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Abstract

Auroacoustic wind tunnel experiments are nowadays performed with phased
array measurements. A large array of microphones captures data and to-
gether this data can be processed to gain insight the behaviour of the acoustic
sources of the test subject. The regular way to prosses this data is by con-
ventional beamforming. Comparing the cross specra of the microphones with
a reference monopole source tells a lot of the acoustic sources the test object
produces.

Using this beamforming data in the DAMAS deconvolution method gives
even better insight in acoustic behaviour. DAMAS deconvolution is an iterative
method which can predict the locations of acoustic sources in a much better
way than conventional beamforming.

There are two possible ways to extract amplitude of sources out of con-
ventional beamforming or DAMAS plots; using an integration method of using
the peak levels of the plot. When investigating line sources, the peak level
method gives an off result. The height of this off result seems to differ for
various coherent lengths of the line source.

A calibration function is made, which compensates for this off result, so the
peak level method can also be used to find the strength of line sources. This
calibration function is made for several coherent lengths.

Also a method is discussed to extract coherence length out of experimen-
tal data. However, this can only be done on a visual manner, therefore the
possibility of making an error is high. Due to this error in coherence length es-
timation, the wrong calibration value can be picked, which results in an error
up to 2dB.
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NOMENCLATURE

Ann′ Influence of beamforming characteristics between grid points n and n′

B Beamwidth

Gmm′ Cross spectrum between microphone m and m′

I Sound intensity

M Mach number

N Total number of grid points

·′ Fluctuation of variable ·

·H Hermitian operator

i Imaginairy unit;
√
−1

Â DAMAS matrix with Ann′ components

ω Angular frequency

ρ Density

Ĝ Cross Spectral Matrix (CSM)

d̂ Steering vector

ê Steering vector

u Velocity

c Speed of sound

f Frequency [Hz]

m Microphone identy number in the array

m′ Same as m, but indepandant varied

m0 Total number of microphones in the array

n Grid point identy number in the array

n′ Same as n, but indepandant varied

p Pressure

t Time
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1. Introduction

The last 100 years a lot has changed in our ways of transportation. In the
past men had to use roads, railways or waterways to transport passengers
and goods, but since the invention of the aircraft a whole new era begun.

Nowadays aircraft are widely used for transportation. The whole world is
easily accesible for work or vacations. This great increase in aircraft usage
however, also has some downsides. Commercial airfields, usually located
in densed areas, are coping with noise problems. An aircraft at takeoff or
landing produces quite an amount of noise, and with lots of departing and
arricing flights per airfield, the people (and animals) living nearby are having
quite some noise pollution. This is why airfields have to comply with strict
noise regulations.

If an aircraft produces less noise at takeoff or landing, the effective capacity
of the airfield increases, which means more profit for the airfield and econom-
ical growth for the whole region. At the takeoff of an airplane, the turbines are
the dominant factor in the production of sound. At the landing however, the
sound produced by the wings (flap and slat) and landing gear are the domi-
nating sources.

Aircraft manufacturer Embraer and the aeronautica group of the University
of São paulo together have started a collaboration project - the Silent Aircraft
Project. The goal of this project is to investigate (and reduce) the sound cre-
ated by flap, slat and landing gear of Embraer aircrafts. To gain insight in
the behaviour of flap, slat, and landing gear induced sound, both numerical
simulations and wind tunnel experiments are performed.

Nowadays acoustic wind tunnel experiments are performed with a micro-
phone array. The data from a great amount of microphones is combined to
find the acoustic behaviour of the test subject. The difference in phase and
amplitude of the different microphone signals is used to find location and am-
plitude of the sound sources, therefore this technique is called phased array
testing.

The data proccessing thechnique used to locate sound sources and ampli-
tudes is called Conventional Beamforming. This process can acquire, given a
certain grid, the locations where there is a high probibility of finding an acous-
tic source. However, this technique has some downsides; the peak levels of
line sources are presented wrong for example [1].

To gain even better insight in acoustic behaviour a method called DAMAS
deconvolution is used [4]. This method uses the conventional beamfoming
spatial plots for its expectation of source locations. The spatial detail of this
method is much larger than the results of the conventional beamforming plots.
However, also DAMAS deconvolution copes with the problem the peak levels
of line sources are wrong.

To solve this problem a calibration function is made. For different frequen-
cies the off-result is calculated, so we get an insight how much the conven-
tional beamforming of DAMAS deconvolution method is off. Not only frequency
seems to have an influence in the value of the error, but the coherence length
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of the line source also seems to contribute. Therefore the calibration function
is made for several coherent lengths of line sources.

Also a method is discussed to extract the coherence length of a line source
from wind tunnel experiments. A modified beamforming algorithm is used to
compare the coherence of a certain grid point with a reference point.
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2. Sound propagation

Sound can be seen as a weak pressure disturbation which travels through a
fluid. The perturbation moves through the fluid as a wave and causes small
variations in the velocity and density of the fluid.

Altough the acoustic pressure fluctuations are small compared to the mean
(atmoshperic) pressure, the range in amplitudes is very large. This makes it
convenient to express pressure amplitude p on the logarithmic scale:

SPL(dB) = 20 log
prms

pref
(2.1)

where SPL is the sound pressure level in decibels, prms the root-mean-
squared value of the pressure and pref the reference pressure of 2 · 105Pa.

Since disturbances are small, the variables have to satisfy the linearized
equations of fluid motion. For sound propagation inertial forces are usually
much larger than viscous forses. Effects of viscosity can therefore be ne-
glected when examining acoustic wave propagation.

2.1 Wave equation

Consider a fluid with velocity ut, density ρt and pressure pt. From the conser-
vation of mass it follows that

∂ρt
∂t

+∇ · (ρtut) = 0 (2.2)

Conservation of momentum gives

∂(ρtut)

∂t
+∇ · (ρtutut) +∇Pt = f (2.3)

where ∇ is the nabla operator (∂/∂x, ∂/∂y, ∂/∂z), f the density of the
external force field acting on the fluid and Pt = ptI − τ is the fluid stress
tensor. By neglecting viscosity and using the conversation of mass (2.2) the
conservation of momentum (2.3) can be written as the Euler equations [5].

ρt

(
∂ut

∂t
+ ut · ∇ut

)
+∇pt = f (2.4)

Considering small perturbations of velocity, pressure and density, equation
(2.2) and equation (2.4) can be linearized. We write ut = u0 + u, pt = p0 + p
and ρt = ρ0 + ρ, where the subscript ’0’ indicates the uniform mean value and
the quantity without subscript represent the fluctuations. Assuming a constant
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mean velocity u0 = U and f = 0, the linearized equations for conservation of
mass and momentum can be rewritten as

∂ρ

∂t
+U · ∇ρ+ ρ0∇ · u = 0 (2.5a)

ρ0

(
∂u

∂t
+U · ∇u

)
+∇p = 0 (2.5b)

If the uniform quantities U , p0 and ρ0 are known, equations (2.5) only pro-
vide four equations for the five unknowns u, p and ρ. The additional informa-
tion can be found in the constitutional equations. We assume the fluid to be in
a state of thermodynamic equilibrium. This means we can write the pressure
pt as a function of the density ρt and entropy st.

dpt =

(
∂pt
∂ρt

)
s

dρt +

(
∂pt
∂st

)
ρ

dst (2.6)

Momentum and heat transfer are controlled by the same molecular colli-
sional prosess. If we neglegt viscosity, we should also neglect heat transfer,
and therefore the flow is isentropic. This means the entropy of a fluid particle
remains constant and therefore dst = 0. By defining the speed as sound as
c2 = (∂pt/∂ρt)s, equation (2.6) becomes

p = c20ρ (2.7)

where c0 = c(p0, ρ0) is used to approximate the speed of sound c.
Using equation (2.7) we can write ρ in terms of p. Using this in equation

(2.5a) and substracting the divergence of equation (2.5b), velocity u is elimi-
nated and the convective wave equation is obtained.

1

c20

(
∂

∂t
+U · ∇

)2

p−∇2p = 0 (2.8)

For many application this equation can be simplified by assuming zero
mean flow (U = 0). This equation is called the wave equation of d’Alembert.

1

c20

∂2p

∂t2
−∇2p = 0 (2.9)

Transforming d’Alemberts wave equation to spherical coordinates and as-
suming the pressure field is axi-symetric gives the following equation. The
product rp satisfies the one-dimensional wave equation.

1

c20

∂2rp

∂t2
− ∂2rp

∂r2
= 0 (2.10)

Solving this equation gives the expression for an outward propagating har-
monic spherical wave.

p(r, t) =
Aeiω(t−r/c0)

r
(2.11)

This wave travels outward at speed c0. Its amplitude is inversely propor-
tional to the distance.
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2.2 Harmonic point source

Up now we have considered propagating waves whose behaviour is governed
by the homogeneous wave equation (2.9). This equation however, only de-
scribes the propagation of sound generated at boundaries, incoming sound
fields from infinity or sound due initial perturbations. A sound source q(x, t) is
defined, which produces sound at a certain location x.

1

c20

∂2p

∂t2
−∇2p = q (2.12)

The source region, where q is non-zero, is separated from the sound field,
where q is zero and the propagation of sound waves is governed by the ho-
mogeneous wave equation. Where q is non-zero the sound field is uniquely
determined by the given initial and boundary conditions.

q(x, t) = δx− xsσs(t) (2.13)

Where δ is the Dirac delta funcion, which is zero everywhere, and nears
infinity when its argument is zero. σs(t) is the source behaviour.
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3. Coherence

In this chapter the meaning of coherence is explained, but to do so first the
subject interference will be examined.

3.1 Interference

A pressure field often contains sound waves from different sources. Assume
the spatial parts of two pressure waves are described by:

p1 = A1e
−iφ1 (3.1a)

p2 = A2e
−iφ2 (3.1b)

where φ1 and φ2 are functions of position and represent the phase shift
of the waves. The superposition principle may be applied and the resulting
pressure field becomes merely the sum of the two individual fields.

p = p1 + p2 (3.2)

The observed quantity is, however, the sound intensity.

I = |p|2

= |p1 + p2|2

= A2
1 +A2

2 + 2A1A2 cos(φ1 − φ2)

= I1 + I2 + 2
√

I1I2 cos(∆φ)

(3.3)

where ∆φ is the difference in phase between the two waves. As it can
be seen, the sound intensity does not become merely the sum of the two
intensities. The term 2

√
I1I2 cos(∆φ) is called the interference term [2].

Detection of sound by a microphone is an averaging process in time. In
developping equation (3.3) no averaging over time is done, because it is as-
sumed the phase difference ∆φ is constant in time. This also means it is
assumed p1 and p2 have the same frequency.

3.2 Wave trains

One way to illustrate sound waves emitted by a real source is to picture it as
multiple sinusoidal wave trains with finite length, and a randomly distributed
phase difference between them. Figure 3.1 shows two wave trains of the
partial sound waves described in equations (3.1a) and (3.1b). The two wave
trains have equal amplitude and length Lc. Between the two wave trains and
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p1

Lc Lc

p2

(a) Partial wave 1 is the same as partial wave 2

p1

Lc Lc

p2

(b) Partial wave 2 is completely different as partial wave 2

Figure 3.1: Wavetrains

abrupt, arbitrary phase change takes place. In figure 3.1(a) both wave trains
have traveled equal distance. Between the two waves, the phase difference is
equal in time. The intensity of these waves is given by equation (3.3).

Since the phase difference between the two partial waves is absent, the
sound intensity of the field becomes I1 + I2 + 2

√
I1I2. When both partial

waves have the same sound intensity I0, the sound intensity becomes 4I0. In
this case the partial waves are called fully coherent.

In figure 3.1(b), the second partial wave has traveled exactly one wave
train length (Lc) further then the first partial wave. The sound intensity is still
given by equation 3.3. The phase difference now fluctuates randomly as the
wave trains pass by. This means the part cos∆φ seen in the interference term
fluctuates between −1 and +1. When averaged over many wave trains, the
interference term becomes zero, and the observed intensity will be I1 + I2.
If both partial waves have the same intensity I0, the amplitude of the field
becomes 2I0. This case is called the incoherent case. Cases between fully
coherent and incoherent are called partial coherent. However, in this report
only the incoherent and fully coherent cases will be examined.

Figure 3.2 represents a line source. When looking at some points located
at the line source at position xi, we can tell something about the coherence
level between these points. When the distance between the two points is
small, the level of coherence is usually higher as the coherence level between
points which have more distance between them. If the points are close to-
gether, they usually emit pressure waves which are much more lookalike, and
thus are more coherent.

A study in beamforming and DAMAS deconvolution Page 9



Line source
x1 x2 x3

High coherence
Low coherence

Figure 3.2: Line source
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4. Beamforming

In aeroacoustic testing, a model is exposed to a flow. This flow causes the
model to produce a complex array of sounds. Often several parts of the model
have interesting noise production worth examining. These different sources
create sounds in a wide frequency spectrum and different tone.

A technique often used to get an insight in the location and strength of
these different sources is phased array testing. In phased array testing, sev-
eral microphones can be used together to extract source location and strength
information from noisy, non-acoustic wind tunnels.

The basic phased array processing step is called beamforming. Beam-
forming has a long history in radio atronomy, but can also be applied to acous-
tic problems. The beamforming process uses a mathematical model for the
acoustic propagation from each grid point to each microphone. Cross spectral
data between different microphones is used to gain insight in acoustic source
distribution.

4.1 Fundamentals of conventional beamforming

The general idea of beamforming signal processing is to compare the data
measured by the array of microphones with a reference pressure. As ref-
erence pressure an harmonic monopole source is taken. By minimizing the
squared norm of the difference between these two quantaties, a good esti-
mate of the source location and strength is given.

In equation 4.1 p̂ represents the spatial pressure component of the ref-
erence pressure, a singal emitted by a monopole source at location rs at a
specific frequency f . The variable as represents the complex amplitude of this
monopole source, which may vary for different frequencies and positions.

p̂(as, rs, r) =
ase

−ik|r−rs|

4π|r − rs|
(4.1)

Equation 4.1 can also be written as êas, where each term of column vector
ê represents the reference signal for a different microphone. ê is also called
the steering vector.

All the k-th Fourier transform coefficients of a real signal recorded by the
microphone array are stored in column vector P . The length of the vector
equals the number of microphones. By defining a cost function J (4.2), an
estimate of as can be made by minimizing this function.

J(ω,as, rs) = ||êas − P ||2 (4.2)

Using u = êas − P and the identity shown below (4.3), the derivative of
the cost function (4.2) can be expressed.

d

du
(uHu) = 2uHI (4.3)
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In this equation I represents the identity matrix.

dJ

das
=

dJ

du

du

das
= 2(êas − P )H ê (4.4)

The cost function is minimal if derivative of it (4.4) is zero. Using the identity
AHB = ABH this can be rewritten to:

êH êas = êHP (4.5)

Which leads to the least square solution of as.

ãs = (êH ê)−1êHP =
êHP

||ê||2
(4.6)

Below the cost function J is expanded in terms of as.

||êas − P ||2 = (êas − P )(êas − P )H

= (as
H êH − PH)(êas − P )

= as
H êH êas − 2as

H êHP + PHP

(4.7)

Using the least square solution of as gives:

J(ω, rs) = PHP − (êHP )H(êHP )

êêH
(4.8)

The term PHP represents the sum of all auto spectra of the array. Be-
cause it is derived directly from the external sound field, it does not depend
on the parameters used to model the acoustic field, and can be seen as a
constant in this formulation.

I(ω, rs) =
(êHP )H(êHP )

êH ê

=
êH

||ê||
PPH ê

||ê||

=
êH

||ê||
Ĝ

ê

||ê||

(4.9)

The matrix Ĝ is called the cross spectral matrix (CSM), and contains the
time averaged data of the microphones. When there are m0 microphones
used in the array, Ĝ will have an m0 ×m0 size.

Ĝ =


G11 G12 · · · G1m0

... G22

...
...

. . .
...

Gm01 · · · · · · Gm0m0

 (4.10)

By maximizing imaging funtion I, the cost function J is minimized. In prac-
tice, the function I is estimated over a discrete mesh domain to create one
spatial map of beamforming for each scanning frequency. In the final beam-
forming map, the strengthiest peaks indicate the regions in which there is a
high probability of finding sound sources.
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Figure 4.1: Wavefront in uniform flow

4.2 Cross Spectral Matrix data

When doing wind tunnel experiments, large amounts of data are obtained.
All microphones gather data during the time of the experiment Ttot. To gain
insight in the acoustic behaviour of the flow, the data is time averaged. As
stated in section 4.1, first the Fourier transform of each microphone is taken.
This gives different data sets per frequency f , which are ∆f apart from each
other. Afterwards, each data sample is divided into several blocks of time T .

Gmm′(f) =
2

KwsT

K∑
k=1

[PT
mk(f, T )Pm′k(f, T )] (4.11)

The cross spectrum is averaged over K block averages. The term ws is a data
window weighting constant - often Hamming windowing is used.

4.3 Accounting for uniform flow

In the determination of steering vector ê, it is assumed the sound waves
pass through a non-moving medium. However, in windtunnel experiments the
medium (air) moves at a certain speed U . To take acount for this, a correction
to steering vector is made.

Assume the time it takes for a sound wave to travel from the source to
the microphone, in the non-moving medium case is ∆t. When the medium
moves uniformly at a certain speed U , the sound waves travel a distance U∆t
downstream.

Figure 4.1 gives a scematic overview of the situation. xs is the location
of the source. Because the sound waves move downstream, the observer x
thinks the source is located at xe.

Rewriting this in terms of mach number M , gives a new corrected steering
vector.

ê =
R

rc
e−i2πfT (4.12)
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Where R and rc are corrected with the Doppler amplification factor 1 −
M2. rc is the corrected distance from the observing point to the center of the
coordinate system.

rc =
√
x2 + (1−M2)(y2 + z2) (4.13)

R is the corrected distance from observing point the the source location.

R =
√
(x− xs)2 + (1−M2)((y − ys)2 + (z − zs)2) (4.14)

T =
−M(x− xs) +R

(1−M2)c
(4.15)

Using this steering vector ê the system is adapted for uniform flow of mach
number M .

4.4 Sidelobes

The output of the beamform algorithm relies ofcourse on the sound sources.
However, when sound source is taken constant, differences in the spatial
beamforming map can be seen for different frequencies and array designs.
At higher frequencies, small peaks can be seen on locations that are not at a
sound source. These small peaks are called sidelobes. The main lobe is the
is the peak resulting from the sound source.

In figure 4.2 the sidelobe effect can be seen for different frequencies. The
figures clearly show the sidelobe effect increases for increasing frequencies.
At 5000Hz almost no sidelobes are seen, but at 20000Hz the sidelobes are
almost at the same strength as the main lobe.

The sidelobe effect can be resolved my putting a treshold on the beam-
forming map. Every value which is a set value lower that the highest peak
level, gets removed. This treshold is often called dynamic range. It should be
noticed that by using a treshold, it is also possible to remove main lobes with
less strenght than the strongest main lobe.

4.5 Noise and reflections

When performing acoustic experiments, it is impossible to have the perfect
conditions. All kind of imperfections make it difficult to compare experimental
results with the theory, which asumes a perfect anechoic wind tunnel facility
and no noise.

No windtunnel is completely anechoic, so the microphone array will notice
the reflections of the sound waves against the wind tunnel walls. However, us-
ing good isolation against the walls these reflections can be greatly reduced.
Reflections of sources are fully coherent with their origional source. In chap-
ter 8 this property is used to to find reflections or sidelobes.

Intermittend sounds, like people talking outside the windtunnel, are random
and can be took out by time averaging.

The microphones are usually flush-mounted in the wall. At the wall, a
turbulent boundary layer occurs. The microphones will therefore detect the
hydrodynamic pressure fluictuations caused by the boundary layer. Since this
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Figure 4.2: Sidelobes at different frequencies
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noise is generally incoherent from one microphone to the other, it will only
appear in the auto spectra of the CSM. Removing the auto powers (Diagonal
Removal) of the CSM, can remove this floor of noise from the beamforming
spatial maps.

The suspension of the test subject often causes fluctuation in the flow, and
therefore pressure fluctuations. This is a problem that cannot be overcome.
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5. DAMAS deconvolution

The processing of array data with the conventional beamforming technique
(chapter 4) is burdened with considerable uncertainty. The Deconvolution Ap-
proach for the Mapping of Acoustic Sources (DAMAS) removes beamform
characteristics from the output presentation. Using the DAMAS deconvolu-
tion method, misinterpretations are reduced when quantifying position and
strength of acoustic sources.

First an inversed beamforming problem is defined, which results in a set of
linear independant equations. Afterwards these equations are solved using a
special iterative algorithm.

5.1 Defenition inverse problem

The pressure transform Pm of microphone m is related to a modeled monopole
source located at position n.

Pm:n = Qne
−1
m:n (5.1)

The term e−1
m:n is simply the inversed steering vector. The product of pres-

sure transforms now becomes

PT
m:nPm′:n = (Qne

−1
m:n)

T (Qne
−1
m′:n)

= QT
nQn(e

−1
m:n)

T e−1
m′:n

(5.2)

When all there cross spectra are stored in a matrix, the modified CSM
Ĝnmod for a modeled source at grid point n is obtained. This CSM only con-
tains data from grid point n.

Ĝnmod = Xn


(e−1

1 )T e−1
1 (e−1

1 )T e−1
2 · · · (e−1

1 )T e−1
m0

(e−1
2 )T e−1

1 (e−1
2 )T e−1

2

...
. . .

...
(e−1

m0
)T e−1

m0

 (5.3)

Taking the sum over all grid points, gives the total modified CSM Ĝmod.

Ĝmod =
∑
n

Ĝnmod (5.4)

Using this modified CSM in the conventional beamforming expression (equa-
tion 4.9) gives:
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Inmod
(ê) =

[
êH

||ê||
Ĝmod

ê

||ê||

]
n

=
ên

H

||ên||
∑
n′

X̂n′ [. . . ]n′
ên

||ên||

=
∑
n′

ên
H

||ên||
[. . . ]n′

ên
||ên||

X̂n′

(5.5)

Where the bracketed term is the matrix stated in equation 5.3. This ex-
pression can be rewritten to:

Inmod
(ê) =

∑
n′

Ann′X̂n′ (5.6)

With

Ann′ =
ên

H

||ên||
[. . . ]n′

ên
||ên||

(5.7)

By equating Inmod
(ê) with processed from measured data I(ê) = In, we

have

ÂX̂ = Î (5.8)

The matrices Â, X̂ and Î have components Ann′ ,Xn and Yn, respectively.

5.2 Solution inverse problem

Equation 5.8 is a system of linear equations. If matrix Â would be non-singular,
the solution would be X̂Â

−1
= Î. For the present acoustic problems of inter-

est however, the matrix Â is usually ill conditioned (singular).
Special iterative solving methods, such as Conjugate Gradient method and

otherd did not give satisfactory results.
With the assumption the sources Xn are statistically independent, leading

to equation 5.8, it is known that Xn should all have a positive value. Using this
constraint in a very simple iterative method gave very good results [4]. This
iterative method is described below.

A single equation component of equation 5.8 is given by:

An1X1 +An2X2 + · · ·+AnnXn + · · ·+AnNXN = In (5.9)

Rearranging and using Ann = 1 gives:

Xn = Yn −

[
n−1∑
n′=1

Ann′Xn′ +

N∑
n′=n+1

Ann′Xn′

]
(5.10)

This equation is used in an iteration algorithm to find the source distribution
Xn for all grid points. The iteration algorithm is described below, where (i) is
the iteration index.
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X
(i)
1 = Y1 −

[
0 +

N∑
n′=1

A1n′X
(i−1)
n′

]

X(i)
n = Yn −

[
n−1∑
n′=1

Ann′X
(i)
n′ +

N∑
n′=n+1

Ann′X
(i−1)
n′

]

X
(i)
N = YN −

[
N−1∑
n′=1

ANn′X
(i)
n′ + 0

]
(5.11)

For the first iteration (i = 1), the initial values are taken Xn = 0. However,
taking initial value Xn = In gives little change in convergence rate. After each
X − n determination it is checked if the value is positive (or zero), if it isn’t the
value is set to zero. This iterative method seems robust and converge to the
solution.

It should be noticed the chosen grid space should match beamform charac-
teristics, to give a good distinction between In to make the seperate equations
linear indepandant. If the values of In are close together the system becomes
linear dependant and the solutions become off.

5.3 Application parameters

To get fast convergence rates with the DAMAS iterative proces, there should
be a good distinction between the beamforming values In. To describe this
distinction in mathematical terms, the term ’beamwidth’ is introduced. The
beamwidth B is defined as the diameter of the 3dB down output of the beam-
form map, compared to its maximum. For convential beamforming

B ≈ C(
R

fD
) (5.12)

where R is the distance from the array to the scanning plane, D is the array
diameter (figure 5.1) and C a constant.

The parameter ration ∆x/B and W/B appear to be most important for
establishing resolution and spatial extent requirements of the scanning plane.

The resolution ∆x/B must be fine enough such that individual grid points
along with other grid points represent a reasonable physical distribution of
sources. However, too fine distribution would require lots of computational
effort.

On the other hand, a too coarse distribution would render solutions of X̂
which would not show the required spatial detail.

Figure 5.1[4] shows some of the above mentioned parameters.

5.4 DAMAS results

In this section some results from the DAMAS deconvolution method are shown
and compared with results from conventional beamforming plots. For different
frequencies and number of iterations the results will be plotted.

Figure 5.2 shows the result of a modeled 100dB monopole source located
at the center of the grid after 10, 100, and 1000 iterations. Figure 5.3 shows
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Figure 5.1: DAMAS geometric parameters

Iterations 5000Hz 10000Hz 20000Hz
B 0.1523 0.0800 0.0400

10 80.5982 88.8046 96.0881
100 88.4683 94.9115 99.9566

1000 93.2602 99.7010 99.9977

Table 5.1: Source strength after different iteration numbers

the same experiment at 10000Hz. The results of the experiment at 20000Hz
are shown by figure 5.4.

Table 5.1 shows the value of the peak levels of conventional beamforming
plots and DAMAS deconvolution. Beamwidth B is also shown.
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Figure 5.2: DAMAS 5000Hz
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Figure 5.3: DAMAS 10000Hz
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Figure 5.4: DAMAS 20000Hz
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6. Experimental set-up

To investigate the behaviour of the beamforming algorithm when processing
a line source, an experimental set-up has to be made. The line source is
simulated using a line of equidistant monopoles. From these monopoles a
synthetic CSM is contructed.

6.1 Coherent line source

The line source is simulated using a set number of equidistant monopoles
(harmonic point sources). These monopoles are added to a coherent group
(see figure 6.1). All the monopoles in a coherent group are fully coherent
with each other, but fully incoherent with the monopoles from other coherent
groups. By varying the number of monopoles in a coherent group, different
coherent lengths of the line source can be simulated.

The number of sources per length unit is the limiting factor of the lowest
coherent length possible to be simulated. The length of the linesource is gives
the limit of the highest coherent length possible to simulate.

6.2 Synthetic CSM

The pressure field the microphones recieve can be calculated from the su-
perposition of all pressure fields of the point sources, and taking the coherent
terms into account. At the construction of the CSM, only the spatial part of the
sources is considered. Only considering the spatial part is equal to taking an
infinite number of time averages.

6.3 Wind tunnel dimensions

To match the computational experiments with the wind tunnel in the areo
acoustic department of the University of São Paulo, the dimensions of the
wind tunnel are used for the experiments.

Line source
x1 x2 x3 x4 x5 x6 x7 · · ·

xn

Coherent group 1 Coherent group 2 Coherent group 3

Figure 6.1: Line source model
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Number of microphones 63
Distance array-object 0.85m
Height tunnel 1.50m

Table 6.1: Wind tunnel dimensions
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Figure 6.2: 63 microphone array

6.4 Array

The array setup used is a logarithmic spiral. This setup is proven to work at
low as wel as high frequency signals [5]. An overview of the array is shown in
figure 6.4.

6.5 Results

Figure 6.3 shows the beamform plots of an incoherent line source. Shown
is the dynamic range, from the top untill 15dB down. The plots of the other
coherence lengths look the same, only the peak level (which isn’t shown in
this plot) differs.

The DAMAS plots of the incoherent line source simulation are shown in
figure 6.4. It can be seen the sidelobes are clearly more visible in the higher
freqency simulations.

In chapter 7 the peak levels of convential beamforming and DAMAS plots
are examined.
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Figure 6.3: Conventional beamform incoherent line source
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Figure 6.4: DAMAS incoherent line source
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7. Array Calibration Function

Experience learns the convential beamforming technique is not capable of
accuratly estimating the strength of line sources. Using simulated line sources
it can be noticed the peak levels of the spectral maps are sometimes a value
of 15dB too high.

To cope with this problem, an array calibration function (ACF) is designed.
A synthetic CSM with aline source of known strength is used for the conven-
tional beamforming algorithm. The difference between beamforming output
and source strength is the same for line sources of various strength levels.
This difference can be used to corrigate the peak levels of wind tunnel experi-
ments.

The line source is simulated with 64 equidistant monopoles, over a length
of 0.4m. The use of 64 monopoles makes it possible to form multiple coherent
groups, and thus simulating different coherent lenghts. The strenght of the
monopoles is set at 100dB. The ACF value is the source strength minus the
beamforming peak level, therefore in wind tunnel experiments, adding the ACF
value to the results, gives the correct peak value.

Since the ACF is in dB scale, the strength of the modeled sources isn’t
influencing the ACF value. Substracting the average microphone pressure
makes the ACF also independant of the number of sources used to model
the line source. The only parameters influencing the ACF are wind tunnel
dimensions and ofcourse frequency and coherence length.
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Figure 7.1: Array Calibration Function for various coherence lengths
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8. Determination of
coherence levels

To use the array calibration function (chapter 7) on a signal measured at wind
tunnel experiments, it is required to know the coherence length of the sources
in the experiment. To determine the sound coherence length, the coherence is
calculated between different scanning points of the acoustic source plot. This
coherence can be found by a modification of the conventional beamforming
algorithm [3]. The convential beamforming algorithm is given by:

êT Ĝê

(êT ê)2
(8.1)

For the determination of coherence levels, the beamforming algorithm is
modified to use two different scanning points.

|êT Ĝd̂|2

(êT Ĝê)(d̂
T
Ĝd̂)

(8.2)

In this equation d̂ is the steering vector for a second scan point. This way
the coherence level between two different points can be calculated. If one of
these points is kept as a reference point, and the other is varied over the grid,
coherence plots can be made.

8.1 Incoherent monopoles

This method is first used on a simulation with two incoherent monopoles. The
results of this simulation are given in figure 8.1. The first monopole source
is marked with an X, and is also the reference point. The second monopole
source is a mirror of the first source over the y-axis.

It can be seen that when scanning frequency increases and thus beamwidth
decreases, the source distribution becomes more visible. For the low frequen-
cies (1500Hz and 2000Hz), the scanning resolution is too low to distinguise
the two different sources. For higher frequencies the different sources can be
seen.

The high coherence levels around the two sources are due to the fact that
sidelobes, although they have a low level in the conventional source plot, are
fully coherent with the original source. This indicates that the coherence plots
may be used to identify sidelobes in acoustic source plots [1].

8.2 Line source

This coherence simulation is repeated with a 40cm line source which have
different coherent lengths. Figure 8.2 shows the result of the simulation with
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Figure 8.1: Coherence plots for different scanning frequencies

a frequency of 5000Hz. The results of the 10000Hz simulation are shown in
figure 8.3. Figure 8.4 shows the 20000Hz simulation results.

At all three frequencies we can see quite big disctincions between the dif-
ferent coherent lenghts. However, for the incoherent case and the 5cm co-
herence length the plots are quite similar. In the Array Calibration Function
(Chapter 7) the difference in calibration values between the incoherent case
and the 5cm case is around 2dB at higher frequencies. Therefore the ACF
has an uncertainity of 2dB.
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Figure 8.2: Coherence plots 5000Hz
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Figure 8.3: Coherence plots 10000Hz
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9. Conclusion

During this internship period information is gained on the behaviour of acoustic
source plots generated by beamforming and DAMAS algorithms. It is found
that when investigating source strength by using peak levels, the levels are not
giving the right results. The value of this off result differs for various coherence
lengths.

Since DAMAS deconvolution method peak levels converge to the peak lev-
els of conventional beamforming, the off result of both methods is the same.

An array calibration function is made, which calibrates the peak levels of
conventional beamforming and DAMAS, to give no off result. The ACF is in-
dependant of source strength and number of sources used to simulate a line
source. Coherence length and frequency are the two variables.

To extract coherence length from experimental results a modified beam-
forming algorithm is used. This method however, does not give absolute cer-
tainty about the coherence length. Since the coherence length of experimental
results is not absolutely sure, the wrong calibration curve of the ACF can be
picked, which can lead to an error up to 2dB.

The ACF and coherence lenght extraction method aren’t tested on exper-
imental results, since no experimental data was available at the time. For
further research it is recommended to test both methods on experimental data
for validation purposes.

9.1 Postscript

This internship period has been a valuable experiance. Good insight in the ac-
tivities involved in experimental research is obtained. A lot has been learned
on beamforming characteristics and working with high end wind tunnel equip-
ment.

I would like to thank Harry Hoeijmakers, Micael Carmo and Marcello Medeiros
for making this internship possible. Furthermore I would like to thank Carlos
Paganni for the daily supervision and enjoyable time at the wind tunnel exper-
iments.
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[2] Kjell J. Gåsvik, Optical Metrology, third edition. West Sussex: John Wiley
& Sons Ltd. 2002.

[3] Horne, C., Hayes, J.A., Jaeger, S.M., and Jovic, S., Effects of dis-
tributed source coherence on the response of phased arrays, AIAA paper
2000-1935, 2000.

[4] Brooks, T.F. and Humphreys, W.M., A deconvolution approach for the map-
ping of acoustic sources (DAMAS) determined from phased microphone
arrays, Journal of Sound and Vibration 294, 2006.

[5] Oerlemans, S., Detection of aeroacoustic sources on aircraft and wind
turbines thesis University of Twente, Enschede 2009.

A study in beamforming and DAMAS deconvolution Page 34


	Introduction
	Sound propagation
	Wave equation
	Harmonic point source

	Coherence
	Interference
	Wave trains

	Beamforming
	Fundamentals of conventional beamforming
	Cross Spectral Matrix data
	Accounting for uniform flow
	Sidelobes
	Noise and reflections

	DAMAS deconvolution
	Defenition inverse problem
	Solution inverse problem
	Application parameters
	DAMAS results

	Experimental set-up
	Coherent line source
	Synthetic CSM
	Wind tunnel dimensions
	Array
	Results

	Array Calibration Function
	Determination of coherence levels
	Incoherent monopoles
	Line source

	Conclusion
	Postscript


