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Abstract

With the development of industry the need of a safe and low cost method for maintenance and
repair raised. A proposal to this need are the Aerial Robotic Workers (ARWs). These workers
have to operate autonomously and conduct tasks in a variety of locations. To achieve this au-
tonomous behavior, it is required to generate collision free paths between the position of the
ARWs and the location where they have to operate in runtime.

Within this report a solution is documented which allows the robotic workers to generate
three dimensional paths on runtime avoiding obstacle collision. The proposed method is con-
structed by a visibility graph and the A* path planner. The visibility graph is based on the oc-
tomap representation from which the nodes which construct the graph are generated. Finally,
tools, such as the unordered map structure, were integrated in to the solution to lower the pro-
cessing time. It was shown that with the use of this method three dimensional path generation
is feasible in runtime.
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1 Introduction

With the development of countries, industry has expanded in high rates over the last years.
Maintenance of big scale constructions are costly and dangerous. Thus, projects develop an
automated solution which will not only be more economical efficient but also safer and more
precise. One of these projects is AEROWORKS.

The AEROWORKS project focuses at the development of a team of Aerial Robotic Workers
(ARWs). The ARWS are flying multirotor robots equipped with manipulators, capable to
perform cooperative maintenance tasks in industrial environments. To move around au-
tonomously in this kind of environment, the ARWs require to feasible paths to follow.

The purpose of this thesis, as part of this project, is to develop, implement and test algorithms
capable of autonomously navigate our ARWs in any desired three dimensional space. The main
task here is for the flying robots to be able to find an optimal path, with given constraints,
avoiding obstacle collision.

Industrial environments often contain dynamic features. Thus, it is not always possible to know
the exact map a priori. Autonomous navigation in a (partially) unknown environment in run-
time is a challenging aspect. In three-dimensional space path planning is computationally
inefficient due to the increased dimensionality. In addition, it is also memory inefficient due to
possibly large spaces in which the ARWs have to operate. Moreover, the planner has to run in
parallel with a mapping process when the ARWs fly in such environments.

There has been extensive research in this field. Several solutions have been proposed to solve
the shortest path problem. These solutions use different approaches. A part of the existing lit-
erature uses different map representations such as octomap, probabilistic roadmap, potential
field and navigation mesh [1] [2] [3] [4] [5]. Also, different path planning algorithms have been
developed which couple with one or more of the map representations mentioned. However,
specific algorithms have been developed to give a specific solution to this problem [6] [7] [8].
Finally, there are general algorithms which perform well in higher dimensions such as rapidly-
exploring random trees (RRTs) [9]. However, we decided to use the A* algorithm because it has
parameters which can be tuned for an optimal resulted path given constraints. Furthermore,
this algorithm can be easily patched with additional algorithms which provide specific behav-
ior to the final path (less turns, shortest path, specific facing direction when reaching the goal
etc). Moreover, we propose a combination of method which which lower the processing time.
Thus the generation of the final path is feasible in runtime. Our solution results to a general
solution and not to a solution targeted to a specific scenario.

Taking into consideration the problem mentioned above, In his thesis, the problem was ap-
proached from a map representation perspective. This approach regards the comparison of
possible map representations from which the more efficient combination was chosen. Thus,
the octomap structure was selected, from which a visibility graph was constructed. With the
use of this graph it is possible for the ARWs to fly longer distances by taking into consideration
less way points. The map representation technique was combined with the A* path planner1 al-
gorithm. Visibility graph was selected as it is more memory and computationally efficient than
a normal grid. Finally, several methods have been introduced in order to increase the runtime
performance to find the path.

1Path planner is an essential part of autonomous robots which provides optimal paths between two points, given
constraints (e.g. shortest path, faster search, less turns etc)
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2 Development of a Three Dimensional Path Planner for Aerial Robotic Workers

The remainder of this document is divided in the following parts.

Background Documents the background knowledge needed for this project. Namely, the A*
path planner, the use of the heuristic and the min heap structure.

Map Representation Presents the different map representations which were considered. Fur-
thermore, techniques which coupled with each map representation are explained. These
techniques result in a better optimized solution with respect to time .

Implementation and Results Contains implementation notes, results and evaluation of the
compared methods.

Conclusion, Discussion and Future Work Concludes this report and suggests future work
such that the proposed technique to improve the robustness in (partially) unknown en-
vironments.
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2 Background

2.1 Path Planning Algorithm

There are a lot of algorithms which provide optimal paths under specific constrains given a
map. However, an algorithm cannot understand a real life environment containing doors and
walls. Thus, the environment has to be translated into a graph which contains traversable
points, the nodes, and the connections between them, the edges. There are several kinds of
graphs which can be used, of which later in this document, some of them will be analyzed.

Given a graph as an input, the path planning algorithm will try to find an optimal path between
a starting node and a goal node. Several algorithms have been developed, but we decided to
use the A* algorithm which is the evolution of two other algorithms, the Breadth First Search
[10] and the Dijkstra’s Algorithm.

Breadth First Search uses a method called frontier in order to search for a path. Frontier, works
like an expandable ring around the starting point. It expands by keeping track of which neigh-
bors have been visited and then it finds the neighbors which will be visited later. Thus, it ex-
plores equally in all directions without prioritizing lower movement cost (figure 2.1 (a)). Dijk-
stra’s algorithm, uses the moving cost to search for a path. The moving cost is the cost we have
to "pay" to go from one node to another. In a graph this cost can vary due to many reasons such
as the distance between two nodes and the cost assigned to traversing specific kind of terrain
(water, mountain etc). Using the moving costs, Dijkstra’s algorithm prioritize the search explor-
ing for paths with lower total cost (figure 2.1 (b)). Although, Dijkstra’s algorithm guarantees to
find the shortest path, it also searches in areas which are not promising. To solve this prob-
lem, the A* algorithm also implements a heuristic search on Dijkstra’s algorithm. The use of
the heuristic helps the A* to focus the exploration to the nodes towards to the goal faster (figure
2.1 (c)). Thus, it finds the same optimal path as Dijksta’s algorithm does, but it will explore less
nodes.

(a) (b) (c)

Figure 2.1: The search behavior of: (a) Breadth First Search, (b) Dijkstra’s Algorithm, (c) A* Algorithm
(http://www.redblobgames.com/pathfinding/a-star/introduction.html)

2.1.1 A* Path Planner

The A* path planner was selected because it is an optimal searching algorithm, can handle
varying cost terrains easily and it is easy to implement. The later, does not seem to be a good
argument. However, an easy to implement algorithm allow to invest more time to an other very
important aspect of the path finding solution, the map representation. Map design really af-
fects the running time of the algorithm as we will show later in the document. To continue with,
the A* algorithm contains tunable variables which result to an optimal path when constraints
are given. Finally, the path planner algorithm can be easily patched with with aditional algo-
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rithms to adapt specific behavior to the final path (less turns, desired moving direction around
an obstacle, specific facing direction when reaching the goal etc).

Let’s explain now briefly how the algorithm works, with an example on a square grid for sim-
plicity. A* is a heuristic based path finding algorithm. This means that it uses a heuristic func-
tion to conduct a more guided search towards the goal point. This method results in a limited
searching area, reducing the calculation time. To continue with, for the construction of the path
planner it is necessary to compute the movement cost from the current square to the neighbor
square (g(n)) and to estimate the movement cost from the neighbor square till the goal node
using the heuristic function (h(n)). Finally, two lists are required. One open list which con-
tains all the possible nodes to search and a closed list which contains all parent-child nodes
connections. Thus, it will eventually contain the desired path once the algorithm is finished.

To begin with, the algorithm starts by inserting the starting node to the closed list. Then, it
calculates the F (n) = g (n)+h(n) value for all its neighbors, ignoring any node which contains
obstacles, and it inserts them to the open list. After that, the algorithm expands the node with
the lowest F (n) value and inserts it to the closed list.

To continue with, the process explained above is repeated by choosing the point with lowest
F value from the open list and insert it to the closed list. Then, the algorithm performs the
following checks for each one of its acceptable neighbors (non-obstacle etc). If the block is not
already in the open list, or it exists with a higher g(n) value, then the path planner assigns this
block to the new parent node and recalculate the node’s F value. Else, if the node already exists
in the open list with a lower g(n) value, then it does nothing. This process is repeated till the
goal point is included in the closed list. Finally, the path can be constructed by following back
the path from the assigned points in the closed list till the starting point.

To compute the g(n) value for the next selected node, we add the g(n) value of the parent (the
point from which we want to calculate the next step) to the moving costs for the selected node.
In general, the movement cost can vary in a graph with respect to time or the different kind of
terrain (water, forest, mountain etc). In our example, for simplicity, for the square grid will be
used a unit cost (1) movement for each neighbor conjoint at edge and a square root of two (

p
2)

cost for each neighbor conjoint at the corner.

Once the g(n) values for the neighbor nodes have been computed, the h(n) values have to be
computed also. These values can be computed by several ways regarding the selected formula
for distance computation. For this example, the diagonal distance will be used which is given
by the formula:

d = D · (∆x +∆y)+ (D2−2 ·D) ·mi n(∆x,∆y) (2.1)

Where, ∆x and ∆y are the absolute distances between the centers of the squares on the x and y
axis respectively given by:

∆x = abs(xnei g hbor −xg oal )

∆y = abs(ynei g hbor − yg oal )
(2.2)

Also D and D2 represent the moving costs for the neighbors at the edge and at the corner re-
spectively and they are given by:

D = 1, D2 =p
2 (2.3)

In the case where the goal point is not reachable, the process is followed till the open list is
empty. In this case there is no path, but if it is desired it is possible to follow the path till the
closest point to the goal (lowest h(n) value).

A pseudocode for the implentation of the A* path planner can be found in Appendix A.

Anastasios Zompas University of Twente



CHAPTER 2. BACKGROUND 5

Note that, if the map is big, the open list can contain a huge amount of nodes. Thus, it is crucial
to find an efficient way to sort it and access it without having to go through the whole list to find
the element we want (node with the lowest F value) or to sort the list inefficiently. The solution
to this problem is the implementation of a heap structure, which is more efficient than normal
sorting. The heap sorting process is analyzed later in this document.

2.2 Heuristic

The heuristic is the essential part of the A* algorithm, and it is analyzed in this section. The
heuristic (h(n)) is a function that estimates the distance between a query point and the goal.
This function, should be chosen wisely in order to have the desired result.

To choose the heuristic it is essential to bare in mind several rules which control the behavior
of the algorithm [11]. First, if a heuristic is not considered at all, h(n) = 0,∀n, then the only
part which play a role in the path finding search is the g(n). In this occasion, the A* algorithm
reduces to Dijkstra algorithm which guarantee to find the optimal path. On the other hand, if
g(n) can be neglected with respect to h(n), then the A* algorithm transforms into Greedy Best-
First-Search [12]. Next, if the heuristic function is consisted, meaning that it is lower than or
equal to the real distance between a vertex and the goal, then it is guaranteed that the A* will
find the the shortest path. On the other hand, this means that the algorithm has to expand more
vertexes leading to a slower search. However, if h(n) is exactly equal to the real distance, then
the algorithm will follow the best optimized path and will not search any other vertex. Finally,
If the heuristic is grater than the real distance, then the path planner will not necessarily find
the shortest path but it will search faster by expanding less vertexes.

As could be understood from above, that the heuristic can be chosen and modified to select
a desired behavior between time efficiency and shortest path. For instance, in a three dimen-
sional map, sometimes it might be better to have a good and fast search than an excellent and
slow one. Furthermore, this varying behavior does not have to be global but it can change in
several areas of the map. For instance, in specific scenario, it might be more efficient to search
for a path that goes around an obstacle than one that goes above it or vice versa.

Regarding the types of the heuristic function, they differ with respect to the terrain (map rep-
resentation). Several heuristic functions can be used with more common ones the Manhattan
distance, the Diagonal distance and the euclidean distance. For instance in a square grid which
allows four-directional move (+x, −x, +y , −y) the best option is the Manhattan distance given
by:

D · (∆x +∆y), (2.4)

where D is the minimum cost to travel from a square to its neighbor, ∆x = abs(xnode − xg oal )
and ∆y = abs(ynode − yg oal ). By increasing or decreasing the D value, we can switch between
speed and accuracy of the path planner, as explained earlier.

The diagonal distance is used in a square grid that allows eight-directional move and it is rep-
resented by:

D · (∆x +∆y)+ (D2−2 ·D) ·mi n(∆x,∆y), (2.5)

where D2 = D ·p2.

Finally, euclidean distance is usually used when the map representation allows movement at
any angle and it is given by:

D ·
√
∆x2 +∆y2. (2.6)

However, if this heuristic is used in a square or cube grid, it will make the path planner run
slower as the decrease of the heuristic will not match the increase of the movement cost value
g(n).
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6 Development of a Three Dimensional Path Planner for Aerial Robotic Workers

Another important aspect of the heuristics is the tie braking. In a map there might be several
optimal paths with the same length. The A* path planner will explore all of them since they have
the same F (n) = g (n)+h(n) value. A common way to overcome this problem, is to overestimate
the heuristic value by a really small amount. This action, will increase the F (n) value which will
make the A* algorithm to expand vertexes closer to the goal faster. This overestimate can be
only 0.1% and it will result to a way less exploration area on the map.

2.3 Min Heap

A heap is a tree based data structure which can be used for shorting lists. In this structure each
node has a maximum of two child nodes. Furthermore, each parent node must contain an
element, in our case the F (n) value, smaller than both of each child nodes.

To add an element in the heap tree, primarily, it will be added to the last available position.
Then, a check is performed whether it is smaller than its parent or not. If the last argument is
true, the nodes swap their content. This process continues till the argument is no longer true.

To remove an element from the heap, a similar procedure is followed. The desired element is
removed, in our case will always be the first one as it contains the smallest F (n) value. Then,
this position is filled with the last element of our tree. Finally, a check is performed regarding
the property of the smaller parent. If the parent node holds a higher value than one or both
child nodes, the content is switched with the child node which contains the smallest value.
This property continues till the property of the smaller parent is restored.

On the implementation point of view, the heap structure is implemented with an array. Thus,
the children of node n exist in the nodes 2n +1 and 2n +2. The parent of node n exists in the
node (n−1)/2. As can be deduced, if the child is in an even node, then the parent node is not an
integer. Thus, only the quotient part of the division is taken into consideration. For instance,
the parent of node 12 exists in node 5.

As explained, a heap is a more efficient way of sorting an array as way less elements have to be
accessed.

Figure 2.2: Min heap structure. (https://en.wikipedia.org/wiki/Binary_heap)

Anastasios Zompas University of Twente
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3 Map Representation

As it has already been mentioned, the map representation is one of the most important aspect
in path planning. Especially in higher dimensions, map representation can make a noticeable
difference in processing time of the path planner. To demonstrate this difference three different
map representations were considered in three dimensional space.

The A* path planner was combined with several map representations in order to select the best
method. To understand how the algorithm works and how the heuristic affects the searching a
square grid representation was used. After that, a cube grid was considered for a three dimen-
sional representation. To continue with, an octomap representation was used in order to make
our map more memory efficient than the cube grid. Also, it was considered in order to make
our path planner more computational efficient. Finally, a visibility graph was constructed out
of the octomap and combined with the path planning technique.

3.1 Square Grid

As mentioned above, the A* path planner was first combined with a square grid representation.
This decision was taken in order to gain a better understanding of the path planning algorithm
and also to check how the variation of several parameters affects the algorithm.

Several maps environments were considered (random maps, maze like, etc). For this configu-
ration we used under estimated heuristic by a factor of 0.9999 and the heuristic

d x +d y + (1.4−2) ·mi n(d x,d y), (3.1)

where d x and d y are the difference from a query point to the goal on x and y direction respec-
tively.

Furthermore, an eight-neighbor configuration was considered with travel cost of 1 for the edge
neighbors and

p
2 (or roughly 1.4 for simplicity and faster calculations)1 for the corner neigh-

bors.

3.2 Cube Grid

The square grid had to be expanded to cube grid for real world representation. Furthermore,
the algorithm was expanded to be combined with a cube grid. Thus, three dimensional path
planning was possible. Moreover, several maps were considered also for this map representa-
tion.

For this map representation, the twenty six possible neighbors configuration was considered
for each query node. Face neighbors, have moving cost of 1, edge neighbors have moving cost
of

p
2 (or roughly 1.4 for simplicity and faster calculations) and corner neighbors have moving

cost of
p

3 (or roughly 1.7 for simplicity and faster calculations)1. For the cube grid the following
heuristic was used:

1.7 ·mi n(d x,d y,d z)+1.4 · (med(d x,d y,d z)− . . .

mi n(d x,d y,d z))+max(d x,d y,d z)−med(d x,d y,d z),
(3.2)

where d x, d y and d z are the given differences from a query point to the goal on x, y and z axis
respectively.

1Note that this is an underestimation and so the heuristic remains consistent.
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8 Development of a Three Dimensional Path Planner for Aerial Robotic Workers

The results are depicted in the figures below.

(a) (b)

Figure 3.1: Different view of three dimensional path planner combined with cube grid. obstacles are
marked with red color and the final path with blue. The dimensions of the cube grid are 100x100x100.
The starting node is (5,5,5) and goal node is (90,90,90)

3.3 Octomap

The cube grid has a draw back. It contains an excessive amount of nodes in big spaces. To
make our map more computationally and memory efficient, and also to allow faster traversing
of free space, an octomap structure was considered. This structure combines smaller voxels2

together.

An octomap is a mapping technique for three-dimensional space. It uses a point cloud method
which later is divided to octree data structure for spatial representation [13].

Octree is a tree structure where each node is a cube which can be divided in eight children,
the octants (Figure 3.2). Each child, can be either a node or a leaf, meaning that it can either
have eight children or it contains a value which indicates that the octant is free or occupied
respectively. This procedure goes on till they reach the lowest resolution level.

In our setting the Octomap ROS package is used. This package uses a probabilistic approach in
order to determine the occupancy level of each node/child. Thus each node/leaf contains the
occupancy data and a pointer to the children if any exist.

Figure 3.2: Left: Recursive subdivision of a cube into octants. Right: The corresponding octree.
(https://en.wikipedia.org/wiki/Octree)

2A voxel is the three-dimensional representation of pixel. In other words it is a cube in space.
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CHAPTER 3. MAP REPRESENTATION 9

Figure 3.3: Example of octree structure in memory connected with pointers. Data is stored as one float
denoting occupancy [13].

Moreover, every node/leaf is assigned a unique digital key which represents its coordinates
and gives us information about the nodes size. Two keys which differ by a unit in one direction,
means that they might be neighbors of highest resolution (lowest voxel size). However, it is
unknown if the neighbor exists and so a check has to be performed to test whether the new key
corresponds to a leaf or not.

Taking the above into consideration, since this approach reduces the number of nodes, it is
easy to understand that the octomap structure is both more memory than a cube grid. Also, it is
more computational efficient since the path planner will have to expand less nodes. However, a
new problem rises regarding finding the neighbor of the octree voxels. A normal grid is a linear
structure. This means that the coordinates of the neighbors can be found if the coordinates of
the query point are increased or decreased by one unit. This does not apply to octomap as the
exact size, and thus the coordinates, of the neighbor voxels are unknown.

3.3.1 Neighbor Finding

An easy way to overcome the problem is to iterate through the whole tree. While this proce-
dure, a naive approach is used to search for the neighbors. This combination allow to get the
coordinates and size of each point and finds the distance in between the query point and the
possible neighbor point on each axis (x, y and z). All distances have to meet a criteria to be
considered neighbors. This criteria is that the computed distance (d) has to be less or equal to
the sum of the half size of each voxel in each direction.

di ≤
sqp + spn

2
, i = x, y, z, (3.3)

where sqp is the size of the query point voxel and spn is the size of the possible neighbor voxel.
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10 Development of a Three Dimensional Path Planner for Aerial Robotic Workers

Figure 3.4: Example of naive neighbor finding search in two dimensional octree structure (quadtree) for
better visual representation. The blue square is the one for which we want to search the neighbors. The
centers of the neighbor squares must be within the dashed lines of the respective color.

This procedure is not efficient because it has to iterate through the whole tree leading to
many unnecessary calculations. Thus, an improved solution was implemented to decrease the
amount of voxels that need to be traversed.

The solution concerns the creation of a small bounding box around our query point with adap-
tive dimensionality, using its unique key and size and also the size of the biggest unoccupied
voxel. Then, the iteration occurs only throughout the leafs in this bounding box in order to find
the neighbors through their distance. This method speeds up the process, but it is inefficient
to repeatedly search for the neighbors of the same query point. Thus, another technique which
can reduce the processing time is to construct lookup tables. These tables store the points
and their neighbors. The lookup tables are updated constantly, every time a voxel changes its
occupancy.

This process in the future can run in parallel with the path planner, and possibly in a separate
computer with parallel programming, in order not to delay the path planner. Thus, since the
neighbors will be found before the search, the computation for the shortest path will be more
time efficient.

Finally, after the neighbors are found, the A* path planner algorithm is performed and the re-
sults are illustrated in figures 3.5 and 3.6.
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CHAPTER 3. MAP REPRESENTATION 11

Figure 3.5: Generated path using octomap and A* path planner visualized in rviz. The green spheres are
the nodes who construct the final path an the blue lines are the exported path from the A* algorithm.

Figure 3.6: Generated path using octomap and A* path planner visualised in rviz. The green spheres are
the nodes who construct the final path an the blue lines are the exported path from the A* algorithm.
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12 Development of a Three Dimensional Path Planner for Aerial Robotic Workers

However, as discussed earlier, map representation is a more important component in path
planning techniques than efficient neighbor finding techniques.

The ARWs have to fly in relative big, and mostly, free spaces (windmill field etc). Thus, a visi-
bility graph could came in handy as each query point is not connected only to each neighbors
but also to any other point which is in its visible area. This means that the computations con-
ducted by the A* algorithm, can be reduced and so the total running time of the algorithm. The
computational time is reduced due to the lower number of expandable nodes.

3.4 Three Dimensional Visibility Graph

Industrial environments have big free spaces between obstacles where the aerial workers can
move. Thus, instead of calculating a path from one voxel to the next one, the idea is to travel
from one obstacle to the next one, for instance from one windmill to the next.

Visibility graphs have a wide range of applications such as radio antennas placement and ar-
chitecture. Path finding is one of these. Visibility is defined as the ability of two points to be
connected directly with a straight line without any obstacle being between them.

This kind of graph is very efficient for big map traversing. Instead of considering connected
neighbors, just a few points in the map, which will constitute the nodes to be considered by the
path planner, can be considered, for instance around the obstacles. An example is illustrated
in figure 3.7.
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(a)

(b)

Figure 3.7: (a) From each point all other visible points (non-obstructed) are found (green lines represent
acceptable paths and red lines represent non acceptable), (b) an example of visibility graph.

The octomap representation was used as base to construct the visibility graph. The reason for
this decision is because less points have to be considered around obstacles than a cube grid
as is illustrated in figure 3.8. This allows to reduce processing time for the graph construction.
This procedure is fast and can be operated on the runtime of the ARWs. Furthermore, the path
planner will have way less point to process resulting to a more efficient search. This is expected
to make the algorithm more applicable in dynamic environments.
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14 Development of a Three Dimensional Path Planner for Aerial Robotic Workers

Figure 3.8: Two dimensional representation of octomap base for visibility graph construction. The green
circles are the point who will be used to generate the graph. The spaces between the squares are used
for better visualization.

To select the coordinates of the desired points, the coordinates of the corners of each occupied
voxel in the octomap have to be computed. Then, the point which appear more than once
are rejected. Following this procedure, the coordinates of the exterior corners of the occupied
cell are considered and the interior ones are rejected. The interior corners are not considered
because any point in these corners is directly visibly from the exterior corners. Figure 3.9 illus-
trates this procedure in two dimensions.
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(a) (b)

(c) (d)

Figure 3.9: In this figure is illustrated the procedure of point selection to construct the visibility graph:
(a) in this situation the obstacle is constructed from three voxels (spaces between them are for better
visual representation). (b) The coordinates of the corners of each voxel are found and (c) all points who
appear more than once are rejected. Finally, (d) the remaining points compose the visibility graph.

Once all the desired points have found, all visible pairs have to be found as well. To do this
in octomap, the raycast function was used. This means, that a ray was sent from a point to
the direction of each other point. This ray traverses the octree and returns true if it found an
occupied cell. Initially, this function was developed for finding obstacles and thus constructing
a map. However, with the reversion of the logic of raycasting, non-obstructed paths can be
found between the points.

Figure 3.10: Raycasting method.

To continue with, two more points are added in the visibility graph, the starting point and the
goal. When these points have been added, a raycasting is performed between these two points.
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If there is a non-obstructed path between them the rest of the search breaks and the shortest
path have been found. Else, the visibility graph algorithm is performed for these two points as
well and all the acceptable (i.e. non-obstructed) connections are inserted to the graph. Finally,
any graph based path planner can be performed. In addition, the start and goal points stay in
and enrich the graph for any further path search.

3.4.1 Sampling

As mentioned above, the visibility graph was based on the octomap representation. A key as-
pect all voxel based maps is that every obstacle shape is constructed with cubes. This is a prob-
lem because, for instance, a sphere will end up having too many corners on its surface and thus
too many possible points on the visibility graph (see figure 3.11(a)). Furthermore, when a wall
is detected, then probably both sides of the wall are not needed. However, nodes are generated
in both sides. Finally, octomap is a probabilistic representation and so even a straight wall will
not be straight in the map but voxels will stand out.

(a) (b)

Figure 3.11: (a) Every obstacle shape, in octomap, is made out of cubes and so it contains a lot of points
for the construction of the visibility graph, (b) after sampling we eliminate most of the points

To overcome these problems, and eventually reduce the visibility graph size, a solutions have
been introduced. After the procedure explained, the visibility graph will contain too many
points. Thus, in the case where not all map contains useful information, such as the outer
side of the wall or the ground in windmill field, boundaries can be used to neglect specific re-
gions of the map. Thereafter, the rest of the points are sampled to minimize their multitude.
This is done by random sampling with a rate that will leave a big amount of points in the final
graph such that it is computationally efficient to produce. This method ensures that the points
are spread equally through out the desired region of the map.
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Figure 3.12: Generated points for visibility graph construction from SmartXP Lab, University of Twente,
visualized in rviz.
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(a)

(b)

Figure 3.13: Generated points (green spheres) for visibility graph construction after sampling and with-
out selecting a specific region. This map was constructed at the SmartXP Lab, University of Twente,
visualized in rviz. (a) inside view of the map, (b) outside view of the borders of the map.

3.4.2 Unordered-Map and Hashing

The visibility graph has to contain as many points as possible in such a way that the multitude
will be computational efficient. The more rich the graph is the better it represents the real
world. Therefore, the use of an array to store the nodes is computationally inefficient since an
iteration has to occur in order to access a node.

An improved solution to this problem was introduced by storing the points in an unordered
map structure. Unordered maps are associative containers that store elements formed by the
combination of a key value and a mapped value. Thus, an element in an unordered map can be
accessed in O(1). Key value is unique for each container and can be accessed directly by using
the key value. To calculate the key values a hash function was implemented. This function gets
as input the coordinates of a point and gives as output a unique value for each point.

Hash functions have a wide area of applications, from finding duplicates in large files to cryp-
tography. Hash functions map any data, in our case the coordinates of a three dimensional
point, to a value of given length which is called hash value. Thus, every time the same point
is inserted in the hash function, it gives the same hash value. The combination of the hash
function with the unordered map gives several advantages.

First of all, unordered maps do not have fixed size. Thus, their size can grow as new points are
inserted the visibility graph. Next, due to the hash value, insertion, deletion and look up can be
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performed in constant time. Finally, as the map might change, new points will be inserted or
some existing points might be deleted. The mapped value of the unordered map can be another
unordered map (see figure 3.14). This is useful because it allow us to access any existing pair in
the visibility graph in constant time. Thus, also we can insert new visible pairs or delete existing
ones, as the map changes, in O(1).

Figure 3.14: This figure illustrates how the coordinates are transformed to hash values through the hash-
ing procedure and inserted in the unordered map structure representation used for the construction of
the visibility graph.

To find all visible pairs a raycasting should be performed for each possible pair in the graph.
This procedure would normally take n2 searches.

A method was used for minimizing the required searches. This approach takes advantage of the
unordered map’s property to access directly any stored element. Therefor, an iteration occur
through the elements of the unordered map. Within this iteration, the raycasting is performed
from the inquiry node to only the nodes which are stored after it as it is illustrated in figure 3.15.
Then, if a visible pair is found, the visible node is stored as neighbor of the inquiry node and
vice versa as it is depicted in the pseudocode 3.1. This is a fast procedure because an iteration
is not required to access any place in this data structure.

Figure 3.15: This figure illustrates how the coordinates are transformed to hash values through the hash-
ing procedure and inserted in the unordered map structure representation used for the construction of
the visibility graph.
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Using this approach, the amount of searches are reduced to:

(n −1)+ (n −2)+·· ·+1 = n2

2
(3.4)� �

unordered_map sampledMap // Contains the sampled nodes
unordered_map finalMap // Wil l contain the nodes of the

// f i n a l V i s i b i l i t y Graph

for ( i t = sampledMap . begin ( ) ; i t != sampledMap . end ( ) ; ++ i t ) {

get coordA from i t
i t 2 = i t
i t 2 ++

for ( i t 2 ; i t 2 ! = sampledMap . end ( ) ; ++ i t 2 ) {

get coordB from i t 2
v i s i b l e = raycast ( coordA , coordB )

i f ( v i s i b l e ) {

Store coordB in finalMap [ coordA ]
Store coordA in finalMap [ coordB ]

}
}

}� �
Listing 3.1: Pseudo code for visible neighbor search reduction
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4 Implementation and Results

4.1 Implementation

The implementation was done in ROS (Robot Operating System). Several methods which result
to low processing time were considered. The most important were the visibility graph repre-
sentation, the unordered map with hashing and the min heap structure.

(a)

(b)

Figure 4.1: Implementation representation. (a) Octomap and Cube Grid implementation in ROS. (b)
Visibility Graph implementation in ROS.

For the octomap representation the octomap ROS package was used, which allows to publish
the octree map through the octomap server node. Separate C++ programs were developed
which subscribe to the octomap server node. These programs include the implementation
of neighbor finding for the cube grid method and the octomap. An other C++ program was
developed for the implementation of the visibility graph. Furthermore, a python script was
developed for the A* path planner with the techniques which have already been discussed. The
path planner, communicates with the C++ programs via ROS service. Thus, when the planner
algorithm is about to expand a node, it requests the node’s traversable or visible neighbors for
the cube and octomap or the visibility graph representations respectively. When the request
has been made, then the path planner waits for the response.

In figure 4.3 below the rviz representation of the neighbors in octomap is illustrated. This figure
illustrates that all the neighbors are indeed connected via face, edge or corner with the query
point. For the representation, a random query point was selected and the neighbor finding
algorithm was performed for this point. This algorithm used the method mentioned above and
can find all different sized voxel neighbors with no errors.

To find all connected points in the visibility graph, the raycasting function from the ROS oc-
tomap package was used. In this function the direction and the length of each desired ray was
specified to verify the visibility between two nodes.
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For the cube grid, the standard twenty six (26) neighbor model was used. This means that in
order to find a neighbor in a desired direction, the specific coordinate(s) had to be increased by
the highest resolution of octomap. In our examples the highest resolution (lower voxel size) was
0.1m. Finally, from all the possible neighbors the occupied ones were filtered out. The highest
resolution of octomap was used for the neighbor finding because otherwise there would not
make any sense to use the octomap structure.

In our implementation, for the two-dimensional map the Diagonal distance was used, for the
three-dimensional cube grid and octomap the Diagonal distance adapted in the three dimen-
sions (1.7 ·mi n(∆x,∆y,∆z)+1.4 ·(medi an(∆x,∆y,∆z)−mi n(∆x,∆y,∆z))+max(∆x,∆y,∆z)−
medi an(∆x,∆y,∆z)) and for the visibility graph the euclidean distance adapted in the three
dimensions was chosen (

√
∆x2 +∆y2 +∆z2).

Finally in figure 4.2 are illustrated all the steps for the implementation and use of the visibility
graph and the A* path planner.

Anastasios Zompas University of Twente



CHAPTER 4. IMPLEMENTATION AND RESULTS 23

(a) (b) (c)

(d) (e) (f )

(g)

Figure 4.2: In this figure it is illustrated the procedure of the visibility graph: (a) a map is constructed.
Then,(b) all points at the corners of the obstacles are found and (c) sampled. Hereafter, (d) the visibility
graph is constructed. (e) The points for which we want to find the path are added and (f) inserted in the
graph. Finally, (g) the A* algorithm generates the path from start to goal.

4.2 Results

Furthermore, figures 4.4 and 4.5 illustrates the exported paths from the A* path planner algo-
rithm in octomap representation and visibility graph representation respectively for different
starting and goal points. This was done to characterize the shapes of the paths of the different
methods. The visualization was done in ROS RVIZ. The green spheres in the figures illustrate
the searching nodes for the path planner. The blue lines are the generated paths. These paths
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can be processed further in order to be smoother so the drone will have a more realistic path to
follow and also reaches the final point in a specific orientation.

Figure 4.3: Different view angle of ROS RVIZ representation of neighbors in octomap using the naive ap-
proach. In these pictures is illustrated a random query point and all of its different sized voxel neighbors
as they were found from the algorithm.

Figure 4.4: ROS RVIZ illustration of the exported path using A* path planner algorithm and octomap
representation.

Figure 4.5: ROS RVIZ illustration of the exported path using A* path planner algorithm and visibility
graph representation.
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(a) (b)

(c)

Figure 4.6: In this figure are illustrated the generated paths for the same starting point and goal (a) in
cube grid, (b) in octomap representation and (c) in visibility graph representation.

Simulations have been conducted to test different map representations with respect to pro-
cessing time and path length. Below, a table depicts the results which were given by the paths
in figure 4.6. Note that these paths were generated with the same start and goal location.

time (s) expanded nodes path nodes path length (m)
cube grid 548.03 207535 55 6.85
octomap 2.14 404 45 7.63
visibility graph 0.24 40 7 9.56

Table 4.1: Results for the path illustrated in figure 4.6 for all map representations.

In our system, the construction of the visibility graph took in total 7.94 seconds. This time re-
gards the computation of visible paths between nodes. The total amount of nodes computed in
this time was three thousand (3000). For the octomap, a non perfect, real situational, octomap
representation was constructed from the SmartXP Lab in the University of Twente. Finally, in
this example we did not have any prior search (starting and goal points of prior searches stay
in the graph to enrich it) and we had not insert any other points in the visibility graph than the
ones generated after sampling.

The results interpreted show that the path from the visibility graph was generated faster than
the paths from the octomap and the cube grid. However, the total path length is longer. This is
not necessarily a drawback as no extra points were inserted in critical locations. By critical loca-
tions are meant all the place that are of interest can be of potential help by resulting to a better
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optimized final path, with given constraints. Such locations could be the center of both sides of
a door (or an opening in general) or random locations around the center of big free spaces. For
instance, in the windmill field, nodes could be inserted in the space between the wind-power
generators. This procedure right now is not automated but it can be fully automated in the
future.

Furthermore, if the sampling frequency raise, then also the total path length will reduce. More-
over, if the path was generated in free space (e.g. returning from a windmill to base), then the
visibility graph can find shorter paths in way less amount of time.

As noted, the visibility graph might not seem the best option, depending on the physical map,
if we want to generate just one path. However, in industrial maintenance many ARWs have
to operate together and change starting and goal locations more than once. Consequently,
visibility graph has a bigger advantage regarding the total processing time in this scenario than
the octomap does. Regarding the path length, it can be comparative to the octomap generated
path if critical points are inserted or if a high sampling rate is chosen.
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5 Conclusion, Discussion and Future Work

5.1 Conclusion

To conclude, we propose the use of the visibility graph map representation coupled with the
A* path planner to achieve path planning in a three dimensional environment on runtime. In
addition to the procedure presented, it is also advised to use additional nodes in the visibility
graph in critical places. The later term implies all these nodes which are not automatically
generated and have to be added by hand in places which would help the planner to find a better
optimized solution given constraints. Such places are the sides of doors or points randomly
distributed in large free spaces. This technique will contribute to the generation of a shorter
path.

The visibility graph representation reduces the traversing time of a big areas with respect to
the octomap or the cube grid representations. The octomap package’s build in function ray-
cast was used to find all the visible pairs for the construction of the graph. Furthermore, as
it is documented, advanced techniques have been implemented to our solution. The hash in
combination with the unordered map structure was used to store the graph for insertion, dele-
tion and lookup in constant time. The later, helps to have faster access to the nodes. When the
graph is constructed, the A* path planner requests the neighbors of an expanded node. This
saves time so the path planner can compute the path faster. Finally, a heap was constructed for
faster list sorting in the path planner.

Even though, the visibility graph takes a small amount of time to be produced, the path itself
can be generated in a noticeable smaller amount of time than the other map representations
do. This is useful because our configuration could also perform in partially unknown environ-
ments. Thus, if a previously unmapped obstacle appears in the map after the generation of
the paths for the ARWs then they just have to wait until the new pairs will generate. Then, the
generation of the path is done fast.

Finally, int the next section some suggestions for future work is proposed. These include the
usage of a dynamic path planner for even faster path generation in (partially) unknown envi-
ronments. However, it is considered that the most influence in the path planning process will
be the use of parallel programming (CUDA). CUDA will allow the construction of a more dense
visibility graph in less time. These modifications will allow the drones to operate in dynamic
environments smoothly and in runtime.

5.2 Discussion and Future Work

Through this document, methods which result in rapid path generation have been considered
and used. However, more can be considered for future work of this project. In this part some of
them are presented, for which details are given in the following sections.

To begin with, as already has been mentioned, the map representation is a crucial component
for path planning. Results depict that the A* algorithm performs better with the visibility graph.
However, the visibility graph could be potentially better optimized with respect to generation
time. Research has been conducted on the fast implementation of the visibility graph [14] [15]
[16]. Moreover, a better sampling technique could be introduced which will sample points
more efficient instead of the random sampling which is used now.

To continue with, parallel programming is very useful in testing big datasets. Thus, the imple-
mentation of the construction of the visibility graph in parallel programming (CUDA), could
speed up the process noticeable. The advantage of this method is that it could handle way
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more points in less time. Thus, our configuration could also perform as a dynamic path plan-
ner.

Furthermore, the A* algorithm does not perform well in dynamic environments as it is not
designed to do so. Even though it is a really fast algorithm, its limitations are that it must have
a good knowledge of the map. It may need a short amount of time to recalculate a path on a
two dimensional terrain, but this is not the case when the dimensions become higher or when
there are dynamic obstacles in the map. Several solutions could assign to this problem.

In the scenario in which there is a good knowledge of the map, but there are dynamic obstacles,
for instance flying outdoors and a dynamic obstacle appears in front of the drone (another
drone etc), the path could be computed with the A* algorithm, before the flying process, and
patch with an obstacle avoidance algorithm. This algorithm could either wait for the moving
obstacle to pass or to try to find a way around it and then follow again the precomputed path.
However, this algorithm will work with small obstacles but not if for instance an unmapped
wall appears in front of the ARWs as it will need to recalculate a big path and it might take a
relatively big amount of time.

In the scenario that the map is not well known, different path finding algorithms are proposed
which can handle this situations easier. Such algorithms are the D*-Lite [17] and the 3D Field
D* [18].

Moreover, a path smoothing algorithm could be applied to the final path such that the drone
can turn smoother and also arrive at the goal with a specific orientation. There are also other
path planning algorithms which return a smoother path than the A*. One of these algorithms
is the Lazy Theta* [19].

Finally, due to sampling, the goal or any other intermediate point could not be visible directly
for the starting point but from an intermediate point between two graph nodes. Thus, it is sug-
gested to implement a feature which will act after the generation of the path. This feature, will
search for a visible connection between the current position of the ARWs and their goal. If there
is no visible connection with the goal, then they will search for visible connection for the point
which construct their path and have lower h(n) value (points closer to the end) recursively.

In the following section some of the aspects above are discussed and explained in more detail.

5.2.1 Parallel Programming (CUDA)

A good Central Processing Unit (CPU) may have up to 32 cores and thus manage to perform 32
processes in parallel. These CPUs are, generally, expensive. A cheap substitute, is the graphics
processing unit (GPU). However, GPUs are not just cheap substitutes as they can outperform
the CPUs. For instance, a high performance nVIDIA GPU can have up to a few thousands cores
which can perform multiple calculations simultaneously. Furthermore, they have faster acces-
sible RAM than those used from the computers (DDR5 in nVIDIA GPU and DDR3 in computer).
However, GPUs have a draw back. They have small sized cache memory. To exploit the full po-
tentials of the parallel programming computing, the programmer has to load his program in
the cache memory in order to make it as fast as possible. On the other hand, this limitation can
disappear when buying more expensive graphics cards.

We propose specifically nVIDIA graphics processing units as the company has developed
CUDA. CUDA is powerful application programming interface (API) for parallel computing,
which works only in nVIDIA architecture graphics cards. An other open source solution is
OpenGL, but it needs advanced programming skills in parallel computing. Furthermore, CUDA
community is bigger than OpenGL’s making the development of an application easier.
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5.2.2 Alternative Path Planning Algorithms

For dynamic environments it is preferred to use a path planner which is designed for such en-
vironments. A dynamic environment could be very challenging and so a path planner designed
for static environments would not perform well.

All proposed path planners (D*-Lite and 3D Field D*) are designed for dynamic environments.
They have fast replanning ability and can perform well with graphs. They use locally replannig
techniques which means that when they figure out that their path is suddenly blocked, they re-
member the rest of the path after the obstacle and they try to find a new path to go there unless
they find a shorter path to the goal. They repeat this process for every dynamic obstacle they
meet and they remember all previous paths in case they need to use them again, minimizing
thus the replanning time.
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A Appendix 1

In this appendix is presented the A* path planner algorithm pseudocode.� �
Create a node containing the goal s t a t e node_goal

Create a node containing the s t a r t s t a t e node_start
Put node_start on the open l i s t
while the OPEN l i s t i s not empty
{

Get the node o f f the open l i s t with the lowest f and
c a l l i t node_current

i f node_current i s the same s t a t e as node_goal we have
found the solution ; break from the while loop

Generate each s t a t e node_successor that can come
a f t e r node_current

for each node_successor of node_current
{

Set the cost of node_successor to be the cost
of node_current plus the cost to get to
node_successor from node_current

find node_successor on the OPEN l i s t

i f node_successor i s on the OPEN l i s t but the
e x i s t i n g one i s as good or better then discard
t h i s successor and continue

i f node_successor i s on the CLOSED l i s t but the
e x i s t i n g one i s as good or better then discard
t h i s successor and continue

Remove occurences of node_successor from OPEN
and CLOSED

Set the parent of node_successor to node_current

Set h to be the estimated distance to node_goal
( Using the h e u r i s t i c function )

Add node_successor to the OPEN l i s t
}
Add node_current to the CLOSED l i s t

}� �
Listing A.1: Pseudo code the A* path planner (http://heyes-jones.com/pseudocode.php)
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B Appendix 2

A big map could take a big amount of time to be processed in order to find the neighbors of
all points for the lookup table. Thus, more advanced techniques need to be considered. Ex-
amples of such techniques are hashing tables [20] [21] [22] [23], directional lookup tables [24],
probabilistic approaches [25] [26], or efficient search techniques [27] [28].

B.1 Efficient Neighbor Finding Techniques For Octomap

Efficient neighbor finding techniques can reduce the time needed to detect the neighbors of
a query point and thus the total time to construct the look up table for our path planning.
This method is useful when the drones operate in a dynamic environment. In this section are
documented briefly the most important of the methods presented above.

To find neighbors with the hash method, first of all hash tables have to be constructed. These
hash tables, apply specific digital keys to each voxel. Voxels with the same key means that they
are neighbors. This process is repeated several times with different hash tables. The voxels
which had the same digital key most of the times are neighbors. However, with this method
does not ensure that all adjacent neighbors have been found. Moreover, the hash tables could
be complex and hard to construct.

Directional look up tables are easier to implement. Through these tables the coordinates of the
neighbors in each direction can be found, taking into consideration the size of the query point.
However, they have to be accessed for each specific query point and a specific direction.

On the other hand, as presented in [27] it is possible to assign specific digital addresses to each
voxel, making the neighbor finding method easier. This method, avoids to use complex hash
tables as also the excessive search for each query point.
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