
Cooperative Localisation on Android Devices by

Utilising only Environmental Sound

by

Jacob Kamminga

University of Twente
Faculty of Electrical Engineering, Mathematics and Computer Science

Pervasive Systems Group

Author .
Faculty of Electrical Engineering, Mathematics and Computer Science

Certified by. .
Paul Havinga
Full Professor

Thesis Supervisor

2

Cooperative Localisation on Android Devices by Utilising
only Environmental Sound

by
Jacob Kamminga

Submitted to the Faculty of Electrical Engineering, Mathematics and
Computer Science

on 11-09-2015, in partial fulfilment of the
requirements for the degree of

Master of Science

3

Abstract

This thesis focusses on research that gears towards Cooperative Localisation utilis-
ing only ambient sound. Sound signals can be used for Time Difference Of Arrival
(TDOA) based Cooperative Localisation on mobile devices. Android has a large
penetration in the worldwide market, thus developing an application that is able
to run on Android devices is very interesting. Combining these arguments leads to
the main research question: When utilising only environmental sound that originates
from unknown positions, what techniques for Cooperative Localisation can be used on
Android devices that can achieve accuracy within several metres, and what factors
will influence this accuracy?

In order to answer this question this thesis introduces the Cooperative Localisa-
tion on Android with ambient Sound Sources (CLASS) Algorithm. This Algorithm
produces a location set for all devices and a set of directions towards the origins of
the sound-events. A Histogram Based Outlier detection Algorithm is implemented to
find outliers in the localisation results. The CLASS Algorithm deals with inaccurate
measurement data by finding and averaging TDOA values, and localisation results,
that are inliers.

To our best knowledge no prior work has utilised Android for Cooperative Local-
isation. The following question is therefore posed: What are the technical limitations
of utilising a non Real-Time Operating System like Android for Cooperative Localisa-
tion that achieves accuracy within several metres?

This thesis argues that input latency and poor time synchronisation are the main
limitation of the Android Operating System (OS) for it’s use in Cooperative Local-
isation by sound. Input latency in Android suffers from large jitters that cannot be
predicted and corrected. The following technical limitations of Android, ordered from
most to least significant, contribute to TDOA measurement inaccuracies: (i) audio
input latency, (ii) poor time synchronisation, (iii) difference in microphone gain per
device, (iv) delays in recording time-stamps, (v) implementing a Digital Signal Pro-
cessor (DSP) like Fast Fourier Transformation (FFT), (vi) noise in the form of peaks
in the microphone signal. These limitations can result in erroneous TDOA measure-
ments and are dealt with in the CLASS Algorithm and Android application.

The accuracy of the CLASS Algorithm was assessed with an outdoor experiment.
Sound signals were generated with an air horn at twenty locations around a constel-
lation of 16 Nexus-7 tablets. Four sound-events were generated at each location. The
sound-events were distributed along a circle with a radius of 46 m The devices were
placed in a 12 m× 12 m grid with a perpendicular inter-device distance of 4 m.

A mean Root Mean Square Error (RMSE) of 2.4 m with a standard deviation
of 0.21 m is achieved. The mean RMSE of the estimated directions is 76.24 ◦ with
a standard deviation of 1.28 ◦. These results can be improved in future work by
elaborating on different parts in the CLASS Algorithm and Android application.

Thesis Supervisor: Paul Havinga
Title: Full Professor

4

Acknowledgements

I started the preliminary work for my master thesis at the Pervasive Systems group in
September 2014. The initial idea was to develop a working demo on Android devices
that consisted of a network of devices and could locate themselves by only using sound.
This soon proved to be very ambitious to finish within one master thesis. However the
work presented in this thesis is definitely a large step in that direction. I want to thank
my thesis supervisor, Paul Havinga, for his guidance and input which improved my
research skills during the writing of this thesis. In September 2014 Le Viet Duc was
working on Android audio input latency at the time and we started to investigate this
together. After writing a paper with Le Viet Duc that was related to Android audio
latency I started to work on this thesis in January 2015. My thanks goes out to Le
Viet Duc for his collaboration and insights, which taught me how to look at research
problems with a statistical mindset. I would also like to thank Johannes Wendeberg
and Simon Burgess for their feedback and suggestions. Their work really helped me
to understand the mathematical problem setting of Cooperative Localisation. My
thanks goes out to Okan Turkes for sharing his knowledge and insights of his Cocoon
data dissemination model.

5

6

Contents

1 Introduction 9
1.1 Goal . 10
1.2 Research Questions . 10
1.3 Challenges . 11
1.4 Related Work . 12

1.4.1 Target Localisation Utilising Anchor Devices With Known Po-
sitions . 12

1.4.2 Cooperative Relative Localisation Utilising Only Sound Signals 13
1.5 Thesis Layout . 15

2 Methodology and Approach 17
2.1 General Approach . 17
2.2 Assumptions and Requirements . 18
2.3 Materials and Equipment . 19
2.4 Measurement Set-Up . 19
2.5 Measurement Scheme . 20
2.6 Dataset and Localisation Results . 21
2.7 Conclusion . 22

3 Localisation Algorithm 23
3.1 Problem Setting . 23

3.1.1 Time Difference of Arrival Matrix 24
3.2 Optimizing for Both Device and Sound-Event Location 25
3.3 Optimizing for Device Location Under the Far Field Approximation . 25
3.4 Solver . 26
3.5 Averaging TDOA Values for Events at Identical Locations 26
3.6 Outlier Detection in the Results . 27

3.6.1 Histogram Based Outlier Detection 29
3.7 Conclusion . 31

4 Technical Analysis and Data Acquisition 33
4.1 Related Work . 34
4.2 Android Architecture . 34
4.3 Time Synchronisation . 34

4.3.1 Global Positioning Service . 35

7

4.3.2 Network Time Protocol . 36
4.3.3 Measuring Clock Offsets . 37

4.4 Android Audio Input Pipeline . 40
4.4.1 Input Latency . 40
4.4.2 OPEN-SL . 42
4.4.3 Audio Input Filter . 42
4.4.4 Determining the Desired Frequency Range 43

4.5 Sound-Event Detection . 43
4.5.1 Deriving the Desired Threshold Value 44
4.5.2 Averaging Input Samples . 44

4.6 Time-Stamping . 45
4.7 Networking . 45

4.7.1 Server . 45
4.8 Data Quality . 46

4.8.1 Placing all Devices at an Identical Location 46
4.8.2 Distance Measurement . 50

4.9 Conclusion . 54

5 Experimental Validation 57

6 Conclusion 61
6.1 Future Work . 63

Glossary 69

8

Chapter 1

Introduction

A localisation system determines the location of users or objects, either relative to a
known position or within a coordinate system. Examples of applications that rely on
localisation information include (but are not limited to), law enforcement, military,
security, tracking personnel, vehicles, road safety, situation awareness, and mobile
ad-hoc networks. This thesis addresses the issue of localising multiple devices in an
ad-hoc sensor network; in particular the localisation of devices that have no knowl-
edge of their surroundings but are able to communicate with each other. Techniques
that accomplish this are known as Collaborative Localisation, Cooperative Localisa-
tion, and Network Localisation [1]. The work presented in this thesis utilises sound
signals that are present in the environment. This eliminates the need of existing
infrastructure, such as anchor nodes with known locations.

Ideally, each device would know its own position, for example, from the Global
Positioning System (GPS). However, constraints such as size, cost, accuracy and
limited connectivity require investigation of techniques other than GPS [2].

• Dense forests, mountains, or other obstacles that block the line-of-sight from
GPS satellites, will hinder the use of GPS.

• The power consumption of GPS will reduce the battery life of sensor nodes and
reduce the effective lifetime of the entire sensor network.

• In a sensor network with large number of devices, the production cost factor of
GPS is an important issue.

• Civilian GPS has a horizontal accuracy of approximately four to ten meters, de-
pending on the implemented hardware and environment [3]. Some applications
require a higher accuracy.

For these reasons an alternate solution of GPS is required which is cost effective,
rapidly deployable and can operate in diverse environments. When geographic posi-
tioning, such as GPS, fails in harsh environments, communication between wireless
nodes can be used to improve the accuracy of location information [4]. There are nu-
merous methods that have been investigated to preform Cooperative Localisation [2].
One of these methods is based on Time Of Arrival (TOA) measurements. A signal

9

is transmitted by an anchor node and each device records the time when it receives
the respective signal. Knowing the speed of the signal, this difference in time relates
directly to the distance between the two devices and the anchor node. This method
requires the synchronisation of the devices their clock with the anchor node.

A variation of this method is based on Time Difference Of Arrival (TDOA) mea-
surements. TDOA estimation requires the measurements of the difference in time
between the signals arriving at two devices. One device functions as a ‘base’ node
and the measured TDOA value, as the name suggests, is the time difference of ar-
rival. The advantage that TDOA has over TOA is that the devices preforming the
measurements do no not have to synchronise their clocks with the anchor node that
produces the signal.

In order to eliminate the need of existing infrastructure, such as anchor nodes with
known locations, signals already present in the environment should be used. This fact
makes the use of sound very interesting. Sound signals are ubiquitous and can be
utilised to preform TDOA based Cooperative Localisation. This thesis focusses on
research that gears towards ubiquitous Cooperative Localisation using only ambient
sound, without the means of any existing infrastructure. This thesis presents the Co-
operative Localisation on Android with ambient Sound Sources (CLASS) Algorithm.

1.1 Goal

The goal of this thesis is to develop a Cooperative Localisation method without a
dependency on existing infrastructure. This requires a network of devices that can
localise their relative positions by using only ambient sound that is present in the
environment. In theory this is possible with dedicated hardware [5, 6]. In order to
create an application that can easily be used on various hardware platforms it should
be able to run on smartphones. Previous work has applied the technique with iPhones
and other Apple products [7–9]. Due to its large penetration in the worldwide mar-
ket, the Android OS is a promising candidate to utilise as a development platform.
Android is a leading OS that runs on smartphones, tablets and wearables. Android
is not a Real-Time OS and thus using it as a development platform for Coopera-
tive Localisation is challenging. The secondary goal of this thesis is to explore the
limitations of implementing the Android OS for Cooperative Localisation.

1.2 Research Questions

The main research question this thesis is trying to answer is:

When utilising only environmental sound that originates from unknown positions,
what techniques for Cooperative Localisation can be used on Android devices that can
achieve accuracy within several metres, and what factors will influence this accuracy?

Sub-questions that arise from this are:

10

1. What technique localises devices in a network without prior knowledge of the
device locations and sound signal origins?

2. What are the technical limitations of utilising a non Real-Time OS like Android
for Cooperative Localisation that achieves accuracy within several metres?

3. What are the consequences of inaccurate TDOA measurements for Cooperative
Localisation and how can they be minimised to achieve accuracy within several
metres?

4. What techniques can be used to simultaneously detect an identical sound signal
on all devices in a Cooperative Network?

5. What type of sound signals can be used for Cooperative Localisation?

6. What techniques can be used to share information in a Cooperative Network
without using existing infrastructure?

7. What kind of information do devices need to share within the network for Co-
operative Localisation by sound?

1.3 Challenges

Localisation by sound introduces multiple challenges such as:

1. Setting up the network for sound localisation

2. Time synchronisation amongst smartphones in the network

3. Detecting and identifying sound-events that can be used for triangulation

4. Audio latency in the hardware platform

5. Jitter in the audio latency

6. Dealing with inaccurate measurements

These challenges and related issues will be discussed in the respective Sections of
this thesis. Challenges one to four have been tackled in the experimental Android
Application. Challenges five and six have been addressed by the CLASS Algorithm
that is introduced in Chapter 3.

11

1.4 Related Work

Localising an emitter or receiver in a Wireless Sensor Network (WSN) has been
studied extensively over recent years [2, 10]. Many have studied the problem of
localising a networked device with only sound. In the field of localisation, using only
acoustic signals, two approaches can be distinguished; localisation with- and without
anchor devices. A lot of research focuses on localising a target node by utilising
anchor devices with a known position, this is discussed in Section 1.4.1. Section
1.4.2 describes research where no anchor devices are required. In this field a lot of
researchers have tried to overcome measurement inaccuracies by means of ranging
between the devices. Ranging is a phase in the localisation Algorithm where devices
estimate the respective distances between them and others. More recent work has
found solutions that require no ranging between devices, see Section 1.4.2.

1.4.1 Target Localisation Utilising Anchor Devices With Known
Positions

Localizing a node when the base stations are known has been studied by many. Harter
et. al. introduce a platform that enables applications to follow mobile users and/or
objects inside a building with so called ‘Bat’ nodes [11]. After overhearing it’s unique
identifier, that is emitted by a base node, a Bat node emits an ultrasound signal that
is picked up by an array of receivers mounted in the ceiling. The location of the Bat
node is obtained through multilateration with a few centimetres of accuracy. The
Bat system requires an extensive network of multiple receivers in the ceiling and base
stations that can emit sound signals to the Bats. Every user or object has to carry a
Bat node. Although the system is accurate, it requires a lot of infrastructure and is
an obtrusive technology to the user.

Simon et. al. introduce PinPtr, an ad-hoc wireless sensor network system that
detects and accurately locates shooters [12]. PinPtr consists of a large number of
cheap sensors communicating through an ad-hoc wireless network. The dense deploy-
ment of sensors detect and measure the TOA of muzzle blasts and shock waves from
a gunshot. The sensors route their measurements to a base station that computes
the location of the gunshot. PinPtr utilises second-generation Mica2 motes. These
motes contain dedicated hardware and the authors were able to synchronise them
with an average time synchronization error that stayed below 17.2 µs during a four
hour experiment. The error in time synchronisation between Android devices will be
much higher than this [13]. PinPtr requires a ranging phase in order to determine
the relative positions of the motes. This is a drawback because the motes require a
sounding device that has a limited range of approximately 10 m.

Peng et. al. introduce an acoustic-based system for ranging and localisation. The
authors discuss uncertainties in the measurements of audio localisation and present a
high accuracy solution [14]. The proposed method achieves 1 cm accuracy for ranging
and three cm accuracy for localisation. This can be done by emitting and receiving
signals in turns. The devices record their own emitted sound and use the recording to
determine their own audio latency. The method does however require anchor devices

12

and a ranging phase, thus it is not a fully pervasive solution.

Hoflinger et. al. propose a system that utilizes embedded ARM processors as
anchor devices [15]. The proposed method localises smartphones that emit short
acoustic signals beyond the audible range. In this solution all the anchor devices are
stationary, have known positions and a synchronized clock. The authors show that,
in an indoor environment, distances less than 10 m result in a sound-event detection
rate of approximately 80 %. Larger distances resulted in a lot of missing data points.
In an outdoor environment there exists a lot of environmental noise such as wind
and cars, which are highly likely to increase the error in the sound-event detection
rate. Thus, a solution that requires the device to emit a signal outdoors, over larger
distances, is not feasible.

Shang et. al. use Android devices as anchors at known locations to estimate the
sound source location [13]. The authors find the TDOA by means of cross correlation
between sound recordings that were recorded at different known locations. When
a recording request has been broadcast through the wireless network, each device
starts recording the sound at different locations. All devices will not start recording
the sound at exactly the same moment in time. Therefore the start time of the
sound recording is stored, so that the start time offset in the TDOA values can be
removed later. The authors do not mention how this time stamp is recorded or how
accurate these time stamps are. When the recording has finished, each device sends
its recorded sound signal, corresponding time stamp and device location to a common
device for processing. The TDOA value contains the synchronisation offset and start
time error. These two errors are estimated and subtracted from the time delay to
obtain the calibrated TDOA for the positioning of the source. The localisation errors
of their acoustics-based method are within +/- 15 cm in the x-direction and +/-
80 cm in the y-direction. The authors conclude that the accuracy in the x-direction
is better because the baseline of the sensor array in the y-direction is relatively short
(≈ 190 cm) compared to the distance from the centroid to the source (≈ 260 cm).
The baseline in the x-direction is approximately 250 cm. The authors observe random
error from different trials but do not mention possible reasons for this.

The authors found that multiple independent location estimates can be averaged
to yield much better localisation accuracy. The measurements were preformed in a
quiet environment with low noise levels, outdoors this method has not been tested
and could possibly fail. The authors do not mention the inevitable offset in the anchor
devices’ their location. This offset will probably increase the error in the estimation
of the target’s location.

1.4.2 Cooperative Relative Localisation Utilising Only Sound
Signals

The complexity of the localisation problem increases when base stations with a known
position are not present. In this case, there are more unknown parameters that
need to be estimated. Most research for this approach also localises the location
and time of emission of the sound-event since this information is inherent in the

13

measurement data. In order to overcome measurement inaccuracies, some authors
have implemented ranging.

Utilising Ranging Signals Between Nodes

Raykar et.al preform an analysis of the localisation errors due to imprecise synchro-
nisation and propose ways to account for the unknown speaker emission start times
and microphone capture start times [16]. The authors fix the location of some devices
in a plane to prevent rotation and translation of the location solution. The proposed
method accounts for the lack of time-synchronisation in different platforms by use of
ranging.

Hennecke et. al. propose a localisation method that utilizes smartphones [17]. The
authors focus on the calibration of low-quality unsynchronized mobile phone audio
hardware and resort to acoustic calibration signals to approach the self-localisation
task.

The research listed above does show that ranging can be used to compensate
for poor time-synchronisation between devices. However, approaches that require
ranging are not well suited for outdoor applications, simply because a smartphone
will not be able to emit a distinguishable sound-event over larger distances. Therefore
it is interesting to look at approaches that require no ranging.

Utilising Only Ambient Sound Without Ranging

Refining the work in [5], Thrun et. al. are one of the first authors to introduce a so-
lution towards localisation without any other information than TDOA measurements
of acoustic events over multiple nodes [6]. The authors show that the sensor nodes
localisation problem is equivalent to a Maximum Likelihood Estimation (MLE). In
their approach the authors rely on the Far Field Approximation (FFA). When there
is no ranging between nodes, most prior works assume that acoustic events origi-
nate (infinitely) far away so that sound waves arrive at all devices in parallel. This
assumption simplifies the problem statement as discussed in Section 3.3.

The FFA is refined by Kuang et. al. in [18]. Their experimental validation gives
a strong indication that a FFA is a feasible approach for getting direct estimates as
well as initial estimates for other solvers.

Wendeberg et. al.[7, 8] have successfully localised a group of networking devices in
a mobile environment without the need of any further infrastructure besides ambient
sound and a Wi-Fi network. They utilised the TDOA method to localise a network
of Apple laptops and iPhones with a positioning accuracy of 10 cm. The Apple
products they used contain a High Precision Event Timer (HPET), thus it becomes
possible to synchronise the devices quite accurately. Wendeberg et. al. were able to
synchronise the device’s their system clocks within an accuracy of 0.1 ms. In Android
this accuracy in time synchronisation is not possible and the measurements will be
more noisy.

In order to deal with noisy data, Burgess et. al. constructed an Algorithm that
uses the Random Sample Consensus (RANSAC) paradigm [9]. Their method simulta-

14

neously solves the calibration problem and removes severe outliers, which is a common
problem in TOA applications. With two indoor environment experiments, using mi-
crophones and speakers, their work achieved a Root Mean Square Error (RMSE) of
2.35 cm and 3.95 cm on receivers and transmitters their respective positions compared
to computer vision reconstructions.

To our best knowledge there is no prior work that has tried to develop a Coop-
erative Localisation Algorithm on Android Devices. Most likely Android’s indeter-
ministic behaviour has made the OS an unpopular platform to use for Cooperative
Localisation by sound. Investigating Android’s applicability for Cooperative Locali-
sation is one of the contributions in this thesis.

1.5 Thesis Layout

The thesis is organised as follows. Chapter 2 describes the methodology of the con-
ducted research. Chapter 3 lays out the problem setting and describes the CLASS
Algorithm. Chapter 4 discusses the details around the acquisition of the data-set
that was used with the CLASS Algorithm, and investigates the technical limitations
of the Android OS. Chapter 5 validates the CLASS Algorithm by discussing the ex-
perimental results. Finally the thesis is concluded along with the future work in
Chapter 6.

15

16

Chapter 2

Methodology and Approach

This Chapter describes the methodology of the conducted research.

Section 2.1 introduces the general approach. Section 2.2 discusses the research
assumptions and requirements. The materials and equipment that have been used
during the research are described in Section 2.3. The measurement set-up of the
experimental application is discussed in Section 2.4. Section 2.5 describes how the
outdoor experiment was conducted. Section 2.6 describes the conditions that were
applied to the raw data-set in order to assemble the final data-set.

2.1 General Approach

A network of mobile devices was required to answer the research questions posed in
this thesis. Because the second objective was to investigate the limitations of utilising
the Android OS, Android operated devices were used. A cooperative network was
created with these devices.

After reviewing the mathematical problem setting, the CLASS Algorithm was
developed that utilised data, acquired during experiments described in Section 2.5,
to locate the position of the devices. The CLASS Algorithm consists of filtering
erroneous TDOA measurements, averaging inliers, and finding an optimal location for
all devices and an angular directions towards the origin of the sound-event locations.
The CLASS Algorithm is described in Chapter 3.

An experimental Android application was developed and analysed. The experi-
mental Application and Android limitations are discussed in Chapter 4. The applica-
tion networked the devices and allowed them to respond to sound-events, originating
from outside the device constellation.

In order to obtain a realistic data set, the main experiments took place in an
outdoor environment, where the set-up was exposed to wind and environmental noise.
The sound-events were generated by means of an air horn which generated a loud,
distinctive sound with a certain frequency. In general any type of sound can be used
when it is loud enough and can be distinguished by all devices.

For simplicity reasons the network was configured as a star-network. The devices
were wirelessly connected through a local Wi-Fi network and all measurement data

17

was transferred to a database located on a Laptop through the Hypertext Transfer
Protocol (HTTP). The CLASS Algorithm was later executed offline.

2.2 Assumptions and Requirements

The requirements for the localisation application presented in this thesis are as follows:

1. In order to reconstruct the relative positions of the devices, without prior knowl-
edge, sound-events must originate from different locations, outside and around
the device constellation. Without this requirement there will be insufficient
information regarding the relative locations of the devices.

2. Sound-events must be spaced sufficiently far apart in time to distinguish indi-
vidual events.

3. Sound-events should have a significant Signal to Noise Ratio (SNR) so that they
can be overheard by all devices in the constellation.

4. In the experimental application audio input samples are averaged in order to
filter noise, sound-events must therefore have a duration, above the SNR, of at
least 200 µs.

5. The sound-event does not have to be constant, but in order to minimise the
error in TDOA values, sound-events should have a short onset time. In other
words, the signal must have a steep flank e.g. clapping, gun shots, or an air
horn.

6. The CLASS Algorithm, described in Chapter 3, requires a minimum of six
sound-event locations and three devices to find a solution [9].

7. The method described in this thesis relies on the FFA. The FFA is discussed
in Section 3.3. Sound-events have to originate at a minimum distance from the
device constellation for the FFA to hold. Thrun S. found that the localisation
error did not change significantly over distances larger 5 times the diameter of
the sensor array [6]. This distance is the diameter of the sound-event locations
when they are distributed in a circle around the device constellation. With
the set-up described in Section 2.4, the maximum device constellation diameter
17 m. The diameter of the sound-event locations should therefore be equal to
5 · 17 = 85 m. The minimum distance from the edge of the device constellation
then becomes 85−17

2
= 34 m.

8. Devices should not be placed too far apart from each other. When the inter-
device distance becomes too large, some devices might overhear a sound-event,
whilst the sound signal fades out for devices that are far away.

9. The approach presented in this thesis requires the use of mobile devices that
can run the Android OS. The requirements for these devices are as follows:

18

(a) A device must have the capability to record sound.

(b) The experimental application requires a Wi-Fi and GPS radio for data
transmission and time synchronisation.

(c) A device that acts as a ‘server’, which is used to start a sound-event mea-
surement, must have hotspot mode availability.

(d) The devices have to be synchronised in time. To estimate the TDOA it is
important that the time difference between the system clocks of the devices
is minimal.

10. The RMSE of the location solution for the devices must be smaller than 6.32 m.
The simplest Algorithm would be to locate all devices on top of each other. Ac-
cording to Equation 2.1, placing all devices in the centre of the set-up described
in Section 2.4, results in a RMSE of 6.23 m. Thus any solution with a RMSE
larger than 6.23 m does not make sense.

2.3 Materials and Equipment

Sixteen Nexus-7 (2012 edition), tablets have been used to obtain the data that is used
in this research. All devices were updated to Android version 4.4.4 (KitKat).

A Lenovo W540 laptop has been used to store the data during the measurements,
and later to execute the CLASS Algorithm.

All the data was transferred from the devices via a local Wi-Fi network. A TP-
LINK (Archer C7 - Wireless AC1750) was used to set up the network. During mea-
surements in the field a 12 V battery was used to power the router.

The sound-events were generated with an air horn. More details regarding the air
horn are discussed in Section 4.4.4.

2.4 Measurement Set-Up

Figure 2-1 displays a top-down 2D overview of the ground truth for device locations
S and sound-event origins E. Sound-events were generated from twenty different
locations distributed along a circle around the device constellation. To make sure the
FFA was not violated, the sound-events were generated forty metres away from the
edge of the device constellation.

Sixteen devices were placed on top of tripods, at a height of approximately one
metre, in a 12 m × 12 m grid with a perpendicular inter-device distance of four
metre. Sixteen devices were used because of their availability. A minimum of three
devices or more than sixteen devices can be used. Using more devices increases
the computational complexity. At some point the Cooperative Localisation would
need to be split up, e.g. by dividing the network and localising devices in clusters.
Devices should not be too far apart from one and another, see Requirement number 8.
When the devices are placed too close to each other, the estimation error of the
relative device positions becomes larger than the internode distance, which renders

19

the solution useless. In order to satisfy both Requirements 7 and 8, whilst maximizing
the inter-node distance, an inter-node distance of 4 m was considered to be optimal.

The devices were placed on top of the tripods with the microphone holes facing
in random directions. A photo of the outdoor experiment is shown in Figure 2-2.

−40 −36 −32 −28 −24 −20 −16 −12 −8 −4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

−52

−48

−44

−40

−36

−32

−28

−24

−20

−16

−12

−8

−4

0

4

8

12

16

20

24

28

32

36

40

X Position (m)

Y
 P

o
s
it
io

n
 (

m
)

 S1 S2 S3 S4

 S5 S6 S7 S8

 S9 S10 S11 S12

 S13 S14 S15 S16

 E1 E2 E3 E4

 E5

 E6

 E7

 E8

 E9

 E10

 E11 E12 E13 E14

 E15

 E16

 E17

 E18

 E19

 E20

device constellation

sound locations

Figure 2-1: Experimental Outdoor Set-up

2.5 Measurement Scheme

The following steps were taken during the experimental measurements. A remote
device running the experimental application took the role of ‘server’ and all other
devices acted as a ‘client’. In the experiment the sound-event was known to be
generated with the air-horn. The Android application on each device was configured
with a band pass filter that filtered out environmental sounds and let the frequency
band of the air horn pass through. The devices triggered when the SNR of the air horn
exceeded a pre-set threshold value. This is discussed with more detail in Section 4.5.
The SNR threshold, together with the location of the sound-event, were configured on
the server device before each measurement. When a new measurement was initiated,
the server device broadcast a start message, along with a measurement id, the SNR
threshold and sound-event location. All devices started with a ‘calibration’ phase.
During this phase all devices determine the noise level of the environment for three
seconds. After this phase the devices started to listen in the frequency band of the

20

Figure 2-2: Experimental Outdoor Set-up

air horn’s signal by filtering out all other frequencies. As soon as the energy level in
this band reached the threshold, a time-stamp was recorded on each device. A sound-
event was generated by sounding the horn in the direction of the device constellation.
The devices then recorded and sent a time-stamp along with the measurement-id and
sound-event location to the server. The server stored all the values in a Structured
Query Language (SQL) database. This process was repeated multiple times per
sound-event location.

2.6 Dataset and Localisation Results

The following conditions were applied to the raw data to distinguish a successful
measurement.

1. All devices must have triggered on the sound-event. In practise the CLASS
Algorithm can deal with missing data points, however to asses the quality of
the data it is required to only include measurements where all devices detected
the sound-event.

2. The standard deviation over the TOA values of all devices has to be smaller or
equal to 30 ms. By the speed of the sound, 30 ms relates to a standard deviation
of approximately 10 m. A recorded TOA set that has a standard deviation that
is larger than 10 m is considered to contain too many outliers. If for some
reason one or more devices triggered significantly too early or too late, they
caused a high standard deviation in the TOA set for that sound-event. These
reasons include (but are not limited to); sounding the horn too early, sounding
the horn with insufficient volume, and a faulty calibration phase which resulted
a SNR threshold that was above the energy of the air horn signal. This occurred
occasionally during the measurements and these data were not included in the
dataset.

21

The CLASS Algorithm returns a solution set for the location of all devices X̄ and a
set of directions ᾱ towards all sound-event origins, see Figures 5-1 and 5-2 in Chapter
5, respectively. Each direction αj is denoted as a vector that originates at the centre
of the device constellation and is oriented towards sound-event Ej. The obtained
solution for the position of all devices is always a relative position to other nodes,
there is no known absolute position. Localisation without an anchor device results in
a solution set that is rotated and translated. In order to evaluate the quality of the
solution, it is matched to the ground truth by rotation and translation. The solution
is rotated and translated to best alignment with the ground truth. The rotation and
translation that results in the optimal fit are found by using [19]. The relative error
of the solution is then calculated as depicted in Equation 2.1.

RMSE =

√√√√ 1

N

N∑
i=1

(∥∥Xi − X̄i

∥∥
2

)2
(2.1)

Where N denotes the number of devices, ‖·‖2 the L2 norm (Euclidean distance),
Xi the ground truth location of device i and X̄i the estimated location.

In order to asses the quality of the estimated set of directions ᾱ is rotated to best
fit the ground truth. The relative error for the estimation of the directions is then
calculated as depicted in Equation 2.2.

RMSE =

√√√√ 1

M

M∑
j=1

(
αj − ᾱj

)2
(2.2)

Where M denotes the number of sound-events, αj the ground truth and ᾱj the
estimated direction towards sound-event j.

2.7 Conclusion

This Chapter systematically solved the research problem by identifying methods,
techniques and metrics for evaluation. Chapter 3 continues with identifying the
mathematical problem setting for Cooperative Localisation by ambient sound and
introduces the CLASS Algorithm.

22

Chapter 3

Localisation Algorithm

How do devices in a Cooperative Network localise themselves without prior knowl-
edge of the device locations and sound signal origins? How can the consequences of
inaccurate TDOA measurements be minimised so that accuracy within several me-
tres is achieved? This Chapter attempts to answer these questions by introducing
the mathematical problem setting and describing the CLASS Algorithm that is used
to localise the mobile devices based on ambient sound-events at unknown locations.

Section 3.1 starts with a mathematical approach to the problem of Cooperative
Localisation without any prior knowledge. A cost function for the localisation of all
nodes and sound-event origins is formulated in Section 3.2. Section 3.3 elaborates on
the cost function and describes a simplified function where an angular direction toward
the sound-event origins is used. Section 3.4 then discusses the solver that is used to
optimize this cost function to an optimal localisation solution. Section 3.5 describes
how multiple sound-events recorded at an identical location can be utilised to optimise
TDOA values. Section 3.6 discusses the filtering of outliers in the localisation results
by a Histogram Based Outlier Score (HBOS) Algorithm. The Chapter is concluded
in Section 3.7.

3.1 Problem Setting

This Section denotes the mathematical formulation of the localisation problem. For
ease of representation the sensors and sound-sources are located in a 2D plane. The
technique can easily be generalised to use 3D positions. In this problem formulation
it is assumed that the detected sound waves travel from the source to the receiver in
a straight line.

Let there be N nodes at unknown locations X ∈ R2.

X =

x1 y1
x2 y2
...

...
xN yN

 (3.1)

Let there be M sound events at unknown locations A ∈ R2. The times at which

23

sound-events are emitted are denoted by a vector E. Each sound-event has an un-
known emission time ej .

A =

a1 b1
b2 b2
...

...
bM bM

 (3.2) E =

e1
e2
...
eM

 (3.3)

The time of arrival of each sound-event, at each device is represented by a N ×M
TOA matrix T . In this matrix the arrival time of acoustic event j at device i is
denoted as ti,j.

T =

t1,1 t1,2 · · · t1,M
t2,1 t2,2 · · · t2,M
...

...
. . .

...
tN,1 tN,2 · · · tN,M

 (3.4)

It is assumed that each event is well distinguished so that there is no data asso-
ciation problem. Each sound-event represents one column in Tij.

tij can be denoted as the sum of it’s respective emission time ej and the time it
takes to travel from position (aj, bj) to (xi, yi). This relation can be denoted as:

ti,j = ej +
1

c
·
∥∥∥∥(xiyi

)
−
(
aj
bj

)∥∥∥∥
2

(3.5)

Where c denotes the speed of sound and ‖·‖2 denotes the L2 norm (Euclidean
distance).

3.1.1 Time Difference of Arrival Matrix

When no absolute positions are known we can only look at the relative positions of
the nodes. Therefore we look at the inter-device Time Difference Of Arrival (TDOA).
E.g. the TDOA between device 1 and all other devices can be denoted as:

∆ =

t2,1 − t1,1 t2,2 − t1,2 · · · t2,M − t1,M
t3,1 − t1,1 t3,2 − t1,2 · · · t3,M − t1,M

...
...

. . .
...

tN,1 − t1,1 tN,2 − t1,2 · · · tN,M − t1,M

 (3.6)

When we define the TDOA values not only relative to node 1, but between all
pair of nodes, we obtain the matrix ∆ with dimensions N−1×M×N . In this matrix
the TDOA between node i and k for sound-event j is denoted as ∆ijk.

Multiplying a TDOA value with the speed of sound yields the euclidean distance
between the two respective nodes. The relation between the TDOA and euclidean
distance can be denoted as:

24

∆ijk · c = ‖Xi − Aj‖2 − ‖Xk − Aj‖2
0 = ‖Xi − Aj‖2 − ‖Xk − Aj‖2 −∆ijk · c

(3.7)

This relation can be used to form a function that can be minimized in order to
find an optimal solution for device locations X and sound source locations A. This
cost function is described in Section 3.2.

3.2 Optimizing for Both Device and Sound-Event

Location

From Equation 3.7 we can form a least squares definition as denoted in Equation 3.8.

J(X,A) =
N−1∑
i=1

M∑
j=1

N∑
k=i+1

(
‖Xi − Aj‖2 − ‖Xk − Aj‖2 −∆ijk · c

)2
(3.8)

Where Xi denotes the device’s location (xi, yi) and Ai denotes the sound-event’s
location (aj, bj). A common approach is to optimize the parameters A and X using an
iterative Algorithm such as the Levenberg-Marquardt [20] or Trust-Region-Reflective
Algorithm [21]. The iterative Algorithm returns a set of parameters for which the
residual J of function 3.8 is minimal. The returned set of locations are then considered
to be the most optimal solution of the localisation problem. The solver is discussed
in more detail in Section 3.4.

3.3 Optimizing for Device Location Under the Far

Field Approximation

In [22] Burgess et al. extend on previous work and introduce two novel algorithms for
parameter estimation of a receiver array. These algorithms are based on the assump-
tion that sound events originate from (infinitely) far away. Under this assumption
a sound wave from sound-event j arrives at each device at the same incident angle
αj. In other words, the sound waves connecting the location of a sound-event (aj, bj)
with each of the devices (xi, yi) are approximately parallel for all i (but not for all j)
[6, 22]. This assumption can be used to simplify the localisation problem [18]. Now
the solver does not need to find an exact location for each sound-event but merely
one direction towards it.

The relation between the inter-device distance, sound-event location and the re-
spective TDOA value, as described in Equation 3.7, can be rewritten as a function of
the incident angle αj as depicted in Equation 3.9.

(
cos(αj) sin(αj)

)
·
(
xi − xk
yi − yk

)
= ∆ijk · c (3.9)

25

This leads to the cost function described in Equation 3.10.

J(X, ~α) =
N−1∑
i=1

M∑
j=1

N∑
k=i+1

((
cos(αj) sin(αj)

)
·
(
xi − xk
yi − yk

)
−∆ijk · c

)2
(3.10)

3.4 Solver

The problem described in Section 3.3 is a non-linear least squares problem. These
kind of problems can be solved with algorithms such as the Levenberg-Marquardt
Algorithm [20]. This Algorithm is used extensively in various software applications
and has proven to be fast and stable.

The Algorithm updates the parameters that need to be estimated with steps
towards an optimum where the residual of the cost function are minimal. This Algo-
rithm can take large steps when it is far away from the optimal solution, but will slow
down as it approaches the optimum to prevent unstable behaviour. The Algorithm
requires an initial guess or ’starting point’ to start searching for an optimal solution.
The Algorithm updates each parameter so that the residual of the cost function in
the next iteration is less than in the current iteration. The Algorithm will always
find a local optimum as it only converges in a ’downward’ direction from it’s starting
point. The initial starting point is therefore important in order to find the global
minimum. The global minimum is where the residuals of Equation 3.10 are minimal.
The estimated parameters in the optimum solution have the best fit to the measured
TDOA values.

The parameters that need to be initialized are the angles ~α towards each sound-
event from the centre of the device constellation and the location of the devices X.
The solver that is introduced in [22] implements a fast Algorithm that aims to solve
the same localisation problem as described in this thesis. While it is fast it does not
return the most optimal solution for this case, however the result is good enough to
use as an initial guess for the Levenberg-Marquardt Algorithm. It is thus implemented
in the experimental application to obtain the initial parameter estimation.

3.5 Averaging TDOA Values for Events at Identi-

cal Locations

When it is possible to obtain multiple samples from one location by e.g. splitting
longer sounds over multiple events, a higher accuracy can be achieved [13]. The
recorded TDOA values for an identical sound-location are normally distributed, see
Section 4.8. We can use the mean of TDOA values to determine which measurements
are inliers.

In the experimental data set four sound-events have been recorded at each sound-
event location. This opens up the possibility to use the averaged value of inliers for

26

the respective value of ∆ijk. Outliers are extracted by means of a HBOS Algorithm.
HBOS is explained in more detail in Section 3.6.1.

A value ∆ijk is perceived as an inlier when the condition in Equation 3.11 holds.

Tik · c < ε (3.11)

Where Tik is the time difference of arrival between device i and k, c is the speed
of sound and ε the maximum distance from the mean TDOA value ω, which is deter-
mined by the HBOS Algorithm. The resulting set with inliers is averaged to form a
new value ∆ijk. When no inliers are found, ∆ijk is set to 0. By doing so, a faulty/noisy
measurement between device i and k at this location will not take part in the locali-
sation Algorithm. Both devices still have relations with other devices that are more
stable and these can be used to determine their respective locations. Thus, removing
a TDOA value between a pair of nodes for one sound-event location is not a problem.
The method that filters and averages the TDOA values is presented as Algorithm 1.

Although the HBOS Algorithm preforms well in this case, it is not the most
optimal method to use with very little data points. In this case 4 sound-events
were recorded per location which is statistically insufficient to accurately determine
outliers. It was implemented with the expectation of having at least 10 data points
per sound-location. Due to a limited amount of time it was not possible to obtain this
amount of sound-events per location. In future work at least 10 data points should be
recorded per location or an alternative method should be investigated for averaging
of the TDOA values at identical locations.

3.6 Outlier Detection in the Results

In recent work Burgess et. al. [9] have demonstrated that implementing a RANSAC
based scheme is a good method to filter outliers from the dataset. Some input mea-
surements have large errors and will result in an incorrect solution. For each sound-
event some devices will not trigger, or will have a large temporal error in the TOA
value.

The CLASS Algorithm uses a subset of n devices over multiple iterations. A
new random subset is selected per iteration and the results for that subset of nodes
is stored. The amount of iterations k is dependent on the size of the subset, see
Equation 3.12

k = ROUND
(N
n
· 35
)

(3.12)

Where N is the total number of devices in the device constellation and n the
number of devices in the subset per iteration. A small subset will have a higher
variation in the resulting locations, and thus needs more iterations to determine the
inliers. A larger subset will vary less, and needs fewer iterations. The multiplication
with 35 has been obtained experimentally. When n = N , 35 is the minimum number
of iterations to enable robust inlier detection. The optimal subset was determined
experimentally by trying different sizes and comparing the results, these are plotted

27

Algorithm 1: TDOA filtering and averaging

Data: TOA matrix T , maximum inlier distance ε, nr events per location ~e
Result: TDOA matrix ∆
/* Calculate all TDOA values for all measurements */

1 for every device i do
2 for every measurement g do
3 for every device k = i+ 1 do
4 δigk = Tig − Tkg

/* Determine average TDOA value between all pairs of devices i and

k per location j */

5 for all nodes i - 1 do
6 for all sound-locations j do
7 δ′ = all TDOA measurements δ, between all nodes, that were recorded

at location j
8 for all devices k= i+1 do
9 divide all TDOA values between device i and k in to 3 bins

10 ω = mean of the bin centre values that have the maximum number
of counts

11 ∆ijk = 1
n
·
∑n

m=1 δ
′
m

∣∣∣abs(δ′m−ω)·c<ε
12 if no inliers found in δ′ then
13 ∆ijk = 0

in Figure 3-1. The results indicate that between six and twelve devices, the number
of devices does not influence the accuracy significantly.

28

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

R
M

S
E

 N
o
d
e
s
 (

m
)

Number of Nodes

2 4 6 8 10 12 14 16
65

70

75

80

85

90

95

Number of Nodes

R
M

S
E

 A
n
g
le

s
 (

d
e
g
)

RMSE nodes

5th degree polynomial

RMSE angles

5th degree polynomial

Figure 3-1: Varying the size of the subset of a constellation with 16 devices

The resulting set of location data for each device contains outliers. These outliers
are detected and removed by a HBOS Algorithm, see Section 3.6.1.

3.6.1 Histogram Based Outlier Detection

A HBOS Algorithm is implemented to detect outliers in the locations (x, y) of all
devices . The Algorithm is presented in pseudo code as Algorithm 2.

In order to determine which values in the set are inliers, a mean, upper and lower
bound are first determined. The HBOS Algorithm categorizes all values within a
certain range into bins. This is done by creating a histogram of the vector ~g for both
x and y values and has size 1 × k. The bin-width h of the histogram is determined
with the Freedman-Diaconis rule [23], see Equation 3.13.

h = 2 · IQR(~g) · k
1
3 (3.13)

Where IQR(~g) is the interquartile range of the location data and k equals the
number of observations in the set ~g .

The number of bins b is based on the size of the bins and the minimum and
maximum value in ~g, see Equation 3.14.

b = ROUND

(
MAX(~g)−MIN(~g)

h

)
(3.14)

The minimum number of bins b is set to 15, fewer bins will not provide enough res-
olution for outlier detection. ~g can contain extremely severe outliers which influence
the determination of b negatively, ~g is therefore limited to:

29

~g = ∀m ∈ {g1, g2, ..., gk}
∣∣∣−1500<gm<0
0>gm>1500 (3.15)

Figure 3-2 displays the bar-plot from a histogram of ~g where the amount of it-
erations k = 35. In this example most of the values in ~g are categorized in bin
3, the centre value that belongs to this bin is used as the mean value ω for inlier
determination.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

bin number

c
o
u
n
ts

Figure 3-2: Bin classification and bin counts

The bounds are determined by adding, or subtracting a threshold value ε. The
value of ε should not be too small otherwise there will be too less inliers to determine
an accurate mean value. When ε is too large, false inliers will create an error in the
result. The value for ε has been determined experimentally, see Figure 3-3

0 10 20 30 40 50 60 70 80 90 100
2

2.5

3

3.5

4

4.5

5

Max distance outlier (m)

R
M

S
E

 N
o
d
e
s
 (

m
)

RMSE nodes

4th degree polynomial

Figure 3-3: Varying the size of maximum distance ε for inliers, with 16 devices and
subset size of 10 nodes

30

The set ~g is shown in Figure 3-4 as a scatter plot. The mean value ω and the inlier
bounds ε are graphed in blue and red, respectively. All values in the area between
the red lines are perceived as inliers.

0 5 10 15 20 25 30 35
−400

−200

0

200

400

600

800

1000

g

lo
c
a
ti
o
n
 (

m
)

l
g

m

m + ε

m − ε

Figure 3-4: Values of x for one device, with mean ω and bounds ε. ε = 20

It is possible that two bins receive a similar amount of counts, this means that ~g
contains arbitrary data The Algorithm therefore uses the mean value of the centres
that have either the maximum number of counts, or are within 10 % of the maximum
count. By doing so the most optimal value for ω is found.

3.7 Conclusion

This Chapter explained how devices can cooperate to obtain a relative localisation
solution. The relation between the position of devices X, the directions towards the
origins of the sound-event locations α and the TDOA values was described. TDOA
values that are inliers are averaged for sound-events originating from an identical
location in a matrix ∆. The Levenberg-Marquardt solver is utilised to find an optimal
solution set for the all the positions and directions from ∆. Finally a HBOS Algorithm
is implemented to find outliers in the localisation results. Between six and twelve
devices, the subset-size does not influence the accuracy of the localisation solution
significantly. The Localisation Algorithm deals with inaccurate measurement data by
finding and averaging TDOA values, and localisation results, that are inliers.

Having identified the mathematical problem setting and investigated techniques
to deal with inaccurate measurement data, we can now investigate how to acquire the
TOA data that is used as input for the CLASS Algorithm. The technical analysis of
the Android OS and data acquisition are discussed in Chapter 4.

31

Algorithm 2: HBOS filter

Data: solution set X̂ (N × 2× k), maximum inlier distance ε, number of
solutions k

Result: estimated location solution X̄
/* Calculate a mean value for xi and yi with only inliers for all

devices i */

1 for each device i do

2 extract all values for xi from X̂ into g

3 ~g = ∀m ∈ {g1, g2, ..., gk}
∣∣∣−1500<gm<0
0>gm>1500

4 calculate the bin width h = 2 · IQR(~li) · k
1
3

5 calculate the number of bins bi = ROUND

(
MAX(~g)−MIN(~g)

h

)
6 if b < 15 then
7 b = 15

8 categorize ~g into b bins
9 get the bin centre value of the bins with maximum number count (β1) and

second maximum number of counts (β2)
10 if β1

β2
> 0.9 then

11 ω = the mean centre value of the bins with the top 2 maximum number
of counts

12 else
13 ω = the mean of the bin centre values that have the maximum number

of counts

14 x̄i = 1
n
·
∑n

m=1 gm

∣∣∣abs(gm−ω)<ε
/* Steps 2 - 14 are preformed for the values of yi in an

identical fashion */

15 X̄i =
(
x̄i ȳi

)

32

Chapter 4

Technical Analysis and Data
Acquisition

An experimental application has been developed during this thesis in order to obtain
a data set with real data. The Android OS is chosen as the application platform
because it is a widely distributed operating system and has a large penetration in
the market. With 80 %, Android’s market share is significantly larger than other
mobile Operating Systems such as Apple’s iOS [24]. Android is deployed on devices
that are distributed by a lot of different vendors which implement different hardware
platforms. This generality introduces inaccuracies that can be problematic for high-
accuracy demanding applications, such as localisation by sound.

This Chapter attempts to localise the sources of these inaccuracies and discusses
the acquisition of sound-event data in a network of mobile Android devices. The
acquired sound-event data is used as input for the CLASS Algorithm that was intro-
duced in Chapter 3. Several technical limitations of utilising a non Real-Time OS
like Android for Cooperative Localisation will be discussed. Limitations that will be
identified are: (i) poor time synchronisation (ii) audio input latency, (iii) implement-
ing a DSP like FFT, (iv) difference in microphone gain per device, (v) noise in the
form of peaks in the microphone signal, (vi) delays that occur during the recording
of time-stamps.

The Chapter then describes how multiple devices can simultaneously detect an
identical sound signal and investigates what kind of information devices need to share
within the network for Cooperative Localisation by sound.

Work related to developing Real-Time applications on Android is reviewed in Sec-
tion 4.1. Section 4.2 describes the overall Android architecture. Section 4.3 describes
two methods that have been considered to synchronize a network of Android devices
in time. Section 4.4 describes the audio input pipeline requirements. Section 4.5
discusses how a sound-event is detected in the environment. Section 4.7 discusses
the network requirements and solutions for a sound localisation application. The
quality of the acquired TDOA data is assessed in Section 4.8. Finally the Chapter is
concluded in Section 4.9.

33

4.1 Related Work

In order to use Android as a platform that collects accurate data, the OS requires
Real-Time (RT) specifications. There has been recent interest in exploring the ad-
dition of RT features to Android [25–30]. In [31] the authors present RTDroid, a
variant of Android that provides predictability to Android applications. They re-
place the standard Dalvik Virtual Machine with a RT Virtual Java Machine and,
for hard real-time behaviour, replace the Linux kernel with a certified RT Operating
System (RTOS) such as RTEMS [32]. They show that just replacing these elements
is insufficient to run an Android application with RT guarantees. After redesigning
Android’s core constructs and system services, they were able to provide tight latency
bounds to RT applications. In [33] the same authors extend on their previous work
and measure it against JPapaBench, a RT Java benchmark. In this work they exam-
ine the Android’s sensor architecture in detail and show why it is not suitable for use
in a RT context. They then introduce a re-design of the sensor architecture and show
that the re-designed sensing architecture can provide predictable performance. Their
work also shows the amount of effort that is needed to transform Android into a plat-
form with RT specifications. No modifications were made to the Android architecture
for the application described in this thesis.

4.2 Android Architecture

Android is run on devices from many different manufactures. Therefore the OS has
to be universal. In order to achieve this universality the Android architecture is
abstracted in to several layers, see Figure 4-1. High level applications can easily
implement many classes from the Android framework without having to deal with
low level systems, such as device drivers etc. The downside of this abstraction, as will
be discussed in later sections, is the amount of overhead between an user application
in the top layer and low-level systems, such as the audio hardware. Android is not a
Real-Time OS which makes it challenging to use for a sound localisation application.

4.3 Time Synchronisation

In order to obtain the location of devices and sound-events, each participating device
must record a time stamp as soon as it detects a distinct sound-event in the envi-
ronment. In order to minimize errors in the time stamps, it is mandatory that the
system clocks between the devices are synchronized. An error of 10 ms in the time
stamp relates to a spatial error of 3.40 m, an accurate time synchronisation smaller
than 1 ms is therefore desirable.

In this thesis two methods for time synchronisation between nodes in a network
have been considered; using GPS time information and synchronisation through Net-
work Time Protocol (NTP). Both methods are discussed in sections 4.3.1 and 4.3.2
respectively.

34

Figure 4-1: Android stack. Source: https://source.android.com/source/index.

html

4.3.1 Global Positioning Service

All devices in the experimental network are equipped with a GPS chip. The GPS
architecture that is used in the Android OS contains the following components:

GPS Chip The physical Radio Frequency Receiver that communicates directly with
GPS Satellites

GPS Driver GPS Driver System Software that uses Low level Application Program-
ming Interface (API)s to Communicate with the GPS chip

GL Engine The main component in the overall GPS architecture. The GL engine
uses configuration parameters combined with stored data in memory and initial
location data from cell towers to instruct the GPS driver

Android Framework Location and GPS satellite data is communicated to the An-
droid Framework using the GL engine.

User Applications User applications can implement the Android Location Service
classes to use GPS data

When a GPS radio is connected to multiple satellites the device can acquire very
accurate time synchronisation with the satellites. This accurate time ρ is commu-
nicated through so called NMEA messages and has a resolution of nano seconds.
NMEA-0183 is a protocol that was designed for communication between marine elec-
tronics, including GPS devices.

35

https://source.android.com/source/index.html
https://source.android.com/source/index.html

NMEA messages are communicated to the Android framework from the GPS chip
through the GPS Driver and GL Engine. This communication overhead introduces an
offset between the time inside the NMEA message and the time the NMEA message
is received in the Android Framework. This offset also varies and introduces jitter
in the offset. The user application, that handles the received NMEA message in a
callback, also suffers from latency. The user application handles the callback after a
small delay, as Android is not a real-time OS.

The Android framework provides a time-stamp λ along with the received NMEA
message. This time-stamp is the device’s system time at the moment the Android
framework received the NMEA message from the GL Engine.

The experimental application calculates the offset between the provided time-
stamp in the callback and the GPS-time. This offset is the parsed time from the
NMEA message minus the time-stamp that is provide in the callback.

The offset θ between the system clock and GPS-time ρ is denoted as:

θ = ρ− λ (4.1)

4.3.2 Network Time Protocol

NTP is a networking protocol for clock synchronisation between computer systems
over packet-switched, variable-latency data networks.

To synchronize a client’s clock with a remote server, the client must compute the
round-trip delay time and the offset [34]. The round-trip delay δ is denoted as :

δ = (t4 − t1)− (t3 − t2) (4.2)

Where t1 denotes the client’s timestamp of the request-packet transmission, t2
denotes the server’s timestamp of the request-packet reception, t3 denotes the server’s
timestamp of the response-packet transmission and t4 denotes the client’s timestamp
of the response-packet reception. See Figure 4-2.

Figure 4-2: NTP time scheme. Source: [34]

Thus, t4 − t1 is the elapsed time on the client side between the emission of the
request packet and the reception of the response packet and t3 − t2 is the time the
server waited before sending the answer.

The offset between the system clock and NTP server clock θ is denoted as:

36

θ =
(t2 − t1) + (t3 − t4)

2
(4.3)

4.3.3 Measuring Clock Offsets

For both methods the offset θ is updated every second and stored as a global variable.
For each detected sound-event ej, the respective arrival time tij is corrected with offset
θ. The recorded time for sound-event j at device i is thus denoted as:

tij = ej − θ (4.4)

Measurement Set-Up

The results presented in this Section have been obtained by recording 500 NTP- and
GPS offsets for fifteen Nexus 7 devices with an update rate of 1 Hz. The devices
were placed outdoors with good line of sight to satellites (no obstructions in the form
of buildings or trees). A local stand alone Wi-Fi network was utilised and the results
were stored in a SQL database on a laptop. This laptop (Windows 8.1, Core-i7) also
acted as the NTP time server.

Results

The averaged standard deviation σ for 15 devices is shown in Table 4.1

method σ

GPS 8.32
NTP 27.16

Table 4.1: Mean standard deviation σ of the respective recorded offsets. The value
for the NTP offsets has been obtained from a set of NTP offsets that was filtered
from severe outliers.

Figure 4-3 shows a subset of 40 recorded NTP clock offsets from a single device.
The Figure shows that the calculated offsets vary quite a bit and contain outliers.

The GPS clock offsets do not contain sever outliers but seem to have a sawtooth
like waveform behaviour over longer periods, see Figure 4-4. It was made sure that
the Android devices did not update their system clock during the offset recordings.
It is unclear why the GPS offset value jumps with an interval of approximately five
minutes. The experiment discussed in Section 4.8.1 raises the suspicion that the jumps
do not occur at the same moment in time, this can cause worst case synchronisation
errors between the devices of approximately 40 ms. This results in a worst case error
of 14 m. This jump is either caused by the system clock or the GPS clock. Since
the 5 minute interval is not seen in the NTP method, the jump must be caused by
the clock of the GPS chip. Further investigation is required to see if this behaviour
is device dependent, and how it can be optimised.

37

160 170 180 190 200
−450

−350

−250

−150

−50

50

sample number

c
lo

c
k
 o

ff
s
e
t

θ
 (

m
s
)

clock offset

moving average

moving median

Figure 4-3: NTP clock offset, moving mean and median filtered signals. window-size
= 5 samples

The behaviour described above was found after the outdoor localisation experi-
ment was preformed. Prior to the experiment only a small period of the GPS offsets
was measured, which had a low standard deviation. Thus it was the preferred method
and implemented during the experiment. The sawtooth behaviour is visible in later
data validation experiments, as is discussed in Section 4.8.1. The CLASS Algorithm
proposed in this thesis does however deal with this offset. This means that changing
to a better time synchronisation method, the results can only improve.

It is important that the clock offset is stable and therefore the offsets need to
be filtered. Figure 4-5 shows the standard deviation for the filtered clock offsets for
both NTP and GPS time synchronisation. The sawtooth behaviour is not visible by
looking at the standard deviation. Increasing the window size stabilizes the offset
values, but a window that is too large will introduce error when the system clock
drifts. A standard deviation of 2 ms is acceptable and thus implementing NTP
synchronisation with a moving median filter and a window size of 200 would be a
good choice in future experiments.

For GPS synchronisation it is important that there is a good GPS signal available.
Since the experiments, discussed later in this thesis, took place outdoors this is not a
problem. For indoor applications it is best to use NTP time synchronisation with a
median moving average, or some other form of outlier detection.

38

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

sample number

G
P

S
 o

ff
s
e
t
(m

s
)

Figure 4-4: GPS offsets. Filtered with moving average. window-size = 5 samples.
sample rate = 1Hz

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

window size

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

m
s
)

GPS moving mean

GPS moving median

NTP moving median

Figure 4-5: Standard deviation of clock offset, varying the window size for GPS and
NTP

39

4.4 Android Audio Input Pipeline

Most Android devices contain at least one microphone which can be used to record
audio. Each manufacturer implements its individual audio hardware components. In
general it is not possible for an end user to optimize anything in the analog circuitry
of Android devices. Android suffers from input latency which introduce errors in the
sound detection time stamps. This Section describes the challenges encountered in
Android that one encounters when developing high demand audio applications.

4.4.1 Input Latency

Recording a sound signal on a device includes the following steps: 1. the microphone
picks up an audio signal from the environment 2. the recorded audio signal is processed
by the Analog to Digital Converter (ADC) 3. the result of the ADC is stored in a
buffer 4. when the buffer is full, the application processes the buffer whilst the ADC
writes to a secondary buffer.

When playing a signal on the speaker of the device, similar steps occur in reverse
order. The time it takes for an audio signal to travel from the microphone to the
user application is called input latency. The time it takes for an audio signal to travel
from the user application to the speaker is called output latency. The sum of these
latencies is called round-trip latency.

Android needs to be universal and therefore high level APIs are used to support
hundreds of thousands of different applications. Due to the overhead that occurs
between the user application and the audio hardware, significant audio latencies are
introduced. This latency is not constant and varies over time, this so called jitter
causes unpredictable and unacceptable errors in ubiquitous applications that require
accurate temporal information in relation to audio information.

Related Work

In the past many have investigated acoustic latency in operating systems, especially
for personal computers [35–37]. Dannenberg et al. measured latency in various
operating systems and found significant fractions of events that were delayed by tens
of milliseconds. Under Windows 98 Dannenberg et al. found an increased audio
latency for higher CPU loads [36]. For mobile devices, Mauerer et al. [25] describe
an early overview on how to adapt Android 3.1 to a more real-time environment and
demonstrate a latency measurement on a Motorla Xoom tablet.

Predicting Input Latency

In recent work, that was written during the preliminary research for this thesis, we
tried to find a correlation between the system state of a device and it’s input latency.
When this correlation exists, it might be possible to predict and correct for the round-
trip latency. In the resulting paper [38], we propose a framework that can quantify,
predict and correct latencies in indeterministic devices. Through measurements on

40

multiple types of devices we found that Android devices suffer from input latency
which can vary from approximately 50 ms to 150 ms, with a worst case jitter of
300 ms [38]. Except for a correlation between the device’s price and the round-trip
latency, it was not possible to find a high correlation between the state of the device
and the audio latency, thus it is currently not possible to correct for audio latencies
in smartphones. The proposed app that was developed during the research was not
optimal at the time, this can be a reason for not finding the desired correlation.
The application is currently being optimised so that a correlation might be found in
future research. The tool that we developed can be used to gain an insight in audio
latency of a device running Android OS and will be useful during the development of
applications that are susceptible to audio latency.

Causes of Audio Latency

The first cause of latency is the analog circuitry of the device. According to Google
engineers this does not always contribute to audio latency significantly [39].

Android is built on the Linux kernel which also contributes to the input latency.
In [40] Rostedt describes how to find latencies in the Linux kernel with his latency
tracer application ”Ftrace”. Rostedt works for Red Hat and maintains the stable
Linux kernel releases of the real-time patch. He describes four different basic events
that can cause latency within the Linux kernel:

1. Interrupts disabled - keeping interrupts from calling their handlers when a device
triggers an interrupt to the CPU.

2. Pre-emption disabled - preventing a process that just woke up from running.

3. Scheduling latency - the time it takes a process to schedule in.

4. Interrupt inversion - the time that an interrupt handler is performing a task
that is lower in priority than the task that it pre-empted.

According to Google the major surface-level contributors to audio latency in An-
droid are the following [39]:

• Application

• Total number of buffers in pipeline

• Size of each buffer, in frames

• Additional latency after the app processor, such as from a Digital Signal Pro-
cessor e.g. the FFT discussed in Section 4.4.3

Audio buffers are usually increased or decreased to overcome buffer under- and
overruns. In Google’s experience, the most common causes of under- and overruns
include:

41

• the Linux CFS (Completely Fair Scheduler)

• high-priority threads with SCHED FIFO scheduling

• priority inversion

• long scheduling latency

• long-running interrupt handlers

• long interrupt disable time

• power management

• security kernels

These contributors are arbitrary and are difficult to optimize on devices which run
many different applications. Since a functional application should be able to work
on any device, optimizing the experimental application for these contributors has not
been taken into account.

It is hard to overcome the input-latency found in the Android OS and the resulting
errors in the timestamps will have to be dealt with in the CLASS Algorithm, as
discussed in Chapter 3.

4.4.2 OPEN-SL

In order to process the input data without overhead found in the Java environment,
such as the memory garbage collector [41], the overhead-critical parts of the applica-
tion have been developed in the Native Development Kit (NDK). The NDK is a tool
set that allows developers to implement parts of an app using native-code languages
such as C and C++ in the native layer, see Figure 4-1.

The Open Sound library (Open-SL) functions directly on top of the Android
Hardware Abstraction Layer (HAL) and can be implemented to achieve lower latency
audio [42].

4.4.3 Audio Input Filter

In order to distinguish sound-events from environmental noise, such as wind blowing
in the microphone, it is mandatory to filter the audio input. Since sound events can
be distinguished by their frequency in a certain range, it makes sense to filter the
input with a band-pass filter. Noise in other frequency ranges is filtered out and the
number of false triggers in sound-event detection is decreased.

Filtering can be done in the time domain, e.g. by use of a Finite Impulse Response
(FIR) filter, or in the frequency domain, by implementing a FFT. A FFT filter requires
more calculation steps than a FIR filter but is more flexible in the configuration. A
FIR filter requires a recalculation of all the coefficients when changing the cut-off
frequencies. Transforming the input signal to the frequency domain opens up the
ability to detect audio-events by their frequency signature. For these reasons an FFT
filter was implemented in the experimental application.

42

FFT Implementation

The Fast Fourier Transform efficiently computes the discrete Fourier Transform of
a signal and results in a set of magnitudes and phases ordered by their frequency.
When the input data is converged to the frequency domain we have

sf
2

magnitudes
and phases available in bins. Where sf is the FFT size.

The magnitude of each bin represents the power information for this frequency
band. The frequency resolution of the FFT fr (width of the bins) is calculated with
the following Equation:

fr =
fs
2
· 2

sf
Hz (4.5)

Where fs denotes the sampling rate and sf the FFT size.
The FFT introduces a delay in the input signal since it needs a number of audio

samples to preform the Fourier Transformation.
In the frequency domain we can cut away frequencies that we don’t want, thus

create a band-pass filter. The filtered sound signal is then transformed back to the
time domain.

4.4.4 Determining the Desired Frequency Range

The frequency band of the horn signal is wide. Figure 4-6 displays the frequency spec-
trum for environmental noise with no horn a recording where the air horn is sounded
and the difference between these two spectra. Both sound samples were recorded
with a sampling rate of 44.1 kHz. The spectra without the signal is calculated from
a 2 : 30 min recording that includes ambient sounds such as wind blowing in the
microphone, cars and talking people. In order to minimize the error introduced by
environmental noise, whilst maintaining a good signal to noise ratio, the band pass
filter in the experimental application is configured between 17 and 18 kHz.

4.5 Sound-Event Detection

In the experiment set-up the sound of an air horn is used as a distinguished sound-
event. A sound-event is detected when the energy signal in the frequency band of
the air horn exceeds the threshold value λ, see Section 4.5.1. A FFT solution has
been implemented in the current application and this can be utilised to improve the
matching Algorithm. Frequency patterns can be found in the environment and used
as a sound-event. An optimised matching Algorithm can later be investigated in order
to use arbitrary ambient sound as distinguished sound-events.

The input signal might contain noise in the form of high energy peaks. Therefore
the energy value of at least N audio samples needs to be averaged in order to filter out
noisy peaks. Averaging samples decreases the resolution of event detection, therefore
the value of N directly impacts the error in the time-stamp.

E.g. with a sample rate fs of 44.1 kHz and N set to 512 samples, this relates to
a resolution of approximately 12 ms. A device with a small microphone gain might

43

 0 2 4 6 8 10 12 14 16 18 20
−120

−100

−80

−60

−40

−20

0

Frequency (kHz)

L
e
v
e
l
(d

B
)

 0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

60

80

D
e
lt
a
 (

d
B

)

Horn signal

Environment noise

Delta

Figure 4-6: Frequency spectra

measure an average value that is still below the threshold whilst a device with a higher
gain will measure this frame to be higher than the threshold. This results in an error
of at least 12 ms in the measured time between the phones. Therefore the threshold
needs to be determined per device and the size of N should not be too large.

4.5.1 Deriving the Desired Threshold Value

Although all devices in the experimental set-up are of the same build, the gain in
the amplification of the input signal differs for each device. It is problematic to use
a static threshold because various models will measure different energy levels for the
same sound at an identical distance.

The threshold λ is determined by ’listening’ to ambient sound for G samples. This
allows for a threshold value that is proportional to the device’s microphone gain. See
Equation 4.6

λ =
SNR

G

G∑
g=1

xg (4.6)

Where x denotes the input signal and the SNR is a value between 0 and 1. In the
experimental set-up, G is set to a value so that the devices listen to the environment
for three seconds.

4.5.2 Averaging Input Samples

Averaging a smaller amount of samples (N) results in a higher resolution in the
threshold detection but increases CPU load.

44

When we want to average the input signal for three periods 3 · Tr of the expected
reference signal fr (the horn), we can derive N . See Equation 4.7.

N =

⌈
3Tr
Ts

⌉
(4.7)

Where Ts denotes the sampling period 1
fs

. E.g. when a distinguishable sound-event
has a base frequency of 17.5 kHz and the device uses a sampling rate of 44.1 kHz,
N is 8. The resolution for input sampling then becomes 181 µs, which is well within
the standard deviation of other errors introduced by the overall application.

4.6 Time-Stamping

In order to localise all the nodes and sound locations, each device records a time
stamp when it overhears a distinguished event in the environment. These times-
tamps are aggregated in a central location where the CLASS Algorithm is executed,
see Chapter 3. In order to acquire a time stamp the system clock, located in the
Linux kernel, must be accessed from the Android Application layer. This can addi-
tional offset in the time-stamp due to OS overhead. This has been accounted for by
developing time-critical parts of the application in the Android Native Layer, which
is less susceptible to overall OS overhead.

The FFT filter described in Section 4.4.3 introduces an additional delay, and
possibly jitter. Since we can only determine the sound-event’s presence in the input
signal after the FFT processing, there will be an additional error in the time-stamp.
The time stamps itself are therefore buffered. When an audio input buffer is received,
a time stamp is recorded and pushed into a First In First Out (FIFO) buffer. The
FFT buffer size is equal to the audio buffer size. When a sound-event is detected, the
time-stamp that corresponds to the FFT-output buffer is recovered from the FIFO
buffer and used as time of arrival dij.

4.7 Networking

In order to aggregate the time-stamps, and disperse other information between de-
vices, a network of some sort is required. In the experimental set-up a WiFi-router
is utilised to create a local infrastructure. In future works an ad-hoc network can be
implemented so that the approach does not need any other infrastructure than the
network of devices itself. In [43] Turkes et. al. present Cocoon, a data dissemina-
tion model for smartphones that requires no existing infrastructure. Cocoon is an
interesting application to combine with the work in this thesis.

4.7.1 Server

In future works a smart-phone can be implemented as a server node that collects the
time-stamps and executes the CLASS Algorithm. In the experimental application a

45

Laptop acts as the server node in the local network. An Apache server is deployed on
a laptop which is connected to a MySQL database. All devices connect to the server
through the Wi-Fi network and transmit data by the HTTP POST request method.
The server stores the data in the appropriate Table. The following data is stored in
the database:

1. sound-event identifier

2. device identifier (Media Access Control (MAC) address)

3. time-stamp of the sound-event

4. sound-event location

Items 1, 2, 3 are mandatory for the CLASS Algorithm. The sound-event location
(4) is recorded in order to link the measurements to the ground truth. Matlab connects
to the database and accesses the data through SQL scripting to generate TOA matrix
T .

4.8 Data Quality

The experimental application has been used to collect real measurement data in an
outdoor environment. This Section describes two different experiments that were
conducted to asses the quality of data acquisition by the Android Application.

Section 4.8.1 describes a measurement where all devices were located at an iden-
tical location in order to assess overall error in the measurements. Section 4.8.2
describes an experiment that estimated several distances by using a sound signal in
a straight line over multiple devices.

4.8.1 Placing all Devices at an Identical Location

In order to determine the total error that is introduced by audio latency and synchro-
nisation offsets, measurements were recorded with all devices located at an identical
location.

Measurement Set-Up

The devices were placed within in an area of 1 m2. 50 sound-events were generated
directly above this area with an air horn and the TOA values were recorded.

The TDOA between device i and k for sound-event j is calculated as follows:

tijk = tij − tkj (4.8)

Where tkj resembles the reference device. See Section 3.1.1 for a more detailed expla-
nation regarding the TDOA calculation. The TDOA values in this experiment were
calculated between all pair of devices.

46

Results when Synchronising with GPS

The moving average window size was set to 10 samples when recording the GPS
offsets presented in this Section. From the results derived in Section 4.3.3 we would
expect a time-synchronisation error with a worst case deviation of 7.5 ms . Over 50
measurements the standard deviation, when synchronising with GPS, varies between
6 ms and 13 ms, with a peak at 10 ms, see Figure 4-7. This standard deviation
includes the error that is introduced by audio latency and other overhead in the
Android OS.

5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

standard deviation σ (ms)

n
r

m
e
a
s
u
re

m
e
n
ts

Figure 4-7: Standard deviation σ of the TDOA values when synchronised by GPS

−40

−30

−20

−10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
measurement nr

T
D

O
A

 r
e
la

ti
v
e
 t
o
 n

o
d
e
 1

 (
m

s
)

Figure 4-8: Boxplot of TDOA values relative to device 1

The measurements shown in Figure 4-8 have been taken with an approximate
interval of roughly 30 sec. There seems to be a pattern in the offset relative to device 1.
Figure 4-9 shows the mean TDOA value relative to three different devices k. Although
the data in Figure 4-9 also contains the audio latency and other overhead errors, the
pattern seems correlated with the GPS synchronisation offset error as depicted in

47

Figure 4-4. The mean TDOA values are shifted in time when different devices are set
as reference device k, see Figure 4-9. Between all 16 devices that were used during
this measurement a worst-case time synchronisation offset of approximately 20 ms
can occur for some TDOA pairs. Errors in TDOA values are however filtered by the
CLASS Algorithm described in Section 3.5.

0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

measurement nr

T
D

O
A

 m
e

a
n

 (
m

s
)

mean TDOA relative to node 1

mean TDOA relative to node 3

mean TDOA relative to node 4

Figure 4-9: Mean TDOA values, relative to different nodes. An optimal TDOA should
be near 0, since all devices are practically at an identical location.

Results when Synchronising with NTP

In order to investigate if improvements could be made by using NTP synchronisa-
tion, measurements were made with optimal values for NTP synchronisation. Based
on the results found in Section 4.3.3, a moving median filter with a window size of
200 samples was implemented to obtain the results presented in this Section. We
would expect a time-synchronisation error with a worst case deviation of 2 ms. Over
50 measurements the standard deviation, when synchronising with NTP, varies be-
tween 6.7 ms and 11.3 ms, with a peak at 7.3 ms, see Figure 4-10. This standard
deviation includes the error that is introduced by audio latency and other overhead
in the Android OS. Figure 4-11 displays the box plot results for all TDOA values per
measurement. The median values are distributed around the zero value.

48

6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
0

2

4

6

8

10

12

standard deviation σ (ms)

n
r

m
e
a
s
u
re

m
e
n
ts

Figure 4-10: Standard deviation σ of the TDOA values when synchronized by NTP.

−40

−30

−20

−10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950
measurement nr

T
D

O
A

,
re

la
ti
v
e
 t
o
 n

o
d
e
 1

 (
m

s
)

Figure 4-11: Boxplot of TDOA values relative to device 1

49

Comparison

In order to investigate the possibility of improvements, this Section compares NTP
synchronisation to the implemented GPS method. The GPS method used a moving
average with a windows size of 10 samples, whilst the NTP method used a moving
median with a window size of 200 samples.

When comparing the standard deviation between the two synchronisation meth-
ods, some outliers are observed for the GPS method, see Figure 4-12. These outliers
are expected to originate from the worst case offset between the devices due to the
5 minute interval reset that occurs when synchronising with GPS, see Section 4.3.3.
Table 4.2 depicts the the mean standard deviation of TDOA values for NTP and GPS
respectively. The standard deviation for the GPS method is a bit higher than the
NTP method, this is due to the outliers found in the GPS method. The standard
deviation in the results for synchronisation through NTP is lower and the median
values shown in Figure 4-11 are more stable than the results for synchronisation with
GPS (Figure 4-8). NTP seems to have better accuracy than GPS, this is however
caused by the 5 minute update in GPS synchronisation that requires more investi-
gation. The results suggest that some improvement could be made by implementing
NTP synchronisation.

Method σ(ms)

GPS 9.48
NTP 8.79

Table 4.2: σ for GPS and NTP synchronisation

0 5 10 15 20 25 30 35 40 45 50
5

6

7

8

9

10

11

12

13

14
STD dev GPS vs NTP

measurement nr

σ
 (

m
s
)

σ GPS

σ NTP

Figure 4-12: Mean standard deviation σ of TDOA values per measurement for GPS
and NTP synchronisation method respectively

4.8.2 Distance Measurement

In order to validate the estimation of distances based on TDOA measurements a dis-
tance experiment was preformed. Several distances were estimated by using a sound

50

signal in a straight line over multiple devices and recording the TDOA differences
between groups of devices at different locations. The experiment is preformed for
both GPS and NTP synchronisation methods to investigate the differences.

Measurement Set-Up

The measurement was preformed outdoors in a windy environment. The sound-events
were generated with an air horn. The devices were placed on tripods at an height
of approximately 1 m. All devices were grouped in rows and placed as close to each
other as possible in each row. The shape of the constellation is shown in Figure
4-13. 50 measurements were taken on 4 devices for each distance, thus a total of 200
samples were recorded per distance

−0.2 0 0.2 0.4 0.6 0.8
−8

−4

0

4

8

12

16

20

X Position (m)

Y
 P

o
s
it
io

n
 (

m
)

 S1 S2 S3 S4

 S5 S6 S7 S8

 S9 S10 S11 S12

 S13 S14 S15 S16

 E1

device constellation

sound location

Figure 4-13: 2D overview of the measurement set-up

51

Results when Synchronising with GPS

Box plots of the measured distances are presented in Figure 4-14a. The median values
are close to the ground truth distance. Some outliers are found for the measured
distances that are further away from the sound source. Distances are perceived as
outliers if they are larger than q3 + w · (q3 − q1) or smaller than q1 − w · (q3 − q1),
where q1 and q3 are the 25 th and 75 th percentiles, respectively and w = 2.

During this measurement the first 8 m of the set-up was protected from wind
by bushes, whilst the remaining 8 m was in pretty strong winds. This might have
caused a few more outliers in the rear of the measurement set-up due to errors in the
calibration phase. The threshold for the devices in the back might have been higher
than devices in the front, which requires a higher volume that is obtained later in
time due to onset time in the sound signal.

Table 4.3 shows the respective results that were obtained from the measurement
when synchronised by GPS. The mean values are more accurate than the median
values. The results show that the measured distances have a normal distribution
around the ground truth.

ground truth distance 4 m 4 m 8 m 12 m 16 m

min -7.49 -6.47 -6.47 -5.44 6.13
mean 4.15 4.53 7.21 11.74 15.89
max 16.33 15.65 46.28 59.55 58.87
0.25 quantile 0.68 1.02 3.06 8.34 11.06
median 3.57 4.08 6.64 10.89 14.97
0.75 quantile 7.83 7.15 10.89 14.63 18.38

Table 4.3: Box plot variables of measured distances for synchronisation by GPS

Results when Synchronising with NTP

Box plots of the measured distances are presented in Figure 4-14b. Distances are
perceived as outliers if they are larger than q3 +w · (q3 − q1) or smaller than q1 −w ·
(q3− q1), where q1 and q3 are the 25 th and 75 th percentiles, respectively and w = 2.

Table 4.4 shows the respective results that were obtained from the measurement
when synchronised by NTP. The mean values are more accurate than the median
values. The results show that the measured distances have a normal distribution
around the ground truth. For almost all distances the TDOA values are larger than
the ground truth.

Comparison

Figure 4-14 shows the measured distance results for both synchronisation methods.
The estimations with NTP synchronisation have a lower standard deviation than
GPS, this is as expected based on the results found in Section 4.8.1.

52

ground truth distance 4 m 4 m 8 m 12 m 16 m

min -2.72 -2.72 0.34 5.10 8.51
mean 4.51 3.86 8.48 12.34 16.84
max 10.89 11.57 15.65 17.70 24.16
0.25 quantile 2.04 2.04 4.76 9.53 13.95
median 5.10 3.06 8.68 13.27 17.01
0.75 quantile 6.47 4.08 11.57 14.97 19.74

Table 4.4: Box plot variables of measured distances for synchronisation by NTP

Table 4.5 shows the error in the estimated distance for both methods respectively.
The error is the difference between the mean estimated value and the ground truth.
The error in metres, for the mean measured distances, do not differ much. The
mean difference is 9 cm. During the acquirement of the data-set, that was used to
obtain the final solution set in this thesis, GPS synchronisation was used. According
to the results presented in this Section, some improvement can be expected in the
localisation results by changing the time synchronisation method. Less TDOA values
at identical locations are likely to be filtered out, which could improve the overall
accuracy. It must be noted that solving the problem with the 5 minute update
period, discussed in Section 4.8.1, could improve the GPS synchronisation method,
which implies that a new comparison would have to be made.

4 m 4 m 8 m 12 m 16 m mean

error GPS (m) 0.15 0.53 0.79 0.26 0.11 0.37
error NTP (m) 0.51 0.14 0.48 0.34 0.84 0.46

Table 4.5: Mean error for GPS and NTP synchronisation

53

4m 4m 8m 12m 16m
−10

0

10

20

30

40

50

60

ground truth distance

m
e

a
s
u

re
d

 d
is

ta
n

c
e

 (
m

)

(a) Synchronisation by GPS

4m 4m 8m 12m 16m
−10

0

10

20

30

40

50

60

ground truth distance

m
e

a
s
u

re
d

 d
is

ta
n

c
e

 (
m

)

(b) Synchronisation by NTP

Figure 4-14: Comparison of measured distances between GPS and NTP synchronisa-
tion methods, respectively

4.9 Conclusion

This Chapter described a technical analysis of the Android OS in relation with sound
localisation accuracy and discussed the acquisition of sound-event data in a network of
mobile devices. The following technical limitations of Android, ordered from largest
to smallest contributor to inaccuracies, have been identified and discussed:

1. Audio input latency

The biggest contributors for inaccuracies in TDOA measurements are audio
input latency and poor time synchronisation. The audio input latency differs
per device and can have worst case jitters of 300 ms. It is hard to overcome the
input-latency found in the Android OS and the resulting error in TDOA values
will have to be dealt with in the CLASS Algorithm, as discussed in Chapter 3.

2. Poor time synchronisation

Time synchronisation would be considered to be the second largest contributor
to TDOA measurement inaccuracies. The standard deviation in system clock
offsets can be reduced to 2 ms by implementing a moving mean- or median filter
with a windows size of 200 samples. An internal clock update with a 5 min
interval can introduce a worst case offset of 40 ms in GPS synchronisation.
In order to find the exact cause of this clock-update, further investigation is
required. The difference in distance measurement results between GPS and
NTP time synchronisation is not very big. Improving the time synchronisation
method will reduce the number of outliers in TDOA measurements.

3. Difference in microphone gain per device

54

The difference in microphone gain can cause a device to detect a sound-event
earlier or later than other devices, which will cause an offset in the respective
TDOA measurement for those devices. In the experimental application this is
accounted for by using a variable threshold that is depended on the microphone
gain of each respective device and utilising sound-events with short onset times.
Other techniques, such as cross correlation of sound-events in the frequency
spectrum will probably not suffer from this problem and can be investigated in
future work.

4. Delays in recording time-stamps

In order to acquire a time stamp the system clock, located in the Linux kernel,
must be accessed from the Android Application layer. This can additional
offset in the time-stamp due to OS overhead. This has been accounted for by
developing time-critical parts of the application in the Android Native Layer,
which is less susceptible to overall OS overhead.

5. Implementing a DSP like FFT

A FFT filter adds a little offset in the time-stamp, but this can be accounted
for by buffering the time-stamps and should not contribute significantly to the
error in TDOA measurements.

6. Noise in the form of peaks in the microphone signal

Noisy peaks that occur at the input of the device can trigger false sound-event
detections. This is accounted for by averaging input values whilst making sure
the detection resolution remains accurate enough.

All devices in a Cooperative Network detect an identical sound-event by measuring
the energy level in a preset frequency band. When the energy exceeds some threshold
λ, a sound-event is detected. In the experiment set-up the sound of an air horn is used
as a distinguished sound-event. A sound-event is detected when the energy signal in
the frequency band of the air horn exceeds the threshold value λ, see Section 4.5.1.
A FFT solution has been implemented in the current application and this can be
utilised to improve the matching Algorithm. Frequency patterns can be found in the
environment and used as a sound-event. An optimised matching Algorithm can later
be investigated in order to use arbitrary ambient sound as distinguished sound-events.

The minimum information that needs to be shared among devices in a Cooperative
Network for the CLASS Algorithm to work are: (i) a sound-event identifier, (ii) a
device identifier, (iii) the time-stamp of the sound-event arrival time.

When measuring TDOA values for multiple distances in a straight line, a mean
error of 37 cm can be obtained. This error includes all contributors to inaccuracies
that have been listed above.

Now that the accuracy of the Application and related TDOA data set is known
Chapter 5 will assess the performance and behaviour of the CLASS Algorithm.

55

56

Chapter 5

Experimental Validation

This Chapter presents the localisation results that have been obtained by executing
the CLASS Algorithm described in Chapter 3. The CLASS Algorithm was executed
ten times. Twenty sound-events were generated at locations around the device con-
stellation. At each location four sound-events were generated. Sixteen devices were
placed in a 12 m× 12 m grid with a perpendicular inter-device distance of 4 m .

A mean RMSE of 2.4 m with a standard deviation of 0.21 m is achieved. The
mean RMSE of the estimated directions is 76.24 ◦ with a standard deviation of 1.28 ◦.
A solution set for the relative positions of sixteen devices is plotted in Figure 5-1.
The RMSE for this particular solution set is 2.08 m. Figure 5-1 displays a top-down
2D overview of the ground truth for device locations S. The estimated locations for
each device are represented as blue dots. The localisation errors are indicated by red
lines which represent the euclidean distance.

−4 0 4 8 12 16
−16

−12

−8

−4

0

4

X Position (m)

Y
 P

o
s
it
io

n
 (

m
)

S1 S2 S3 S4

S5 S6 S7 S8

S9 S10 S11 S12

S13 S14 S15 S16

ground truth

estimated location

error

Figure 5-1: Localisation results. The RMSE is 2.08 m

57

The solution that is returned by the CLASS Algorithm is rotated and translated
to align with the ground truth, see Section 2.6. Some devices are located further away
from their ground truth than others. The errors in TDOA, for all sound-events, are
represented in the relative positions shown in Figure 5-1. The devices with the larger
error will have the worst errors in their respective TDOA values. An error introduced
by one device will always influence the others, as TDOA values are always relative.

Most estimated locations tend to move to the centre of the constellation. This is a
result of the HBOS Algorithm that is applied to TDOA measurements at an identical
location, see Section 3.5. As discussed in Section 3.5 this Algorithm is not optimal
when only four TDOA measurements are available. When no TDOA inliers are found
between a pair of nodes, the respective value will be set to zero, see Algorithm 1. This
can result in a TDOA matrix that contains a lot of zero values, which represent a
solution where devices are placed on top of each other. The centroid of the solution
set equals that of the ground truth, thus when all devices are placed on top of each
other, the estimated position for the devices will be in the centre. This result indicates
that the TDOA filter requires more elaboration in future works. Instead of setting
the respective value to zero when the measurement is ambiguous, a value should be
calculated an given a low weight. The least squares problem described in Section 3.3
should be updated to a weighted least squares problem so that each filtered TDOA
value ∆ijk is weighted. TDOA measurements with few inliers will have little influence
on the results, whilst measurements with a lot of inliers will have a strong influence
on the results.

A solution set of the estimated directions towards the sound-event origins is shown
in Figure 5-2. Figure 5-2 displays a top-down 2D overview of the ground truth for
sound-event origins E. The device constellation is not shown in this Figure for sake
of clarity. Each direction αj is plotted as a vector that originates at the centre
of the device constellation and is oriented towards sound-event Ej. The angular
RMSE for this particular solution set is 75.56 ◦. The solution that is returned by
the CLASS Algorithm is rotated and translated to align with the ground truth, see
Section 2.6.

The results indicate that the directions are accurate enough to use as indicators
to sound-event origins. An absolute position or direction must be known in order to
find the true direction towards the origin of a sound-event or device. This can be
done by knowing the location of at least two devices and/or sound-event locations.
The exact location of the sound-event can be triangulated with the TDOA data after
the device locations have been estimated. This requires an additional step in the
CLASS Algorithm.

58

−40 −32 −24 −16 −8 0 8 16 24 32 40 48 56
−56

−48

−40

−32

−24

−16

−8

0

8

16

24

32

40

X Position (m)

Y
 P

o
s
it
io

n
 (

m
)

E1 E2 E3 E4

E5

E6

E7

E8

E9

E10

E11E12E13E14

E15

E16

E17

E18

E19

E20

α
1

α
2

α
3

α
4

α
5

α
6

α
7

α
8

α
9

α
10

α
11

α
12

α
13

α
14

α
15

α
16

α
17

α
18

α
19

α
20

Figure 5-2: Estimation of directions towards sound-event origins. The angular RMSE
is 75.56 ◦

59

60

Chapter 6

Conclusion

In the introduction of this thesis we asked the following question:

When utilising only environmental sound that originates from unknown positions,
what techniques for Cooperative Localisation can be used on Android devices that can
achieve accuracy within several metres, and what factors will influence this accuracy?

In order to answer this question the CLASS Algorithm was introduced. This
Algorithm produces a location set for all devices and a set of directions towards the
origins of the sound-events. The CLASS Algorithm is able to localise a set of devices
with a mean RMSE of 2.4 m with a standard deviation of 0.21 m. The mean RMSE
of the estimated directions is 76.24 ◦ with a standard deviation of 1.28 ◦. The main
factors that influence this accuracy are inherent in the technical limitations of utilising
a non RT OS, see sub-question 2 below.

The following sub-questions were derived from the main question:

1. What technique localises devices in a network without prior knowledge of the
device locations and sound signal origins?

The relation between the position of devices X, the directions towards the
origins of the sound-event locations α and the TDOA values was described.
TDOA values that are inliers are averaged for sound-events originating from an
identical location in a matrix ∆. The Levenberg-Marquardt solver is utilised
to find an optimal solution set for the all the positions and directions from ∆.
Finally a HBOS Algorithm is implemented to filter outliers from the localisation
results.

2. What are the technical limitations of utilising a non Real-Time OS like Android
for Cooperative Localisation that achieves accuracy within several metres?

The main limitation of the Android OS for it’s use in Cooperative Localisation
by sound is its input latency. Input latency in Android suffers from large varia-
tions that cannot be predicted and corrected for. The audio input latency differs
per device and can have worst case jitters of 300 ms. It is hard to overcome

61

the input latency and the resulting error in TDOA measurements will have to
be dealt with in the CLASS Algorithm, as discussed in Chapter 3.

The following technical limitations of Android, ordered from largest to smallest
contributors to TDOA inaccuracies, have been identified and discussed: (i) au-
dio input latency, (ii) poor time synchronisation, (iii) difference in microphone
gain per device, (iv) delays in recording time-stamps, (v) implementing a DSP
like FFT, (vi) noise in the form of peaks in the microphone signal.

3. What are the consequences of inaccurate TDOA measurements for Cooperative
Localisation and how can they be minimised to achieve accuracy within several
metres?

Inaccurate TDOA measurements can cause the solver to find localisation solu-
tions that have very large errors. The CLASS Algorithm deals with inaccurate
measurement data by finding and averaging TDOA values, and localisation re-
sults, that are inliers. Improving time synchronisation accuracy will reduce the
number of outliers in TDOA measurements. When measuring TDOA values for
multiple distances in a straight line, a mean error of 37 cm can be obtained.

4. What techniques can be used to simultaneously detect an identical sound signal
on all devices in a Cooperative Network?

All devices in a Cooperative Network detect an identical sound-event by mea-
suring the energy level in a preset frequency band. When the energy exceeds
some threshold λ, a sound-event is detected. Further research is required to
elaborate on this question, see Section 6.1.

5. What type of sound signals can be used for Cooperative Localisation?

The experimental application utilised the sound of an air horn as a distinguished
sound-event. The implemented threshold matching algorithm requires sound
signals that have a short onset time and a good SNR. A FFT solution has been
implemented in the current application and this can be utilised to improve
the matching Algorithm. Frequency patterns can be found in the environment
and used as a sound-event. An optimised matching Algorithm can later be
investigated in order to use arbitrary ambient sound as distinguished sound-
events.

6. What techniques can be used to share information in a Cooperative Network
without using existing infrastructure?

The experimental application described in this thesis utilised a local Wi-Fi
network to route TDOA measurement data to a server. In future works an ad-
hoc network can be implemented so that the approach does not need any other
infrastructure than the network of devices itself. In [43] Turkes et. al. present
Cocoon, a data dissemination model for smartphones that requires no existing
infrastructure. Cocoon is an interesting application to combine with the work
in this thesis.

62

7. What kind of information do devices need to share within the network for Co-
operative Localisation by sound?

The minimum data that need to be shared for the CLASS Algorithm to work
are: (i) a sound-event identifier, (ii) device identifier, (iii) time-stamp of the
sound-event.

The steps described in Section 6.1 gear towards a pervasive application that allows
a network of devices to localise themselves, and the origins of sound in the environ-
ment, without the use of any existing infrastructure. The fact that this application
runs on Android devices, available and used extensively around the world, will allow
the application to be used in various contexts.

6.1 Future Work

Improvements can be made in the Android Application to improve the accuracy of
data acquisition. The five minute interval of the system clock update found in GPS
synchronisation requires more investigation.

An alternative outlier detection method for TDOA values at identical locations
should be investigated. Instead of setting the respective value to zero when the
measurement is ambiguous, a value should be calculated an given a low weight. The
least squares problem described in Section 3.3 should be updated to a weighted least
squares problem.

Outlier removal can be improved in future work by expanding the HBOS Algo-
rithm with an Algorithm similar to the one described in [9]. This requires more
steps in the CLASS Algorithm but will improve the localisation accuracy. Currently
only the angles toward the sound-event origins are estimated, this can be elaborated
to pinpoint the exact location of the sound-event. When the CLASS Algorithm is
elaborated it should be compared to other methods.

It would be interesting to confirm the minimum required distance between the
sound-events and the device constellation, for the FFA to hold. This can be done by
conducting an experiment where the radius of the circle, along which the sound-event
locations are distributed, is decreased incrementally.

The Android application and server configuration are close to a working demo
set-up. The work can be expanded so that a live demo application can be developed.
The demo can utilise a personal computer to collect the TOA data and preform
the CLASS Algorithm. The next step would be to implement the server side on a
smartphone. It is interesting to investigate the integration of Google’s Ceres solver
[44] in the Android application.

The matching Algorithm described in Section 4.5 can be elaborated in future
works. A FFT solution has been implemented in the current application and this can
be utilised to improve the matching Algorithm. Frequency patterns can be found in
the environment and used as a sound-event. An interesting question for future work
then becomes: What techniques can extract multiple sound-events from longer repet-

63

itive sound so that they can be used for Cooperative Localisation, and how accurately
can these events be distinguished from each other?

An ad-hoc network can be implemented so that the approach does not need any
other infrastructure than the network of devices itself. In [43] Turkes et. al. present
Cocoon, a data dissemination application for smartphones that requires no existing
infrastructure. Cocoon is an interesting application to combine with Cooperative
Localisation. An example for a research question would be: How to utilise an ad-hoc
network in Cooperative Localisation by Sound?

64

Bibliography

[1] Reza Zekavat and R Michael Buehrer. Handbook of position location: Theory,
practice and advances, volume 27. John Wiley & Sons, 2011.

[2] Amitangshu Pal. Localization Algorithms in Wireless Sensor Networks: Current
Approaches and Future Challenges. Network Protocols and Algorithms, 2(1):45–
73, 2010.

[3] DoD. Global Positioning System Standard Positioning Service. (September):1 –
160, 2008.

[4] Henk Wymeersch, Jaime Lien, and Moe Z. Win. Cooperative localization in
wireless networks. Proceedings of the IEEE, 97(2):427–450, 2009.

[5] R. Biswas and S. Thrun. A passive approach to sensor network localization. 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), 2, 2004.

[6] Sebastian Thrun. Affine Structure From Sound. Conference on Neural Informa-
tion Processing Systems, 18:1353–1360, 2005.

[7] Johannes Wendeberg, Thomas Janson, and Christian Schindelhauer. Self-
Localization based on ambient signals. Theoretical Computer Science, 453:98–
109, 2012.

[8] Johannes Wendeberg, Fabian Höflinger, Christian Schindelhauer, and Leonhard
Reindl. Calibration-free TDOA self-localisation. Journal of Location Based Ser-
vices, 7(January 2015):121–144, 2013.

[9] Simon Burgess, Yubin Kuang, and Kalle Å ström. TOA sensor network self-
calibration for receiver and transmitter spaces with difference in dimension. Sig-
nal Processing, 107:33–42, 2014.

[10] Guoqiang Mao, Bar Fidan, and Brian D.O. Anderson. Wireless sensor network
localization techniques. Computer Networks, 51:2529–2553, 2007.

[11] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Webster. The
Anatomy of a Context-Aware Application. 1, 2001.

65

[12] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy,
András Nádas, Gábor Pap, János Sallai, and Ken Frampton. Sensor network-
based countersniper system. pages 1–12, 2004.

[13] Yi Shang, Wenjun Zeng, Dominic K. Ho, Dan Wang, Qia Wang, Yue Wang,
Tiancheng Zhuang, Aleksandre Lobzhanidze, and Liyang Rui. Nest: Networked
smartphones for target localization. 2012 IEEE Consumer Communications and
Networking Conference, CCNC’2012, pages 732–736, 2012.

[14] Chunyi Peng, Guobin Shen, and Yongguang Zhang. BeepBeep: A High-Accuracy
Acoustic-Based System for Ranging and Localization Using COTS Devices. ACM
Transactions on Embedded Computing Systems, 11(1):1–29, 2012.

[15] Fabian Hoflinger, Joachim Hoppe, Rui Zhang, Alexander Ens, Leonhard Reindl,
Johannes Wendeberg, and Christian Schindelhauer. Acoustic indoor-localization
system for smart phones. In 2014 IEEE 11th International Multi-Conference on
Systems, Signals and Devices, SSD 2014, 2014.

[16] Vikas C. Raykar, Igor V. Kozintsev, and Rainer Lienhart. Position calibration
of microphones and loudspeakers in distributed computing platforms. IEEE
Transactions on Speech and Audio Processing, 13(1):70–83, 2005.

[17] Marius H Hennecke and Gernot a Fink. TOWARDS ACOUSTIC SELF-
LOCALIZATION OF AD HOC SMARTPHONE ARRAYS Intelligent Systems
Group , Robotics Research Institute , TU Dortmund University , Germany.
Speech Communication, pages 127–132, 2011.

[18] Y Kuang, E Ask, S Burgess, and K Astrom. Understanding toa and tdoa net-
work calibration using far field approximation as initial estimate. ICPRAM 2012
- Proceedings of the 1st International Conference on Pattern Recognition Appli-
cations and Methods, 2:590–596, 2012.

[19] K S Arun, T S Huang, and S D Blostein. Least-squares fitting of two 3-d point
sets. IEEE transactions on pattern analysis and machine intelligence, 9(5):698–
700, 1987.

[20] Jorge J More. The Levenberg-Marquardt algorithm: Implementation and theory.
Lecture Notes in Mathematics, 630(x):105–116, 1978.

[21] Thomas F. Coleman and Yuying Li. An Interior Trust Region Approach for
Nonlinear Minimization Subject to Bounds, 1996.

[22] Simon Burgess, Yubin Kuang, Johannes Wendeberg, Kalle Å ström, and Chris-
tian Schindelhauer. Minimal solvers for unsynchronized TDOA sensor net-
work calibration. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8243
LNCS:95–110, 2013.

66

[23] David Freedman and Persi Diaconis. On the histogram as a density estima-
tor:L 2 theory. Zeitschrift fr Wahrscheinlichkeitstheorie und Verwandte Gebiete,
57(4):453–476, 1981.

[24] Doug Olenick. Apple iOS And Google Android Smartphone Market Share Flatten-
ing: IDC, 2015. http://www.forbes.com/sites/dougolenick/2015/05/27/

apple-ios-and-google-android-smartphone-market-share-flattening-idc/

2/ [Accessed: Aug, 2015].

[25] Wolfgang Mauerer, Gernot Hillier, Jan Sawallisch, Stefan Hönick, and Simon
Oberthür. Real-Time Android: Deterministic Ease of use. Proceedings of Em-
bedded World Conference, pages 1–7, 2012.

[26] Igor Kalkov, Dominik Franke, John F Schommer, and Stefan Kowalewski. A real-
time extension to the android platform. In Proceedings of the 10th International
Workshop on Java Technologies for Real-time and Embedded Systems, pages 105–
114. ACM, 2012.

[27] Igor Kalkov, Alexandru Gurghian, and Stefan Kowalewski. Predictable broad-
casting of parallel intents in real-time android. In Proceedings of the 12th Inter-
national Workshop on Java Technologies for Real-time and Embedded Systems,
page 57. ACM, 2014.

[28] Mathias Obster, Igor Kalkov, and Stefan Kowalewski. Development and execu-
tion of plc programs on real-time capable mobile devices.

[29] Ashraf Armoush, Dominik Franke, Igor Kalkov, and Stefan Kowalewski. An
approach for using mobile devices in industrial safety-critical embedded systems.
Mobile Computing, Applications, and Services, pages 294–297, 2014.

[30] Yuan Cangzhou, Gao Chen, Dong Jibing, and Sun Wei. An optimizing scheme for
wireless video transmission on android platform. In Transportation, Mechanical,
and Electrical Engineering (TMEE), 2011 International Conference on, pages
970–973, Dec 2011.

[31] Yin Yan, Shaun Cosgrove, Varun Anand, Amit Kulkarni, Sree Harsha Konduri,
Steven Y Ko, and Lukasz Ziarek. Real-time android with rtdroid. In Proceedings
of the 12th annual international conference on Mobile systems, applications, and
services, pages 273–286. ACM, 2014.

[32] OAR Corporation. RTEMS Real Time Operating System (RTOS), 2014. http:

//www.rtems.org/ [Accessed: Mar, 2015].

[33] Yin Yand, Shaun Cosgroved, Ethan Blanton, Steven Y Kod, and Lukasz Ziarekd.
Real-time sensing on android. 2014.

[34] David L. Mills. Modelling and Analysis, 2005.

67

http://www.forbes.com/sites/dougolenick/2015/05/27/apple-ios-and-google-android-smartphone-market-share-flattening-idc/2/
http://www.forbes.com/sites/dougolenick/2015/05/27/apple-ios-and-google-android-smartphone-market-share-flattening-idc/2/
http://www.forbes.com/sites/dougolenick/2015/05/27/apple-ios-and-google-android-smartphone-market-share-flattening-idc/2/
http://www.rtems.org/
http://www.rtems.org/

[35] Matthew Wright, Ryan J Cassidy, and Michael F Zbyszy. Audio and Gesture
Latency Measurements on Linux and OSX Introduction and Prior Work. Pro-
ceedings of the ICMC, pages 423–429, 2004.

[36] Eli Brandt and Roger Dannenberg. Low-Latency Music Software Using Off-
The-Shelf Operating Systems. Proceedings of the International Computer Music
Conference 1998, pages 137–141, 1998.

[37] Adrian Freed, Amar Chaudhary, and Brian Davila. Operating systems latency
measurement and analysis for sound synthesis and processing applications.

[38] Viet-duc Le, Jacob Kamminga, Hans Scholten, and P J M Havinga. Measuring
and Predicting Sensing Latency in Indeterministic Devices. 2015.

[39] Google Inc. Contributors to Audio Latency, 2015. https://source.android.

com/devices/audio/latency_contrib.html [Accessed: Mar, 2015].

[40] Steven Rostedt. Finding Origins of Latencies Using Ftrace, 2009.

[41] Google Inc. Performance Tips, 2015. http://developer.android.com/

training/articles/perf-tips.html [Accessed: Mar, 2015].

[42] Khronos Group. The Standard for Embedded Audio Acceleration, 2015. https:

//www.khronos.org/opensles/ [Accessed: Mar, 2015].

[43] Okan Turkes, Hans Scholten, and Paul J.M. Havinga. Blessed with opportunis-
tic beacons: A lightweight data dissemination model for smart mobile ad-hoc
networks. In Proceedings of the 10th ACM MobiCom Workshop on Challenged
Networks, CHANTS ’15, pages 25–30, New York, NY, USA, 2015. ACM.

[44] Sameer Agarwal, Keir Mierle, and Others. Ceres Solver, 2015. http://

ceres-solver.org/ [Accessed: Aug, 2015].

68

https://source.android.com/devices/audio/latency_contrib.html
https://source.android.com/devices/audio/latency_contrib.html
http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html
https://www.khronos.org/opensles/
https://www.khronos.org/opensles/
http://ceres-solver.org/
http://ceres-solver.org/

Glossary

ADC Analog to Digital Converter. 40

API Application Programming Interface. 35

CLASS Cooperative Localisation on Android with ambient Sound Sources. 10, 11,
15, 17–19, 21–23, 31, 33, 38, 42, 45, 46, 48, 54, 55, 57, 58, 61–63

DSP Digital Signal Processor. 4, 33, 55, 62

FFA Far Field Approximation. 14, 18, 19, 63

FFT Fast Fourier Transformation. 4, 33, 41–43, 45, 55, 62, 63

FIFO First In First Out. 45

FIR Finite Impulse Response. 42

GPS Global Positioning System. 9, 19, 34–39, 47, 50–54, 63

HAL Hardware Abstraction Layer. 42

HBOS Histogram Based Outlier Score. 23, 27, 29, 31, 32, 58, 61, 63

HPET High Precision Event Timer. 14

HTTP Hypertext Transfer Protocol. 18, 46

MAC Media Access Control. 46

MLE Maximum Likelihood Estimation. 14

NDK Native Development Kit. 42

NTP Network Time Protocol. 34, 36–39, 48–54

OS Operating System. 4, 10, 11, 15, 17, 18, 31, 33–36, 41, 42, 45, 47, 48, 54, 55, 61

RANSAC Random Sample Consensus. 14, 27

69

RMSE Root Mean Square Error. 15, 19, 22, 57–59, 61

RT Real-Time. 34, 61

SNR Signal to Noise Ratio. 18, 20, 21, 44, 62

SQL Structured Query Language. 21, 37, 46

TDOA Time Difference Of Arrival. 10, 11, 13, 14, 17–19, 23–28, 31, 33, 46–55, 58,
61–63

TOA Time Of Arrival. 9, 10, 12, 15, 21, 24, 27, 28, 31, 46, 63

WSN Wireless Sensor Network. 12

70

	Introduction
	Goal
	Research Questions
	Challenges
	Related Work
	Target Localisation Utilising Anchor Devices With Known Positions
	Cooperative Relative Localisation Utilising Only Sound Signals

	Thesis Layout

	Methodology and Approach
	General Approach
	Assumptions and Requirements
	Materials and Equipment
	Measurement Set-Up
	Measurement Scheme
	Dataset and Localisation Results
	Conclusion

	Localisation Algorithm
	Problem Setting
	Time Difference of Arrival Matrix

	Optimizing for Both Device and Sound-Event Location
	Optimizing for Device Location Under the Far Field Approximation
	Solver
	Averaging TDOA Values for Events at Identical Locations
	Outlier Detection in the Results
	Histogram Based Outlier Detection

	Conclusion

	Technical Analysis and Data Acquisition
	Related Work
	Android Architecture
	Time Synchronisation
	Global Positioning Service
	Network Time Protocol
	Measuring Clock Offsets

	Android Audio Input Pipeline
	Input Latency
	OPEN-SL
	Audio Input Filter
	Determining the Desired Frequency Range

	Sound-Event Detection
	Deriving the Desired Threshold Value
	Averaging Input Samples

	Time-Stamping
	Networking
	Server

	Data Quality
	Placing all Devices at an Identical Location
	Distance Measurement

	Conclusion

	Experimental Validation
	Conclusion
	Future Work

	Glossary

