Piezoelectric sensors for a sustainable municipality
a case study in the Netherlands

Bachelor Thesis
Simone ten Have
Bachelor thesis

Final version

Tauw bv
University of Twente
Faculty of Behavioural, Management and Social Sciences

Bachelor European Public Administration

Name: Simone ten Have
Student number: s1484648
Date: August 2016
First supervisor: Dr. P.J. Klok
Second supervisor: Dr. M.J. Arentsen
External supervisor: Ing. S.C. Bos

Bachelor thesis

Piezoelectric sensors for a sustainable municipality: a case study in the Netherlands
Abstract

Piezoelectric sensors offer a wide range of opportunities as a technological solution for small energy demands. By converting mechanical energy (vibrations) to electrical energy, piezo opens up many possibilities. In this case study of a Dutch municipality called Zuidhorn, the local societal interests and needs for the application of this technology are investigated. The municipality aims for a high degree of sustainability which is why this way of energy harvesting is in line with its policy ideals. This study looks specifically at in what ways the application of piezoelectric sensors in the municipality of Zuidhorn satisfy local societal interests and needs. Therefore, the current status of piezoelectric sensors and its possible applications in Zuidhorn will be discussed. The different stakeholders involved in the project and the relationship between the stakes are analysed and used for drawing conclusions about which stakeholder will benefit most and which stakeholder will be easiest to serve and most willing to be served in the Zuidhorn project and in future comparable projects. The study shows that the public is neutral about the use of piezosensors, for which one of the reasons is that their knowledge is quite limited. Experts like researchers and involved stakeholders like the municipality of Zuidhorn and consultancy firm Tauw are much in favour of the implementation of piezoelectric sensors as it meets their interests and demands as investigated in this study.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Research question</td>
<td>6</td>
</tr>
<tr>
<td>Theory</td>
<td>6</td>
</tr>
<tr>
<td>Methods and data</td>
<td>11</td>
</tr>
<tr>
<td>Analysis and results</td>
<td>14</td>
</tr>
<tr>
<td>Stakeholders and their interests</td>
<td>14</td>
</tr>
<tr>
<td>Related stakes</td>
<td>20</td>
</tr>
<tr>
<td>The number one beneficiary</td>
<td>25</td>
</tr>
<tr>
<td>Conclusion and discussion</td>
<td>29</td>
</tr>
<tr>
<td>Literature</td>
<td>31</td>
</tr>
<tr>
<td>Appendices</td>
<td>32</td>
</tr>
</tbody>
</table>
Introduction

In an experiment to make piezoelectric sensors of use in the public domain, the municipality of Zuidhorn (Netherlands), Tauw and the University of Groningen (Rijksuniversiteit Groningen, abbreviated RUG) have joined forces. Within the RUG, the involved party is specifically the Zernike institute for advanced materials. In order to explore if this technology is useful and could be applied more broadly in the Netherlands, the municipality of Zuidhorn could function as the centre of trial.

Piezoelectric energy is not yet very widely used beyond the scientific laboratory, but there are applications in daily life. Katzir explains that researchers see possibilities for piezoelectricity, in which a small mechanical amplitude can generate observable electric voltage (Katzir, 2012; Technology, 2016). This voltage can then be used to drive other projects, making piezoelectricity a form of green energy. In the Zuidhorn project, the plan is to use piezoelectric sensors mainly in the ground, especially in places over which many people walk. These sensors could then harvest energy for use in street lighting or other functions to influence the ambiance of the public domain. This energy harvesting use of piezoelectric sensors in the road has been tested in 2011 by Tauw on the road called N34 at Hardenberg, Netherlands (Tauw, 2012). A second important goal of piezoelectricity is to enhance information supplies. The energy that is harvested can then be used not for lighting or something the like, but for gathering data and driving information flows.

As mentioned above, the Dutch municipality of Zuidhorn presents the scene for this experiment. The municipality currently has 18 568 inhabitants (CBS, 2010) and it has a transfer point (later referred to as a “transferium”) with a train and bus station. There are also hundred parking spaces and there is room for bike parking. Around 2 600 travelling people pass this point daily, divided over different times during the day (Zuidhorn, 2015). Of these 2 600, approximately 500 are people who use the transferium in Zuidhorn only as a transfer stop. These busy times are the rush hours in which piezoelectricity could be harvested to a maximum. In the Netherlands, no such area like this centre of trial of piezoelectric possibilities has been set up before.

Piezoelectric usages can already be found in our daily lives on a microlevel, especially in consumer articles, often for everyday use. In mobile phones, lighters, inkjet printers, drinks dispensers and in cars one can encounter piezoelectric sensors. The general idea behind this so-called energy harvesting is to use energy that is now wasted. The advantages of using piezoelectric sensors include that it is environmentally friendly, it could be globally applied, and it is relatively cheap (Noheda, 2015). The next step is to apply piezoelectric sensors not only on a microlevel, but to move on to applications on macrolevel, of which the Zuidhorn project is an example.

Within the Zuidhorn project, there are four main stakeholders of which three are actively involved in the development of the project. The latter three are the municipality of Zuidhorn (the government entity), consultancy firm Tauw and the RUG. The fourth stakeholder includes the users of the transferium in Zuidhorn who will be affected to some extent by the piezoelectricity project. All stakeholders have different interests within the project. The goals of the participating parties can be defined as the indications and opinions of the persons who are involved directly. The perspective of the travellers (users of the station) in Zuidhorn is yet unclear and needs to be examined. The municipality of Zuidhorn is interested in the project
because of ‘greater goals’, such as boosting the knowledge economy and promoting innovation and sustainability in its area. RUG has a different incentive, it wants to use the available area as a demonstration project to show the possible uses and applications of piezoelectric sensors. This party is also interested in the opportunities that this area offers for further research into the topic of piezoelectricity and materials science, so in research and development. The third party is Tauw which is interested to share and gain experiences in such projects and in case this experiment is a success, to transfer the ideas to the rest of the Netherlands and stay involved in the piezoelectricity domain. The challenge is to align all parties and to attract enough investments and/or subsidies to make the project work. For the current project, this aspect is covered. This investment party might form another stakeholder for comparable future projects.

Piezoelectric sensors could not yet function to generate high voltage potential, as storing or accumulating this energy is not yet possible. The piezosensors can be directed towards use in information supply as mentioned earlier. An example of this is the application of piezosensors in tiles for the children’s game “Twister” versus the use of piezosensors to light up an orange warning light for cars 50 meters down the road if someone walks over a zebra crossing.

This research has certain scientific and societal implications that make it relevant to be conducted. Firstly, in terms of scientific relevance, the application of piezoelectric sensors on macroscale is not yet investigated. The interests and needs for piezo applications of citizens in particular have never been studied, like has been the case with for example nanotechnology (Cobb & Macoubrie, 2004). With this study, a first small step towards opinion polling of Dutch citizens about piezo will be made. Secondly, regarding the future, if the project subject to this research is successful, the implications for the development of piezoelectric sensors are huge. The project area can serve and fulfil a crucial role as an experimental zone for the topic of materials science.

For society, this research can assist in showing opportunities with piezotechnology. Generally, one could state that attention will be drawn to sustainability and the knowledge economy. At this point, the community including the government and political leaders, does not realize the opportunities of the applications of piezotechnology. In this project the interests of different stakeholders will be studied, with a focus on macro applications of piezo, which is new in the scientific and consumer world. This research can contribute to improving acquaintance with piezoelectricity for the general public.

To look at the interests of different stakeholders and analyse them is a process that should be done for every project. It is necessary to see to what extent these interests align or not. Using adequate stakeholder analysis theory this can be done in a scientific manner. There are many new and unfamiliar aspects to this project, including the piezoelectric technology itself. This way of sustainable energy harvesting is still under heavy development. Currently, piezoelectric sensors are not as powerful as other forms of green energy harvesters like solar cells or wind turbines. This research looks at the societal aspect of a technical challenge.
Research question

The research question of this study is:

“In what ways does the application of piezoelectric sensors in the Dutch municipality of Zuidhorn satisfy local societal interests and needs?”

The main research question will be answered by finding the answers to four different subquestions, which are the following:

1. What is the current status of piezoelectric sensors and what are the possible applications in the municipality of Zuidhorn?
2. Who are the different stakeholders and what are their interests in the project with piezoelectric sensor application in the municipality of Zuidhorn?
3. How are the different stakes related?
4. Which stakeholder will be easiest to serve and most willing to be served in the Zuidhorn project and in comparable future projects?

Each subquestion and its answer will be addressed in this research paper. The first subquestion will be answered in the theory section, the other questions one can find in the analysis and results section. The answer to the first subquestion is answered in the theory section, because it provides information to give shape to the research method(s) used in this study. Also, with the answer the questions to respondents in both interviews and the survey could be constructed more carefully. The overall answer to the research question in this study includes a general assessment on the future perspective and appeal of piezosensors on macroscale as in the Zuidhorn project. The answer can function as a basis to decide in what aspect of the application of piezosensors one should invest time and resources.

Theory

Before conducting research, the concepts making up the research question should be further explained. The concepts are application of piezoelectric sensors, the location which is the municipality of Zuidhorn in the Netherlands, local societal interests and needs, and stakeholders and their stakes.

With the application of piezoelectric sensors is meant the future possibilities of these sensors. These include inhouse application, application for energy harvesting for public lighting, and application with information flows as primary goal. The research is not about current applications of piezoelectric sensors, for example in consumer goods. It is important to emphasize that it is not a problem that until now the possibilities of piezoelectric sensors are not used or explored, but that it is an opportunity for the future. Opinions on these developments are explored.
The current status of piezoelectric sensors was described by prof. dr. Beatriz Noheda (Noheda, 2016). She tells that piezoelectrics hold promise. We can expect an output of 500 microwatts to 1 milliwatt (1000 microwatts) per cubic centimetre. The latter would be the maximum of the atomic scale effect. There is a structural limitation as to what one can get from a material. In her words, “One cannot expect atoms to move more than they do”. However, there are extrinsic effects like the movement of other materials used in the sensor that can increase the piezoelectric effects or phase transitions. These are ideas that are now tried out in labs to see what they deliver; they are what will actually move the limit to the maximum of 1 milliwatt per cubic centimetre.

At this point, piezoelectric sensors can deliver as much as to light LEDs. The point that Noheda emphasizes is that we are talking about energy harvesting, which means using and transforming wasted energy which is available at no price, totally for free. As a consequence, efficiency matters less as one wants to install these devices in a comfortable and convenient way, as long as it has at least some output, even if it is not much. Fortunately, this is the case. Simple devices which live up to the criteria that they are easy to make, that they are not polluting, that they are not too visible are in Noheda’s view the best devices to use for harvesting and making use of piezoelectric effects. If one succeeds in designing such devices, very large areas can be covered. Noheda speculates about the next step being to integrate piezoelectric sensors with asphalt, but first the piezos and their encapsulating devices need to fulfil the criteria mentioned earlier. The requirements to combine the sensors with asphalt are not so easy. However, it is clear that there are many future thoughts and applications possible.

There are numerous possible applications of piezoelectric sensors in the municipality of Zuidhorn. In this study, the focus in on using the so-called “e-tegel” (e-tile). This e-tile will be placed in the ground, preferably on top of the road or floor to harvest optimal vibrations. This is a ‘device’ as meant earlier. Research is currently conducted about what materials are the best to use for optimal effects.

The setting for this study is the Dutch municipality of Zuidhorn. It is located in the province of Groningen and it currently has 18,568 inhabitants (CBS, 2011). It is quite a modern municipality and it offers opportunity for “shaping” of the atmosphere, both literally and figuratively. This research aims at identifying local societal interests with regards to piezotechnology. For example, Couix and Gonzalo-Turpin conducted a case study to understand the ways in which stakeholders participate in ecological restoration projects and their opinion of these projects (Couix, 2015). This resulted in an analysis of the parties involved and an advice on how to approach in the future. This research aims to achieve something similar.

The project in Zuidhorn can be described as follows. The transferium area in Zuidhorn consists of two railways and surrounding facilities like a train ticket vending machine. There is a bus lane, two bus stops, a parking lot and a bike shed. After the summer of 2016, so in September 2016, a construction project on the renewal and rebuilding of this transferium will start. The idea is that piezotechnology can be used in this building phase, as an experiment by the RUG and in the interest of Tauw and the municipality of Zuidhorn. The first application that is thought interesting is to harvest energy to power public lighting in the transferium area. This study assesses the interests of stakeholders that are involved, so a decision can be made whether or not to continue with this particular application of piezos in Zuidhorn. All stakeholders need to be on one line and agreeing on what exactly will happen. In 2017, the project will be
continued by working on the development of the parking area behind the municipality building (Zuidhorn, 2016).

Concerning stakeholders and their interests, it is important to identify the different parties that are in one way or another involved in the experiment of piezo-applications in the municipality of Zuidhorn. A stakeholder can be identified as follows: ‘any person, group or organization that can place a claim on the organization’s attention, resources, or output, or is affected by that output’ (Bryson, 2004). In this study, the second time “organization” is mentioned in the definition, it can be replaced by “project”. As of this moment, other than the four main stakeholders that have been identified include Enexis and a local primary school. More stakeholders could be added to this list later on. Emphasis will be put on the four main stakeholders in the project.

The influence of the Zuidhorn project on these stakeholders should be explored in order to find out which stakeholder benefits and which stakeholder experiences negative consequences. The construction and installation of the piezoelectric sensors will not be discussed extensively, as this will inevitably take place once the project gets a go. Stakeholders can be analysed using different typologies. For instance, Mitchell, Agle and Wood (1997) argue for a typology including three major attributes: power, legitimacy and urgency (figure 1) (Mitchell, 1997). Another approach is the network analysis by Bekkers, by analysing each author across dimensions like task and position, interest, dominant perception of the problem, sources of power, dependency patterns and strategic interaction patterns (Bekkers, 2013).

Using the methodology of Reed et al., one can divide the stakeholder analysis into three different steps. The first is to identify the stakeholders, which already partly took place for this research. This can be done through (one of) three methods: focus groups, semi-structured interviews and snowball sampling. For this study we have used the second and third method with emphasis on the latter. The second step in the analysis is to differentiate between and categorize stakeholders which can be done analytically (top-down) or reconstructively (bottom-up). Thirdly, one needs to investigate the relationship between stakeholders. To work that out, one can make use of actor-linkage matrices, Social Network Analysis or Knowledge Mapping (Reed, 2009).

The third part of the typology, about how the stakes or interest of the different stakeholders are related gives way to formulating an answer to the third subquestion. This will give an insight in the structure of the project and might lead to a very general analysis of advantages and disadvantages for the involved parties. All this information is relevant for the different stakeholders, especially for the three parties that have joined forces to investigate the possibilities of piezo-applications, the municipality of Zuidhorn, RUG and Tauw. The positions of these stakeholders, together with the viewpoint of the travellers via Zuidhorn station, give
Another approach is highlighted by Newcombe, who applies the technique of stakeholder mapping to a construction project comparable to the project in this research. He explains that “assessing the importance of stakeholder expectations is a key part of any project strategy analysis. It consists of making judgements on three issues: 1) How likely each stakeholder group is to enforce its expectations on the project? 2) Whether these groups have the means to do so. This is concerned with the power of stakeholder groups. 3) The likely impact of stakeholder expectations on future project strategies.” To assess these three contingencies two methods of stakeholder mapping are discussed: the power/predictability matrix and the power/interest matrix (Newcombe, 2003).

For the stakeholder analysis, the theory of Newcombe will be used in this research. This way of analysis allows for a clear and to-the-point classification of stakeholders. Next to this, also Bekkers’ network analysis will be applied to the identified stakeholders within the project. This way not only the process of stakeholder involvement but also the content of the different perspectives will be taken into account. Both theories make this stakeholder analysis comparable to other projects or situations because of their systematic approach. However, such a comparison is beyond the scope of this research.

The fourth subquestion is in particular relevant for Tauw, as this party focuses on the different interests and is curious if each party that is concerned will benefit to a certain extent. The RUG has productinterests to develop the best possible sensors, while the municipality has processinterests by ensuring that public space is shaped in an innovative and socially safe way. Which audience or stakeholder will benefit the most from piezo-applications and which stakeholder will be easiest to serve and most willing to be served are questions to be answered. Important for this is, after identifying the different parties, to identify their specific interests and to find out whether each actor actually believes that an opportunity exists or not. Building on this, one can continue to study the impact of the piezo-applications in the public domain per stakeholder. Which party is easiest to serve and which one is most willing to be served should follow from research into the different specific interest per stakeholder.

To support these analyses that are to be conducted, one should pay attention to the theoretical discrepancies between product and process (interests). Also product use comes into play. Within this project there is a clear distinction to make between the product- and knowledge focused development of the RUG and the product approach of Tauw, in contrast to the process and with that, the product use or exploitation. The latter is the finishing phase of the project, if the product is there, what will happen? Is there someone to exploit or buy the product once it is finished? Or is knowledge production the main aim? A conceptual distinction can be made between stakeholders that do or do not see more to it than only the process. The inhabitants or travellers, as a group of stakeholders, will also probably be concerned about this product use phase. Following this theory, one could construct the following division. A stakeholder can be interested in the product, which is mainly the development phase; the process, including the building and implementation phase; and/or the product use, in which it is all about the finished product.
Interest in…

<table>
<thead>
<tr>
<th>Product, development phase</th>
<th>Process, building and implementation phase</th>
<th>(Product) Use</th>
</tr>
</thead>
</table>

Table 1 Division between product- and process interests

Next to methodological theory, empirical research has been conducted that can be used in this research. An example is an experiment that has been conducted on the N34 in the Netherlands in 2012 with piezoelectric sensors, which was successful (Tauw, 2012). This gives inspiration to continue research on piezotechnology. In this experiment, piezoelectric sensors were placed underneath the road to see the effect of this technology. It was expected to generate a low amount of electricity and besides, it could be used for measuring or counting the number of cars passing to ensure data collection about these kinds of locations.

The energy potential of a piezoelectric sensor is currently about 100 microwatts, which is quite low, especially compared to other modes of green energy like solar panels (Noheda, 2015). However, it is expected to develop quickly during the coming couple of years. The expected path can be compared to the development of LEDs and energy demand. Energy demand goes down significantly, and at the same time, one can ‘produce’ light using much less energy or electricity than was needed before. The current and expected potential helps by sketching realistic scenarios about the future of piezotechnology.

The piezoelectric sensor in essence is a safe and small mechanism which does not cause much harm to its environment. The main concern that exists about piezos is the amount of lead present in piezoelectric materials. Lead is known to be harmful to both people and environment. Following the EU directive on Restriction of the use of certain Hazardous Substances (RoHS) (Commission, 2011), one has been redirecting attention to materials that contain less lead. Short attention will be paid to this lead aspect of piezos in this research.

Placing piezoelectric sensors in a broader context of applications, an interesting paradigm is emerging in the Internet of the Future, called Web Squared. This paradigm is aimed at integrating web and sensing technologies with the goal to enrich the content provided to users. This is obtained by taking into account the information about the user context collected by the sensors deployed in user terminals (Atzori, Iera, & Morabito, 2010). Piezosensors could play a major role in this development and in related developments concerning connections to external servers or to the internet. This opportunity is taken into account when polling the interests of involved stakeholders.

Below is a graphical presentation of the theoretical framework of this study. The stakeholders that are known to exist at the point in time before the study was conducted are added. This graphical presentation will return later in this paper with added information from the study.
Methods and data

Operationalization
Before being able to conduct the study, it needs to be made clear what exactly should be studied, or measured. Therefore, operationalization of the concepts that are to be studied should be done. The first concept to which this is applicable comprises the stakeholders themselves. To identify which stakeholders are part of the project, contact with one of the main stakeholders (Tauw) was enough as this is not such a large project. Tauw could explain which stakeholders are involved. This technique is called snowball sampling, so asking identified stakeholders whether there are other parties involved in the project that should be contacted. This way, stakeholders RUG, Zuidhorn, Tauw, Enexis and the group of travellers via Zuidhorn are identified and part of this study.

A second concept that plays a major role in this study is local and societal interests and needs. Local refers to the geographical location, which is the municipality of Zuidhorn and the project area: the transferium in Zuidhorn. Next to this, local refers to the other related parties in the project. Societal refers to aspects of the project that might be in societal interest. An accurate description of “interest” was given by Carroll, by saying it is the same as a “stake” (Carroll, 1991). A need is something that is wanted or deemed necessary. Both concepts are measured through different indicators, both in interviews and in the survey. ‘Local and societal interests and needs’ is the main variable under study. This variable stands in close connection to satisfaction (of these interests and needs) and the application of piezoelectric sensors in the Dutch municipality of Zuidhorn. It has many undefinable attributes, but one can think of dimensions such as safety interests, community likes and dislikes, and communication interests. Also dangers to society can be taken into consideration. Indicators for such attributes have been used in the
survey and interviews. These dimensions come into play when answering the fourth subquestion in particular.

Thirdly, the concept of stakes is explained by the needs and interests that different stakeholders have or experience with regards to the Zuidhorn project. These stakes are content-related and they will be described using attributes as stated in Bekkers’ network analysis.

Research methods, design and sampling
For this study, mixed-methods research is used, including one survey and four semi-structured interviews. All functioned to map the ideas and interests of one stakeholder only. The survey was used to gather information about the opinion and direction of thoughts of the travellers via the Zuidhorn transferium area. For the other stakeholders that are identified, semi-structured interviews were used with representatives of each company or organ. These stakeholders were, as can be seen in the graphical presentation above, RUG, Tauw, and the municipality of Zuidhorn. Later on, grid operator Enexis has been added as a fifth stakeholder. The semi-structured interviewing resulted in some similar questions asked, but also the freedom of interpretation was used to be more specific and concrete towards each stakeholder in particular.

In the interview questions triangulation was used for cross-checking data from multiple sources. An example of this is that all four representatives of the stakeholder parties were asked who they thought was the most important stakeholder in the Zuidhorn project as a whole. This way it was possible to check whether the parties are on the same track when it comes to viewing the participating stakeholders in the project.

The research design used in this study is a cross-sectional design. It is focused on one specific moment in time, which is before execution of the project. The study is an observational one that involves analysis of data that is collected from a population or sample at this certain point in time. The method of data collection differs per stakeholder. Stakeholders that are to be addressed in this section are the following: inhabitants of Zuidhorn, the municipality of Zuidhorn, the RUG, Tauw, and Enexis. Each of the stakeholders will be discussed shortly.

For polling the opinion and interests of the inhabitants and travellers of and via Zuidhorn, a short survey has been set out. The survey consists of seven questions about possibilities of piezo-applications in the transferium area in Zuidhorn. The survey can be found in Appendix A. About 100 inhabitants were expected to fill out the survey. This number of respondents was realistic for the time span of the study. Concerning case selection and sampling, convenience sampling seemed the best way to go about. To get a representation of the opinion of inhabitants and commuters, surveys were purposively and selectively distributed to people that are on the railway- and busstation in Zuidhorn. In the period from 29 April 2016 to 10 May 2016, there were three different times that possible respondents were asked to fill out the survey. The survey was completed by 109 respondents. It is likely that for example a generally negative attitude towards new technologies will influence one’s attitude towards the project.

The respondents were introduced to the topic of piezosensors in a short introduction at the start of the survey. This was there to assure a similar kind of pre-knowledge of the respondents. The seven questions of the survey include six statements with answer options “fully disagree”, “disagree”, “agree nor disagree”, “agree” and “fully agree”. The first question was “I think it is good that the municipality works with new
technologies”. This question intended to measure whether the general tendency of the respondent towards new technologies was positive, negative, or neutral. Questions 2 to 6 were used to get an indication of the respondents’ opinion of piezosensors on certain ‘degrees’, starting with a statement about a sketch of the least impactful situation. The respondents were asked about their opinion if implementing piezosensors caused the light to be off sometimes, if the piezosensors were used for gathering information about them and the environment, and if piezosensors were used to improve social safety in the neighbourhood. These questions were included to measure what aspects respondents would like or dislike about the implementation of piezosensors. With these questions, it becomes clear what application of piezotechnology people find acceptable and which applications are not found acceptable. The sixth statement asked about if the respondents are worried about the risks of piezosensors, intended to measure any kind of discomfort of the general public towards this new technology.

The seventh and last question of the survey asked for what the respondents thought is the biggest advantage to the implementation of piezosensors. This is a multiple-choice question with answer options [I think the biggest advantage of implementing piezosensors is...] “possibility for retrieving information about the neighbourhood”, “sustainable public lighting in the municipality”, “better cooperation with knowledge institutions”, “other, please specify”, “I do not see any advantages to using piezosensors”, and “no answer”. This question was intended to direct the respondents’ answers in different categories, which category they find most important. This can be taken into consideration in the process of developing the sensors and while thinking about the best specific place to locate them. This way, the other stakeholders involved in the building and implementation (process) phase, are able to take into account the wishes of the travellers as far as possible.

The municipality of Zuidhorn is represented by one person only, so this population of 1 was interviewed about its opinion. There was no selection as the population equals the sample. The same is true for the RUG and Tauw. No case selection or sampling was needed because there is only one expert per stakeholder company or group as a whole. Within Enexis, two experts have been interviewed. The same method, semi-structured interviewing, has been used. There are fifteen interview questions in an interview protocol regarding the topic of piezo, the organization’s interest in the project and the organization’s perspective on it (Appendix B). Sometimes more questions were asked for the purpose of clarification. These interviews were conducted in a time span of three to four weeks. A transcript of the interviews has been made (Appendix C) and in combination with the stakeholder analysis methods, conclusions could be drawn about the different interests of the stakeholders involved. The time span of the interviews differed from only 16 minutes to 40 minutes per interview. The data resulting from the survey has been analysed in SPSS. This combination of quantitative and qualitative methods serves as best method for answering the research question.

Literature, practical outputs from the running project in Zuidhorn and information from interviews and the survey will be used to answer the subquestions in this research. A literature study is important as a fundamental scientific basis for this research. This can be read in the theory section. Trials of the RUG with piezoelectric sensors will probably influence the outcomes of this research, but during the study this has not happened to the extent that was expected. Interviews with stakeholders involved could clarify different points of view and hereby indirectly inform Tauw in what ways different parties are able to perceive benefits
and/or costs from this transferium project. A small survey intended to measure the preferences of Zuidhorn inhabitants served to answer the questions put up in this research.

The information from the survey intended to clarify the point of view of the travellers via the Zuidhorn transferium. These data were coded in SPSS and descriptive statistics and cross tabulations were applied to see how the data relate. The interview transcripts were analysed contentwise to answer the research question. This way, each subquestion could be answered per stakeholder in a step-by-step manner.

Analysis and results

In this section, the data that are collected are analysed and compiled into workable results. With these results, one could come to an advice for consultancy company Tauw and other involved stakeholders regarding the Zuidhorn project. The approach that is used to answer each question includes the analysis of the survey results and the interview transcripts. Each subquestion is treated under a different heading.

Stakeholders and their interests

Who are the different stakeholders and what are their interests in the project with piezoelectric sensor application in the municipality of Zuidhorn?

For this research, five stakeholders have been identified and studied. These will be systematically discussed in this section, describing who they are and what their interests are in the project with piezoelectricity in Zuidhorn. To start with the odd one out, there are the travellers via Zuidhorn station. This is a very diverse group of people that have visited the station at least once in the period from 29 April 2016 to 10 May 2016. There are 109 people that have completed the short survey on the transferium of Zuidhorn. In general, public opinion about piezoelectricity is not yet (very) developed, as knowledge about it is very limited. The analysis presented about the travellers via Zuidhorn contains descriptive survey data. The following five statements were given, with five answer options, ranging from “fully disagree”, “disagree”, “agree nor disagree”, “agree”, to “fully agree” (coded from 1 to 5 respectively, the table cell was left blank if no answer was given).

Average score per statement

<table>
<thead>
<tr>
<th>Statement</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>I think it is good that the municipality works with new technologies.</td>
<td></td>
</tr>
<tr>
<td>I think it is good if piezosensors are used to fuel public lighting.</td>
<td></td>
</tr>
<tr>
<td>I think it is good if public lighting is only on when I walk by. At other times, the lights are off.</td>
<td></td>
</tr>
<tr>
<td>I think it is good if piezosensors are used to drive information flows (to gather information). One might think of rush hour measurements.</td>
<td></td>
</tr>
<tr>
<td>I think it is good if piezosensors are used to protect social safety in the neighbourhood.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Average score of answers on a scale from 1 to 5 per statement for the first five statements of the survey
Concerning the first statement in the survey (the one at the top in the figure above), “I think it is good that the municipality works with new technologies”, just 3.7% of the 108 valid responses comprised a hint of disagreement (answer options ‘disagree’ and the neutral option ‘agree nor disagree’). A striking majority said they agreed to the statement that they thought it was good if the municipality works with new technologies (71.6%). Another large group of respondents, 23.9 percent, even fully agreed to this statement. This shows the general trend that the public is in favour of using new technologies, and gives us the idea that a new technology idea like piezoelectricity is likely to be accepted in society.

As one can observe in the bar graph showing the average answers to the five statements in the survey, the general tendency towards the introduction of piezosensors in Zuidhorn seems very favourable. The lowest average is 3.1 out of 5, which occurs at the statement “I think it is good if public lighting is only on when I walk by. At other times, the lights are off.”. Note that even this average is above the middle value of the 1-5 scale, which is 3. One may also conclude from the graph that as a whole, the sample has a more positive attitude towards using piezos for fuelling public lighting and improving social safety in the neighbourhood than towards using them for driving information flows. This might imply that the respondents do see some kind of danger or negative aspect to this information gathering. Therefore, the connection of piezotechnology with external devices or the internet as mentioned in the theory section seems to be not the most favourable option for the travellers via Zuidhorn station. Privacy could be an issue, but this has not been tested in this study. However, there are no indications of such negativity that one might expect protests or the like from this group of stakeholders when implementing piezosensors in Zuidhorn.

Kendall’s tau correlation measure (τ) was used to look for a correlation between the first statement (the general attitude towards new technologies) and the following four statements (about piezosensors and their applications). With a two-tailed test with a significance level of 0.05, the statements about fuelling public lighting with piezos (sign. = 0.000; τ = 0.332), using piezos for lighting only when people pass by (0.046; 0.176), and improving social safety by the use of piezos (0.014; 0.231), are all significantly correlated to the general statement about thinking it is a good idea for the municipality to make use of new technologies. The correlations are all positive, as expected, though not extremely strong. The statement about using piezos to gather information about the environment is not significantly correlated to the general technology statement (0.158; 0.130). This means that no conclusion can be drawn about the relationship between being in favour of using piezotechnology to gather information and a general view on new technologies. One could conclude that a general positive tendency towards new technologies, does positively impact the attitude of respondents towards piezosensors as a new technology to a certain extent.

Next to the five survey statements mentioned above, there was also a sixth statement in the survey, a final multiple choice question and room for suggestions or remarks. The sixth statement reads “I worry about the risks of piezosensors.” (“Ik maak me zorgen om de risico’s van piëzosensoren.”). One of the risks that piezos carry is the presence of lead, as lead-containing materials are used in combination with the piezoelectric materials to create a workable whole. At this moment, research is conducted about alternative, less lead-containing materials, but no conclusions can be drawn on this topic yet.
I worry about the risks of piezosensors. ("Ik maak me zorgen om de risico's van piezosenoren.")

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully disagree</td>
<td>8</td>
<td>7.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Disagree</td>
<td>46</td>
<td>42.2</td>
<td>44.2</td>
</tr>
<tr>
<td>Agree nor disagree</td>
<td>40</td>
<td>36.7</td>
<td>38.5</td>
</tr>
<tr>
<td>Agree</td>
<td>10</td>
<td>9.2</td>
<td>9.6</td>
</tr>
<tr>
<td>Fully agree</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td>95.4</td>
<td>100.0</td>
</tr>
<tr>
<td>Missing system</td>
<td>5</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Descriptive statistics about respondents' view on the risks of piezosensors

As one can see in the table above, there is a great tendency to disagree with this statement, which means that the respondents are generally not very worried about the risks of piezosensors. Note that none of the respondents answered that they fully agreed to the statement, meaning that none of the respondents is very worried about the risks of piezotechnology. This can be interpreted as very favourable towards the Zuidhorn project, though one has to take into consideration the (very) limited knowledge about piezotechnology of the respondents. This might account for the belief that there are few risks tied to the use of piezosensors in the public domain.

The multiple choice question is summarized in the following table. The respondents were asked what they found the biggest advantage to piezotechnology. They had six answer options: (1) possibility for retrieving information about the neighbourhood, (2) sustainable public lighting in the municipality, (3) a better cooperation with knowledge institutions, (4) other, please specify…, (5) I do not see any advantages to using piezosensors, (6) no answer.

[Multiple Response Analysis] What do you think is the biggest advantage to piezotechnology?

<table>
<thead>
<tr>
<th>I think the biggest advantage to piezotechnology is…</th>
<th>Possibility for retrieving information about the neighbourhood</th>
<th>Sustainable public lighting in the municipality</th>
<th>Better cooperation with knowledge institutions</th>
<th>Other, please specify…</th>
<th>I do not see any advantages to using piezosensors</th>
<th>No answer</th>
<th>Responses</th>
<th>Percent</th>
<th>Percent of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>I think the biggest advantage to piezotechnology is…</td>
<td>19</td>
<td>15.4%</td>
<td>17.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possibility for retrieving information about the neighbourhood</td>
<td>82</td>
<td>66.7%</td>
<td>75.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable public lighting in the municipality</td>
<td>11</td>
<td>8.9%</td>
<td>10.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Better cooperation with knowledge institutions</td>
<td>3</td>
<td>2.4%</td>
<td>2.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other, please specify…</td>
<td>3</td>
<td>2.4%</td>
<td>2.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I do not see any advantages to using piezosensors</td>
<td>5</td>
<td>4.1%</td>
<td>4.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
<td>100.0%</td>
<td>112.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Multiple response analysis on respondents' answers to what they think is the biggest advantage to piezotechnology
A multiple response analysis has been conducted, as it was possible to tick one or more options as an answer. Most of the answers, 66.7%, included the option “sustainable lighting in the municipality”, which tells us that this is the ruling impression of piezotechnology, that it is sustainable or a form of green energy. Some of the other options were also frequently picked, but much less than the sustainability option. The possibility for retrieving information about the neighbourhood and better cooperation with knowledge institutions were second options people thought about. The respondents that answered “I do not see any advantages to using piezosensors” \((N = 3)\) were also the respondents who were generally more negative towards using (piezo)technology in the other questions of the survey. This is shown in the following table, the mean (average) is a lot lower than for the sample as a whole, as shown before.

![Average score per statement](chart.png)

- Respondents who answered “I do not see any advantages to using piezosensors” \((N = 3)\)
- All respondents

In the part of the survey where the respondents were offered room for remarks or suggestions, only seven respondents took the liberty to write something down. These included twice the remark that it is great to look for new sustainable energy sources, and twice the remark that the respondent did not have enough knowledge to answer a part of the survey. The question “Why? There are already solar panels, isn’t that enough?” was asked. Another respondent remarked at the third statement (that lights will be off if no one is there), that that can be dangerous as you will have limited sight. The final respondent that filled out this space said that we have to be careful with our privacy and leaving our personal information everywhere. All these remarks were useful and can be taken into consideration in a later stage of piezotechnology development. However, for this study, this is not a significant amount of (similar) remarks to be able to work with them.

To conclude, this group of stakeholders, the travellers via Zuidhorn station, will welcome the initiative to use piezotechnology in the area. They do not worry a lot about the risks of piezosensors, but they are slightly sceptical about using piezosensors if it means that at some times at night the light can be turned
off. Generally, this group of stakeholders was asked about their opinion if the project would actually be completed. The main interest of these travellers lies in the product use phase of piezosensors. As long as they are not disturbed and they are able to travel safely, this group of stakeholders is not going to make a lot of trouble.

The second stakeholder is the municipality of Zuidhorn, it has been involved since the start of the project together with the RUG and Tauw. Their main interest in the project with piezoelectricity in Zuidhorn are greater goals like improving the knowledge economy, and boosting sustainability and innovation in their area. They want to do something in the area of citizen participation and they see this project as a slight opening to do that, by making citizens aware of the use of this green energy harvesting. They want to inspire the inhabitants that there is a lot of potential in and around you, once you look around (Van der Maesen de Sombreff, 2016).

Because of all these “extra” advantages that will show up once the piezo-project is started, the municipality is mainly concerned about process interests and not the product use phase like the travellers, or about product interests. Of course the piezosensors should work, so the municipality has product interests to some extent, but the process means a lot more to this institution. This leads to the conclusion that the piezosensors, or its use, should be visible to its users. If this is not happening, the municipality does not get a lot out of the initiative. The municipality is to a certain extent interested in Zuidhorn’s users- and travellers’ experiences of the piezosensors.

The third stakeholder is the company Tauw, that works closely together with the municipality and the RUG. Tauw is now working on the lighting plan for Zuidhorn, for the transferium project that will be implemented at the same time with the rebuilding plans for the station area. The company has earlier experience with piezotechnology from an experiment at the regional road at Hardenberg in the Netherlands, as mentioned before. They also have experience with developing the e-tile, that uses certain piezoelements and lights up when you step or jump on it. Tauw is very willing to continue in the area of piezotechnology, as it seeks the potential that seems to be there and wants to show the rest of the (commercial) world that they are good at what they do. The Zuidhorn project is very suitable to prove and show that they have experience and knowledge of how to use piezosensors on a macroscale in practice.

Part of the role of Tauw is to think about and motivate why certain sensors should be placed in certain spots in the public domain. (“Onze rol zit veel meer in het bedenken en te motiveren waarom bepaalde sensoren op bepaalde plekken in de openbare ruimte zinvol zijn.”). Advantages for Tauw when participating in the Zuidhorn project are thus to develop a competitive advantage and to have a lead on knowledge in the field. Tauw can profile itself as a company that promotes sustainable living environments in a modern way. The company also faces a few disadvantages when entering the project, including the investment when you do something for the first time. It costs almost always more than you get out of it. With this, similar companies could watch Tauw figure out how to do the job, and then they will get other projects to do the same thing. However, the advantages cancel out the disadvantages for Tauw. They also hope, on the technical side, that this project stimulates and calls for an increase of the rate of return of the piezos on the longer term (Bos, 2016).
The fourth stakeholder is the University of Groningen, the RUG. Their interest in this project is mainly product focussed, they get the chance to develop, work on and improve their piezoelectric sensors. They are offered an experimental area to do this by the municipality of Zuidhorn. This is great for improving the local ties with the municipality and it contributes to connecting the students of the university to its neighbouring cities and places in the municipality of Zuidhorn. The catch for the university is that they actually do not want visibility immediately, because chances are that the piezos will not work the way that is expected. This will be bad for the image of researchers and the RUG. After about six months, or when it is proven to be successful and ready to show to the public, they are of course very willing to go public. The RUG is interested in the user experiences. Once the piezosensors get commercial (only if), then the university is not an interested party, their concern stays mainly with the product development (Noheda, 2016).

The fifth stakeholder is Enexis, whose interest in the Zuidhorn project mainly comprises the testing opportunities that it gives for using piezotechnology in combination with the regular energy network. They do suggest to always use the regular network as a backup. The advantage for this stakeholder is to come one step closer to their sustainability goals and to be on the forefront of new and modern activities. The greatest disadvantage is reliability towards their customers. They want to be reliable when it comes to the delivery of energy to their customers. Every Dutch citizen expects that the energy networks work all the time. Everyone is very used to the fact that the energy supplies are always there. The risk for Enexis here is that if the piezosensors do not work like promised, the company is under attack, or at least its image. This is a risk they do not want to run, but nevertheless they are open for testing and experimenting and in this way, to finding out the possibilities that exist. Enexis suggests to use a spot to experiment at which it does not matter a lot if the public lights are off for some time (Brouwer, 2016; Tammenga, 2016).

Their second interest also has to do with experimenting, this is to try to get a better balance in their energy network. This means they would like to not have peaks during the times 7-9, 11.30-13, and 17-19 hours. Now they work with dynamic prices to try to steer these times, but they still want to balance their network more. Enexis is at this point not working with piezos at all. They are willing to cooperate in this project, as they want to help their customers to prevent a high energy bill, which is also good for their image (Brouwer, 2016; Tammenga, 2016).

The tasks, positions and interests as described above are summarized below in a table as suggested by Bekkers’ network analysis theory. This is the first part of the table that will be completed in the next subsection. A hyphen in the table means that there is no interest of the stakeholder in that specific phase.
<table>
<thead>
<tr>
<th></th>
<th>Travellers via Zuidhorn station</th>
<th>RUG</th>
<th>Municipality of Zuidhorn</th>
<th>Tauw</th>
<th>Enexis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task and position</td>
<td>Users</td>
<td>Supplier of piezotechnology</td>
<td>Supplier of space</td>
<td>Connecting party (connects stakeholders), intermediary</td>
<td>Willing to contribute</td>
</tr>
<tr>
<td>Interest</td>
<td>Product</td>
<td>Product interest, experimenting made possible</td>
<td>-</td>
<td>Product interest with an eye on the future; commercial purposes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Process</td>
<td>-</td>
<td>For greater goals like knowledge economy, sustainability and innovation</td>
<td>Commercial status</td>
<td>Willing to contribute if necessary</td>
</tr>
<tr>
<td></td>
<td>Use</td>
<td>Neutral as long as we are not harmed</td>
<td>No interest once it gets commercial (if this happens), but interested in user experiences</td>
<td>Interested in Zuidhorn’s user- and traveller-experience</td>
<td>Competitive advantage in the field, sustainability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Testing made possible, future options are plenty, sustainability</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Task/position and interest per stakeholder of the Zuidhorn project, following Bekkers’ method of stakeholder analysis

Related stakes

How are the different stakes related?

Further analysing the content of the table above, one can say something about the relationships between the stakes of different stakeholders. Whether they conflict or align is important for, and will therefore affect, the completion of the Zuidhorn piezotechnology project.

There are several stakeholders that have similar interests considering the Zuidhorn project. In terms of product use interests, the group of travellers via Zuidhorn station and Enexis think alike. Both parties do not mind if the piezosensors are installed, as long as their activities or work are not bothered or disturbed. However, when they can experience any advantage of the project, they are happy with that. Both Tauw and the RUG have product interests, while Tauw and the municipality both have process interests. This
explicitly shows that Tauw is the stakeholder that connects other stakeholders involved on the short term. The fact that the three main parties, RUG, the municipality of Zuidhorn and Tauw have certain specific interests in the Zuidhorn projects, ensures the continuation of the project. Of course, in practice, the effort put in this new project (with unpredictable outcomes) depends on how much other work the companies have that is prioritised over this.

Fortunately for the initiators of the project, there are not many, if any, conflicting stakes. The one conflicting topic that came to light during the interviews was the visibility of the piezosensors. The RUG would like to have some time to experiment with the sensors without the public seeing all of their work. It might negatively influence the image of researchers if the sensors do not produce the amount of energy that is intended to be harvested. The viewpoint of the municipality of Zuidhorn is contrary to the RUG’s ideas on this topic. The municipality wants full visibility so their inhabitants can see and experience the piezosensors. They want to show the people that they are a progressive municipality investing in the future through forms of green energy. However, this small problem could be solved by giving the RUG a certain (small) time period to experiment with the sensors, whereafter the municipality can promote the new technology. This way, a kind of safety factor is built in, may the sensors fail to work in whatever way possible.

Some degree of opposition is to be expected from the group of travellers if there is disturbance in their travelling experience at the station of Zuidhorn, or otherwise if personal information can be stored using piezosensors. This could be concluded from the survey question about to what extent one agrees if the piezotechnology would be used for collecting information about the (users and their) environment.

To continue the analysis on the relationships between the stakeholders, all stakeholders that were interviewed were asked which party they thought was most important within the project. Besides, they were asked who they needed and if they needed (some)one, why. The question was also reversed, so it was asked if they thought they were needed by other parties and if so, why. These questions measured which resources the stakeholders have that they can put in the project or that they need from other stakeholders. The categorisation of resources used in this study is as follows:

- materials,
- knowledge and skills,
- position in decisionmaking process,
- relations,
- identity or image,
- collective power, and
- finances or capital.

The resource called finances or capital is left out in this study. The reason for this is that it is already covered by the participating stakeholders, so it is for this piezoproject no longer an issue. Of course for further projects, capital is a very important resource. A project stands or falls with money. In this study, when studying dependency relationships between stakeholders, capital does not form a problem between actors.

The municipality of Zuidhorn needs the RUG for the realization of the implementation of piezosensors in the Zuidhorn station. However, for the renewal of the transferium, which is going to happen independently of the piezoproject, the municipality does not need the stakeholders mentioned in this study. To clarify, this study is about the piezoproject, which is a smaller part of the project comprising the renewal of the Zuidhorn
This renewal project will start in September 2016, and before this starts, one can still make a decision if the piezosensors are to be involved in this greater project or not. The representative of the municipality explained that Tauw and the RUG are important for the project with piezosensors in the transferium. If those parties do not participate, it is not going to happen. The municipality explains that Tauw and the RUG must find the municipality necessary, as they are offering the grounds (materials) for the piezo-experiment, which is the main power resource of the municipality.

Tauw reveals that other parties do not need them or their stake within the project. However, to make this project work within a reasonable time span it is a good idea to involve Tauw, to combine the different interests of in particular the RUG and the municipality. Tauw also has some knowledge and skills from previous experiences with piezoelectricity. It is said that if no one offers the space to do what they want to do, then there will be no project. Tauw does have relations to the commercial world that can be useful for the project and especially when it has been completed.

The RUG needs the space to conduct their experiments which is offered by the municipality. The researcher of the RUG explains that “the nice thing of piezoelectrics is that it is not a new type of material, it is already in industry everywhere, so you can buy a piece of piezoelectric already and you can use it. That is a nice thing, that you don’t start from zero. It is new to put it in the floor, that is should be robust, that you have enough of it, that it’s more efficient, etc.” (Noheda, 2016). In conclusion, one could say that the RUG is necessary for this project as they are the closest knowledge institution that is working on piezoelectrics. They are very willing to participate in the project and therefore should be involved at all times. Their power resource is knowledge, skills and scientific information.

Enexis explains that they are willing to participate in a pilot project if it comes to the moment that Enexis is needed for the connection to the general electricity network. They say that “If you want to work together and start a pilot project, you need Enexis, the municipality, the RUG and the supplier. You need to get those four parties together.” (“Als je wil samenwerken en je wil een pilot opzetten, dan heb je Enexis nodig, de gemeente, de universiteit, de leverancier. Die vier partijen moet je bij elkaar zien te krijgen.”) (Tammenga, 2016). Enexis has knowledge and skills that are required when the piezoelectric sensors are to be used in combination with the regular energy network. In this part of the Netherlands, Enexis has a regional monopoly as grid operator, so they are the only company that manages the low voltage circuit. Therefore, when the electricity that can be harvested from piezosensors should be put into the energy network, Enexis is needed to complete this connection.

Travellers have their collective power; they are all the inhabitants. So if they decide to not use the Zuidhorn station anymore (although this chance is of course very small), then the project is boycotted.

Dominant dependency patterns come into existence when stakeholders exercise their power resources as mentioned above and summarized in the table below. The group of travellers has no dependency patterns as they are not dependent in any way on the other stakeholders. When nothing changes the way it is now, the travellers via Zuidhorn station are not dependent on anyone. The RUG experiences a reciprocal interdependency pattern, as does the municipality. Both stakeholders offer knowledge or materials that are needed for the project, but they also need the project in order to be able to contribute with their knowledge and materials. Enexis is independent, as they can choose for themselves if they want to
participate in the project with their knowledge and skills. Tauw is dependent on the cooperation of the other stakeholders to be able to contribute.

The available power sources and dominant dependency patterns are summarized in the table below.

<table>
<thead>
<tr>
<th>Available power resources</th>
<th>Travellers via Zuidhorn station</th>
<th>RUG</th>
<th>Municipality of Zuidhorn</th>
<th>Tauw</th>
<th>Enexis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective powers (number of people)</td>
<td>Knowledge and skills</td>
<td>Materials, esp. in the form of the transferium area itself. Its position in the decisionmaking process</td>
<td>Relations in the commercial world</td>
<td>Knowledge and skills</td>
<td></td>
</tr>
</tbody>
</table>

| Dominant dependency patterns | Independent | Reciprocal inter-dependency with the municipality | Reciprocal inter-dependency with the RUG | Dependent on cooperation of other stakeholders | Independent |

Table 5 Available power sources and dominant dependency patterns between identified stakeholders, following Bekkers’ method

Next to Bekker’s network analysis, for this study also Newcombe’s theory is used. On the basis of the information from the interviews, the following matrices were constructed. These matrices are inspired by Newcombe’s theory. They are a power/predictability matrix and a power/interest matrix. The parties have been filled out in the quadrant corresponding to their position on both axes.

<table>
<thead>
<tr>
<th>Power</th>
<th>Predictability</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>A Few problems Tauw, travellers</td>
<td>B Unpredictable but manageable</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>C Powerful but predictable Municipality of Zuidhorn, RUG, Enexis</td>
<td>D Greatest danger OR opportunities</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5 Power/predictability matrix following Newcombe’s theory

The power/predictability matrix is constructed on the basis of the previous analysis based on Bekkers’ theory and of information retrieved from the stakeholders in the interviews and surveys. In quadrant A are Tauw and the group of travellers, two stakeholders that have relatively low powers and are highly
predictable in their actions. Tauw is dependent on the other stakeholders and will stay in the project as long as necessary, which makes for quadrant A. The travellers are low in power, but from the survey results one can conclude that they are not willing to undertake any actions, so they are predictable.

Quadrant B includes stakeholders who can be unpredictable but manageable, but there are no such stakeholder involved here. The powerful but predictable stakeholders are in quadrant C, the municipality of Zuidhorn, the RUG and Enexis. The municipality has the most power as it is the project leader, but is very predictable as it is a large organization with clear goals and actions. The RUG has high power because without the university, there would be no piezoproject. They are predictable as their interest is very clear and single-sided. Enexis is necessary to complete the connection to the regular energy network, so without Enexis piezos cannot be used for commercial purposes in the future, therefore it has high power. It is predictable as they follow clear corporate strategies with sustainability and performance goals. Quadrant D stays empty.

<table>
<thead>
<tr>
<th>Power</th>
<th>Interest (level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>A Minimal effort Travellers B Keep informed Tauw</td>
</tr>
<tr>
<td>High</td>
<td>C Keep satisfied D Key players Municipality of Zuidhorn, RUG, Enexis</td>
</tr>
</tbody>
</table>

The power/interest matrix also consists of four quadrants A to D. In the interviews, a question was asked as to how they would rate their degree of interest in the Zuidhorn project on a scale from 1 to 5. As was defined before, the municipality of Zuidhorn, the RUG and Enexis have high power, so they are in one of the bottom quadrants. The RUG gave its level of interest a 5 on the 1-5 scale, the municipality a 4 and Enexis a 3 to 4. So as the interest of these stakeholders is relatively high, they are in quadrant D representing key players in the project. Travellers via Zuidhorn station have low power and low interest as can be taken generally from the survey results. This group costs minimal effort to ‘control’. Tauw is in quadrant B, it has low power but high interests (a 5 on the 1-5 scale), as is explained earlier in this chapter.

The reason that investors are not included as a group of stakeholders, is that for this project, knowledge is the primary goal. There are now financial means available with the goal of knowledge creation and development. When piezosensors are proven to be very well useable in settings like the Zuidhorn project, then chances are that it gets a lucrative business once investors decide to invest in this technology. Then the resource named capital will most likely influence the relations between stakeholders.

To conclude, the Zuidhorn transferium project including the application of piezoelectric sensors in the ground over which many people walk can start if all resources are available. This means materials (area) and a crucial position in the decisionmaking process from the municipality, knowledge and skills from the RUG and Enexis, relations from Tauw and (untouched and unlikely to be used) collective powers from the
group of travellers, and last but not least, capital from subsidies. So all stakes are accounted for by different parties and groups of people. These stakeholders should agree and align on the same grounds to successfully start and complete the project. These interdependencies and information per stakeholder are summarized in the figure below.

![Diagram of stakeholders and their requirements]

Figure 7 Theoretical framework extended with new information from survey and interview analyses

The number one beneficiary

Which stakeholder will be easiest to serve and most willing to be served in the Zuidhorn project and in comparable future projects?

Broadening the stakeholder analysis, we take a look at the answers of the stakeholders to the question “What would make this project successful [for you]? Also, each stakeholder was asked about advantages and disadvantages that they saw or predicted in the Zuidhorn project and more generally, in working with piezotechnology. To extend the analysis, we examine the future options and consequences for projects comparable to the Zuidhorn piezoelectricity project. So after analysis of the success-making factors of the current stakeholders, we ask the question: what would be different if one would conduct the same analysis for a new but comparable project? In this section, we discuss per stakeholder what makes the project successful for them and afterwards we take a look at the (near) future.

The travellers via Zuidhorn station are not involved in this part of the analysis, as they did not have enough knowledge to answer the question on what would make this project a success for them. The conclusion that is drawn from the answers of the survey is that they think the execution of the project with piezosensors is
fine as long as they can travel safely and are not disturbed by inconveniences like no public lights at certain times.

The main benefit that the municipality of Zuidhorn experiences is to be able to show the inhabitants that there is some great little piece of green technology in the ground. They want to show inhabitants at a glance that the municipality works together with the RUG and Tauw on something that is new in the area of green energy. Secondly, the representative of the municipality explained that he would like the local knowledge institutions to get involved, and even that they include energy and sustainability in their educational programs. When these new initiatives can be actually experienced and noticed by the inhabitants, this is a great benefit for the municipality. Another benefit for them is the cooperation with the RUG, when it becomes permanent. It is possible to do that in this specific project, but also in other projects to come. This can be a start. “And if you want a “translation” of what you do in a scientific area towards real life, you need a civil society where you can show the applications of your research. That is what we can offer, the university only has a student community, so no real society with all layers of the population. Our municipality is the bigger whole.” For piezoelectrics in specific, the representative explains that he believes that it should be there, it should work, it should be ‘experienceable’ (“beleefbaar”), and Tauw, RUG and we as municipality should be satisfied. Talking about time, this whole project will take about one and a half year to complete (Van der Maesen de Sombreff, 2016).

The benefits of piezo-applications in Zuidhorn for the RUG include mainly the chance to work on, develop and improve the techniques and materials used in piezoelectric sensors. The goal of this is, as explained by a RUG piezo-researcher: “When people can actually walk through a path with piezos in, that for many months, many years, that is robust, and doesn’t have any drawbacks in a sense that people will not think “oh, I have to go through this, it is annoying because it moves back and forth so I prefer to go the other route”, so if people can walk comfortable over a piezoelectric path and see how much energy they generate even if it is very very small. I would say that this is for me already interesting enough. That we can put piezos underground, in a path, that is a little bit more than just a couple of steps, so a real path. That people every day can see that they are generating energy. At the point that it’s visible and at the point that it’s robust and longlasting, then it would be for me successful.” The researcher added that if the RUG was given the chance to have six months of ‘invisible’ research in Zuidhorn, they could probably start to develop some displays that they generate enough energy for by piezoelectricity (Noheda, 2016).

Tauw would benefit from the piezo-sensors in Zuidhorn mostly because the project enables the company to show that a part of the experience of public space (whether safety or lighting) can be fuelled by energy from movements, harvested by piezos. In other words, that the behaviour of the users of public space is leading in the experience of the public domain around them. The benefit for Tauw is to show the rest of the world that it can be visible in daily life. So if the users of the Zuidhorn area also see that, it is a good opportunity to show this to the rest of the world. Tauw really want the users of public space to actually experience the new technology and get something out of it, too. What this would mean for comparable future project is a similar role for Tauw, in getting partners together. The company could be interested to invest because of marketing strategies (Bos, 2016).

For Enexis, the benefits are different. The benefits that Enexis could get out of the piezosensors in the municipality of Zuidhorn are that if they get involved, they will make steps towards a more sustainable way of acting. When the project is a success, the company benefits from the positive image it will receive.
through ensuring reliability, and sustainable and affordable green energy. This fits in their strategy to focus on the management and maintenance of the gas- and electricity networks in the Northern, Eastern and Southern parts of the Netherlands (Enexis, 2016) and on related commercial activities like this piezoproject might be. Today, the energy transition accelerates and Enexis wants to be on top of the game. This project would give them that status. Enexis is very willing to try to get even more out of the current mains to adhere to customers’ wishes (Tammenga, 2016).

To conclude with an answer to the subquestion which stakeholder benefits the most if piezos are implemented in the transferium in Zuidhorn, the best answer would be to point out the RUG. This stakeholder has the most straightforward benefits towards the project, which comprise developing and experimenting with their product, piezosensors. That they are offered space and other freedoms to do this, is something that they should really appreciate and keep close in maybe other projects to follow.

Considering which stakeholder within the Zuidhorn project would be easiest to serve, the municipality of Zuidhorn is the stakeholder to pick. This stakeholder gets what it wants either way, the transferium is rebuilt and modernized in the project that starts in September 2016. If then also piezosensors are implemented, and, in a next step, made visible to its inhabitants, life gets even better for the municipality. Either way, to put it simply, they have nothing to lose. This makes them the stakeholder that is easiest to serve.

The stakeholder that is most willing to be served in the Zuidhorn project is, for one, not the group of travellers, as they do not really mind as long as they are not disturbed in any way. Tauw is most willing to be served, as they are deemed necessary to participate but actually are not crucial, only in their advice as an intermediary. However, it can be said that all involved stakeholders – except the group of travellers via Zuidhorn station – are willing to be served in this project. Otherwise they would not have been involved at all.

Moving to the second part of the subquestion, considering the time after the Zuidhorn project, say in two years, there are plenty of possibilities. Coming back to the question that is asked in the introduction of this section, we ask: what would be different if one would conduct the same analysis for a new but comparable project? After the Zuidhorn project, we enter a phase in which there is no longer a subsidised project aimed at knowledge production. The project needs to sell itself or its product to become viable. The question is which party will be the driving force, which party will invest? Some aspect of such projects will differ from the current situation and project.

Starting with the group of travellers, this group’s interest will not change enormously. However, when one starts such a project with piezosensors in another – more crowded – (train) station area, the impact will be much larger. A larger crowd will be involved and will experience the effects of the piezosensors. Also, the amount of energy that can be harvested is much larger in a more visited area. This gives opportunities when looking at possible investors.

When such a project would start, the project or product will need a producing party. Within the Zuidhorn project, the RUG is taking on this role. However, looking at the university’s character, it is not very likely that they remain in this position. Their core business is knowledge production and development, not the production of (commercial) goods. If piezosensors become commercially attractive, another party should come into play to take on the producing role. Some reciprocal dependency exists as one needs a producing
party and a financing party. Both stakeholders need to engage in the project and simultaneously put effort into making the project a success.

Before all of this can happen, an initiating party will need to start the project and make sure it gets known among other possible stakeholders with interests. In the Zuidhorn project, the municipality of Zuidhorn has taken on this duty of taking initiative. In a future project, in the competition for being the most fancy or green municipality, another Dutch municipality might take on the challenge to start a similar project. Another reason for a municipality to initiate is to comply with sustainability goals visible to the inhabitants. When piezoelectricity gains popularity and a good reputation, other stakeholders can take the initiative for the implementation of piezoelectric sensors in a public space. The options are endless as to what kind of stakeholder this might be.

Consultancy company Tauw hopes to still be involved in future projects considering piezoelectric energy. It can still help especially the initiating party by introducing this stakeholder to its connections or it can contribute by doing a small investment and thereby assisting the financing party. The difficulty is the prediction about the energy harvesting. According to the researcher of the RUG involved in piezotechnology, it is not likely that the amount of energy to be harvested (at any place and time) will exceed a modest couple of Watts, which means that the added value of this project should be in different factors, otherwise it is going to be really hard to find an investing party.

When (relatively) a lot of energy can be harvested, Enexis will be interested to be involved in this commercial activity related to their core focus of management and maintenance of gas- and electricity networks. The producer of the piezoelectric sensors is the party that profits most if all runs well. Next, the municipality and indirectly the inhabitants benefit when the costs for energy go down.

With these changes, there is a new stakeholder who is easiest to serve, which is the future investor. Who could that be? This is a question that, unfortunately, can only be answered after completion of the Zuidhorn project, when one can conclude whether it was successful and whether piezosensors live up to the expectations and criteria of different stakeholders. However, one might make an educated guess for who might be the future investor by taking a close look at the current analysis. The stakeholders of the Zuidhorn project are all willing to participate and cooperate with each other and all necessary resources are present to make the project work. For a new comparable project, capital is the first thing deemed necessary. Seeing to it that there is a producing party and an initiating party, any commercial company with interests in green or renewable energy might engage in a new project in the role of investor. This company would most likely be Dutch but of course could also be foreign. The one important factor is that the benefits for the investor must exceed the costs of the investment. Dependent on the actor, benefits can range from a positive image of the party to making more money on the long term by stimulating the development of piezos and drawing attention to the product.
Conclusion and discussion

The conclusion to this research paper will answer the research question posed in the beginning of this study:

In what ways does the application of piezoelectric sensors in the Dutch municipality of Zuidhorn satisfy local societal interests and needs?

In order to find an answer to this question, mixed methods research has been conducted using a survey and semi-structured interviews. These methods lead to a network of stakeholders involved in the Zuidhorn project with piezoelectric sensors. These stakeholders are the group of travellers via Zuidhorn station, consultancy firm Tauw, the municipality of Zuidhorn, grid operator Enexis, and the University of Groningen (the RUG). The dependency relationships between these actors are examined, as well as their opinions and expectations of the piezotechnology project in the transferium area of Zuidhorn in the Netherlands.

Whether the application of piezoelectric sensors in Zuidhorn satisfies local social interests and needs depends on the availability of resources and the cooperative and willing attitude of the stakeholders involved. The resources make the project at all possible. In what ways the interests and needs of different stakeholders will be satisfied by the application of piezosensors in Zuidhorn is examined by looking at what these interests and needs consist of in terms of product-, process- and use phases.

Concluding from the semi-structured interviews and the survey results, the general assessment of the future perspective and appeal of piezosensors on macroscale as in the Zuidhorn project seems to have nice future prospects. All stakeholders stand quite positively towards this project and towards research in this topic, as it is something new, green and sustainable. To focus on the application of piezosensors which ensures visibility to its users is to be advised. As the survey results show, this should not violate privacy of the users or their environment, but focus on improving safety and ensuring public lighting at all times. The stakeholders that were part of this study indicated that they are willing to cooperate to achieve a well-designed environment where piezosensors are implemented. The transferium are in Zuidhorn would be a perfect place functioning as the centre of trial to explore if this technology is useful and could be applied more broadly in the Netherlands.

The project about piezo-applications in Zuidhorn satisfies the interests of different stakeholders in multiple ways. Firstly, for the RUG, Tauw, the municipality of Zuidhorn and Enexis, it helps to comply with the green and sustainability standards that they want to meet. Also, this project could contribute to their image as a company or party in the corporate world. The latter happens because if piezos work the way they are supposed to, publicity about this new way of using piezotechnology will benefit the municipality, Tauw, and especially the RUG. Secondly, the RUG, but also other research institutes, are very interested as this research can contribute in the scientific field of materials science. For Tauw this is also a way of satisfying their interest, because this way, it is tested if piezo is suitable to apply at this macroscale. Thirdly, the municipality is glad if the implementation of the piezotechnology adds value and something new to the renewal of the transferium. Not specific for any stakeholder, but for society as a whole, the aftermath of this Zuidhorn project may live up to society’s needs for piezotechnology being a new and – then proven – useful investment in a greener future.
Assessing the theoretical implications of this research, this stakeholder analysis can be done for more (construction) projects in the future. Practical implications hold the choice within the Zuidhorn project whether to continue or not with the implementation or support for using piezoelectric sensors in the transferium area. Considering this study only, it is clear that it is certainly worth trying and that it will probably have positive results – however only on the long term. Patience should show what will happen in the future.

Reflecting upon strengths and weaknesses of this research, there are several points to mention. Starting with the weaknesses, I would like to mention the content of the survey. There were no questions included about demographics, which made it impossible to control for factors like age, gender or the place where one lives.

The group of travellers was treated differently from the other stakeholders, as this is a very different population and this group knows less about the topic than the interviewed stakeholders. There were only seven questions in the survey, on purpose, because the survey was distributed and filled out on the train- or busstation, which often meant people were in a hurry. Travellers only occasionally said that they had a few minutes to complete the survey, often they had to be informed of the short length of the questionnaire before they agreed to participate. Also, the travellers who answered the survey are just a glimpse of all people passing by the Zuidhorn station every day or week, and the other stakeholders are represented by just one or two people of the parties. This might mean that the representation of the stakeholders is not optimal this way. Next to this, general knowledge about the topic is very limited, which makes it harder to judge for most stakeholders. When knowledge would have been more extensive or at all present, the results could have been very different.

What makes it difficult to study – and could therefore be seen as a weakness to this research – is that one is dependent on current research on piezotechnology and -electricity of which not much is known now, especially about macroscale applications.

Moving away from weaknesses, there are also the strengths of this research to point out. The first is that the research design, a cross-sectional case study, is very suitable for the aims of this study. By looking at one specific project, one can draw conclusions about this special case and cast some predictions on comparable projects in the future. A second strength is the combination of qualitative and quantitative research methods to map the interests of different stakeholders. With this, the best way per stakeholder is used to spot and analyse behaviour patterns, opinions and expectations.

A lot can still be improved in this study and in studies similar to this, which is why a few recommendations for future research are presented here. Firstly, more stakeholders could be involved in the analysis – if available, of course – to get an even better oversight and view on the different interests. Secondly, a more careful selection of the sample could have taken place. This refers to both the stakeholders involved, which was done by snowball sampling, and the group of travellers via Zuidhorn station who filled out the survey, which was done by convenience sampling. If this research was to be repeated, there could be more different times at which respondents should be asked to fill out the survey. Also, questions about demographics of the respondents should be added to the survey so the distinction between different groups of the population can be made. This way, one can also see what type of person often travels via Zuidhorn station. Lastly, I would recommend to try to provide more in-depth information
on piezoelectricity and piezosensors. However, this is dependent on time and on the development of ongoing research, which is very difficult to estimate.

Literature

Appendices

Appendix A

Enquête piëzo-elektriciteit in Zuidhorn

De gemeente Zuidhorn heeft besloten om piëzosensoren in de tegels in voetpaden in het transferiumgebied in Zuidhorn aan te leggen. Hiertoe is er een samenwerking met de Rijksuniversiteit Groningen. Piëzosensoren zijn sensoren die energie kunnen oogsten uit trillingen. Deze trillingen kunnen worden opgewekt door over de tegels te lopen of rijden. Piëzosensoren worden op dit moment volop onderzocht naar haalbaarheid en rendement. Tot zover bekend zijn er geen grote risico’s bij gebruik van piëzosensoren. Wel zit er lood in het gebruikte materiaal.

Geef aan in hoeverre u het eens bent met de volgende stellingen.

<table>
<thead>
<tr>
<th></th>
<th>Zeer oneens</th>
<th>Oneens</th>
<th>Eens noch oneens</th>
<th>Eens</th>
<th>Zeer eens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ik vind het goed dat de gemeente werkt met nieuwe technologie.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>2. Ik vind het goed als piëzosensoren worden ingezet om de openbare verlichting te laten branden.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>3. Ik vind het goed als de openbare verlichting alleen brandt als ik er langs loop. Op andere momenten brandt er dan geen licht.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>4. Ik vind het goed als piëzosensoren worden gebruikt voor informatiewinning. Hierbij kunt u denken aan metingen of het druk is, wanneer het spits is, welke route de meeste mensen nemen, etc.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>5. Ik vind het goed als piëzosensoren worden ingezet om de sociale veiligheid in de buurt te verhogen, bijvoorbeeld door het laten branden van oranje knipperlichten bij oversteekplaatsen bij basisscholen.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>6. Ik maak me zorgen om de risico’s van piëzosensoren.</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>7. Het grootste voordeel van het aanleggen van piëzosensoren vind ik:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mogelijkheid tot informatiewinning in de omgeving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Duurzame verlichting in de gemeente</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betere samenwerking met kennisinstellingen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anders, namelijk __________________________</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ik zie geen voordelen van het aanleggen van piëzosensoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mijn naam is Simone ten Have, ik ben bezig met een onderzoek voor de Universiteit Twente in samenwerking met Gemeente Zuidhorn en advies- en ingenieursbureau Tauw. Dit onderzoek gaat over de mogelijkheden van een nieuwe technologische ontwikkeling, namelijk piezo-elektrische sensoren. Dit zijn materialen die door middel van trillingen energie op kunnen wekken. Ze zetten mechanische energie (trillingen) om in elektrische energie. Deze energie kan voor veel toepassingen gebruikt worden. Op dit moment wordt deze technologie alleen op micro- en nanoschaal gebruikt in gebruiksvoorwerpen. Het is mogelijk om de sensors op een grotere schaal te gaan gebruiken.

Het doel van dit onderzoek is om een haalbaarheidsanalyse van het project te maken op basis van een stakeholderanalyse. Alle betrokken partijen worden benaderd. U bent onderdeel hiervan als zijnde inwoner van Zuidhorn.

Alvast bedankt voor uw bijdrage aan het onderzoek!

Coding used in SPSS:
1 = ZEER ONEENS
2 = ONEENS
3 = EENS NOCH ONEENS
4 = EENS
5 = ZEER EENS
(blank) = NO ANSWER
Appendix B
Interview protocol (Dutch)

Van tevoren: zorg voor werkende voice recorder (mobiel), neem laptop mee om aantekeningen te maken, neem collegekaart mee.

INTRO, vertel:
Allereerst bedankt dat ik u mag interviewen voor mijn afstudeeronderzoek. Mijn naam is Simone en ik studeer Bestuurskunde (en Civiele Techniek) aan de Universiteit Twente. Vind u het goed als ik dit interview opneem? Uw antwoorden zullen vertrouwelijk behandeld worden, enkel de naam van [bedrijf, gemeente] zal naar buiten worden gebracht. Is dit akkoord? [Wacht op antwoord]

Ik heb het onderwerp al genoemd in de mail, het interview gaat over de rol van [bedrijf, gemeente] als stakeholder in het project in Zuidhorn over piezo-elektrische sensoren. Op dit moment zijn de gemeente Zuidhorn, Rijksuniversiteit Groningen en Tauw bv bezig met het bekijken van de mogelijkheden van de toepassing van piezo-elektrische sensoren in de publieke ruimte. Het betreft het transferiumgebied in de gemeente Zuidhorn. Wij richten ons op de toepassing van piezo-elektrische sensoren op de openbare verlichting.

NOTEER STARTTIJD: _____

Eerst stel ik een paar algemene vragen.

1. Wat is uw functie binnen [bedrijf, gemeente]?
2. Wat zijn de taken die bij deze functie horen?

We gaan nu verder met specifieker vragen (gericht op het project omtrent de toepassing van piezo-elektriciteit in het transferiumgebied van de gemeente Zuidhorn).

3. Heeft [bedrijf, gemeente] eerder werkzaamheden uitgevoerd met piezotechniek?
4. Met welke partijen werkt u samen indien u zoiets voor elkaar wilt krijgen?
5. Zijn er voordelen voor [bedrijf, gemeente] als er piezotechniek wordt toegepast op de openbare verlichting?
6. Nadelen?
7. Na het noemen van deze voor- en nadelen, ziet u werken met piezotechniek per saldo als aantrekkelijk voor [bedrijf, gemeente]?
8. Hoe zou u het standpunt van [bedrijf, gemeente] in dit/zo’n project omschrijven?
9. Past het project in de toekomstvisie/ algehele visie van [bedrijf, gemeente]?

Denk aan Newcombe theory:

12. Wie is volgens u de belangrijkste stakeholder in dit project?
13. Hebben andere partijen [bedrijf, gemeente] nodig? Wat hebben ze nodig?
15. Wat zou zo’n project tot een succes maken? Wanneer is het succesvol (in de ogen van [bedrijf, gemeente])? Beoordelingscriteria om vast te stellen wanneer zij zelf iets tot een succes beoordelen.
16. Zijn er dingen waar we het niet over gehad hebben vandaag, die u wel belangrijk vindt om te noemen?

EINDE, vertel:

Ik wil u hartelijk bedanken dat ik mijn vragen aan u mocht stellen. Indien u nog andere zaken te binnen schieten of als u mij om een andere reden wilt bereiken, kan dat via simone.tenhave@tauw.com of telefonisch (staat in mail).

NOTEER EINDTIJD: ________
Appendix C

Transcripts of interviews, in the following order: Municipality of Zuidhorn, RUG, Tauw and Enexis

Interview Municipality of Zuidhorn

Date: 20-04-16
Start: 13.36 hours
End: 14.17 hours
Interviewee: representative of municipality of Zuidhorn
Language spoken: Dutch

Allereerst bedankt dat ik u mag interviewen voor mijn afstudeeronderzoek. Mijn naam is Simone en ik studeer Bestuurskunde (en Civiele Techniek) aan de Universiteit Twente. Vind u het goed als ik dit interview opneem? Uw antwoorden zullen vertrouwelijk behandeld worden, enkel de naam van de gemeente zal naar buiten worden gebracht. Is dit akkoord?

Ja, dat is prima.

[Start recording]

Dit interview is in het kader van mijn studie bestuurskunde en dit is een onderdeel hiervan met als doel een stakeholderanalyse van dit project met piëzotechniek in Zuidhorn af te maken.

In dat kader heb ik ook Enexis gesproken en spreek ik nog met Tauw en de RUG. Zo ook de gemeente, jullie. Jullie zijn een van de belangrijkste stakeholders. Waar ik naar wil kijken is vooral de toepassing van piëzo op verlichting. Huis van de toekomst laat ik buiten beschouwing.

Het gaat om het transferiümgebied in Zuidhorn en dan toepassing van piëzo op openbare verlichting. Dat is nu de focus.

Wat is uw functie binnen de gemeente Zuidhorn?

Hoofd van de afdeling ruimte en welzijn, beleidsafdeling van de gemeente.

Wat zijn de taken die bij deze functie horen?

Ik ben operationeel manager, geef leiding aan een team van 16 professionals (beleidsmedewerkers) waarvan grofweg de helft actief is op gebied van ruimtelijke ontwikkeling: ruimtelijke ordening, volkshuisvesting, verkeer & vervoer, monumenten, woningbouw en dergelijke. De andere helft is actief op gebied van sociaal domein, dus onderwijs, jeugd, WMO, participatie. Dus operationeel leidinggeven op een coachende manier. Dat betekent dat ik niet met de inhoud bemoei, wel er veel van weet maar niet tot in detail, veel meer zorg dat er een verbinding is tussen beleidsmedewerker en wethouder, dus dat daar het beleid gemaakt wordt. Ik zorg voor voldoende capaciteit, dat mensen hun werk kunnen blijven
doen, dat ze uitgedaagd worden, dat alle randvoorwaarden goed zijn. Dat is één kant. Ik hou het totaaloverzicht, ben verantwoordelijk voor de planning, tijdelijk aanleveren aan raad en college e.d., en ik ben de eerste adviseur van het college. Met name daar waar het om overstijgende onderwerpen gaat. Dus als er hier iets gebeurt in het sociale domein, of in het ruimtelijk domein. Mensen die daarmee bezig zijn zijn heel erg met hun eigen vak bezig. Ik zit erboven dus ik zie de verbinding, ik maak die verbinding waar nodig en adviseer het college daar ook over.

Daarnaast ben ik trekker, aanjager van een aantal onderwerpen. Die zitten opgesloten in het bestuursakkoord van de gemeente. Lokaal regeerakkoord voor komende 4 jaar. Ik ben daar ambtelijk eigenaar van en ik bewaak dat die ontwikkelingen in de organisatie uitgezet worden. Dat kan bijvoorbeeld een ontwikkeling zijn op gebied van mens en maatschappij, we willen iets doen met inwoners op het gebied van burgerparticipatie. Als dat een ambitie is, weet ik welke afdeling daar verantwoordelijk is en zorg ik dat die afdeling daarmee aan de slag gaat. En bewaak dat het op tijd weer richting college gaat. Ook met kennis-economie en innovatie, ook belangrijk thema, geen afdeling voor die dat normaal gesproken kan doen. Daar ben ik zelf nu ook aanjager van, naast mijn andere werk. Best wel pittig. Nu een fase dat er ook een beleidswerker komt die zich daarmee bezig gaat houden. Daar ben ik momenteel voor aan het werven.

Daarnaast ambtelijk opdrachtgever voor een aantal projecten zoals brede school.

Tot slot ben ik lid van het MT. Met vier andere collega’s en de gemeentesecretaris. Ik ben ook lid van MT sociaal domein Westerkwartier, daar zitten 4 gemeentes in, Grootegast, Baarn, Leek, Zuidhorn.

Zuidhorn project is deel van het onderwerp kennis-economie en innovatie. Met nieuwe dingen moet je ze eerst maar aanjagen, wordt het wat, is er draagvlak voor, landt het bestuurlijk? Als dat het geval is, dat is zo bij het college maar ook bij de raad. Dan kan je formatie gaan aantrekken. En dat is ook nodig want dingen duren gewoon te lang. Een voorbeeld is een azc hier in de buurt, daar ben ik ook ambtelijk opdrachtgever van. Je hebt gewoon te veel te doen op dat moment dus dan moet je schakelen.

Heeft de gemeente Zuidhorn eerder werkzaamheden uitgevoerd met piëzo?

Nee, dit is de allereerste keer.

Met welke partijen werkt de gemeente Zuidhorn samen?

Met Tauw en de RUG en wij zijn samenwerking aangegaan, waar we piëzo willen toepassen is het transferium in Zuidhorn. Dan heb je met veel meer partijen te maken. Ook enexis, prorail, arriva. Die zitten daar ook aan tafel.

Zijn er voordelen voor de gemeente Zuidhorn als er piëzotechniek wordt toegepast op de openbare verlichting?

Dat weten we niet. Dat zou kunnen. Toepassing van piëzo is genoemd in een ambitie die we hebben gemaakt m.b.t. duurzaamheid. Met Movares hebben we een duurzaamheidsweb gemaakt. Als je denkt aan duurzaamheid denkt in de breedste zin van het woord, kan ook sociale veiligheid zijn e.d., wat willen we dan. En dan hebben we piëzotechnologie als één van de ambities genoemd. Dat hebben we ook uitgewerkt in een workshop met Tauw en met de rijksuniversiteit. Zo van, gegeven de mogelijkheden die er zijn, wat willen we dan, wat kunnen we dan. In de workshop
kwamen we tot de conclusie dat piëzo, wat de rug nu aan het onderzoeken is, niet direct een uitontwikkelde vorm al is, dat je een soort achtervang moet organiseren. Dus het past wel in de duurzaamheidsambitie, maar het is geen zekerheid voor ons. Wat we graag willen is een proeftuin bieden voor de RUG om fundamenteel onderzoek te kunnen toepassen, effecten te kunnen meten en weer in onderzoek te kunnen gebruiken. Dus de samenwerking raakt veel meer aan het onderwerp kennis-economie en innovatie. Dat wij graag als Zuidhorn een soort living lab willen zijn voor niet alleen de RUG op dit punt maar voor veel meer kennisinstellingen. Dat we de verbinding willen leggen tussen wat studenten leren, of waar fundamenteel onderzoek wordt gedaan, en de praktijk.

Piëzo is een deel daarvan.

De samenwerking die we op dit punt hebben met de RUG heeft wel een gedachtegang in werking gezet. In de verkenning die we in december hebben gedaan kwam aan het eind het woord living lab naar boven. Als je nou ziet hoe we dit doen, wat jullie ambities zijn, lijkt dit heel erg in een living lab. Dit zijn we nu aan het onderzoeken, wat is een living lab, wat zijn daar de voordelen van. Wij zijn al tot de conclusie gekomen dat wat wij hier doen in het gebied rondom het transferium en de manier waarop wij die projecten organiseren, dat het gebied een living lab is. En dat komt ook weer in het piëzoproject naar voren. Het is heel dynamisch en niet van tevoren weten waar je straks eindigt.

Ik denk dat het voordeel is dat je kennis binnenhaalt en banden met kennisinstellingen versterkt. Bijdragen aan de verbetering van de kwaliteit van onderwijs. Als je het onderwijs en uitkomsten van fundamenteel onderzoek kunt toepassen in de praktijk, daar heb je voordeel bij als maatschappij in zijn geheel.

Specifiek voor verlichting hebben zowel Tauw als RUG gezegd, let wel, je weet niet precies hoe de werking is, wat het rendement is. Dat is deel van het onderzoek. Eén van de onderzoeksvragen is hoe maak ik piëzo’s duurzamer. Want nu zijn ze lood-gebaseerd en er is wel een duurzaam materiaal maar dat is erg duur, dus wat zijn alternatieven? En twee, hoe hoog kun je het rendement krijgen? Dus dat maakt het gewoon, je legt er een set in, je gaat meten, je haalt het eruit en er komt een nieuwe set in.

Dat specifieke is echt voordeel van de RUG. Wij hopen natuurlijk dat er iets ontstaat wat gewoon werkt, wat gewoon goed is. Waardoor als er een groep aankomt [op het station] dat er een prima schakeling is van licht aan, of licht zachter. Want daar is het voor bedoeld, voor het aanschakelen van openbare verlichting.

Dat is één kant. Het heeft te maken met verlichting, maar onze ambities gaan verder. Dus we willen piëzo als zodanig laten zien. Ik neem niets voor niets de brede school als voorbeeld, die hiernaast ligt. Basisschoolkinderen zijn een groep kinderen die je moet inspireren, moet laten zien wat er allemaal kan met techniek. Een tweede groep die hier veel voorbijkomt zijn studenten, die stappen over van Friesland, trein, bus, naar Zernike en vice versa. En daartussen zitten alle middelbare scholieren die naar de stad gaan. En in de winter gaan ze allemaal met de bus. Dus op die locatie waar we dit doen moet je iets laten zien wat inspireert. Daar is piëzo ook geschikt voor. Wed willen het ook beleefbaar maken. Dat past ook in het gedachtengoed van living lab en het past in de wens van het college om de kwaliteit van onderwijs te verbeteren. Ik bedoel, we kunnen niet het programma van een basisschool of middelbare school voorschrijven. Maar we kunnen wel in het domein waar wij wel verantwoordelijk voor zijn dingen maken of laten maken waarvan je denkt, oh wauw, dit vind ik mooi! Dat is wat we willen. Dat is piëzo voor ons.
Praktische gezien, er hangt een kaart in het bushokje van het transferium. Heel hard copy, kaart, bushokje, klaar. Door het gesprek met de rijksuniversiteit en Tauw kwam al het idee naar boven om daar een piëzotegel neer te leggen die de verlichting in zo’n hokje aanschakelt dat als je daar loopt, bem, ik zie iets. Dat soort dingen ontstaat nu. En dat willen we in het project ook gaan doen.

Zijn er ook nadelen voor de gemeente?

Ja tuurlijk zijn er nadelen. Die wegen echter niet zwaarder dan de voordelen. Nadelen zijn het niet duurzame karakter van piëzo’s op dit moment. Dan moet je gewoon praktische maatregelen nemen dat je vervuiling van de grond voorkomt. Misschien is dat wel heel makkelijk, maar dat is in ieder geval een eis die vanuit de raad wordt gesteld. Een nadeel is in het kader van sociale veiligheid of het altijd blijven doen van de verlichting van het transferium een wens. Op het moment dat het niet bedrijfsmaker is moet je een extra lijn realiseren, dat brengt meer kosten met zich mee. Dus dat is een nadeel maar als dat niet te gek is kunnen we dat gewoon regelen. Dus het is bij ons niet zo dat toepassing van piëzo in de openbare ruimte niet plaatsvindt omdat men geen bewijs heeft dat het kan werken. Wij willen die ruimte bieden.

Na het noemen van deze voor- en nadelen, ziet u werken met piëzotechniek per saldo als aantrekkelijk voor de gemeente Zuidhorn?

Ja, zeker. Als je dus kijkt naar de belangen die we hebben, op kleine schaal techniek en duurzaamheid, verlichting van het transferium etc. in het grotere geheel samenwerken met kennisinstellingen, verbeteren van de kwaliteit van onderwijs zowel bij hogere instellingen als lokaal, inspireren, aantoonbaar maken. Daarmee ook een sfeer creëren dat je vernieuwing weer kunt toepassen, uiteindelijk ten behoeve van de mensen waar je het voor doet, die inwoners, dat maakt het perfect. Daarom voelen we ook voor deze samenwerking.

Hoe zou u het standpunt van de gemeente Zuidhorn in dit project omschrijven?

Dit is een vrij algemene vraag, wat bedoel je?

Eigenlijk heeft u deze vraag al beantwoord. Kenniseconomie, samenwerking met onderwijsinstellingen en duurzaamheid zijn de drie kernbegrippen voor de gemeente Zuidhorn die jullie standpunt in het project vormgeven. Klopt dit?

Ja, klopt! Waarbij realisatie van duurzaamheidsambitie de minst belangrijkste is. De techniek die we toepassen heeft op dat punt de minste impact. Nog. We gaan bijvoorbeeld ook met zonnepantries werken, grotere impact, dat is gewoon veel rendabeler. Dat geeft niet, de andere gevolgen van deze samenwerking zijn veel groter.

Als [piëzo] niet duurzaam was ging je het niet proberen?

Dat weet ik niet, want er zijn meerdere onderwerpen waarbij we met kennisinstellingen samenwerken. Ik zal een voorbeeld geven. In hetzelfde gebied als het transferium ligt een oude boerderij. Die boerderij is het beoogde hoofdkwartier van gebiedscoöperatie Westerkwartier. Dit is een samenwerking tussen vijf maatschappelijke partijen, eerder branches, namelijk overheid, onderwijs, onderzoek, omgeving en ondernemers. De vijf O’s. Oftewel kijk naar de maatschappij, je hebt traditioneel gesproken al de partijen die los van elkaar opereren, met hun eigen problemen en eigen geldstromen. Achterliggende doel van gebiedscoöperatie is als je nou die schotten ertussenuit haalt en samenwerkt in zon coöperatie, dan kan je
met het geld van de een, het probleem van de ander oplossen. Dat concept, die organisatie is hier gevestigd komt dan in die boerderij. Die innovatieboerderij, zoals we het noemen, zal eerst worden gesloopt en dan worden herbouwd door studenten. Dus vanaf ontwerp tot realisatie met studenten van mbo, hbo, universiteit. Dus die gebiedscoöperatie is dus een organisatie waar heel veel kennisinstellingen al aan gecommitteerd zijn. Dat zit in hetzelfde gebied als transferium. Achterliggende gedachte daar is ook weer als ik iets leer, moet ik het kunnen toepassen. Als ik iets kan toepassen, kan ik de effecten daarvan weer meenemen. Dat doe je op studenteniveau, maar ook op strategisch niveau. Voor kennisinstellingen zelf die een sterkere verbinding willen hebben met het omland, is het ook een belangrijke stap, om een soort laboratorium, een proeftuin te hebben, nabij.

En speelt duurzaamheid daar een rol? Ja, maar niet voor ons. Het is niet onze boerderij. Het wordt het hoofdkwartier van de gebiedscoöperatie. Die willen het natuurlijk duurzaam hebben, maar dat is niet onze drijfveer waarom we dit project met hen aangaan. Juist vanuit die samenwerking met kennisinstellingen, we willen een soort nieuwsconstructie maken onder onze inwoners en ondernemers, maar het met name praktisch vertalen. Want innovatie klinkt nog steeds voor heel veel inwoners, bedrijven, als iets engs. Als iets abstracts wat je niet kunt toepassen in je eigen leven. En wij willen juist laten zien dat Zuidhorn dat wel kan

Mag ik concluderen dat dit project in de visie van de gemeente Zuidhorn past?

Ja, zonder meer, absoluut. Het raakt echt de kern van waar dit college voor staat.

Wanneer wisselt het college?

Het college wisselt in 2019, dan gaan we herindelen. Het is mijn persoonlijke ambitie dat Zuidhorn en innovatie dan echt aan elkaar verbonden zijn. Dus dat het in de nieuwe gemeente ook echt een duidelijke plek inneemt.

Dan heb je nog even.

Ja precies, ja. Daarom vind ik het ook zo belangrijk dat we hier meters in maken.

Wat weet u zelf van piezo? Rendement etc.

Alleen van horen zeggen. In een workshop in december heeft een hoogleraar van de universiteit, Beatriz Noheda, daarover verteld. In welke huishoudelijke apparatuur het wordt gebruikt. En ook dat, en dat heeft Tauw ook aangevuld, dat de opbrengst heel beperkt is. Dus je kan er nu geen lamp van laten branden. Er wordt wel onderzoek gedaan door Philips om de energiebehoefte van verlichting zodanig naar beneden te brengen dat je het zelfs met piezo’s kunt laten branden, als de opbrengst daarvan ook groter wordt. Dat is wat ik ervan weet. Ik weet niet hoe het werkt technisch, ik ben geen technieker wat dat betreft, ik weet alleen dat het heel weinig oplevert ten opzichte van andere manieren om energie te oogsten, zoals windenergie en zonne-energie. Het is niet sexy wat dat betreft. Althans in de publieke opinie niet, ik vind het juist heel prachtig.

We hebben een beleidsmedewerker duurzaamheid, wel technisch aangelegd, snapt het ook wel. Maar echt technische kennis hebben wij niet. Dat is waarom we samenwerken met de RUG en TAUW.
Zou u zeggen dat de gemeente Zuidhorn (veel) belang heeft bij uitvoering van dit project? Op een schaal van 1-5?

Ik denk dat je dat wel een 4 moet geven. Persoonlijk zeg ik een 5, maar als ik het even afweeg met hoe wij de toepassing zien in het transferium als zodanig, zit er nog wel een puntje aan met wat levert het op in dat kader, maar de belangen die daarbuiten liggen, kennis economie, maakt het gewoon hoog op de politieke agenda. Absoluut.

Wie is volgens u de belangrijkste stakeholder in het project?

Partijen of personen die bij partijen werken?

Partijen.

De belangrijkste stakeholders zijn er wat mij betreft drie. We hebben tot nu toe gesproken met RUG, Tauw en onszelf. Dat zijn de drie trekkers daarin. En we hebben ook onze belangen geuit. Tauw wil heel graag kennis opdoen over hoe werkt dit in de praktijk, en hoe kunnen wij als Tauw zijnde leading worden in de toepassing van piezo’s in de openbare ruimte. Dat is hun belang. RUG wil graag een proeftuin hebben voor de toepassing van hun fundamenteel onderzoek. Wij willen graag de verbinding op het gebied van kennis economie leggen, want dat is ons primaire belang, en daarmee ook een stukje duurzaamheidsambitie in het transferiumproject invullen. Dat zijn er drie. Ik weet niet wat voor belang Enexis heeft, ik ben wel benieuwd daarnaar. Natuurlijk zijn inwoners belangrijke stakeholders, maar zij zijn echt eindgebruikers. Waar het gaat om usability is het van hen, maar waar wij de verbinding proberen te leggen… doe dat vooral, zeggen ze, en laat ons het eindresultaat gebruiken.

Dit heeft ook mijn ambities aangescherpt wat betreft het huis van de toekomst. Dat valt niet onder het onderzoek, maar toch heel kort even een uitstapje. Er is een keer genoemd door onze raad, zou je niet een huis van de toekomst moeten maken? Inmiddels noemen we het gewoon het Huis van Vandaag en Morgen. Want onze ambitie is, net zoals we in het transferium willen, ga met techniek van vandaag en misschien morgen, maar wel wat bereikbaar is, ga dat gebruiken, laat zien aan inwoners dat het helemaal niet zo eng is, dat je er heel veel voordeel van hebt. Dat huis wat we gaan bouwen, hopelijk volgend jaar, zijn nu de haalbaarheid aan het onderzoeken. Volgend jaar willen we echt gaan bouwen als het kan. Dat moet niet een huis worden met eenmalig allemaal nieuwe snufjes die over twee jaar verouderd zijn. Maar veel meer, wat kan er allemaal en wat voor gemak kan het je nu geven. Zodat je ook als gebruiker zoals jij en ik, kan zeggen, hee dat is handig dat dit er is! Dat maakt onze woningen interessant, die we daar in de markt zeggen. Maar het triggert mensen ook dat er meer is dan de huidige technologie.

Is het de bedoeling dat mensen het kunnen bezoeken?

Bezoeken, beleven, en na een periode van twee jaar gaan we het ook verkopen. En we willen daar op dezelfde manier als we nu met piezo doen en de RUG, willen we een samenwerking aangaan met partijen die zeggen dat het interessant is voor ze om in te investeren. Zodat wij ook kunnen testen hoe het gaat, en met elkaar tot de conclusie kunnen komen dat het kan werken. Ik hoop dat de RUG hier ook interesse in heeft. Wat kan ik doen met mijn onderzoek? Zodat je allemaal weer verder kan. Dat is het verhaal. Wel iets wat voor eindgebruikers gewoon, oké, dit is niet ver van mijn bed, hier kan ik mijn bed inzetten. En het is ook niet iets dat ik pas nodig heb als ik bijna overlijd, dat is nu vaak met robotica. Dat wil ik niet. Dat is prima dat er is, maar ik vind dat we een huis moeten maken waar jij en ik ook plezier van hebben.
Daaropvolgend, hebben jullie (die drie hoofdpartijen) nog andere partijen nodig? Bijvoorbeeld nog voor de praktische uitvoering. Hebben jullie daarover nagedacht?

Ik persoonlijk niet, ik denk de projectleider wel. De projectleider van het transferium is hier de belangrijkste man, hij gaat het gewoon bouwen. En de RUG en Tauw zullen met hem zaken moeten doen, van dat moet daarin enzovoort. We hebben Tauw aan tafel zitten die weet te schakelen tussen de ambities van de RUG en onze praktijk. Dus ik verwacht ook dat Tauw daarin kennis inbrengt. Zo van, denk daaraan en daaraan en daaraan.

We hebben wel kennis in huis, we hebben een beleidsmedewerker openbare verlichting die die connecties wel heeft. Die werkt voor het transferiumproject samen met de projectleider. Die maakt onderdeel uit van het projectteam. Die binding is er wel, maar ik denk dat het belangrijkste is dat wij die intentieovereenkomst afsluiten met Tauw en met de RUG hierover. En dan is het eerste wat er gaat gebeuren een werksessie met de techneuten en die gaan dit gewoon regelen.

Hebben andere partijen de gemeente nodig?

Die twee stakeholders die ik net noemde hebben ons nodig. De RUG heeft een plek nodig waar ze langere tijd op hun gemak aan de slag kunnen. Er is gewoon heel veel draagvlak hier, handelijk en bestuurlijk om die ruimte te bieden. Tauw heeft dit project nodig om te laten zien dat dit kan in de openbare ruimte. Wij hebben hen weer nodig om te laten zien dat kennisinstellingen bij ons terecht kunnen, dat we ons steentje bijdragen aan het verbeteren van de kwaliteit van het onderwijs en aan het nieuwsgierig maken van onze inwoners. Dat is wat we willen, innovatie en vernieuwing, iets maken voor jou en mij, wat veel dichterbij ligt dan datgene wat eng aanvoelt. Laat maar zien. Praktisch voorbeeld waar ik ook aan zitten denken, ik heb gesproken met een bedrijf dat zich heel erg op business analytics richt. Dus het interpreten van patronen in data en proberen te voorspellen aan de hand daarvan. Ze doen bijvoorbeeld predictive maintenance voor grote radarschepen, data lezen. Pas aan de kant als het echt nodig is. Zo’n partij zoekt ook een plek waar ze al die techniek nog meer kunnen toepassen. Volgens mij moet dat prima hier ook kunnen. En als je dat ziet, want het klinkt zo spannend, business analytics… maak het terug tot iets wat voor mensen beleefbaar is.

Zodat het niet zo’n ver-van-je-bed-show is?

Precies. Dus dit is ongelooflijk interessant. Er zijn zoveel clubs bezig, ondernemers, mensen met ideeën. Breng het maar gewoon hier, laat maar zien. Wat kan ik eraan hebben?

Een afrondende vraag, wanneer is dit project in de ogen van de gemeente Zuidhorn een succes?

Goede vraag.

Wat zijn jullie beoordelingscriteria om vast te stellen wanneer iets een succes is?

Laat ik beginnen om te zeggen dat het nooit af is. Dus een einddatum bepalen en zeggen van dan en dan is het klaar, is niet wat we willen. Ik kan wel elementen benoemen die het in mijn ogen succesvol maken. Dat als ik dingen kan gaan zien, dus echt van, ik wil piezotoepassing zien. Dat de
techniek in de grond zit, maar ik wil ook dat inwoners die ermee in aanraking komen, dat ze denken, hee hier is iets aan de hand. Wat is dat? Wat zie ik daar? Die moeten in één oogopslag kunne zien dat de RUG en TAUW en de gemeente samenwerken aan iets op gebied van energie wat nieuw is. Dat is één belangrijk criterium. Het tweede is dat ik graag wil dat onderwijsinstellingen, laat ik beginnen bij de basisschool die hier zit, dat die denken, ik wil er wat mee. Ik wil energie en toepassing van energie en duurzaamheid ga ik in mijn lespakket opnemen. De brede school is heel duurzaam gebouwd, maar deze techniek wil ik ook daar brengen. Het moet beleefbaar worden, ook daar. Dan is het ook een succes. De duurzaamheid van de samenwerking met de RUG vind ik ook belangrijk, dus niet even met lekker gezellig en dan weer klaar, maar ik wil dat gewoon permanent maken. Dat kan in dit specifieke project, maar ik wil eigenlijk de samenwerking die we hierin hebben, van het mag in Zuidhorn, het mag bij ons, wil ik ook op andere terreinen laten toepassen. Dat gevoel moet in ieder geval bij de RUG ontstaan, van het is logisch dat we iets in Zuidhorn doen. In het Zernike park kan het ook niet oneindig. En als je de veranting wil maken van wat wij doen naar de maatschappij, dan moet je een maatschappijtje hebben waar je dat kan toepassen. En met alle respect, Zernike is toch een campus binnen een universiteit.

Een studentengemeenschap.

Dat bedoel ik. Het grote voordeel van Zuidhorn is, is dat het eigenlijk bijna net zo ver is als Zernike, je pakt de bus en je bent er. En het grote verschil is dat dit een samenleving is. En in mijn ogen, als je dat bereikt, dat ook bij kennisinstellingen dat besef er is dat we dat kunnen formaliseren, niet in een contract maar veel meer in een beweging, dat het logisch is dat we dit in Zuidhorn doen. Dan is het geslaagd. Maar dit is het grotere geheel. Specifiek voor piezo, maak ik het wat kleiner, dan moet het er zijn, dan moet het er zijn, dan moet het het doen, dan moet het beleefbaar zijn, dan moeten wij met elkaar ook tevreden zijn als drie partijen.

Kan je er een termijn aan koppelen?

Implementatie dit jaar. Na de zomer gaan we starten met de aanleg van het transferium. Dus voor de zomer specialisten om tafel, hoe gaan we dit nou precies doen. En na de zomer gewoon doen. Je maakt dan een plek waar je dit gaat doen, en vervolgens ga je gewoon maar meten enzo. Die bouwwerkzaamheden zijn een project van anderhalf jaar.

Ik wil het voor de zomer met elkaar afgekaderd hebben. En met elkaar formeel gezegd hebben, we gaan starten.

Zijn er dingen waar we het niet over hebben gehad vandaag die je nog wel wil noemen of van belang zijn?

Ik vind belangrijk om ook te laten weten dat wij als Zuidhorn heel erg geïnspireerd zijn vanuit de bestaande samenwerking. Die sessie die we hebben gehad met de RUG dat al een aantal ontwikkelingen in gang heeft gezet.

Ik vind het belangrijk om te vertellen dat we een aantal andere onderwerpen hebben die linken aan onze samenwerking met kennisinstellingen, maar dat heb ik verteld.

Ik denk dat dit wel het meeste is. Ja.
Well, first of all thank you for having me and for letting me conduct an interview with you for my bachelor thesis. You know me, my name is Simone and I study European Public Administration (and party Civil Engineering) at the University of Twente. Do you mind if I record the interview? Your answers will be treated confidentially. May I use the name of your institute and university in my research?

Yes, no problem.

[Start recording]

What is your job for the university of Groningen?

I’m a full professor, which means that I teach 40% of my time and the other 60% of my time I do research. I lead a group of 7 to 10 people, under which PhD, postdoc and master students. We do research that has different forms, different topics, but basically it evolves around ferroelectric and piezoelectric materials. I’m here all week at the moment. I had to work less when my kids were smaller, younger. There were periods that I worked 3 days a week, then 4 and now I am back to 5 days a week. There is flexibility in the job, that’s nice.

What about application, do you just do research in the lab, or not?

We are not really close to applications. This is something that I’m getting more and more interested in. In the sense that this is maybe my scientific maturity that lets me think that I should do something with my knowledge. In the past I really thought it was most important that I understand what is going on if I want to do something with it. And now we have the feeling in the field that WE do understand now why piezoelectrics are sometimes better than other times. How we can improve them, how we can develop them. As a field we are more ready to go into the application area. But we don’t have the expertise. I’m a physicist by education. I work in the boundary with chemistry. So I lack much of the engineering knowledge to go really to make a device myself. So that is a bit of a handicap.
These are more specific questions about the project in Zuidhorn. Has the university of Groningen ever worked together with the municipality of Zuidhorn before?

No, I’m pretty sure that we didn’t. I know that they are very interested in having a collaboration, also because of the geographical proximity. But this has actually developed in recent times if I understand it correctly, because it is only recently that students have chosen to go to Zuidhorn to come to the campus. So in the past they wouldn’t go that way. Zuidhorn was a little bit isolated from the university, even though it is very close to the university. It is only recently that students have discovered that it is actually much better to go to Zuidhorn and take the bus. And this has also a little bit encouraged and motivated this idea of doing something together. So one of the wethouders there, he works really on this project, is a former student here from the faculty of economics. He feels very much the connection with the campus, because he is from here and would really like to do something. So it’s all a little bit motivated by personal reasons.

Has the university ever done any project with piezotechnology before?

No… they are very interested since a few years ago. And every times there is a nice demonstration, very often they bring it up. They talk to me about how we could demonstrate piezoelectric devices, one day we had one of these tiles that moves. It’s not really piezo but the idea came from talking about piezos and how we can harvest energy. So we put these tiles here and the students were jumping up and down and looking at the energy they were generating. So they thought about it, there is a ScienceLinks, they have been quite active, they have taken a couple of videos about the topic. There is interest, but more than communication about it and outreach, nothing more.

If you want to have more piezo projects, which parties/stakeholders do you want to work together with?

I really would like that companies are truly interested. And so far, that has not happened. For obvious reasons. Companies need to have some revenue within five years or so, and this is not clear at all. In this case, especially when you compare piezoelectric energy harvesting with other ways of energy harvesting. I think the problem is everyone agrees that you can harvest energy, everyone agrees that you don’t have all the time the possibility to use solar cells or other means. It would be really nice to have piezos to harvest vibrations. Especially in some areas where vibrations are very prominent. The problem I think is the cost of all that. For a company of course that is crucial. And we are very much drawn by the idea, the whole idea, how nice it would be to harvest vibrations. For a researcher that is good enough. To demonstrate something new, something that so far couldn’t be done but in the future could be very useful, demonstrate how much power you can get, and which applications could actually benefit from that, that is for a researcher good enough. But of course for a company you need to put into the equation the cost of all that. And the truth is that at the moment, to actually make piezoelectric devices is much more expensive than to make solar cells. You need to really think first for every different application, for every different frequency and type of vibration you want to harvest, you need to think of a different type of device. And then the fabrication costs go up, because you cannot really fabricate tons of millions of devices in one goal, like you do with solar cells.

Do you have a specific kind of company in mind? Or a company that makes specific products?
So I know Philips has thought about it, for example. In the past they have really worked a lot on piezoelectrics and they had them as one of the main research lines. That was maybe ten, twenty years ago. But it was a time, it was a little bit a pity that at that time MEMS were not really a big thing, so the piezoelectric devices that they were considering at that time were really very simple. And very inefficient. Later on when MEMS made it into the market, people could make it very easily and I think if Philips would have been active on piezoelectric materials in the time of the MEMS, they would probably still be working on it. They made the decision as a company to stop working with that kind of research. Actually they have stopped with all research that is not related to medical applications or house appliances. So that is a little bit of a problem. If we want Philips to get involved in this, it has to be really for one of the usual appliances that we use at home. And I know we are thinking of maybe using the vibrations of a shaving machine. To maybe self-power the device. This type of application we have in mind, but I don’t know if the market is big enough to go into that. Of course for medical applications you have all the ultrasound generators. [...] You have nebulizers for asthma patients, lots of different applications, bloodsensors, that use piezoelectrics. But they all come typically from different companies. Maybe the economic impact of going really fully into piezoelectrics is not so big. You need a big market to start a new development.

Do you think, does it matter for you, considering the Zuidhorn project which is on macro scale... Do you mind if it is supplied on a large or small scale?

I think it does matter quite a lot, because of the gradually low power per cubic centimetre. My feeling is that piezoelectrics will only make sense when we can really put them in large extensions. So if at the moment you get 100 times less power than with solar cells, in principle you need 100 times more surface area to actually compete with them at this moment. It is true that for the future we are thinking on a totally different scenario, because for the future, we believe that many applications will consume very little and therefore you will not need such a large amount of piezos to make it useful. But at the moment the idea will be to really be able to put extensive areas that are unnoticeable for people, that they are hidden somewhere. In that sense it would be useful to learn how to do that.

For the project in Zuidhorn, what are the advantages for the university or for your institute within the university, if you apply piezo there and use it for powering the public lighting?

I think there will be multiple advantages. Starting from my group of course, because I will have a field test, a realistic field where we can test realistic vibrations and so on. For the institute because the institute is very interested in anything that eventually could lead to applications. If you look at Germany for example, the research institutes really finance themselves for a very large part through patents and relationships with the industry. And at least in this institute this is not very common. But there is a very large interest to go into that. So for the institute it would also be very very nice. I think in general for the university to increase relationships with the surroundings, with the town halls, with local industries, is really a priority. So I think there are multiple interests, also for the students to see that this is really a real thing, that you can use it. I think it will bring a complete new dimension into the research also. Even if they want to get involved only in fundamental research, but at least they see that it is with a clear goal.

Are there disadvantages?
Well, I think for a fundamental researcher like me, that more and more people get involved is a disadvantage. Because you lose your freedom to do whatever you want at any moment. Also to get too much visibility at a certain point, and too many people looking at what you’re doing, is a risk. Because in research sometimes things go well, but most of the times things go wrong. And this is the nature of fundamental research that is typically working at the front of the field. If things would work well with high probability, that was maybe two centuries ago when people would go into areas that were easy to explore. At the moment anything that you want to do new is actually very very challenging, otherwise it would be done already. So typically for a new goal into research, the chances that things will not work the way you actually intended to, are probably 80 to 90%. Fortunately, there is always a downside to that, that always brings you new knowledge and positive aspects, so you continue in this way through paths that you probably did not suspect at the beginning. But when you have a particular goal with a company and town halls and so on, that is not a good way to work in. You have promised something and you have to deliver. This is a little bit scary, in this case quite scary, and that is why we have already discussed with Zuidhorn, that we don’t like to have a lot of visibility from the very beginning. So that we would like to, in the beginning, to do the research a little bit hidden from the public, so that we can test our materials without people realising what we are doing. Because we don’t want that if this doesn’t work, the general public gets the feeling that this is useless. If the materials that you’re trying don’t work, doesn’t mean that the whole exercise is useless. It just means that you have to keep on trying. Certainly the downside or drawback of what we’re trying here.

Is that the only one?

Yes, in a sense it is, yes.

So if you look at the advantages and disadvantages, do you still think it is attractive to participate? Or only if it’s hidden for example?

I like to participate because it is for me a challenge. And I am in this business because I like challenges. It is a challenge to see how far we can reach with this, and how much we can deliver to the town hall, to people who actually want to see piezoelectrics at work. So in a sense what we are doing here is to leave our comfort zone, basically, to leave the lab and go to real life. I think it is going to be a very interesting experience for us and very high learning curve. A very efficient way to decide if we should go, in the future, in this direction or not. It may very well be that after this experiment we will decide that piezoelectrics are not going to make it in a reasonable time and that all these efforts are worthless. For me certainly a very interesting experience. I am totally sure that there will be, there is a nice aspect to all this, of course piezoelectrics are already full in the market. They move billion euro industries, the end point of saying piezoelectrics are useless, this is not going to happen. But how good piezoelectrics will be able to compete with other energy harvesting sources is what we need to investigate. We are not the only ones going after this. There have been reports all over the place, in California state, in many other places, there has been companies trying to develop piezoelectrics for energy harvesting. The problem is that the resources are very difficult to standardize. It is very difficult to give a number, an efficiency, a power per cubic centimetre, that fits all. That is why there is a lot of confusion in the field. I think we just simply need to work harder to explain better to the public where piezoelectrics are good and where piezoelectrics are not good. And therefore we first need to get the first-hand knowledge to fix that problem.
You talked about California, do you feel that you are in front of other researchers? That you are the first one to do things like this, or are there in other places of the world more projects like this?

There are more projects like this, my colleagues in the US are quite active on this. So I would say that if you think of piezoelectric energy harvesting probably the king of all is professor Zhong Lin Wang in Georgia Tech University. He is really the king of these nanogenerators. He had the vision probably fifteen years ago on these zinc oxide nanowires. He came from a complete different type of research, he was microscopist, he looked a lot to these zinc oxide nanowires and somehow he had reinvented himself and started to create these nanogenerators. He has a huge group; he is now setting the whole institute in China to work on this. He is moving also in between the piezoelectric nanogenerators and some related effect that is called tribal electricity, so using also the friction to generate electricity. I would say he is unique in a sense that now so many people are following him, he really believes that this is the future and is actually a very huge source of inspiration also for me. He is not the only one, but he is probably the only one who is really going full force into this without having other projects aside. With such a huge amount of resources and people working on that. From the fundamental level to the application, to the device itself. Then there are people that have a background that is more similar to mine, in a sense that they have been working on understanding piezoelectricity, on making very well defined ferroelectric thin films, and now they are going into MEMs. And trying to use them for piezoelectric energy harvesting. They have couple of papers in science, on nature journals, so high impact papers on how to use piezoelectric thin films for energy harvesting applications. I would say there is a group in Wisconsin University, they collaborate with Pennstate University which is the institute that has been working for many many years together with navy in the US to develop piezoelectrics for all kinds of applications, like sonars. So they have a very strong knowledge on the device itself and they are really looking for applications, not to make very nice films but to make films that actually work. So this combination is very strong in the US. I think in Asia there are also several groups working on piezoelectrics for energy harvesting, in Korea and in China. And in Europe I would say that there are in France a few institutes that have full labs on piezoelectric MEMs. In France somehow research goes slowly and the impact is not so high sometimes, but they are actually quite active. Last week I visited a university in Paris and I saw a very nice lab on piezoelectric MEMs. So I would say we are certainly not the only one, certainly not the first one, but I think we all have the need to do experiments by ourselves. You want to understand all the aspects, it is actually quite difficult in this particular field because of what we said before, it is very difficult to extend the result of one particular test to other applications. If you want to really understand what is going on and on how to improve a particular material, you really need to get involved yourself into the particular application.

Does the project in Zuidhorn fit in the vision of the university?

Yes, because the university has these big themes, one is healthy ageing, maybe not so relevant for this, but you have sustainability and energy. I think in both themes this fits very well. It does, yes.

To what extent would you say the university has an interest in the execution of this project? On a scale of 1-5?

I think we didn’t discuss in particular about this project, but we got money from the alumni from the university of Groningen [Aduarder kring]. These people are lawyers, economists and very few scientists who want to do something for their university. They all give quite a lot of money, like 500 euros or so per year, to fund one research project. There is a kind of competition, you present your plans and they decide which project
they are going to finance and they chose ours. Which is on piezoelectric energy harvesting, on a more fundamental level, not the Zuidhorn project, it’s a project of one of my students, which is really on the development of very thin materials for energy harvesting. They really like the idea a lot. Every six months we present the results, every six months we get questions from them, there is a lot of interest from then and the university is very supportive. We have not discussed this Zuidhorn project in detail, but I’m pretty sure that they certainly support it.

On a scale of 1-5, I would say 5.

Within the project, who is, according to you, the most important stakeholder?

That is for me very difficult to say, I really think that every party is really crucial. I think this is a nice thing of this project. Maybe I would be the least crucial of all (haha). It would always be possible to find the material that is already there to make a test, that is already good enough for demonstration purposes. So for the first steps of this project, probably we are the least necessary. I think for the future goal that we have, how to make this really sustainable, to really feed large areas and so on, we are very crucial. But at this moment I think the rest of the parties, the motivation and drive of the town hall and the involvement of Tauw with their previous experiences on similar projects, linking all the expertise, is probably much more important.

Do other stakeholders need you [the university]?

The nice thing of piezoelectrics is that it’s not a new type of material, it is already in industry everywhere, so you can buy a piece of very efficient piezoelectric already and you can use it. That is a nice thing, that you don’t start from zero. It is new to put it in the floor, that is should be robust, that you have enough of it, that it’s more efficient, etc.

What would you say would make this project a success for the university? When is it successful?

I think when people can actually walk through a path with piezos in, that for many months, many years, that is robust, and doesn’t have any drawbacks in a sense that people will not think “oh, I have to go through this, it is annoying because it moves back and forth so I prefer to go the other route”, so if people can walk comfortable over a piezoelectric path and see how much energy they generate even if it is very very small. I would say that this is for me already interesting enough. That we can put piezos underground, in a path, that is a little bit more than just a couple of steps, a real path. That people every day can see that they are generating energy. At the point that it’s visible and at the point that it’s robust and longlasting, then it would be for me successful.

Would it be measurable, this success? (a term, one year, two years)

I think a realistic… if I see how slow things go in research, I would say, if I would have given the chance to have six months of invisible research there, we could probably do something, and by that time we could start to develop some displays that we have already enough energy for that. That would be quite nice. Then maybe the whole project would be finished in two years maybe.

What do you know about piezos?
They hold promise, we can expect at the moment 500 microWatts, 1 milliWatts per cubic centimetre would be the maximum. I think piezoelectrics have their limitations because it is an atomic scale effect, there is so much that you can get from a material. You cannot expect atoms to move more than they do. So there is a structural limitation. There are extrinsic effects like movement of the main walls that can increase the effects, or face transitions, these are the ideas we are working with. This is what will actually move this limit to this 1 milliWatt per cubic centimetre maximum. This is the limitation that we have. But again, we’re talking about energy harvesting, this means you are using, transforming wasted energy which is available at no price, totally for free. So now the question is the efficiency doesn’t matter so much, you just want to install these devices in a comfortable and convenient way. Simple devices that are easy to make, that are not polluting, that are not too visible, and all that. If you get there, then you can use very large areas. Of course the next step is how to integrate them with the asphalt, all these requirements are not so easy, that would be a next step. But that is what we can expect from them.

Is there anything else that I haven’t asked or that hasn’t come up yet that you want to mention, or that people should think about before starting the project?

Is there something that people overlook? Do you feel that expectations are maybe too high, from the material?

That may be the case. I think in this field people look at it from very different aspects. The engineering aspect is looking at, ok there is a limitation on what you can do with the device. The materials people are looking at the limitations in the structure of the material. I think everyone sees different limitations, depending on what is their background. Of course none of these views is giving the bright future that the man in the street wants to see, like ‘oh yeah this is gonna be much better than solar’. It is never going to be like that. But now the question is, how to use all this energy that we are wasting? I think the right view on things is what some people in MIT are now doing. There are a couple of recent PhD projects on making an inventory, a very complete database of where is the energy that we waste. They are actually even making data on how much power it is on typing. Of course that is very little, but this is mechanical energy, and you do it so often, that... why not? You don’t want to waste this if you can somehow collect it. You are really putting pressure on your keyboard, so why not use it? Every time you go down the stairs in your building, you are putting a lot of vibrations in the stairs, why not collect that? But to do that, you first need to have knowledge of how much energy that is. And this is what at the moment did not exist. There was also a project in the UK, a couple of years ago, they have been collecting all these numbers from regular processes in the household. For example, the energy of the vibrations from the washing machine, how much power that is, for how long, where is the vibration enhanced, so there is a lot of work to do on just getting the knowledge. If you’re walking, if you’re exercising, where would be best to put a piezo to collect the most of it. We don’t have the knowledge yet.

Could you say something about existing risks if you put piezos in the ground?

At the moment the risk is the pollution, the lead pollution. So I would not do that. At the moment I would work with devices that are confined, encapsulated, and relatively small, only for demonstration purposes. But that is my dream, my dream is that one day piezoelectrics will have no risk.

Is lead the main and only risk?
Well, lead at the moment, but I’m pretty sure that if we develop piezoelectrics, that they will contain any other transition metal or any other heavy element, it would become a risk sooner or later, if it would become too widespread. So I do think that we have to go to materials that are abundant and really non-toxic, light element, like silicone, carbon, and so on.

Can you say something about the accumulation of energy from piezoelectrics? Is it possible in one way or another to store the energy?

I think that this comes together with piezoelectric energy harvesting. At some point in the future maybe it’s not so much needed, because as I said if you’re using applications that just consume very little, you can just use when it’s needed. You can just make a few small steps or move a little to charge your phone. But at the moment we are not there yet. So probably for every application that you can think of now you need to store. And that is indeed also part of the issue, to develop efficient storage and so on. At the moment I think it comes together with piezoelectric energy harvesting. The hope is that in the future this is really not so much needed all the time.

Do you also want to experiment with accumulation of energy in the Zuidhorn project?

This is not my field of expertise, there are lots of very important groups working on battery research. I think it would be very nice to involve them indeed. But they are not in this university, even though we are a materials department, we are very strong at piezo and very strong at solar, photovoltaics, also thermoelectrics, but there is no group working on battery research. There are groups in Delft, in Utrecht, but not here. That is a little bit a pity, yes.

Thank you very much for the interview! If you have questions or anything you want to add, you can always send me an email. Thanks for your time.

Interview Tauw

Date: 02-05-16
Start: 12.49 hours
End: 13.05 hours
Interviewee: program manager of Tauw
Language spoken: Dutch

Wat is uw functie binnen Tauw?

Ik ben programmamanager innovaties.

Kan je iets meer over de taken die bij de functie horen?
Met nog drie collega’s sturen we het hele kennis- en innovatiebeleid aan binnen ons bureau aan. Dat betekent dat we eigenlijk in alle disciplines met z’n vieren beoordelen welke kennis en kunde hebben we in huis, welke kennis en kunde gaan we ontwikkelen, en ook welk budget hebben we daarvoor nodig. Dus eigenlijk doen we de hele inhoudelijke en financiële aansturing van de hele kennisorganisatie binnen ons bureau.

En dan nu over specifiek het Zuidhorn project en piezosensoren.

Wat doet Tauw tot op heden in de gemeente Zuidhorn?

We zijn betrokken bij het verlichtingsplan, dus voor het hele transferiumgebied maken we nu het verlichtingsplan. We hebben weleens wat kleine klusjes gedaan maar eigenlijk in Zuidhorn zelf hebben we niet heel veel gedaan.

Heeft Tauw eerder werkzaamheden uitgevoerd met piezotechniek?

Ja, een aantal jaren geleden, drie, vier jaar terug denk ik inmiddels, hebben we een pilotproject gedaan op de N34 in Hardenberg. Waarin we samen met de provincie Overijssel en de Universiteit Twente hebben we gekeken of je met piezosensoren energie kon oogsten vanuit het autoverkeer. En ook hoeveel energie dat dan zou zijn. Dat was de eerste keer dat we met piezosensoren in een project bezig zijn geweest. Daarna hebben we een e-tegel ontwikkeld, eigenlijk een soort spel voor kinderen.

Geldt dit ook voor Tauw buiten Nederland?

Nee dit is alleen Tauw Nederland. Onze buitenlandse kantoren weten er wel van, maar zijn niet heel actief met piezo’s bezig, nee.

Met welke partijen werk je samen als je dit voor elkaar wilt krijgen? Dus als je door wilt gaan met piezotechniek en in het Zuidhorn project?

Ik denk dat het belangrijk is om toch de universitaire wereld erbij te hebben. In dit geval voor Zuidhorn is dat Groningen. Omdat daar toch wel hele fundamentele kennis van de piezo’s is, die hebben wij niet. Daarnaast hebben we denk ik ook wel als het tot concrete projecten komt, toch een elektronica-aachtig bedrijf nodig. Om zeg maar de sensoren aan elkaar te knopen. Onze rol zit veel meer in het bedenken en te motiveren waarom bepaalde sensoren op bepaalde plekken in de openbare ruimte zinvol zijn. Wetenschappelijk is het interessant om te benadrukken hoe je dit dan zou moeten inrichten. En heel praktisch, met een installateur, hoe het er dan heel praktisch uit gaat zien.

En investeerders?

Ja uiteindelijk toch heb je investeerder nodig, of subsidieprogramma’s om het geheel betaald te krijgen. Onze uren moeten betaald worden uiteraard, de universiteit zit in die zin iets makkelijker, aan de andere kant, dat moeten wel betaalde programma’s zijn. Dus als het een nieuw programma is moet het ook gefinancierd worden. En als we daadwerkelijk tot uitvoering overgaan, met installateur of aannemer, die gaat ook gewoon een factuur sturen. Dus we hebben gewoon financiering nodig.

Zijn er voordelen voor Tauw als er piezotechniek wordt toegepast op de openbare verlichting in Zuidhorn?
Ja… we zijn in Nederland denk ik als eerste met piezotechniek bezig gegaan in de openbare ruimte. Ik ben het bij collegabureaus nog steeds niet tegengekomen. We merken wel dat er interesse in is. Maar goed, wat we ook merken is dat je dus op basis van ervaringen en projecten moet bewijzen dat je er verstand van hebt, dus in die zin is het project in Zuidhorn voor ons best belangrijk.

Kan je een concreet voorbeeld noemen?

Een voordeel?

Ja, een voordeel.

Een heel concreet voordeel voor ons is bedrijfseconomisch, dat we daarmee kennis en kunde van een bepaald adviesgebied hebben wat andere collegabureaus niet hebben. Dus daarmee heb je een kennisvoorsprong. Een ander voordeel is uiteraard de inrichting van de openbare ruimte, de leefomgeving, dat je het op een echte duurzame manier gaat doen. Zonne-energie is leuk, windenergie is leuk, is ook een vorm van duurzaamheid, maar zit nog steeds een bepaalde milieubelastende component. En het leuke hiervan is en waar we ook echt een voorsprong mee maken, door bewegingen van voetgangers, fietsers, auto’s, passanten, heb je altijd energie. Want een beweging is energie. Maar met die bewegingsenergie doen we nu niks. En die gaan we met piezoenergie oogsten en benutten. En dat is gewoon echt een duurzaamheidsvoordeel wat je dan hebt en waar we ons ook mee willen profileren.

Zijn er ook nadelen voor Tauw? Als er piezotechniek wordt toegepast op de openbare verlichting in Zuidhorn?

Nou kijk, het nadeel kan zijn als je het… maar daar doen we zelf soms eigenlijk even hard in mee, als je iets voor de eerste keer doet, dan kost het bijna altijd geld. Het is nooit dat je daar meteen heel veel geld aan overhoudt. Je moet altijd toch investeren, je voorziet niet alles. Dus dat betekent dat er wat geld bij moet. En heel plat gezegd is dat voor een concurrent interessant om het een ander et laten doen want dan weten ze precies hoe het moet, hoe zij het de volgende keer kunnen doen. Dat zou een nadeel kunnen zijn. Aan de andere kant, elk nadeel heb je z’n voordeel. Omdat je de eerste keer dat doet, weet je ook precies bij de tweede keer waar je op moet letten en hoe het de tweede keer dan beter kan. Dus door je kennisvoorsprong heb je ook een voorsprong bij volgende projecten. Maar dat betekent wel dat je heel actief naar volgende projecten moet kijken, want voor een collegabureau is het dus makkelijker om te acquireren op vervolgprojecten dan voor ons.

Als je nadelen en voordelen naast elkaar legt, is het dan per saldo toch aantrekkelijk om te doen?

Absoluut. We zijn echt hiermee met een, vind ik, duurzame invulling van energiegebruik in de openbare ruimte bezig. En dit is ook een hele creatieve manier om energie te oogsten en te benutten. Dus vanuit je passantenbeweging, om die energie te benutten. Dus dat voordeel weegt niet op tegen het nadeel. Ook niet op lange termijn, want ik denk dat we juist ook door zo’n project, om te laten zien wat de behoefte is, of wat je kan, gaan we met z’n allen nadenken over wat de behoefte is, wat we nog meer zouden kunnen doen, en dus komt er min of meer automatisch een vraag naar rendementsvergroting. En dus zie ik het wel voor me dat het rendement van de piezo de komende jaren toe zal nemen en we dus veel meer energie uit die piezos kunnen gaan oogsten. Dus het toepassingsgebied van piezos, dat zal wel veel groter worden. Dan is het iets om best wel trots op te mogen zijn als je daar als één van de eersten aan hebt bij mogen dragen.
Past het project in de visie van Tauw? De toekomstvisie?

Ja! Ons motto van een paar jaar terug was Denkkracht voor duurzame omgevingskwaliteit. Die gebruiken we nog steeds. Ik vind dit persoonlijk, en meerderen binnen ons bureau, dit is echt een stukje denkkracht, dus hoe ga je creatief maar ook krachtig nadenken over een duurzame omgevingskwaliteit. Dus in die zin voldoen we volledig daaraan. Op dit moment treden we veel meer naar buiten met gebruikswaarde, belevingswaarde, toekomstwaarde. Iets kan handig zijn in het gebruik, maar als het geen belevingswaarde heeft of geen toekomstwaarde, of heel duur is in de toekomst, dan vinden wij dat je verkeerd bezig bent. En met deze techniek proberen wij invulling te geven op een positieve manier aan zowel de gebruikswaarde: het is een leuke effectieve manier voor het gebruik, maar ook in de beleving: als je zegt van joh, de veiligheid of de verlichting is hier afgestemd op jouw gebruik, dan ben je heel sterk met de beleving daarin bezig. Maar ook in de toekomst, in die zin, je bent toch met een duurzaam stuk techniek bezig.

Wat weet je zelf van het energiepotentieel van piezotechniek?

Die is heel laag. Kijk, er zijn legio sensoren en toepassingen, maar die zijn allemaal op microniveau. Een beetje auto heeft tegenwoordig twintig, dertig piezosensoren. Maar da tis allemaal heel gevoelige sensoren zijn dat. Die met heel weinig energie al iets kunnen doen. En wat wij doen, of hebben gedaan, is zeg maar in één keer van het microniveau naar het macroniveau gaan. Dus eigenlijk slaan we een paar stappen over. En één van de dingen waar je tegen aan loopt, mee te maken hebt, is eigenlijk dus het rendement van de piezosensoren dat op dit moment heel laag is. We hebben het echt over microwatts. Maar goed, dat maakt niet uit. Toch zijn er genoeg toepassingsmogelijkheden voor.

Heb je zelf een idee over de termijn waarop het een stuk rendabeler zou kunnen zijn?

Ja, ik denk, maar goed, dat is ook het leereffect en de behoefte, als we middels projecten aan kunnen tonen wat er allemaal mogelijk is, dan wordt de noodzaak om hoger rendabele piezos te ontwikkelen die wordt groter en dus gaat het gewoon toenemen. Met de huidige snelheid in technologische ontwikkelen zou het me niet verbazen als we over een jaar of vijf al piezosensoren hebben die veel hogere rendement hebben, misschien wel een factor tien hoger dan nu.

Zou je zeggen dat Tauw veel belang heeft bij de uitvoering van het project van Zuidhorn? Op een schaal van 1-5?

Dan is het een 5. Omdat we op deze manier proberen echt invulling te geven aan duurzaam stukje inrichting van de leefomgeving op een manier waarop andere bureaus, waarop men dat tot op heden nog niet doet. We zijn hiermee echt vernieuwend bezig in de openbare ruimte.

Wie is volgens Tauw de belangrijkste stakeholder in het project?

In mijn optiek is er niet één belangrijkste. De gemeente is natuurlijk heel belangrijk om haar gebied ter beschikking te stellen. Als iemand zegt hartstikke leuk, maar je komt er bij ons niet in, dan hebben we gewoon geen project. Als de universiteit zegt joh geweldig, maar ik denk niet mee. Dan weet ik niet welke sensoren ik moet toepassen. En om onszelf toch een beetje een podium te geven. Ik denk dat wij als bureau juist tussen de wetenschappelijke wereld en de toepassingswereld in staan om die met elkaar te verbinden. Dus ja, de universiteit en de gemeente staan wat mij
betreft dan iets hoger dan wij, zonder ons zouden ze het ook wel redden, dan komt er ook wel een keer in project, maar wij hebben daar wel een versnellende werking in. Maar zij staan op een gedeelde eerste plaats.

Hebben die andere partijen Tauw nodig? En wat hebben ze dan nodig?

Nee, ze hebben Tauw niet nodig. Zonder Tauw redden ze het ook wel. Maar je merkt dat toch de gemeente heeft een procesbelang, die wil gewoon dat transferiumgebied ontwikkeld hebben als een project maar wil daarin ook een stukje duurzaamheid invulling geven. Maar gemeentes in het algemeen hebben gewoon niet de technische kennis en kunde in huis om dat ook daadwerkelijk te doen. Daarin zijn ze toch weer afhankelijk van adviseurs, installateurs, aannemers. Maar aan de andere kant de universiteit heeft heel veel kennis van piëzos maar die hebben toch ook weer adviseurs en installateurs nodig om tot praktische toepassingen te komen daarin. Ik zei net dat ze het wel redden zonder ons, maar ergens heb je toch een verbindende schakel tussen die twee nodig. En ik denk dat dat een hele mooie rol voor ons is.

Heeft Tauw andere partijen nodig om dit project te realiseren? Maar zonder andere partijen staat het project niet.

Als niemand ons ruimte biedt om iets te doen, kunnen wij geen project maken, nee.

Wat zou dit project tot een succes maken? Wanneer is het succesvol voor Tauw?

Als we kunnen laten zien dat we een stukje beleving van de openbare ruimte, of het nou veiligheid of verlichting is, dat maakt me niet zoveel uit, als we die kunnen aansturen met de energie die we vanuit de bewegingen opwekken. Dus eigenlijk het gedrag van de gebruikers van de openbare ruimte, dat data ook sturend is in de beleving van de openbare ruimte. En die energiestroom van de ene naar de andere, dat we die kunnen benutten.

Zodat je het in het dagelijks leven zichtbaar hebt of dat je kunt bewijzen dat het zo werkt?

Enerzijds om te bewijzen dat het werkt, maar de kroon op het project wordt wel dat het ook in het dagelijks leven zichtbaar is. Als de gebruiker van het gebied ook zien, van hee, ik loop hier en daarom gebeurt het daar nu iets. Dat is echt de beleving in het gebied zelf. En dan heb je het daarmee bewezen. Maar alleen bewijzen, dan plat gezegd kun je er een artikel over schrijven, maar wel heeft er dan iets aan? de gebruiker van de openbare ruimte moeten er ook echt iets aan hebben.

Zijn er dingen waar we het niet over gehad hebben, die je ngo wel wil noemen of waarvan je denkt, dit moet je nog meenemen?

Niet echt, waar we nu wel een beetje tegen aan lopen is het gewoon lastig is om een hele concrete keus te maken, van de concrete applicatie, wat gaan we nou doen. En daarin, maar ik weet niet wat jij daarmee moet in jouw onderzoek, daarin zie je wel een soort spanning tussen het procesbelang van de gemeente en het productbelang van de universiteit. De gemeente wil eigenlijk van alles, en de universiteit heeft zoiets van, zeg het maar en ik maak mijn sensoren wel. Dat is voor ons wel wat lastig op dit moment om in te sturen. En dat had ik van tevoren niet helemaal ingeschat. Ik dacht dat we veel sneller tot een bepaalde applicatie zouden komen. Maar kennelijk is het toch best wel lastig om met elkaar te bepalen wat nou de eerste pilot wordt.
Interview Enexis (1)

Start: 15.11 hours
End: 15.49 hours
Interviewee: representative of Enexis
Language spoken: Dutch

Zoals je weet, ik ben op dit moment accountbeheerder voor Enexis, zowel voor de provincie Groningen als provincie Drenthe. Is ooit in het leven geroepen een aantal jaren terug, in verband met de diverse afdelingen die we hebben. Ik ben toegevoegd aan infraservice, dat is de club die de complete uitvoering doet. Daarvoor hebben ze een accountbeheerder nodig die de problemen kan oplossen en die mediair is tussen de stakeholders van Enexis en Enexis zelf. En daartussen een heel groot scala aan activiteiten die ik doe. Extern verzorg ik de stakeholders met problemen, soms zit ik bij de burgemeester, dan met de wethouder, maar ook wat lager in de bevolking, eigenlijk gewoon in de groep. Dat je zegt, men is op uitvoeringsniveau. Dat ligt in die trant. Daarnaast probeer ik zelf problemen op te lossen, lukt me dat niet, dan schalen we op naar boven. Dat houdt in dat ik eerst een afdelingsmanager vraag, maar die ga ik meestal al voorbij en dan spreek ik met de vestigingsmanager. Mocht het nog verder escaleren, dan komt het raad van bestuur.

[…]

Twaalf jaar terug heb ik voor mezelf een adviesbureautje erbij opgestart. In het kader van helpen van kleine installateurs met dingetjes waar ze mee zitten. Mijn affiniteit is hoe leg ik een installatie aan, de voorschriften, en hoe werk ik in een elektrische installatie. En daarbij komt een stukje installatietechniek. Als je kijkt naar de sterkstroom, de opwek en de generator tot bij ons thuis, dat scala beheers ik.

En in die 36 jaar heb ik iedere 6 jaar wat anders gedaan. Ik zit nooit stil. Ik ben altijd bezig geweest. Van monteur, werkvoorbereiding, in de lijn gezeten als manager, 50 man aangestuurd, toen vond ik dat niet leuk meer en ben ik weer teruggegaan naar het bedrijfsbureau als werkvoorbereiding engineering projectleider. Toen vond ik de commerciële wereld mooi, dus ik heb ook installaties verkocht. Dus een stukje commercie wat er op de markt speelt. En vanuit die positie weer terug waar ik nu ben. Ik werk de laatste jaren al aan de beheerskant.

Het gaat om de gemeente Zuidhorn, omdat die als proeftuin geschikt zou zijn omdat het maakbaar, nieuw en kleinschalig is. Wat doet Enexis in de gemeente Zuidhorn?
Wij beheren de netwerken in de gemeente Zuidhorn, zowel het gasnetwerk als het e-netwerk. Het e-netwerk bestaat uit twee gedeeltes. We hebben het distributienetwerk, daar zijn de huizen op aangesloten, en een geschakeld distributienet. In Zuidhorn is het voor 95% een separaat net, dat houdt in een geschakeld distributienet waar de lampjes van de gemeente Zuidhorn op zitten en derden, woningcorporaties, stakeholders van de gemeenten, openbaar vervoer bijvoorbeeld. Reclamezuilen. Die orde van grootte. Daar hebben wij niks mee te doen. Wij verzorgen puur het distributiegebeuren. Wij moeten ervoor zorgen dat zowel aan een woonhuis als een lichtmast energie wordt geleverd.

Heeft Enexis eerder werkzaamheden uitgevoerd met piezotechniek?

Stel ze willen het realiseren en vragen Enexis om mee te werken, zijn er dan voordelen voor Enexis om zo'n duurzame installatie met gebruik van piezo's?

Je moet twee dingen zien. Enexis zou best mee willen werken, die zou ook wel meewerken aan pilots. Maar normaliter is het de vraag, waar levert het wat op? Ik zie dit in het kader van maatschappelijk verantwoord ondernemen. Wij doen dus niks anders dan faciliteren. Dat is het enige wat wij kunnen doen. Wij moeten gewoon zorgen voor een stukje distributie. En waar die piezosensoren om gaan is een stuk duurzaamheid, maar ook een stuk voordeel voor een gemeente om het energieverbruik naar beneden te brengen. Dat is ook heel mooi in bijvoorbeeld Gambia, daar ben ik vorige week geweest.

[...] Ik ben zoiets van, gemeente, als jullie echt willen bezuinigen, verlicht dan alleen de hoofdwegen en niet de woonwijken. Bewoners, kijk maar, zorg zelf voor je verlichting. Kijk maar hoe je je buurtje verlicht.

Zijn er Voor Enexis zelf voordelen om piezotechniek toe te passen?

Nee, ik zie dat niet zitten... Of nouja, het ligt op een ander vlak. Enexis is niet de partij die er voordeel uit haalt. Tenzij! Wij met een piezo-ontsteking de vervuiling minder krijgen. Zoals je nu ziet, we hebben veel vervuiling, met name in de harmonische, in de piekspanningen, als we dat naar beneden kunnen brengen, willen we wel graag mee. Want dan speelt een stukje investering naar ons toe een groot belang. Dan hoeven wij niet dikkere kabels bijvoorbeeld te leggen, maar dan kunnen we met dunnere kabels werken. En dat heeft wel weer raakvlak met onze investeringsplannen.

Zijn er ook nadelen voor Enexis?

Een van de nadelen is, ik ben niet zo op de techniek, maar we moeten niet meer vervuiling hebben, zoals we op dit moment hebben. Dit speelt nu. En wat er in de toekomst gaat gebeuren. Ik kijk naar smart grid. We hebben nu tweerichtingsverkeer op ons netwerk, maar voor het ov-netwerk zie
ik dat nog niet. Ik zie wel, hoe meer je meeneemt naar je eindverbruiker, dat stukje distributie moeten we wel in de gaten houden en daarvoor zijn wij er. Dus in mijn beleving kun je niet het een en het ander onderscheiden. Dus we zijn elkaar nodig, hoe je het went of keert.

Stel de gemeente zegt wij gaan die piezotechnieken gebruiken, wij gaan dan doen. Dan is vervuiling dus het grootste nadeel dat Enexis kan ervaren?
Ja, die vervuiling moeten wij transporteren. En dat heeft dus te maken met onze reputatie. En onze investeringen. Als je die vervuiling terug kan brengen tot bijna nul, zou dat ideaal zijn.

Als je de voor en nadelen naast elkaar legt, is het dan per saldo aantrekkelijk om te werken met piezotechniek?
Dan moeten we kijken wat die techniek echt inhoudt. Op dit moment zie ik dat nog niet. Ik weet wat er nu speelt, maar ik weet dus niet wat die piezotechniek zou doen.

Enexis wil dus wel meewerken. Met welke partijen wilt u dan samenwerken?
Als wij willen samenwerken, dan moeten we onze afdeling innovatie erbij hebben. Die moeten kijken of het haalbaar is en of wij dat willen. Zoals ik het op dit moment zie, zijn wij ook wel nieuwsgierig.

Dan heb je Enexis, de gemeente. Zijn er nog andere partijen nodig?
Ik denk dat je de leverancier ook nodig hebt. Als je wil samenwerken en je wil een pilot opzetten, dan heb je Enexis nodig, de gemeente, de universiteit, de leverancier. Die vier partijen moet je bij elkaar zien te krijgen.

Past piezotechniek in de visie en toekomstvisie van Enexis?
Daar kan ik je op dit moment geen antwoord op geven.

Wat weet u van piezotechniek? Wat weet u van het energiepotentieel, is het rendabel, wat voor verwachtingen ervan zijn?
Dat is in mijn optiek nog heel pril, wat ik je al vertelde, ik weet waarin het op dit moment toegepast wordt, en dat is nog niet in de verlichtingstechniek. Ik weet niet hoe dat zich ontwikkelt. Maar goed, je weet het nooit.

Ik denk dat jij daar verder in bent, wat wil je ermee bereiken? Wil je energieneutraal zijn of iets anders? Dat is dus het doel wat je wil met die piezo’s enzo. Daar is het van afhankelijk.

Hoe zou u het standpunt van Enexis in dit project omschrijven? Kunnt u daar iets over zeggen?
Op dit moment niet, ik op mijn niveau niet. Dan moet je bij innovatie zijn. En volgens mij zijn ze op dit moment daar nog niet mee bezig. En je moet het ook zien als, wil je ons erbij betrekken, dan kijk je naar onze componenten. Een van de vragen die ik vind die jullie moeten stellen is, wat moeten we doen om het transport zo goed mogelijk voor elkaar te krijgen? We willen zuivere wattages.
Zou u zeggen dat Enexis veel belang heeft bij het uitvoeren of ontwikkelen van piezotechniek? Op een schaal van 1-5?

Ik denk dat wij daar wel in mee willen spelen. Op een schaal van 1-5 hou ik het op 3-4.

Wie is volgens u de belangrijkste stakeholder in het project?

In principe is dat de gemeente. Die is verantwoordelijk voor een stuk veiligheid en voor het exploitatietarief van de verlichting. En wij willen eigenlijk onze transporttarieven zo laag mogelijk houden, dus zo zit dat bij ons in.

Hebben andere partijen Enexis nodig? Of kunnen ze jullie ook aan de kant zetten?

[...]

We zijn nu bezig voor gemeente Stadskanaal, Vledderveen, wordt ook een gelijkstroomnetje. Ons net wordt omgebouwd tot een gelijkstroomnetje. Omdat we heirdoor minder vervuiling hebben, kunnen we ook een WiFi-aansluiting op die lichtmasten maken bijvoorbeeld. Dan heb je wat meer mogelijkheden.

Is dat ook wat een project succesvol zou maken?

Dan weet je ook, ja als onze netten rendabeler worden.

Wat zou het project voor Enexis succesvol maken?

Dat je dus nog meer kunt halen uit een stukje distributienet wat er al ligt. Met name in de vorm van minder vervuiling. Dan breng je dat naar beneden en wordt het transport goedkoper.

Ik denk dat je nog wel met iemand van innovatie kunt spreken. Ik zal je de contactgegevens toesturen, dan moet ik voor je zoeken. Ik denk dat dat wel een logische stap is hoor. Je begint nu aan de uitvoerende kant, je komt bij mij uit omdat ik zeer geïnteresseerd ben in verlichting. Maar als je dan echt wil kijken van, wat wil Enexis met die piezotechniek, kan Enexis die techniek gebruiken, dan heb je iemand van de club innovatie nodig.

Zijn er nog dingen waar we het nu niet over hebben gehad?
Nee ik denk dat je wel op de goede lijn zit, wat je wil. Echt het doel heb ik alleen nog niet gehoord. wat is nou eigenlijk het doel? Met deze piezosensoren, wat wil je nou bereiken?

Er zijn meerdere dingen. Een is heel belangrijk, en dat is duurzaamheid. Het energieverbruik naar beneden halen. Daar zijn opties in, theoretisch gezien kun je een lichtnet alleen laten draaien op die sensoren. Op het moment dat er trillingen zijn, en die sensoren zitten in de grond, dan zou er licht zijn. dus als er treinen, bussen, auto’s rijden of als er voetgangers lopen, dat er dan licht is. Als er niemand is, brandt er geen licht. Dan heb je een ongelooflijke bezuiniging. Dat is in het begin misschien niet realistisch omdat het gevoel van veiligheid dan omlaag zou zijn, dat kan men niet prettig vinden, dus daar moeten we nog een balans vinden. Duurzaamheid is dus één van de kernbegrippen. Daarnaast gaat het puur om de ontwikkeling van de technologie zelf, dus samenwerking met kennisinstellingen zoals de RUG, hoe kun je die techniek nog rendabel maken? In zo’n piezoproeftuin kan je dit dus in het echt testen.

 [...]

Opslag is de volgende stap. Accumulatie van de energie.

Ons streven is een zo’n goed mogelijk distributienet neerleggen tegen zo laag mogelijke kosten. En ook nog maatschappelijk verantwoord. Dat zijn de dingetjes. Dus als je Enexis ziet, we willen het net betrouwbaar houden voor de klanten, we willen zorgen voor bijna nul onderbrekinguren. Een stukje voor het energietransport. Of het nou gas is of elektriciteit is. Het moet zo veilig mogelijk. Duurzaam staat bij ons ook hoog in het vaandel, maar veiligheid en maatschappelijk verantwoord gaat voor. Daarnaast zijn we altijd afhankelijk van wat wordt er op ons net aangesloten, dat zijn onze customers. Daar gaat het eigenlijk om. En die moeten ook voldoen aan bepaalde voorwaarden. Ik zeg altijd heel gemakkelijk, je kan altijd een aansluiting vragen op het distributienet, maar één ding staat voorop, je mag je buurman niet tot last zijn. Wat dat betreft kun je alles vragen, maar je mag je buurman niet tot last zijn.

Ik wil u bedanken voor uw tijd. Ik hoor heel graag of u inderdaad nog iemand bereid vindt die een paar minuten met mij wil praten voor het vervolg. Mag ook telefonisch of via Skype. Bedankt!
Ik werk daar zelf aan een ander project, met flexibiliteit, hoe voorkomen wij dat we onze netten meoten verzwaren. Flexibiliteit bij de eindgebruikers

Heeft Enexis eerder werkzaamheden uitgevoerd met piezotechniek?

Van oudsher piek tussen 7-9 en 11.20-13 en 17-19 natuurlijke piekmomenten van netbeheerder. Om meer balans te krijgen proberen we met dynamische tarieven te regelen dat de eindgebruikers eerder opstarten of tussenin gaan bijv. kleding wassen.

Piezo: duurzaamheidsdoelstellingen + we willen onze netten niet verzwaren, komt op rekening eindgebruiker. Zoeken daarom samenwerking met eindgebruikers en energieleveranciers. Om emer balans in ons netwerk te krijgen

Met welke partijen werkt u samen indien u zoiets voor elkaar wilt krijgen?

+ aggregators, bedrijven die tussen netbeheerder + afnemer inzitten.

Zijn er voordelen voor Enexis als er piezotechniek wordt toegepast op de openbare verlichting?

Geen energie meer op te wekken

Nadelen?

Betrouwbaarheid, we willen betrouwbaarheid op de energievoorziening. Iedereen verwacht altijd dat alles werkt in nl.

Als principe met piezo niet goed blijkt te werken, dan ander imago!!!! Dat willen we niet, dat is een risico waar we nit op zitten te wahten, amar wel graag willen uittesten.

Na het noemen van deze voor- en nadelen, ziet u werken met piëzotechniek per saldo als aantrekkelijk voor Enexis?

Ja, testen. Netten als backup!

Wat weet u van het energiepotentieel van piëzotechniek? (Hoeveel? Rendabel? Op termijn?)

Weinig aan gedaan, ik weet theorie, door samendrukken materiaal. Ik vergelijk altijd met aansteker. Het principe ken ik, alleen heb er nog geen toepassing voor. We zijn niet mee bezig met testen. Op zoek naar allerlei alternatieven, staan er wel voor open.

Zou u zeggen dat Enexis (veel) belang heeft bij uitvoering van dit project?
Klanten ontzorgen van hoge energierekening, als wij er zelf geen energie in hoeven steken (piezo) dat helpt ons, dan willen we daar wel graag naar kijken. Met een pilot gebied, medewerking verlening

Wat zou zo’n project tot een succes maken? Wanneer is het succesvol (in de ogen van Enexis)? Beoordelingscriteria om vast te stellen wanneer zij zelf iets tot een succes beoordelen.

Betrouwbaarheid, duurzaamheid, betaalbaarheid, (4) doelstellingen vanuit raad van bestuur. Doen we al jaren. Wat je ziet is dat energie transitie vernselt, met name op de duurzaamheid. Belangrijk is als er alternatief is (bijv voor ontsoken van lichtmastne), moet wel betrouwbaar zijn.

Zijn er dingen waar we het niet over gehad hebben vandaag, die wel belangrijk zijn om te noemen?

Mij als contactpersoon, misschien plekje nemen waar het niet erg is als de lichtmast even niet brandt. We werken graag mee. Ook in termen van financieel dan even bespreken. Doen we tzt wel dan.

Ik durf geen uitspraken over welke schaal de testen zullen plaatsvinden. Het plan is om na de zomer, september, te beginnen met de verbouwing/renovatie van het transferiumgebied in Zuidhorn.

Bedankt voor uw tijd!
Appendix D

Other information used as background- and analysis material for this study.

Survey question 7 (table output 17-05-16)

$MR_grootste_voordeel_piezo Frequencies$

<table>
<thead>
<tr>
<th></th>
<th>Responses</th>
<th>Percent</th>
<th>Percent of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Het grootste voordeel van piezo vind ik<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mogelijkheid tot informatiewinning in de omgeving</td>
<td>19</td>
<td>15.4%</td>
<td>17.4%</td>
</tr>
<tr>
<td>Duurzame verlichting in de gemeente</td>
<td>82</td>
<td>66.7%</td>
<td>75.2%</td>
</tr>
<tr>
<td>Betere samenwerking met kennisinstellingen</td>
<td>11</td>
<td>8.9%</td>
<td>10.1%</td>
</tr>
<tr>
<td>Anders, namelijk</td>
<td>3</td>
<td>2.4%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Ik zie geen voordelen van het aanleggen van piezosensoren</td>
<td>3</td>
<td>2.4%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Geen antwoord</td>
<td>5</td>
<td>4.1%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
<td>100.0%</td>
<td>112.8%</td>
</tr>
</tbody>
</table>

^a Dichotomy group tabulated at value 1.

Multiple response analysis of question 7. A couple of people chose more than one answer.

Correlations

<table>
<thead>
<tr>
<th></th>
<th>Correlation Coefficient</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ik vind het goed dat de gemeente werkt met nieuwe technologie.</td>
<td>.332**</td>
<td>.000</td>
<td>106</td>
</tr>
<tr>
<td>Ik vind het goed als piezosensoren worden ingezet om de openbare verlichting te laten branden.</td>
<td>.176*</td>
<td>.046</td>
<td>105</td>
</tr>
</tbody>
</table>

63
Ik vind het goed als piëzosensoren worden gebruikt voor informatiewinning. Hierbij kunt u denken aan metingen of het druk is, wanneer het spits is, welke route de meeste mensen nemen, etc.

<table>
<thead>
<tr>
<th>Correlation Coefficient</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>.130</td>
<td>.158</td>
<td>104</td>
</tr>
</tbody>
</table>

Ik vind het goed als piëzosensoren worden ingezet om de sociale veiligheid in de buurt te verhogen, bijvoorbeeld door het laten branden van oranje knipperlichten bij oversteekplaatsen bij basisscholen.

<table>
<thead>
<tr>
<th>Correlation Coefficient</th>
<th>Sig. (2-tailed)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>.231*</td>
<td>.014</td>
<td>104</td>
</tr>
</tbody>
</table>

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).
Appendix E

SPSS syntax used to generate all necessary output:

DATASET ACTIVATE DataSet1.

MULT RESPONSE GROUPS=$Voordeel_piezo 'Het grootste voordeel van piezo vnd ik' (informatiewinning duurzame verlichting kennisinstellingen anders geen voordelen geen_antwoord (1))
/FREQUENCIES=$Voordeel_piezo.

FREQUENCIES VARIABLES=gemeente_technologie piezo_openbareverlichting
 verlichting_alleen_bij_langslopen piezo_informatiewinning piezo_socialeveiligheid
/HISTOGRAM NORMAL
/ORDER=ANALYSIS.

FREQUENCIES VARIABLES=gemeente_technologie piezo_openbareverlichting
 verlichting_alleen_bij_langslopen piezo_informatiewinning piezo_socialeveiligheid
/STATISTICS=STDDEV
/HISTOGRAM NORMAL
/ORDER=ANALYSIS.

DATASET ACTIVATE Dataset1.
* Chart Builder.

GGGRAPH
/GGRAPHDATASET NAME="graphdataset" VARIABLES=Question MEAN(Average)[name="MEAN_Average"]
 MISSING=LISTWISE REPORTMISSING=NO
/GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource(id("graphdataset"))
DATA: Question=col(source(s), name("Question"), unit.category())
DATA: MEAN_Average=col(source(s), name("MEAN_Average"))
COORD: rect(dim(1,2), transpose())
GUIDE: axis(dim(1), label("Question"))
GUIDE: axis(dim(2), label("Mean Average"))
SCALE: cat(dim(1), include("1", "2", "3", "4", "5"))
SCALE: linear(dim(2), include(0))
ELEMENT: interval(position(Question*MEAN_Average), shape.interior(shape.square))
END GPL.

DATASET ACTIVATE DataSet1.
FREQUENCIES VARIABLES=risico_piezo
 /STATISTICS=MEAN
 /HISTOGRAM
 /ORDER=ANALYSIS.

USE ALL.
COMPUTE filter_$=(geen_voordelen = 1).
VARIABLE LABELS filter_$ 'geen_voordelen = 1 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
FORMATS filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.
FREQUENCIES VARIABLES=geen_voordelen gemeente_technologie piezo_openbareverlichting verlichting_alleen_bij_langslopen piezo_informatiewinning piezo_socialeviligheid risico_piezo
 /ORDER=ANALYSIS.
DESCRIPTIVES VARIABLES=gemeente_technologie piezo_openbareverlichting verlichting_alleen_bij_langslopen piezo_informatiewinning piezo_sociaalveiligheid risico_piezo
/STATISTICS=MEAN STDDEV MIN MAX.

DATASET ACTIVATE DataSet1.
NONPAR CORR
/VARIABLES=gemeente_technologie piezo_openbareverlichting verlichting_alleen_bij_langslopen piezo_informatiewinning piezo_sociaalveiligheid
/PRINT=KENDALL TWOTAIL NOSIG
/MISSING=PAIRWISE.