
The Generation of
Booter (black)lists
Master thesis

Joey de Vries
j.devries-1@student.utwente.nl

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COM-
PUTER SCIENCE (EWI)
CHAIR: DACS (DESIGN AND ANALYSIS OF COMMUNICATION SYSTEMS)

EXAMINATION COMMITTEE
Prof. dr. ir. Aiko Pras,
Dr. Mena B. Habib,
Jose Jair C. Santanna, M.Sc.
Justyna J. Chromik, M.Sc.
Khelghati, S.M, M.Sc.

mailto:j.devries-1@student.utwente.nl

Abstract

Distributed Denial-of-Service (DDoS) attacks have been a very effec-
tive tool for skilled attackers to disrupt online services. In recent years a
new phenomenon appeared that offers similar attack capabilities to un-
skilled users at the press of a button. These so called Booter websites
that offer DDoS-as-a-service allow anyone to execute attacks for less than
USD 5. Previous research tried to mitigate these growing concerns by
dynamically generating a blacklist to prevent (or warn) the average un-
skilled user from getting access. Our research aims to improve the blacklist
generation. A more extensive web crawler is developed to find potential
online Booters from Google search engine and other sources not indexed
by Google (such as black-market forums and online video-platforms). We
additionally develop a more accurate Booter classifier that is improved
upon with a machine learning algorithm. Finally, we update the Booter
(black)list on a daily basis to give the most accurate information about
Booters to security specialists and interested researchers.

1

Contents

1 Introduction 3
1.1 Objectives . 3
1.2 Contribution . 3

I The Crawler 6

2 Understanding Booters 8
2.1 Booter users . 9
2.2 Presentation . 10
2.3 Attack types . 11
2.4 Blacklist considerations . 14

3 Booter website characteristics 16
3.1 Structure characteristics . 16
3.2 Host characteristics . 17
3.3 Content characteristics . 18

4 The crawler 22
4.1 The crawler system . 22
4.2 Preliminary results . 27
4.3 Score normalization . 28

II The Classifier 34

5 Booter classification 36
5.1 Classification accuracy . 36
5.2 Classification metrics . 38
5.3 Distance metrics . 40
5.4 Naive Bayes . 53
5.5 K-Nearest neighbors . 56

6 Adjustments and considerations 62
6.1 Weight adjustments . 62
6.2 Considerations of our top results 66

III Conclusion 68

7 Concluding remarks 70
7.1 Contribution . 70
7.2 How to use the Booter (black)list 71
7.3 Limitations . 71
7.4 Future research . 71
7.5 Acknowledgements . 72

IV Appendix A 79

2

1 Introduction

A large array of Distributed Denial-of-Service (DDoS) attacks is still difficult to
overcome [1] [2]. Usually these type of attacks are performed by skilled attackers
that have extensive knowledge in the fields of network programming and security
[3]. However, nowadays DDoS attacks are offered as an online service to users
with close to zero knowledge in the aforementioned fields, allowing anyone to
perform a DDoS attack for less than USD 5 [4]. These online services called
Booters pose a serious threat to small and medium sized networks and services
[5] [6] [7] [4] [8]. The number of DDoS attacks has increased significantly at
the end of 2013 [9] with recent numbers again indicating a significant growth
in DDoS attacks at the end of 2014 [10]. Not surprisingly, these numbers are
influenced by the growing presence of Booters [11].

Earlier research [12] proposed a mitigation scheme that prevents or warns
visitors at the access level in the form of a Booter blacklist. Research shows
more than 53% of Booter users being unskilled users [4] making this mitigation
scheme effective against the Booter phenomenon. The generated blacklist shows
promise but is as of today not effective enough for practical considerations; a
better, more reliable scheme has to be envisioned.

1.1 Objectives

The goal of the research is to improve the dynamic generation of Booter
(black)lists introduced by [12]. The aimed result of our research is to block or
prevent amateur users from obtaining access to Booters in the form of a blacklist.
The generated blacklist will furthermore prove useful for further research into
the Booter phenomenon.

To accomplish our goals we have defined the following research questions
(RQ) as the basis of the research:

• RQ1: Which Booter website characteristics were not addressed by previ-
ous work [12]?

• RQ2: How to effectively generate a list of potential Booters?

• RQ3: What classification approaches can be used to improve the Booter
classifier proposed by [12]?

1.2 Contribution

There has been little research in the area of Booters and only a single report [12]
discussed the possibilities of an automated blacklist. By focusing on the access
level of Booters (discussed in chapter 2) we aim to greatly reduce the clientele
of Booters which, as a result, would result in large revenue losses for Booter
owners, causing them to disband their operations. The research is split into two
parts: first we extensively aim to characterize a Booter website to develop and
improve a web crawler (discussed in chapter 3) and second, as the web crawler
will inevitably also find non-Booter websites we build a web classification system
to accurately differentiate benign websites from Booter websites (discussed in
chapter 5). By improving the proposed blacklist generation we aim to develop
a system with acceptable accuracy levels for practical considerations (described

3

in section 2.4). This blacklist and its accompanying system can and have been
used by network corporations and researchers to help mitigate the phenomenon
that is Booter.

Our research provides the following contributions:

• Part 1: a web crawler that obtains potential Booters found in search
engines, video platforms, and underground hacker forums.

• Part 2: a classifier is developed that filters the obtained list of potential
Booters giving valuable insight in the possibilities of automatic Booter
verification.

• Overall: a comprehensive list of Booters to be used for blacklisting pur-
poses or future research.

The resulting list of Booters is primarily intended as a blacklist, but also
serves as a valuable resource for future research into the Booter phenomenon.
For that reason the title of this research parenthesized blacklist as (black)list,
as similarly done by [12].

4

This page intentionally left blank.

5

Part I

The Crawler

6

This page intentionally left blank.

7

2 Understanding Booters

To mitigate the Booter phenomenon we first have to understand Booters them-
selves, their operations, their market and how they apply themselves globally.
This chapter presents an overview of Booters together with an extensive analy-
sis of the blacklist’s effectiveness.

Distributed Denial-of-Service (DDoS) attacks are characterized by an explicit
attempt to prevent the legitimate use of a service [13]. DDoS attacks disrupt on-
line services by over-flooding network or system resources either by brute-force
or by system or protocol vulnerabilities. DDoS attacks require sophisticated
networking knowledge combined with vast amounts of network resources to suc-
cessfully execute [14].

Since a vast amount of knowledge is required to execute DDoS attacks of
significant scale the attacks were reserved to knowledgeable attackers and only
occurred on high-value targets [15]. However, starting in 2010 [7] DDoS at-
tacks were offered to the average unskilled users in the form of an easy-to-use
web interface. These websites allowed anyone to execute a DDoS attack for a
relatively modest price (less than USD 5 [4]) simply at the press of a button.
These Booter websites became part of what is often referred to as Crimeware-
as-a-service [3] where common customers can easily access and acquire criminal
tools and methods for personal use.

Booters consist of a public website and multiple (infected) systems at the core
of their technical infrastructure. Together with its clients and attack targets we
can model the Booter attack infrastructure as presented in Figure 1.

ACCESS LEVEL INFRASTRUCTURE LEVEL TARGET LEVEL

website

Figure 1: Booter attack infrastructure.

The Booter attack infrastructure can effectively be modeled as a large chain
where the chain is only as strong as its weakest link [16]. There are three distinct
layers of a Booter’s infrastructure; we briefly discuss each one in reverse order.

• Target level - portrays the target system(s) of DDoS attack(s) launched
by a Booter service. The target level includes high-bandwidth servers,
website hosts and home networks. DDoS attacks at the target level are
widely researched [13] [17] [18] [19] as attacks are easily identified due to
their large volumetric scale. Most DDoS defense mechanisms discussed at
the target level are however not as effective against large scale attacks [12]
[14].

• Infrastructure level - describes the Booter website and the rented or

8

infected machines operated by the Booter owner. There is little known
about the exact infrastructure of Booters, but analysis on leaked databases
[4] [20] showed a combination of distinct servers and web-shells being the
primary resources for Booter services [5]. Web-shells [4] are DDoS scripts
hosted on (infected) machines accessed via HTTP/GET or HTTP/POST.

• Access level - describes the entry point of Booter services. Booters of-
fer a user-friendly online front-end for launching DDoS attacks at a small
price attracting amateur users. Research by Chromik [12] aimed to mit-
igate the Booter phenomenon by preventing users access to the Booter
websites using a blacklist that would effectively sit in the link between the
user and the Booter website. The approach by Chromik showed promise,
but the concluded accuracy of 88% is not sufficient enough for practical
considerations.

Mitigating the Booter phenomenon at any of the three architecture links
will completely mitigate the Booter phenomenon. As the blacklist approach
by [12] showed promise and effectively disrupts the first chain of the Booter
attack infrastructure we will primarily focus on the access level. To get a solid
grasp of the access level we first discuss the opening of the infrastructure chain:
its users.

2.1 Booter users

Booters target users that want to perform DDoS attacks. A large demographic
of its users either lack the required knowledge or the required resources to exe-
cute these attacks. Literature shows that the target audience primarily consists
of online gamers [20], willing to invest financial resources to disrupt their oppo-
nent’s network [21]. Because most online video-games instantly declare defeat
to a player losing its network connection, disrupting their opponents’ service is
very advantageous. By crawling black-market hacking forms [22] we confirmed
that Booter services are frequently used for disrupting online games. Also, a
large majority of DDoS attacks are small in scale showing these attacks do not
target high-valued organizations [23]. Common examples are disrupting oppo-
nents’ networks in a player-versus-player game e.g. League of Legends, DotA
and Counter-Strike or disrupting a service to settle scores or grudges in server-
based games like Minecraft. These forums are frequently visited by so called
script-kiddies, a term coined by hackers to define unskilled want-to-be hackers
that use tools without explicitly understanding them. A further confirmation
of unskilled users being the majority of the Booter’s audience is the frequent
advertisement or crimevertisement [3] of Skype and website resolvers that re-
solve the target’s IP-address based on their account name and domain name
respectively; something a skilled attacker would have no difficulty with. Addi-
tional target services include small to medium sized websites or individual home
networks [24].

Literature [4] confirms, by analyzing leaked databases, that the customer-
base consists over 53% of unskilled users. A significant portion of the customers
utilize Booters without taking any significant precautions like accessing Boot-
ers using a VPN [4] making their activities more easily detectable. This also
highlights the probable effectiveness of our research. Due to the fact that a

9

large portion of a Booter’s customer-base consists of unskilled users a blacklist
approach will prove effective against mitigating the Booter phenomenon. To
generate such a blacklist we need to understand how Booters target or attract
their users and take a closer look at how Booters present themselves.

2.2 Presentation

Large-scale DDoS attacks used to be offered and advertised in the underground
scene, commonly visited by malicious users [3]. Booters however, target av-
erage users without any experience in the underground hacker scene. There-
fore Booters wish to be found as easy and publicly as possible. For this rea-
son, Booters make a best-effort to associate themselves with public search en-
gines like Google [12], openly advertise themselves in black market forums e.g.
hackforums.net, social media like Twitter [25] and video platforms similar to
Youtube [26], and aim to create a visually pleasing front-end for their services.
A Booter’s aim is not to preserve secrecy, but is in contrast the public adver-
tisement of its services. Booters have a distinct visual appearance with slight
deviations among them. In Figure 2 we list 6 different Booter websites:

(a) (b) (c)

(d) (e) (f)

Figure 2: Booter appearance

The images were taken from the Booters’ landing page i.e. the first visible
page presented after visiting its domain. From these 6 Booters three distinct
layouts can be identified, which naturally extend to other Booter websites.

1. (2a, 2b) The landing page shows only a login form with minimal informa-
tion about the Booter.

2. (2c) The landing page shows even less information and acts merely as an
eye-pleaser before continuing to the actual Booter content. Contains the
Booter’s title and button(s) to continue (often login and register buttons).

3. (2d, 2e, 2f) The landing page contains detailed information about the
Booter described in a visually pleasing way. Information typically en-
tails what they represent, their features, subscription plans and contact
or support details.

10

hackforums.net

Booters operate under a collection of different names. In the literature they
are often coined the term DDoS-as-a-service [20] [4] or DDoS-for-hire [7]. Sim-
ilarily, online researchers and security journalists adapt the same terminology
for describing Booters [27] [28]. Booters advertise themselves as either a Booter
or a stress-testing service, commonly abbreviated to Stresser [29] [30] [20].

The term Stresser is often used by Booters due to its more legitimate ap-
peal [12]. Stress testing is characterized as deliberately placing a system under
heavy stress to test a system’s endurance or durability. Stress testing can have
a legitimate purpose if used on one’s own networks or supported by contractual
agreements, but since Stressers do not validate the attacker nor the target there
is no practical difference between a Booter and a Stresser [12] [31]. Further-
more, a DDoS attack launched by a Booter will, regardless of the target, have
a negative impact on unaware networks in between. Given the nature of Boot-
ers that advertise themselves as legitimate stress-testing services, this will hold
no ground in a court of law [32]. The illegitimate appeal becomes even more
apparent in the next section where we delve into the offered attacks.

2.3 Attack types

Booters offer a wide array of DDoS attacks that can be categorized according
to a relatively simple, but effective taxonomy. We categorize Booter attacks by
their nature, their target and whether they apply reflection techniques.

The nature of an attack can be categorized by the OSI-model’s layer be-
ing abused as either the transport layer or the application layer. Transport
layer attacks typically include sending large numbers of UDP or TCP packets
by exploiting vulnerabilities and features in transport layer protocols. Applica-
tion layer attacks involve exhausting significant amounts of system or network
resources by exploiting application-specific protocols.

The target of an attack can be categorized as network attacks or system
attacks. Network attacks are congestion based methods in that they utilize a
large number of (compromised) machines to send a massive amount of junk
IP traffic to the victim, preventing further communication [1]. System attacks
involve directly exhausting a system’s resources, often paired with application
layer attacks.

Finally, a further categorization is made by listing whether an attack is
a direct attack or a reflected attack. Direct attacks target a system directly
while reflected attacks abuse protocols to re-direct attacks from multiple net-
works. A specific flavor of reflected attacks are Distributed Reflection Denial-
of-Service (DRDoS) [19] attacks. DRDoS attacks abuse the ability of network
protocols to spoof the source IP-address of the packets making it difficult to
track where the packets originated from. By spoofing the source IP-address to
the victim’s IP-address the servers will reply towards the victim’s network. This
type of attack is combined with amplification properties such that a small re-
quest packet returns a much larger amplified response. The simultaneous abuse
of multiple amplifiers permits a highly-distributed DoS attack to be conducted
from a single internet uplink.

Chromik did extensive research on the attacks offered by Booters of which we
list their results and supplement the list with more recent attack types offered by
Booters [12] [22]. Each of the attack types are briefly categorized and grouped

11

by their nature. It should be noted that Booters use different names for similar
attacks [4] so we will group these attacks together by their underlying technical
properties.

2.3.1 Transport layer attacks

A total of 5 transport layer attacks were identified.

• SYN flood attack - targets a network via direct attacks and is coined
under different names e.g. TCP attack, SSYN (Spoofed SYN), ESSYN
(Enhanced SSYN). The attacker exploits a weakness of the three-way TCP
handshake by sending TCP packets to a server with the SYN-flag set to
initiate a connection. With a randomized source IP-address of the TCP
packet the server will reserve network resources for the connection and
request a TCP package with the ACK flag set to complete the request.
Because the source IP-address is configured to a random IP-address the
server will not receive a reply and as a result allocates resources that are
never consumed. A large number of these TCP SYN flood requests will
exhaust the server’s network resources and no new TCP connections will
be processed.

• UDP flood attack - targets a network via direct attacks. The victim
receives a large number of UDP packets, which it has to respond to with
the same amount of ICMP packets [30]. As a result the victim will be
overloaded and no longer able to receive further requests. The source IP
can be spoofed as well which is why Booters often use the name SUDP
(Spoofed UDP).

• DRDoS attack - targets a network using reflective properties. Boot-
ers extensively make use of the amplification properties of these type of
attacks to generate massive amounts of bandwidth with a relatively low
number of sources [33]. Protocols used for DRDoS attacks vary but com-
mon protocols are: DNS (Domain Name Server), CharGen (Character
Generator) [30], SSDP (Simple Service Discovery Protocol), NTP (Net-
work Time Protocol) and Gaming Server protocols e.g. Quake [34] or
Steam [19]. Using DNS, specifically DNSSEC, amplification rates of 179
times are possible [35], while amplification using NTP servers allow for
amplification rates up to 4670 times [19].

• UDP lag - similar to the UDP flood attack, but instead of sending traffic
at a constant rate it is sent in specific intervals, degrading the network [36].
The victim’s network operations remain operational, but with slow and
unreliable network traffic [30].

• Dominate - a modified version of the SSYN attack with a different ro-
tation of TCP flags. The aim of this attack is to bypass certain DDoS
protection services e.g. OVH, Voxility and Blacklotus [37].

2.3.2 Application layer attacks

A total of 7 application layer attacks were identified.

12

• GET attack - targets a system directly by sending a large amount of
HTTP GET requests, aiming to exhaust the web-servers resources.

• POST attack - similar to the GET attack, but sends partial HTTP
POST requests with a body of specified size following. The resulting
POST body is then sent at an extremely slow rate to slow down the
webserver.

• Slowloris - an HTTP application layer attack directly targeting a system
comparable to the SYN flood attack [20]. Several connections are opened
and partial requests are sent, never completing the full request [36]. The
aim is to exhaust a web-server’s resources by initiating a large number of
uncompleted requests. Frequently a new HTTP header is sent, keeping
the connections alive while adding up to the request.

• RUDY (R-U-Dead-Yet?) attack - similar to the Slowloris attack,
but halts sessions by using never ending POST requests with large header
values [30].

• ARME attack - a directed application layer attack that exhausts the
SWAP memory of Apache web-servers using a vulnerable Apache exploit
[30]. Once an Apache web-server is out of SWAP memory it will kill all
processes.

• XML-RPC - a network-targeted DRDoS attack using Wordpress’s ping-
back feature which is a feature enabled by default in Wordpress instal-
lations and difficult to disable [38]. Attackers are able to reflect large
amounts of traffic to target networks using Wordpress’s pingback feature.

• Joomla - similar to the XML-RPC DRDoS attack. The Joomla attack
uses a vulnerability in Joomla’s Google Maps plugin [39] to reflect large
amounts of traffic.

Of particular interest are DRDoS attacks which have the highest impact of all
listed attacks [40]. It should come as no surprise that these type of attacks have
recently had a very high impact, specifically using the NTP protocol [41] [42].
Crawling black-market hacker forums [22] show that these attacks are the most-
advertised attacks (primarily due to their high impact). Furthermore, Booters
might offer different attacks than executed. For example, one Booter advertised
an attack as ’UDP’ but in reality performed a DRDoS attack based on DNS
and CharGen [20].

Extensive database analysis showed that UDP and TCP flood attacks are
the most frequently used attacks [4] which is surprising since one would ex-
pect DRDoS attacks to be more frequent. This could (partly) be explained by
Booters mostly using web-shells to execute their attacks which does not lend
itself well for DRDoS attacks [4]. However, visiting black-market forums [22]
do show the most popular Booters specifically using dedicated servers for ex-
ecuting DRDoS attacks. This again strongly highlights the relative impact of
Booters. Booters are already able to disrupt most online services while still not
yet utilizing their complete attack potential. With the upcoming rise of DNSSec
and the, as of today, not extensively used NTP DRDoS attacks Booters have
a strong potential to take down large networks with relative ease [43]. These

13

upcoming dangers of Booters further states the relevance of a high-accuracy
blacklist where we discuss its effectiveness in the next section.

2.4 Blacklist considerations

With a more complete understanding of the Booter phenomenon we can discuss
the probable effectiveness of a blacklist. The main idea behind the blacklist is
to prevent the target users of Booters in getting access to Booter websites. This
can either be accomplished by entirely blocking the website or by displaying a
warning message e.g. ”This website is blacklisted for questionable behavior, any
further traffic will be extensively monitored by your local federation agencies.
Proceed at own risk or contact ... for further details.” which will scare a large
portion of the users in proceeding. Due to Booters losing a significant amount of
their users, the Booter phenomenon should reduce significantly as well. However
effective such a blacklist may be, there are several considerations to take into
account when using blacklists [12].

First, a blacklist is only as effective as it is correct and up-to-date [44]. If
a blacklist is not up-to-date it will fail to recognize the more recent Booters,
still allowing users to freely use Booter systems for a limited period of time. In
addition, it might have blacklisted a URL which is no longer a Booter website,
but a legitimate website [45]. Also, if a blacklist is not correct it might wrongly
classify a legitimate website as an illegitimate Booter website disallowing anyone
access. It is therefore of utmost importance to create a correct blacklist with
as much accuracy as possible while also frequently updating the list. Because
this research aims to dynamically generate such a blacklist it will be relatively
easy to keep the list up-to-date since no manual labor is required. However, the
downside of this approach is that it will significantly reduce the correctness or
accuracy of the blacklist if incorrect heuristics are assumed. This directly states
the importance of our research as we aim to significantly improve the blacklist
accuracy for use in a practical setting.

Second, a blacklist will not prevent users with sufficient knowledge from
accessing Booters since they can still use a Virtual Private Network (VPN)
to mitigate the blacklist in use. However, due to the majority of users being
relatively unskilled a blacklist will still block most users.

Third, blacklisting URLs effectively filters the web which is considered un-
lawful [46]. Web filtering is however still frequently applied in practice such as
in child pornography filtering and spam filtering. Given the illegitimate practice
of Booters this can apply as well. This does require a general assurance that
such a blacklist will not filter legitimate URLs as that will be met with heavy
objections.

Blacklisting will not be a single golden key to Booter mitigation since it will
not be able to completely prevent access to Booter websites. However, it is a
promising approach diminishing the Booter phenomenon by a significant extent.
Furthermore, such a blacklist is not only effective for denying access, but also
proves useful for further research into the Booter phenomenon. Automated
blacklist generation does require a strong set of heuristics which is what we will
focus on in the next chapter.

14

This page intentionally left blank.

15

3 Booter website characteristics

Automated blacklist generation requires an extensive set of heuristics to differ-
entiate Booter websites from non-Booter websites. This chapter discusses char-
acteristics specific to Booter websites used for Booter classification.

In our research we develop a web crawler to obtain a list of potential Boot-
ers. This list will inevitably contain non-Booter websites thus there is a need
for differentiating Booter websites from non-Booter websites. In order to differ-
entiate a Booter website from their legitimate counterparts it is important to
carefully describe their characteristics.
Having a complete set of attributes that uniquely characterize a Booter signifi-
cantly improves the accuracy of dynamically generated blacklists. The charac-
teristics described will be part of a feature vector set used to classify websites
as Booters; this will be discussed in more detail in chapter 5. We discuss Booter
characteristics as found in the current literature and from our own research,
discuss their practical implications, their effectiveness and where relevant their
strength against attacker mitigations. A significant portion of the Booter char-
acteristics is based on the characteristics used by [12]. Our aim is to update the
characteristics used with more accurate and relevant characteristics; all supple-
mented characteristics are denoted with an asterisk. Due to the large amount
of characteristics they are grouped in three categories: structure-based charac-
teristics, host-based characteristics and content-based characteristics.

3.1 Structure characteristics

Structure-based characteristics revolve around the general website structure of
Booters. We identify a total of 4 structure characteristics: number of pages,
URL type, average depth level and the average URL length.

a. Number of pages is the number of web pages a Booter website consists
of. As identified by [12] Booters have a relative small number of pages, often no
more than 10 to display general information and account controls. The number
of pages identified did not exceed over 50 making this a strong characteristic
for differentiating Booters from most other websites. However, a weakness of
this characteristic is that Booters can mitigate this fairly easy by adding a large
number of fake pages. This weakness can be solved by crawling all visible URLs
of a Booter to determine its number of referenced pages as a Booter will most
likely not link to their fake pages.

b. URL type is the type of URL required to reach the landing page of a
Booter which can be categorized in 1 of 3 different URL types [12]. Table 1
shows a summary of the URL types witnessed from Booters.

URL Type URL
1 booter-example.tld or booter-example.tld/login.php
2 domain.tld/booter-example/
3 booter-example.domain.tld

Table 1: Booter URL Types

16

URLs of type 1 (hostname with or without filename) as [12] pointed out is
the preferred URL of most Booters, whereas type 2 (part of other website) and
type 3 (subdomain) are much less common and often indicate webpages that
are not Booters, but provide information about Booters.
Due to a large portion of Booters having a URL type of 1 this characteristic
might prove useful for differentiating between actual Booters and articles or
blog-posts discussing Booters. Booter owners could try to mitigate this charac-
teristic by restricting themselves to URLs of type 2 and 3. However, URLs of
type 1 are more distinct and attractive to Booter owners so Booters will likely
remain available via type 1 URLs.

c. Average depth level - The depth level of a website indicates the max-
imum amount of inbound hyperlinks to follow to reach any webpage. This can
be obtained by crawling all inbound hyperlinks and tracking the crawl attempts
required to reach a page. We limit the amount of crawl attempts to a total of 50
distinct inbound hyperlinks as Booter websites do not have more than 50 pages
(see 3.1.a). Initial observations show Booters having a low average depth level
making this a strong characteristic. Mitigating this characteristic is difficult,
since forcing larger page levels complicates the Booter website’s structure which
Booter owners prefer not to.

d. Average URL length* - larger websites like online news or popular blog
websites have a relatively complicated back-end structure which results in large
and more complicated URLs. For instance, the URL to a news article might
include in its path the domain, news category, author and the date of publish-
ing. Compared to Booters with short and relatively simple URLs this URL
length contrast proves an interesting characteristic. The average URL length
of a website’s content is used to build a score as linearly interpolated between
the smallest average URL length and the maximum URL length as found in a
training dataset [47].

The structure of a website conveys valuable information about the type of web-
site. In the next section we additionally take a look at the business and personal
aspects of Booters and Booter owners for further identification.

3.2 Host characteristics

Host-based characteristics revolve around the organization or managerial as-
pects of Booters. Booters have a total of 5 interesting host-based characteris-
tics which makes them stand out among other websites: domain age, domain
reservation duration, WHOIS private, DPS and page rank.

a. Domain age - Most Booters have a short life span [12] and first started
appearing in 2010 [7]. As a result, websites with a domain registered before 2010
can almost certainly be excluded as a Booter. Similarly, due to their short life
span the age of a domain acts as an important characteristic of a Booter [48].
It is not uncommon for a Booter to go offline within a year of service.

b. Domain reservation duration* - Due to a Booter’s short life span Booter
owners tend to register their domains for a duration not more than 1 year, the

17

minimal registration duration, while legitimate website owners often register
their domain for much longer periods. By querying the expiration date of a
domain and subtracting this from the current date we get the remaining reser-
vation duration of a domain. It is expected that most Booters have a reservation
duration of less than 1 year.

c. WHOIS private - WHOIS is a query/response protocol that provides
information about domain names and their nameservers at request. This infor-
mation includes register information like name, address, e-mail and information
about the domain including registration date and used nameservers [48]. It is
not difficult to visualize that Booter owners prefer to keep their contact de-
tails anonymous. Domain registrars i.e. services that sell domains, offer to
anonymize contact details for an added price which results in the register infor-
mation becoming private [49]. Querying WHOIS data of a Booter domain will
likely result in private contact details which could serve as a strong character-
istic for the domain belonging to a Booter.

d. DPS - A DDoS Protection Service (DPS) offers a popular mitigation method
against DDoS attacks [7]. A DPS offers protection by rerouting large volumes
of traffic to multiple filtering centers [50] to filter all DDoS traffic before rerout-
ing it to the original target. Around 2011 Booters realized they can use their
services not only to sell, but also to clear out their competition by attacking
other Booters on the market [7] [27]. Due to Booters becoming a target of their
own product, almost all Booters are registered with a DPS [31]. This thus gives
another clear characteristic of Booters, one being registered with a DPS.

e. Page rank* - Online services like Alexa [51] build statistics determining the
popularity of a website. A website with a page rank of 1 depicts it the most pop-
ular website. As Booters are visited by a very specific group of users (see section
2.1) the page rank of a Booter is likely to be relatively low. Websites discussing
Booters like security blogs, corporation websites and news sites will generally
have a higher page rank as they target a more general audience. For instance,
at the time of writing the popular security blog www.krebsonsecurity.com has an
Alexa rank of 26805 while one of the more popular Booters has an Alexa rank of
616446; a significant difference. As a Booter characteristic the page rank helps
us differentiate between more popular websites mentioning Booters and the less
popular Booter websites themselves [52] [53]. As a metric, we take the highest
Alexa rank listed among Booters, add a small offset and measure a binary value
whether a website has a higher or lower rank; a higher rank would indicate the
website being benign.

Host-based characteristics describe a lot about the organizational aspects of
Booter websites. Booter websites also consist of a significant amount of identi-
fying information in the content of their web pages which is what we focus on
in the next section.

3.3 Content characteristics

Booters are largely defined by their structural and host-based characteristics,
but their content gives valuable hints as well. We identified a total of 6 con-

18

www.krebsonsecurity.com

tent based characteristics: average content size, outbound hyperlinks, category-
specific dictionary, resolver indication, Terms of Services page and login-form
depth level.

a. Average content size* - In contrast to other websites, Booters either
have close to zero content or brief commercial-like statements regarding their
services. As a result the average amount of content on a web page is likely to be
small, specifically pages other than the landing page (e.g. pricing, FAQ) [47].
As Booters prefer to keep their content simple and minimal this will be an inter-
esting characteristic that is not easily mitigated. It should be noted that when
discussing average content size we specifically talk about textual content, ne-
glecting the underlying code (Booters do have large code footprints per page as
they make extensive use of JavaScript for their visuals). Another consideration
is that some Booters paste large descriptive sections of text on their landing
page mostly aimed at boosting their search results, but hide the actual text
for its viewers. This characteristic only takes the visible content into account,
ignoring all hidden textual content.

b. Outbound hyperlinks* - Outbound hyperlinks are characterized as hy-
perlinks that link to domains other than the current domain [47] [54]. Booters
offer services in a highly competitive market and as such rarely mention services
other than their own. As a result Booter websites hardly ever include hyperlinks
to external domains. This is a strong characteristic as this strongly differenti-
ates Booter websites from blogs and news websites that include a vast array of
outbound hyperlinks [44].

c. Category-specific dictionary* - Booter websites generally advertise their
services with words specific to their category e.g. Booter, pricing, powerful,
methods. These category-specific keywords introduce an interesting concept
of identifying the likelihood of a website being a Booter by the occurrence of
these keywords [54] [55] [56]. Further research is required to determine the ef-
fectiveness of this characteristic as it is difficult to determine the proper set
of keywords, not all Booters display textual content and it becomes difficult to
differentiate between articles about Booters. By introducing relative occurrence
of a keyword compared to the page’s total content size and by further analyzing
keywords with machine-learning text classification approaches [57] this charac-
teristic could prove relevant.

d. Resolver indication* - As discussed in section 2.1 Booters recurrently
offer service resolvers that resolve the underlying IP-address of several services
like domain-names, Skype accounts and video-game accounts. As Booters bla-
tantly advertise these services this serves as a feasible characteristic [6]. Care
should be taken to differentiate between articles discussing resolvers and actual
Booter websites. As we already analyze category-specific keywords it is trivial
to simultaneously detect resolver keywords as well.

e. Terms of Services page - Booter websites try to hide their illegal ac-
tivities by dedicating one of their website pages to a Terms of Services (ToS)
page. It is a legal agreement composed by a set of rules that users need to
follow to use a Booter’s services [12]. As the presence of a ToS page indicates a

19

website selling a service this proves an interesting characteristic.

f. Login-form depth level* - As briefly indicated in section 2.2 Booter web-
sites repeatedly start with a login form or have it available within one click.
Therefore, the depth level (see 3.1.c) of a page containing a login form poten-
tially indicates a Booter website as they are often found at a lower depth level
compared to other websites [44].

In this chapter we identified a total of 15 Booter website characteristics in
contrast to a total of 9 Booter website characteristics as determined by previous
research [12]. The Booter website characteristics will aid us in verifying whether
a website identified by our crawler is indeed a Booter website.

Given these Booter website characteristics and an arbitrary website we can
calculate a score for each characteristic. The total of 15 individual scores returns
a feature vector set that aims to contain noticeable differences for distinction
between Booter feature vectors and non-Booter feature vectors. In the next
section we discuss the web crawler developed to find potential Booters where
we use the Booter website characteristics to generate a feature vector for each
potential Booter website.

20

This page intentionally left blank.

21

4 The crawler

For the generation of a Booter (black)list a list of potential Booter URLs has
to be collected first. This chapter discusses the web crawler system developed to
retrieve potential Booters from multiple online sources and how their respective
characteristic scores are generated.

As discussed in section 2.2 Booters publicize themselves as openly as possi-
ble. As an effect, Booters are publicly found on video platforms, black-market
forums, and indexed by major search engines like the Google search engine.
We take these properties to develop a web crawler that crawls and indexes the
aforementioned online web sources to obtain a list of Potential Booter Domain
names (PBDs). As this will inevitably result in not only a list of Booters,
but also a considerate amount of non-Booters we have to differentiate these
with a Booter classifier as discussed in chapter 5. In this section we discuss
the implemented crawler system, focus on its results from scraping individual
websites and finally discuss the normalization transformation of Booter website
characteristics.

4.1 The crawler system

The crawler system takes as input a list of search keywords and a list of 15
Booter website characteristics as determined in chapter 3. The crawler system
incorporates two smaller sub-systems, each having a specific command set for
its specified purpose. A basic overview of the crawler system is displayed in
Figure 3.

[BOOTER CHARACTERISTICS] [SEARCH KEYWORDS]

[PDB LIST] [PDB FEATURE VECTORS]

CRAWLER SCRAPER

Figure 3: The crawler system

• The crawler sub-system takes as input a list of keywords and crawls mul-
tiple online resources for PBDs. A PBD is uniquely characterized by its
subdomain(s) and domain name only like booter-example.webhost.tld or
booter-example.tld. A list of all the obtained PBDs is sent to the scraper
sub-system.

• The scraper sub-system processes each individual PBD as obtained from
the crawler and generates relevant statistics based on the given list of 15
Booter website characteristics. The data generated from each of the PBDs
is used by the verifier as discussed in chapter 5.

22

4.1.1 Requirements

We identify 5 main requirements necessary to develop a crawler system for the
generation of Booter (black)lists:

1. The crawler sub-system should return a large and comprehensive list of
PBDs. No crawler will ever be able to return a complete list of its targets,
but we require a best-effort approach to finding PBDs from the web.

2. The crawler sub-system should promote extensibility such that other on-
line resources can easily contribute.

3. The scraper sub-system should generate a feature score for each of the 15
Booter website characteristics given a PBD.

4. The crawler system should be undetectable as an automated process and
aim to reproduce a legitimate browser as best as possible.

5. The crawler system should be efficient as the Booter (black)list is required
to be up to date.

These requirements list the minimum set of features a crawler system should
be composed of. In the next section we discuss the implementation and design
of the crawler system based on the aforementioned requirements.

4.1.2 Implementation and design

Both the crawler sub-system and the scraper sub-system are developed in the
Python 3.5 programming language. For HTTP web requests we made exten-
sive use of the Requests [58] and Cloudflare scrape [59] package of the Python
library repository. Furthermore, we also used the Pythonwhois [60] package for
WHOIS data retrieval and the etree [61] and urllib.urlparse [62] library for pars-
ing HTML and URLs respectively.

To satisfy the first requirement the crawler sub-system is divided into several
smaller crawlers where each operates under a common feature set. Each of the
individual crawlers crawls a specific online website resource: public search en-
gine, video platform or black-market forum. Below we list a complete reference
of the resources crawled together with relevant details specific to each crawler.

• Google search engine - Crawls all search results returned with the fol-
lowing keywords: Booter, Stresser and DDoSer that were carefully se-
lected by analyzing current literature and observing the amount of rele-
vant results. Each keyword supplies the crawler with a maximum total of
around 800 PBDs 1. It should be noted that Google hosts an API [63]
specifically designed for returning a list of URLs given a search keyword.
Their official API however restricts any keyword search up to a total of 64
results which was deemed incomplete for satisfying the first requirement.
For this reason a custom crawler was developed for the Google search
engine bypassing the restrictions.

1Google restricts its search results up to around 800 URLs per keyword

23

• Youtube - Crawls the Youtube video-platform [26] for Booter-related
advertisements with the following keywords: Booter, Online Booter and
Stresser. Each of the returned video items are crawled by their description
and titles to obtain potential Booter URLs. A total maximum of around
5002 PBDs are obtained per keyword.

• hackforums.net - Crawls the Marketplace section of this popular black-
market forum to obtain PBDs. Each individual forum post with relevant
tags is crawled to find any PBD hidden in the top post’s content.

Resources like the Google search engine return the largest number of results
and are most plausible for the assumption of our research: amateur users use
public search engines to find Booter websites [12]. However, as websites first
need to be indexed by search engines to become publicly available it can take a
considerable amount of time for them to appear on the public search engine list.
For this reason we similarly crawl video-platforms and black-market forums as
these additionally find recently publicized Booter websites not yet indexed by
public search engines. As the individual crawler sub-systems operate under a
common feature set it is trivial to extend the crawler system with additional
input sources befitting the system’s second requirement. As building a complete
web crawler that features all relevant sources is not the focus of our research we
conclude the aforementioned three sub crawlers sufficient for our purposes.

The third requirement involves scraping a PBD to generate feature scores for
each of the 15 Booter website characteristics. Each of the 15 Booter website
characteristics is individually processed as extensively described below.

1. Number of pages - We obtain the number of pages by an automatic
scrape process for each PBD. This is accomplished by recursively retriev-
ing all inbound hyperlinks of a web page and traversing each of them until
there are no new pages left or a maximum crawl limit is reached. We
configure a maximum crawl limit as large websites have tens of thousands
of web pages and crawling each of them is disproportional to our research.
Previous research [12] demonstrated that the number of pages of Booter
websites does not exceed 50, which we therefore set as the maximum crawl
limit. All unique inbound hyperlinks found count as the PBD’s number
of pages characteristic.

2. URL type - In section 3 we discussed a total of three different URL types.
As a PBD is only classified by its subdomain(s) and domain name we
discard all URL type 2 classifications (domain.tld/booter-example), but
significantly boost performance due to a numerous amount of domains
being scraped only once. We make the assumption that Booter URLs
do not appear as type 2 URLs as it is non-trivial to programmatically
determine whether a URL is of type 2. This does render the Booter
URL type characteristic with less precision, but by manually verifying the
amount of type 2 URLs we concluded this was negligible. Because of this
we denote all URLs of type 2 as URLs of type 1 (booter-example.tld).

2Similar to Google’s search engine, Youtube restricts the maximum number of results up
to around 500 results per keyword.

24

3. Average depth level - The average depth level is obtained by maintain-
ing a minimum depth index while scraping each web-page. Each web-page
followed from an inbound hyperlink gets its depth level incremented, un-
less a smaller depth level was previously traversed. For instance, if a web
page named pricing.php can minimally be traversed by following a path
of 2 inbound hyperlinks from the PBD’s landing page, the depth level of
the page is scored a 2.0.

4. Average URL length - The average URL length is obtained by averaging
the length of all found inbound hyperlinks 3 from the scrape process of a
single PBD.

5. Domain age - The domain age characteristic is scored as the number of
days that have passed since the PBD’s registration. The domain age is
calculated by first querying the creation date key from the PBD’s WHOIS
records and then subtracting this date from the current date.

6. Domain reservation duration - The domain reservation duration is
calculated as the difference in days between the current date and the
PBD’s expiration date as obtained from its WHOIS records.

7. WHOIS private - The WHOIS private characteristic is a binary value
of 1.0 when a PBD’s WHOIS records are private and 0.0 when its records
are publicly available. To determine whether a PBD’s WHOIS records are
private we apply a heuristic. A list of keywords retrieved from all private
Booter WHOIS records is used to validate whether a WHOIS record’s
registrant name, e-mail and organization fields contain any of the private
registration keywords; think of keywords like private, or privacy-protection
company names like whoisguard and protecteddomainservices.

8. DPS - The DDoS Protection Service (DPS) website characteristic is a
binary value that is 1.0 when a website is under DPS protection and 0.0
without DPS protection. Similar to the WHOIS private characteristic its
score is determined from parsing the WHOIS nameservers for DPS related
keywords. For instance, if a nameserver of Cloudflare is found, the largest
occurring DPS provider, it is clear the PBD is under DPS protection. If
no DPS nameservers are found, we do a further analysis to see if visiting
the PBD results in a re-direct page often accompanied with detecting web
crawlers and other automatic traffic. As these re-direct pages are often
associated with DPS providers we check if there is any present and apply
a keyword search on its content to determine if it is a DPS page and if so,
denote the PBD a DPS score of 1.0.

9. Page rank - The Page rank website characteristic is determined by query-
ing the Alexa [51] page rank servers. As some PBD websites are relatively
new and not yet publicly known to search or ranking engines the Alexa
page rank of such a website is deemed undefined.

10. Average content size - The average content size characteristic is deter-
mined by the content size of each of the scraped pages. The content of a

3All inbound hyperlinks include the website’s domain name as to not bias the results

25

page consists of all textual content found in HTML paragraph p tags and
between any child-element found in HTML’s div tags.

11. Outbound hyperlinks - Similar to how we determine all inbound hyper-
links for further scraping, the outbound hyperlinks are obtained by retriev-
ing all scraped hyperlinks that direct to different domains. The outbound
hyperlinks website characteristic is the average number of outbound hy-
perlinks found from all scraped pages of a PBD. We also included a list of
exception domains that we did not take into account as an outbound hy-
perlink since they have no economic relevance to a Booter website. These
include social-media domains like facebook.com and twitter.com and other
hyperlinks irrelevant to the characteristic like external image files, Skype
protocol URLs or e-mail URLs.

12. Category-specific dictionary - The category-specific dictionary char-
acteristic takes a list of keywords specific to Booter websites e.g. stress,
booter or ddos and calculates the average percentage of occurrence on a
scraped page’s content. The category-specific dictionary only operates on
the landing page as that page best reflects a PBD’s intentions.

13. Resolver indication - The resolver indication characteristic checks from
a list of resolver keywords like skype or xbox and denotes a score of 1.0
wherever any of the keywords occurs on the PBD’s landing page or 0.0
otherwise.

14. Terms of services page - The presence of a terms of services page is
determined in two steps. First, we validate whether any of the URLs
clearly contains a terms of services phrase like http://.../tos. Second, we
compare each of the scraped pages’ content for the presence of terms-
of-service-specific key phrases like terms and conditions or we have the
right. Any confirmed presence of terms of services results in a score of 1.0,
otherwise a score of 0.0 is appointed.

15. Login-form depth level - The login-form depth level characteristic is
determined by retrieving the smallest depth level of any login (or register)
form. The presence of a login-form (or register-form) is determined by the
existence of an HTML password input field.

To satisfy the 4th requirement we have to evaluate the design choices we made
with regards to sending and retrieving web requests, specifically when scraping
individual websites to determine their characteristics for further classification.
Scraping individual websites is a difficult feat as websites take numerous mea-
sures to mitigate automatic crawlers (often referred to as robots or spiders) in
favor of performance and confidentiality. For instance, as most Booter web-
sites are protected by DPS companies like Cloudflare, they include an inter-
mediate launching page that checks potential crawlers by validating JavaScript
operations. A large portion of online websites use similar measures to prevent
automatic scripts from accessing their website content.

A solution to these crawler mitigations frequently found in the current liter-
ature is the use of Selenium [64]: a browser emulator that forwards web requests
to a genuine web browser on the client system. As an actual web browser is
used, all content, images, JavaScript and other browser-related functionality is

26

facebook.com
twitter.com

executed, making it difficult for websites to detect it as an automatic process.
Chromik (2015) [12] used the Selenium web browser for automating a series
of web requests to detect and scrape Booter websites; this proved a practical
solution. However, as the focus of our research is purely on availability, tex-
tual content and hyperlinks there is no need to use a fully-fledged web browser
for forwarding requests as this brings a considerable overhead. For instance,
loading a website with Selenium will force the browser to visually process and
display all results: load all referenced image, audio or video content and execute
JavaScript commands; all irrelevant for our purposes. As we prefer to prevent
as much overhead as possible as denoted by the 5th requirement we built our
own approach to mitigating crawler detection systems. This includes header
flags presenting ourselves as legitimate browsers, a JavaScript emulator and the
option to re-direct to different pages where required.

The source code of the entire crawler can be found online at https://github.

com/joeydevries/Booter-black-list and several high-level snippets of the source
code can be found in Appendix A. The interested reader is invited to read the
source code’s documentation for further insight into each specific crawler pro-
cess. In the next section we present the first preliminary results obtained from
running the crawler processes.

4.2 Preliminary results

A preliminary training run of the crawler system was executed a total of 4 times
between 25th and 30th of June 2015 running 2 hours by average and returning
a total of 928 PBDs. Each of the PBDs was scraped by the scraper sub-system
and manually verified for use in a training dataset for Booter classification (as
discussed in chapter 5). The training dataset of 928 PBDs consists of 113 Booter
websites and 815 non-Booter websites. In Table 2 the intermediate unprocessed
values of each of the 15 Booter website characteristics (as discussed in chapter
3) is presented. As the class of each PBD was manually verified we can isolate
the results between Booter and non-Booter. This gives a clear overview of the
website characteristic discrepancies between Booters and non-Booters.

27

https://github.com/joeydevries/Booter-black-list
https://github.com/joeydevries/Booter-black-list

Booter Non-Booter
Characteristic avg. min max avg. min max
1. Number of pages 7.88 1.0 71.0 981.75 1.0 21620.0
2. URL type 1.04 1.0 2.0 1.20 1.0 2.0
3. Average depth level 0.92 0.0 3.88 1.75 0.0 5.09
4. Average URL length 24.93 8.0 44.38 53.65 6.5 151.21
5. Domain age 395.96 4.0 5304.0 3564.29 7.0 10360.0
6. Domain res. duration 310.93 0.0 2000.0 812.22 7.0 3631.0
7. WHOIS private 0.73 0.0 1.0 0.28 0.0 1.0
8. DPS 0.73 0.0 1.0 0.21 0.0 1.0
9. Page rank 1.1×107 1.8×105 2.6×107 3.2×106 1.0 2.6×107

10. Average content size 127.00 0.0 1394.57 679.08 0.0 4801.42
11. Outbound hyperlinks 0.41 0.0 5.5 14.10 0.0 996.04
12. Category-specific dict. 0.039 0.0 0.33 0.014 0.0 0.15
13. Resolver indication 0.22 0.0 1.0 0.19 0.0 1.0
14. Terms of services page 0.47 0.0 1.0 0.44 0.0 1.0
15. Login-form depth level 1.38 0.0 3.0 2.06 0.0 3.0

Table 2: Grouped preliminary results of the Booter crawler system

As expected, after manual analysis there are clear distinctions between the
results of Booters versus the results of non-Booters. For instance, we highlight
the Number of pages characteristic from which it is clear it can significantly
assist us in differentiating between Booter (7.88) and non-Booter (981.75) web-
sites. In contrast, the results show almost no significant distinction for the high-
lighted resolver indication and terms of services page characteristic. In chapter
5 we explore different combinations of these Booter website characteristics and
based on these results weaken or strengthen several of the characteristics.

The data presented is representative of the scraped websites by a maximum
of 50 crawled pages per PBD. While this does fully crawl (most) Booter web-
sites, it fails to completely gather statistics for larger non-Booter websites as a
significant portion is left out. The crawl limit especially has effect on character-
istics like average depth level and login-form depth level as the 50 crawl results
will be biased towards lower depth levels. Furthermore, not all characteristics
return valid results for each PBD. For instance, the WHOIS protocol gives no
result guarantee when querying the relevant nameservers. This sometimes leads
to undefined results, in which case we omit the results from the computations
in Table 2.

The results displayed so far are non-normalized i.e. they are all displayed
in dissimilar intervals. As the current feature vector results will produce biased
results when directed to a Booter classifier we first normalize the results i.e.
transform all results to a comparable equal range.

4.3 Score normalization

For classification of Booters the classifier system takes as input a feature vector
of 15 Booter website characteristic scores per PBD. Given this feature vector it
returns whether that feature vector represents a Booter or a non-Booter web-
site. The Booter classifier discussed in chapter 5 assumes the feature vector to

28

be normalized as otherwise its result would be biased towards the larger-valued
Booter website characteristics. Each of the Booter website characteristics is
transformed or normalized into a binary value or a decimal value in the unit
interval [0,1] before being sent to the classifier system. Not every characteris-
tic will perfectly map to the unit interval in which case a range is defined to
transform the characteristic to the unit interval. The value ranges are depicted
from a combination of the dataset’s scores and the assumption of certain heuris-
tics. This does mean the heuristics assumed inevitably closes the score values
within a certain configuration. This requires careful thought on the heuristics
assumed which we carefully describe. We believe the selected configuration best
represents the Booter characteristics at the date of this thesis’ publishing.

We take a total of three different approaches to score normalization as some
procedures are better suited than others to a specific type of characteristic. The
approaches when it comes to normalizing the crawled scores are binary, linear
and quadratic interpolation.

4.3.1 Binary interpolation

Six of the 15 website characteristic are binary i.e. they are either scored a 0
or 1. The normalization procedure for binary characteristics involves a decision
boundary for when its preliminary values result in a score of 1. The website
characteristics that require binary interpolation are URL type, WHOIS private,
DPS, Page rank, Resolver indication and Terms of services page.

• URL type - Almost all Booters have a URL type of 1 thus a score of 1.0
is appointed for a URL type of 1. In contrast, a score of 0.0 is appointed
to URLs of type 3.

• Page rank - Any PBD website that has a lower4 page rank than the
determined Alexa page rank of 200000 receives a normalized score of 1.0
while websites with an equal or higher page rank of 200000 are denoted
a score of 0.0. We selected a page rank of 200000 as the highest Alexa
rank found among Booters was 180830 and 213599 making it an effective
threshold. An undefined page rank is scored similar to low ranking pages
as 1.0.

• WHOIS private, DPS, Resolver indication, Terms of services
page - These Booter website characteristics require no further normaliza-
tion and are a direct translation of their original scores.

4.3.2 Linear interpolation

The remaining 9 Booter website characteristics generate scores in relatively
large intervals, which we wish to normalize to the unit interval. This involves
selecting a specific range of values within the large interval to map to the unit
interval using a linear interpolation equation to normalize the scores. The linear
interpolation equation used for score normalization is denoted in equation 4.1.

Sn = 1.0− x−min
max−min

(4.1)

4Note that a lower page rank actually represents a higher number as page rank is a de-
scending metric.

29

The value of min and max denote the interval range we map to the unit
interval. These values are carefully selected for each individual linear web-
site characteristic based on the training dataset and the assumption of several
heuristics. Note that values outside the selected interval are clamped to 0.0 and
1.0 respectively e.g. a number of pages score of 274 which is outside the max
interval is scored 1.0.

• Average depth level - The normalization transformation of the average
depth level is a linear transformation between 1.0 and 3.0. These values
of min and max were observed from the dataset as the minimum and
maximum depth level of Booter websites.

• Average URL Length - As observed from the training dataset Booter
websites have URLs of lengths between 15 and 30 with the occasional
outlier, compared to an average of 53.65 for non-Booter websites. Given
these observations we normalize the average URL length with min and
max values of 15 and 30 respectively.

• Domain age - The normalized domain age is calculated as the linear
interpolation in days between the current date min and the oldest creation
date max found of a Booter in the training dataset which is the 28th of
October 2011. For instance, a domain age of 200 days, given a max value
of 1450 and equation 4.1 returns a normalized score of 0.862.

• Domain reservation duration - We observed from the training dataset
that most Booters have a reservation duration less than 365 days. This
confirms our hypothesis that Booters, due to their fragile nature, do not
reserve or extend a domain for more than one year. Furthermore, as Boot-
ers do not instantly launch as soon as a domain is bought their observed
domain reservation duration is rarely close to 0. Due to these observations
we select a min and max value of 183 days and 365 days respectively.

• Average content size - Booter websites have a low average content size
with an average of 127.00 compared to an average of 679.08 of non-Booter
websites. We linearly normalize the results with a selected min and max
value of 50 and 250 words respectively; these numbers were deemed most
representative of Booters as obtained from the training dataset as Booters
rarely have less than 50 and more than 250 words of text.

• Outbound hyperlinks - We normalize the outbound hyperlinks charac-
teristic between a min and max value of 0.0 and 2.0 as we deem a website
having more than 2 outbound hyperlinks on average a non-Booter web-
site. From the Booter training set it is quite apparent that Booters rarely
feature outbound hyperlinks as hypothesized in chapter 3.

• Category-specific dictionary - The category-specific dictionary score
represents the percentage of Booter-specific keywords occurring on the
landing page’s content. Given the observed score values we find a max
value of 5 percent or 0.05 and a min value of 1 percent or 0.01.

• Login-form depth level - Booter websites frequently have a login-form
at a depth level of 0 and 1 compared to non-Booter websites most often

30

having a login-form at depth level 2. Based on these observations we
linearly interpolate between a min value of 0 and a max value of 2.

4.3.3 Quadratic interpolation

Most of the Booter website characteristics are binary or follow a general linear
pattern. The remaining number of pages characteristic is however better suited
for quadratic interpolation, starting at a relative slow pace before increasingly
stronger score reductions apply. A quadratic interpolation function is a function
of the form shown in equation 4.2.

Sn = ax2 + bx+ c (4.2)

The quadratic interpolation function produces a curve that places progres-
sively greater weight on the input value x, but starts relatively slow. The
motivation for using quadratic interpolation quickly becomes apparent as we
describe the number of pages website characteristic normalization.

• Number of pages - As we deem 50 the maximum number of pages of
Booter websites (excluding outliers) we have a metric to transform any
amount of pages to a score between 0.0 and 1.0 by interpolating between
0 and 50 with 0 pages being a score of 1.0. However, as most Booter
websites do not have 0 pages, but roughly around 5 to 10 pages we use a
quadratic interpolation function that decreases the score in a slower pace
at the start and in a stronger pace when it is closer to the maximum crawl
limit. For normalizing the number of pages characteristic we take the
quadratic interpolation equation 4.2 and select a = −2, b = 0 and c = 1
to get equation 4.3.

y = −2x2 + 1 (4.3)

Equation 4.3 produces a preferable curve, but is not yet suited for normal-
izing the number of pages as an x value of 1.0 returns a value below the
y-axis. We first solve for y = 0 to retrieve x = 0.707106781 to transform
the number of pages between 0 and 50 to x = 0 and x = 0.707106781
respectively; this produces the final equation 4.4 for normalizing the num-
ber of pages with n being the number of pages. Note that all normalized
values that end up outside the normalized range are clamped between 0.0
and 1.0.

y = −2 ∗ (
n

50/0.707106781
)2 + 1 (4.4)

Equation 4.4 transforms any number of pages between 0 and 50 to a score
between 1.0 and 0.0 respectively. The graph of the equation is shown in
Figure 4.

31

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
h
a
ra

c
te

ri
s
ti
c
 s

c
o
re

Number of pages.

quadratic
linear

Figure 4: Normalization graph of number of pages from Equation 4.4.

From Figure 4 we can see that a website hosting a total of 25 pages is
deemed a score of 0.75 compared to a score of 0.5 using default linear
interpolation. As this metric favors smaller websites and largely dismisses
larger websites we believe this metric better reflects the number of pages
characteristic.

Each of the normalization transformations are summarized in Table 3.

Characteristic Transformation Value range
1. Number of pages Quadratic [0,50]
2. URL type Binary -
3. Average depth level Linear [0,2]
4. Average URL length Linear [15-30]
5. Domain age Linear [-, 11805]
6. Domain res. duration Linear [183,365]
7. WHOIS private Binary -
8. DPS Binary -
9. Page rank Binary [200.000,-]
10. Average content size Linear [50,250]
11. Outbound hyperlinks Linear [0,2]
12. Category-specific dict. Linear [0.01,0.05]
13. Resolver indication Binary -
14. Terms of services page Binary -
15. Login-form depth level Linear [0,2]

Table 3: Normalization transformations

By applying the normalization transformations atop of the crawler dataset
we get a new dataset, this time with feature vector scores that can directly be
used as input to the Booter classifier. In Table 4 the normalized crawler dataset
is shown, again isolated by Booter and non-Booter results.

5Subject to date of verification.

32

Booter Non-Booter
Characteristic avg. avg.
1. Number of pages 0.93 0.23
2. URL type 0.96 0.80
3. Average depth level 0.87 0.57
4. Average URL length 0.36 0.07
5. Domain age 0.78 0.14
6. Domain res. duration 0.90 0.61
7. WHOIS private 0.71 0.29
8. DPS 0.71 0.21
9. Page rank 0.90 0.30
10. Average content size 0.70 0.16
11. Outbound hyperlinks 0.84 0.19
12. Category-specific dict. 0.49 0.24
13. Resolver indication 0.24 0.19
14. Terms of services page 0.47 0.44
15. Login-form depth level 0.52 0.27

Table 4: Normalized grouped results of the Booter crawler system

With normalized results we can still clearly see a significant distinction be-
tween Booter websites and non-Booter websites. For instance, the highlighted
number of pages and resolver indication characteristic still show similar dis-
crepancies compared to the preliminary results. The clear distinction shows
promise for Booter classification as there apparently are noticeable measurable
differences to differentiate Booter websites from non-Booter websites. In the
next section we will use these feature vector inputs to classify a website as ei-
ther a Booter or a non-Booter website where we use a large array of classification
algorithms to achieve this.

33

Part II

The Classifier

34

This page intentionally left blank.

35

5 Booter classification

As the crawler system will inevitably produce non-Booter websites as potential
Booters, a classifier system is developed to filter the non-Booter websites from
the list. In this section we extensively look at this classifier system and carefully
describe the classification metrics used in the process.

In order to filter the complete list of Potential Booter Domain names (PBDs)
to a list of only Booter domain names a classifier system is developed. Given a
15 dimensional PBD feature vector as input, the Booter classifier system states
whether this score vector is that of a Booter website or a non-Booter website.
In Figure 5 a basic overview of the classifier system is presented.

[BOOTER (BLACK)LIST]

[WEIGHTS]

[PDB FEATURE VECTORS]

CLASSIFIER

Figure 5: The Classifier system

The classifier system takes as input a list of PBD feature vectors from the
crawler system together with a set of weights (we discuss weights in section
5.3.3) and returns a list of only Booter domain names. Similar to the crawler
system, the classifier system is completely written in Python and the interested
reader is invited to read the full source code at the research’s public GitHub
Repository https://github.com/joeydevries/Booter-black-list.

To differentiate Booter websites from non-Booter websites a total of 7 differ-
ent classification metrics are implemented and extensively verified to accurately
test the optimal classification method for Booter classification. We describe the
classification metrics used and their motivation in detail in section 5.2. Before
we discuss the classification metrics in the context of a Booter (black)list we
first briefly introduce classification accuracy and the confusion matrix.

5.1 Classification accuracy

To test the effectiveness or accuracy of the proposed classifier system we need to
develop a notion of classification accuracy. The classification accuracy is char-
acterized as the probability a random PBD feature vector is correctly classified
as either a Booter or non-Booter. Figure 6 shows a confusion matrix denoting a
total of 4 classification possibilities. From the confusion matrix one can derive
not only the number of times the classifier misclassifies a website, but also the
type of misclassification.

36

https://github.com/joeydevries/Booter-black-list

TRUE POSITIVE FALSE NEGATIVE

FALSE POSITIVE TRUE NEGATIVE

BOOTER NON-BOOTER

B
O

O
T
E
R

N
O

N
-B

O
O

T
E
R

PREDICTED CLASS

A
C

T
U

A
L

C
L
A

S
S

Figure 6: Confusion matrix

• True positive (TP) - when a website is correctly classified as a Booter.

• True negative (TN) - when a website is correctly classified as a non-
Booter website.

• False positive (FP) - when a non-Booter website is incorrectly classified
as a Booter. This is called a Type I error.

• False negative (FN) - when a Booter website is incorrectly classified as
a non-Booter website. This is called a Type II error.

Ideally we would only have true positives and true negatives e.g. a perfect
web filtering system would produce a diagonal confusion matrix. Given the
confusion matrix we can calculate the Classification Accuracy Rate (CAR) of
the classifier as the number of true positives and true negatives divided by the
total sum T (M) of test samples M as seen in equation 5.1.

CAR = (TP + TN)/T (M) (5.1)

Furthermore, we also identify a total of 3 global indicators [54] derived from
the confusion matrix that estimate the likelihood of error:

• Global error rate (Ger) - The number of samples incorrectly classified:
(FP + FN)/T (M). The global error rate is the complement of CAR.

• Type I error rate (TIer) - The number of samples incorrectly classified
as a Booter: (FP)/T (M).

• Type II error rate (TIIer) - The number of samples incorrectly classi-
fied as a Non-Booter: (FN)/T (M).

Several of the described classification schemes introduced in section 5.2 re-
quire configuring a threshold value at which the system decides a specific score
indicates either a Booter or a non-Booter. Balancing this threshold value in-
clines the error samples more towards one end of the confusion matrix than the
other. For instance, a low threshold value results in a higher Type 1 error rate as

37

non-Booter websites are more often classified as Booter websites. Additionally,
a high threshold value results in a higher Type II error rate as Booter websites
are less often classified as Booter websites. Given the nature of blacklists we
favor a reduction of false positives over false negatives as a large number of false
positives renders a blacklist inoperable (see section 2.4). In contrast, a higher
number of false negatives makes the blacklist less efficient, but still practical.

The classification metrics introduced in section 5.2 are trained by the train-
ing dataset from section 4.3. Testing the accuracy of the system given the same
training data produces biased results. Therefore, the accuracy of the system is
tested against a total of three newly obtained datasets from the crawler system.
Each of the test datasets is obtained and manually verified between the 7th and
21th of August 2015. The test dataset totals a number of 465 websites denoted
in Table 5.

Dataset Date Booters non-Booters Total
Test set 1 07-08-2015 48 62 110
Test set 2 18-08-2015 57 157 214
Test set 3 21-08-2015 35 106 141

140 325 465

Table 5: Manually classified test dataset

Against these datasets we test a total of 7 different classification metrics. The
classification metrics are tested against each individual dataset and the accuracy
rates are averaged between the datasets. We describe each classification metric
in detail in the next sections.

5.2 Classification metrics

Given a set of 15 identified Booter website characteristics and any arbitrary PBD
feature vector set of individual characteristic scores we want to evaluate whether
this PBD feature vector belongs to either a Booter or a non-Booter website.
Each characteristic of a Booter as described in section 3 is represented as a
score in the unit interval [0,1] that depicts how much it satisfies the respective
characteristic; this can either be binary or a decimal value in between. Given
such a set of feature scores obtained from a single website we want to evaluate
a binary result indicating whether the website is a Booter website. Several
classification methods exist that given a set of identifying features can evaluate
their similarity in a binary decision. By focusing on a multitude of classification
algorithms we can test each individual metric and determine which classification
metric is best suited for Booter classification.

As research in classifying Booters is relatively young we identify several clas-
sification methods from the research literature of phishing, (child-)pornography
detection and big-data analysis. Table 6 presents an overview of classification
metrics found in the literature coupled with their respective accuracies in rele-
vant website classification literature.

38

Metric Paper Accuracy
Euclidean distance [65] [12] [66] 79-94%
Squared Euclidean6 [67] -
Manhattan distance7 [68] [65] -
Fractional distance [65] [69] -
Cosine distance [12] 85%
K-Nearest Neighbors [57] [70] [71] 70-98%
Naive Bayes [47] [55] [72] [70] [53] 74-99%

Table 6: Proposed Booter classification schemes

The Euclidean, Cosine distance, K-Nearest Neighbors and the Naive Bayes
classification are frequently found in literature of phishing, Booter and child-
pornography website classification. These respective classification metrics re-
turned interesting results that could prove effective in Booter classification. The
squared Euclidean, Manhattan and Fractional distance were not mentioned in
any of the phishing, Booter and child-pornography literature, but proved effec-
tive when working with high dimensional feature vectors [68] [65]. As the website
feature vectors are 15 dimensional, which we deem as high dimensional, these
classification metrics can prove particularly effective in Booter classification.

There exists a multitude of alternative classification metrics that we did not
include in the Booter classification analysis (like Hamming distance, Logistic
regression and Support Vector Machines). As implementing and testing each
of the available classification metrics is infeasible for the proposed research du-
ration we selected the algorithms based on their apparent and accurate results
in a low and high dimensional datasets and their relevant literature occurrence.
Further tests using a different set of classification metrics is reserved for future
research.

Table 7 presents a brief overview of the practical characteristics of each classifi-
cation metric together with their high-dimensional (n) strength as derived from
the literature.

Metric n > 3 Complexity Efficiency
Euclidean distance weak low high
Squared Euclidean weak low high
Manhattan distance medium low high
Fractional distance strong medium high
Cosine distance medium low high
K-Nearest Neighbors strong low medium
Naive Bayes strong medium high

Table 7: Classification metric characteristics

Each of the proposed classification metrics will be extensively discussed in
the next sections, including their implementation and their respective accuracy
on the test dataset.

6Derived from the Euclidean distance metric.
7See footnote 6

39

5.3 Distance metrics

A distance metric defines the distance between two sets of features i.e. the
amount two sets of features geometrically vary. The general idea of distance met-
rics is to represent a set of feature characteristics as an n-dimensional feature vec-
tor. Given two vectors Ā and B̄, where Ā = [a1, a2, ..., an] and B̄ = [b1, b2, ..., bn]
their distance can be calculated by several distance metrics: Euclidean, squared
Euclidean, Manhattan, Fractional and Cosine distance. Distance metrics can
be evaluated on binary values of either 0 or 1 or decimal values within the unit
interval [0,1].

Care should be taken when using geometrical distance to carefully standard-
ize the feature values [73]. For instance, if one of the features is measured at
a scale of 100 units while the other features are measured at a scale of 1 unit,
the distance would be heavily biased towards the larger-scaled feature. We take
extra care to restrain the individual feature values to the same scale as it would
otherwise leave the metric ineffective. This standardization or normalization
was extensively discussed in section 4.3.

Additionally, the classification scheme of our research in contrast solely op-
erates on similarity between two feature vectors Ā and B̄. We therefore derive
the similarity S between two vectors Ā and B̄ given a distance metric D as
expressed in equation 5.2. All negative values are clamped to 0.0.

S(Ā, B̄) = 1−D(Ā, B̄) (5.2)

The distance metrics involves two vectors of which feature vector Ā is de-
noted as the PBD feature vector to classify. The other vector B̄ we refer to as
the perfect Booter vector defined as B̄p = [1.0, 1.0, ..., 1.0]. By measuring the
similarity between any website feature vector and the perfect Booter vector we
effectively calculate the Booter likelihood score of the input PBD feature vec-
tor. We tried experimenting with this perfect Booter vector by not assuming a
perfect score of only 1s, but by updating its values to take the averages of all
Booter scores as found on the training dataset, and by manually selecting score
values based on their Booter occurrence. Updating the perfect Booter vector
did however not prove effective for significantly and consistently improving the
metrics’ accuracy.

5.3.1 Decision boundary

Each of the distance metrics generates a distance and equivalently a similarity
score that have yet to be interpreted for classification. For each of the distance
metrics a final binary decision is made based on a given threshold at which
any similarity score above the threshold is deemed a Booter website. As each
distance metric applies different geometrical characteristics in its equations the
optimal threshold varies for each metric. The optimal threshold is characterized
as the threshold T that returns the optimal CAR on a training dataset favoring
a reduction of Type I errors over Type II errors where relevant. This can be
translated into an objective function FO denoted in equation 5.3 that given
a distance metric D returns the optimal threshold T based on the previous

40

characterization.

FO(D) =

{
∼Max(CAR)
TIer < TIIer

(5.3)

Given equation 5.3 we test each distance metric on a large number of different
thresholds to find the optimal threshold per metric. This optimal threshold
value is calculated from the training dataset and is fed to the classifier system.
Each distance metric calculates their own optimal threshold which is carefully
described in the upcoming sections.

5.3.2 Weights

Each of the PBD feature vectors currently have an equal significance distribu-
tion among their vector elements. As pointed out by [12] some website char-
acteristics are more relevant than others and this should be reflected in the
metric calculations. By introducing an n-dimensional weight vector W̄ we sig-
nificantly increase the accuracy of the classification metrics. Given a weight
vector W̄ = [w0, w1, ..., wn] we scale a PBD feature vector Ā by the weight vec-
tor W̄ and normalize the weighted results by dividing the results by the largest
weight element Max(W̄). This weight scaling process to get a new vector Ā′ is
illustrated in equation 5.4.

Ā′ =
Ā ∗ W̄
Max(W̄)

= [(a0 ∗ w0)/Max(W̄), ..., (an ∗ wn)/Max(W̄)] (5.4)

Given that these weights should favor stronger characteristics over weaker
characteristics it would significantly boost the classification accuracy. However,
we need an initial set of weights that properly portray the Booter feature char-
acteristics in order for this to work. To find the ideal set of weights we make use
of what is called the odds ratio [74] [12] where we calculate the odds of a charac-
teristic occurring in the positive class compared to the odds of the characteristic
occurring in the negative class. For instance, take a sample set of 100 PBDs
with 40 Booters and 60 Non-Booters and the DDoS Protection Service (DPS)
characteristic. Among the Booters we find 35 Booters being protected by a DPS
with only 12 Non-Booters being protected by a DPS. The odds of a Booter be-
ing protected by a DPS is thus 35 to its remainder of 5 which becomes 7:1, with
the odds of a Non-Booter being protected being 12 to its remainder of 48 which
then becomes 0.25:1. This gives us an odds ratio of 7/0.25 or 28 for the DPS
characteristic.

Given the training dataset obtained in section 4.3 we calculate the odds
ratio for each of the 15 characteristics shown in Table 8. As calculating the
odds ratio for each characteristic requires a binary partition, we converted all
decimal-valued scores >= 0.5 to indicate the score being that of a Booter.

41

Characteristic Odds ratio Weight
1. Number of pages 40.97 1.00
2. URL type 6.00 0.15
3. Average depth level 5.03 0.12
4. Average URL length 7.00 0.17
5. Domain age 22.19 0.54
6. Domain res. duration 5.77 0.14
7. WHOIS private 5.98 0.15
8. DPS 9.07 0.22
9. Page rank 20.93 0.51
10. Average content size 12.26 0.30
11. Outbound hyperlinks 22.83 0.56
12. Category-specific dict. 3.00 0.07
13. Resolver indication 1.39 0.03
14. Terms of services page 1.13 0.03
15. Login-form depth level 2.92 0.07

Table 8: Booter odds ratio and weights

From the odds ratios it becomes apparent which Booter website characteris-
tics are more relevant than others and vica versa as respectively highlighted in
Table 8. By scaling the odds ratios by the maximum odds ratio occurrence to
get the final weight vector W̄ we effectively transform Equation 5.4 to equation
5.5. This also effectively diminishes the effect of Booter characteristics like Re-
solver indication that were deemed ineffective for differentiating between Booter
websites and non-Booter websites.

Ā′ = Ā ∗ W̄ = [Ā0 ∗ W̄0, Ā1 ∗ W̄1, ..., Ān ∗ W̄n] (5.5)

Introducing a weight vector W̄ into the classification calculations should
significantly boost the accuracy and precision of the classifier system. In the
upcoming sections we describe both the weighted and unweighted process of
each classification metric.

5.3.3 Euclidean distance

Euclidean distance is a distance metric based on geometrical properties and one
of the most often used metrics in data classification literature [65]. Euclidean
distance defines the distance between two points in Cartesian space as charac-
terized by their geometrical interpretation. The distance D between two vectors
Ā and B̄ is equal to the length of the difference vector between Ā and B̄ [73] as
expressed in equation 5.6.

D(Ā, B̄) =
√

(a1 − b1)2 + (a2 − b2)2...(an − bn)2 =

√√√√ n∑
i=1

(ai − bi)2 (5.6)

For standardization purposes we prefer normalizing all score results, trans-
forming each resulting distance score to the unit interval [0,1]. To normalize the
Euclidean distance scores we divide the total score by the maximum possible

42

distance. We can obtain the maximum possible Euclidean distance by calculat-
ing the maximum point-wise distance in each dimension as shown in equation
5.7 given the perfect Booter vector B̄p.

Dmax =

√√√√ n∑
i=1

(B̄pi − 0.0)2 (5.7)

Important to note is that certain Booter website characteristics do not con-
sistently return relevant results. For instance, in the case of WHOIS data like
the WHOIS private and Domain age characteristic the WHOIS server is not
always available. In the case of incomplete data, we omit these inapplicable
results from the feature vector ensuring the feature vector’s completeness. This
effectively fluctuates the n parameter, but keeps Dmax applicable for score nor-
malization.

As mentioned in section 5.3.1 each distance metric requires an optimal
threshold for its binary decision. Given the Euclidean distance metric and the
training dataset obtained from section 4.3 we generate the graph in Figure 7
given a total of 100 varying threshold parameters. For each individual threshold
value we calculate the Classification Accuracy Rate (CAR) and the Type I and
Type II error accuracy rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 7: Euclidean distance accuracy rates on varying thresholds.

As discussed in section 5.3.1 an optimal threshold should be selected from
Figure 7. We favor a reduction of Type I errors over Type II errors which we
marked gray as the threshold area of interest. Given the objective function FO
from equation 5.3 we select an optimal threshold value T of 0.41.

Classification accuracy

Testing the accuracy of the classifier system involves measuring each of the 4
classification possibilities as derived from the confusion matrix discussed in sec-
tion 5.1. For each classification metric we obtain the true positives Tp, the true
negatives Tn, the false positives Fp and the false negatives Fn. With these 4

43

classification possibilities we generate the total classification accuracy and global
error rates of the Euclidean distance metric.

Given the three test datasets described in section 5.1 featuring a total of 465
PBD feature vectors and the optimal threshold value T of 0.41 we obtain the
accuracy results presented in Table 9. The results are the averaged results of
individual accuracy rates of each test dataset.

Metric CAR TIer TIIer
Euclidean distance 0.920 0.030 0.050

Table 9: Euclidean distance classification accuracy

The Euclidean distance metric returns a higher accuracy rate than originally
expected, mainly because of its simplicity and weaknesses in high dimensional
datasets. As described in section 5.3.2 we can still improve the distance metric
by introducing a weight vector W̄ .

Weights

By scaling both the input feature vector and the perfect Booter vector by the
weight vector W̄ we update the Euclidean distance metric with the weighted
approach. Due to the weight vector W̄ shifting the distance values and the
normalization procedure we again have to measure the optimal threshold. In
Figure 8 a total of 100 different threshold values were tested against the training
dataset using weighted Euclidean distance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 8: Weighted Euclidean distance accuracy rates on varying thresholds.

Given Figure 8 and the objective function FO we find the optimal threshold
value T of 0.71 that together with the test dataset give us the accuracy rates of
Table 10.

44

Metric CAR TIer TIIer
Weighted Euclidean distance 0.933 0.017 0.049

Table 10: Euclidean distance classification accuracy

The weighted adaptation of the Euclidean distance metric performs marginally
more accurate compared to its unweighted sibling. Specifically interesting to
note here is the significant reduction of the Type I error rate which is highly
favorable in the context of a Booter (black)list.

5.3.4 Squared Euclidean distance

Squared Euclidean distance is characterized by squaring the Euclidean distance
equation 5.6, effectively removing the square root. The squared Euclidean dis-
tance is defined as Ds between vectors Ā and B̄ [75] expressed in equation 5.8.

Ds(Ā, B̄) =

√√√√ n∑
i=1

(ai − bi)2

2

=

n∑
i=1

(ai − bi)2 (5.8)

The squared Euclidean distance places progressively greater weight on fea-
tures that are further apart. For normalization purposes we also normalize the
results of the squared Euclidean distance equation. To normalize the results of
equation 5.8 we divide its results by the maximum obtainable distance value
as similarly done in equation 5.7. Equation 5.9 denotes the maximum squared
Euclidean distance value given the perfect Booter vector B̄p.

Dmax =

n∑
i=1

(B̄pi − 0.0)2 (5.9)

This is effectively the same equation as equation 5.7 with the omission of
the square root.

Classification accuracy

The Squared Euclidean distance metric is also a geometric classification metric
and thus requires a threshold for its binary decision. In Figure 9 a total of 100
different thresholds T were measured for the squared Euclidean distance.

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 9: Squared Euclidean distance accuracy rates on varying thresholds.

Given Figure 9 and the objective function FO we select an optimal threshold
value T of 0.66. Selecting this threshold on the test dataset returns the accuracy
results presented in Table 11.

Metric CAR TIer TIIer
Squared Euclidean distance 0.908 0.030 0.062

Table 11: Squared Euclidean distance classification accuracy

The results are slightly less accurate compared to the results of the Euclidean
distance metric. As the squared Euclidean distance gives higher significance to
vector elements further apart we can describe the lesser accuracy rates by Booter
vectors and non-Booter vectors being mostly similar to some extent. Further-
more, as the TIer remains similar and only the TIIer has reduced, the stronger
distance focus only seems to affect the detection of Booter websites.

Weights

As proposed in section 5.3.3 we equivalently introduce a weight vector W̄ into
the squared Euclidean distance calculations. In Figure 10 we measured the ac-
curacy results of the weighted squared Euclidean distance metric on the training
dataset with varying threshold values.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 10: Weighted squared Euclidean distance accuracy rates on varying
thresholds.

Given Figure 10 and the objective function FO we find the optimal threshold
value T of 0.89 that together with the test dataset give us the accuracy rates of
Table 12.

Metric CAR TIer TIIer
Weighted squared Euclidean distance 0.940 0.022 0.039

Table 12: Weighted squared Euclidean distance classification accuracy

The weighted version of the squared Euclidean distance metric significantly
boosts its accuracy rates. Similar to the Euclidean distance metric, the weighted
adaptations seem to favor better Type I over Type II error accuracy rates.

5.3.5 Manhattan distance

The Manhattan distance defines the distance Dm between vectors Ā and B̄ as
the point-wise difference across dimensions [75].

Dm(Ā, B̄) =

n∑
i=1

|ai − bi| (5.10)

As described by [65] the Manhattan distance metric is much more effective
in higher dimensions (n larger than 3) compared to Euclidean distance. Nor-
malizing the Manhattan distance results is done by dividing its results by Dmax

as calculated in equation 5.11 given the perfect Booter vector B̄p.

Dmax =

n∑
i=1

(B̄pi − 0.0) (5.11)

47

Classification accuracy

In Figure 11 a total of 100 different thresholds were measured for the Manhattan
distance metric.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 11: Manhattan distance accuracy rates on varying thresholds.

Given Figure 11 and the objective function FO we select an optimal threshold
value T of 0.62 that returns the accuracy results presented in Table 13.

Metric CAR TIer TIIer
Manhattan distance 0.927 0.024 0.049

Table 13: Manhattan distance classification accuracy

The Manhattan distance returns more accurate results compared to the de-
fault Euclidean distance (albeit marginally). This is in accordance with our
original hypothesis that the Manhattan distance metric is more accurate in
high dimensional datasets.

Weights

We equivalently introduce a weight vector W̄ into the Manhattan distance cal-
culations. In Figure 12 we measured the accuracy results of the weighted Man-
hattan distance metric with varying threshold values.

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 12: Weighted Manhattan distance accuracy rates on varying thresholds.

Given Figure 12 and the objective function FO we find the optimal threshold
value T of 0.75 that together with the test dataset give us the accuracy rates of
Table 14.

Metric CAR TIer TIIer
Weighted Manhattan distance 0.931 0.019 0.049

Table 14: Weighted Manhattan distance classification accuracy

A moderate improvement, but similar to the squared Euclidean’s weighted
metric there is a significant improvement in the Type I error accuracy.

5.3.6 Fractional distance

The Fractional distance describes a distance metric that returns more accurate
results compared to Euclidean and Manhattan distance when working specif-
ically with high dimensional feature vectors. The fractional distance Df [65]
between feature vectors Ā and B̄ is expressed in equation 5.12.

Df (Ā, B̄, f) =

n∑
i=1

(
(ai − bi)f

)1/f
(5.12)

Where f is some integer < 1. Note that when f equals 2 we obtain the
Euclidean distance equation 5.6. The value of f is best chosen within the interval
f ∈ (0.25, 0.75), but a value of f = 0.5 will improve classification performance
in nearly all circumstances [69].

To find the maximum distance for normalization of equation 5.12 we use
equation 5.13 given the perfect Booter vector B̄p.

Dmax =

(
n∑
i=1

(B̄pi − 0.0)f

)1/f

(5.13)

49

Classification accuracy

In Figure 13 we measure a total of 100 different thresholds for the Fractional
distance metric.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 13: Fractional distance accuracy rates on varying thresholds.

Given Figure 13 and the objective function FO we select an optimal threshold
value T of 0.82 that returns the accuracy results presented in Table 15.

Metric CAR TIer TIIer
Fractional distance 0.914 0.024 0.062

Table 15: Fractional distance classification accuracy

Surprisingly, the Fractional distance metric performs relatively poor when
it comes to the other distance metrics. Furthermore, the lower accuracy rates
neglects our hypothesis of the Fractional distance metric measuring more accu-
rate in high dimensional datasets.

Weights

As proposed in section 5.3.3 we equivalently introduce a weight vector W̄ into
the Fractional distance calculations. In Figure 14 we measured the accuracy
rates of the weighted Fractional distance equation on varying threshold values.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 14: Weighted Fractional distance accuracy rates on varying thresholds.

Given Figure 14 and the objective function FO we find the optimal threshold
value T of 0.86 that together with the test dataset give us the accuracy rates of
Table 16.

Metric CAR TIer TIIer
Weighted Fractional distance 0.923 0.022 0.056

Table 16: Weighted Fractional distance classification accuracy

The weighted adaptation returns a moderate improvement over the un-
weighted version, strongly favoring the Type I error rate over the Type II error
rates. Even with the added weight vector W̄ the fractional distance still per-
forms relatively weak compared to the other distance metrics again neglecting
the original hypothesis.

5.3.7 Cosine distance

The Cosine distance SC defines the similarity as the scalar product between
vectors Ā and B̄ divided by their respective lengths as described by [12].

SC = cos(θ) =
Ā · B̄
||Ā||||B̄||

=

∑n
i=1 ai × bi√∑n

i=1 a
2
i ×

∑n
i=1 b

2
i

(5.14)

The Cosine distance metric can have denominator values equal to 0 at which
point we replace the result of the equation with a similarity score of 0. Chromik
(2015) [12] did an extensive comparison between the Euclidean distance metric
and the Cosine distance metric and concluded that the Cosine distance metric
returned better results with a Booter feature set. Since the Booter feature set
of [12] is a subset of our Booter feature set the results are likely to be similar. As
the Cosine distance metrics returns the cosine of the angle between two vectors
in the range −1 to 1 there is no need to normalize the results. Negative Cosine
distance scores get clamped to 0.0.

51

Classification accuracy

In Figure 15 we measure a total of 100 different thresholds for the Cosine dis-
tance metric on the training dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 15: Cosine distance accuracy rates on varying thresholds.

Given Figure 15 and the objective function FO we select an optimal threshold
value T of 0.78 that returns the accuracy results presented in Table 17.

Metric CAR TIer TIIer
Cosine distance 0.914 0.049 0.037

Table 17: Cosine distance classification accuracy

The Cosine distance metric performs relatively inaccurate compared to the
Euclidean distance metrics. This is a surprising result as earlier research [12]
observed a significant improvement over using the Cosine distance metric over
the Euclidean distance metric.

Weights

As proposed in section 5.3.3 we equivalently introduce a weight vector W̄ into
the Cosine distance calculations. In Figure 16 we measured the accuracy results
of the weighted Cosine distance metric with varying threshold values.

52

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
c
c
u

ra
c
y

Threshold T

CAR
Type I Error
Type II Error

Figure 16: Weighted Cosine distance accuracy rates on varying thresholds.

Given Figure 16 and the objective function FO we find the optimal threshold
value T of 0.94 that together with the test dataset give us the accuracy rates of
Table 18.

Metric CAR TIer TIIer
Weighted Cosine distance 0.944 0.022 0.034

Table 18: Weighted Cosine distance classification accuracy

Surprisingly enough adding weights to the Cosine distance metric signifi-
cantly boosts its accuracy rates, even so much that the Cosine distance metric
performs best compared to the other distance metrics on Booter feature vec-
tors. This also confirms earlier measurements by Chromik (2015) [12] where the
Cosine distance metric performed most optimal with the addition of weights.

5.4 Naive Bayes

With distance metrics the similarity between two feature vectors is modeled
by their geometric or angular distance. In contrast, Naive Bayes classification
makes use of probability to classify feature vectors [76]. Given a Booter char-
acteristic n being the evidence whether a Booter has a small number of pages
and the outcome B̄ as the website being a Booter we can compute P (B|n), the
probability that B occurs given the evidence n [47]. Conditional probability
is defined as the probability that something will happen, given that something
else has already happened. This is characterized by equation 5.15 with O being
some outcome and E being some evidence.

P (O & E) = P (O)× P (E|O) (5.15)

This gives us a basic formula for the Bayes Rule.

P (O given E) =
P (E|O) ∗ P (O)

P (E)
(5.16)

53

Equation 5.16 only describes a single piece of evidence and for our research
we have a large array of evidence in the form of a feature vector. The math
for describing the Bayes Rule given multiple evidence is relatively complicated.
To get around the complications we treat each piece of evidence as independent
which is called (for this reason) the Naive Bayes approach.

P (O|(E1, E2, ..., En)) =
P (E1|O)× P (E2|O)× ...× P (En|O)× P (O)

P (E1)× P (E2)× ...× P (En)
(5.17)

Given equation 5.17 and the probabilities of each piece of evidence occurring
we can calculate the probability of a specific outcome [77]. Calculating the
probabilities of all possible outcomes returns a list of probabilities of which
the highest probability is selected as the most plausible outcome. Then, from
the Naive Bayes equation, assuming that Booter and non-Booter websites occur
with equal probability (with O = 1 being a Booter), we compute the probability
as a feature vector Ā belonging to a Booter as:

P (O = 1|Ā) =
P (Ā|O = 1)× P (O = 1)

P (a1)× P (a2)× ...× P (an)
(5.18)

The Naive Bayes classification scheme allows us to pre-compute all probabil-
ities given a training set and as a result Naive Bayes only comes down to basic
arithmetic. This makes it an easy, quick and efficient classification scheme that
is extensively used in text classification and spam filters [54] [70]. The scheme
does require a representative training set to pre-compute all probabilities and
as a result it is highly dependent on the completeness and accuracy of a training
dataset.

Given the training dataset as discussed in section 4.3 we can compute the in-
dividual probabilities of Booter website characteristics occurring. The Naive
Bayes classification metric assumes all individual characteristics to be binary:
a characteristic is either true or false. As some of the Booter website character-
istics are decimal values in the unit interval we first have to transform these to
their binary equivalents before calculating the individual probabilities. This is
accomplished by converting all decimal valued metrics of value higher or equal
to 0.5 to 1.0 and similarly the other way around. For instance, if we take a
normalized Number of pages feature score of 0.72 which is equal or higher than
0.5 we convert this score to 1.0. Given the total training dataset of binary
characteristic values we can calculate all individual characteristic probabilities
as resulted in Table 19.

54

Characteristic X = Booter X = Non-Booter
P(Number of pages / X) 0.97 0.23
P(URL type / X) 0.93 0.80
P(Average depth level / X) 0.94 0.67
P(Average URL length / X) 0.37 0.06
P(Domain age / X) 0.89 0.14
P(Domain res. duration / X) 0.89 0.62
P(WHOIS private / X) 0.38 0.28
P(DPS / X) 0.72 0.18
P(Page rank / X) 0.85 0.35
P(Average content size / X) 0.74 0.16
P(Outbound hyperlinks / X) 0.92 0.20
P(Category-specific dict. / X) 0.52 0.19
P(Resolver indication / X) 0.22 0.19
P(Terms of services page / X) 0.44 0.36
P(Login-form depth level / X) 0.82 0.66

Table 19: Probability of likelihood of each characteristic given outcome X.

Furthermore, as Booters and non-Booters are not evenly distributed in the
training dataset we also calculate the probabilities of any random feature vector
being either a Booter or a non-Booter website. These prior probabilities are
calculated by dividing the samples of a given outcome by the total number of
samples as shown in Table 20.

Outcome Base rate
P(Booter) 0.1001
P(Non-Booter) 0.8999

Table 20: Prior probabilities or base rates.

Given the individual characteristic probabilities and the prior probabilities
from Tables 19 and 20 respectively we calculate the total probabilities of any
random PBD feature vector being either a Booter or a non-Booter. The result
of both outcomes is compared and the outcome with the highest probability
is selected as the most plausible outcome which depicts the classifier system’s
binary decision.

5.4.1 Classification accuracy

The Naive Bayes classification scheme has no further variables to collect and/or
configure and its decision is completely binary; no threshold parameter is re-
quired. As a result, the accuracy of the Naive Bayes classification metric is com-
pletely dependent on the calculated probabilities based of the training dataset.
Given the training dataset as obtained in section 4.3 we calculate the classifi-
cation accuracy rate together with the error rates TIer and TIIer as shown in
Table 21.

55

Metric CAR TIer TIIer
Naive Bayes classification 0.912 0.056 0.032

Table 21: Naive Bayes classification accuracy

Surprisingly enough, the Naive Bayes classification metric performs rela-
tively poor compared to accuracy measurements in similar literature. As the
current Naive Bayes classification metric uses an equal significance distribution
we improve the Naive Bayes classification accuracy by altering the distribution
of the feature vectors by introducing weights into the equation

5.4.2 Weights

We introduce weight vector W̄ in the Naive Bayes classification to improve the
accuracy rates of the classification metric. Introducing weight vector W̄ into
the Naive Bayes equation returns the accuracy results as shown in Table 22.

Metric CAR TIer TIIer
Weighted Naive Bayes classification 0.918 0.049 0.032

Table 22: Weighted Naive Bayes classification accuracy

The introduction of weights only marginally improved the accuracy scores of
the Naive Bayes classification metric and can hardly be measured as a significant
improvement. A relative poor score of the Naive Bayes classification metric
can be accounted to several practicalities. First, the metric’s performance is
closely related to the representative quality of the training set. Even though
the training set performed relatively accurate with regards to the other metrics,
perhaps its probability calculations were not suited for Booter measurements.
Second, the Naive Bayes classification is primarily intended for probabilities
of binary partitions instead of unit intermediate values e.g. the Number of
pages characteristic not being simply 1 or 0. Because the training dataset did
not consist of binary partitions only, a conversion process involved converting
unit-valued characteristics to their binary equivalents. As the training dataset
did not entirely consist of binary partitions this could negatively influence the
accuracy scores of the Naive Bayes classification metric.

5.5 K-Nearest neighbors

K-Nearest Neighbors is a classification metric used for classification or regression
and relatively simple to understand. The general idea behind k-NN is that given
a plot of n-dimensional space, denote each feature of the feature vector on a
single axis in n-dimensional space [78] [57]. For instance, a 2 dimensional feature
vector will have its first feature denoted along the x-axis and its second feature
denoted along the y-axis. The feature vector is then compared to a trained set
of 2 dimensional points where each point is either classified as a Booter or a
non-Booter website. Figure 17 shows a 2 dimensional graph characterized by
two features on the x and y axis respectively with the blue squares representing
non-Booter website feature vectors and the red circles representing the Booter

56

feature vectors. The green triangle denotes the feature vector to be classified
with a generated feature score on both axes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
c
o

re
 f

e
a

tu
re

 2
.

Score feature 1.

Benign
Booter

Test-data

Figure 17: k-NN on 2 dimensional features.

The notion behind k-NN is that from a geometrical and visual perspective
it is often quite apparent as to which class the feature vector belongs to. For
instance, in Figure 17 it should come as no surprise that the feature vector
depicted by the green triangle belongs to the Booter class as it is closest to those
trained sets of points. The classification scheme finds the k closest neighbors
between the green triangle and all nearby feature points and classifies the green
triangle by the group in its more immediate vicinity.
Formally, k-NN calculates the Euclidean distance8 between n features in an n-
dimensional space and retrieves the k nearest neighbors for classification [79].
When k equals 1 we take the closest neighbor, this divides the space into an
n-dimensional set of cells. With k > 1 we sample multiple points with the
likelihood L of the point P belonging to Booters B expressed as in equation
5.19.

LB(P) =
k red points in vicinity

#red points
>
k blue points in vicinity

#blue points
(5.19)

Care should be taken in specifying k as a larger k gives better balance (out-
liers become less significant), but makes boundaries between different classes
less distinct.

5.5.1 Classification accuracy

The accuracy of the k-NN classification metric is tested against the test dataset.
However, the k-NN classification metric can use any arbitrary distance equation
for calculating its closest neighbors. It is not yet sure which distance metric

8Or any other distance metric

57

performs best on a Booter dataset so we first identify which of the earlier intro-
duced distance metrics returns the most accurate results on the training dataset.
In Figure 19 the classification accuracy rate of all 5 distance metric is measured
with varying K between 1 and 15.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2 4 6 8 10 12 14

A
c
c
u

ra
c
y

K

Euclidean
Squared Euclidean

Manhattan
Fractional

Cosine

Figure 18: K-NN CAR on multiple distance metrics

Regardless of the distance metric in use, the k-NN accuracy scores follow a
general trend. At small values of k we find high accuracy rates that gradually
decrease over k. At around a k of 10 we find accuracy rates close to their
original peak. Furthermore, all distance metric with the exception of the Cosine
distance metric perform relatively the same. The inaccuracies from the Cosine
distance metric are likely due to distance sorting which does not seem effective
on angular differences. Based on Figure 18 we select the Fractional distance
metric as the best performing metric in k-NN. Selecting k requires an extra
comment as the ideal k value based on the classification accuracy rates is 1. A
small k makes the boundary between the two classes more distinct, but reduces
the general balance. As a higher balance reduces the significance of outliers
(which we deem to have) we preferably select a higher value of k. Based on
Figure 18 we select a k of 10 that returns similar high classification accuracy
rates while providing a strong balance; in the accuracy analysis we test both
probable optimal versions of k.

Given the fractional distance metric and a k parameter of both 1 and 10 we
find the k-NN accuracy rates in Table 23 as applied on the test dataset.

Metric k CAR TIer TIIer
K-Nearest Neighbors 1 0.869 0.039 0.092
K-Nearest Neighbors 10 0.910 0.073 0.017

Table 23: K-Nearest neighbors classification accuracy

As originally expected the lower k value scores significantly worse than the
higher k value. However, the classification accuracy rates are considerably less

58

accurate than any of the other classification metrics. By introducing weights
we aim to improve the classification accuracy rates of the k-NN classification
metric.

5.5.2 Weights

In accordance with the previous sections we introduce a weight vector W̄ into the
k-NN calculations. As k-NN makes extensive use of distance metrics to calculate
the relative neighbor scores it makes sense to embed the weight vector into the
distance metric used. As the distance metric in use was earlier introduced
with weights we refer to sections 5.3.3 to 5.3.7 for implementational details.
Similarly, we measure the effectiveness of each weighted distance metric on the
k-NN accuracy scores. In Figure 19 we measure the same five distance metric
with incorporated weights on varying k.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2 4 6 8 10 12 14

A
c
c
u

ra
c
y

K

Euclidean
Squared Euclidean

Manhattan
Fractional

Cosine

Figure 19: K-NN CAR on multiple weighted distance metrics

Introducing the weight vector W̄ generates largely the same result and we
again pick the Fractional distance metric as the more optimal distance metric.
Similarly, we select a small k of 2 and an optimal k of 10 which are both tested
against the test dataset. Running the k-NN algorithm with weighted Fractional
distance on the test dataset returns the accuracy results as shown in Table 17.

Metric k CAR TIer TIIer
Weighted K-Nearest neighbors 2 0.925 0.037 0.039
Weighted K-Nearest neighbors 10 0.914 0.060 0.026

Table 24: Weighted K-Nearest neighbors classification accuracy

The classification accuracy rates of the weighted k-NN implementation have
marginally improved, but are still insufficient compared to the other classifica-
tion metrics. The unexpected inaccuracy could perhaps be influenced by the
unequal distribution of Booters among the dataset, which might negatively af-
fect the k-NN calculations. Moreover, Figure 18 and Figure 19 both follow an

59

interesting pattern which is likely an artifact specifically accounted to the train-
ing dataset. Basing the value of k on this specific training set could negatively
influence the accuracy rates. However, the training dataset is currently the best
representation of a Booter dataset available and thus serves best at obtaining
the mentioned k parameters. Furthermore, the k-NN classification metric gen-
erally has a higher Type I error rate compared to the other metrics which makes
it less favorable on a Booter dataset.

We summarize the accuracy results of each of the classification metrics in Table
25 including their Type I TIer and Type II TIIer error rates.

Unweighted Weighted
Metric CAR TIer TIIer CAR TIer TIIer
Euclidean distance 0.920 0.030 0.049 0.933 0.017 0.049
Squared Euclidean distance 0.908 0.030 0.062 0.940 0.022 0.039
Manhattan distance 0.927 0.024 0.049 0.931 0.019 0.049
Fractional distance 0.914 0.024 0.062 0.923 0.022 0.056
Cosine distance 0.914 0.049 0.037 0.944 0.022 0.034
Naive Bayes 0.912 0.056 0.032 0.918 0.049 0.032
K-Nearest Neighbors 0.910 0.073 0.017 0.914 0.060 0.026

Table 25: Grouped accuracy results of the Booter classifier system

To our surprise the distance metrics perform significantly better than the
Naive Bayes classification and the k-NN classification metric. As the Naive
Bayes classification metric and the k-NN metric performed relatively accurate
in similar literature we would have expected them to outperform the distance
metrics. The obvious accuracy differences can be accounted to both techniques
not being particularly suited to a Booter dataset with its previously mentioned
technicalities. Furthermore, the distance metrics require an additional thresh-
old variable which the Naive Bayes classification and the k-NN metrics lack.
The threshold value allows for a higher degree of freedom and potentially plays
a large role in the higher classification accuracy rates of the distance metrics.
From the results we denote the weighted Cosine distance metric highlighted in
green as the best metric for classification on a Booter dataset. Additionally,
the Euclidean distance metric highlighted in yellow is also a strong metric for
Booter classification due to its low Type I error rate. However, the difference in
CAR between the Cosine and Euclidean distance metric is too large to favor the
Euclidean distance metric. It should be noted that even though some perform
less favorable than others, the accuracy rates of all classification metrics are
plausible and a significant improvement over previous Booter literature. We are
however not yet satisfied with the current accuracy rates of the classification
metrics. Using weights give the metrics a sense of adaptability that allow us to
vary the individual weight elements to boost the relevance of certain character-
istics. By capturing this property of weights we can build a system to find the
optimal set of weights on the training dataset which is part of our focus in the
next section.

60

This page intentionally left blank.

61

6 Adjustments and considerations

In this chapter we discuss how to adjust the weight vectors to improve the
system’s accuracy. We discuss a supervised machine learning algorithm and
determine whether such a machine learning approach is a viable solution for
increasing the system’s accuracy. Furthermore, we analyze the results of the
classification system and discuss the origin of its errors.

In the previous chapter we introduced weight vectors into the classification met-
ric calculations which improved their classification accuracy rates. By varying
the individual weight elements we could find a weight vector W̄ ′ that better
represents a Booter dataset. We hypothesize that this improves the system’s
accuracy on Booter feature vectors; this approach also gives us a considerate
amount of flexibility. By alternating the relative contributions of each individual
weight we can tweak the algorithm such that different characteristic combina-
tions may contribute differently to Booter classification. The default weights
as determined in section 5.3.3 were derived from the odds ratio obtained from
the training dataset. While this ideally represents a strong set of weights for
a Booter dataset, it is probable a more optimal set of weights exist. To find
the optimal weight vector W̄ ′ we can manually tune the weight elements, but a
better and more long-term solution would be to develop a supervised machine
learning algorithm.

6.1 Weight adjustments

Given a weight vector W̄ and a testing set T , define a system M that varies the
weight elements to generate a new set of weights W̄ ′. The new set of weights is
then tested against the training set and given an error score S(W̄) = s, favoring
the weight distributions producing smaller error scores. The system M runs a
continuous process on the testing set T and returns at any given time a set of
weights that best describe the set of Booters i.e. the weights that return the
smallest error score s.

62

6.1.1 Supervised machine learning

The system M is best described by pseudo code as demonstrated in Algorithm
1.

1 count← 0;
2 while True do
3 W̄ , s err ← select db() /* returns current best weight/error pair */ ;
4 W̄ ′ ← ∅;
5 for i← 0 to len(W̄) do
6 W̄ ′[i]← W̄ [i] ∗ rand gauss();
7 end
8 count← count+ 1;
9 if count % 5 == 0 then

10 index← rand int(0, len(W̄));
11 W̄ ′[index]← W̄ ′[index] ∗ rand float(1.0, Ve);
12 end
13 s err new ← error function(W̄ ′);
14 store in db(s err new, W̄ ′);

15 end
Algorithm 1: Weight adaptability learning

At line 3, Algorithm 1 queries the current optimal weight vector W̄ with the
lowest error rate s err as found in the database. Given weight vector W̄ the
algorithm varies each individual weight element (between lines 5 to 7) using a
random multiplier returned by rand gauss. We sample the random multipliers
from a bell-curved Gaussian (normal) distribution that describes a curve with
most of its values close to a peak defined by A. By randomly sampling the
Gaussian distribution with an A of 1.0 we ensure the weight multipliers remain
relatively close to 1.0 as to not distort the original weight vector too much.
The Gaussian function that describes a bell-curve shape is shown in Equation
6.1 [80].

y = Ae−(x−µ)
2/2σ2

(6.1)

The parameter A defines the height of the curve’s peak, µ describes the
center or mean of the peak and σ (the standard deviation) controls the width of
the curve. As we want to keep most weights close to 1.0 and vary them slightly
each run we set A to 1.0 and select a relatively large σ to keep most values close
to A. Selecting a σ and µ of 0.5 each we selectively describes a cropped curve
that we sample within the unit interval. Equation 6.2 then centers the Gaussian
distribution around a µ of 0.5 where a random x between 0.0 and 1.0 frequently
returns a y close to 1.0.

y = e−(x−0.5)
2/(2∗0.52) (6.2)

Equation 6.2 is plotted in Figure 20.

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(x)

Figure 20: Gaussian distribution for weight adaptation

The function rand gauss from Algorithm 1 thus selects a random x between
0.0 and 1.0 and samples the Gaussian distribution from Figure 20.

To steer the algorithm in completely different directions as to promote evo-
lution we multiply a random element of weight vector W̄ ′ by a large multiplier
between 1.0 and Ve. We selected a positive value of 2.5 for Ve as this evenly
balances out the average Gaussian weight reductions of any weight element over
5 iterations. As shown in Algorithm 1 (between lines 9 to 12) this operation
repeats itself every 5 iterations. This prevents the algorithm from consistently
heading in a single direction while trying to find other interesting combinations
that could prove effective.

Once the temporary new weight vector W̄ ′ is generated it is passed to the
error function error function (in line 13) that calculates the precision or global
error rate Ger of the current set of weights. As multiple classification metrics
were discussed in section 5.1 we would ideally have to tune the supervised ma-
chine learning system for each individual metric. This is a necessary step as
each classification metric uses a different error function to determine its accu-
racy; something we cannot generalize for all classification metrics. For that
reason we specifically focus the system on the strongest classification metric as
determined at the end of section 5.1 which was the Cosine distance metric.

Given the Cosine distance metric, the error function consists of a total of
three steps. First, the Cosine distance scores are re-calculated with the newly
defined weights given the training dataset. Second, a total of 100 threshold
parameters are checked against the training dataset to find the most suitable
threshold T for the weight vector W̄ ′; this is determined by the Classification
Accuracy Rate (CAR). Last, given T the Cosine distance score is re-calculated
on the test dataset(s) and the obtained global error rate Gger is returned.

Finally, the new error rate and corresponding weight vector W̄ ′ are stored
in the database (at line 14) and the algorithm repeats itself until manually
terminated. In the next section we discuss the results and effects the algorithm
had on the classifier system.

64

6.1.2 Results

The machine learning system from Algorithm 1 was periodically run between the
7th of September to the 24th of September producing and testing a total of 824
different weight vectors. The updated weight vector list was tested against the
objective function FO defined in Equation 5.3 to find the optimal weight vector
W̄ that has both a high Classification Accuracy Rate (CAR) and preferably a
low Type I error rate TIer. In Table 26 the most optimal (normalized) weight
vector W̄ ′ returned from Algorithm 1 is shown.

Characteristic W̄ W̄ ′

1. Number of pages 1.00 1.00
2. URL type 0.15 0.16
3. Average depth level 0.12 0.13
4. Average URL length 0.17 0.17
5. Domain age 0.54 0.30
6. Domain res. duration 0.14 0.18
7. WHOIS private 0.15 0.19
8. DPS 0.22 0.32
9. Page rank 0.51 0.47
10. Average content size 0.30 0.21
11. Outbound hyperlinks 0.56 0.40
12. Category-specific dictionary 0.07 0.10
13. Resolver indication 0.03 0.04
14. Terms of services page 0.03 0.03
15. Login-form depth level 0.07 0.04

Table 26: Updated weight vector W̄ ′

When normalized there are slight variations noticeable, but no significant
distortions in the original weight distribution. This shows that the original
weight vector was a relative good match, but not yet optimized for Booter
classification. Given the new weight vector W̄ ′ and the Cosine distance metric
we sample the training dataset to find an optimal threshold T of 0.95 given the
objective function FO in equation 5.3. The resulting threshold T and weight
vector W̄ ′ are then tested against the test dataset as shown in Table 27.

CAR TIer TIIer
Weighted Cosine distance w/ W̄ 0.944 0.022 0.034
Weighted Cosine distance w/ W̄ ′ 0.955 0.015 0.030

Table 27: Updated weight vector W̄ ′

Given the CAR and the error rates it is clear the machine learning algorithm
determined a more effective set of weights for Booter classification. The new
weight vector W̄ ′ returned a CAR that outperformed the original CAR over
a percentage point on the Cosine distance metric which we deem a significant
improvement. Furthermore, it also managed to significantly boost the Type I
error rate of the Cosine distance metric.

65

The observation we make here is that weight-based classification metrics and
machine learning prove an interesting combination for significantly improving a
Booter classification system’s accuracy rates. As the approach shows definitive
promise, future research on alternative machine learning algorithms like neural
networks or linear regression may aid in Booter classification.

6.2 Considerations of our top results

The weighted Cosine distance metric significantly boosted the classification ac-
curacy over previous literature. The classification system is however not able
to classify any arbitrary website as a Booter or a non-Booter with 100% con-
fidence. To determine the origin of the misclassification errors and determine
their impact we manually analyze the individual error websites.

6.2.1 Type II error analysis

The Cosine distance metric and the classification accuracy rates of Table 27 re-
turned a Type II error rate of 0.030. Given the total amount of 465 websites in
the Booter test dataset this means that a total of 14 websites were incorrectly
classified as non-Booter websites. For these websites the 15 Booter website
characteristics as discussed in chapter 3 were insufficient in classifying them as
Booter websites. By manually analyzing each individual website the origin of
the errors are sufficiently clear. The basic premise of the Booter classification
research was that Booter websites follow a general pattern of organization and
presentation which most of the 14 Booter websites did not follow. Two of the 14
Booter websites however did follow a general pattern common to Booters that
were still not correctly classified. This can largely be accounted to these two
Booters performing relatively inaccurate on the 15 website feature characteris-
tics. For instance, both of them are relatively popular and longstanding and
thus score poor on the page rank, domain age and domain reservation duration.
Also, one of the Booters contained the number of pages outlier of 71 which due
to its weighted importance played a significant role in its incorrect classification.

From the Type II error analysis it is clear not all Booter websites can be
correctly classified by the system, largely due to outliers or the lack of a general
pattern. Further improving the Type II error accuracy would require expanding
or tuning the Booter website characteristics and testing different normalization
range intervals to accommodate the outliers without sacrificing the Type I error
accuracy rate.

6.2.2 Type I error analysis

Most relevant to a Booter (black)list system are the Type I error rates i.e. the
number of times a non-Booter website is classified as a Booter website. Given the
Cosine distance metric and the classification accuracy rates of Table 27 we find a
Type I error rate of 0.015 which corresponds to a total of 7 non-Booter websites
out of 465 websites. Given these 7 Booter websites we find that all of them are
not Booter websites themselves, but indirectly associated with Booter websites
making them by definition morally questionable. The listed websites sell Booter
attack scripts, tools and scripts for creating your own Booter or are hosts for
GUI Booters which is a term to coin Booter desktop applications. This is a

66

significant observation when it comes to the applicability of a Booter (black)list
as false positives are highly regarded as a strong objection against blacklists as
discussed in section 2.4. Given that the number of false positives are all websites
that are likely to be illegitimate a blacklist approach would remain effective as
the blacklist has the added side-effects of blocking questionable Booter related
websites as well.

From the Type I error analysis we can conclude that the classification system
does not block legitimate non-Booter websites. The blocked non-Booter websites
are indirectly related to Booters themselves, which we ethically deem as accept-
able errors.

From the Type II error observation we observed two Booter websites not be-
ing included in the (black)list as they performed poorly on relatively important
Booter website characteristics. We deemed these as insignificant errors as the
errors were the cause of noticeable outliers. However, one can derive a possible
mitigation tactic from Booter owners to specifically focus on generating website
characteristics outside the defined ranges. These mitigations could in the future
compromise the described methodology. Nonetheless, we described for most of
the Booter website characteristics in chapter 3 that mitigating these character-
istics will be difficult or unlikely. Furthermore, given the adaptable properties
of weight vectors and the machine learning system M we can adapt to these
changing circumstances.

The previous Type I and Type II observations open the discussion of a final
note of the Booter classification accuracy. If the true purpose of the Booter
(black)list is to find Booters with the highest possible accuracy, the Type II
error rate is irrelevant to some regard. A higher Type II error rate would result
in less Booters getting detected, but a sufficiently low Type I error rate renders
the (black)list effective to its purpose; this in according to the objective function
FO. Given these considerations we can effectively disregard the relatively small
amount of Type II errors and denote the accuracy rate in the context of a Booter
(black)list to 98.50%. Furthermore, the inaccuracies of the accuracy rate are
accounted to morally questionable websites indirectly associated with Booters.
Given previous research and similar literature this is a clear contribution to
Booter classification.

67

Part III

Conclusion

68

This page intentionally left blank.

69

7 Concluding remarks

This thesis served as describing the complete process of generating a Booter
(black)list in an automatic fashion. First, we extensively analyzed Booters in
chapter 2 to understand the Booters as a phenomenon. From the analysis we
determined the proposed methodology and retrieved a list of 15 Booter website
characteristics. Next, we developed a web crawler in chapter 4 to crawl the
web for an up-to-date list of Potential Booter Domain names. Using the 15
Booter website characteristics from chapter 3 we further scraped all individual
websites to generate both a (normalized) test and training dataset for further
classification as described in section 4.2 to 4.3. Next a classifier was developed
in chapter 5 to filter the list of Potential Booter Domain names to a list of only
Booter domain names. Given the web crawler and the classifier we did an exten-
sive classification study in sections 5.2 to 5.5 on multiple classification metrics
to determine the most accurate metric for Booter classification. Most of the
classification metrics showed promise, but mainly due to a threshold boundary
the distance metrics and specifically the Cosine distance metric performed most
accurate. Additionally, to further improve the accuracy rates of the classifica-
tion metrics we used the adaptability property of the weight vectors introduced
in the classification metrics. This property allowed us to develop a supervised
machine learning algorithm described in section 6.1 that aims to find a new
weight vector more suited to Booter classification. Together with weights and
the machine learning algorithm the Classification Accuracy Rate of the system
reached 95.49% with an accuracy rate in the context of a Booter (black)list of
98.50%. We believe the resulting accuracy rates to be a significant improvement
over previous research and an important contribution to Booter classification.
Furthermore, the final analysis on the classification error rates in section 6.2
concluded all Type I errors to be indirectly related to Booters making them
morally questionable. These observations together with the final blacklist accu-
racy rate of 98.50% give us the confidence to conclude that the system generates
Booter (black)lists that are accurate enough for practical considerations.

7.1 Contribution

Overall, the research provided the following contributions:

• A Booter (black)list that is up-to-date and the most accurate form of a
Booter (black)list at the time of this writing. The Booter (black)list is
available per request at http://booterblacklist.com.

• A crawler and classifier system that generates up-to-date Booter (black)lists
with practical accuracy rates.

• A listing of all the research’s source code found at the research’s public
GitHub repository https://github.com/joeydevries/booter-black-list/.

• A significant improvement over previous Booter classification literature,
including the analysis of testing multiple classification metrics for their
effectiveness.

Additionally, the methodology described operates solely on Booters, but
can easily be generalized to different classification areas by updating the feature
characteristics to the respective area’s domain.

70

http://booterblacklist.com
https://github.com/joeydevries/booter-black-list/

7.2 How to use the Booter (black)list

The Booter (black)list can be used in mostly two ways. First and foremost the
Booter (black)list serves as a list of Booter websites for future research. Given
the high Booter accuracy rate we are confident that the list and future iterations
of the list will prove a valuable resource for future Booter research. Second, the
Booter (black)list can be used as a blacklist in operational networks. Given the
small Type I error rate the Booter (black)list and future iterations are consid-
ered practical for use as a blacklist. Furthermore, based on the requirements of
the system the threshold parameter T can be tweaked to further enhance the
precision of the system more towards one end of the confusion matrix. Given
the nature of blacklists however an ethical discussion is required as the chance of
blocking a legitimate website still resides, albeit marginally. This becomes espe-
cially relevant when a blacklist is involved in large-scale operations as commonly
executed by ISPs. However, even though non-Booters could end up blacklisted,
the analysis in chapter 6.2 concluded that the blocked non-Booter websites can
be regarded morally questionable.

7.3 Limitations

The research focused strongly on a set of heuristics that differentiate Booter
websites from non-Booter websites, primarily the similarities between all hosted
online Booter websites. While this is unlikely to change drastically in the near
future, future trends could significantly change the visual and textual content
of Booter websites. This does reduce the accuracy of the system, but the gen-
eral assumptions remain that together with machine learning could still remain
practical. Another limitation of the classifier system is that all classification
parameters are based on the training dataset and end up biased towards the
dataset. However, the training dataset is currently the best representation of a
Potential Booter Domain name list available. The resulting parameters should
thus best reflect a Booter dataset. As the Booter phenomenon will continue to
grow, a better dataset can be envisioned. Furthermore, the proposed blacklist
can be bypassed using a VPN or by directly storing IP-addresses as a black-
list would be based on domain names only. However, this does still require an
above-average level of technical knowledge from its users which we believe is
still a smaller portion of the Booter’s user-base.

7.4 Future research

The accuracy rates are still not optimal and specifically the Type II error rates
would benefit from a higher accuracy. The research showed the results of Booter
classification using multiple classification schemes giving valuable insight into
classification in the Booter context. We did leave out other classification metrics
that could prove interesting in Booter classification like Logistic Regression and
Support Vector Machines. Future research into different classification metrics
and machine learning algorithms like neural networks could significantly boost
the accuracy and flexibility of a Booter classification system.

71

7.5 Acknowledgements

I would like to thank my supervisors Jair J. Santanna, and Justyna S. Chromik
for guiding me in the process of academic research; specifically Jair J. Santanna
who continuously provided extensive feedback and helped me stay motived in
the process. I would also like to thank Mena B. Habib for valuable insight
and feedback into the Booter classification and Khelghati, S.M for constructive
feedback on the crawler system. Furthermore, I want to thank the DACS group
for having me work in their offices during my research while providing a healthy
environment for academic discussions.

72

References

[1] Holl, P.: Exploring DDoS defense mechanisms. Future Internet (FI) and In-
novative Internet Technologies and Mobile Communications(IITM) (2015)
25–32

[2] Anstee, D., Cockburn, A., Sockrider, G., Morales, C.: Worldwide in-
frastructure security report. http://pages.arbornetworks.com/rs/arbor/

images/WISR2014.pdf (2014) Accessed on 31 March 2015.

[3] Sood, A., Enbody, R.: Crimeware-as-a-service: A survey of commoditized
crimeware in the underground market. International Journal of Critical
Infrastructure Protection 6(1) (2013) 28–38

[4] Santanna, J., Durban, R., Sperotto, A., Pras, A.: Inside Booters: an analy-
sis on operational databases. In: 14th IFIP/IEEE International Symposium
on Integrated Network Management (IM 2015). IFIP/IEE (2015)

[5] Prolexic: Threat: DDoS Booter shell scripts. http://www.prolexic.com/

knowledge-center-ddos-threat-advisories-booter-shell-scripts.html

(2013) Accessed on 31 March 2015.

[6] Krebs, B.: The world has no room for cowards. http://krebsonsecurity.

com/2013/03/the-world-has-no-room-for-cowards (2013) Accessed on 24
April 2015.

[7] Santanna, J., v. Rijswijk, R., Hofdstede, R., Sperotto, A., Wierbosch, M.,
Zambenedetti Granville, L., Pras, A.: Booters - An Analysis of DDoS-
as-a-Service Attacks. In: International Symposium on Integrated Network
Management. IFIP/IEE (2015)

[8] Prolexic: Multiplayer video gaming attacks. http://www.prolexic.com/

knowledge-center-white-paper-gaming-reflection-attacks-drdos-ddos/

infographic.html (2013) Accessed on 24 March 2015.

[9] Prolexic: Quarterly global DDoS attack report Q3. http://www.prolexic.

com/knowledge-center-ddos-attack-report-2013-q3.html (2013) Accessed
on 26 March 2015.

[10] Verisign: Distributed Denial of Service trends report. http://www.

verisigninc.com/en_US/cyber-security/ddos-protection/ddos-report/

index.xhtml?loc=en_US&dmn=ddostrendsinfographic?cmp=SO-DDOS-ABLOG

(2014) Accessed on 26 March 2015.

[11] Technologies, A.: Akamai’s [state of the internet] / secu-
rity (q4 2014). http://www.stateoftheinternet.com/downloads/pdfs/

2014-internet-security-report-q4.pdf (2014) Accessed on 31 March 2015.

[12] Chromik, J.J.: Booters (black)list. Master’s thesis, Twente University
(2015)

[13] Mirkovic, J., Reiher, P.: A Taxonomy of DDoS attack and DDoS defense
mechanisms. SIGCOMM Computer Communication Review 34(2) (2004)
39–53

73

http://pages.arbornetworks.com/rs/arbor/images/WISR2014.pdf
http://pages.arbornetworks.com/rs/arbor/images/WISR2014.pdf
http://www.prolexic.com/knowledge-center-ddos-threat-advisories-booter-shell-scripts.html
http://www.prolexic.com/knowledge-center-ddos-threat-advisories-booter-shell-scripts.html
http://krebsonsecurity.com/2013/03/the-world-has-no-room-for-cowards
http://krebsonsecurity.com/2013/03/the-world-has-no-room-for-cowards
http://www.prolexic.com/knowledge-center-white-paper-gaming-reflection-attacks-drdos-ddos/infographic.html
http://www.prolexic.com/knowledge-center-white-paper-gaming-reflection-attacks-drdos-ddos/infographic.html
http://www.prolexic.com/knowledge-center-white-paper-gaming-reflection-attacks-drdos-ddos/infographic.html
http://www.prolexic.com/knowledge-center-ddos-attack-report-2013-q3.html
http://www.prolexic.com/knowledge-center-ddos-attack-report-2013-q3.html
http://www.verisigninc.com/en_US/cyber-security/ddos-protection/ddos-report/index.xhtml?loc=en_US&dmn=ddostrendsinfographic?cmp=SO-DDOS-ABLOG
http://www.verisigninc.com/en_US/cyber-security/ddos-protection/ddos-report/index.xhtml?loc=en_US&dmn=ddostrendsinfographic?cmp=SO-DDOS-ABLOG
http://www.verisigninc.com/en_US/cyber-security/ddos-protection/ddos-report/index.xhtml?loc=en_US&dmn=ddostrendsinfographic?cmp=SO-DDOS-ABLOG
http://www.stateoftheinternet.com/downloads/pdfs/2014-internet-security-report-q4.pdf
http://www.stateoftheinternet.com/downloads/pdfs/2014-internet-security-report-q4.pdf

[14] NSFOCUS: Analysis of ddos attacks on spamhaus and recommended so-
lution. http://www.nsfocus.com/2013/SecurityView_0514/129.html (2013)
Accessed on 7 April 2015.

[15] Networks, A.: The business value of ddos protection. https:

//www.arbornetworks.com/ddos/The%20Business%20Value%20of%20DDoS%

20Protection.pdf (2011) Accessed on 14 April 2015.

[16] Levchenko, K., Pitsillidis, A., Chachra, N., Enright, B., Félegyházi, M.,
Grier, C., Halvorson, T., Kanich, C., Kreibich, C., Liu, H., et al.: Click
trajectories: End-to-end analysis of the spam value chain. In: Security and
Privacy (SP), 2011 IEEE Symposium on, IEEE (2011) 431–446

[17] Garg, D.: DDoS mitigation techniques - a survey. Conference on Advanced
Computing, Communication and Networks (2011) 1302–1309

[18] Walfish, M.and Vutukuru, M., Balakrishnan, H., Karger, D., Shenker, S.:
DDoS defense by offense. In: ACM SIGCOMM proceedings of the 2006
conference on Applications, technologies, architectures, and protocols for
computer communications, Pisa, Italy, ACM (September 2006) 303–314

[19] Rossow, C.: Amplification hell: revisiting network protocols for DDoS
abuse. In: Proceedings of the 2014 Network and Distributed System Secu-
rity (NDSS) Symposium. (February 2014)

[20] Karami, M., McCoy, D.: Understanding the emerging threat of DDoS-as-
a-Service. In: Proceedings of the 6th UNSENIX Workshop on Large-Scale
Exploits and Emergent Threats. LEET’13 (2013)

[21] BBC: Hacktivists step up web attack volumes. http://www.bbc.com/news/

technology-31000908 (2015) Accessed on 2 April 2015.

[22] hackforums: Hack forums. http://hackforums.net/forumdisplay.php?fid=

232 Accessed on 14 April 2015.

[23] Centarra: 5 facts about ddos. https://centarra.com/2014/03/14/

5-facts-about-ddos-attacks.html (2014) Accessed on 14 April 2015.

[24] Krebs, B.: The internet of dangerous things. http://krebsonsecurity.com/
2015/01/the-internet-of-dangerous-things/ (2015) Accessed on 31 March
2015.

[25] Costolo, D.: Twitter. twitter.com (2006) Accessed on 2 June 2015.

[26] Google: Youtube. youtube.com (2006) Accessed on 2 June 2015.

[27] Krebs, B.: Spreading the disease and sell-
ing the cure. http://krebsonsecurity.com/2015/01/

spreading-the-disease-and-selling-the-cure/ (2015) Accessed on
31 March 2015.

[28] Lackey, J.: A new twist on Denial of Service: DDoS as
a Service. http://blogs.cisco.com/security/a_new_twist_on_denial_of_

service_ddos_as_a_service/ (2010) Accessed on 21 April 2015.

74

http://www.nsfocus.com/2013/SecurityView_0514/129.html
https://www.arbornetworks.com/ddos/The%20Business%20Value%20of%20DDoS%20Protection.pdf
https://www.arbornetworks.com/ddos/The%20Business%20Value%20of%20DDoS%20Protection.pdf
https://www.arbornetworks.com/ddos/The%20Business%20Value%20of%20DDoS%20Protection.pdf
http://www.bbc.com/news/technology-31000908
http://www.bbc.com/news/technology-31000908
http://hackforums.net/forumdisplay.php?fid=232
http://hackforums.net/forumdisplay.php?fid=232
https://centarra.com/2014/03/14/5-facts-about-ddos-attacks.html
https://centarra.com/2014/03/14/5-facts-about-ddos-attacks.html
http://krebsonsecurity.com/2015/01/the-internet-of-dangerous-things/
http://krebsonsecurity.com/2015/01/the-internet-of-dangerous-things/
twitter.com
youtube.com
http://krebsonsecurity.com/2015/01/spreading-the-disease-and-selling-the-cure/
http://krebsonsecurity.com/2015/01/spreading-the-disease-and-selling-the-cure/
http://blogs.cisco.com/security/a_new_twist_on_denial_of_service_ddos_as_a_service/
http://blogs.cisco.com/security/a_new_twist_on_denial_of_service_ddos_as_a_service/

[29] Santanna, J., Sperotto, A.: Characterizing and mitigating the ddos-as-a-
service phenomenon. Monitoring and Securing Virtualized Networks and
Services 8508 (2014) 74–78

[30] Die, M.M.: Ddos’er as service - a camouflage of legit stresser. http://blog.
malwaremustdie.org/2014/06/ddoser-as-service-camouflation-of-legit.

html (2014) Accessed on 7 April 2015.

[31] Krebs, B.: DDoS services advertise openly,
take PayPal. http://krebsonsecurity.com/2013/05/

ddos-services-advertise-openly-take-paypal/ (2013) Accessed on
21 April 2015.

[32] of Europe, C.: Convention on cybercrime, art. 5, 6.1ai, 6.1b, 6.2, 8b,
11. http://conventions.coe.int/Treaty/en/Treaties/Html/185.htm (2001)
Accessed on 14 April 2015.

[33] US-CERT: UDP-based amplification attacks. http://www.us-cert.gov/

ncas/alerts/TA14-017A (2014) Accessed on 31 March 2015.

[34] Nolla, A.: Amplification ddos attack with quake3 servers:
An analysis. http://blog.alejandronolla.com/2013/06/24/

amplification-ddos-attack-with-quake3-servers-an-analysis-1-slash-2/

(2013) Accessed on 16 April 2015.

[35] v. Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSsec and Its Potential for
DDoS Attacks. Proceedings of the Fourteenth ACM Internet Measurement
Conference 14 (2014) 449–460

[36] Hoque, N., Monowar, B., Baishya, R., Bhattacharyya, D., Kalita, J.: Net-
work attacks: taxonomy, tools and systems. Journal of Network and Com-
puter Applications 40 (2013) 307–324

[37] CStress: The dominate method. http://cstress.net/blog/tag/

dominate-ddos/ (2015) Accessed on 2 June 2015.

[38] SpiderLabs, T.: Wordpress xml-rpc pingback vulnerability
analysis. https://www.trustwave.com/Resources/SpiderLabs-Blog/

WordPress-XML-RPC-PingBack-Vulnerability-Analysis/ (2014) Accessed
on 16 April 2015.

[39] of the internet, S.: Joomla reflection ddos-for-
hire [high risk]. http://www.stateoftheinternet.com/

resources-web-security-threat-advisories-2015-joomla-reflection-attack-ddos-for-hire.

html (2015) Accessed on 16 April 2015.

[40] Prince, M.: The DDoS that almost broke the internet. http:

//blog.cloudflare.com/the-ddos-that-almost-broke-the-internet (2013)
Accessed on 31 March 2015.

[41] Prince, M.: Technical details behind a 400Gbps NTP
amplification DDoS attack. http://blog.cloudflare.com/

technical-details-behind-a-400gbps-ntp-amplification-ddos-attack

(2014) Accessed on 31 March 2015.

75

http://blog.malwaremustdie.org/2014/06/ddoser-as-service-camouflation-of-legit.html
http://blog.malwaremustdie.org/2014/06/ddoser-as-service-camouflation-of-legit.html
http://blog.malwaremustdie.org/2014/06/ddoser-as-service-camouflation-of-legit.html
http://krebsonsecurity.com/2013/05/ddos-services-advertise-openly-take-paypal/
http://krebsonsecurity.com/2013/05/ddos-services-advertise-openly-take-paypal/
http://conventions.coe.int/Treaty/en/Treaties/Html/185.htm
http://www.us-cert.gov/ncas/alerts/TA14-017A
http://www.us-cert.gov/ncas/alerts/TA14-017A
http://blog.alejandronolla.com/2013/06/24/amplification-ddos-attack-with-quake3-servers-an-analysis-1-slash-2/
http://blog.alejandronolla.com/2013/06/24/amplification-ddos-attack-with-quake3-servers-an-analysis-1-slash-2/
http://cstress.net/blog/tag/dominate-ddos/
http://cstress.net/blog/tag/dominate-ddos/
https://www.trustwave.com/Resources/SpiderLabs-Blog/WordPress-XML-RPC-PingBack-Vulnerability-Analysis/
https://www.trustwave.com/Resources/SpiderLabs-Blog/WordPress-XML-RPC-PingBack-Vulnerability-Analysis/
http://www.stateoftheinternet.com/resources-web-security-threat-advisories-2015-joomla-reflection-attack-ddos-for-hire.html
http://www.stateoftheinternet.com/resources-web-security-threat-advisories-2015-joomla-reflection-attack-ddos-for-hire.html
http://www.stateoftheinternet.com/resources-web-security-threat-advisories-2015-joomla-reflection-attack-ddos-for-hire.html
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
http://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack

[42] Krebs, B.: The new normal: 200-400 Gbps
DDoS attacks. http://krebsonsecurity.com/2014/02/

the-new-normal-200-400-gbps-ddos-attacks/ (2014) Accessed on 27
April 2015.

[43] Brian Prince, S.W.: Ddos attacks prove costly, could top
800 gbps in 2015: Research. http://www.securityweek.com/

ddos-attacks-prove-costly-could-top-800-gbps-2015-research (2014)
Accessed on 14 April 2015.

[44] Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness
of techniques to detect phishing sites. In: Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer (2007) 20–39

[45] Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., Zhang, C.: An
empirical analysis of phishing blacklists. In: Sixth Conference on Email
and Anti-Spam (CEAS), California, USA (2009)

[46] Stol, W., Kaspersen, H., Kerstens, J., Leukfeldt, E., Lodder, A.: Govern-
mental filtering of websites: the Dutch case. Computer Law & Security
Review 25(3) (2009) 251–262

[47] Lindemann, C., Littig, L.: Coarse-grained Classification of web sites by
their structural properties. Proceedings on Web information and data man-
agement 8 (2006)

[48] Felegyhazi, M., Kreibich, C., Paxson, V.: On the potential of proactive
domain blacklisting. LEET’10 Proceedings of the 3rd USENIX conference
on Large-scale exploits and emergent threats: botnets, spyware, worms and
more 3 (2010) 6

[49] Brennan, C.: Private domain name registration (2006) US Patent App.
11/008,610.

[50] Integralis: Ddos protection bypass tech-
niques. https://media.blackhat.com/us-13/

US-13-Nixon-Denying-Service-to-DDOS-Protection-Services-WP.pdf

(2013) Accessed on 2 April 2015.

[51] Alexa: Alexa website. http://www.alexa.com (2015) Accessed on 23 April
2015.

[52] Chu, W., Zhu, B., Xue, F., Guan, X., Cai, Z.: Protect sensitive sites from
phishing attacks using features extractable from inaccessible phishing urls.
In: Communications (ICC), 2013 IEEE International Conference on, IEEE
(2013) 1990–1994

[53] Kausar, F., Al-Otaibi, B., Al-Qadi, A., Al-Dossari, N.: Hybrid client side
phishing websites detection approach. International Journal of Advanced
Computer Science and Applications (IJACSA) 5(7) (2014)

[54] Hammami, M., Chahir, Y., Chen, L.: WebGuard: A web filtering engine
combining Textual, Structural, and Visual content-based analysis. IEEE
Transactions on Knowledge & Data Engineering 18 (2006)

76

http://krebsonsecurity.com/2014/02/the-new-normal-200-400-gbps-ddos-attacks/
http://krebsonsecurity.com/2014/02/the-new-normal-200-400-gbps-ddos-attacks/
http://www.securityweek.com/ddos-attacks-prove-costly-could-top-800-gbps-2015-research
http://www.securityweek.com/ddos-attacks-prove-costly-could-top-800-gbps-2015-research
https://media.blackhat.com/us-13/US-13-Nixon-Denying-Service-to-DDOS-Protection-Services-WP.pdf
https://media.blackhat.com/us-13/US-13-Nixon-Denying-Service-to-DDOS-Protection-Services-WP.pdf
http://www.alexa.com

[55] Lindemann, C., Littig, L.: Classifying web sites. International conference
on World Wide Web 16 (2007)

[56] Insoon Jo, E., Heon Y, Y.: Interactive website filter for safe web browsing.
Journal of Information Science and Engineering 29(1) (2013) 115–131

[57] Kriegel, H., Schubert, M.: Classification of Websites as Sets of Feature Vec-
tors. In: Proceedings of the IASTED International Conference Databases
and Applications. (2004) 127–132

[58] Reitz, K.: Requests: Http for humans (2015)

[59] Vorona, A.: Cloudflare scrape (2015)

[60] Slootweg, S.: Python whois (2013)

[61] Foundation, P.S.: The elementtree xml api (2015)

[62] Dower, S.: Cpython: urllib.urlparse (2015)

[63] Developers, G.: Google web search api (2010)

[64] Huggins, J., Gross, P., Wang J, T.: Selenium, browser automation (2004)

[65] Aggarwal, C., Hinneburg, A., Keim, D.: On the surprising behavior of
Distance Metrics in high dimensional space. Database Theory – ICDT.
Lecture Notes in Computer Science 1973(1) (2001) 420–434

[66] Chang, T., Kuo, C.C.J.: Texture analysis and classification with tree-
structured wavelet transform. Image Processing, IEEE Transactions on
2(4) (1993) 429–441

[67] Kaplantzis, S., Mani, N.: A study on classification techniques for network
intrusion detection. In: IASTED Conference on Networks and Communi-
cation Systems (NCS 2006), Thailand. (2006)

[68] Hinneburg, A., Aggarwal, C., Keim, D.: What is the nearest neighbor in
high dimensional spaces? (2000)

[69] Howarth, P., Rger, S.: Fractional distance measures for content-based im-
age retrieval. Advances in Information Retrieval Lecture Notes in Computer
Science, 27th European Conference on IR Research, ECIR 2005 3408(1)
(2005) 447–456

[70] Sun, C., Rampalli, N., Yang, F., Doan, A.: Chimera: large-scale classifi-
cation using Machine Learning, Rules and Crowdsourcing. Proceedings of
the VLDB Endowment 7(13) (2014) 1529–1540

[71] Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large
margin nearest neighbor classification. In: Advances in neural information
processing systems. (2005) 1473–1480

[72] Ma, J., K. Saul, L., Savage, S., M. Voelker, G.: Beyond Blacklists: learning
to detect malicious web sites from suspicious URLs. Proceedings of the 15th
ACM SIGKDD International conference on Knowledge 15 (2009) 1245–
1254

77

[73] Greenacre, M.: Measures of distance between samples: Euclidean. (2008)

[74] Garera, S., Provos, N., Chew, M., Rubin, A.: A framework for detection
and measurement of phising attacks. In: Proceedings of the 2007 ACM
workshop on Recurring malcode, ACM (2007) 1–8

[75] Statsoft: Cluster analysis. http://www.statsoft.com/Textbook/

Cluster-Analysis (2011) Accessed on 20 April 2015.

[76] Keogh, E.: Naive bayes classifier. http://www.cs.ucr.edu/~eamonn/

CE/Bayesian%20Classification%20withInsect_examples.pdf Accessed on 9
April 2015.

[77] Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001
workshop on empirical methods in artificial intelligence. Volume 3., IBM
New York (2001) 41–46

[78] Cover, T., Hart, P.: Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on 13(1) (1967) 21–27

[79] Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2) (2009) 1883 revision
#136646.

[80] H, G.: A simple algorithm for fitting a gaussian function. Signal Processing
Magazine 28(5) (2011) 134–137

78

http://www.statsoft.com/Textbook/Cluster-Analysis
http://www.statsoft.com/Textbook/Cluster-Analysis
http://www.cs.ucr.edu/~eamonn/CE/Bayesian%20Classification%20withInsect_examples.pdf
http://www.cs.ucr.edu/~eamonn/CE/Bayesian%20Classification%20withInsect_examples.pdf

Part IV

Appendix A

79

F
ig

u
re

2
1:

S
n

ip
p

et
s

o
f

th
e

cr
aw

le
r

sy
st

em
’s

so
u
rc

e
co

d
e.

80

F
ig

u
re

22
:

S
n

ip
p

et
s

o
f

th
e

cl
a
ss

ifi
er

sy
st

em
’s

so
u

rc
e

co
d

e.

81

	Introduction
	Objectives
	Contribution

	I The Crawler
	Understanding Booters
	Booter users
	Presentation
	Attack types
	Blacklist considerations

	Booter website characteristics
	Structure characteristics
	Host characteristics
	Content characteristics

	The crawler
	The crawler system
	Preliminary results
	Score normalization

	II The Classifier
	Booter classification
	Classification accuracy
	Classification metrics
	Distance metrics
	Naive Bayes
	K-Nearest neighbors

	Adjustments and considerations
	Weight adjustments
	Considerations of our top results

	III Conclusion
	Concluding remarks
	Contribution
	How to use the Booter (black)list
	Limitations
	Future research
	Acknowledgements

	IV Appendix A

