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Abstract

In the domain of vehicular networking, it is desirable to be able to address
vehicles based on geographical position rather than network address. The
integration of geocasting (the dissemination of messages to all nodes within
a specific geographical region) into the existing addressing scheme of the
Internet has been a challenge. One solution to Internet-based geographical
addressing is eDNS, an extension to the DNS protocol. It adds support for
the querying of geographical locations as a supplement to logical domain
names. In this thesis, eDNS is extended with support for querying various
geographical shapes as well as nearest neighbor resolution, and a prototype
server implementation is developed based on PowerDNS that uses bounding
box propagation between servers for delegation.
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Chapter 1

Introduction

The concept of Intelligent Transportation Systems (ITS) is an emerging
area of research [26]. The goal of such systems is to use vehicular com-
munication to develop novel applications for increasing safety, traffic man-
agement, Internet access, or other valuable services. Aside from the op-
portunities for delivering many novel applications, a significant amount of
research has focused on I'TS because of the technological difficulties that are
involved. Mainly, vehicular networks have to deal with highly dynamic net-
work topologies of vehicles, their high speed, limited communication ranges,
and real-time constraints of potential applications. We can differentiate be-
tween two different types of communication in vehicular networks: the first
is Vehicle-to-Vehicle (V2V) communication, and the second is Vehicle-to-
Infrastructure (V2I). In the former type, data packets are exchanged be-
tween vehicles using vehicular communication technologies without involve-
ment of an infrastructure. The latter type extends the vehicular ad hoc
networks (VANETS) with a fixed infrastructure.

Vehicles in ITS will typically be equipped with localization technologies,
such as Global Positioning System (GPS) receivers. This allows vehicles
to be addressed based on their geographical positions rather than the net-
work address (i.e. targeting a certain area, not a certain vehicle), utilizing
domain-specific forwarding strategies [1]. Messages can be sent to any sin-
gle node within a target region (geoanycast), or to all nodes within a target
region (geocast). Geocasting in particular enables a large number of new
applications. Warning about dangerous road conditions, assisting in speed
management, and delivery of infotainment are examples of use cases that
geocasting can facilitate.

Geocasting requires a routing protocol that delivers messages to the in-
tended targets. It is a challenge to integrate geographically-scoped broad-
casting into the existing addressing scheme of the Internet, as Internet Pro-
tocol (IP) networking based does not support geographical routing. This
complicates VANET communication. Solutions to this problem have been



proposed, but as far as we are aware, all have shortcomings that are difficult
to overcome. For instance, GPS-based addressing and routing [21, 22] re-
quires a specialized infrastructure; use of a geographical IPv6 prefix format
[15] relies on a standardized allocation of IPv6 addresses; and GeoNet [8, 27]
has scalability limitations [11] on an Internet-wide scale.

One solution that was proposed because of these shortcomings is the
Extended DNS (eDNS) [10, 11]. It is based on the Internet Domain Name
System (DNS) protocol, and extends it to support geographical addressing.
While DNS already supports a way to store locations, the novelty of eDNS
is that the locations can be used as a primary key to return IP addresses
that are associated with geographical regions. The appeal of this method is
that it does not require specialized hardware or software, nor does it require
protocol modifications. Only modification of existing DNS implementations
is required, as described later in this document. Support for more efficient
indexing, as well as delegation was added at a later stage [48]. However,
opportunities for improvement remain. For example, it is currently only
possible to request entities that are within a circular geographic region.
Other shapes, such as polygons, could be used to more accurately retrieve
information about entities on elongated target areas, such as highways. We
can also consider use cases where one would be interested in entities close
to a certain point, rather than entities within a region. More possible im-
provements can be identified, and will be discussed further in this report.

1.1 Research questions

As mentioned, the concept of integrating geocasting into the existing in-
frastructure of the Internet is an important development in ITS research.
Because of the aforementioned shortcomings in several proposed solutions,
this thesis focuses on the eDNS protocol as a solution for the problem of ad-
dressing all entities within a geographical area. This allows us to formulate
our main research question.

e How can the functionality of eDNS be improved for use in vehicular
networks?

To answer this research question, sub research questions were composed
to be able to perform our research in a structured way. In addition, the
sub research questions address the potential use of eDNS in products by
Simacan.

e How can geographical areas with arbitrary shapes be addressed in
eDNS?

e Can eDNS return nearby results when no results are found in a queried
area?



e How can the implementation of eDNS in existing DNS name servers
be simplified?

e Can eDNS be used for dynamic objects, such as moving vehicles?
¢ How can we evaluate the performance of eDNS operations?
e What is the performance of eDNS operations?

o What are potential use cases for eDNS to be used in Simacan products
or services?

o Is the performance of eDNS adequate for a Simacan use case?

o What changes can be made to eDNS to facilitate widespread adoption?

1.2 Approach and Contributions

In this thesis, we have improved and evaluated the eDNS protocol in several
ways. This has resulted in the following contributions.

o We have designed and implemented a method for querying lines and
polygons, in addition to circles, as a way to address arbitrary areas.

e We have designed and implemented nearest neighbor resolution by
introducing a new DNS resource record containing a location’s distance
to a queried area.

o We have abstracted the implementation of eDNS by using PostGIS
for geographical calculations to simplify its integration in other DNS
name server software.

¢ We have designed and implemented the propagation of bounding boxes
to parent DNS name servers upon receiving location updates via the
Dynamic DNS (DynDNS) protocol.

o We have evaluated the performance of our eDNS implementation in
terms of throughput and latency for various input parameters.

e We have applied eDNS to a potential use case for Simacan and evalu-
ated its suitability in terms of performance.

e We have evaluated changes required for eDNS to gain large-scale adop-
tion.



1.3 Outline

This report is structured as follows. In Chapter 2, a background study is
performed on the concepts and technologies that are can be used to answer
our research questions. This includes VANETSs, the DNS protocol, as well
as the eDNS extension protocol.

Chapter 3 discusses the shortcomings that exist in the mentioned eDNS
protocol, and how we plan to solve these problems. In addition, possible use
cases for eDNS in Simacan will be identified. The design of our prototype
eDNS system is discussed in Chapter 4. Several technological challenges are
mentioned, as well as our solution to solve these challenges.

In Chapter 5, we evaluate the performance of our developed prototype
with various combinations of setups and input parameters. Finally, we use
our research in earlier chapters, and the results from our evaluation, to
answer our research questions in Chapter 6.



Chapter 2

Background

To answer our research questions, it is necessary to discuss the context of
the research first. We will look at VANETs and DNS, before exploring the
current state of eDNS.

2.1 Vehicular ad hoc networks

VANETSs are mobile networks that consist of vehicles. These vehicles are
supposed to have On-Board Units (OBUs) that allow them to communicate
with other vehicles in the network using wireless communication technolo-
gies. Messages can be sent between OBUs that are not directly in range
of each other over a multi-hop chain. Among other types of wireless radio
technologies, IEEE 802.11p [9] and Dedicated Short Range Communications
(DSRC) [23] have been created specifically for the purpose of vehicular net-
working. The former has emerged as a defacto standard in the I'TS context.
Cellular, or other network connectivity types may also be supported. Vehic-
ular networks have to deal with highly dynamic network topologies of vehi-
cles, their high speed, limited communication ranges, real-time constraints
of potential applications, and various other challenges [26].

We can differentiate between two types of communication in vehicu-
lar networks: V2V communication, and V2I communication. The latter
requires the integration of stationary infrastructure into VANETSs to cre-
ate hybrid VANETs. ITS are systems that use vehicular communication
to provide increased safety, traffic management, or other valuable services.
Vehicles in VANETSs will typically be equipped with localization technology.
This allows for applications that do not send messages to specific nodes in a
network, but rather to nodes based on geographical location. Dissemination
of messages to all nodes within a geographical area, known as geocasting,
allows for novel applications to be created. These will be categorized in
Section 2.1.1. However, as we will discuss in Section 2.1.4, introducing geo-
graphical addressing in an Internet-based network is an open issue.



2.1.1 Applications

Numerous novel applications can be conceived that utilize I'TS to achieve a
specific goal. Schoch et al. [40] give an overview of application categories for
vehicular ad hoc networks, compiled from multiple sources. We will briefly
discuss them here.

Active safety

Active safety applications are used to increase the safety of driving using
vehicular communication. This category is seen as the most important use
case. The applications can either warn or instruct the driver of a vehicle, or
instruct the vehicle directly to avoid or respond to accidents. Further sub-
categorization is possible based on the danger level. This can range from
warning about dangerous road features, such as an upcoming hairpin turn
(low danger), to preventing collisions, preparing a vehicle for an impend-
ing crash, and warning approaching vehicles when an incident has already
occurred (high danger).

Public service

A vehicular network may aid public service work, such as emergency re-
sponse. Notably, an emergency vehicle could announce its presence to ve-
hicles on the emergency vehicle’s planned route to give the other vehicles
enough time to give way. Similarly, traffic lights could be preempted to
allow an emergency vehicle to reach its destination faster.

Improved driving

Driving can be improved in terms of speed and simplicity. On a small
scale, improved driving applications could assist a driver in merging into
flowing traffic. On a large scale, drivers could be advised to change their
speed to prevent shockwave traffic jams. A vehicle could also receive traffic
light information, allowing it to calculate an optimal speed to reach the
traffic light when the signal is green. Another possible application is route
guidance, where a vehicle may be informed of delays or more optimal routes.

Mobile business and entertainment
Infotainment services can be provided to drivers. Examples of this include
Internet access, advertising, parking management, and toll road payment.

2.1.2 Networking categories

A VANET may be infrastructure-less or infrastructure-based. Infrastructure-
less networks allow for V2V communication by making use of ad hoc con-



nections between OBUs. A network based on a fixed infrastructure typically
makes use of Roadside Units (RSUs), in addition to the OBUs. RSUs are
usually connected to Back Offices (BOs) on the Internet. An RSU can
extend the range of a vehicular ad hoc network by acting as a forwarder.
It may also interact with OBUs without the need for Internet connectiv-
ity. For example, an RSU that is connected to a traffic light controller
could automatically preempt a traffic light when an emergency vehicle en-
ters its range. Aside from creating the opportunity for V2I communication,
infrastucture-based networks could also facilitate V2V communication over
longer distances. That is, if a vehicle attempts to deliver a message to a re-
gion that falls outside of the ad hoc network, RSUs can be used to forward
the message to an RSU in a different ad hoc network.

2.1.3 Forwarding strategies

Routing protocols in VANETS control the way entities exchange information.
This includes the establishment of a route, data forwarding decisions, and
maintaining the route or recovering from failure. Due to the dynaimc nature
of VANETS, there is a demand for sophisticated routing protocols. Routing
protocols can be divided into two categories: topology-based, and geographic
[34]. The Car 2 Car Communication Consortium (C2C-CC) Manifesto [1]
describes four types of forwarding strategies that can be used in vehicular
communication, as part of the aforementioned routing protocol categories.

Geographical unicast

Geographical unicast (geounicast) can be used to send data to a single,
specific destination node. This communication can be through a direct link
between the source node and the destination node, or through multiple
intermediate hops.

Topologically-scoped broadcast

Topologically-scoped broadcast can be used to send data to all nodes in the
scope of the vehicular ad hoc network. Because a naive approach would
cause data to propagate for a long time, this broadcast is limited in scope
by a maximum number of hops it is allowed to go through.

Geographically-scoped broadcast

Geographically-scoped broadcast (geobroadcast, or geocast) can be used to
send data to all nodes within a specified geographic target region. This
region is defined with a geometric shape, such as a circle or a polygon. The
source node that sends this message can be located inside of this target
region. If it is not, geounicast could be used to forward the message to



target region

Figure 2.1: Geocasting using an ad hoc network.

iarget region

Figure 2.2: Geocasting using a fixed infrastructure.

a node in the target region. An example of a geocast can be found in
Figure 2.1. The blue OBU represents the source node, and the green OBUs
are the nodes that fall within the target area. The two OBUs in between,
and the green OBU on the bottom lane, serve as message forwarders.

Given the same situation, we can see how this scenario would play out
in an infrastructure-based network in Figure 2.2. The source node sends
its message to the only RSU that it is in range of, RSU 1. Because RSU
1 does not overlap with the target region, the RSU forwards the message
to a back office. The back office determines that RSU 2 does overlap with
the target area, so it forwards the message to this RSU. Finally, RSU 2 can
disseminate the message to the OBUs in the target region.

Geographically-scoped anycast

Geographically-scoped anycast (geoanycast) can be used to send data to any
of the nodes within a specified geographic target region. In contrast to a
geobroadcast, nodes within the target region will not forward the message
to other nodes within the target region. This means that if we would use
geoanycast instead of a geocast in the example in Figure 2.1, the green OBU
in the bottom lane would not act as a forwarder to the green OBU in the
top lane.



2.1.4 Internet-based geocasting

Many geocasting protocols exist [29], but it is not is not desirable to create
a new, large infrastructure to realize this functionality. Rather, it would
be preferable to integrate geocasting into the existing infrastructure of the
Internet and its protocols. This would aid the development of ITS applica-
tions, as well as the trend of the Internet of Things (IoT) in general. To
facilitate this Internet-based communication network, the concept of a node
having a physical location has to be integrated into the logical addressing
scheme of the Internet. Several proposals have been made in the literature
to solve this problem. We will discuss some of these proposals.

GPS-based addressing and routing

Imielinski and Navas [21, 22] describe GPS-based addressing and routing
approaches. Three network components are identified in the geographic
routing method: the GeoHost, the GeoRouter and the GeoNode. A GeoHost
is software that runs on the client and is responsible for sending and receiving
geographical messages. GeoHosts can send messages by building a packet
and forwarding it to the next GeoRouter. A GeoRouter is an Internet router
that is aware of its own geographical service area, which is the aggregate
of nodes that are assigned to it in a hierarchical structure, with the leaf
nodes containing small service areas. GeoRouters also exchange the service
area information with other GeoRouters, which results in each one being
aware of the service area of every other GeoRouter. A geocast message that
arrives at a GeoRouter is checked for overlap with the other GeoRouters,
and the message is forwarded toward them. If the message overlaps with
a GeoRouter’s own service area, the message is forwarded to an attached
GeoNode. A GeoNode is responsible for distributing the message in the
target area. It also buffers messages that have a specified lifetime until the
lifetime expires.

The shortcoming of this solution is that a specialized infrastructure needs
to be created, because routers need to be aware of service areas.

Geographical IPv6 prefix format

In [15], a global geographic address allocation mechanism based on IPv6 is
defined. Compared to IPv4, IPv6 provides a much larger address space of
128 bits. This allows geographic locations to be encoded into the address
with high accuracy. The proposal divides the world into squares using a
48-bit field to encode a format prefix, section number, latitude and lon-
gitude, offering precision of approximately 6.4 meters at the equator. Bit
interleaving is used to support arbitrary granularity. For every bit that the
prefix is shorter, the square’s coverage area increase twofold. For instance,
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Figure 2.3: GeoNet architecture.

a 36-bit prefix can be used to represent a neighborhood, for an area size of
approximately 407 meters on a side at the equator.

The solution relies on the allocation of an IPv6 format prefix for this pur-
pose. Without this standardization, the format can not be implemented. In
addition, areas can only be represented as square, which may not necessarily
be a desired shape for a target area.

GeoNet project

The GeoNet project [8, 27] is a European initiative to create an architecture
that combines C2C-CC geonetworking [1] with IPv6 networking to enable
both infrastructure-based and infrastructure-less communication. The pro-
tocol stack for this architecture is displayed in Figure 2.3a. The application
layer runs on top of IPv6, and the IPv6 layer runs on top of C2CNet, which
plays the role of the link layer from the IP layer viewpoint. C2CNet runs
on top of IEEE 802.11p, but other wireless technologies could also be used.
Application data is encapsulated in headers from the different layers, as
shown in Figure 2.3b. The IPv6 header contains the destination IP address,
the C2CNet header contains the ID of the next hop, and the 802.11p header
contains the MAC address of the C2CNet neighbor.

A management layer exists to provide cross-layer functions. The C2CNet
layer enables geographic addressing and routing of packets, for which the
forwarding strategies discussed in Section 2.1.3 are used. IPv6 multicast is
extended to add support for the consideration of geographical areas as an
additional scope. GeoNet nodes (OBUs, RSUs) within a specific geographic
area (GeoNet domain) can be reached through a single IPv6 virtual link
called a IPv6 C2CNet link. Therefore, two OBUs within this area appear
to be neighbors to the IPv6 layer, even if they require packets being hopped
over multiple OBUs via the C2CNet layer. Beacon messages are used to
exchange location information between GeoNet nodes, and this information
is stored in a local location table.

In [12], congestion and security are listed as GeoNet issues. [11] also
mentions scalability issues as an open problem, as well as the fact that

10



geocast regions have to be predefined, rather than being able to be chosen
by the user.

Extended DNS

In the previously referenced [21, 22], a geographical addressing method based
on DNS is drafted as well. A new, specialized top-level domain (see Sec-
tion 2.2.1) is envisioned (for example, geo), with each lower level repre-
senting a state, county and finally a sequence of polygon coordinates. This
suggestion could be modified to include a country as well. In this case, a
query such as the following one could be created, with polygon being the
sequence of polygon coordinates:

polygon.University-of-Twente.Enschede.Overijssel.The-
Netherlands.geo

The address would be resolved into IP addresses that are present in the
covering geographical area. However, the solution was not discussed further,
and the geo top-level domain failed to gain approval [20].

In [10], an extension called eDNS! is proposed to instead use the exist-
ing domain hierarchy combined with a standard to associate geographical
locations with these domains. This will be discussed in more detail in Sec-
tion 2.3, but it is necessary to get an insight into the functionality of DNS
first.

2.2 Domain Name System

The DNS is a protocol for name resolution on the Internet [31]. Its most
frequently used function is to turn domain names into the IP addresses that
are used by devices as identification, as domain names tend to be easier
for humans to remember than TP addresses. DNS’s function can therefore
be compared to using a phone book to find phone numbers based on the
name of an individual or company. Aside from mapping IP addresses to
domain names, DNS can also be used for associating other information to
the domain names. This will be discussed in Section 2.2.2.

Before the introduction of a hierarchical name space, host names were
associated with IP addresses in a single file called HOSTS . TXT, maintained by
the Network Information Center (NIC). This file would then be sent to all
hosts using the FTP protocol. This method had several inherent problems.
The required network bandwidth would grow quadratically based on the
number of hosts, and the number of hosts was indeed increasing rapidly.
Organizations that wanted to administer local domain names would also

1eDNS is not to be confused with the equivalently abbreviated Enhanced Domain Name
Service [37], or the similarly named Extension mechanisms for DNS (EDNS(0)) protocol
[45, 5].
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Figure 2.4: Example of a domain name space.

have to wait for the NIC to update the master file before it was usable on
the Internet. DNS was proposed as an evolution of other ideas on managing
name spaces. It was designed to be hierarchical, to spread operational load,
and to delegate administration on name servers.

2.2.1 Domain name space

The domain name space is represented by a tree structure. At the top of
the tree is the root node, below this are the top-level domains (TLDs) [35],
followed by second-level domains (SLDs) and lower level domains. The two
main TLD types are ‘generic’ (gTLDs) and ‘country code’ (ccTLDs). Among
the more notable gTLDs are com, net and org, while ccTLDs like nl, de
and uk represent countries. TLDs are an example of a label, which every
node in the tree has. A fully qualified domain name of a node is the list
of labels in the tree path up to the root. The hierarchy in a domain name
can therefore be interpreted from right to left, as the most specific node is
located on the left side.

The domain name space below the root node is divided into sections
called zones, created to delegate administrative responsibility to different
organizations. A zone starts at a node in the tree, and extends downward
until subzones are defined. Therefore, a zone may contain any number of
domains and sub-domains (but at least one). The owner of a zone can
further delegate anything below the domain name they own.

Although the binary representation of a domain name separates labels
with an octet containing the length of the following label, the visual repre-
sentation separates the labels with the dot (‘.”) character. Because the root
node has an empty label, a full domain name ends with a dot to ‘separate’
the rest of the domain name from this zero-length label. The trailing dot
is omitted in most applications. However, when it is not, a domain name
ending with the root separator is treated as absolute, as opposed to being

12



owner TTL class type RDATA
sidn.nl. 86400 IN SOA (nsl.sidn.nl. hostmaster.sidn.nl.
1430295011 4h 1h 1000h 5m)

sidn.nl. 86400 IN A 213.136.31.216
sidn.nl. 86400 IN AAAA 2001:7b8:c05::80:1
sidn.nl. 86400 IN NS nsl.sidn.nl
sidn.nl. 86400 IN NS ns2.sidn.nl
sidn.nl. 86400 IN NS ns3.sidn.nl

sidn.nl. 86400 IN MX 5 kamx.sidn.nl.

Table 2.1: A subset of records in a zone file (based on http://sidn.nl/).

relative to a known origin. An example of a domain name space can be
found in Figure 2.4. For the dacs label, dacs.ewi.utwente.nl. would be
the fully qualified domain name.

The binary representation of the label may be up to 255 octets, which
includes an octet at the start that specifies the length, and a terminating
octet that represents the root label. Therefore, the maximum character
length of a domain name is 253. A label can be up to 63 octets in length.
The labels are allowed to contain the alphanumeric characters (A to Z, a to
z and 0 to 9), as well as the hyphen (‘-’) (although it should not start or
end with the hyphen). Operations involving the domain name are resolved
in a case-insensitive manner.

2.2.2 Resource records

Every zone contains a set of resource information in the form of resource
records (RRs). A resource record has the following properties:

owner The domain name this record applies to. An @ indicates the
current domain name.

TTL The time to live of the record, in seconds. This indicates the
time for which the record is cached. After this time has expired,
new requests will be performed upstream.

class The class of the record. Usually set to IN (Internet) for IP
routing, but may be set to CH (Chaos) or HS (Hesiod) as well.

type The identifier for the record that indicates what it should be
used for. Common examples will be discussed.

RDATA  The data for the record that describes the resource. The content
of this depends on the type (and sometimes class) set before.

13
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The resource records are stored in a domain name server’s zone file. An
example of the data present in such a zone file can be found in Table 2.1
containing five different resource record types. The parentheses in the SOA
record are used to group multi-line data. Many resource record types exist,
some of them defined in [32]. We will discuss a selection of the most common
types here:

A Address record (or host record) in the form of an IPv4 address.

AAAA Address record similar to the A record, but returns an IPv6
address.

CNAME Canonical name record to specify domain name aliases for other
domain names.

MX Mail exchanger record for specifying an Simple Mail Transfer
Protocol (SMTP) mail server that handles email messages. In-
cludes a numeric value to indicate priority when multiple MX
records are defined.

NS Name server record describing which servers contain DNS in-
formation for a domain. A domain will typically have at least
primary and secondary name server assignments.

SOA Start of a zone of authority that stores the authoritative in-
formation of a zone, such as the primary name server of the
domain, the hostmaster, a serial number, and values that de-
fine how often the data expires and needs to be refreshed.

TXT Text record for storing human-readable information. This record
is also occasionally used to store attributes that do not fit in
any other record types.

Particularly relevant for our research, is a less commonly used resource
record type:

LOC Location record to store a geographical location [6]. The record’s
RDATA is stored in the following location format:

dLat [mLat [sLat]] {°N'| S'} dLon [mLon [sLon]] {E'|"
W'} alt[m'] [sizel['m'] [hp[ ' m'] [vp[ m']1]]]

The square brackets (‘[’, ’]’) indicate optional fields, while the curved
brackets (‘{’, ‘}’) indicate a choice between the fields separated by a pipe
character (‘|’). The fields between apostrophes (‘**’, ‘') are to be used
as literals, the other fields are variable. The variables starting with d, m
and s refer to the latitude and longitude’s degrees, minutes and seconds
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respectively. alt refers to altitude, siz to diameter size, and hp and vp
to horizontal and vertical precision. These last four variables are specified
in meters (‘m’). The use of the location (LOC) record within eDNS will be
explained in Section 2.3.

2.2.3 Name servers

A name server is a server that holds information about a subset of the
domain name space and responds to queries made by other name servers
and resolvers. It stores the information that it has as resource records in
a zone file. The name servers of the root zone of the domain name space,
containing a list of the authoritative name servers for all TLDs, are known
by resolvers.

Authoritative name servers are name servers that have full information
about zones. They will answer queries for domains that fall under these
zones. Although an authoritative name server can be capable of answering
queries outside of its authority, most authoritative name servers are config-
ured to be authoritative-only.

An authoritative name server can be a master or a slave. The master
name server contains the original records in the zone file, and the slaves are
updated with copies of the zone file. Multiple strategies for updating the
zone file exist. In [31, 32], a polling method is described where the slave
queries the SOA record of the master. If the serial number of the master
is higher than that of the slave, a full zone transfer is requested (AXFR).
[33] defines an incremental zone transfer (IXFR) that only transfers records
that have changed. If either the master or the slave does not support the
IXFR feature, AXFR will be used instead. Finally, [44] defines a NOTIFY
message that a master server can use to inform its slaves that a change may
have occurred, after which the slave can attempt an AXFR or IXFR.

Name servers that are not authoritative tend to be caching name servers.
Their goal is to save the result of queries in order to reduce the network traffic
required for subsequent queries. Caching name servers strongly reduce the
load on authoritative name servers, especially higher up in the domain name
space tree. If caching name servers were not used, every single DNS query
would first have to query the root name servers to find a domain’s TLD
name servers. Results are cached for the time period specified in the TTL
of the relevant resource record in the zone file. Most people use the caching
name server configured by their Internet service provider (ISP).

In the example zone file in Table 2.1, we’ve seen that name servers are
defined with a domain name — commonly delegated to a sub-zone of the
queried domain. This would result in the problem that according to the NS
records, a particular name server should be contacted to learn that same
server’s address. To fix this circular dependency, the zone contains ‘glue’
records that provide the IP addresses of the name servers.
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Figure 2.5: Example of the resolution of a DNS query.

2.2.4 Resolvers

A resolver queries name servers based on requests from client programs,
and extracts information from the result of these queries. After receiving a
query from the resolver, the name server searches for the queried domain in
its cache and zone file. If the answer is found, this answer will be returned
with a flag to indicate if the data is authoritative. If the name server is
authoritative over the requested domain, but the domain name does not
exist, the NXDOMAIN error is returned. In the case where the name server
is not authoritative over the domain, and the answer cannot be found in its
cache, the action to be performed depends on the query type.

An iterative query will result in the return of one or more referrals to
name servers that are closer to the requested domain name, allowing the
resolver to perform a new query based on this new information. A recursive
query will instruct the name server to perform new queries on behalf of the
resolver. Name servers are not required to support recursive queries, but the
name servers that do are called recursive name servers. Most cache name
servers are recursive name servers. Resolvers that do not support referral
handling, and therefore rely on recursive name servers, are known as stub
resolvers. Resolvers typically maintain their own internal cache as well.

Figure 2.5 shows a scenario of DNS query resolution involving a stub
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resolver and name servers. Given the situation where a user tries to access
connect.simacan.com, the stub resolver on the user’s machine performs
a recursive query on the configured caching name server. The caching
name server does not have connect.simacan.com or a name server for
simacan.com in its cache, but does have a com TLD name server entry.
Because this name server does not respond to recursive queries, an itera-
tive query is performed. The com name server does not know the address
of connect.simacan.com, but does have an entry for a simacan.com name
server and returns this referral. The local name server performs an iter-
ative query on the newly found name server, and since this name server
is authoritative over the simacan.com domain, the requested address for
connect.simacan.com can be found. The caching name server returns this
address to the stub resolver.

2.2.5 Extension mechanisms

The DNS protocol as it was defined in [31, 32] contains restrictions with re-
gards to size that limit the efficient information conveyance in the protocol.
EDNS(0) was proposed as a backward compatible way of adding function-
ality by introducing the OPT pseudo-RR that signals support of specific
functionality as metadata [45, 5]. These records are never cached or stored
in zone files. Because DNS name servers that do not support EDNS(0)
ignore unknown record types, compatibility is preserved.

In addition to adding the OPT RR, several other changes to DNS mes-
sages were introduced. Notably, the size limit for User Datagram Protocol
(UDP) messages was raised from 512 bytes to 65535 bytes. This was needed
to be able to return large data items such as multiple AAAA records for
IPv6 compatibility, and DNS Security Extensions (DNSSEC) information
to digitally sign zone answers. The introduction of larger UDP packets in-
advertently increased the potency of DNS amplification attacks [43]. These
attacks will send forged requests to servers, with the source address set to
that of the server the attacker wants to target. The servers that receive the
request will send their large answers to the target server, thereby flooding
the victim.

2.3 Extended Domain Name System

eDNS is an extension to DNS that adds support for querying geographical
locations, rather than hostnames. It was first proposed by Fioreze and Hei-
jenk in [10]. Following the proposal, an implementation with delegation was
made by the same authors in [11]. The work in [48] improved on this imple-
mentation by adding a distributed architecture for more optimal delegation.
Most recently, support for dynamic updating was added in [42] to improve
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Figure 2.6: Geocasting using a fixed infrastructure with eDNS.

dynamicity management. We will discuss eDNS and all of its improvements
in this chapter.

2.3.1 Proposal

As mentioned earlier in Section 2.1.4, Fioreze and Heijenk [10] propose the
extension of DNS such that clients can resolve IP addresses based on geo-
graphical locations, rather than domain names. The proposal relies on the
existing LOC record specification described in Section 2.2.2. The novelty
of the proposal is that LOC records are allowed to be used as the primary
key for DNS queries, in addition to the methods of using hostnames or IP
addresses. The eDNS server would know which records to return by cal-
culating the intersection between geographical locations stored in the LOC
records, and the one in a query. The eDNS proposal has various strengths.
For one, it is based on the existing DNS architecture, which has proven its
high scalability through its use on the Internet. Secondly, it does not require
specialized hardware or software, or modification of existing protocols.

The authors foresee eDNS being used only for fixed infrastructure ele-
ments such as RSUs. It is argued that storing OBUs may introduce scaling
issues due to vehicles’ high volume and mobility. The vehicles would have to
report their location every time their location changes, which continuously
happens during normal operation. A situation similar to the example in
Figure 2.2 is envisioned, with the back office querying an eDNS server with
the target region, and receiving the IP address of RSU 2. This is illustrated
in step 3 and 4 of Figure 2.6.
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2.3.2 Methodology

In [11], a prototype implementation is described based on the Name Server
Daemon (NSD)?, an open-source DNS name server program developed by
NLnet Labs. The prototype follows the suggestions made in the proposal
by adding support for the use of LOC records as the primary key. Here, the
LOC records represent RSUs, and the query contains the geocast region.
Intersection between geographical locations is calculated by first calculating
the distance between the geocast region and the RSUs using the Haversine
formula. Then, for each RSU it is checked if this distance is smaller than
the combined radii of the geocast region and the RSU. A positive result
indicates an intersection.
Geographical queries have the following format:

“('dLat mLat sLat {°N'| S'} dLon mLon sLon {E'| W'}
alt[m'] size[ m'] ) '.domain

It follows the format of the LOC record, surrounded by parentheses. It is not
clarified of how a LOC record’s precision parameters should be interpreted.
In addition, minutes and seconds do not appear to be optional, and examples
of the new query format omit the use of decimal precision, presumably due
to the use of the dot character in a DNS query already being reserved for
the separation of labels. The consequence of this is that one can not query
a location with sub-second precision. The length of a second depends on
one’s position on the Earth, but is about 31 meters in the worst case. One
may note that the size is described as a radius, while the specification of the
LOC record [6] describes the size parameter as the diameter of a sphere.

The geographical query format is hybrid, in the sense that logical domain
names can be mixed with a geographical location. The geographical part is
used on the lowest level. Thanks to this property, top-level domains are not
required to support the geographical format. The document also describes
a delegation strategy. A name server that receives a location query will first
check if it is authoritative over that region, that is, if its own coverage area
intersects with the requested region. If it is not, it will check if it has any
referrals to other servers and fully delegates the request to the child name
server, which performs the same check. If an intersection does exist, the
answer records are returned to the initial name server before being returned
to the resolver.

2.3.3 Extended prototype

Westra [48] extended eDNS based on the previously mentioned implementa-
tion. The spatial data indexing and search algorithm was improved by using

’https://nlnetlabs.nl/projects/nsd/
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R*-trees, resulting in faster lookup times. A hierarchy that allows for del-
egation among multiple name servers was also designed and implemented.
Lastly, the query format was refined to increase flexibility. Here, we briefly
describe this extension.

R*-tree

The extended prototype is based on R*-trees [2] as an efficient spatial data
indexing and searching method. R*-trees are a variant of R-trees, which are
dynamic, hierarchical data indexing structures, and one of several methods
that can be used for spatial data indexing [7]. The leaf nodes in the tree
describe several spatial objects surrounded by a Minimum Bounding Rect-
angle (MBR). The non-leaf nodes similarly group their children together by
an MBR. R-trees can be queried by traversing the tree. If the searched point
or area overlaps with a node’s MBR, that node’s children will be checked
in the same way until a leaf is encountered, in that case it is added to the
result set if it overlaps with the query.

R*-trees differ from R-trees in the way of handling the insertion of new
elements in the tree. On creation, R-trees and its variants are configured
with a maximum number of entries that can be present in a node. When the
nodes in the trees reach their maximum number of entries, they will split
into new nodes that each contain at least the configured minimum number
of entries. Guttman [14] proposed split algorithms that try to minimize
the required enlargement of the bounding box. R*-trees improve on these
algorithms by prioritizing the smallest overlapping area, as this reduces the
number of paths that need to be traversed. In addition, R*-trees add dy-
namic reorganization by allowing re-insertions during regular insertion. This
attempts to solve the problem that the structure of R-trees is strongly de-
pendent on the order in which objects are inserted. This influences the query
efficiency. The improved tree quality comes at the cost of a lower insertion
speed.

Delegation

As mentioned earlier, eDNS as implemented in [11] supports basic delega-
tion. It would forward a query to a child server if it was not able to answer
the query itself. A shortcoming of this method is that an eDNS server is
not aware of the coverage of its child servers. To reduce network traffic, [48]
introduces the bounding box (BND) record type. The BND record defines
the bounding rectangle of child servers, which prevents blind delegation of a
location request if it falls outside of the known coverage of the child server.
These BND records are stored as MBRs in an R*-tree, separate from the
LOC records R*-tree. The BND record type is implemented as a TXT record
type with specifically formatted content, in accordance with [38]. By follow-
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Figure 2.7: Hierarchy of eDNS servers visualized with BND records.

ing this approach, and not modifying the existing NS record to be able to
hold a rectangular shape, compatibility with existing DNS implementations
is preserved. The format of the BND record is as follows:

“v=bndl' msLatMin msLonMin, msLatMax msLonMax, altMin
[cm'], altMax[ cm']

The minimum and maximum coordinates, defined in milliseconds, can be
used to create a rectangle. The BND records are stored in a separate R*-
tree, but should not be saved in the zone file, because they are volatile
metadata. DynDNS [47] can be used to keep the BND records in parent
name servers updated.

Figure 2.7 shows the hierarchy of three eDNS servers. The BND of y.x
encompasses foo.y.x and bar.y.x, as does z.x for foo.z.x and bar.z.x.
Although x itself only contains a LOC record for foo.x, it also encompasses
the bounding boxes of the subdomains.

Query format

The query format was changed to improve flexibility. Due to the original for-
mat not supporting milliseconds, additional millisecond fields are added to
improve the query precision. The altitude and radius size fields are swapped
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to be able to make altitude an optional field. These changes result in the
following revised format:

“('dLat [mLat [sLat [msLat]]] {°N'| S'} dLon [mLon [
sLon [msLon]]] {E'| W'} size[ m'] [alt[ m']])"'.
domain

Optional request parameters to reduce bandwidth and processing power
can be set as well: a minimum (‘min’) and maximum (‘max’) record size, as
well as a boolean value to indicate if subzones should be searched (‘sub’).
These parameters have the following format, and may be prepended before
a geographical query’s closing parenthesis:

[*min="min{ m'| km'}] ["max='max{ m'| km'}] [ sub='{"y

"|"n'}]

A format to create polygonal queries with  vertices is mentioned as well,
but not implemented. Although it would make sense to group the vertex
coordinates together, the 63 octet DNS label length limitation makes this
unfeasible. Each vertex is therefore contained in its own parentheses.

“('coordinate 17)'. ('..”)'. ('coordinate ) '.domain

2.3.4 Dynamicity management

The previous iterations of eDNS did not explicitly consider dynamic location
resource records. They mainly focused on storing the geographic location
of nodes that have a fixed location, such as RSUs. In [42], Van Leeuwen
extends eDNS with functionality to dynamically manage locations. In the
work, it is assumed that a central server exists that tracks dynamics of the
environment. Functionality is added to the NSD server (modified for eDNS)
that retrieves records from this server, rewrites its own zone file, rebuilds
the database, and reloads. Various strategies for determining the refresh
rate are discussed and simulated to test I/O and CPU load.
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Chapter 3

Approach

In Chapter 2, we looked at various technologies that can help us to achieve
geocasting within the infrastructure of the Internet. In particular, we have
discussed the workings of the eDNS protocol. Although advantages of eDNS
compared to its alternatives were identified, there is room for improvements
to eDNS to extend its functionality.

One may note that customization of query regions may be of significant
importance to many applications. For example, the shape of a highway can
be more accurately described with a line than with a circle. Additional ways
to define shapes are discussed in Section 3.1. Nearest neighbor querying sup-
port can be added to address vehicles that fall outside of the range of RSUs
if multi-hop communication is used, as described in Section 3.2. Section 3.3
explains that the addition of an extraction layer can prove beneficial to im-
plement eDNS support in multiple DNS name server software applications.
Opportunities for improving the support for dynamicity also exist, in a way
that it makes use of the DynDNS method. We consider this in Section 3.4.
A prototype of the discussed additions will be made, as expressed in Sec-
tion 3.5, and further, this prototype will be used in a practical use case.
Two potential use cases are explored in Section 3.6.

3.1 Shape definition

One possible area of improvement is geometric shape definitions for querying.
Currently, it is possible to issue queries with circular or spherical shapes,
and also get the replies back as circular or spherical shapes, as this is how
LOC records are defined in the LOC records in DNS zone files. One could
imagine targeting a more specific region, such as a long stretch of a road.
Using a circular target region for this could result in the message being
broadcast to RSUs next to other, irrelevant roads within the circle. This is
visualized in Figure 3.1. Figure 3.1a uses a circle to address a stretch of the
top road. Using this shape, the bottom road inadvertently falls within the
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Figure 3.1: Geocasting to different target region shapes.

target region as well. A rectangular shape, shown in Figure 3.1b, is more
accurate for this use case.

The shape limitation was discussed in [48], and the author proposed a
way to define polygonal shapes in requests and DNS zone files. However, no
concrete implementation of different shapes within eDNS has been done so
far. The feasibility of this proposed idea should be examined. In addition
to polygons, we can consider the addition of a ‘route’ shape. It would be
generated from a line of connected points surrounded by an area with a
specified distance [3]. This shape can accurately describe the real shape of
a road using less vertices than a polygon. The rectangular shape shown in
Figure 3.1b can be described as a polygon, or approximated with a route
shape.

The efficiency of various region shapes within the context of VANETs
has been discussed by Jochle et al. [25]. The research compares circles,
rectangles, polygons and routes in various simulated scenarios. The results
show that circles generally perform remarkably well in terms of accuracy,
and should often be preferred because of their concise specification — a
single point and a radius. Nonetheless, the authors note that choosing an
appropriate radius is highly scenario dependent.

We intend to add support for the polygon and route shapes to our proto-
type, in addition to the circle that is already supported by other prototypes.

3.2 Nearest neighbor resolution

eDNS currently only provides a query result if entries fall within the queried
area. While this is expected, it could be useful for some applications to
provide results that are near the queried area, in case there are no results
in the queried area itself. Consider the scenario where one wishes to send a
message to an area that is not covered by an RSU. By sending the message to
a nearby RSU instead, that RSU could send the message to vehicles within
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Figure 3.2: Geocasting using nearest neighbor resolution.

its coverage range, and those vehicles could then propagate the message
to the intended area through multi-hop communication. The concept is
visualized in Figure 3.2. The back office aims to send a message to a target
region with no intersecting RSU, but the message can still be delivered by
making use of the nearest RSU and nearby OBUs.

The problem of finding nearby nodes in tree data structures is known as
k-nearest neighbor (ANN) resolution in the literature, where £ is the number
of closest results. Solving it for R-trees has been discussed by Roussopoulos
et al. [39]. Hjaltason and Samet [18] introduce an incremental approach for
finding objects in order of their distance to the queried location, until one is
found that meets specified criteria. k cannot be determined beforehand in
this case. For example, this could be used to find the nearest RSU that has at
least a certain number of vehicles in its coverage range. These vehicles may
potentially forward information to the target geocast area in multiple hops.
The use of k-nearest neighbor queries in road networks has been discussed
by Jensen et al. [24].

A client could request nearest neighbor resolution in an eDNS query by
appending a parameter to the geographical coordinates. We propose the
following format for this, following the conventions listed in Section 4.2.5:
“nn='nn. For instance, a request for the three locations closest to a specific
point may look like this:

(1 N 2 E nn=3).simacan.com

The authoritative name server should parse this parameter and perform an
algorithm to find nearby neighbors, ordered by distance, rather than finding
overlapping LOC records.

Nearest neighbor resolution becomes more complicated when delegation
is to be considered. Although it is possible for a name server to ask each
subdomain about its nearest neighbors, it is not doable to combine results
from multiple sources and selecting the nearest neighbors from that set,
without knowing the individual distances. One possible solution would be
to have the authoritative server request the actual LOC records from the
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subdomain, in addition to the record type originally requested (such as A
or AAAA). The authoritative server could then parse these records, apply
its own distance calculations, and compare these results to the distances of
its own LOC records. Another solution is to have the authoritative servers
for the subdomains report the distances for its results. Every unique record
name would require its distance to be reported. There is no standardized
way to transfer such a distance value, so we propose the use of a new volatile
record for every unique result name. We will refer to this record as the
distance (DST) record. These records would not be added to the persistent
zone storage of the authoritative server, but would instead only be generated
temporarily for inclusion in the query answer. We propose the following DST
record definition as an implementation of the TXT record, using the same
formatting rules as in Section 4.2.5:

“v=dstl' distance

The distance is a decimal value in meters. Because each authoritative server
already knows the distances of the requested shape to its own LOC records
after doing the local nearest neighbor resolution, no additional computa-
tion is required. The parent authoritative server can use these temporary
records to order the other result records, and trim the number of records to
the requested number. Because DST records are essentially metadata, they
are returned in the ‘additional’ section of DNS query answers. This is com-
parable to how the OPT pseudo-RR is returned for the EDNS(0) protocol
[45, 5].

A considerable drawback of the first proposed solution is that it in-
creases the computational burden on the non-leaf authoritative servers, as
they would have to perform additional distance calculations. These dis-
tance calculations are wasteful, because they were already performed by the
subdomains to return the initial set of nearest neighboring records. After
considering this imposed computational overhead, we chose to implement
the second proposed solution in the prototype. This does require that all
authoritative servers in the tree support this new record type. For this rea-
son, one could implement the first solution as a fallback method for the
second solution if an authoritative server detects that a subdomain does not
return distances. The DST records may also be returned for non-nearest
neighbor queries to aid the main authoritative server in ordering its results
by distance. However, because this use case does not require a distance
to create a correct resource record set (RRset), providing the DST records
remains optional.

Before visualizing the process of nearest neighbor resolution when com-
bined with delegation, let us first look at a regular eDNS delegation process.
Figure 3.3 shows the processing of a query directed at the name server x.
This name server has two subdomains, y.x and z.x. The client asks x for
records of a certain TYPE that are located within a requested geographic
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Figure 3.3: eDNS delegation.
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region. The x name server checks its own LOC records for overlap, as well as
the BND records that describe the bounding boxes of the subdomains’ LOC
records — in our prototype, this is done by querying the synchronized loca-
tions and the boundingbozes tables, respectively. If overlap with the BND
record belonging to one or more of the subdomains is found, new queries,
directed at y.x and/or z.x, are created and sent by looking up the NS and
its accompanying glue records. y.x and z.x perform the same process as
x, but do not have any BND records to check, because they have no subdo-
mains themselves. Any results are returned to the parent name server x. x
then combines them with its own records and returns the final RRset to the
client.

A visualization of the processing done for nearest neighbor resolution in
a delegated deployment is shown in Figure 3.4. As in the diameter-based
delegation example, a query for a certain TYPE of record is sent to a name
server x. Instead of finding overlapping records, x will attempt to find the

nearest LOC records. The distances of these records are stored in the
form of DST records. Note that unlike the process for normal delegation,
no overlap with BND records is checked, because all subdomains have to be
queried regardless of the result. Requests are sent to subdomains for ANY
records, rather than the type requested by the client, as we would like to
receive DST records in addition to the requested type. It is argued by some
that ANY queries should be deprecated to prevent their use in amplification
attacks [13]. Amplification attacks attempt to overload a victim’s bandwidth
capacity. DNS ANY queries are well-suited to this type of attack, because
the response size of such a request is significantly larger than the request
itself. We therefore note that the subdomain requests can alternatively be
performed using two separate queries for the type and TXT (the base type
of DST) resource records.

Assuming x and each of its subdomains have at least LOC records,
the total number of records of the requested type that are known by x, will
be . They are typically not included in the records returned to
the client, but are used to sort the RRset by distance and trim them to
records. These are returned to the client. If less than, or exactly records
of the requested type are known, all these records are returned.

3.3 Addition of an abstraction layer

The current implementation of eDNS is based on R*-trees as an underlying
data structure. Using an abstraction layer between the DNS name server
and the tree structure could offer increased flexibility. This abstraction layer
could take care of applying the calculations needed for implementing the
mentioned geometric shape definitions and nearest neighbor queries. The
use of an abstraction layer could also facilitate the implementation of eDNS
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in various DNS name server software applications.

One approach is to make use of a database back-end that supports ge-
ographical operations. This allows the DNS name server applications to
delegate complex spatial operations to this back-end. Furthermore, several
DNS name server applications already make use of database back-ends to
store resource records [30, Section 2.5.3]. PostGIS! is an extension for Post-
greSQL? databases that adds support for spatial objects in SQL. It has many
storage and retrieval options for geographic locations, and can use R-trees
as an indexing method — unfortunately, there is no inherent support for
R*-trees. Using PostGIS as an abstraction layer, rather than using an R*-
tree directly, allows us to take advantage of the advanced features already
implemented in PostGIS, such as geographical shape definitions and nearest
neighbor queries. These shape definitions are a superset of the ‘Simple Fea-
tures for SQL’ objects, defined by the OpenGIS Consortium [16]. PostGIS
is reported to have the largest user base of the database-based Geographic
Information Systems (GIS) products [41].

3.4 Improved dynamicity

eDNS research so far has mainly focused on nodes with a static location, such
as RSUs. The problem of managing dynamic nodes, such as vehicles, has
only been discussed in [42]. The author added support for dynamic nodes by
implementing a process in the name server software that periodically reads
an updated text file with a list of nodes, rewrites its zone file, rebuilds the
internal database, and reloads the server. It is noted that an alternative
approach to this problem is to use the DynDNS Update protocol [47], but
this protocol was not supported by the version of the name server software
that was used.

We can implement dynamicity for vehicles using DynDNS Updates by
making use of a DNS name server program that supports the DynDNS
protocol. A layer of complexity is added when the problem of dynamicity
is combined with delegation. An eDNS server needs to know the bounding
box coverages of its child servers. If locations in the child servers change,
the known bounding boxes may need to be updated as well.

The process is visualized in Figure 3.5. A vehicle z.y.x wants to send its
new location to name server y.x as a DNS Update. y.x receives the record
and deletes any old z.y.x LOC records. Although the client could send
a delete DNS Update message along with the addition message to achieve
this, we propose that name servers enforce that only one LOC record per
name can be present as a way to keep the location data meaningful. y.x
then inserts new LOC record from z.y.x, calculates an updated bounding

"http://postgis.net/
*http://www.postgresql.org/
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Figure 3.5: eDNS location updating.

box for all its LOC records, inserts the bounding box as a BND record, and
sends this as a DNS Update to x. We assume here that the inserted LOC
record falls outside of y.x’s existing coverage or changes the BND record
in another way, so that the BND record in its parent name server x indeed
needs to be updated as well. Similar to the LOC record addition to y.x,
x should remove any old BND records with the y.x name to protect the
record’s meaningfulness, and insert the new record. x has to update its
own BND record based on its LOC records, and the BND records of its
subdomains. This updated BND record needs to be sent to its parent server
as well, but because this process is the same as performed in x, it is omitted
for brevity. If an error occurs at any point, this is sent back to z.y.x.
Among the possible errors to return are ServFuil to indicate a server failure,
or NotAuth if the message is sent to a name server that is not authoritative
for z.y.x.

A process similar to the one shown in Figure 3.5 is shown in Figure 3.6,
and involves the deletion of a LOC record. Rather than inserting a new
record, only an old entry is removed. Nothing changes from the perspective
of x, as deletion can also result in the need to send an updated bounding
box to the parent server. Finally, one edge case of deletion is shown in
Figure 3.7. If the last LOC record in a specific domain is deleted, there
is no valid bounding box to be created. The related BND record needs to
be removed, both in y.x and its parent name server x. The latter should
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therefore be removed with a new DNS Update deletion message.

3.5 Prototyping and validation

A current eDNS implementation exists as an extension of NSD. The exten-
sion adds delegation and DynDNS updating functionality for BND records.
We consider the use of PostGIS for geographical operations instead. To
support the use of a PostGIS database as a back-end, it could be beneficial
to focus on different DNS name server applications. As mentioned, DNS
name server applications that support database back-ends exist, but NSD
is not among them. The open-source PowerDNS? natively supports the use
of various databases as back-ends, including PostgreSQL. Adding PostGIS
support should therefore also be possible. This approach would require the
re-implementation of eDNS; as this is not yet supported by PowerDNS.

The previously mentioned improvements should be implemented into the
existing DNS architecture. Accordingly, performance should be measured
in terms of relevant performance metrics, to be discussed later. We can test
the performance by measuring the query and insertion speed of the revised
eDNS implementation using geographical data. Data sets containing this
geographical data will be based on real world data of RSU or OBU locations,
provided by Simacan. Using real geographical data allows us to evaluate
realistic use cases more accurately.

3.6 Use case

eDNS is intended to be implemented in a project that Simacan is involved
in. Several projects where eDNS could potentially be integrated exist. For
example, Simacan contributes to the Spookfiles A58 (‘Shockwave Traffic
Jams A58")* project. This is a project subsidized by the Dutch government
that aims to prevent the occurrence of shockwave traffic jams (i.e. traffic
jams with no apparent cause). Multiple RSUs have been installed at the
A58 highway to assist in fulfilling ITS applications. The locations of these
RSUs could be used as targets for eDNS query resolutions.

Another possible use case is the Simacan Control Tower® product, which
enables companies such as Ahold® to follow the position and status of de-
livery trucks in real-time. eDNS could be used to track the location of the
individual trucks. The Dutch program ‘Beter Benutten Vervolg’ (‘Better
Utilization Continuation’) will invest in the development of user applica-
tions for traffic lights. 713 traffic lights (frequently referred to as VRIs) will

3https://www.powerdns.com/
“http://www.beterbenutten.nl/en/shockwave-traffic-jams
Shttps://www.simacan.com/en/products/control-tower/
Shttps://www.ahold.com/
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send real-time data of their green, orange and red light timings using the
V-Log standard. In addition, 475 traffic lights will be made ‘cooperative’,
which means that they will be equipped with a IEEE 802.11p RSUs to com-
municate with vehicles. This communication can be used to send the V-Log
data gathered from the VRIs to the vehicles, and the vehicles can request
priority to the traffic light. A possible extension for the Simacan Control
Tower product for the logistics sector, could be to inform trucks about traf-
fic lights status and comunicate with the traffic lights about approaching
trucks.

We have chosen to consider the traffic lights use case for our evaluation
for two reasons. Firstly, in the context of our research, it is desirable to
evaluate the dynamic aspect of eDNS with moving vehicles, rather than
with static RSUs. Secondly, it is the most relevant use case for Simacan,
because this would be the first use case where Simacan would directly want
to address vehicles. To limit the scope of our research, we will not focus on
the traffic lights information itself. We will assume that we have a set of
vehicles with an associated location. These vehicles need to be informed of
certain data, which happens to be traffic lights information for our use case.
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Chapter 4

Design

As far as we know, all eDNS prototypes so far have been written as exten-
sions of the NSD DNS name server software. [48] compared NSD to the
more established BIND! DNS name server program, and concluded that
NSD was more suitable to extend due to BIND’s inflexibility — reportedly,
it includes many internal checks that limit possibilities for extension. In
our work, we have chosen to make use of PowerDNS instead. PowerDNS is
highly flexible in the sense that it supports a large number of backends (such
as databases) to maintain zone information. Additionally, unlike NSD, Pow-
erDNS includes a component that can answer recursive queries, and Dyn-
DNS Updates are supported by default. We have extended PowerDNS with
the eDNS protocol, by modifying its generic Structured Query Language
(SQL) backend.

4.1 Existing architecture

PowerDNS consists of two name server components, an authoritative server
and a recursor. The authoritative server only answers queries about do-
mains it knows about, while the recursor can consult authoritative servers
to answer queries about other domains. These components are separate, but
can be configured to work together, such that an authoritative PowerDNS
server may consult the recursor for domains it holds no authority over.

The authoritative server is highly dynamic, as it allows for the configura-
tion of many different backends for storing zone information®. The choice of
backends includes the classic BIND zone file, MySQL, PostgreSQL, SQLite
and Oracle databases, and GeolP. Some PowerDNS features, such as mas-
ter/slave configuration and automatic SOA serial generation, are not sup-
ported in every backend. The MySQL, PostgreSQL and SQLite backends
are the only ones to support all available features.

"https://www.isc.org/downloads/bind/
2https://doc.powerdns.com/md/authoritative/
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Figure 4.1: PowerDNS packet processing, adapted from [19].

The GeolP backend? allows the mapping of IP addresses to entities such
as continents, countries or cities through a mapping table. It is only su-
perficially related to our work, because no specific regions can be queried.
It simply maps IP addresses to predefined regions to decide which server
should be accessed. This is mainly intended to direct website visitors to a
server close to them.

DNS packets that arrive at the authoritative server do not get sent
to the backends immediately [19]. Because of the large amount of logic
that is needed to answer DNS queries, packets are first processed by the
PacketHandler class for common operations such as zone selection, wildcard
handling and delegation. In its processing algorithm, the PacketHandler
asks various generic questions to the UeberBackend class, which in turn
forwards the questions to any number of configured backends, as well as a
cache that includes answers of previous questions. These questions include
the record lookup for a query name, type and domain, or getting a list of
all configured domains. The PacketHandler then constructs a result set of
records to return to the resolver. A high-level overview of this process is
visualized in Figure 4.1.

4.2 Modifications

As mentioned, the SQL based PowerDNS backends have the widest range
of supported features. Additionally, some SQL implementations have sup-
port for storing geometrical and geographical data. This can simplify our
geographical operations. We have therefore extended the existing generic
SQL backend, GSQLBackend, while adding PostGIS support to the under-
lying PostgreSQL database to make use of the extensive spatial operations
support already present in PostGIS. These operations make use of either

Shttps://doc.powerdns.com/md/authoritative/backend-geoip/
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geometry or geography types. The operations that use the geometry type
perform calculations using cartesian mathematics and straight line vectors.
geography calculations are performed on a sphere, resembling the shape of
the Earth, and are therefore more accurate. The downsides of geography
are that it is significantly slower, and that not all PostGIS operations sup-
port this feature type yet. Accordingly, we have used geography where
possible to achieve the highest accuracy.

PostGIS objects are supersets of the Simple Features, defined in the
Geographic Implementation Specification by the OpenGIS Consortium [17,
16]. This specification lists various geometric object shapes. The three
shapes that are important for our research are the Point, LineString and
Polygon. No Circle shape is defined. These either have to be represented
by a Point object with a separately stored radius, or approximated with the
Polygon shape. Each geometry object (and geography in PostGIS) can be
described in a Well-Known Text (WKT) representation [17].

Both the PowerDNS PacketHandler and GSQLBackend were modified to
support the eDNS query format. The PacketHandler was changed to not
outright reject queries containing parentheses. When a geographical query
is detected, the authoritative server performs various additional operations.
The geographical labels get parsed into Point objects using the WKT repre-
sentation. If more than one such Point object is present, they get combined
in either a LineString for a line shape, or Polygon for a polygonal shape.
Section 4.2.5 details how the choice between these shapes can be specified.
Our prototype supports every setting in the defined query format except for
the altitude, which remains unprocessed. The reason for this is that at the
time of this research, the PostGIS functions that are available for geography
objects generally do not process the Z component of a coordinate. If support
for three-dimensional geography objects in PostGIS were to be improved,
support for three-dimensional geographical queries in our prototype could
be added as well. This would involve parsing the altitude, and passing that
value to the Point, LineString and Polygon initialization functions.

In the most basic form of operation, the newly created shape, based
on the geographical query, gets checked for overlap with the existing LOC
records in the records table used by PowerDNS. Checking for overlap be-
tween two geographical locations is possible within PostGIS by making use
of the ST_DWithin(geographyl, geography2, distance) function, sup-
plying the combined radii of the locations as the distance argument. How-
ever, the LOC records are stored in the records table as varchars, not as
the geometry or geography objects required by most PostGIS functions.
Therefore, we redundantly store the LOC records in a separate locations ta-
ble in the form of much more computationally efficient geography objects.
It contains an ID, the fully qualified domain name, a radius and the location
itself as a geography POINT object. An index is created on the geography
column to make certain calculations faster. A database trigger is added to
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locations -
ot boundingboxes

gid serial

name varchar

radius double precision
geog  geography(Point)

gid serial
name varchar
geog  geography(Polygon)

(a) locations (b) boundingboxes

locationqueries

gid serial
gname varchar
geog  geography(Geometry)

(c) locationqueries

Table 4.1: New PostgreSQL tables for the prototype.

keep the LOC records and locations entries synchronized. The table defini-
tion is shown in Table 4.1a. serial is a PostgreSQL specific integer type
that automatically increments on new inserts and can not be NULL.

If matching LOC records (or their equivalent locations entries) are found,
the records that that have equivalent fully qualified domain names and are of
the requested type and class are returned as a RRset. The prototype results
are returned in order of ascending distance, but only if the no-shuffle
setting is enabled. PowerDNS shuffles its results by default, presumably
to aid in load distribution of the results if multiple options are available,
similar to the round-robin functionality of the BIND name server software
[28, Section 10.7].

4.2.1 Delegation

The problem of delegation for eDNS was solved in [48] by introducing the
BND record to store the bounding box of all locations that are stored in
an underlying domain. Again, for computational efficiency we have decided
to store these bounding boxes in a table separate from the default records
table: boundingbozres. It contains an ID, the fully qualified domain name,
and the bounding box as a Polygon geography object, along with an index
on the geography column. This allows us to check for overlap using the
same ST_DWithin function used earlier. The table definition is shown in
Table 4.1b.

All bounding box matches will have their accompanying NS records
returned to the PacketHandler. The PacketHandler can use these NS
records to contact subdomains. A new geographical query is generated with
the same geographical part, but appended to the subdomain to make sure
the subdomain considers itself authoritative over the query. For instance,
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(geo) .x will be turned into (geo) .y.x, where y is the subdomain of x. The
IP address of the subdomains can be found from the glue records defined in
the parent domain.

The connection to the subdomain name servers is set up using a UDP
socket. A Transmission Control Protocol (TCP) socket could be used instead
for higher reliability at the cost of latency. It would also work around the
default maximum UDP packet size of 1680 used by the PowerDNS, which
could be insufficient if the query contains many results. Although the UDP
packet size threshold can be increased, high values are not desirable because
they increase the risk of amplification attacks [43]. The PacketHandler
waits for the resulting RRs returned by the subdomain, and merges them
into the non-delegated results. Only one level of delegation is discussed here,
but the servers that hold authority over subdomains can employ the same
delegation mechanism themselves.

The parent name server directly queries its subdomains, but a mechanism
where other name servers need to be reached can be envisioned, in which
case a recursor can be employed for the query resolution. Although not used
for this purpose in the prototype, the PowerDNS recursor was modified
to support this use case. The PowerDNS recursor would initially reject
results that had a name that was different from the query name. This is a
problem for eDNS queries, as a query of the form (geo) .x will yield results
with regular fully qualified domain names such as z.x, not (geo) .x. This
limitation was therefore removed.

4.2.2 Nearest neighbor resolution

Support has been added to get a specific (maximum) number of results that
are nearest to a given geographical shape. This is known as nearest neighbor
resolution. PostGIS provides the ST_Distance(geographyl, geography2)
function to get the distance between geography objects, but this is fairly
slow when applied to all objects. The <-> centroid distance operator can be
used instead to get the distance between the center of the bounding boxes
of two geometry objects, which makes efficient use of the index created on
the geography column. However, this is imprecise because the center of the
bounding box may not accurately represent the shape. We therefore employ
a hybrid method that makes a larger pre-selection based on the centroid
distance operator. The geography objects are cast to geometry for this.
The final selection is made by running ST_Distance over the approximated
pre-selection. This method is also described in [36].
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CLASS TYPE RDATA operation

zone CLASS RRset TYPE RR RDATA add to RRset

ANY RRset TYPE empty delete RRset
ANY ANY empty delete all RRsets from name
NONE RRset TYPE RR RDATA delete RR from RRset

Table 4.2: The mode of operation based on values in the DNS Update
message.

4.2.3 Dynamicity

The version of PowerDNS that our prototype was developed on, version 3.4,
contains experimental support for DynDNS?. This allows us to simplify the
process of managing dynamic records. [47] defines a DNS Update message as
an extension of the regular DNS message format defined in [32]. Two modes
of operation are offered in this new message: addition and deletion. Using
the GSQLBackend backend, PowerDNS will insert an entry in the records
table upon receiving an update message request to add a RR, and delete
one or more entries in this table for deletion requests. Both operations make
use of the same Update message, but the exact way the message is processed
depends on the supplied CLASS, TYPE, and RDATA fields, as can be seen
in Table 4.2. The nsupdate utility can be used to request DNS updates.

Allowing DNS Update messages to come from any source can be highly
undesirable from a security perspective. Two possibilities exist to restrict
access. A range of IP addresses may be configured that are allowed to
perform updates, where updates from any IP address that falls outside of
this range will be rejected. This can be configured globally, or per zone
for more granularity. The second option is to generate a TSIG [46] key
using one of various authentication algorithms. This key should be known
to PowerDNS and supplied as a parameter to DNS Update messages. This
guarantees that only authorized clients can perform updates.

The prototype adds a database trigger that activates on the insertion of
new location. A new BND record is created that represents the bounding
box of all locations for the relevant domain. The ST_Extent (geomfield)
operation is used for this. This updated coverage should be made known to
the parent name server, if the coverage has changed and the parent name
server is eDNS-aware. In a realistic use case, a DNS recursor such as the
PowerDNS recursor should be used to retrieve the parent domain’s IP ad-
dress. However, that mode of operation is not applicable in our testing
setup because we are dealing with fictional domain names. We have there-
fore added a new PARENT-ADDRESS entry in the existing PowerDNS do-
mainmetadata table to configure the IP address of this parent name server.

“https://doc.powerdns.com/md/authoritative/dnsupdate/
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The prototype will attempt to send the updated BND record to the parent
name server through the same DNS Update mechanism as described before.
This required changes to the PowerDNS PacketHandler class.

In the context of DNS, an empty non-terminal (ENT) is a domain that
owns no resource records, but has one or more subdomains that do [47].
For instance, the domains x and z.y.x might have resource records, while
y.x might not. If z.y.x were to be deleted, the existence of y.x would be
redundant. PowerDNS ensures ENTs are inserted and removed as needed
upon processing DNS Update packets. A problem arises for the PostgreSQL
backend when this procedure is executed on large tables. The SQL com-
mand to search for matching domain names uses the LIKE operator with a
leading wildcard. This operation can not make use of the existing B-tree
index® on the relevant table column, which significantly reduces the DNS
Update performance. For our prototype, we have disabled the ENT related
functionality, because it is not relevant for our use case. However, it is
likely that indexes can be created that enable faster lookups. The trigram
based pg_trgm® PostgreSQL module includes index operator classes that are
potentially suited for such operations. Alternatively, domain names could
be reversed before insertion into the database, which would enable trailing
(rather than leading) wildcards for efficient B-tree index searches with the
LIKE operator.

4.2.4 Visualization

A logging option has been added to the prototype for debugging purposes.
This is enabled by adding “log='{"y'|'n'} as a parameter to the geo-
graphical query, similar to how the nn and close parameters are defined in
Section 4.2.5. Because this is purely a debugging option, it is not listed in
Section 4.2.5 itself. Upon receiving a geographical query with this parame-
ter enabled, the prototype will write the query and its geography to a loca-
tionqueries table (definition shown in Table 4.1c). ST_Buffer (geography,
radius_of_buffer) is used to give the geography object a surrounding
buffer.

The table can be used as a data source in a graphical tool such as QGIS”.
An example of how the stored data can be visualized is shown in Figure 4.2.
The circular shapes are shown in blue, the polygonal shapes in green, and
the line shape in orange. They are rendered based on the content of the
locations table. The visual output can be used to check whether the results
for a given geographical query are correct.

Shttp://www.postgresql.org/docs/current/static/indexes-types.html
Shttp://www.postgresql.org/docs/current/static/pgtrgm.html
"http://www.qgis.org/
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Figure 4.2: Query visualization in QGIS.

4.2.5 Query format
Definition

Several refinements have been made to the geographical query format defined
in earlier research. This has resulted in the following label format definition:

(d1 [m1 [s1]] {°N'| S'} d2 [m2 [s2]] {E'| S'} [siz[{"
m'| km'}]] [alt[{'m'| km'}] [nn='nn] [“close='{"y
"I 'n' 31D

Here, the square brackets (‘[’, ’]’) indicate optional fields, while the curved
brackets (‘{’, ‘}’) indicate a choice between the fields separated by a pipe
character (‘1”). The fields between apostrophes (‘*’, *'’) are to be used as
literals, the other fields are variable. The meaning of the variables is as

follows:

di, ml, sl Latitude in degrees [0-90], minutes [0-59.999...], sec-
onds [0-59.999...] (decimal)

d2, m2, s2 Longitude in degrees [0-180], minutes [0-59.999...], sec-
onds [0-59.999...] (decimal)

siz Size as diameter [0-90000000] (decimal)

alt Altitude [-100000-42849672.95] (decimal)

nn Amount of nearest neighbors to return, or 0 (default)

to disable nearest neighbor search (integer)
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The literals are defined in the following way:

‘N, ¢S, ‘E’, ‘W’ North, south, east and west; south and west result in
a negative latitude and longitude, respectively

‘m’, ‘km’ Meter (default) and kilometer
‘v, ‘n’ Yes and no
‘nn=’ Setter to use nearest neighbor search instead of the

default intersection search

‘close=’ Setter to use a polygonal shape instead of the default
line shape in case of at least three geographical labels

Due to constraints in the allowed characters in a label, the dot (‘.”) char-
acter can not be used as a separator in decimals. Therefore, the underscore
(‘") character must be used as a substitute, or the fractional part of the
decimal can be omitted entirely.

A single geographical label represents a point value with an optional
circular buffer of size siz. To create more complex shapes, multiple geo-
graphical labels can be chained. Two geographical labels always create a
line shape. Three or more geographical labels create a line shape by default
as well, but can be modified to create a polygonal shape instead by correctly
setting the close parameter. This setting will cause the last coordinates to
automatically loop back to the first coordinates to close the polygon. Pa-
rameters can be set in any of the geographical labels, but parameters in
labels further to the right take precedence. Unrecognized parameters are
ignored.

Modifications

The geographical query format is based on the LOC record format, but it
has been heavily modified during several eDNS iterations. Let us summarize
the total set of differences of our eDNS iteration compared to the original
LOC record format.

e Support for decimals in degrees and minutes has been added.
e Support for setting the size and altitude in kilometers has been added.

e Support for setting horizontal and vertical precision has been removed
because they serve no use in our extension.

e Support for additional parameters has been added; nn and close in
our implementation.

o The size and altitude fields have been swapped to allow the size to be
set without having to specify an altitude.
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e The default size has been changed from one meter to zero.

e The use of parentheses to surround the definition has been made re-
quired to differentiate it from a regular domain label.

e Dots are substituted for underscores in decimals.

Note that in comparison to earlier eDNS specifications and implementa-
tions, this eDNS specification reverts the size field to represent a diameter
as it is used in LOC records, rather than the radius definition mentioned in
[11] and [48].

Examples

Based on the preceding specification, examples of valid eDNS queries can
be listed:

Simple (0O N 0 E).simacan.com
Decimals (1 234856 7_8W).simacan.com
Size (7 S 8 E _9km) .simacan.com

900 meter diameter, not radius

Nearest neighbor (42 N 42 W nn=5).simacan.com

5 nearest netghbors
Line (90NO1E).(908S01W).simacan.com

Polygon (4 N 8E).(15 N 16 E).(23 S 42 E close=y).
simacan.com

Complex (561_5507 N 5_1252 E).(51_5504 N 5_1375 E).
(51_5025 N 5_2926 E).(51_4938 N 5_3094 E).
(51_4905 N 5_3640 E).(51_4945 N 5_3874 E).
(51_4841 N 5_3923 E 100m close=n).simacan.com

close s off by default, so setting it to n is optional
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Chapter 5

Evaluation

In this section, the developed prototype is evaluated in terms of most rel-
evant and illustrative performance indicators. We test the implemented
functionalities with various configurations and settings to get insight into
system behavior in terms of throughput and latency. The evaluation is per-
formed with sets of real historic vehicle location data to simulate the realistic
use case of tracking vehicles in an eDNS system.

5.1 Test setup

The open-source Docker project! is used to simplify the deployment of mul-
tiple instances of the prototype. Docker allows applications to be packaged
and run inside isolated, virtualized containers. Each name server can be
represented by the combination of a PowerDNS and a PostGIS container,
both of them automatically configured through the use of a script file known
as a Dockerfile. Figure 5.1 visualizes a possible deployment of the prototype,
given the fictional domain x with subdomains y.x and z.x. The PowerDNS
instances are linked to their respective PostGIS instances, allowing them to
access the database as if they were running in the same environment.

The prototype is deployed to Amazon Web Services (AWS) for reliable
performance testing. Amazon allows customers to run code through their
EC2 Container Service (ECS) platform. ECS is a layer on top of Elastic
Compute Cloud (EC2) that provides the ability to run Docker containers on
EC2 instance clusters. Multiple instances of PowerDNS are deployed to ECS
clusters. Although it would be possible to run a PostGIS Docker container
inside each of these clusters as well, we have opted to make use of AWS’s
dedicated database platform, the Relational Database Service (RDS). Us-
ing RDS allows us to make use of its database management features, which
include simplified launching and deletion of databases, and making snap-
shots of database states. A PostgreSQL database instance is launched for

"https://www.docker. com/
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name server X

PowerDNS - PostGIS
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PowerDNS PostGIS PowerDNS PostGIS
container container container container

Figure 5.1: Deployment of the prototype using Docker.

each PowerDNS EC2 instance, and all database instances are extended with
PostGIS functionality using the CREATE EXTENSION postgis; command.
Within this setup, PowerDNS instances can make use of one shared RDS
instance, but multiple instances are used to prevent the eDNS servers’ load
from influencing the performance of the other servers. All instances are
physically running in the same region (Ireland, eu-west-1), the same avail-
ability zone within that region (eu-west-1c), and are allocated to the same
Virtual Private Cloud (VPC).

Both the EC2 and RDS instances are of the type m3.medium, which
has one virtual CPU on an Intel Xeon E5-2670 v2 processor running at a
clockspeed of 2.5 GHz. The amount of available memory per instance is
3.75 gigabyte. Exact specifications for the network performance are not
mentioned, but the performance is described as being ‘moderate’. This type
of instance is, at the time of evaluation, the lowest-cost solution available
from Amazon that has consistent performance, and should therefore make
the results easily reproducible. t2.micro instances are significantly cheaper,
but do not guarantee consistent performance — instances of the t2 type
occasionally burst CPU performance above the baseline?. Experiments that
attempt to replicate or compare to our results should be run on instances
with equivalent computing performances of 3 EC2 Compute Units (ECU)
each.

All communication with the prototype deployed in AWS is performed
from a server in The Netherlands with a bidirectional connection speed of 1
Gb/s.

’https://aws.amazon.com/ec2/instance-types/#burst
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5.2 Measurements

Given the focus of our work, it is important to evaluate the performance of
the system from the following perspectives:

o Querying nodes within a specified geographical region.

e Querying nodes with the smallest distance to a specified geographical
region.

o Updating nodes with dynamic geographical locations.

Location data is needed to evaluate these perspectives. We have used a
historic location data set of real vehicles. This data set contains frequent
updates of vehicles over a period of one month. The frequency of location
updates in the data set depends on the number of vehicles that are active,
which is dependent on the time of day. This averages to 0.77 unique loca-
tion updates per second, but can roughly double during the rush hours to
1.42 updates per second. The highest observed number of updates within
one minute was 218, bringing the maximum expected update rate to 3.63
location updates per second. In total, close to 1000 vehicles are active dur-
ing the month that is represented in the data set. Due to the nature of
the data, the locations are not uniformly distributed over the total covering
area. Updates are most likely to come from highways, as well as origins and
destinations shared by the vehicles. In addition, more vehicles are active
in densely populated areas. This realistic set of data allows us to evaluate
the suitability of our eDNS implementation for use in the Simacan use case
described in Section 3.6. A location will be represented by a LOC record,
as well as an A record with a fictional IP address belonging to the vehicle.

5.2.1 Performance metrics

The performance of the system can be quantified in the form of throughput
and latency. For our use case, the throughput determines how many vehicles
the system is able to keep track of. The latency influences the responsiveness
of the system, and how up-to-date the stored locations are. The chosen
metrics can be defined as follows.

Throughput
The throughput describes the rate at which the system can process
data. In the context of our work, it is the number of queries and also
the number of location record updates the system can handle in one
second.

Latency
In our system this metric specifies the time interval between issuing
queries and receiving the corresponding reply back.
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Figure 5.3: Data set subsets.

5.2.2 Input parameters

We test the influence of server setups by configuring multiple name space
tree setups. Various testing setups are visualized in Figure 5.2. The setups
provide a variety in terms of tree width and depth. The total number of
nodes for each setup is limited to 3 to limit expenses. Query performance
will be tested by querying the top node in the name space tree. The LOC
records are divided over the edge nodes. The allocation of the records to the
edge nodes will be close to optimal, in the sense that each edge node will be
responsible for its own geographical region. This causes the bounding boxes
of the edge nodes to be relatively small, with no overlap. The performance
of location updates will be tested by sending DynDNS updates to one or
more of the available edge nodes and measuring the performance in terms
of throughput and latency.

Various input parameters of the setup can influence system performance,
as introduced below.

LOC record count
The number of LOC records present in the system. This can be evalu-
ated with a varying number of LOC RR inserted in the eDNS servers.
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Figure 5.4: Server setup (d) location allocation.

We have taken subsets of various sizes from the previously mentioned
data set to evaluate the influence of the amount of LOC records in the
databases. Three subsets containing 100, 1000 and 10000 locations
were created. A visualization of the subsets is shown in Figure 5.3.
Since each of the locations represents a vehicle, the diameter of the
corresponding LOC record should be small. A LOC record can not
accurately represent the shape of a vehicle, but we have chosen the
default LOC diameter of 1 meter as the diameter for each record. As
mentioned earlier, multiple setups will be tested, and records will be
added to one or more edge nodes based on their geographical position.
An example of how a setup’s bounding boxes could look is shown in
Figure 5.4, demonstrating the subset of 1000 locations divided over
setup (d)’s two edge nodes. Each edge node is allocated roughly the
same number of LOC records. Upon receiving a DynDNS update mes-
sage that inserts or removes a LOC or BND resource record, the BND
record of the node itself will need to be renewed. The total number
of LOC and BND servers can therefore influence the performance as
they increase the number of spatial database operations that need to
be performed.

Queries are also influenced by the following input parameter in case of
diameter-based queries.
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Figure 5.5: Query location distribution.

Query location diameter

The size of the queried circular area, described with a diameter. It can
be tested on the same data set by querying various area sizes. For this,
we can consider querying areas with diameter sizes as low as 1 meter
up to 500 kilometer. The larger sizes in this range would encompass
our entire data set. The query locations originate from the same data
set as the locations described earlier, but represent a different subset.
They do share the same characteristics of being more likely to refer
to a location on a highway or a shared origin or destination. The set
of 5000 locations used for query evaluation can be seen in Figure 5.5,
with each of the query areas visualized with a diameter of roughly 10
kilometers. Higher color opacity represents a larger query density.

Nearest neighbor queries are instead influenced by the amount of requested
results.

Query nearest neighbor count
The number of requested nearby results. It can be tested with simple
integers. We have chosen to vary the number of requested results from
1 to roughly 500. The same location data set as described in ‘Query
location diameter’ will be used.

50



5.2.3 Other considerations

All DNS query and update operations are performed with a reasonable time-
out of 1 second. If no result is received before this timeout expires, the
operation is considered to have failed, and will not contribute to the overall
throughput.

In common situations, combining large data sets with large query areas
will result in a large number of matching locations. If we were to return
all results, we might encounter packet size limitations that prevent us from
doing so. DNS packets over TCP are limited to 65535 bytes because of a
2 octet size header, while UDP, which we use for our queries and updates,
was traditionally limited to 512 bytes [31, 32] and extended to 65535 bytes
by EDNS(0) [5]. However, as mentioned in Section 4.2.1, this maximum
UDP packet size is commonly limited to lower values because of the risk of
amplification attacks. The 4096 byte limit recommended in [5] is often used
instead.

In our testing setup, each PowerDNS eDNS server connects to a database
backend on another server. The latency between these servers can be mea-
sured to determine its influence on the other results. The ping command
was used from an EC2 instance to determine the communication delay be-
tween two servers in the same availability zone. Executing 20000 consecutive
ping requests showed that latency between servers in the same availability
zone lies within the range milliseconds with

5.3 Numerical results

For the sake of simplicity, we assume that the throughput and latency data is
normally distributed. This allows us to compute confidence intervals for the
data points. Performance in the graphs is displayed with a 95% confidence
interval ( ). Note that some graphs contain confidence intervals that
are too small to be visible.

In order to get reliable results for throughput of the system, it is nec-
essary to have reasonable packet arrival rate such that the system does not
wait for packets to arrive. On the other hand, the system should also not
be overloaded to the point where it is unable to reduce its internal buffer
or respond within timeout limits. To prevent the system from idling, it is
necessary to send multiple packets simultaneously. Initial tests have been
performed to evaluate the performance with different numbers of simulta-
neous packets. This is implemented as a thread pool, with each packet
being sent in its own thread (a ‘worker’). The results of evaluating different
number of workers for various combinations of query diameter and data set
size can be seen in Figure 5.6. As expected, employing more workers gen-
erally results in higher throughput, although with significant diminishing
returns. For every tested configuration, throughput converges to a certain
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Figure 5.6: Influence of concurrency on throughput (setup (a)).

rate where at least one non-buffer related performance bottleneck emerged,
such as limited processor power.

Even though higher number of workers do not negatively affect through-
put performance, we can see in Figure 5.7 that using an arbitrarily large
number of workers is not reasonable because of latency. Latency appears to
consistently increase when a larger number of workers is used. This happens
because the server has to divide its resources over all incoming requests, re-
sulting in longer processing times for each request. Based on these results,
we do not consider there to be an optimal number of workers, as even for
specific configurations it is a trade-off between throughput and latency. We
have opted to perform the rest of the evaluation with 8 concurrent workers.
At that number of workers, the majority of the potential performance in-
crease from concurrency has been achieved under most testing configurations
while having lower latencies than any higher number of workers.

5.3.1 Querying

Throughput and latency have been evaluated for every combination of setup
(shown in Figure 5.2), data set size (shown in Figure 5.3) and diameter. The
throughput and latency of the system with setup (a) are shown in Figure 5.8
and Figure 5.9, respectively. One may note that both the query diameter
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Figure 5.9: Latency (setup (a)).

and data set size have a significant influence on the results. Given that
a throughput of around 240 queries per second is achieved for both the
data set of 100 and 1000 locations with low diameter sizes, we can conclude
that the performance is not limited by spatial computations at this point.
Rather, it is likely that network performance or packet handling overhead
are responsible for the bottleneck. Additionally, the graphs show that for
large diameter sizes and large data set sizes, the throughput approaches 0
and the latency approaches 1 (the specified timeout value). This indicates
that within the timeout limit, the system is not able to return a result with
a large amount of matching locations. The performance for queries applied
to the data set of 100 locations also appear to converge, but to different
values. This can be explained by the fact that queries with diameter sizes
larger than roughly 200 kilometers already encompass most of the location
points in the data set, so increasing the diameter further will not increase
the number of results.

The same experiment has been performed for nearest neighbor search as
an alternative to querying specific diameters. The results of this for setup
(a) are shown in Figure 5.10 and Figure 5.11. Similar to the results of the
diameter tests, performance between the data set sizes of 100 and 1000 is
close at lower nearest neighbor numbers. We also see that for the data sets
with 1000 and 10000 locations, the system is again not able to supply an
answer within the timeout limits, and throughput and latency converge to
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Figure 5.12: Throughput (100 locations).

their respective minimum and maximum values.

Equivalent comparisons have been made for other setups, but the graphs
for these will be omitted because they show the same patterns, with larger
data set sizes resulting in slower queries. Instead, we consider the perfor-
mance of identical data set sizes between different setups. This is shown for
the data set of 100 locations in Figure 5.12 and Figure 5.13. Performance
for setups (b), (c) and (d) are almost always lower than that of setup (a),
up to a point where they converge to a specific values. This result suggests
that setup (b) and (c)’s larger number of servers that need to be contacted
have a significant influence on performance for lower diameter values, while
other factors become more dominant for larger diameters. The impact of
larger diameters on setup (d) is lower, because it is able to distribute its
computational load over two servers. Figure 5.14 and Figure 5.15 show a
similar situation for 1000 locations.

With a data set of 10000 locations, shown in Figure 5.16 and Figure 5.17,
the performance of setup (d) rises above that of the other setups for small
diameters. This is likely the result of the system being able to divide its
spatial computations over the two different edge nodes. At a diameter of
around 100 meters, the performance becomes lower than setup (a)’s before
converging to the same value.

The same comparison between setups for nearest neighbor queries is
shown in Figure 5.18, Figure 5.19, Figure 5.20, Figure 5.21, Figure 5.22 and
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Figure 5.14: Throughput (1000 locations).

57




latency ()

)

throughput (

T T T T TTTTTT

T T T TTTTTT

—e—setup (a
—=—setup (b
—e—setup (c
—+—setup (d

)
)
)
)

T T T TTTTTT

T T T TTTTTT

T T T T TTTT

diameter ()
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Figure 5.20: Throughput (nearest neighbors, 1000 locations).
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Figure 5.22: Throughput (nearest neighbors, 10000 locations).
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Figure 5.23: Latency (nearest neighbors, 10000 locations).

Figure 5.23. One interesting phenomenon occurs for the 100 data set size
at around 50 requested nearest neighbors. At this point, the performance
of setup (d) does not decrease further for higher requested numbers of near-
est neighbors. The explanation for this is that setup (d) has its locations
divided over two edge nodes. Because the parent server has no knowledge
about which of its child servers contains the nearest neighbors, it asks both
servers to give it their 50 nearest neighbors, out of their roughly 50 loca-
tions total each. Requesting any more nearest neighbors has no additional
computational cost, because there simply are not more locations available.
As such, the performance stays consistent.

Results for the other data set sizes roughly follow the patterns discovered
in the evaluation for diameter-based queries. When a low number of LOC
records is stored in the system, involving fewer servers in the resolution
appears to be favored, because network delays have the largest impact on the
performance. Queries performed on the system when it contains significantly
more records tend to perform better on setup (d)’s load distribution, up to
a point where the portion of packets that does not fit within the specified
timeout window becomes large enough that setup (a)’s single server is able
to more reliably provide a result.
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Figure 5.24: Updating throughput (100 locations).

5.3.2 Updating

We have evaluated three aspects of the dynamic location functionality: in-
sertion, updating and removal. The insertion operation involves adding an
A record with an IP address, as well as an entity’s initial location in a LOC
record. For updating a location, we assume that an entity’s IP address has
not changed. The updating operation therefore involves removing an old
LOC record and replacing it with one containing a new location. The re-
moval operation removes both the last know location in the form of a LOC
record, but also the associated A record. The three different aspects there-
fore each involve two database operations. The aspects are evaluated as
follows for a data set with z locations. For each location, a DNS Update
message is sent that inserts both a fictional IP address and a location. Then,
all  locations are updated with individual DNS Update messages that re-
move the old LOC record and insert the new one. Finally, DNS Update
messages are sent that remove all entities.

As with the query evaluation, all operations are executed with 8 con-
current workers to increase utilization. Storage of locations is also dis-
tributed over different edge nodes depending on geographical coordinates,
as described in Section 5.2.

In Figure 5.24, Figure 5.25, Figure 5.26, Figure 5.27, Figure 5.28 and
Figure 5.29, we show the performance of the three mentioned operations
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Figure 5.28: Updating throughput (10000 locations).
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when executed on different setups and using different data sets. We can
see that on the data set with 100 locations, the insertion operation has the
highest latency, followed by the updating operation. The removal operation
is processed the fastest. As expected, introducing more depth to the server
tree results in a higher latency, because each parent server needs to be up-
dated with the renewed bounding boxes of its direct child servers. Setup (d)
shows that the system scales well in width. Dividing LOC records over mul-
tiple servers appears to increase performance, even if it includes the extra
operation of updating the parent server compared to setup (a). Updating
locations becomes significantly more expensive when the amount of stored
locations increases. Comparatively, the insertion and removal operations
are not affected as much by a larger data set. At least part of this discrep-
ancy can be explained by observing that the updating operation is always
performed on a system that contains all locations in a data set of size
The insertion and removal operations work on a system that contains 0 to

entities, depending on how many entities have already been inserted or
removed.
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5.4 Conclusions and Recommendations

We can make general conclusions about the performance of the system based
on the results. For all evaluated combinations of input parameters, reduced
overall performance was observed after introducing additional nodes into the
setup by enlarging the vertical size of the domain name space tree. This is
expected, as it increases the number of serves that need to be accessed, with-
out providing any potential performance benefits. Conversely, because our
evaluation method divides locations over all edge nodes, horizontally scaling
the system with an additional server frequently improved performance. This
allowed the system to balance its load over the multiple servers and utilize
the additional resources. Having fewer servers involved still provides the
best performance when a low number of locations is stored in the system,
but at 10000 stored locations, multiple edge nodes typically provided the
best throughput and latency. Based on these observations, we recommend
that the introduction of additional servers should be considered when the
number of stored locations per server exceeds 1000.

It is also possible for us to compare the location updating results to what
would be required for our selected use case. Recall that in Section 5.2, we
determined the maximum expected throughput to be 3.63 location updates
per second, based on the busiest 60 second period in the data set. In total,
the data set contains close to 1000 unique vehicles. Therefore, we look at
the performance results of our evaluation with 1000 locations. This shows
us that depending on the deployed setup, all operations can be performed
with a throughput of 40 to 100 updates per second. This vastly exceeds the
estimated use case requirement. Setup (a) and (d) show similar performance
results for the chosen input parameters. However, as mentioned, setup (d)’s
horizontal scaling would provide superior performance if Simacan were to
consider tracking significantly more vehicles.

5.5 Towards large-scale adoption

The eDNS protocol as defined in previous works, as well as the additions
made in our research, make significant changes to the standards defined in
the DNS protocol. Although we have shown that eDNS support could be
implemented in name server software using an abstraction layer, the query
format and other elements of the protocol might be too big of a change to be
considered for acceptance as a recognized DNS extension. Most of the issues
are outside of the scope of our research, but in the following section we will
briefly discuss some of the issues with the eDNS protocol as implemented
in the prototype that would prevent it from being used in production, as
well as possible solutions for these problems. To our knowledge, eDNS in its
current state is not used in any production environments. Further changes
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to the protocol that break backwards compatibility should therefore not
have a significant impact.

Standard query format

The eDNS query format makes use of whitespace and parenthesis characters.
This was purposely done to mimic the LOC record format, and to prevent
non-eDNS queries from conflicting with eDNS queries. However, this choice
might severely limit adoption. We could instead use a prefix, such as ‘loc-’,
using characters that are allowed in the DNS protocol to replace the paren-
theses. Likewise, spaces could be replaced with dashes (-’). We provide
this format as a suggestion for use in future eDNS research. In practice, a
query could look as follows, representing the coordinate ‘51 55 37 N 5 12 52
E’ with a diameter of 100 meters:

loc-51-55-37n5-12-52e100.domain

Alternatively, degrees with an arbitrary decimal precision could be used
instead of the Degrees Minutes Seconds (DMS) format, with the dash re-
placing the decimal separator. For instance, referencing ‘51.927 N 5.214 E’
with a diameter of 100 meters could be defined as:

loc-51-927n5-214e100.domain

Multiple label usage

Our research used multiple labels to represent complex shapes, based on a
recommendation by previous work [48]. This usage conflicts with the hierar-
chical philosophy of DNS, where each label should represent a subsection of
the label to its right. If we were to constrain our location specification to a
single label, the allowed complexity of the shapes would be significantly low-
ered because of a label’s size limitation (Section 2.3.3), but not restricted to
only a circle. The following query could be used to used to create a line that
follows the coordinates ‘51.927 N 5.214 E’; 51.927 N 5.325 E’, and ‘51.816
N 5.214 E’, again with a diameter of 100 meters. We assume here that the
standard query format change discussed previously has been applied as well.

loc-51-927n5-214e51-927n5-325e51-816n5-214e100.domain

If we were to reduce the precision of the coordinates, more than three coor-
dinates could be listed within the size limitations of a label.

It may be possible to encode the coordinates in a way that is more
efficient than the previously discussed format. One method involves storing
the initial coordinate fully, but storing subsequent coordinates as an offset
to either the first or the preceding coordinate. Given the fact that multiple
coordinates in a query are likely in close proximity to each other, this would
allow us to omit a coordinate’s most significant figures.
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Another approach would be to make use of the full range of characters
allowed in DNS labels. As mentioned in Section 2.2.1, a label may make use
of alphanumeric characters as well as the dash character. Although both
upper case and lower case letters are allowed, the standard mentions that
they should be treated as if identical [32]. Even with this limitation, the
number of characters available for use exceeds the number of characters used
to represent decimal numbers in text. This makes it theoretically possible
to use a packing method for compression at the cost of human readability.
Finding an optimal compression algorithm for this use case is outside of
the scope of our work. Allowing the use of more characters would open
the possibility for greater information density. A protocol to store binary
labels in DNS exists [4], but is considered experimental due to difficulties in
deploying support for it [5].

Distance pseudo-RR

Our nearest neighbor implementation makes use of a DST record based
on the TXT record to communicate a result’s distance to the query area
between name servers. It is not stored in the zone file, and is therefore a
pseudo-RR that is only attached to the ‘additional data’ section of a DNS
request. A possibly more elegant way to implement this functionality would
be to make use of the EDNS(0) OPT record [5]. This record already contains
the pseudo-RR properties that are desired for the DST record. Only one
OPT record is allowed per message, but it may include several options in
the form of attribute-value pairs. Whether this record can fulfill the same
role as the DST record can be researched in future work.

Privacy concerns

It may be considered undesirable, for privacy reasons, that the locations of
every entity is accessible upon querying a server with a large enough area.
These entities are uniquely identified by their hostname. For the purpose
of sending messages to every entity within a geographical area, it might not
be needed to get an identifiable hostname in addition to their corresponding
IP addresses. We can consider obfuscating the hostnames to make them
non-identifiable when queried, or even to return all results as having the
query name as their names. For instance, if a client requests A records
for 1loc-51-927n5-214e100.domain, all [P addresses would be returned as
falling under the same loc-51-927n5-214e100 hostname. Further research
on the effects of this change should be done.

eDNS name

Although not directly related to compliance, we believe that changing the
eDNS name to a more suitable one will aid in its acceptance. For one, the
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eDNS name is easily confused with that of the EDNS(0) standard, a more
widely used DNS extension. Secondly, the ‘extended’ part of the eDNS name
does not cover the geographical aspect of the protocol well.
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Chapter 6

Conclusions and Future work

In this report, we have described the design, development and evaluation of
a functional eDNS system, preceded by extensive background research on
the relevant technologies and concepts in Chapter 2. Recalling the research
questions, listed in Section 1.1, we highlight here the conclusions of our
research in order to fulfill them.

In previous implementations of eDNS, it was only possible to query areas
with a circular or sperical shape. We have described an extension to the
eDNS query format in Section 3.1, building on suggestions in previous works.
This allows us to specify polygonal or line shapes as query areas. In practice,
these shapes are better suited for addressing highways than circular shapes.
The implementation details of this addition are discussed in Section 4.2.

To solve the problem of finding nearby results, we have described an
approach (Section 3.2) and implemented the approach (Section 4.2.2) for
nearest neighbor resolution functionality. This involves adding an argument
to an eDNS query and introducing the DST pseudo-RR. Any number of
nearby results can be requested. As explained in Section 3.2, this can be
used in cases where vehicles need to be addressed via RSUs, but where RSUs
provide incomplete coverage of an area.

We have reasoned about (Section 3.3, Section 3.5), and implemented
(Chapter 4) eDNS in the PowerDNS DNS name server application, using
a PostGIS enabled PostgreSQL database as a back-end. Using a database
back-end with geographical capabilities prevents an eDNS name server appli-
cation from needing to implement complex spatial operations. In addition,
several DNS name server applications already use a database for resource
record storage. Implementation of eDNS can therefore be simplified.

After previous works have shown that updating individual entities with
new locations is possible, we have described in Section 3.4, and subsequently
implemented the concept of dynamicity in eDNS using the standardized
DynDNS method (Section 4.2.1). This allows us to track the locations of
vehicles in terms of LOC resource records. It involves keeping the BND
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resource record updated, and notifying parent name servers about updated
coverage areas.

The performance of various eDNS operations is measured in terms of the
throughput and latency metrics, as described in Section 5.2.1. Besides eval-
uating both the querying and updating functionality of eDNS, we evaluate
different server setups and input parameters (Section 5.2.2). In particular,
the influence of the size of the location data set, as well as the diameter of
queried areas, is tested extensively. Furthermore, the number of concurrent
requests has been shown in Section 5.3 to influence the performance.

Performance has been evaluated for queries and updates in Section 5.3.1
and Section 5.3.2. The performance is shown to be strongly dependent on
server setup, as well as the input parameters described in Section 5.2.2 —
this makes it difficult to summarize the performance evaluation of the sys-
tem. However, the test results show that in most of the evaluated scenarios,
scaling the width of server setups frequently influences the performance pos-
itively, while scaling in height always influences the performance negatively.
Distributing LOC records over multiple servers allows the system to perform
its calculations faster, potentially improving both throughput and latency.

Section 3.6 addresses two possible use cases for eDNS in Simacan prod-
ucts. The first use case involves storing the locations of RSUs in an eDNS
system, while the second stores locations of individual OBUs in vehicles. We
have focused on the second use case in our research, because it allows us to
evaluate the dynamicity aspect of our work.

We can compare the location updating requirements of our selected use,
described in Section 5.2, to the results of our evaluation in Section 5.3.2.
The number of vehicles that would need to be tracked is close to 1000,
which corresponds to one of our tested location data set sizes. Depending
on the chosen server setup, the evaluation indicates that our eDNS system
supports 40 to 100 updates per second. This vastly exceeds the expected
maximum update rate of 3.63 updates per second.

We have discussed several potential modifications to the eDNS protocol
in Section 5.5. Notably, we discuss changing the query format to increase
compliance with the existing DNS protocol. However, while we have made
several suggestions to help the adoption of eDNS, we have not evaluated
them extensively.

6.1 Future work

As mentioned, we have briefly touched on potential modifications of the
eDNS protocol to increase the compatibility with the DNS protocol in Sec-
tion 5.5. This includes changing the query format to only include characters
that are allowed by default; restricting the geographical part of a query to a
single DNS label; implementing the communication of distances through the

72



existing OPT record; considering privacy; and changing the protocol name.
The viability of the proposed changes can be evaluated in future work. We
believe that this is an important step to increase eDNS acceptance.

The scalability of the system can be evaluated more extensively. In our
evaluation the total number of employed servers has been restricted to 3
for budget reasons. Due to the need for a single apex node in a tree, the
maximum number of servers in one tree level was 2. Evaluating horizontal
scalability further could provide new insights.

Additionally, future work may focus on the performance of the protocol
and implementation. For one, performance of our prototype and the older
NSD based implementation can be compared. Secondly, although we have
shown our prototype to exceed the requirements of our chosen use case, pos-
sible performance improvements may be researched to enable more complex
use cases. In our work, we have considered geocasting to RSUs and OBUs.
Keeping track of the location of every single vehicle on the road networks
on a global scale will greatly increase the performance requirements. In the
context of IoT, it may also be of significant interest to be able to store the
locations of other entity types.
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