A Large Range Multi-Axis Capacitive Force/Torque Sensor Realized in a Single SOI Wafer

D. Alveringh, R.A. Brookhuis, R.J. Wiegerink, G.J.M. Krijnen, M.J. de Boer and P.E. Veltink
Transducer Science and Technology Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract—A MEMS-based silicon capacitive force/torque sensor is designed and realized to be used for biomechanical applications and robotics. The sensor is able to measure the forces in three directions and two torques using four parallel capacitor plates and four comb-structures. Novel spring and lever structures are designed to separate the different force components and minimize crosstalk. The fabrication process is based on deep reactive ion etching on both sides of a single silicon-on-insulator wafer and uses only two masks making it very suitable for mass production. The sensor has a force range of 2 N in shear and normal direction and a torque range of more than 6 N mm. It has a high sensitivity of 38 fF N$^{-1}$ and 550 fF N$^{-1}$ in shear and normal direction respectively. A calibration matrix is derived from the sensor's measured characteristics.

I. INTRODUCTION

MINIATURIZED multi-axis force/torque sensors are widely used in medical applications, tactile sensing and robotics. Many prostheses, for example, require safe and comfortable interaction with people who underwent amputation of a part of a limb. Bad fitting between the socket of the prosthesis and the residual limb may cause pain and even damage to the underlying blood vessels [1], [2]. Measuring the shear forces and normal forces between the socket and the residual limb is possible with multiple small force sensors. The prosthesis can use this information to adjust the shape of the socket, making the load distribution as comfortable and healthy as possible.

Other applications are in the field of characterization of the human body. For example, power measurements of the human hand are important for rehabilitation purposes or the optimization of the endurance of athletes [3]. These power measurements can be done with force/torque sensors, accelerometers and gyroscopes at each joint integrated in a glove (figure 1).

Fig. 1. Power measurements of the human hand using force sensors, accelerometers and gyroscopes. The power P in one element is equal to $F \cdot \dot{v} + T \cdot \dot{\omega}$.

Force sensors are also very interesting for robotics. Humanoid robots [4] or robotic hands [5] have to interact with the environment. Force sensors on top of the fingers and toes help the robot to measure load distributions on the hands and feet. Even the difference between rough and flat surfaces may be sensed by the robot.

For the three mentioned applications, a few specific requirements are applicable:

- the sensor should measure multiple (preferably six) degrees of freedom;
- the sensor is small, preferably less than 1 cm2 with a thickness of less than 1 mm;
- the sensor should be able to handle human forces, i.e. at least a few newtons.

Commercially available non-MEMS load cells support high force ranges, but are often too large to integrate in the applications mentioned above. There are MEMS-based force and torque sensors available in literature, but many lack the support for measuring torques [6], [7] or forces [8]. Besides, many sensors only support forces in the milli newton or micro newton range [9], [10], [11]. The fabrication process of most MEMS-based sensors is still in an experimental stage [6], [7], [11], [12], [13], they use non-trivial polymer technologies or crucial wafer bonding steps in the process. This makes the existing force sensors even less attractive, since above specified applications need tens of these expensive sensors per device.

However, a few force/torque sensors with piezoresistive readout satisfy most of the requirements. But sensors with capacitive readout have a better temperature performance, lower drift and higher sensitivity [14]. We present a miniature easy to fabricate multi-axis capacitive force/torque sensor with a large range. The sensor is initially developed for quantitative measurement of the interaction forces and torques between human fingers and the environment as a cheaper alternative for the sensor of Brookhuis et al. [13] But given its large force range and small dimensions, the sensor can also be used for other biomechanical applications or robotics.

II. DESIGN

The sensor consists of a suspended core which is fabricated in the handle layer of an SOI wafer. The core is supported by v-shaped silicon springs. An applied load to the suspended core will result in a displacement. In-plane displacement caused by a shear force is measured by comb-structures
present in the device layer and results in a differential change in gap between the comb-fingers (figure 2).

![Figure 2](image_url)

(a) In rest position.
(b) With load in x-direction.

Fig. 2. Principle of operation for shear forces.

A normal force results in an out-of-plane displacement, which is measured by parallel plate electrodes (figure 3(b)). By differential measurement of two opposite electrodes (figure 3(c)), the applied torque is determined.

![Figure 3](image_url)

(a) In rest position.
(b) With load in z-direction.
(c) With torque around x-axis.

Fig. 3. Principle of operation for normal forces and torques.

A. Mechanics of the suspended core

Capacitive force/torque sensors are based on measuring a displacement. A system of springs converts the force to a displacement. Ideal springs obey Hooke’s law.

\[F = k \cdot u, \]

\[T = c \cdot \phi, \]

with \(F \) the force, \(k \) the stiffness and \(u \) the displacement, \(T \) the torque, \(c \) the rotational stiffness and \(\phi \) the angle. The system of springs is dimensioned for forces in the first place, therefore, it is necessary to know the stiffness in each direction.

The proposed force/torque sensor uses the point symmetric v-shaped spring system shown in figure 4.

![Figure 4](image_url)

Fig. 4. A six degrees of freedom stage using folded sheet springs. The combination of three folded sheet springs is called a spring triplet.

The stiffness of the stage is equal for all shear directions [15]. The stage is initially only compliant for in-plane translations. By reducing the thickness of the sheets compared to the length and width of the sheets, the stage can be made compliant for normal direction and torques too. To increase stiffness in all directions, multiple spring triplets are added as is illustrated in figure 5.

![Figure 5](image_url)

The stiffness in shear directions is equal to:

\[k_x = \frac{45N_{3s}E I_x}{2L^3}, \]

(3)

with \(k_x \) the stiffness in x-direction, \(N_{3s} \) the number of spring triplets, \(E \) Young’s modulus, \(I_x \) the second moment of area in x-direction and \(L \) the length of one spring part. The stiffness in normal direction is derived from the guided beam theory from [16]:

\[k_z = \frac{12(3N_{3s})E I_z}{(2L)^3}, \]

(4)

with \(k_z \) the stiffness in z-direction and \(I_z \) the second moment of area in z-direction. The second moments of area are as follows.

\[I_x = \frac{TW^3}{12}, \]

(5)

\[I_z = \frac{WT^3}{12}, \]

(6)

with \(T \) the thickness of the beam (equal to the thickness of the handle layer) and \(W \) the width of the beam.

The six degrees of freedom stage can be tuned for translations with parameters \(L, W \) and \(N_{3s} \) by substituting the equations of 5 in equations 3 and 4:

\[k_x \propto \frac{N_{3s} W^3}{L^3}, \]

(7)

\[k_z \propto \frac{N_{3s} L^3}{W}. \]

(8)

The stiffness in x-direction compared to z-direction can be optimized by choosing the right value for the flexure width \(W \), the stiffness in both directions can be tuned by the flexure part length \(L \). When stiff structures are desired, the flexure part length \(L \) may be very small compared to the flexure width \(W \). This decreases the validity of mentioned model. Adding multiple spring triplets \(N_{3s} \) allows the flexure part
length \(L \) to be larger. Table I shows the chosen dimensions for the proposed force/torque sensor.

TABLE I

DIMENSIONS OF THE SUSPENDED CORE.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of one spring part</td>
<td>(L)</td>
<td>480 (\mu)m</td>
</tr>
<tr>
<td>Width of the spring</td>
<td>(W)</td>
<td>108 (\mu)m</td>
</tr>
<tr>
<td>Thickness of the spring</td>
<td>(T)</td>
<td>400 (\mu)m</td>
</tr>
<tr>
<td>Number of spring triplets</td>
<td>(N_{3s})</td>
<td>5</td>
</tr>
<tr>
<td>Diameter of the core</td>
<td>(D_{\text{core}})</td>
<td>2.5 mm</td>
</tr>
<tr>
<td>Diameter of the sensor</td>
<td>(D_{\text{sensor}})</td>
<td>9.24 mm</td>
</tr>
<tr>
<td>Stiffness in shear direction</td>
<td>(k_x)</td>
<td>7.2 (\cdot) 10(^7) N m(^{-1})</td>
</tr>
<tr>
<td>Stiffness in normal direction</td>
<td>(k_z)</td>
<td>1.9 (\cdot) 10(^7) N m(^{-1})</td>
</tr>
</tbody>
</table>

B. Simulations of the suspended core

To verify the mathematical model and obtain an impression of the stress in the device, finite element method (FEM) simulations were done using COMSOL Multiphysics 4.3.0.151. The suspended core was drawn using computer aided design (CAD) software with the dimensions of table I. All structures have rounded corners (see figure 5) for two reasons:

- it reduces the maximum stress because the beams are thicker at places where the deformation would be originally higher;
- the etching process does not allow very sharp corners. By using round corners in the simulations, the simulations become more true to nature.

The simulations were done for a shear force of 10 N, a normal force of 10 N and a torque around a shear axis of 10 N mm. Table II shows the simulation results.

TABLE II

FEM SIMULATION RESULTS.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffness in shear direction</td>
<td>(k_x)</td>
<td>8.9 (\cdot) 10(^6) N m(^{-1})</td>
</tr>
<tr>
<td>Maximum stress for (F_x = 10) N</td>
<td>(\sigma_{\text{max},x})</td>
<td>8.5 GPa</td>
</tr>
<tr>
<td>Stiffness in normal direction</td>
<td>(k_z)</td>
<td>1.2 (\cdot) 10(^7) N m(^{-1})</td>
</tr>
<tr>
<td>Maximum stress for (F_z = 10) N</td>
<td>(\sigma_{\text{max},z})</td>
<td>4.0 GPa</td>
</tr>
<tr>
<td>Rotational stiffness around shear axes</td>
<td>(c_x)</td>
<td>41 N m rad(^{-1})</td>
</tr>
<tr>
<td>Maximum stress for (T_z = 10) N mm</td>
<td>(\sigma_{\text{max},\phi})</td>
<td>0.92 GPa</td>
</tr>
</tbody>
</table>

The found stiffnesses are slightly different than the model predicts. This may be because of the rounded corners. The found stresses for the simulated forces and torques are quite high for silicon; it can be concluded that the sensor’s maximum range for force and torque will be in the order of newtons and newton millimeters respectively.

C. Capacitive measurement

The sensor uses capacitive sensing structures. Figure 6 shows where the capacitors are located. There are large parallel electrode capacitors for normal force and torque measurements and comb-structures for shear force measurements. Both capacitor structures can be modeled as gap closing parallel plate capacitors [17]:

\[
C(u) = N_p \varepsilon \frac{A}{d_0 - u} \rightarrow C(F) = N_p \varepsilon \frac{kA}{kd_0 - F}, \quad (9)
\]

\[
\Delta C_x = C_{x,\text{rest}} \pm C_x \rightarrow \Delta C_x = C_{x,\pm} = \Delta C_x \pm \Delta C_x = C_{x,\pm} \pm C_{x,\mp}, \quad (10)
\]

\[
C(F) \approx \beta_x F_x + C_z(0), \quad \text{with } \beta_x = \frac{N_{p,\varepsilon}A_z}{d_{0,z}^2 k_x}, \quad (11)
\]

\[
C(F) \approx \beta_x F_x + C_z(0), \quad C(F) \approx \beta_x F_x + C_z(0), \quad \beta_x = \frac{N_{p,\varepsilon}A_z}{d_{0,z}^2 k_x}, \quad (12)
\]

With \(C \) the capacitance, \(N_p \) the number of parallel plates or finger pairs, \(\varepsilon \) the absolute permittivity (in this case equal to the dielectric constant \(\varepsilon_0 \)), \(A \) the overlapping area of one plate or finger pair, \(d_0 \) the distance between the plates or fingers in rest, \(u \) the displacement in the same direction as \(d_0 \), \(k \) the stiffness in the same direction as \(d_0 \) and \(F \) the force in the same direction as \(d_0 \).

Normal forces are measured non-differentially using the parallel plate capacitor structures. For small forces, the closing gap capacitor model can be linearized using the Maclaurin series:

\[
C_z(F_z) \approx \sum_{n=0}^{1} \frac{C_z^{(n)}(F_z)}{n!} F_z^n = N_{p,z} \varepsilon A_z \frac{F_z}{d_{0,z}^2 k_x} + C_z(0). \quad (10)
\]

All parameters can be put in factor \(\beta_z \):

\[
C_z(F_z) \approx \beta_z F_z + C_z(0), \quad \text{with } \beta_z = \frac{N_{p,z} \varepsilon A_z}{d_{0,z}^2 k_x}. \quad (11)
\]

\[
C(F) \approx \beta_x F_x + C_z(0), \quad \beta_x = \frac{N_{p,\varepsilon}A_x}{d_{0,x}^2 k_x}, \quad (12)
\]

\[
C(F) \approx \beta_x F_x + C_z(0), \quad \beta_x = \frac{N_{p,\varepsilon}A_x}{d_{0,x}^2 k_x}, \quad (14)
\]

The inverted \(\beta \)-factors are elements of calibration matrix \(K \), which maps the measured capacitances (corresponding to the defined capacitances in figure 6) to forces and torques.
The elements in calibration matrix \mathbf{K} will be found by measurements and will be reviewed in the discussion.

D. Comb-structures in the device layer

The comb-structures consist of combs mounted on a one degree of freedom stage which is supported by eight single flexures. Spring and lever structures are used to separate the different force components of the suspended core into comb-structure movements (figure 7). This transmission has (for small displacements) very high stiffness in x-direction and therefore transfers the full x-displacement from the core to the comb-structures. In y-direction, the stiffness of the transmission springs are more than 80 times lower than the springs of the comb-structures. In z-direction, the stiffness of the transmission springs are negligible compared to the the springs of the comb-structures making the comb-structures almost insensitive for y-displacements. In this way, crosstalk between the different force components is mechanically minimized.

\[
\begin{bmatrix}
 F_x \\
 F_y \\
 F_z \\
 T_x \\
 T_y \\
 T_z \\
\end{bmatrix} = \mathbf{K} \begin{bmatrix}
 \Delta C_{x,1} \\
 \Delta C_{x,2} \\
 \Delta C_{y,1} \\
 \Delta C_{y,2} \\
 \Delta C_{z,11} \\
 \Delta C_{z,12} \\
 \Delta C_{z,21} \\
 \Delta C_{z,22} \\
\end{bmatrix}, \quad \text{with} \quad \mathbf{K} \in \mathbb{R}^{6 \times 8} \quad (15)
\]

The asymmetric positioning (d_1/d_0-ratio in figure 11(b)) of the shuttle-fingers between the stator-fingers is optimized, for a smaller d_1/d_0-ratio allows more finger structures but increases the parasitic capacitance and a larger d_1/d_0-ratio decreases the parasitic capacitance but takes more space. The curve in figure 9 is derived from equation 9, its maximum is where:

\[
\frac{\partial}{\partial d_1} \left(\frac{1}{d_0} \frac{d_1}{d_1} + 2W_{finger} \left(\frac{1}{d_0} \frac{1}{d_1} \right) \right) = 0. \quad (16)
\]

The fingers have a width W_{finger} of 7µm. The minimum distance between the fingers is 7µm which is used for d_0. Choosing ~ 20µm for d_1 leads to maximum capacitance change. All parameters are summarized in table III.

![Fig. 8. Electrical design of the comb-structures.](image)

![Fig. 9. Optimization of the finger distances: choosing d_0 the maximum of the function will consequent in the highest capacitance.](image)

TABLE III

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of finger pairs</td>
<td>N_{pair}</td>
<td>149</td>
</tr>
<tr>
<td>Average overlapping area per finger pair</td>
<td>A_z</td>
<td>$1.2 \cdot 10^{-8}$ m²</td>
</tr>
<tr>
<td>Distance between fingers</td>
<td>d_0</td>
<td>7µm</td>
</tr>
<tr>
<td>Distance between finger pairs</td>
<td>d_1</td>
<td>20µm</td>
</tr>
<tr>
<td>Width of a finger</td>
<td>W_{finger}</td>
<td>7µm</td>
</tr>
<tr>
<td>Average length of a finger</td>
<td>L_{finger}</td>
<td>240µm</td>
</tr>
<tr>
<td>Thickness of a finger</td>
<td>T_{device}</td>
<td>50µm</td>
</tr>
</tbody>
</table>

E. Parallel plate structures in the device layer

The parallel plate structures consist of flat plates that form a capacitor with the handle layer. The surface area of the plates is such that the capacitance is in the same order as the
capacitance of the comb-structures. The plate is electrically connected to the bond pad with springs that are compliant in all directions. In figure 10, one of the normal sensing structures is shown.

![Figure 10](image)

Fig. 10. Capacitor plate (2) is directly coupled with the core (1). Wires (4) connect the capacitor plate to the bond pad (5) and have no effect on the mechanics due to there folds. There are bumps (3) to prevent snapping of the plates due to shear overloading.

All floating structures need to have perforations for the release etch, this will be described in the fabrication process. Therefore, one of the normal structure plates is a grid of silicon beams as is illustrated in figure 11. This influences the capacitor model from equation 9, since the overlapping surface area decreases. These effects are simulated using FEM. The capacitance of a grid with the dimensions of figure 11 and a solid plate turned out to be approximately 11% lower compared to the capacitance of two parallel plates. The fringing effects compensate for the holes in the plate.

![Figure 11](image)

Fig. 11. Parallel plate structure simulations. The capacitance of the situation with one perforated plate (a) performs 11% lower compared to the situation with two solid parallel plates (b).

All parameters of the parallel plate structures are summarized in table IV.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of one plate</td>
<td>A_z</td>
<td>9.4×10^{-7} m2</td>
</tr>
<tr>
<td>Perforation width and length</td>
<td>W_{hole}</td>
<td>14 µm</td>
</tr>
<tr>
<td>Grid beam width</td>
<td>W_{grid}</td>
<td>7 µm</td>
</tr>
</tbody>
</table>

Besides the parallel plate structures for measurements, there are several static parallel plate capacitor structures in the sensor for reference measurements. These capacitors are not able to move and can be used to compensate for temperature and humidity effects.

F. Prevention of stiction

To achieve high sensitivity, large capacitor structures are needed. But care must be taken when designing such large floating structures, as stiction may occur. All large floating structures (figure 8 and figure 10) can be modeled as doubly clamped beams since they are always supported at two ends, this is illustrated in figure 12.

![Figure 12](image)

Fig. 12. Paths in the structures that can be modeled as doubly clamped beams (a) or beams with a free end (b).

Following equation gives the maximum length for these structures [18].

$$L_{critical} = \frac{2 \sqrt{3ET_{device}g^2}}{\gamma_s} \approx 3000 \mu m,$$

with $L_{critical}$ the critical length, E Young’s modulus (of silicon), T the thickness of the beams (i.e. the thickness (50 µm) of the device layer), g the gap between the device layer and the handle layer (4 µm) and γ_s the adhesion energy (assumed to be 100 mJ m$^{-2}$). As a result of above equation, all doubly clamped structures are less than 3000 µm in length. For structures with a free end, $L_{critical}$ should be 2.9 times lower, hence, all structures that have a free end are always shorter than 1000 µm.

III. Fabrication

A 100 mm p-type SOI wafer with a handle layer of 400 µm, a device layer of 50 µm and a box layer of 4 µm is used for the device.

The fabrication process needs two masks: the mask for etching the handle layer and the mask for etching the device layer. The mask for the handle layer has relatively large structures. The rule of thumb of 1:10 [19] for aspect ratio is maintained, giving a minimum size for the trenches of 40 µm. The trenches are chosen slightly larger with 50 µm.

The device layer contains more complicated structures. Table V gives the design rules that are related to the embedded figure with a closeup of the most complicated structures.

Because all chips are circular, hexagon packing is used to optimize the use of the surface area of one wafer (figure 13).
There is a trench around the chip in both the handle layer and the device layer. There are small mounting points on both sides of the chip to fix the chips in the wafer. Releasing of the samples can be simply done by breaking them out. This technique does not need a dicing machine or other advanced methods and it allows arbitrary shapes for the chips. The trenches around the chips are the same as the smallest trenches on the chip (i.e. 7 µm for the device layer and 50 µm for the handle layer) to prevent damage to the oxide layer and possible leakage while etching.

A. Wet oxidation and lithography

Wet oxidation (figure 14(b)) was done at 1150 °C. After 14 hours, the wafers had an oxide layer of 1963 nm. The SOI wafers were coated with positive photoresist (Fujifilm OiR 907-17).

B. Oxide etching and resist stripping

Etching of oxide was done using reactive ion etching (RIE) with an Adixen AMS100. A standard Bosch process was used with a recipe based on an argon (Ar) and fluoroform (CHF₃) chemistry. Both sides of the wafer were etched for 6 min (figures 14(d) and 14(g)). Resist stripping was done in O₂-plasma using a Tepla 300E and nitric acid (HNO₃) (figures 14(e) and 14(h)).

C. Handle layer and device layer etching

The handle layer was etched using DRIE with an Adixen AMS100. Sulfur hexafluoride (SF₆) was used as etchant and fluorocarbon (C₄F₈) was used for the deposition of passivation layers. The handle layer etch underwent the process for 37 min (figure 14(i)). The device layer etch took 17 min (figure 14(j)). The fluorocarbon residues were removed using piranha cleaning and O₂-plasma.

D. Release etch

The chips were pushed out of the wafer. Particles arose from the broken mounting points and contaminated the chips. The pushed out chips underwent therefore ultrasonic cleaning. A wet etch with 50 % HF for 2 min is performed and etched.
through the box layer of the SOI wafer. To prevent capillary forces making the structures snap to each other, the final release etch was done using vapor HF and took 30 min (figure 14(k)).

Fig. 16. Photo of a fabricated force/torque sensor. The sensor has a diameter of 9.24 mm and a thickness of 0.45 mm.

E. Fabrication results

The under etching was checked by removing several anchors of the device layer with a piece of tape. The anchors were between 5 µm and 10 µm under etched, which is enough to release the structures and not too much to release the anchors, since all floating structures are at maximum 10 µm by 10 µm and all anchors are at least 100 µm by 100 µm. By breaking the chip, potential tapering was inspected with scanning electron microscopy (SEM). But this appeared to be negligible. figure 15 contains SEM images of the result.

F. Final assembly

A hole is drilled in a printed circuit board (PCB). The sensor is mounted with the handle layer on the PCB using glue that cures when exposed to UV light. The sensor is wire bonded and a stylus is mounted using epoxy glue on the top of the suspended core through the hole in the PCB (figure 17).

IV. Characterization

The force/torque sensor is characterized for five degrees of freedom, since there was no measurement setup realized for torques around normal axes (T_z).

Fig. 15. SEM images

(a) Overview of the device layer.
(b) Close-up of the parallel plate structures.
(c) Close-up of the v-shaped springs.
(d) Close-up of the comb-structures.

Fig. 17. Final assembly.
A. Method

The sensor’s force behavior is characterized by applying loads in shear and normal direction. An extra stylus is mounted on the back of the chip to make sure pure shear forces were applied. Torques around shear axes were measured by applying a load on the stylus at a defined distance from the sensor. The mechanical measurement setups for the three measurements are shown in figure 18.

Two function generators (Agilent 33220A) with sine waves of 50 kHz with 180° phase shift are used for the input signals. The output of the charge amplifier is connected to a lock-in amplifier (Stanford Research Systems SR830) which was directly synchronized with one of the function generators.

B. Results

Figure 20 shows the results for applied shear forces, normal forces and torques. Shear force measurements (figure 20(a)) show a very linear (>99%) differential change in capacitance with a sensitivity of 38 fF N\(^{-1}\). The values are corrected for offset. The linear model is corrected for positive and negative shear forces with a factor of 0.88 and 0.78 respectively.

Normal force measurements (figure 20(b)) show a high sensitivity of 550 fF N\(^{-1}\) in the linear region. The values are corrected for offset. The linear model is corrected for positive and negative shear forces with a factor of 0.88 and 0.78 respectively.

Differential capacitance measurements of the comb-structures with varying shear forces.

Capacitance measurements of the parallel plate structures with varying normal forces.

Differential capacitance measurements of the parallel plate capacitors with varying torque.

Fig. 18. Measurement setups for applying loads to the sensor: (a) clamped assembled sensor, (b) measuring normal force, (c) measuring shear force and (d) measuring torque.

Fig. 19. Electronic setup for differential measurements including two oscillators, a charge amplifier and a lock-in amplifier. Non-differential measurements are done using only one oscillator.

Measuring the (differential) change in capacitance is done using a custom built charge amplifier with a capacitor of 10 pF in the feedback loop. This makes the output of the charge amplifier as follows.

\[
 u_{out} = \frac{2\Delta C}{C_{fb}} u_{in} \tag{18}
\]

With \(u_{out}\) the output voltage of the charge amplifier, \(u_{in}\) the input voltage, \(\Delta C\) the differential change in capacitance and \(C_{fb}\) the feedback capacitance of the charge amplifier.
corrected for offset. A corrected model using the fourth order Maclaurin expansion from the design section is fit through the measured values. The model is corrected for the distance between the parallel plates, the overlapping area of the plates and the stiffness with factors 0.45, 0.46 and 0.45 respectively.

The mentioned correction factors are necessary for the compensation of non-ideal effects in the mechanics, electrostatics or fabrication process. The distance between the capacitor structures may be smaller or larger than expected due to the etching process for example.

In figure 20(c) torque measurements around a shear axis are shown. The fitted model is based on a differential version of the normal force model.

The mounted styli on top and bottom of the sensor were the first parts that broke in the measurement setup. Mechanical robustness tests without styli show that the sensor can be safely overloaded in normal direction with more than 15 N without causing damage to the sensor.

V. DISCUSSION

The fabrication process and calibration will be discussed.

A. Fabrication

The mounting points that have to break for releasing the chips are too strong. This causes the need for a large force to remove the chips from the wafer. Besides, the very thin etched ring in the device layer (7 μm) caused the chips to get stuck after breaking the mounting points.

Some chips broke because of this and became instantaneously useless, others were contaminated by particles and had to be cleaned in an ultrasonic bath. Most particles were removed in this way. Nevertheless, it is recommended to reduce the strength of the mounting points and increase the width of the etched rings around the chips.

B. Calibration

A slight crosstalk is observed when a shear force in orthogonal direction with respect to the measured direction is applied, caused by misalignment in the measurement setup (figure 20(a)). For this crosstalk is expected to be a result of the measurement setup, it is not included in the calibration matrix K. The error bars in figure 20(a) represent misalignments from -5° until 5°.

Actual crosstalk occurs in the comb-structures when a torque is applied around shear axes. The rotation of the suspended core leads to a translation of the comb-structures as is illustrated in figure 21.

The crosstalk component is measured and its results are plotted in figure 22.

It can be concluded that the crosstalk measurements for forces applied at a distance of 1 cm of the sensor is in the same order of magnitude as for shear forces. However, there can be compensated for the crosstalk component using torque measurements with the parallel plate structures. Calibration matrix K is a six by eight matrix consisting of the inverted elements β^{-1} and mentioned crosstalk components α^{-1}. Calibration matrix K is only valid for small forces and torques in the linear region. Expressions for the elements β^{-1} and β^{-1} were already given in equations 13 and 11.

$$K = \begin{bmatrix} \beta_x^{-1} & 0 & 0 & -\alpha_x^{-1} & \alpha_x^{-1} & -\alpha_x^{-1} & \alpha_x^{-1} \\
0 & 0 & \beta_y^{-1} & 0 & -\alpha_y^{-1} & \alpha_y^{-1} & -\alpha_y^{-1} & \alpha_y^{-1} \\
0 & 0 & 0 & \beta_z^{-1} & 0 & -\alpha_z^{-1} & \alpha_z^{-1} \\
0 & 0 & 0 & 0 & 0 & \beta_\phi^{-1} & -\beta_\phi^{-1} & \beta_\phi^{-1} \\
0 & 0 & 0 & 0 & \beta_\phi^{-1} & -\beta_\phi^{-1} & \beta_\phi^{-1} & -\beta_\phi^{-1} \\
N/A & N/A \end{bmatrix}$$ \hspace{1cm} (19)

Characterization has been done and the crosstalk components are defined. The elements of calibration matrix K can be calculated from the measurement results and are enumerated in figure VI.

TABLE VI

<table>
<thead>
<tr>
<th>Calibration Matrix Elements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_x^{-1}</td>
<td>$2.6 \cdot 10^{13}$</td>
</tr>
<tr>
<td>β_y^{-1}</td>
<td>$2.6 \cdot 10^{13}$</td>
</tr>
<tr>
<td>β_z^{-1}</td>
<td>$2.2 \cdot 10^{12}$</td>
</tr>
<tr>
<td>β_ϕ^{-1}</td>
<td>$5.3 \cdot 10^9$</td>
</tr>
<tr>
<td>α_x^{-1}</td>
<td>$1.7 \cdot 10^{12}$</td>
</tr>
<tr>
<td>α_y^{-1}</td>
<td>$1.7 \cdot 10^{12}$</td>
</tr>
<tr>
<td>α_z^{-1}</td>
<td>0</td>
</tr>
<tr>
<td>α_ϕ^{-1}</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE VII

<table>
<thead>
<tr>
<th>Summary of the Sensor Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>F_x</td>
</tr>
<tr>
<td>F_y</td>
</tr>
<tr>
<td>F_z</td>
</tr>
<tr>
<td>T_x</td>
</tr>
<tr>
<td>T_y</td>
</tr>
<tr>
<td>T_z</td>
</tr>
</tbody>
</table>

Fig. 21. Crosstalk in the comb-structures as consequence of an applied torque around a shear axis.

Fig. 22. Differential capacitance measurements of the comb-structures with varying torques.
A miniature large range five degrees of freedom force/torque sensor is designed, realized and characterized. The first measurements were presented. It has a minimum force range of 2 N in shear and normal direction and a torque range of more than 6 N mm. The sensor shows in shear and normal direction competing sensitivities of 38 fF N$^{-1}$ and 550 fF N$^{-1}$ respectively. The proposed sensor is therefore suitable for biomechanical and robotic applications. The fabrication takes only two masks, making it a cheap and relatively fast process. The fabrication is also expected to be very reproducible, making it an interesting process for mass production. The rotation around the normal axis can be measured by the sensor, but is not yet characterized. Future work will focus on further characterization of this sixth degree of freedom, mechanical compensation for the crosstalk component and increasing the range and sensitivity.

VI. CONCLUSION

REFERENCES

