 ] + BW max
) with BW [ r , 4] = BW max (7)

When we apply equation (6) and (7) on the situation in Figure 16 (BWmax=2*70.1=140.2 MB/s), we get
a bandwidth of 70.1MB/s for node (0,3), a bandwidth of 46.73MB/s for node (0,2) and a bandwidth of
35.05MB/s for nodes (0,1) and (0,0) respectively. This is very close to what we observe in Figure 16.

Figure 18 shows that the combined bandwidth never goes over BWmax = 140.2MB/s, much lower than
the peak achieved bandwidth of 306MB/s for a single node, and also lower than the 150MB/s that
should be possible in this case. This suggests that the burst-mode transfers are indeed broken, and
that switching overhead is introduced in the eLink arbitration.

The model in equations  (6),  (7) suggest that complete starvation cannot occur (a node will always
receive some portion of the maximum bandwidth). To verify this, in a last test-case, the east eLink is
shared by all nodes on the E16G301. The results are shown in Figure 16, where the same behaviour
as when sharing the link with four nodes is observed, except the bandwidth is equally divided across
the rows. This means that the starvation case shown in  [18] for the G4 could not be reproduced,
although the available eLink bandwidth will quickly deteriorate for nodes far away from the eLink.

5.1.3 eMesh Bandwidth Sharing

To test the effect of sharing the eMesh bandwidth, we let the nodes around node (1,2) transfer data to
node (1,2), so that they share the router of this node.  Figure 19 we see that as long as only three
nodes share the router (result 1-4), they all reach their peak bandwidth and get a fair share of the
router  as  expected.  When all  four  surrounding  nodes transfer  data  simultaneously  (result  5),  the
bandwidth is no longer equally divided. This is due to the fact that all bandwidths combined exceed the
maximum data-rates of the destination node's memory.
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Figure 19: Bandwidth for cMesh sharing test cases. 1: Excluding right node. 2: Excluding top node. 
3: Excluding left node. 4: Excluding bottom node. 5: All nodes, single target. 6: Multiple targets
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If we change the destination of the top and right nodes such that they still share the same router, but
no longer write to the memory in node (1,2) (result 6 in Figure 19), we see that all the nodes reach
their peak bandwidth again. This suggests that the limitation is not in the router, and that this can
maintain fair  round-robin arbitration at  maximum bandwidth as long as the outgoing links are not
saturated. 

For our second test case (Figure 14, p.33), we let a single node send data across the network, and
introduce multiple crossing streams. No effect of the crossing streams on the achieved bandwidth is
expected since these streams do not write to the same node. This is confirmed in Figure 20.

The results in Figure 20 show that in practice, placement of nodes on the E16G301 will not have much
influence on the achievable bandwidth between nodes, even in case of crossing traffic, as long as the
total bandwidth over a link does not exceed the maximum bandwidth. Longer and shared routes will
have increased latency, however [18] shows that this latency is minimal compared to the time it takes
to actually transfer all data.

5.1.4 E16G301 Power Consumption

The results of the power measurements will be discussed in three parts, the eCore, eMesh and eLink
power measurements. All measurements are performed for a range of twelve different core voltage
settings, where the lower limit of 0,825 volt is a limitation of the regulator, and the upper limit of 1.075
is chosen to avoid damage to the processor. The IO voltage is not changed.

eCore power consumption

To measure the eCore power consumption, the eCores are subjected to five different load cases at all
core voltages whilst measuring the IO and Core power consumption. The following load-cases were
used:

1. Memory: 64Bit memory access on every instruction (mixed data loads and stores)

2. FPU: Only FMADD instructions

3. IALU: Only integer ADD instructions

4. FPU+IALU: Alternating integer add and floating-point add instructions

5. FPU+Memory: Alternating memory load and FMADD instructions
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Figure 20: Bandwidth for node (2,0) to node (2,3) versus number of crossing streams
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The load cases are written in the assembly language to assure maximum performance, and care has
been taken to avoid pipeline stalls due to registry dependencies or memory loads. Each load case
consists of a loop repeating 512 hand-written assembly instructions indefinitely. The implementation of
the load-cases can be found in appendix B (p.74).

NOTE: All tests were performed after pre-loading dummy-data into the memory and registers. This
was found to have a very large impact (roughly 30%) on the power consumption of the load-cases
involving integer or floating-point computations.

In addition to the presented load-cases, the power consumption of the assembly implementation of the
matrix multiplication used in  [18] was measured. This was obtained from the Adapteva open Github
repositories [23]. The core power and IO power for all load-cases are shown in Figure 21, along with
the single data point provided in the E16G301 datasheet for 600MHz at 0,86V. 

The datasheet measurement  point  in  Figure 21A shows a power  consumption of  0.69Watt  for  an
unknown load-case at 600MHz with a core voltage of 0.86 Volt. If we assume the load-case reaches
100% of peak performance, this suggests a power efficiency of 27.88 GFLOPS/Watt.  This can be
compared to the achieved power efficiencies for our load-cases.

Figure 22 shows the achieved performance per load-case for both the FPU and IALU execution path
and the achieved processor efficiency (in GFLOPS/Watt) at different core voltages. 
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Figure 21: E16G301 eCore power measurements (fC=600MHz) A: Core voltage vs. chip core power. 
B: Core voltage vs. Parallella board IO power
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In Figure 22B we see that none of the load-cases achieve a power efficiency of 27.88 GFLOPS/Watt at
0.86 Volt. The FPU load-case comes closest with 26.1 GFLOPS/Watt. This suggests that either the
load-case used for the measurements in the datasheet did not reach 100% of peak performance, or
that only part of the hardware was active during the measurement. For real-word applications, the use
of the IALU to load data from memory and store the results is inevitable. 

The matrix multiplication and the FPU+Memory load-case show the effect of using the FPU, IALU and
memory  in  more  realistic  usage  scenario's.  Power  efficiencies  of  21.8  GFLOPS/Watt  and  16.3
GFLOPS/Watt  are  achieved  at  a  core  voltage  of  0.86V  for  the  FPU and IALU respectively.  The
difference in power efficiency is due to the fact that for the matrix multiplication load-case, the IALU,
and consequently the memory,  is  used less  than for  the FPU+Memory load-case.  In  practice the
efficiency  of  an  application  can  thus  be  improved  by  reducing  the  amount  of  required  memory
accesses.  Also,  the  core  voltage  could  be  reduced,  however,  the  datasheet  notes  that  highest
achievable frequency at 0,86 volt is 600MHz, suggesting that lowering this voltage will also result in a
lower maximum operating frequency.  In our measurements no faults  were discovered running the
E16G301 at 600MHz at 0,825 volt, but this could differ per processor as we only tested one sample.

A last important observation is that leaving eCores idle will  still  result in significant leakage power
consumption (0.22Watt at 0.86 volt for the entire processor). The means that if not all eCores in a
system are used, the total efficiency will drop very quickly. 

eMesh power consumption

The eMesh power consumption can be measured by looking at the difference in power consumption
for two identical data-transfers that take a different route. First, we let all nodes in column 2, send data
to their neighbours in column 3. Next, the nodes in column 2 stop sending data, and the nodes in
column 0 start sending data to column 3. The difference in power consumption is then attributed to the
use of 8 additional links and routers. This is shown in Figure 23.

The total power consumption difference at 0.86V is 104mW, or 12.9mW per Router/Link pair. Since no
data is available for comparison, it is hard to verify whether this is an expected result, but it seems
reasonable within the results we have seen so far.  In any case, it  is worth optimizing for reduced
communication bandwidth if power efficiency is important. 
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Figure 23: E16G301 eMesh power consumption for long and short data routes (fCLK=600MHz) 
A: Total chip core power vs. core voltage. B: Total Parallella board IO power vs. core voltage
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eLink power consumption

The power of the eLink is sourced by the IO power rail shared with multiple other devices. This makes
it somewhat harder to measure. Here, we alternate between two cases, one sending data over the
eLink (Active case in Figure 24b), and one doing nothing (Idle case in Figure 24b). The difference in
power consumption for these two case is caused by the eLink (eLink plot in Figure 24b). 

Based on  Figure 24b, and an achieved bandwidth of 150MB/s, the communication costs over the
eLink are roughly 10mW for 150MB/s data transfer one-way. Significant bi-directional data-transfer
was not possible since the achievable ARM-to-Epiphany transfer rates are very low.

In another measurement we disable and enable the NORTH, SOUTH and WEST eLink hardware and
measure the effect on the IO power consumption. The results are shown in Figure 24a. Here a 27mW
difference in power consumption is observed for the combined North, South and West eLink (3-eLinks)
standby power. This suggests a total combined standby power of 36.3mW for all four eLinks.

Note that there is no way for us to measure if there is any remaining standby power being consumed
since we cannot separate the E16G301 IO power from the other devices on this rail. However, judging
by the idle power observed for the eCores (Idle case in  Figure 21a), it  is likely that some leakage
current is present for the eLink hardware. 

E16G301 combined power consumption and efficiency

In practice, not all  hardware will  be used simultaneously. This means the measured power figures
cannot simply be added together to get to a total system power consumption. However, if the load
percentages of  the  IALU and FPU,  and the  network  behaviour  of  an  application  are  known,  the
measured  power  consumption  figures  can  be  used  to  get  a  good  estimate  of  the  total  power
consumption of an application. 
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Figure 24: E16G301 eLink power consumption. A: Standby power measurement for North, South and West eLink.
B: IO power consumption without and without eLink data transfer one-way (fCLK=600MHz)
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5.1.5 Micro-Benchmark result summary

So far we have seen that the data-transfer rates achieved in practice are significantly lower than the
specified peak performance, partly caused by errata items of the hardware that was used, and for
some part caused by a large start-up overhead introduced by the provided libraries. The latter can be
improved by using a custom data-transfer implementation. Also, DMA descriptors could be reused to
reduce the required start-up time even further. 

For external  communication over the eLinks, performance drops significantly when the eLinks are
shared. This is likely due to breaking of the burst-mode transfers. This means it is important that either
one node gets exclusive access to an eLink, or that some form of scheduling / synchronization is
applied to share the eLink efficiently if maximum bandwidth is desired.

Finally, a detailed breakdown of the eCore, eMesh and eLink power consumption has been presented,
which shows that the power consumption figures presented in the datasheet likely do not include all
hardware components. A peak efficiency of 21.8GFLOPS/Watt was achieved at 600MHz for the matrix
multiplication application presented in [18], with a core voltage of 0.86 Volt. Slightly higher efficiencies
are achieved at lower core voltages, however it is uncertain if these voltages can be sustained error
free on all E16G301 processors. The achieved power efficiencies do not include any on or off-chip
network traffic.
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6 Front-end Task Implementation

Here we present the results for the Hilbert filter, bandpass filter and beam-former tasks individually. First
a breakdown of how the Hilbert filter was optimized is given, and it is shown to what extend this can be
done automatically. This is done for a fixed input sample set (video) size of 512 samples, at multiple
decimation factors. The same is done for the bandpass filter and beam-former. This chapter concludes
with power measurement results for the best performing implementations of the tasks.

6.1.1 Hilbert Filter Optimization

For the Hilbert filter we start with the convolution implementation shown in Snippet 1. Here we iterate
through the real valued input samples using the appropriate decimation factor in an outer loop, and
perform the convolution per output sample in an inner loop. It is  assumed that the coefficients are
stored in  reverse order  for  convenient  loop iteration.  The input  samples  are padded with  zeros in
memory on each end so that we don't have to worry about exceeding the input array limits. Multiplying
the filter coefficients with this zero padding introduces a few additional computations, but was found to
be faster than treating the edges in a separate case for small filter sizes.

uint32_t n,n_out=0;
float re,im;
const float *cr = (const float *)&coeff_r[0];
const float *ci = (const float *)&coeff_i[0];

//perform convolution
for (n=0; n < INPUT_LENGTH; n+=DECIMATION) {

re=0;
im=0;
p_in = (float *)&samples[n-(FILTER_LENGTH/2)+1];

for (s=0; s < FILTER_LENGTH; s++) {
re += p_in[s] * cr[s];
im += p_in[s] * ci[s];

}

vid_out_r[n_out]=re;
vid_out_i[n_out]=im;
n_out++;

}

Snippet 1: Basic direct-form time domain convolution implementation

Figure 25 shows multiple performance results of this filter implementation, given as a percentage of
peak performance. Here “Throughput” denotes the achieved output sample rate of a 32-tap Hilbert filter.
“FPU” and “IALU” denote the percentage of peak floating point and integer performance respectively.
“Dual-Issue” denotes the dual-issued instruction rate, and “Reg. Stalls” and “Mem. Stalls” denote the
rate of pipeline stalls due to register dependencies and instruction fetches respectively. All other activity
of the processor, such as branching, updating status flags etc. is shown as “Control”. 
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Note  that  the  FPU results  can  be  a  mix  of  fused-multiply-add  (FMADD)  and  other  floating  point
instructions. Ideally only FMADD instructions are used to calculate the output samples, in which case
the  FPU  and  throughput  percentages  should  be  identical.  The  best-case  scenario  is  when  the
throughput is at 100%, which can only occur when FPU is at 100%. This, in turn is only possible when
there are very little (no) control instructions and all necessary IALU instructions are issued as dual-
issue instructions as shown in Figure 7 (p.20).

A best-case throughput of 19.2% is achieved in Figure 25. The IALU instruction rate is roughly 3 times
higher than that of the FPU, and only a small fraction is issued as dual-issue instructions. This, and the
high rate of control instructions suggests that the loop overhead is a significant bottleneck. When the
inner loop is unrolled manually by a factor 8, the throughput of the filter increases to 30% of peak as
shown in Figure 26. 
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Figure 25: 32-tap Hilbert Filter (basic) performance metrics per eCore versus filter decimation 
for 512-element input video size
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Figure 26: 32-tap Hilbert Filter (manually-unrolled) performance metrics per eCore versus 
filter decimation for 512-element input video size
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As expected, both the FPU and IALU instruction rates go up, the dual-issue rate increases and the
processor spends less time issuing control instructions. However, also a steep increase in register
dependency pipeline stalls is observed. These are the result of inefficient register allocation by the
compiler,  where  the  accumulation  variables  re and  im are  reused  for  every  fused  multiply-add
instruction. No compiler optimization options were found that improved this. 

It is possible to let the compiler handle the loop unrolling automatically by passing “-funroll-loops” as
an argument. This option is not enabled in any of the default  compiler optimizations settings. The
results of the original Hilbert filter with this option enabled are shown in Figure 27.

The results in Figure 27 are bit better than for the manually unrolled implementation in Figure 26 when
there is no decimation in the filter (decimation=1). The reason for this is mainly an increase in dual-
issue instructions, allowing for an overall increase in IALU and FPU instructions. Why the compiler
does not manage to achieve this for the other cases is unclear. 

A best-case throughput of only 33.1% of peak performance is achieved, dropping to around 28% when
decimation is applied in the filter. This is mainly due to the high IALU instruction rate, a significant
number of pipeline stalls due to register dependencies (13.7%-15.1%) and a relatively large portion of
time spent issuing control instructions (4.7%-7.7%). Also, it should be noted that enabling the “-funroll-
loops” compiler option for the entire application results in significant code-size increase, and in many
cases this option resulted in failed compilation due to the resulting code not fitting in memory. For this
research this option was only enabled for specific functions by using GCC compiler pragma's. 

The IALU instruction overhead is caused mostly by load operations required to load the appropriate
coefficients and input samples from memory. This can be improved by unrolling the loop over video
items (multiplying multiple video samples with the same coefficient in the inner loop) instead of over
coefficients (multiplying multiple coefficients with multiple video samples). This allows the reuse of the
coefficients,  reducing  the  number  of  required  memory  accesses.  Also,  this  resolves  most  of  the
register dependencies, as for multiple output samples more than one accumulator variable is required.
The results of this approach are shown in Figure 28.
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Figure 27: 32-tap Hilbert Filter (compiler-unrolled) performance metrics per eCore versus 
filter decimation for 512-element input video size
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As expected the IALU overhead and register dependency stalls are reduced significantly. We now
manage to achieve a throughput of 53.1% in the best-case scenario for a decimation factor of 8, with
other decimation factors achieving between 48.8% and 52.4% of peak. Further optimizations could be
performed by further unrolling the inner loop to reduce the required number control-instructions. Also it
should be possible to increase the ratio of dual-issue instructions, however, we did not manage to
achieve this using the provided C compiler. No attempt was made to improve this using assembly
code. For small filter sizes it  might be possible to reduce the number of required IALU operations
further by keeping coefficients in the registers permanently. 

Floating-point vs. fixed-point input samples

So far we have been working with floating point input samples. However, in practice, the ADC's will
output fixed-point samples. This means a conversion is required. In Figure 29 we show the effect of
using fixed-point input samples on the performance achieved in Figure 28 by changing only the input
video data-type.

We see a  dramatic  performance  decrease from 53.1% to  12.9% of  the  peak  throughput,  mainly
caused by a large increase in register stalls. Also the FPU instruction rate is higher than the achieved
throughput, indicating that not only fused-multiply-add instructions are being used. This is caused by a
conversion performed by the compiler just prior to multiplying the input samples with the coefficients.
This conversions takes more than one clock cycle to complete, stalling the pipeline. This could be
improved by converting the input samples prior to filtering.

Ultimately,  in  the best-case,  at  least  one clock cycle  per  input  sample is  required to  perform the
conversion, reducing the overall performance of the Hilbert filter tasks in any real-world system. The
bandpass filter and beam-former do not suffer from this problem, as these will work on the single-
precision floating-point output of the Hilbert filter stage.

48 / 82

Figure 28: 32-tap Hilbert Filter (video-unrolled) performance metrics per eCore versus 
filter decimation for 512-element input video size
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6.1.2 Bandpass Filter Optimization

For the bandpass filter we take the same approach as the Hilbert filter. However, where the Hilbert
filter operates on a real-valued input stream, the bandpass filter operates on a complex-valued input
stream. This results in a full-complex multiplication, requiring more operations, as shown in Snippet 2.

r0 += p_in_re[s] * c_re[s] - p_in_im[s] * c_im[s];
i0 += p_in_re[s] * c_im[s] + p_in_im[s] * c_re[s];

Snippet 2: Complex multiplication, direct-form

The ordering of the calculations matters due to rounding-errors. The compiler has to take this into
account,  which  limits  the  options  to  optimize  the  statements  above.  The  best  case  performance
measured for the implementation above reaches 47.9% of peak, shown in Figure 30.
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Figure 29: 32-tap Hilbert Filter (uint32_t input) performance metrics per eCore versus 
filter decimation for 512-element input video size
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Figure 30: 32-tap Bandpass Filter (initial approach) performance metrics per eCore versus filter
decimation for 512-element input video size
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FRONT-END TASK IMPLEMENTATION  6 Front-end Task Implementation

Figure 30 shows that the compiler does not only use fused-multiply add instructions, whereas when we
split this multiplication over multiple lines as shown in Snippet 3, we get the results in Figure 31.

r0 += p_in_re[s] * c_re[s];
r0 -= p_in_im[s] * c_im[s];
i0 += p_in_re[s] * c_im[s];
i0 += p_in_im[s] * c_re[s];

Snippet 3: Complex multiplication, split direct-form

There is a significant performance difference between the results in  Figure 30 and  Figure 31. It is
possible to allow the compiler to re-order floating point operations automatically by setting the “-ffast-
math” and "-fassociative-math" options during compilation, however, this can have unpredictable side-
effects, and can violate existing floating-point standards. This option was tested (not shown here), and
the throughput was still roughly 6% worse compared to the results shown in Figure 31.

The best-case performance of the bandpass filter in Figure 31 is 73.1% when no decimation is applied,
gradually going down to 66.8% when the decimation factor increases. This is much better than was
achieved for  the  Hilbert  filter.  The main  reason for  this  that  the  full-complex  multiplication  in  the
bandpass filter requires more FPU operations per input and output sample. This reduces the ratio of
load and store operations per FPU operation, which leads to a better ratio between FPU and IALU
instructions, and consequently a better throughput. There is still a significant portion of time spent on
instructions not directly related to calculating output samples. We did not manage to improve on this
using the provided C compiler. 

6.1.3 Beam-former Optimization

Figure 32 shows the results that were achieved for the beam-former, multiplying all samples in a single
channel with a coefficient, and adding the result to an output beam. This process can be repeated for
every channel, ultimately forming a single beam out of multiple input channels. There is no decimation
in the beam-former. Instead the performance is plotted against several input video sizes.
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Figure 31: 32-tap Bandpass Filter (split-calculation) performance metrics per eCore
versus filter decimation for 512-element input video size
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FRONT-END TASK IMPLEMENTATION  6 Front-end Task Implementation

A large IALU instruction overhead and some register stalls are observed. These are mainly due to the
high amount of memory accesses required for every sample, since the current output value has to be
fetched, the input sample has to be fetched, and the output value needs to be stored again for a single
multiplication. This overhead can be reduced by processing multiple channels simultaneously, so that
the current output beam-value can be re-used. This is done in Figure 33, where two input channels are
processed simultaneously.

As expected, a decrease in the IALU overhead and an increase in overall performance is observed. It
is  important  to  note  that  in  practice  processing  multiple  input  channels  simultaneously  might  be
difficult, since these would have to fit in local memory. Using small input sizes will  introduce some
overhead as shown in Figure 33.
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Figure 32: Beam-former performance for a single channel, multiple input lengths
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Figure 33: Beam-former performance while processing two channels simultaneously 
versus multiple input lengths
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FRONT-END TASK IMPLEMENTATION  6 Front-end Task Implementation

6.1.4 Task Power Consumption

The power consumption of the Hilbert filter and bandpass filter without decimation (decimation=1), and
the power consumption of the beam-former for input video lengths of 512 samples has been measured
during operation at several core voltages. The results are shown in Figure 34.

The core power for all the tasks is slightly higher than was reported in the datasheet, and lower than
our previous test-cases. We would expect the bandpass filter to consume the most power, as this is
the best-performing tasks of the three, and uses both the FPU and IALU at a higher rate than both
other tasks. Interestingly, it consumes the least power of the three tasks. When we replace the input
data with 0-values, the power consumption drops significantly and the Bandpass filter now consumes
more power than the Hilbert filter, as shown in Figure 35. This suggests that part of the lower power
consumption of the bandpass filter can be explained by a difference in the input data, however the
beam-former still consumes the most power. This is not investigated further.

With the results in Figure 34, we achieve a power efficiency of 14.35 GFLOPS/Watt for the Hilbert filter
and 19.47 and 16.22 GFLOPS/Watt for the bandpass filter and beam-former respectively. 
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Figure 34: Core (left) and IO (right) power consumption for each individual task
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Figure 35: Core power consumption for each individual task (0 values as input samples)
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6.1.5 Task Implementation Summary and Further Improvements

So far  we have seen that  the  performance of  the individual  tasks  when using the C compiler  is
dependent on many factors. Several compiler options can be used to improve overall performance at
the cost of memory size and loss of control. The peak throughput achieved for the Hilbert filter is
53.1% of the theoretical peak performance, for the bandpass filter and beam-former this is 73.1% and
64.2% respectively.

Achieving  better  performance  using  the  provided  C compiler  proved  to  be  difficult,  however  it  is
expected that  some performance can still  be gained by further inspection and optimization of  the
assembly output,  as still  not  all  IALU and FPU instructions  are issued simultaneously,  and some
register dependency stalls still occur for all three tasks. 

Also,  using another  convolution approach entirely,  such as  a direct-form FIR filter  approach or  a
frequency domain approach might improve performance. A 16-tap direct-form FIR filter was reported to
achieve  82%  of  peak  performance  in  [24].  The  main  reason  we  do  not  achieve  this  level  of
performance  here,  is  that  complex  coefficients  are  used.  For  a  16-tap  real  valued  FIR  filter,  all
coefficients can be kept in the register file for fast access, however for a complex valued filter with 32
coefficients as in our case, this would require all  registers in the register file.  Splitting up the filter
kernel will introduce more control overhead, and will require a summation of intermediate results.

Performance  of  the  beam-former  can  be  improved  by  processing  more  than  two  channels
simultaneously, however the memory footprint of the channels will quickly become a bottleneck in this
approach.

The measured power efficiency of the individual tasks are 14.35 GFLOPS/Watt for the Hilbert filter and
19.47 and 16.22 GFLOPS/Watt  for  the bandpass filter  and beam-former  respectively.  No network
traffic was present in any of these measurements. The input data that was used for all tasks was pre-
generated and stored in local on-chip memory
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7 Front-End Receiver Design

In this chapter we present several different design considerations for the beam-former application and
the  effect  of  the  Epiphany  architecture  on  their  implementation.  First  we  introduce  the  topic  of
communication between processes on the Epiphany architecture.  Next  we discuss how processing
loads can be matched by splitting up a problem into smaller concurrent tasks. This is then used to
introduce  a  possible  mapping  of  the  beam-former  on  the  Epiphany  architecture  and  measure  it's
performance and power-efficiency.

7.1 PROCESS COMMUNICATION

The Epiphany architecture is optimized for on-chip writes. Although the flat memory space makes a
shared memory approach possible, accessing data that is not in local memory results in slow read
transactions over the network. Instead, for optimal performance, non-local data should be copied into
local memory through write transactions before it is accessed. Since write transactions can only be
issued from the node holding the data, a form of communication is needed for efficient data transfers
between nodes. Typically, message passing is used for this.

In message passing systems, data is moved from the address space of one process to that of another
process through explicit communication requiring coordinated actions on both sides. It has been applied
on the Epiphany architecture in [21] and [7], showing that message passing can indeed achieve high
performance on the Epiphany architecture. 

The implementation in  [7] uses a send and receive buffer approach, where duplicate copies of data
exist in memory for every transaction (one in the send buffer, and one in the receive buffer). To keep the
memory footprint small, data is transferred in small blocks, introducing a performance penalty due to
DMA start-up overhead. Another approach is used in [21], where results are written to a receiving buffer
directly using direct-write transactions. Here there is no memory or  processing overhead, and high
data-rates are achieved. This seems like a better approach as it can also be used efficiently between
tasks running on the same node if needed.

When tasks are blocked upon lack of data, or in case of input buffer overflow, the processing load
between tasks must be well balanced. This is required if data-loss is not allowed. If the tasks are not
well balanced, idle time will be introduced for the processes that have to wait for data being consumed
or produced. In some cases this idle time can be compensated for by scheduling multiple tasks on the
same node  to  fill  the  idle  times.  In  order  to  do  this  efficiently  on  the  epiphany  architecture,  task
implementations and states need to be kept in local memory and a scheduler needs to be implemented.

Due to the limited memory on the Epiphany this approach can be impractical, and the high performance
tasks implemented in [7], [18] and [21] run only one task per mesh-node that uses most of the available
memory. Another option to balance the load of individual tasks is by decomposition. Tasks are split into
multiple smaller parts that all match in terms of processing requirements. This is discussed in the next
section.
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7.2 PROBLEM DECOMPOSITION

Problem decomposition is the process of identifying parallel sub-tasks within a problem. It can can be
divided into domain decomposition and functional  decomposition.  With domain decomposition,  the
input data that needs to be processed is divided over multiple tasks that then process it concurrently.
Functional decomposition focusses on separating the problem into functionally different tasks, each
processing a different step in the algorithm. Figure 36 shows an example of both approaches:

7.2.1 Filter Stage Decomposition

Domain decomposition of the convolution operation in the filter stages can be done using the overlap-
save or overlap-add methods [11]. The input data is split into smaller sections and each part is solved
separately. A small overlap is required between the sections for correct operation. In the overlap-save
method, some redundant samples are computed that are discarded, whereas with the overlap-add
method partial results need to be added for the final result. This is shown in Figure 37.

Functional decomposition of the filters can be done by splitting the convolution kernel over multiple
processes. This increases parallelism of the filters and reduces the processing load per task. Here
each task still processes the entire input stream. This can introduce some communication and memory
overhead since all tasks will need a local copy of the data for optimal performance.
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Figure 36: Domain versus Functional Decomposition
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Hilbert and bandpass filter throughput versus decomposition

In Figure 38 the throughput of both the Hilbert and Bandpass filters are plotted for different video input
sizes, and three different filter coefficient lengths. The results in Figure 38 A. and B. for video lengths
of 512 elements correspond to the results obtained for the filters in the previous chapter. 

For  small  input  video  sizes,  applying  decimation  will  result  in  the  loop-unrolling  no  longer  being
possible (for  instance for  128 input  samples with a decimation factor  of  32 will  result  in 4 output
samples, whereas we apply a loop unrolling factor of 8). These cases have not been measured. 

When no decimation is  applied,  the output  video size is  the same as the input  video size.  Each
complex output video sample consists of two 32bit single precision floating point numbers, results in
64bits per sample, or 8KiB and 16KiB of data for 1024 and 2048 output samples respectively. This size
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Figure 38: Hilbert and bandpass filter throughput versus filter size, input size and decimation factors
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is impractical in our situation, as the output video will either serve as the input for a next filter stage, in
which case it will be zero padded and will no longer fit in a single 8KiB memory bank, or will go to the
beam-former, where at least two channels should be processed for performance, making these video
sizes infeasible. For this reason these cases are not measured.

7.2.2 Beam-Former Decomposition

Domain decomposition of the beam-former stage can be done by processing the phase shift for all
channels separately, and by splitting the summation over multiple stages as shown in Figure 2 (p.14).
The phase-shift operation can also be further split into multiple sections (one core processing the first
half of the input video, and another core processing the second half). Functional decomposition can be
done by separating the phase-shift and summation. 

Figure 39 Shows the input throughput of the beam-former in MS/s (rather than a percentage of peak
performance as in Figure 33) versus the input video size per channel. The output throughput can be
derived from this by dividing the input throughput by the number of input channels per beam.

7.2.3 Load Balancing

Although problem decomposition can be used to match the task loads over multiple processors, it can
introduce  new  dependencies  as  with  the  overlap-add  method  in  Figure  37.  Also,  if  functional
decomposition is used, sequential tasks may still be unbalanced. This is the case for the mapping
used on the Recore Xentium RFD, where for instance the band-pass filter is ~15% slower than the
Hilbert filter. In the following section an example mapping of the front-end receiver is presented that
takes the processing times of the individual tasks into account to minimize this idle time.
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Figure 39: Beam-former input throughput in MS/s versus the input channel video
size in number of samples (64bit/sample)
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7.3 EXAMPLE FRONT-END RECEIVER MAPPING

In this section we present a sample mapping of a front-end receiver chain on the E16G301. The same
load-case as that was used for the Recore Xentium RFD is investigated, however as we only have one
E16G301 at our disposal, only part of the load-case will  be mapped onto a single processor. The
mapping focusses on achieving a good load balance between processors and minimizing the influence
of data communication on the throughput and/or latency.

7.3.1 Load case and video sizes

The load-case used on the Recore Xentium RFD is repeated in Table 10 for convenience. Based on
Figure 38, we can say that for a decimation of 8 in the Hilbert filter, the best performance is achieved
for  input  video sizes  of  512 samples  or  higher  for  a  32-tap filter.  For  the bandpass filter,  with  a
decimation factor  of  1,  all  input  video sizes of  up to 512 samples are suitable.  The beam-former
performs best at 128 samples per input video or more. For this research a bandpass filter and beam-
former input video size of 128 video samples is chosen. Consequently, with a decimation factor of 8 in
the Hilbert filter task, an input video size of 1024 samples is used for the Hilbert filter.

Specification Value

Hilbert filter Decimation (DHF) 8

Bandpass filter decimation (DBPF) 1

Number of input channels (NC) 16

Number of output beams (NB) 8

Hilbert and bandpass filter taps (NT) 32

Table 10: Epiphany architecture peak throughput figures for the front-end application domain

7.3.2 Task Mapping on the E16G301

For 32-taps, an input sample size of 1024 samples and a decimation factor of 8, the Hilbert filter can
sustain 5.1 MS/s as shown in Figure 38. A 32-tap bandpass filter can only sustain 3.4 MS/s for an input
video size of 256 samples without decimation. In order to balance the loads of the filters, a form of
domain decomposition is applied. The output of two Hilbert filter tasks is split over thee bandpass filter
tasks,  all  running  on  dedicated  nodes.  This  allows  all  tasks  to  run  at  their  maximum throughput,
reaching a maximum throughput of 10.2 MS/s, or 5.1 MS/s per channel, using five mesh nodes for the
filter tasks. 

A single beam-former task can sustain a total input throughput of 87 MS/s if two 128 sample channels
are processed simultaneously, as is shown in Figure 39. For eight output beams, this allows 5.4 MS/s
per channel of input throughput if two channels are processed. This is slightly higher than the 5.1MS/s
achieved for the filters, introducing an expected 6.2% of idle time for the beam-former tasks. This
configuration is mapped twice onto a single E16G301, and is shown in Figure 40.
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On the Parallella board, not all eLinks are available, and the bandwidth for transferring data from the
host processors to the E16G301 was shown to be limited. To allow a more realistic test-scenario on
the E16G301, the remaining nodes are used to generate video data on-chip. It is assumed that the
eLinks can sustain 600MB/s instead of the 306MB/s measured in chapter 5. This is done based on the
assumption that the measured bandwidth of 306MB/s is currently limited by the host hardware, and not
necessarily by the eLink.

The required rates for this mapping can be calculated as shown in equation (8) and (9). (8) shows the
input  bandwidth for  a single Hilbert  filter  tasks,  based on the time it  takes to process 1024 input
samples  of  32-bits  each.  Four  Hilbert  filter  tasks  are  mapped,  so  the  combined input  bandwidth
required is 652.8 MB/s. For the beam-former output, the input rate of the channels is 5.1 MS/s. With
this rate, 8 output beams are formed, with samples consisting of 8 bytes each. Two of these tasks are
mapped on the platform, resulting in an output bandwidth of 652.8 MB/s. Both rates are higher than a
single  eLink  can  support,  so  this  has  to  be  split  over  two  ingoing  and  outgoing  eLinks.  This  is
simulated by two separate source and sink nodes in Figure 40.

BW HF_IN = (32bits ⋅1024 ) ÷
128Samples

5.1 MSamples /s
= 163.2 MB /s (8)

BW BEAM_OUT = 8 ⋅ 5.1 MSamples /s ⋅ 8bytes = 326.4 MB / s (9)

A schedule is needed to allow the sharing of the three bandpass filter tasks by the two Hilbert filter
tasks. A schedule for the Hilbert filters and bandpass filters that allows this sharing is shown in Figure
41. A round-robin schedule is used in the beam-formers that handles all input bandpass filters.
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Figure 40: Task mapping of 4 channels, 8 partial beams on the E16G301
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FRONT-END RECEIVER DESIGN  7.3 Example Front-End Receiver Mapping

Note  that  many  other  possible  mappings  and  decompositions  exist.  Also,  in  many  cases  the
scheduling can become quite complex. An unfruitful attempt was made to use a tool called SDF3 to
automate  this  mapping,  decomposition  and  scheduling  process.  A  summary  of  this  attempt  is
presented in appendix E: SDF3: Automated MPSOC Task Mapping.

7.3.3 Data Communication

In  the  schedule  in  Figure  41,  tasks  immediately  begin  processing  the  next  set  of  data  after  the
previous computation has finished. To avoid overwriting data currently being used for computations on
the receiving node, a double buffer  scheme is used where one input  buffer  is  being filled by the
preceding task, and the other is being used for calculations on the current node. Data communication
is done through direct-writes and is blocking, meaning that if  a buffer is being used, or is full,  the
producer has to wait until it becomes available. This buffer and communication scheme is shown more
clearly in Figure 42 (note that only one bandpass filter task is shown, where in practice the Hilbert filter
nodes alternate between the three bandpass filter nodes according to the schedule in Figure 41).
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Figure 41: Hilbert filter and bandpass filter schedule used for mapping in Figure 40
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Figure 42: Front-end receiver mapping communication and buffer scheme
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FRONT-END RECEIVER DESIGN  7.3 Example Front-End Receiver Mapping

The Hilbert filter nodes have two input buffers for 1024 real-valued samples each, padded with 32
zeros on each end. This results in 4.3KiB per input buffer. The bandpass filter nodes have two input
buffers for 128 complex-valued input samples, padded with 32 zeros on each end. This results in
1.5KiB per input buffer. Finally the beam-former has two input buffer pairs per bandpass filter, of 128
complex-valued elements each, resulting in 6KiB per pair for all bandpass filter nodes.

7.3.4 E16G301 Front-End Receiver Performance 

Figure 43 Shows the achieved output throughput, floating point performance and slack times per tasks
in the front-end receiver mapping shown in Figure 40, as well as several other performance metrics. 
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Figure 43: Frond-end receiver mapping performance results versus core function. A: Output throughput. 
B: Dual Issue MOPS. C: FPU MFLOPS. D: Wait Times. E: IALU MOPS. F: Register Access Stalls
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FRONT-END RECEIVER DESIGN  7.3 Example Front-End Receiver Mapping

When we look at the achieved output throughput per task in Figure 43 A. we see that all tasks suffer
from a significant performance drop compared to the initial performance measurements (HF: 5.1MS/s
to 4.3MS/s, BPF 3.4MS/s to 2.9MS/s and BEAM: 87MS/s to 68.4MS/s). This drop is caused by the
synchronization and control overhead required to achieve the schedule in  Figure 41, as well  as a
mismatch in throughputs per tasks. The combined overhead and slack-time is shown in Figure 43 D.
The difference between the minimum overhead and the maximum overhead is caused by waiting on
input data or output buffers to become available. A fraction of the minimum overhead can also be
caused by this, however the exact fraction can not be determined based on this measurement data. 

Further investigation is required to determine the exact cause of the performance drop of the tasks. It
is likely that another mapping or schedule exists that performs better than what is presented here,
however this is not easy to determine. For this research, the results in  Figure 43 will  be used for
comparison with the Recore Xentium RFD.

Comparing the E16G301 and Recore Xentium RFD

Unfortunately we can only compare the Recore Xentium RFD based on performance per task and the
front-end receiver as a whole. Also, the cores feature different amounts of execution units, the data-
type used is  different,  the used clock  frequencies  are  different,  both chips  are  implemented in  a
different technology, and the task implementation was not done in the same programming language.
This means the comparison only says something about the better performing implementation and chip,
and does not say much about which architecture is more suitable for Radar applications.

Table 11 Shows the processing times for the individual tasks for both the E16G301 and the Recore
Xentium RFD. Here we see that the input/output bandwidth and task loads are more evenly balanced
for the E16G301 implementation, allowing for a higher sustainable throughput, even though the actual
processing times are higher. For the Epiphany, a sustained input throughput of 4.3*DHF = 34.4 MS/s is
achieved. The Xentium RFD can sustain an input samples rate of 25MS/s, which is mainly limited by
the input bandwidth of the device.

Task to Process
Input

Samples
Output

Samples
Processing
Time / Core

Idle Time / Core

Recore Xentium RFD

Hilbert Filter (HF) 1024 128 12 μs 29 μs

Bandpass Filter (BPF) 128 128 14 μs 26 μs

Partial Beam-Forming (PF) 256 512 10 μs 12 μs

E16G301

Hilbert Filter (HF) 1024 128 29.8 μs 4.8 μs

Bandpass Filter (BPF) 128 128 44.1 μs 7.1 μs

Partial Beam-Forming (PF) 256 1024 29.9 μs 2.9 μs

Table 11: Recore Xentium RFD and E16G301 front-end receiver performance comparison

Note: The comparison between the beam-former tasks is not entirely fair, as with our implementation,
16  2-channel  intermediate  beams  are  formed,  and  on  the  Recore  Xentium  RFD  8  4-channel
intermediate beams are formed.
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FRONT-END RECEIVER DESIGN  7.3 Example Front-End Receiver Mapping

7.3.5 E16G301 Front-End Receiver Power Consumption

Figure 44 shows the measured power consumption during operation of the front-end-receiver. Some of
the consumed power is used by the video sources and sinks, which are not present in a real-world
implementation. These video sources and sinks only execute IALU operations, based on which we can
assume that these nodes will have a similar power consumption as the “Memory” micro-benchmark
shown in Figure 21 (p.41). This is used to estimate the portion of the power consumed by the front-end
receiver tasks and network traffic, resulting in the estimated power consumption shown in Figure 44.

At  the  datasheet  voltage of  0.86V,  the  estimated power  consumption  is  0.49  Watt.  In  total,  7.73
GFLOPS are achieved by all tasks (sum of Figure 43 B.), resulting in an estimated power consumption
of the front-end receiver of 15.78 GFLOPS/Watt. This is roughly 57% of the suggest peak performance
noted in the datasheet [14], and 49% of the absolute peak performance listed in the STARS many core
survey shown in Table 12 (p.73).
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Figure 44: E16G301 Front-end Receiver Power Consumption
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8 Tools and Architecture 

Due to time limitations, a thorough evaluation of the programming model, provided tools and Epiphany
architecture design choices was not possible, and part of this research is left as future work. However,
many observations  were  made simply  by working with  the  tools  and provided libraries,  which are
summarized in this chapter.

8.1 PROGRAMMING MODEL AND TOOL SUPPORT

As mentioned in chapter  2.2, Adapteva presents the Epiphany architecture are programming model
neutral, essentially meaning that anything is possible. During this research it was found that developing
software for  a  single  eCore is  straight  forward,  and can achieve high  performance and efficiency.
However, the large design space and many architecture details make mapping an application on this
platform  a  challenging  task.  In  this  research  only  the  provided  C  development  environment  was
evaluated.  Many other  programming languages have been ported to  this  architecture,  and even a
supported OpenCL based environment exists [25]. 

Although OpenCL could provide a level of abstraction to ease development for the Epiphany, care must
be  taken  with  the  host-Epiphany  communication  that  is  typical  for  OpenCL  programs.  This
communication is bound to go over the eLink, and can drastically influence the performance of other
tasks currently running on the system when sharing this eLink. 

The topic of managing the large design space of many-core systems is still an active research topic,
and several research project have already proposed several methods to quickly evaluate this design
space ([26],[27], [28], [29]). An attempt was made to use a tool called SDF3 to automate the mapping
process, without success. A summary of this attempt is given in appendix E.

8.1.1 Compiler

The provided e-gcc compiler is based on the open-source GCC compiler (v4.8.2). In [18] it was noted
that it  is difficult  to get full  performance out of the compiler, as it was reluctant to use all available
registers. In this research, the compiler has been found to use all available registers for compiled code,
however,  the  performance  of  the  generated  code  is  very  sensitive  to  the  way  the  algorithm  is
implemented.  Getting  full  performance  out  of  this  platform using  the  C  language  requires  a  good
understanding of  the C language and it's  keywords,  knowledge of  compiler  optimizations and their
effect on the produced code and a lot of detailed knowledge on the underlying architecture.

GCC itself is open source, has a large community, is well used and well documented, and allows for a
large number of compiler optimizations that can be used to optimize for performance. This makes it a
good choice for an open-source project like the Epiphany architecture. Also, the SDK reference manual
([30]) includes a nice overview of the available optimization flags and their influence. 
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Recently, an online version of the compiler ([31]) and editor have been made available, which translate
C-code into  assembly  while  you  type.  This  allows  for  very quick  feedback during  optimization  of
performance critical  functions.  Also,  the influence of  different  compiler  optimizations can be easily
determined. This just came out after the bulk of this research had been performed, and as such has
not been tested thoroughly, however, at a first glance it seems to produce the same output as the
compiler that was used for this research.

8.1.2 The Debugger and Instruction-Set Simulator

A port of the GDB debugger is provided, which can be used to debug programs either through a
provided instruction-set simulator, or on the hardware directly. This debugger was used shortly, during
initial  setup of the measurement environment,  and seems to work,  however,  debugging massively
parallel applications is very challenging by nature. Many of the bugs found where either due to difficult
to trace race conditions or involved host-to-Epiphany communication which is not easily supported by
the debugger. 

During this research, most of the debugging was done by sending status messages and performance
measurement results to the host, as this least influences the program flow of an application. A more
thorough evaluation of the debugger and the debugging environment is still left as future work. 

8.1.3 Performance Evaluation and Profiling

To our knowledge, at the moment of writing, there is no tool support for convenient profiling on the
Epiphany architecture. Also, only two, non auto-resetting, hardware timers are available to monitor
program flow. This proved to be an important limitation during our performance measurements, as
measurement times had to be short (see appendix D:Software Implementation Details) and only one
performance metric could be monitored at a time. 

For the measurements in chapter 6 and 7, the application under test had to be run multiple times to
obtain  the  required  measurement  data.  This  limitation  has  been  noted  by  the  designers  of  the
Epiphany architecture on the community forums ([32]), and might change in the near future.

8.1.4 SDK Software Libraries

No functional issues were found in the supported libraries, and the provided functions are convenient
to use. However, many provided functions use deeply nested function calls making them unsuitable for
fast register access or interrupt routines. Also the DMA copy functions introduce significant overhead
as was shown in chapter 5.

Fortunately,  all  libraries are open source, allowing for easy custom adaptations of available library
functions. Also, currently Adapteva is working on a community provided parallel software library called
PAL ([33]),  which will  provide basic  high performance building blocks such a matrix multiplication,
filtering etc. As this effort is relatively new, it remains to be evaluated.
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8.2 ARCHITECTURE DESIGN CHOICES

The Epiphany architecture was designed as a power efficient many-core co-processor, and as such
many components have been designed towards low complexity to improve area and power efficiency.
These design choices can have a large impact on and less tangible qualities such as reconfigurability,
dependability and scalability.  This influence is shortly discussed here.

8.2.1 Reconfigurability

Reconfigurability is the ability of a system to change its behaviour at design or run-time by changing
hardware  and/or  software  configurations.  The  software  environment  of  the  Epiphany  architecture
support  run-time programming of  the mesh-nodes without  influencing the other  mesh-nodes.  This
allows for a large degree of software reconfigurability. Also, the work-group programming model allows
convenient movement of tasks spanning over multiple mesh-nodes within or over across chips. 

8.2.2 Dependability

This describes the trustworthiness of a system. It consists of both health monitoring capabilities and
robustness  of  the  design.  One  important  limitation  of  the  Epiphany  architecture  in  terms  of
dependability is the XY routing scheme used for the on-chip network. This means that if a single router
fails, large amounts of mesh-nodes will no longer be able to communicate with each other, sine the
routes between these nodes cannot be diverted.

An option exist to force certain routers to route incoming traffic towards a fixed direction, allowing
some degree of repair, however, this in turn will also influence routes that in normal conditions would
not suffer from the broken router. Also multiple routers will need to be reconfigured to fully avoid the
broken router,  requiring  complex  software  management.  With  adaptive routing  as  is  used on the
Recore Xentium RFD architecture, routes are determined at run-time, and faulty network components
can be more easily avoided.

To our knowledge, no specific health monitoring hardware is available on the Epiphany architecture,
although this has not been thoroughly investigated. Custom solutions can be implemented through
software  mechanisms  such  as  heartbeats  or  bit-error  checks,  however,  this  would  introduce  a
performance of memory footprint penalty.

8.2.3 Scalability

Scalability is the ability of a system to handle growing amounts of work gracefully or its ability to be
enlarged to accommodate that growth. The Epiphany architecture has been designed to easily scale to
large amount of processors, and to even allow multiple processors to be linked together to increase
the processing power of a platform. 
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Although this sounds like the Epiphany architecture should easily be able to handle growing amounts
of work there are some limitations. For one, the eLink bandwidth does not scale with the amount of
processors, but only with clock-frequency. This clock-frequency does not grow with a growing amount
of processors, and as such the amount of available IO bandwidth per processing core will decrease if
the on-chip core count is increased. This off-chip bandwidth is already somewhat limited. It is unclear if
larger core-count processors will feature more off-chip links, but for now both the E16G301 and G4
feature only four eLinks. It has been recently announced that a new eLink design is in the making
([34]), supporting much higher bandwidths, possibly solving this problem.

When multiple chips are used to scale a processing platform, data movement between these chips will
be done over the eLink interfaces. Care must be taken that the eLinks are not shared improperly, or
saturated, when sending data across this platform to a certain mesh-node. 
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9 Conclusions and Future Work

Based on the results in this report we can draw a few conclusions on the suitability of the Epiphany
architecture  for  use  in  front-end  radar  systems.  This  will  be  done based on the  original  research
questions. Also, some interesting future work is presented.

9.1.1 Epiphany Architecture Performance

The micro-benchmark results in chapter 5 show that it is difficult to achieve maximum performance for
the on-chip and off-chip networks of the Epiphany architecture. For on-chip communication only roughly
30% of the maximum achievable performance of 4.8GB/s was reached for both DMA transfer and direct
writes, due to errata items, software overhead and further unknown bottlenecks. For the eLinks, 51% of
the  peak  performance  was  achieved  (306MB/s  out  of  600MB/s)  using  direct-writes,  however  this
performance quickly drops when the link is shared by multiple nodes.

For  the eCore processing performance,  several  micro benchmarks  achieved 95% to  99% of  peak
processing performance, indicating that this is indeed possible for certain applications. The best power
efficiency for the micro-benchmark test-cases was 21.8 GFLOPS/Watt, which is slightly lower than what
is suggested in the datasheet. 

For the individual tasks, the peak throughput achieved for the Hilbert filter is 53.1% of the theoretical
peak performance, for the bandpass filter and beam-former this is 73.1% and 64.2% respectively. The
measured power efficiency of are 14.35 GFLOPS/Watt for the Hilbert filter and 19.47 GFLOPS/Watt and
16.22 GFLOPS/Watt for the bandpass filter and beam-former respectively. It is expected that some
performance gain is still possible through further optimization of the compiler generated code.

Finally, when mapping all the tasks on the E16G301 to form a front-end receiver chain, a sustainable
input throughput of 34.4MS/s for four channels was achieved, forming 8 partial output beams for two
sets of two input channels. This was done achieved at a power efficiency of 15.8 GFLOPS/Watt. This
excludes actual off-chip communication and IO rail standby power. 

Based on these results, we can conclude that a large portion (>50%) of peak performance can be
achieved for the frond-end receiver tasks within allowable effort using the provided C compiler. However
this does require the developer to have a good understanding of the architecture, C language and
compiler optimizations. Running an arbitrary application on this architecture will likely not result in good
performance.

9.1.2 Programming Model and Tool Support

The provided tools and libraries are still under active development, but already provide a good base for
development. However, some of the provided library functions introduce significant software overhead.
For optimal performance, it is likely that most of the performance-critical target software will have to be
manually  implemented.  A new library  is  in  the  making  that  should  provide basic  high-performance
building blocks for signal processing applications. This needs to be evaluated. 

69 / 82



CONCLUSIONS AND FUTURE WORK  9 Conclusions and Future Work

In general, the hardware, tools and libraries provided by Adapteva are very much community driven. It
is somewhat unclear how they will develop, and what hardware and software will be available in the
coming years.  This might  make it  less suitable for  military systems, where generally long product
support contracts are required. However, the open-source nature of the project does allow for easy
replacement by custom implementations of the same architecture.

9.1.3 Architecture

In terms of reconfigurability, dependability and scalability there are no significant advantages over the
Recore Xentium RFD architecture, other than a deadlock-free on-chip network. One issue with scaling
this architecture is the ratio between the on-chip processing power, and the off-chip bandwidth. A new
eLink has been announced that might provided better performance, but this is yet to be released.

The deterministic XY routing quickly makes specific on-chip routers and links essential  for correct
operation of an application. The Recore Xentium RFD network is more dependable in this aspect, as
here routes can are determined at run-time that can actively avoid faulty components.

Finally,  the  Epiphany  architecture  is  optimized  for  floating-point  performance.  This  can  be  an
advantage for future systems compared to the Recore Xentium RFD where only 16-bit  fixed point
data-types can be used for full  performance. For optimal performance, this does require the input
samples to be single precision floating-point as well.

9.1.4 Future Work

In order to be able to use the Epiphany architecture (or other many-core architectures) efficiently in
future systems, a suitable programming method and model  is required. In this research the tasks
where manually mapped onto the architecture, which is a difficult process. Further research of existing
methods and tools, such as the SDF3 presented in appendix E could prove to be very valuable.

For  the  Epiphany  architecture  specifically,  further  research  is  required  on  the  actual  eLink
performance, as this requires more suitable hardware than the Parallella board platform. Also, In order
to be able to better compare this architecture to current systems, power measurements should be
performed on current solutions.
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Appendix

A. THALES MANY-CORE PROCESSOR SURVEY

The following tables show the result  of  a survey performed during the STARS project  ( [3]).  It  lists
several  many-core processors and their  advertised peak performance. The processor used for  this
research is the E16G301 in Table 14, as an alternative to the Epiphany G4, which unfortunately was not
available for purchase.

Bittware
Annemone 

Tilera TILE-
Gx 

Adapteva
Epiphany G4 

Adapteva
E16G301

Cores / Threads 16 16-100 64 16

Max. Frequency 1 GHz 1-1.5 GHz 700MHz 1GHz

Fixed / Floating Point 32b Floating
64b Fixed

32b Floating
32b Floating 32b Floating

Performance 32 GFLOPS 50 GFLOPS 88 GFLOPS 32 GFLOPS

Max. Power 2W 55W 1.25W 1W

GFLOPS / Watt 16 0.9 70 32

Off-Chip Bandwidth 8 GB/s 20 GB/s 5.6 GB/s  8 GB/s

Bandwidth / GFLOP 0.25 GB/s 0.4 GB/s 0.06 GB/s 0.25 GB/s

Programming Language C C / C++ C, OpenCL C, OpenCL

Table 12: Thales many-core survey results taken from [5] : Part 1

XMOS XS1-
G4

CSX700
ClearSpeed 

KALRAY
MMPA 256 

TI 66AK2H12

Cores / Threads 32 Threads 192 256+16 4+8

Max. Frequency 400 MHz 250MHz 400MHz 1.4/1.2 GHz

Fixed / Floating Point 32b Fixed
32b Floating
64b Floating

32b Floating 32b Floating

Performance 1600 MIPS 96 GFLOPS 230 GFLOPS 153 GLOPS

Max. Power 1.8W <15W 5W 14W

GFLOPS / Watt 1.3 GIPS/W 6.4 46 11

Off-Chip Bandwidth 0.8 GB/s 4 GB/s 18 GB/s 5 GB/s

Bandwidth / GFLOP 0.5 GB/s 0.04 GB/s 0.08 GB/s 0.03 GB/s

Programming Language C / C++ C C / C++ C / C++

Table 13: Thales many-core survey results taken from [5] : Part 2

73 / 82



B. POWER MEASUREMENT LOAD CASES

All the test-cases below are unrolled 128 times within a single loop iteration, looping indefinitely. Care
was taken to avoid register dependency and memory load pipeline stalls, by not reusing registers within
8 clock cycles (longest instruction execution), and by alternating memory banks for instruction fetch,
memory  loads  and  memory  stores.  All  the  power  measurements  were  performed  with  pre-loaded
dummy data in the registers.

ldrd rAA,[rBB,#2];  //double-word memory load (bank 1)
strd rCC,[rBB,#4];  //double-word memory store (bank 2)
ldrd rDD,[rBB,#6];  //double-word memory load (bank 1)
strd rEE,[rBB,#8];  //double-word memory store (bank 2)

Snippet 4: Load case 1: Memory Access only (uses IALU at ~85% of peak)

fmadd rAA,rBB,rCC; //fused-multiply-add
fmadd rDD,rEE,rFF; //fused-multiply-add
fmadd rGG,rHH,rII; //fused-multiply-add
fmadd rJJ,rKK,rLL; //fused-multiply-add

Snippet 5: Load case 2: FPU (reached ~100% of peak)

add rAA,rBB,rCC; //integer-add
add rDD,rEE,rFF; //integer-add
add rGG,rHH,rII; //integer-add
add rJJ,rKK,rLL; //integer-add

Snippet 6: Load case 3: IALU (reached ~100% of peak)

fmadd rAA,rBB,rCC; //fused-multiply-add
add rDD,rEE,rFF;   //fused-multiply-add
fmadd rGG,rHH,rII; //fused-multiply-add
add rJJ,rKK,rLL;   //fused-multiply-add

Snippet 7: Load case 4: FPU + IALU (reached ~100% of peak)

ldrd rAA,[rBB,#2];  //double-word memory load (bank 1)
fmadd rCC,rDD,rEE;  //fused-multiply-add
strd rFF,[rGG,#4];  //double-word memory store (bank 2)
fmadd rHH,rII,rJJ;  //fused-multiply-add

Snippet 8: Load case 5: FPU + Memory (reached ~85% of peak)

idle;  //put the eCore to sleep until woken by interrupt

Snippet 9: Load case 6: Idle
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C. POWER MEASUREMENT SETUP

The electronics on the Parallella board are powered by the two regulators shown in  Figure 45. The
E16G301 is powered by two separate supplies, the VDD_DSP supply on U30, and the 1P8V supply on
U29.  The  VDD_DSP output  powers  only  the  E16G301  core,  and  comes  from a  regulator  that  is
controllable through I2C which has a range of 0,825 volts to 1.2+ Volts. This I2C interface is accessible
from the ARM-host  processors..  The 1PV8 output  voltage is  fixed trough a resistor  divider,  and is
shared between multiple devices, such as the HMDI and USB controllers and the E16G301. 

INA219B

Figure  45 shows  the  modifications  that  were  made  to  allow  automated  and  synchronized  power
measurements.  Two  INA219B  boards  have  been  added  in  series  with  the  regulator  output,  that
measure both the regulator output voltages and currents.
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Figure 45: Parallella power regulator schematic
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The INA219 is a high-side current shunt and power monitor with an I2C interface. It monitors both the
voltage drop over a shunt, and the output voltage on the “low-side” of the shunt. For the measurements
done  in  this  report,  the  current  and  voltage  ADC  samples  were  read  directly  from  the  INA219B
registers, and conversion to the proper units was done in software on the ARM processors. 

For both INA219B boards, a 0R100 1% shunt was used, accompanied with a simple input filter to
account for  the low sample rates (200Hz per INA219B).  The relatively high shunt  allows for  good
measurement accuracy, but comes with a significant voltage drop. To account for this, the parallella
board was modified such that the regulator feedback inputs were put after the shunt. These inputs draw
a negligible input current, and allow the regulator to regulate the voltage after the shunt, rather than
prior to the shunt. 

Table 14 was taken from the INA219B datasheet by Texas Instruments, it  shows the measurement
accuracy and conversions times for the INA219B (highlighted in grey). The LSB step sizes correspond
to 100uA and 4mV for  the current  and voltage measurement  respectively.  All  measurements were
performed at room temperature.

The inaccuracy of the shunt contributes to the power measurement error as follows:

ePWR=√(eSHUNT+eCURRENT)
2+(eVOLTAGE)

2=√(0.01+0.003)2+(0.005)2=1.39% (10)

The reason this setup was chosen over possibly more accurate off-the-shelf solutions, is that a lot of
measurements were to be performed. The easy control of the INA219B over the I2C bus allows for
convenient automation and synchronization of the measurements with the test applications, significantly
speeding up the measurement process. 

76 / 82

Table 14: INA219B Measurement accuracy summary (highlighted in grey)

INA219A INA219B

PARAMETER TEST CONDITIONS MIN TYP MAX MIN TYP MAX UNIT

DC ACCURACY

ADC Basic Resolution 12 12 Bits
1 LSB Step Size

Shunt Voltage 10 10 μV

Bus Voltage 4 4 mV

Current Measurement Error ±0.2 ±0.5 ±0.2 ±0.3 %

over Temperature ±1 ±0.5 %

Bus Voltage Measurement Error ±0.2 ±0.5 ±0.2 ±0.5 %

over Temperature ±1 ±1 %

Differential Nonlinearity ±0.1 ±0.1 LSB

ADC TIMING

ADC Conversion Time 12Bit 532 586 532 586 μs



D. SOFTWARE IMPLEMENTATION DETAILS

This  section  contains  information  on  the  profiling  method  used,  the  tool-chain  settings  and  the
programming method of the E16G301. 

Programming the E16G301: Work-groups

Adapteva provides  several  utilities  to  aid  in  the  programming of  the  Epiphany architecture.  These
utilities are built around a relocatable work-group model shown in Figure 46. Here, multiple E16G301
chips are arranged in the global address space. All nodes within a single E16G301 chip are assigned a
global  address  relative to  the origin  of  the E16G301.  In  Figure  46 the  origin  is  (32,8)  for  the  left
E16G301. This is also used on the Parallella board.
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Figure 46: Epiphany platform, work-group and eCore coordinate system
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A tool called the e-loader is provided, which allows uploading binaries to the mesh-nodes and starting
execution. This is done on a work-group basis. A work-group is a collection of adjacent nodes that
shared an aliased coordinate system. The nodes in a work-group can run the same of different binaries,
and can be programmed independently. A work-group is always rectangular, and it's size and origin are
defined at run-time. To program a single core, a work-group size of 1x1 can be used. 

The nodes within a work-group are referenced in terms of  their  row and column in a work-group,
relative  to  the  work-group origin.  This  allows  free  placement  of  work-groups  across  the  Epiphany
platform. The global address of the nodes will change if the work-group is moved, so this should only be
used to address specific nodes, not nodes relative to the current node.

The provided SDK utilities, such as the e-loader, work with a so-called hardware description file to
define the platform on which they operate. This file contains a description of the chips in the platform, in
our case only the E16G301, their origin and the presence of external memory. An example is given in
Table 15.  Here the EMEM_BASE_ADDRESS is  the base address  of  the  section  in  DRAM that  is
reserved for shared memory on the parallella board, as seen from the ARM host processors. 

// Platform description for the
// Parallella/1GB/E16G3
PLATFORM_VERSION   PARALLELLA1601
ESYS_REGS_BASE         0x70000000

NUM_CHIPS                       1
CHIP                      E16G301
CHIP_ROW                       32
CHIP_COL                        8

NUM_EXT_MEMS                    1
EMEM                     ext-DRAM
EMEM_BASE_ADDRESS      0x3e000000
EMEM_EPI_BASE          0x8e000000
EMEM_SIZE              0x02000000
EMEM_TYPE                    RDWR

Table 15: Parallella Board hardware description file (HDF) for the board used in this research

The EMEM_EPI_BASE address is an alias to the EMEM_BASE_ADDRESS, which is used within the
mesh-node  applications.  On  the  host-side  on  the  parallella  board,  transactions  to  the
EMEM_EPI_BASE address  space  are  translated  to  the  EMEM_BASE_ADDRESS.  This  translation
allows  the  user  to  virtually  place  the  shared  memory  anywhere  in  the  address  space,  such  that
transactions with this shared memory are routed in the right direction on the on-chip network. 

In this case, 0x8e0 represents the (35,16) coordinate. Since column 16 is not on the E16G301 chip, but
EAST of this chip in the global address space, all traffic with this destination is routed over the EAST
eLink, arriving at the FPGA and ARM host processors on the Parallella board. Note that this only works
as long as the size of the shared memory is not larger than 1MiB, since after this, some of the top 12
bits are needed to represent all the addresses in the shared memory, which will cause the destination
coordinate to change. Slightly larger regions are possible in our particular case, since changing the five
least significant bits of 0x8e0 will result in a coordinate range of (35,16-63). All these coordinates are
east of the E16G301 mesh-nodes, allowing for a 52MiB contiguous shared memory space. In practice,
the maximum contiguous shared memory size depends on the placement of the E16G301 in the global
address space shown in Figure 46.
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Tool chain

All research was done used the SDK provided by Adapteva. An alternative development environment is
available, the COPTHR IDE by brown deer. However in the background this uses the compiler and
libraries  provided  by  Adapteva  ([25]).  This  means  for  this  research  there  is  little  gain  using  this
environment other than for programming convenience at the cost of performance and control. Also all
examples provided by Adapteva are written for the SDK provided by Adapteva.

Table 16 shows the compilers and settings used for all measurements performed in research.

Item Settings

ARM Compiler arm-linux-gnuabihf-gcc (version 4.8.2)

ARM Compiler Flags -Wall -std=gnu99

ARM Linker Flags -Wall -std=gnu99 -lmatio -lm -le-hal -le-loader

Epiphany Compiler e-gcc (v.ersion 4.8.2 20130729)

Epiphnay Compiler Flags -Wall -std=gnu99 -O3

Epiphany Optional Optimizations
-frename-registers -fno-cprop-registers -funroll-
loops -ffast-math --param max-unroll-times=8

Epiphany Linker Flags -Wall -std=gnu99 -lm -le-lib

SDK version 2015.1

SD-Card Image ubuntu-14.04-headless-z7020-20150130.img

Table 16: Compiler and tool-chain versions and settings
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Profiling on the E16G301

The E16G301 features two hardware timers (TIMER0 and TIMER1) per eCore. These timers are down-
counting timers, and can be set to monitor several events shown in Table 17: No automatic reset of the
timers is supported. Instead an interrupt is fired when the timers reach zero, at which the user can
perform the appropriate actions.

Timer capture inputs
Measurable Mesh-Events

Access=incoming data toward router
Wait=incoming data toward router has to wait 

• Clock cycles

• Idle cycles 

• IALU valid instructions 

• FPU valid instructions 

• Dual issue clock cycles 

• Load (E1) stalls 

• Register dependency (RA) stalls 

• Local memory fetch stalls 

• Local memory load stalls 

• External fetch stalls 

• External load stalls 

• Mesh traffic monitor 0 

• Mesh traffic monitor 1

• Any wait 

• Core wait 

• South wait 

• North wait 

• West wait 

• East wait 

• South-East wait 

• North-West wait 

• South access 

• North access 

• West access 

• East access 

• Core access 

Table 17: E16G301 available eCore timer capture inputs for both TIMER0 and TIMER1

Using these two timers per eCore, three different approaches are possible:

Time-based sampling:

TIMER0 is set to trigger an interrupt every fixed amount of clock-cycles. When the interrupt occurs,
TIMER0 is reset and a sample of TIMER1 is taken. TIMER1 monitors the desired input event, and the
sample time is  calculated based on the number of  interrupts  that  have fired thus-far.  This  method
produces evenly-spread samples  in  time,  resulting in  a  predictable  influence on the  program flow.
Unfortunately, it requires TIMER0 to be reset by software, causing the running time to drift between
processors over time.

Even-count based sampling:

TIMER0 is set to capture clock cycles, without reset, allowing a maximum run-time of 7.15 seconds
without a clock pre-scaler at 600MHz. TIMER1 is set to a fixed count, and captures the desired event.
Whenever TIMER1 reaches zero, say after for instance 1000 occurrences of the event to capture, the
current time in TIMER0 is captured and stored. The sample rate of this method is proportional to the
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rate the monitored event occurs, allowing for higher accuracy at critical moments in time. However, a
significant amount of interrupts can occur at random intervals depending on the event that is being
monitored. This can significantly influence the program flow and performance.

Manual sampling:

The last option is to manually annotate the sample moments in code. This allows for precise control of
when the sample moments will occur (for instance just before and after a function-under-test). TIMER0
is set to count clock-cycles, and TIMER1 is set to count the desired event. Both values are stored for
every sample. This method was used during this research, as it is least invasive, and most accurate for
profiling of floating-point performance of specific functions, however this method is not very suitable for
profiling for instance network behaviour over time, as sample intervals are typically quite large. It is
possible to combine this method with both time-based sampling and event-count based sampling.

Figure 47 shows an overview of all three methods:

In all cases, only one event can be captured during a single measurement. In this research, multiple
measurements were performed sequentially to obtain information about all the desired events. Most
performance measurements take in the order of  microseconds or  milliseconds to complete,  so the
limited timer runtime of 7.15 seconds does not really hinder the measurements.
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Figure 47: Three profiling methods on the E16G301 A:Time-based sampling. B:Event-count
based sampling. C:Manual sampling
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E. SDF3: AUTOMATED MPSOC TASK MAPPING

SDF3 ([29]) is a dataflow driven research tool, developed at the University of Eindhoven. It can do
automated throughput  and latency analysis  on  dataflow application  models,  as  well  as  automated
mapping of a given dataflow graph on a generic (user configurable) MPSoC model. An attempt was
made to use this tool to provide a valid, automated mapping and scheduling of the front-end receiver
based on the measurements done on the individual tasks in Figure 38 (p.57). 

To this end a data-flow model (XML) generation script was developed that could generate multiple data-
flow representations of the front-end receiver with various decompositions and amount of channels.
These data-flow models where presented to SDF3 in combination with a platform model. SDF3 would
then iterate through the models, finding a mapping of that model on the platform model meeting a
certain throughput constraint. This throughput constraint was relaxed until a valid mapping was found.

A few issues where encountered in this process that led to the decision to do the mapping by hand
rather than to use SDF3:

• Platform Model: SDF3 comes with a standard architecture model that is very versatile and
allows  for  easy  configuration  to  match  many  existing  platforms.  However,  it  does  assume
adaptive routing is used, making it difficult to model the deterministic routing scheme used by
the Epiphany. The default model can be adapted but this was not done in this research.

• Throughput  Performance: Due  to  the  inaccuracy  if  the  platform  model,  the  achieved
performance for the automated mapping was much worse than what we achieved manually. For
instance, for a single channel,  a throughput of 0,02MS/s was achieved, versus the 4.3MS/s
throughput in our mapping. 

• Transparency: SDF3  used  many  complex  heuristics,  that  make  the  outcome  very  in-
transparent for the user. Simple changes in the data-flow models can lead to big differences in
the outcome, that are hard to predict.

• Running Time: For  bigger  problems,  it  can  sometimes  take  hours  for  SDF3 to  complete,
reducing the advantage of using an automated tool.

More testing and research is needed in order to adapt SDF3 or other tools for the use of automated
task  mapping  and  design  space  exploration.  One  example  use-case  could  be  finding  a  suitable
schedule of tasks based on the decompositions in  Figure 38 (p.57). The mapping can then be done
manually. Also auto generating code based on this schedule could be used to save a significant amount
of development time and debugging effort.
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