
Cycle-Accurate Timing Channel
Analysis of Binary Code

by

Roeland Krak

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of Master of Science.

May 2017

Graduation committee:
prof.dr. M. Huisman
dr. A. Peter
E. Sanfelix Gonzalez, M.Sc.





Abstract

Software execution time may leak information about secrets processed by that
software through vulnerabilities known as timing channels. Previous automated
analysis techniques rely on a highly abstract model of instruction execution time,
which limits the accuracy of these tools. We constructed a detailed model of
instruction execution time for the ARM Cortex-A7; and present SMArTCAT,
a tool which relies on this timing model to identify timing channels in binary
code. SMArTCAT is the first automated tool which can identify timing channels
caused by instructions with parameter-dependent execution time, as well as
traditional timing channels. This allows to more accurately test critical pieces
of software for the presence of timing channels, which we demonstrate in several
case studies.





Contents

I Foundation 1

1 Introduction 3

2 Timing Channels 5
2.1 Timing Channel Types . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Control flow–based timing channels . . . . . . . . . . . . . 7
2.1.2 Architecture-based timing channels . . . . . . . . . . . . . 8

2.2 Practical Properties . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Timing Channel Mitigation . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Timing Channel Prevention Framework . . . . . . . . . . 12
2.4 Timing Channel Identification . . . . . . . . . . . . . . . . . . . . 13
2.5 Channel Quantification . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Symbolic Execution 17
3.0.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Symbolic Quantification . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Information Leak Quantification . . . . . . . . . . . . . . 19
3.1.2 Timing Characterization . . . . . . . . . . . . . . . . . . . 20

4 ARM Architecture and Instruction Set 21
4.1 ARM Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 ARM Cortex-A7 Pipeline . . . . . . . . . . . . . . . . . . . . . . 23

II Contribution 27

5 ARM Cortex-A7 Timing Model 29
5.1 Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Contextual Influences . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Dual-Issuing . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Early and Late Operands . . . . . . . . . . . . . . . . . . 31
5.2.3 Bypasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.4 Condition-Codes . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.5 Memory Instructions . . . . . . . . . . . . . . . . . . . . . 31

v



vi CONTENTS

5.2.6 Branch Instructions . . . . . . . . . . . . . . . . . . . . . 32

5.3 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Instruction Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1 Initial Measurements . . . . . . . . . . . . . . . . . . . . . 34

5.5.2 Dual-Issue as Older Instructions . . . . . . . . . . . . . . 34

5.5.3 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.4 Early and Late Operands . . . . . . . . . . . . . . . . . . 35

5.5.5 Bypasses . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.6 Condition Codes . . . . . . . . . . . . . . . . . . . . . . . 36

5.5.7 Memory Instructions . . . . . . . . . . . . . . . . . . . . . 36

5.5.8 Branch Instructions . . . . . . . . . . . . . . . . . . . . . 36

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7 Limitations & Discussion . . . . . . . . . . . . . . . . . . . . . . 38

5.8 Timing Channel Causes . . . . . . . . . . . . . . . . . . . . . . . 40

6 Timing Channel Analysis 41

6.1 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Self-Composition Proofs . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Self-Composition . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.2 Instruction-Level Timing Channel Identification . . . . . . 43

6.2.3 Pure Control-Flow Timing Channel Identification . . . . . 45

6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 SMArTCAT 51

7.1 angr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 SMArTCAT Design . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 Self-Composition Implementation . . . . . . . . . . . . . . 53

7.3 Evaluation & Discussion . . . . . . . . . . . . . . . . . . . . . . . 55

8 Case Studies 59

8.1 OpenSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.1.1 Blowfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.1.2 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.1.3 Camellia, CAST, 3DES, SEED . . . . . . . . . . . . . . . 63

8.1.4 RC2 and RC4 . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2 TweetNaCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

III Reflection 67

9 Related Work 69



CONTENTS vii

10 Conclusions 71

11 Future Work 73

A ARM Instruction Times 79



viii CONTENTS



Part I

Foundation

1





Chapter 1

Introduction

Machines frequently handle secret and privacy sensitive data, such as secret
keys used in cryptographic software, for which it is catastrophic if an adversary
obtains them. Unfortunately, many systems leak secret information through
nonfunctional behavior such as execution time. For example, a program can
conditionally execute either of two code paths. If the paths have different ex-
ecution time, and the value of a secret parameter determines which path is
executed, there is a relation between the secret and the execution time. An
attacker who measures the execution time can deduce which path was executed,
and thus learns information about the secret parameter.

These vulnerabilities are known as timing channels. Practice shows that
exploitable timing channels are not uncommon in cryptographic software [12,
15, 27]. Recently, attention has also been drawn to timing channels which leak
privacy sensitive data from web browsers [9, 29].

Previous work [8, 10, 33] describes methods to identify timing channels in
code. Timing channel identification is based on two parts: a model of execu-
tion time, and an analysis technique to identify relations between secrets and
execution time. The timing model provides a notion of execution time at the
level of instructions. It can be applied cumulatively on multiple instructions to
model time for a larger piece of code, i.e., a function or a program. The analysis
technique is applied on the program code and the model of its execution time
to identify timing channels.

The approaches described previously [8, 10, 33] rely on on a highly abstract
notion of instruction execution time, known as the program counter model.
However, it is unrealistic for general purpose processors, because it does not
take into account timing differences between different instructions and different
instruction operands. These features have been proven to lead to practical
timing channels, as demonstrated by Andrysco et al. [9]. These approaches are
insufficient to identify timing channels that are caused by these features.

Until now, there has been no research conducted which looks at the achiev-
ability, costs and benefits of timing channel analysis based on a timing model
more detailed than the program counter model. This leads us to the research

3



4 CHAPTER 1. INTRODUCTION

question we address in this work:

What is the impact of detailed timing models on timing
channel analysis?

In this work we describe how we construct a novel timing model for the
ARM Cortex-A7, a processor found in many embedded devices. In doing so, we
contribute to the general understanding of this processor’s timing behavior.

Furthermore, we introduce SMArTCAT, a tool for automated identification
of timing channels. It leverages symbolic execution and our timing model for
the Cortex-A7 to identify whether secret program parameters cause differences
in instruction execution time. This is the first tool which can analyze programs
for timing channels at this level of detail. Because of the level of detail in
the timing model, it can identify a whole new class of timing channels which
previously could not be identified by automated analysis.

This work demonstrates that SMArTCAT can identify timing channels in
ubiquitous cryptographic software, and that it can validate that other crypto-
graphic software does not contain any timing channels according to our attacker
model and timing model.

The rest of this work is organized as follows. First, we instroduce the back-
ground to our work: chapter 2 discusses timing channels, chapter 3 discusses
symbolic execution, and chapter 4 describes the ARM Cortex-A7. We then
continue to the main body of our work. Chapter 5 describes how we experi-
mentally constructed a timing model for the Cortex-A7. Chapter 6 discusses
our binary analysis technique, and chapter 7 discusses how the technique was
implemented in SMArTCAT. Chapter 8 describes how SMArTCAT has been
used to analyse several cryptographic libraries. We then compare our work to
several other automated timing channel analysis techniques in chapter 9. In
chapter 10 we conclude and reflect on this work. Finally, in chapter 11, we look
ahead at possible directions to advance this field of research and improve on our
approach.



Chapter 2

Timing Channels

Data security in software is traditionally defined using the notions of data flow,
and secret and public variables. Traditional data leaks comprise data flows
from secrets to public program outputs. In contrast, side-channels comprise
data leaks through nonfunctional program behavior, i.e., side-effects of program
execution. These vulnerabilities can be exploited by attackers who perform
measurements of the side-effects during execution. In this work we focus on
timing channels: side-channels which exist due to secret variables that influence
program execution time.

Consider Example 1. Clearly, execution time of this function depends on
the secret variable, as it determines the number of iterations that the loop is
executed. Thus, if an attacker can measure execution time, he can infer infor-
mation about the secret variable. The example has an obvious linear relation
between secret and side-channel. As we will later describe, there are also timing
channels which contain much more subtle relations, and are harder to identify.
On a side node, the examples we use to introduce timing channels are highly
superficial, to fully focus on the different types of side channel causes.

f unc t i on ( i n t s e c r e t ) {
whi le (−− s e c r e t > 0) {

. . .
}

}

Example 1: Linear timing channel

Data flow analysis builds on the idea that programs handle parameters of
different security levels. For simplicity we consider only two security levels:
public and secret. The intuition behind data flow security is that public output
of a program should only be based on public parameters, and should not be
influenced by secret parameters as this leaks secret information. This notion

5



6 CHAPTER 2. TIMING CHANNELS

is known as non-interference [20]: the values of secret parameters should not
influence values of public outputs.

Traditional non-interference was formally defined for deterministic sequential
systems, in which it can be proved that secret variables never influence public
output. To cope with concurrent programs and side-channels, Zdancewic and
Myers [44] defined the notion of observational determinism, a generalization of
non-interference. Originally focused on internal timing channels, this notion can
again be generalized to include external timing channels as well. This concept
was formally refined by Huisman et al. [23], and forms the basis of our security
notion.

We consider an attacker who is able to read timed program traces, i.e.,
traces of execution time for each executed instruction. Observational determin-
ism holds if executions that differ only in secret input are indistinguishable by
their traces. In this work we focus solely on data leaks by execution time, and
leave other types of data leakage for other work. Observational determinism
is concerned with abstract observations, i.e., points in time in which the pro-
gram performs an action observable to the attacker. This concept is similar to
that applied by Balliu et al. [10]. However, they considered only observations
of timed memory writes. On the other hand, by keeping the concept of obser-
vations abstract, we can identify timing channels which are based on different
kinds of observations, e.g., standard program output, network traffic, file locks
and manipulations, memory writes, or process scheduling behavior.

2.1 Timing Channel Types

There are many different patterns in program code which cause non-constant
execution time. However, programmers are often not concerned with non-
functional program behavior, and it is not always obvious whether variables
should remain secret or not. This makes timing channels a very prominent class
of vulnerabilities.

Example 1 shows a clear linear relationship between secret value and exe-
cution time. However, many timing channels only display minor and nonlinear
differences in execution time. In practice, minor differences can be aggravated
when they are located in tight loops or can otherwise be executed multiple times.
If an attacker is able to influence how frequent a minor timing difference occurs,
e.g., by choosing specific public inputs, it can be trivial to take sensible mea-
surements from a timing channel. Consider Example 2, it shows a small timing
difference depending on the secret value, i.e., ... is only called if secret is
true. However, if the attacker can choose public to be large, then, depending
on secret, ... will be called either many times, or not at all. Thus, the tim-
ing difference between both possibilities is large and it is easy to differentiate
between them.

Many situations allow attackers to measure execution time of victim pro-
cesses remotely, e.g., by looking at network communication, or by executing
malicious code on the same machine. This can make it possible to exploit



2.1. TIMING CHANNEL TYPES 7

func t i on ( i n t publ ic , boolean s e c r e t ) {
whi le (−−pub l i c > 0) {

i f ( s e c r e t ) {
. . .

}
}

}

Example 2: Timing channel within loop

timing channels in situations in which it is not possible to exploit other side
channels, for which physical access to the victim machine is generally required.
Imagine that Example 2 is part of a network protocol implementation. Obser-
vations could be made of packets sent before and after this piece of code, which
allow an attacker to measure the time between those packets and thus deduce
the secret.

So far we have only shown examples with timing channels based on control
flow, i.e., the value of a secret determines which code is executed. However,
execution time can depend on secret variables in multiple ways. Broadly speak-
ing, we categorize timing channels as either control flow–based, or architecture-
based. In the following subsections we discuss what we mean by both.

2.1.1 Control flow–based timing channels

Programs can have multiple code paths, i.e., instruction sequences which can be
executed. Branch instructions determine which sequences are executed. Con-
trol flow describes how variables determine which paths are executed, because
the branch conditions depend on those variables. Control flow–based timing
channels are a result of control flow dependencies on secret variables. A timing
channel is caused by a difference in execution time for the different possible
paths. An attacker who can use the execution time to deduce which path was
taken, knows whether the condition of the branch instruction was satisfied or
not. This allows him to deduce information about the value of the secret vari-
able.

It is challenging to write program-code for which execution time does not
depend on the executed code path. This is caused by the underlying challenge to
determine execution time for any path at all. Naively, execution time of a path
equals the sum of the execution time of all individual instructions in that path.
However, it is impossible to determine a general cost model for each instruction,
as this differs between processors. It is thus impossible to accurately predict
execution time without a specific processor in mind.

Furthermore, instruction execution time can depend on multiple factors such
as other executed instructions and the state of the processor. For example,
branch prediction, out-of-order execution, and caching all depend on the state



8 CHAPTER 2. TIMING CHANNELS

of the processor and can all influence execution time. These techniques are in-
tended to optimize processor performance. However, manufacturers make little
to no guarantee about their effects on processing speed of individual instruc-
tions, which means instructions in one code path may have different execution
time than the same instructions in another path.

Control flow–based timing channels thus give constraints on values of secret
variables, depending on which code path was executed. If there are multiple
conditional branches which depend on secret variables, or if an attacker is able
to influence the learned constraints through public program parameters, this
information leak may disclose complete secrets to the attacker.

2.1.2 Architecture-based timing channels

Besides control flow–based timing channels, there is a type of timing channels
we refer to as architecture-based timing channels. These timing channels are
a direct result of the interplay between program code and low-level machine
behavior. If this interplay influences instructions’ execution time depending on
secret values, the timing difference can leak information about those secrets.

One example of non-constant execution time instructions are floating point
operations. For most parameters, modern processors can execute floating point
arithmetic in constant time. However, if floating point values are really small –
known as denormalized numbers –, instructions can take significantly longer to
process them. Consider Example 3: a secret floating point variable gets modified
through simple arithmetic with a public variable. If an attacker can choose
public, he can choose it such that the result of the operation is denormalized
only if secret is smaller than some arbitrary edge value. As processing the
denormalized number will take longer than processing a normalized number,
there is a timing channel from which an attacker can learn whether secret is
larger or smaller than the chosen edge value. If public can be chosen freely,
a binary search will quickly determine the exact value of secret. Andrysco et
al. [9] demonstrated that such vulnerabilities exist in practice.

f unc t i on ( f l o a t publ ic , f l o a t s e c r e t ) {
re turn pub l i c ∗ s e c r e t ;

}

Example 3: Floating point–based timing channel

Coppens et al. [17] discussed other instructions with non-constant execution
time on modern x86 processors. They identified that integer division, and di-
vision and square root instructions on normalized floating points also exhibit
parameter-dependent timing behavior. They also mention that rotation and
shift instructions and multiplication have displayed this behavior on older x86
implementations. They did not identify the behavior of denormalized floating
point instructions, but successfully demonstrated prevalence of variable-latency



2.2. PRACTICAL PROPERTIES 9

instructions.
Similarly, memory instructions generally exhibit non-constant execution time,

due to interference of the cache when data is loaded from memory or written
to it. The cache sits between memory and the processor and temporarily stores
data from memory for quick reference. The cache is significantly faster than
memory, which can create a timing channel which leaks information about the
accessed memory locations.

A typical programming structure seen in cryptographic implementations [12,
35, 37], is that of arrays which are accessed by indices that depend on secrets.
Thus, the secrets determine which array elements are loaded into the processor’s
registers from memory. However, this can leak information about the secrets
due to cache behavior. If the attacker can measure the timing difference, he
knows whether the array element was loaded from main memory or from the
cache. Consider Example 4. If an attacker guesses public equal to secret, only
one array element is loaded into the cache instead of two. Thus, if the array
was not previously loaded in the cache, the code will execute in approximately
half the time it would otherwise execute, thus leaking the secret value.

f unc t i on ( i n t [ ] array , i n t publ ic ,
i n t s e c r e t ) {
array [ pub l i c ]++;
array [ s e c r e t ]++;

}

Example 4: Cache-based timing channel

Another source of architecture-based non-constant execution time is the
branch-predictor. For many conditional branch instructions, the branch-predictor
attempts to predict which code-path will be executed after the branch instruc-
tion, so the subsequent instructions can be loaded accordingly. If the branch is
wrongly predicted, the loaded instructions need to be discarded and the instruc-
tions from the correct path need to be loaded, which results in extra processing
time. The branch-predictor bases its predictions on the conditions of previous
branch instructions, which means it records processed information. If a branch
depends on a secret, branch-prediction is influenced by this secret, and infor-
mation about it can leak through the timing-difference between correctly and
wrongly predicted branches. This means that even if there is no control-flow
dependent timing channel, the branch predictor can still leak the information
about which code-path is followed.

2.2 Practical Properties

In many applications it is infeasible to completely remove all information leakage
about secret variables. For example, in cryptographic software there is a relation
between a secret key and the ciphertext, as a different key will result in a different



10 CHAPTER 2. TIMING CHANNELS

ciphertext. This relation can theoretically be abused in a brute-force attack if an
attacker knows a plaintext and ciphertext pair. The attacker would encrypt the
plaintext with different keys until he finds a result matching the ciphertext. He
would then know the secret key, and this information has thus leaked through
the encrypted result. However, this attack is generally not practical because of
the enormous search space of possible keys. Likewise, a system is not necessarily
insecure if limited information leaks through a side-channel. Certain properties
of side-channels are important to determine their relevance. In this work we
focus on dynamic range and maximum information leakage, which are explained
below.

As explained in the previous section, exploitation of timing channels requires
differentiation between multiple measurements of execution time. If a one bit
channel is considered, this means an attacker needs to differentiate between the
smallest and largest execution times possible, Tsmallest and Tlargest respectively.
However, in practice it can be hard to differentiate between Tsmallest and Tlargest
from actual measurements, because execution time is generally noisy, e.g., due to
limited machine resources which the victim process shares with other processes.

Dynamic range is used to express the ratio between minimum and maximum
values of a certain signal. It is a commonly applied ratio in the field of image
processing, where it expresses the ratio between maximum and minimum image
intensity [19]. We apply this concept to timing channels, and define dynamic
range as the ratio between Tsmallest and Tlargest. This ratio gives an indication
of practical differentiability, because it determines the impact of noise on the
channel, i.e., the larger the difference between Tsmallest and Tlargest, the less
impact noise has on differentiability. Because of the wide range of values this
metric can have, it is expressed using the logarithmic unit of decibels. We
formally define dynamic range as 10× log

Tlargest

Tsmallest
dB. A dynamic range of 0 dB

thus expresses indifferentiability of a channel, which means that no information
can be derived from timing measurements.

Whereas dynamic range gives an indication about practical exploitability of
a channel, maximum information leakage gives a hard limit on the information
that can be compromised through the side channel. It is thus an indicator of
the secrecy maintained after exploitation of the channel. Because information
leakage is a direct result of differentiability between execution paths, and dy-
namic range expresses differentiability, information leakage can only exist if the
dynamic range between paths is larger than 0 dB. Thus, dynamic range is an
important property not only to reason about practical exploitability, but also
to determine actual differentiability.

As demonstrated by Păsăreanu et al. [36], it is important to note the differ-
ence between maximum information leakage of a single run, and that of multiple
runs, as a single run frequently leaks only limited information, whereas multiple
runs may leak a secret entirely.

Nonetheless, a side-channel which can theoretically leak a secret entirely may
be practically unexploitable due to a significantly low dynamic range. However,
assessment of exploitability requires knowledge of the execution environment.
For example, network-facing timing channels can have higher noise levels than



2.3. TIMING CHANNEL MITIGATION 11

channels which can be measured on the machine directly, and may thus be
naturally more resilient against timing attacks provided that the dynamic range
is low.

Timing channel analysis needs to consider dynamic range to determine differ-
entiability between paths.

Observation 1: Dynamic range

2.3 Timing Channel Mitigation

Techniques that mitigate timing channels can be categorized according to the
practical properties they influence, i.e., they limit channel capacity or informa-
tion leakage. Channel capacity can be limited in either of two ways, one of which
is to limit the dynamic range, by making measurable time differences as small
as possible. The other method is to make the channel unpredictable by adding
extra noise, for example by inserting random delays in case of timing channels
[18, 22]. However, effectiveness of decreased channel capacity may be limited,
because in some contexts a determined attacker can still acquire information
from the channel, given enough measurements.

If information leakage is limited, the side-channel can be either eliminated
completely, or residual leakage may be accepted if it is required for functional
code. One approach is to write constant-time code for specialized functions that
handle secret data, such as cryptographic functions. For other programs, such
as web browsers, this approach can be harder because it may not be immedi-
ately clear which functions handle secret data. Multiple authors have proposed
techniques that transform code in such a way that control flow–based timing
channels cannot exist in the transformed code [7, 31, 33]. However, automated
code transformations may result in inefficient code, as the goal of the transfor-
mations is that all code paths exhibit equal execution time. This is acceptable
for minor parts of the code which require a high level of security, but is generally
unnecessary and unwanted for all code of a system. Thus, to apply transforma-
tions only to code sections that benefit from it, it is important to first identify
and quantify the side channels.

Molnar et al. [33] defined a notion of security against control flow–based
timing channels called program counter–security (PC-security). This notion as-
serts that secret variables do not influence the number of executed instructions.
Their solution relies on special hardware which guarantees that all instructions
execute in equal fixed time. Thus, if secret parameters do not influence the
number of executed instructions, program execution time does not depend on
secret parameters either.

However, the idealized hardware properties on which they rely are far from
realistic for general purpose computers. PC-security thus guarantees observa-
tional determinism only for adversaries who can monitor the number of executed
instructions, but not actual execution time. In practice, adversaries who can



12 CHAPTER 2. TIMING CHANNELS

1. Branch conditions should not, directly nor indirectly, depend on secrets.

2. Array size and referenced indices should not depend on secrets.

3. Instruction execution time should not be influenced by parameters which
depend on secrets.

Definition 1: Timing channel prevention framework

measure actual execution time are more common than adversaries who can only
monitor the number of executed instructions. Under such an attacker model,
any mitigation technique based only on PC-security is necessarily incomplete
and unsound.

Timing channel mitigation techniques thus require knowledge about code
execution time. However, as some timing behavior is architecture-based, it is
impossible to specify a concrete timing model which holds in general. Instead,
a qualitative framework can capture the causes of timing channels in general.
Such a framework can be concretized in quantitative cost models of instruction
execution times, which allows to perform analysis for specific architectures.

Timing channel analysis should use accurate architecture specific cost models
based on a qualitative framework.

Observation 2: Accurate cost models

2.3.1 Timing Channel Prevention Framework

Bernstein et al. [13] paid particular attention to avoid timing channels during
construction of the NaCl cryptographic library. To prevent timing channels,
they explicitly formulated two coding policies1 that prevent timing channels.
The first policy is to avoid branches controlled by secret data. The second
policy is to avoid secret data as array indices. The timing channels prevented
with these policies are control flow–based and branch-prediction-based timing
channels, and cache-based timing channels respectively.

We construct a qualitative framework of timing channel prevention policies,
based on the policies used in constructing NaCl. This allows us to reason about
causes of timing channels as violations of these policies. However, we observe
that the NaCl policies do not prevent the architecture-based timing channels
based on secret parameters which we explained in section 2.1.2. We thus extend
the framework with a new policy which requires that instructions operating
on secret data cannot exhibit different timing behavior depending on secret
parameters.

All policies can be found in Definition 1 for reference. If code adheres to

1https://nacl.cr.yp.to/internals.html



2.4. TIMING CHANNEL IDENTIFICATION 13

these policies, and the code is functionally correct, timing channels described in
section 2.1 should not be possible. On the other hand, since violations of these
policies result in differentiable timing behavior, these violations directly consti-
tute differences in timing traces as described in the beginning of this chapter.
In the rest of this paper we refer to violations of policy 1 as type 1 violations,
and likewise for violations of the other policies.

Timing channel analysis needs to takes into account all known causes of timing
channels.

Observation 3: Holistic view of channel causes

2.4 Timing Channel Identification

As timing channels can be viewed as policy violations, timing channel identifi-
cation can be viewed as identification of these violations. Due to the different
nature of the policies, different forms of analysis are required to identify viola-
tions. Data-flow analysis can be used to determine how data from one variable
affects different variables and instructions in all stages of program execution.
This can identify type 1 and 2 violations, as flows from secrets to insecure in-
structions assert these violations. In non-concurrent programs this approach
can identify type 1 and 2 violations, up to the limits implied by the underlying
data-flow analysis technique. However, the dynamic range of the channel may
be impractically small and data-flow analysis is incapable of quantifying it.

On the other hand, data-flow analysis is insufficient to prove type 3 viola-
tions. Even though data-flow analysis provides an indication of possible type
3 violations, this approach is not sound. A sound approach, again up to the
limits of the underlying technique, is achieved by introducing data constraint
analysis, i.e., analysis which takes into account data constraints, to identify
whether instruction parameters can influence execution time. To the best of
our knowledge, no approach to identify type 3 violations has been proposed in
the literature before.

Multiple approaches to identify type 1 and 2 violations have however been
proposed. Molnar et al. [33] applied fuzz testing to verify that programs satisfy
PC-security by comparing instruction-count among multiple randomly tested
executions using different public inputs. PC-security violations are caused by
branch instructions that depend on secrets, which means policy 1 compliance
is a generalization of PC-security. Besides the limitations of PC-security men-
tioned in section 2.3, fuzz testing has limited code coverage, so it may miss
program states which lead to timing channels. The advantage of tests using
actual program execution is that effects of processor optimizations such as out-
of-order execution may be identified. Of course it is vital in this scenario to test
the program in the environment the program will be deployed in.

Multiple authors have proposed the use of self-composition techniques to
verify non-interference and absence of timing channels in code [8, 10]. The



14 CHAPTER 2. TIMING CHANNELS

concept of self-composition considers a composition of a program with a copy
of itself, operating on renamed variables. This allows comparative properties
between multiple executions to be verified within a single program.

Almeida et al. [8] transform self-composed code with ghost-code and annota-
tions such as preconditions and invariants, which allows them to store a notion
of execution time within the program states. Subsequently, they apply auto-
matic and interactive verification tools to prove non-interference. The security
notion considered by Almeida et al. is an extension of PC-security, which in-
cludes data memory access patterns, so they can identify a wider range of type
1 and 2 violations. If non-interference cannot be proven, the verification tools
show which code causes the violation.

Balliu et al. [10] apply self-composition in combination with symbolic exe-
cution to derive trees of observational states, in which each observational state
includes the execution time up to that state. Self-composition in this case is
not applied on the program itself, but on the observation trees. The trees are
linked with a connector which defines the relation between variables in both
trees. A verification function is then applied on both trees to assert that the
observational states have equal timing behavior so that they do not leak se-
cret information. The cost model applied by Balliu et al. equals the program
counter model, so timing channel identification is limited to a subset of type
1 violations. Furthermore, this technique is limited to identify the presence of
timing channels, but cannot locate the violating code.

We can make two observations about these techniques. Firstly, none of
these techniques take into account type 3 violations. There is thus a gap be-
tween known causes of timing channels and causes taken into consideration by
identification techniques described in the literature. Secondly, all of these tech-
niques are based on the abstract program counter cost model. This cost model
limits both soundness and completeness of test results. These techniques can-
not be trivially extended to consider type 3 violations and accurate cost models,
because the costs of type 3 violations are conceptually different, i.e., there is no
one-to-one mapping between instructions and cost, as the context influences the
cost.

Channel identification requires data-flow analysis and data constraint analysis.

Observation 4: Channel identification techniques

2.5 Channel Quantification

Side-channel identification is limited to identification of theoretical side-channels,
but gives no information about their practical exploitability. For example, an
attack may leak information about a secret key in some system. However, this
does not necessarily mean this channel is practically exploitable, as the leaked



2.5. CHANNEL QUANTIFICATION 15

information may be insignificantly small and the effort to derive this informa-
tion may be impractically large. This justifies quantification of practical channel
properties such as information leakage and dynamic range.

We illustrate this scenario with example 5. Note that actual practicallity
of exploitation depends significantly on execution context, here we approach
this example from a high level perspective for brevity. Clearly, the branching
condition depends on the secret variable, as it evaluates public + secret !=

0. This line thus constitutes a type 1 violation.

The information leaked by this channel is a boolean which conveys whether
public plus secret equals zero. If we assume 32 bit integers and an attacker
who can choose public freely, this channel has a maximum information leakage
of the entire secret, i.e., 32 bits. However, if an attacker can determine which
path was taken on a single run, he only has a probability of 1

232 of finding
the secret in one execution, and this probability only increases slowly with the
number of measured runs. The information leaked through this channel is thus
very small in general.

The branch related to the true condition contains two arithmetic operations:
add and divide, whereas the other branch contains no arithmetic operations.
Arithmetic operations take only a very small number of clock cycles so if this
function is called once in a large program, dynamic range will generally be very
small, and it will thus be very hard to differentiate between the branches based
on measurements of execution time. To derive information from this channel,
an attacker requires a very accurate clock and would need to take a significant
number of measurements to filter out noise.

f unc t i on ( i n t publ ic , i n t s e c r e t ) {
i f ( pub l i c + s e c r e t != 0) {

re turn 1 / ( pub l i c + s e c r e t ) ;
} e l s e {

re turn 0 ;
}

}

Example 5: Minor timing channel

To the best of our knowledge, the current literature on quantification of tim-
ing channels has focused solely on maximum information leakage [28, 36, 45].
These works reduce the problem of information leakage quantification to count-
ing the number of observable execution paths influenced by secret variables.
This allows to determine which equivalence classes the concrete value of a se-
cret variable belongs to, thus giving constraints on the secret value.

Like the channel identification techniques described in the previous section,
these techniques do not take into account type 3 violations. They would thus
benefit from data constraint analysis and an accurate cost model. This allows
to perform dynamic range quantification which can accurately determine differ-



16 CHAPTER 2. TIMING CHANNELS

entiability of paths, thus improving soundness and completeness of information
leakage quantification.

Besides improving information leakage quantification, dynamic range quan-
tification can directly be applied to give an indication about ease of channel
exploitability, relevance and effectiveness of channel capacity–reducing counter-
measures, and the certainty which an attacker has about information derived
from timing measurements.

Channel quantification benefits from data-flow and data constraint analysis.
Dynamic range is an important part of channel quantification.

Observation 5: Holistic channel quantification



Chapter 3

Symbolic Execution

Symbolic execution is a static white-box software testing technique, i.e., it tests
internal software structures based on the code of the software. It is used to rea-
son about program states and execution paths without executing the program
using concrete values. Instead, variables are represented as symbolic expres-
sions, i.e., the expressions determine which values a variable can have in each
program state. The symbolic expressions can be used to assert complex program
behavior. When symbolic execution identifies a bug, it can leverage constraint
solvers to generate concrete test cases which trigger the bug.

The technique works by exploring execution paths, interpreting instructions,
and processing them as operations on the symbolic expressions. When condi-
tional branch instructions are encountered, symbolic execution can follow both
sides of the branch, and add the required branch condition as a restriction on
the relevant variables. When the end of an execution path is encountered, the
path can be backtraced to a branch instruction and alternative paths can be
followed, thus in theory covering the entire program state space.

Symbolic execution can be used to assert different types of program behav-
ior. As mentioned in Section 2.5, Păsăreanu et al. [36] applied it to quantify
information leakage of timing channels. They used symbolic execution to cal-
culate the number of different program states that can be observed, and to
determine which observations relate to which possible secret values processed
by the program. As an example of completely different usage of symbolic execu-
tion, Shoshitaishvili et al. [41] applied symbolic execution to identify execution
paths to certain privileged program points, which are not supposed to be ex-
ecuted without authentication. If such paths are found, it may constitute an
authentication bypass and the path is further analyzed.

3.0.1 Challenges

Clearly, it is computationally intensive to symbolically execute large programs,
as they have a large state space that needs to be explored. Another problem
is that execution does not necessarily terminate, as not all programs have a set

17



18 CHAPTER 3. SYMBOLIC EXECUTION

end. It may thus be required to process programs up to a maximum execution
depth. An alternative approach that may be applied to some problems is to test
subsections of programs, such as individual functions like the examples used in
this work.

Another significant challenge in symbolic execution is related to loop expres-
sions. If the number of times a loop body is executed depends on a symbolic
value – that is, it is not executed a set number of times – a state space explosion
occurs. This means that there is an intractable number of execution paths to
follow, and it thus becomes infeasible to test all possible program executions.

Secondly, programs can have external calls, e.g., to system functions and
external libraries. However, symbolic execution frameworks have trouble parsing
these calls because external libraries may be written in another language or the
calls are system dependent. This problem may be alleviated by framework
extensions, but in practice this frequently is infeasible as it does not work for
off-the-shelf products.

Furthermore, constraint solving is an integral part of symbolic execution to
generate concrete input which can trigger the bugs discovered during testing.
However, constraint solvers cannot solve all constraints, or may take a significant
time to do so. This aggravates testing time and may prevent generation of
concrete test cases.

These challenges limit test coverage of some programs, and test results may
thus be incomplete. That is, the symbolic execution is not incomplete per
se, but if it cannot explore the entire state space in practice, the results are
incomplete. Furthermore, soundness of results may be limited to soundness and
completeness of the constraint solver on which the execution framework relies.

A promising technique which can alleviate some of the problems of symbolic
execution is known as concolic execution, first introduced by Sen et al. [40].
It uses a combination of both concrete and symbolic execution. Because con-
crete execution does not suffer from the same problems as symbolic execution,
execution speed is significantly increased and analysis can more easily attain a
greater depth in a program’s execution path. However, due to the concretization
of symbols, certain program states may be missed and completeness of analysis
results may be limited.

The main focus of our work is timing channel analysis, and not to improve
symbolic execution techniques. Having said that, these challenges play an im-
portant role in the practical appliance of any technique based on symbolic ex-
ecution. We consider cryptographic libraries the main target for our analysis,
and these naturally have a set execution end, rarely rely on external calls, and
rarely contain loops of an unpredictable number of cycles. On the other hand,
cryptographic implementations may generate highly complex constraints which
can pose a significant challenge for constraint solvers. We accept this as a lim-
itation of the used technique, but later argue how a significantly challenged
constraint solver can actually disclose timing channels.



3.1. SYMBOLIC QUANTIFICATION 19

Symbolic execution has practical limitations which can prevent it from exploring
entire state spaces.

Observation 6: Limitations of symbolic execution

3.1 Symbolic Quantification

As discussed in Section 2.3, the policies from Definition 1 prevent timing chan-
nels on modern machines. Because violations of these policies are the source of
timing channels, timing channel analysis is centered around these policy viola-
tions. Data flow analysis is used to determine how data is propagated through
a program, and can thus identify dependencies on secret variables. This can
be used to identify type 1 and 2 violations. Data constraint analysis is used to
determine constraints on variables and parameters in different program states.
As such, it can be used to determine when parameters can influence timing
behavior of instructions. Combined with data flow analysis, this can identify
type 3 violations. These concepts can thus be used to identify possible timing
differences in program states.

Symbolic execution can be used both for data flow analysis and data con-
straint analysis, as this information can be derived from the symbolic program
states and expressions on which it operates. This allows symbolic execution to
identify all types of policy violations. Data flow analysis can also be performed
using other techniques; however, the true strength of symbolic execution for
side-channel analysis is that it can automatically characterize and compare pro-
gram states and code paths by complex relations, as we discuss in the following
subsections.

3.1.1 Information Leak Quantification

Symbolic execution can be used to determine constraints on variables in specific
program states. Since constraints express information about the values they
constrain, symbolic execution can be used to determine what information an
attacker can learn through a timing channel. By computing the constraints in
program states which are differentiable by timing differences, we can determine
exactly what the attacker knows about a secret if he learns that a program
reaches these states.

By computing which paths exhibit timing differences, and analyzing the
constraints learned through those differences, paths that exhibit the most in-
formation leakage can be identified. Furthermore, a constraint solver can be
leveraged to generate concrete program input from those constraints, which
leads to the measurable program behavior.

However, constraint solvers are not fit to reason about the feasibility set of a
constrained variable, i.e., all possible values the variable can take. Thus, given
complex constraints on a secret, it is hard to determine the exact amount of
information which is expressed about the secret.



20 CHAPTER 3. SYMBOLIC EXECUTION

3.1.2 Timing Characterization

Differentiation between code paths and instruction behavior requires knowledge
about instruction execution time. However, policy violations by themselves are
insufficient to determine path timing properties. Instead, one needs to know the
instructions in each path, and the timing behavior of each instruction.

Symbolic execution explores code paths step by step, which means it can
determine exactly which instructions are executed in each path and which pa-
rameters they take. Given these paths, and the constraints on parameters in
those paths, one can determine costs for execution paths using a cost model
containing execution time for instructions and parameters.

By comparing costs of different paths, one can characterize timing differences
between these paths and thus quantify the dynamic range of timing channels.
The dynamic range of a timing channel can then be used to predict exploitabil-
ity of the side-channel, or to perform accurate analysis of which paths can be
differentiated, which is required for accurate information leakage analysis.

Even though this technique can give an indication of the time a processor
spends executing a program, multiple programs share processor time on modern
architectures. Therefore, noise, in the form of perceived extra execution time,
is introduced by other processes competing over execution time and other re-
sources. Path timing behavior as characterized by this technique thus cannot
be compared to actual measurements directly. Instead, it gives an indication of
relative execution time of different path sections.

In this sense, this technique is related to template attacks as described by
Chari et al. [16]. Template attacks are based on a characterization of side-
channel signal and noise behavior, which can be compared to actual side-channel
measurements to derive secret information in a minimal number of runs. Origi-
nally applied in power analysis attacks to characterize power-consumption over
time, templates may also be constructed for other side-channels. In this case,
the dynamic range characterizations can be considered templates of observa-
tional points over time. These templates may be used in actual exploitation of
a timing channel.

Symbolic execution can characterize path timing behavior in the form of dy-
namic range, and can furthermore be used to quantify information leakage in
the form of constraints.

Observation 7: Quantification options



Chapter 4

ARM Architecture and
Instruction Set

Up to this point we have explained the concepts of timing channels and symbolic
execution using high-level pseudo-code. However, it is impossible to determine
an accurate timing-model for high-level instructions, as compilers can perform
optimizations which have a large impact on performance. Thus, in this section
we will give a description of ARM Cortex-A7 processor specifics, and the way
its instruction set, ARM Assembly, works.

4.1 ARM Assembly

The instruction set for the Cortex-A7 contains many instructions with different
encodings, options, and possible operand values. Subsets of the instruction
set which the processor can execute are known as ARM, Thumb, ThumbEE,
Jazelle, and NEON. In this work, we focus on a set of core ARM instructions,
and leave all special instruction subsets, including floating points arithmetic,
for future work. The instructions we focus on are those from the Encoding A1
field of the ARM Architecture Reference Manual for ARMV7-A and ARMv7-R.
This includes standard instructions such as arithmetic operations, control-flow
instructions, and memory instructions.

Assembly language does not, like high level programming languages, keep
track of variables. Instead, it operates directly on 15 processor registers, named
r0 to r15. Certain registers have pseudonyms, such as r13 – the stack pointer –
which is also referred to as sp. Furthermore, assembly instructions can operate
on memory, and the state flags, which keep track of the results of special com-
parison operations. These flags are used to determine whether or not conditional
instructions are executed.

Assembly instructions typically take multiple operands, which are either reg-
isters, constant values, or memory locations. Most arithmetic operations require
an output register parameter, and multiple operands of which at least one is a

21



22 CHAPTER 4. ARM ARCHITECTURE AND INSTRUCTION SET

register, the other operand can be either a register or a constant value for many
operations. However, this format is not a rule, as there are multiple instruc-
tions which differ from this format. An example of an arithmetic instruction is
SUB r0, r0, #1, which subtracts 1 from the value stored in r0, and stores the
result to r0. Shorthand for this instruction is SUB r0, #1, because r0 is used
both as input and output register.

Furthermore, there are instructions which accept shifted registers as operands,
i.e., they take a register, a shift type, and a shift distance operand. The reg-
ister is then shifted by the distance of the second operand, and the result of
that operation is used as the result for the actual instruction. For example,
SUB r0, r1, LSL r2 performs a logical shift left on r1. The distance by which
it is shifted is acquired from r2. Then, the result of this is subtracted from r0,
and stored back into r0.

Assembly instructions can perform different kinds of arithmetic on the contents
of registers.

Observation 8: Arithmetic instructions

Memory instructions can move values between registers and memory loca-
tions. Memory locations are written between square brackets, and may be
composed of multiple operands. For example, [r0, -#1] refers to the memory
location acquired by subtracting 1 from r0. The accepted memory location
formats depend on the instruction. An example of a memory instruction is
LDR r0, [sp], which loads the value from the the position in memory referred
to by the stack pointer, and stores the result in r0.

Values are transferred between registers and memory by dedicated instructions.
The memory addresses can be constructed from the content of registers.

Observation 9: Memory instructions

Almost all instructions in the instruction set can be appended by a condition
code. The condition is computed at run time from the processor flags, and
determines whether instructions are actually executed or not. There are sixteen
different condition codes, including AL for always execute, and NE for never
execute. The code AL is generally discarded for brevity, so that an instruction
without condition code is one that always executes. Common condition codes
are EQ for equals, and NE for not equals. EQ actually checks whether the Z-flag
is set to 1, and NE checks whether it is 0.

State flags are set by comparison instructions, which perform simple arith-
metic and update status flags based on the result. The result itself is discarded.
For example, CMP r0, #0 subtracts 0 from r0, and updates the status flags
accordingly. For example, the Z-flag is set to 1 if all bits in the result are zero,
and it is set to 0 otherwise. Furthermore, most arithmetic instructions of the in-
struction set can be appended by an S, which means that the instruction should
update the status flags.



4.2. ARM CORTEX-A7 PIPELINE 23

Branch instructions control execution of the program, by changing the value
of the program counter, and thus affecting the executed instructions. This is also
known as jumping. Branch instructions can jump either to instruction addresses,
or to named labels, which are prepended to instructions by a colon. Like other
instructions, branch instruction can be conditional, so that control flow can
depend on the program state. For example BNE loopstart will conditionally
jump to the label loopstart, given that the Z-flag is set to 0. Besides dedicated
branch instructions, almost all arithmetic instructions can write their results to
the program counter register directly, to form dynamic branches based on the
operation.

Program control-flow is determined by branch-instructions which are controlled
by the state flags. The state-flags can be set by dedicated comparison instruc-
tions as well as by normal arithmetic instructions.

Observation 10: Control-flow instructions

LDR r0, [sp]; d o {
loopstart: SUB r0, #1; – – i ;
... . . .
CMP r0, #0; } w h i l e ( i ! = 0 ) ;
BNE loopstart;

(a) ARM Assembly (b) Pseudo-code

Example 6: Do-while loop

Putting it all together, we get code such as that from example 6(a). For com-
parison, in high-level pseudo-code this code could be written as example 6(b).
The assembly code works as follows; first, a value is loaded from the top of the
stack, and stored in register r0. Then, 1 is subtracted from the value. “...”
is actually replaced by a loop body. Then, r0 is compared to the value zero,
i.e., 0 is subtracted from the value in r0, and if the result is 0, the Z flag is set
to 1. Finally, if r0 did not hold the value zero, control jumps back to the label
loopstart, and repeats the loop.

4.2 ARM Cortex-A7 Pipeline

An instruction pipeline is a technique applied in processors to introduce a degree
of parallelism in instruction execution. A pipeline is constructed of multiple
stages, which each have specialized functions to perform a tiny part of the
execution of an instruction. This allows to feed instructions into the pipeline,
which move through the pipeline stage by stage, so that at any given time each
stage is processing part of a different instruction.

The Cortex-A7 implements an eight to ten stage in-order pipeline, through
which instructions typically move by one stage per clock cycle. If a pipeline is



24 CHAPTER 4. ARM ARCHITECTURE AND INSTRUCTION SET

in-order, it means that instructions cannot overtake each other in the pipeline,
so they will always be executed in the order that they enter the pipeline. In com-
parison, out-of-order pipelines allow faster instructions to finish before slower
instructions that entered the pipeline earlier. The stages and functionality of
the Cortex-A7 pipeline are:

Stages 1 – 3: Preprocessing

Stage 4: Decode

Stage 5: Issue

Stages 6 – 7/10: Execution

Final stage: Result writeback

Figure 4.1 shows a high-level view of the pipeline, where each block typically
takes one cycle to process in theory. The execution stage relies on five distinct
execution units, which each have specialized functions. The integer, multiply,
dual issue, and load/store units each have two stages, and the floating point
/ NEON unit has 4 stages. The integer unit is used for all simple integer
operations. The multiply unit is dedicated to multiplication operations. The
floating-point / NEON unit is a unit for complex instructions which operate on
floating point and vector operands. The dual issue unit is a unit specifically
intended to speed up the pipeline by allowing to execute multiple instructions
simultaneously. It is essentially a stripped down integer unit which can execute
a subset of simple integer operations. The load / store unit handles memory
access.

Lowest Decode Issue

Execution

Integer

Multiply

Floating-Point / NEON

Dual Issue

Load / Store

Writeback

Cortex A-7 pipeline

1

Figure 4.1: ARM Cortex-A7 pipeline based on [21]

In applications, it is common that instructions take results from previous
instructions as operands. However, a previous instruction may still be executing



4.2. ARM CORTEX-A7 PIPELINE 25

at the moment a following instruction requires its result. If this happens, the
latter instruction cannot continue through the pipeline until its operand becomes
available. Thus, the pipeline will halt until the previous instruction finishes.
This phenomenon is known as a pipeline bubble, because there are stages in
the pipeline which are not processing any instructions. Typically, instructions
require operands to be available at the start of execution, although there are
exceptions that we will discuss later.

There are multiple optimizations implemented in processors to speed up ex-
ecution wherever possible. For certain instruction combinations, the processor
can bypass the results from one instruction to the next instruction, circumvent-
ing the wait for the writeback stage to complete. Furthermore, some instructions
can issue, execute, and write their results in a single cycle.

The processor uses a pipeline to handle instructions. The instructions are pro-
cessed in multiple stages and are executed by dedicated units. The speed by
which instructions move between stages can vary depending on the context.

Observation 11: Instruction handling

It is important to note that execution time for memory access instructions
are not only dependent on the processor, but also of the speed of memory and
caches. Since memory and caches are significantly slower than registers, these
instructions typically take much longer to execute than the theoretical two cycles
of the pipeline model.



26 CHAPTER 4. ARM ARCHITECTURE AND INSTRUCTION SET



Part II

Contribution

27





Chapter 5

ARM Cortex-A7 Timing
Model

In order to compute program execution time at a cycle-accurate level, a model is
required that describes how much time a processor takes to execute instructions.
As explained in section 2.4, previous approaches relied on the abstract program
counter (PC) model, which models execution time by the number of executed
instructions. Actual execution time cannot be computed using an abstract
model like this, because there are too many differences between processors, and
too many factors to take into account for each instruction.

There is obviously a trade-of between high detail models versus low detail
models. Highly detailed models can give a more accurate quantification of tim-
ing behavior than models of low detail. However, as they are tailored to specific
processors, their results cannot be applied to other processors. Furthermore,
processing a highly detailed model requires more computational resources than
processing a low detail model, thus it is more intensive to model a program’s
execution time. It should be clear that we do not claim the program counter
model has no value; but if one is required to make hard claims about a program’s
execution time, a more detailed model is of more use.

Because our goal is to model time more accurately, a specific target proces-
sor is required. The processor core we chose to model is the ARM Cortex-A7,
a ubiquitous processor found in many smartphones. This processor was chosen
for the benefits of its simple pipeline and limited instruction set, which makes
it relatively easy to create a detailed execution time model, while still leading
to results relevant for real applications. Specifically, we focus on the Broad-
com BCM2836 implementation of the Cortex-A7, as used on the Raspberry
Pi 2 Model B revision a01041. We validate our results on the Allwinner H3
implementation of the Cortex-A7, as used on the NanoPi NEO version 1.2.

29



30 CHAPTER 5. ARM CORTEX-A7 TIMING MODEL

5.1 Timing Definition

So far, we have talked about an abstract notion of “execution time”. For a
process, it is naturally clear what execution time means: the time it takes
for a program to run from start to execution. However, when looking at a
cycle-accurate level of instruction execution time in a pipeline, things become
more complicated. Now that we have explained the pipeline in section 4.2, we
introduce two important facets of execution time: issue time and latency. Based
on our understanding of the pipeline and the descriptions of these concepts in
[3], we constructed our working definitions for issue time and latency as can be
found in definition 2 and 3.

Issue time is the number of clock cycles an instruction spends in the issue stage,
plus the number of cycles it halts the pipeline in execution, but not waiting for
an operand.

Definition 2: Issue time

Latency is the number of clock cycles required before an instruction’s output
register becomes available, counted from the moment the instruction entered
the issue stage.

Definition 3: Latency

As explained in section 4.2, instructions typically spend one cycle in each
stage. Thus, issue time for most instructions is a single cycle. However, some
instructions require more time, thus preventing following instructions from start-
ing execution. When we talk about instruction execution time, we refer to both
issue time and latency.

5.2 Contextual Influences

The publicly available information about the Cortex-A7 is very limited. A
high-level description of the instruction pipeline has been published by ARM
[21], and the GNU Compiler Collection (GCC) source code has a more detailed
model of the Cortex-A7 pipeline [2]. ARM has however published more detailed
information about instruction execution time for other processors, such as the
Cortex-A8 [3], which is a predecessor of the Cortex-A7. Both Cortex-A7 and
Cortex-A8 implement the ARMv7-A architecture. These sources discuss several
factors which influence execution time depending on the context in which in-
structions are executed. We perform measurements to identify how these factors
influence instruction execution time.



5.2. CONTEXTUAL INFLUENCES 31

5.2.1 Dual-Issuing

As explained in section 4.2, the dual issue unit can speed up program execu-
tion. It can process an instruction simultaneously with another instruction that
is being processed by the integer unit. In practice, there are certain instruc-
tions which can dual issue as older, and those which can dual issue as younger.
This means that when an instruction which can dual issue as older is followed
in the pipeline by an instruction which can dual issue as younger, they issue
simultaneously. The first is processed by the normal integer unit, and the latter
is processed by the dual issue unit. According to the GCC pipeline descrip-
tion of the Cortex-A7 [2], integer arithmetic and logic instructions which have
an immediate operand can dual-issue as younger, and other integer arithmetic
and logic instructions can dual-issue as older; this does not include multiply
instructions, which are handled by the multiply unit.

5.2.2 Early and Late Operands

Certain instructions for the Cortex-A8 have early and late operands [3], i.e., the
register content of some operands needs to be available respectively one cycle
earlier and one cycle later than the normal start of execution. This can influence
the effect that the latency of an instruction has on a second another instruction
following it, thus influencing the combined execution time. We test whether
instructions on the Cortex-A7 demonstrate the same behavior.

5.2.3 Bypasses

Under normal conditions, the output of an instruction is written to a result
register in the last stage of the pipeline. Subsequently, a following instruction
can use this register as an input. However, under special conditions, results
can be bypassed to inputs of a following instruction, i.e., the result becomes
available to the second instruction before it is written to the output register.
Specifically, it is claimed that multiply instructions can forward their result to
the accumulator operand of a multiply and accumulate instruction following it
[2].

5.2.4 Condition-Codes

In the Cortex-A8, conditional instructions which take longer than 2 cycles to
execute are known to have variable execution time if the condition is unsatis-
fied [3]. We test whether instructions on the Cortex-A7 demonstrate similar
behavior.

5.2.5 Memory Instructions

Memory accesses are affected by multiple sources. If a memory location is
stored in the cache, it can be stored and retrieved significantly faster than when
a write to main memory is required. Similarly, the translation lookaside buffer



32 CHAPTER 5. ARM CORTEX-A7 TIMING MODEL

(TLB) stores a mapping from virtual memory addresses to physical memory
addresses. Like with the cache, if a translation of a virtual memory address is
already stored in the TLB, memory access is significantly faster. Because of
these external influences, it would be an entire work on its own to accurately
model the behavior of these operations. Instead, we model a minimum access
time, i.e., level 1 cache access. We regard the effects of external factors as noise.

An accurate model of the variable memory access times would be interesting
to have. However, there are multiple reasons why we do not consider this neces-
sary for our work. Firstly, our model should ultimately be viewed in the context
of timing channel identification. With regard to memory accesses, we consider
it more important to model the existence of timing differences than to model
quantification of the timing differences. This is partially because we consider it
impossible to predict exactly how long any memory access takes, because cache
and TLB are external factors, influenced by other processes running on the same
machine. Lastly, the actual access times depend on the memory chip used, and
we consider this outside the scope of this work.

5.2.6 Branch Instructions

When the processor identifies a conditional branch instruction in the pipeline,
the branch predictor predicts whether the branch is taken or not. It loads in-
structions from the predicted address to continue program execution. However,
if the prediction was wrong, the wrongly loaded instructions are flushed from
the pipeline, and the correct instructions are loaded instead.

5.3 Test Environment

We construct the timing model based on measurements performed on the Rasp-
berry Pi. Specifically, we use the Raspberry Pi 2 Model B revision a01041,
running Raspbian 8.0. Timing behavior for the core instructions have been con-
firmed on the NanoPi NEO version 1.2, running Ubuntu 16.04.2. Measurements
are performed by binaries which measure the number of execution cycles which
pass while they execute specific instructions. The test programs are written in
C, using the processor’s performance events interface to measure the number of
executed cycles through the PERF COUNT HW CPU CYCLES counter.

The measured assembly instructions are written in the program using the
GCC inline assembly function “ asm ”, which allows to directly embed as-
sembly instructions in C code. This setup allows for easy automation of the
measurement process, using scripts to construct and compile code for the dif-
ferent instructions to measure. All test programs are compiled with GCC 4.9.2
using the -O0 flag to turn off compiler optimizations. We first describe which
instructions have been tested, and then discuss how their execution time is
measured.



5.4. INSTRUCTION SCOPE 33

5.4 Instruction Scope

As explained earlier, we limit our focus on the core instructions of the ARM
instruction set. We compiled a set of 351 encoding formats from the Encoding
A1 field of each instruction description in the ARM Architecture Reference
Manual for ARMv7-A and ARMv7-R [1].

These instruction formats contain fields for options and operands. There
are too many possible options for each field to test every combination. Thus,
these fields were initialized according to table 5.1. Operand numbers were cho-
sen semi-arbitrarily, based on the values allowed among all different instructions
taking such an operand field. For each instruction format, each possible combi-
nation of field values was created and measured.

Table 5.1: Instruction operand fields and tested values

Field Meaning Test values

<const> a constant number 0 and 77
<imm> different sizes immediate values 0 and 15
<lsb> a constant in the range 0-31 3
<width> a constant in the range of 1 to 32-lsb 8
<r*> different registers the leftmost register operand r1, and

each following register incremented by
one

<shift> a constant-distance shift operation on LSL #3, LSR #3, ASR #3, ROR #3
an operand and RRX

<rotation> a bit rotations in the operation ROR #8
<type> a register-based shift type on an operand LSL, LSR, ASR and ROR
<x> B or T to determine which half of an operand B

is used for an operation
<y> B or T to determine which half of an operand T

is used for an operation
<+/-> determines whether an operand is added or + and -

subtracted to another operand
<c> the condition code of an instruction the 15 different conditions
<q> determines whether assembler selects 16-bit or .w

32-bit encodings of an instruction. Can only be
.w when assembling to the ARM instruction set.

{} can surround any part of an instruction format each optional part was included and
to make it optional. not included

Instructions using the fields <spec reg>, <endian specifier>, and <option>
were not measured. This has not posed any limitations to our case studies as
we did not come across instructions using these fields.



34 CHAPTER 5. ARM CORTEX-A7 TIMING MODEL

5.5 Methodology

The timing model is constructed by measuring issue time and latency of executed
instructions. The instructions are executed in different contexts, to measure
the effects and existence of the influences described in section 5.2. To filter out
noise, instructions are executed multiple times – typically 512 to 2048 times
– and the measured time is divided by that factor. This process is repeated
multiple times for each instruction and the quickest execution time is regarded
least noisy. This approach leads to results which are over-approximated by no
more than a twentieth of a cycle, which we explain by noise and overhead from
the cycle-measuring function calls. The results are rounded down to compensate
for this over-approximation.

5.5.1 Initial Measurements

A first indication of issue time is acquired by consecutively executing the same
instruction. Execution time does not depend on availability of registers, because
different registers are used for all source and destination operands. This setup
thus measures issue time. However, this setup does not take into account any
instruction optimizations which influence execution time by specific instruction
interactions. Specifically, this measurement leads to false results for instructions
which can dual-issue as younger. Because all instructions which can dual-issue
as younger can also dual-issue as older, all such instructions dual-issue and are
thus measured at half the actual execution time. However, since all instruc-
tions which can dual-issue have an issue time of 1 cycle, all instructions which
can dual-issue as younger are known after the initial measurement because the
measurements say they take up 0.5 cycles.

5.5.2 Dual-Issue as Older Instructions

We made the assumption that dual-issuing does not discriminate between spe-
cific younger and older combinations, i.e., each instruction which can dual as
younger, can dual-issue with each instruction which can dual-issue as older. We
have found no evidence to disprove this assumption. Based on this assumption,
any instruction which can dual-issue as younger can be used to identify all in-
structions which can dual-issue as older. To do so, the measured instructions
are interleaved with an instruction which can dual-issue as younger, again op-
erating on distinct input and output operands, and measured again. One cycle
is removed from the measurement result, to compensate for the interleaving in-
structions. The instructions which can dual-issue as older can then be identified
because they are measured as 0 cycles. For the other instructions the actual
issue time is measured.



5.5. METHODOLOGY 35

5.5.3 Latency

For the following measurement setups, we refer to known-timing instructions by
which we interleave instructions we measure. The chosen instructions do not
matter specifically, as long as they are not affected by optimizations in specific
combinations of instructions. The problem with our measurement setup is that
we must rely on machine instructions, to measure other machine instructions.
Thus, if we have an incomplete understanding of the instructions supporting
the setup, this can negatively influence our understanding of other instructions.
Based on trial-and-error, we assume that the issue time of the multiplication
instruction MUL is not influenced by any specific instructions executed before
it. If such behavior is unknown, consistency of results needs to be validated in
hindsight. We have not found any evidence that disproves this assumption.

Because instruction issue time is known from previous instructions, latency
can be determined by interleaving the tested instructions with a known-timing
instruction which takes an output operand of the measured instruction as an
input operand. A naive approach is to feed the output from the tested instruc-
tions into the input from the following tested instructions. However, this does
not take into account timing influences of the input operands, such as early and
late operands. However, by interleaving the instructions with a known-timing
instruction, the measurements are performed under the same conditions for all
instructions.

Again, the execution time of the interleaved instructions needs to be sub-
tracted to compute the latency. Because the interleaved instructions depend
on the tested instruction’s output, the latency of the instruction is measured.
Not all instructions have output operands, so latency does not apply to these
instructions. In our measurement results, this demonstrated as measured timed
being equal to the instruction’s issue time.

5.5.4 Early and Late Operands

To measure which instructions take early and late operands, the setup for mea-
suring latency is reversed. In this setup, the input of the measured instructions
depend on the output of interleaved known-timing instructions. Taking into ac-
count the interleaved instructions, computing the difference between the mea-
sured time and the time measured under normal conditions reveals how much
earlier or later operands are required.

5.5.5 Bypasses

The last operand of the MLA instruction can receive bypassed values [2]. To de-
termine which instructions can bypass their results to this operand, the tested
instructions were interleaved with MLA instructions, taking the tested instruc-
tion’s output register as the last operand. The measured result was compared to
the timing expected from other measurements. To determine which instructions
have registers which can receive such bypassed results, the setup was reversed,



36 CHAPTER 5. ARM CORTEX-A7 TIMING MODEL

i.e., an instruction of which it is known that it can bypass its result, was inter-
leaved by instructions which took the bypassing instruction’s output as input.

5.5.6 Condition Codes

To measure the effect of condition codes, two measurements were performed
for each condition code. For the first measurement, the flags are set so the
condition is unsatisfied, and the measured instruction thus does not execute.
For the second measurement, the flags are set so that the condition is satisfied,
and the instruction does execute. The execution time of these instructions was
first measured separately so that this overhead could be subtracted from the
measurements.

5.5.7 Memory Instructions

For the measurements of other instructions, operand fields were chosen without
considering the instruction result. However, our setup demands that memory
instructions receive more attention. Because our measurement setup is located
in user space of a general purpose operation system, we cannot access arbitrary
memory locations. However, even if our code was run on the hardware directly,
writing to arbitrary memory locations could overwrite the measurement code,
and arbitrary memory accesses are thus inadvisable.

To compensate for this, memory addresses were not arbitrarily constructed
from the field values of table 5.1. Instead, all memory accessing instructions
had their addresses computed relative to the stack pointer, i.e., we claimed a
block of multiple bytes on the stack and used their location for our accesses.
Furthermore, the multiple store and multiple load instructions were tested with
different size register lists.

5.5.8 Branch Instructions

A special setup was required to test branch instructions for two reasons. Firstly,
the branch-predictor influences execution time of some branch instructions. Sec-
ondly, branch instructions directly influence the executed program paths, thus
they can also influence the measurement logic. Therefore, extra logic is required
to jump to valid locations and still allow for meaningful measurements of the
instructions. Branch instructions were measured in a loop in which they could
jump to an address later in the same loop.

The jump instruction which caused the program counter to jump from the
loop-end to the start of the loop was implemented using a conditional move,
because we found that the branch-predictor is not influenced by this kind of
jumps. The conditional branch instructions were first tested while the branch
predictor could properly predict whether or not the instruction would branch,
i.e., no logic was implemented to disturb the branch-predictor. Since the branch-
predictor correctly predicts almost all the branches, the minimum branch time
was measured with this setup.



5.6. RESULTS 37

To measure the worst-case branching time, the effect of the branch predictor
needs to be mitigated. We implemented a linear-feedback shift register (LFSR)
in the measurement loop to serve as a pseudo-random function on which condi-
tional branches depend. The decision to use an LFSR was made because of ease
of implementation in a limited number of assembly instructions with constant-
time performance. The LFSR we used is x9 +x5 + 1, which has a period of 511.
The LFSR maximally confuses the branch predictor, so that it wrongly predicts
50% of the branches. It thus creates an environment in which the recovery time
from branch prediction failures can be measured.

5.6 Results

Our measurements show that all factors discussed in section 5.2 influence in-
struction execution time in the Cortex-A7. We compiled the most common
instructions we characterized and their properties in a table which can be found
in the Appendix.We discuss several conclusions that we draw from our measure-
ments.

Issue time Most instructions exhibit an issue time of 1 cycle in the optimal
case. Only the branch with link instruction, and instructions which load or
store multiple memory addresses take longer. All memory access instructions
can take longer based on cache misses.

Latency Integer arithmetic and logic instructions have 1 cycle latency. La-
tency of multiplication instructions is 2 or 3 cycles.

Conditional execution Issue time is generally not influenced by conditional
execution, except for memory instructions. Latency of multiply instructions is
reduced by 1 cycle in case of unsatisfied conditions.

Dual-issuing as younger Integer arithmetic and logic operations which op-
erate on a constant value and at most one register can dual-issue as younger.
Multiply operations, as well as shift and rotate operations, reverse subtract
operations, and the negative move operation, are not included in this group.

Dual-issuing as older Integer arithmetic and logic operations can dual-issue
as older. This includes shift and rotate operations, reverse subtract operations,
and the negative move operation, but excludes multiply operations.

Early operands All shift instructions and instructions which operate on
shifted operands have early operands. Furthermore, all memory-access oper-
ations require the registers which compose the memory address to be available
early. All early operands are required 1 cycle early.



38 CHAPTER 5. ARM CORTEX-A7 TIMING MODEL

Late operands Memory store instructions have late operands, which are al-
ways required 2 cycles late. Accumulator instructions also have late operands,
see the next paragraph about this.

Bypasses We have tested the bypass behavior fo the MLA operation and other
instructions with accumulator behavior. However, our measurements show that
all instructions have reduced latency when their output is used as an accumu-
lator operand. For memory instructions latency is reduced by 1 cycle, for all
other instructions it is reduced by up to 2 cycles, depending on issue time. We
think the claim that there is an actual bypass taking place is incorrect, and in-
stead categorize it as late operand behavior, because there is no unique behavior
where only the latency of a limited set of instructions is reduced.

However, the measurements have also shown different timing behavior for
memory instructions output for many other instructions. Almost all logic and
arithmetic instructions have what we call semi-bypasses. All operands which
except semi-bypassed input, reduce latency of the instruction that produces that
input by 1 cycle, if the input is produced by a logic or arithmetic operation.

Memory Execution time of memory instructions depends on cache hits and
misses. Furthermore, if a memory access is not properly aligned with memory
alignment, an extra memory access is required to process the instruction; e.g.,
a word aligned memory requires two accesses to process a memory operation on
a value which is stored across two words.

Branch instructions There are dedicated branch instructions and dynamic
branch instructions, which are arbitrary operations which write their results to
the program counter register. Dedicated branch instructions are affected by the
branch predictor, and take up to 7 or 8 cycles longer to complete if the branch
predictor wrongly predicted the execution path. Dynamic branch issue time is
increased by 9 cycles compared to execution of the same instruction on a generic
register. Issue time of conditional dynamic branch instructions with unsatisfied
conditions is increased by just 1 cycle.

5.7 Limitations & Discussion

This chapter discussed details of the ARM Cortex-A7, it also described how we
measure execution time for a subset of its instructions and our findings from
those experiments.

As noted before, memory instructions rely not only on the processor, but also
on the speed of memory and caches. Thus, for these instructions, the time from
our model only applies to the Raspberry Pi 2 model B. Whether similar times
can be expected for other systems cannot be said without measuring execution
time for the specific systems.



5.7. LIMITATIONS & DISCUSSION 39

Furthermore, any timing model can only give a limited indication of actual
execution time of programs executing in an environment shared with other pro-
grams. Operating systems and other programs executing on the same system
demand processor time and affect the system state such as cache population and
the state of the branch-predictor. Therefore, a certain amount of unpredictable
noise is always to be expected in an undedicated environment.

One major obstacle to define a generic methodology to perform measure-
ments of instruction execution time for any processor, is the wide variety of
instruction time behavior. The specific types of behavior such as early and
late registers, bypasses, and other optimizations, cannot be measured unless
they are first identified. Since time behavior information for most processors is
only sparsely publicized by producers, it is easy to miss certain behavior. Fur-
thermore, the number of possible instruction and operand combinations is too
large to cover exhaustively. Because measuring different facets of instructions
ultimately relies on other instructions, unknown timing behavior can always
influence measurement results which causes a certain degree of uncertainty for
all these measurements, and thus for the entire model.

Our model has been constructed with the hope that we have identified all
facets of timing behavior for the Cortex-A7. We have guided our tests by in-
formation which was publicly available about the processor’s timing behavior.
However, due to the reasons mentioned above, there may still be timing prop-
erties missing from our model. Therefore, we cannot claim that our model is
complete, but it is significantly more detailed than the program counter model.
We see that most instructions take 1 cycle issue time, and for most other in-
structions execution time is in the same order of magnitude. Therefore, we must
also conclude that the program counter model is not very far off in execution
time prediction.

We have identified differences between our model, and the model used by
GCC [2]. Among others, we characterize instruction cycles in a more detailed
way. We characterize true and false conditional behavior. We characterized
more detailed accumulator behavior, and we identified early and late registers.
The work in this chapter has contributed to our understanding of the Cortex-
A7 and has identified conditional instructions with non-constant execution time.
The model resulting from this work gives us the ability to identify timing chan-
nels with greater accuracy.

The Cortex A7 has a relatively simple in-order pipeline and simple execution
units, processing a limited instruction set. This has presumably made it much
simpler to model execution time for this processor than it is for other processors.
We have not attempted to create timing models for other processors, thus we
cannot determine how hard this would be exactly. However, we expect that it
may be a major hurdle to create a detailed timing model for some processors,
e.g. due to multiple pipelines or out-of-order execution.



40 CHAPTER 5. ARM CORTEX-A7 TIMING MODEL

5.8 Timing Channel Causes

To place the properties of the Cortex-A7 into perspective of timing channels,
we shortly identify how the different violation types may occur.

Type 1 violations, based on conditional branches which depend on secret
information, occur when secret information influences execution time through a
branch instruction. This timing difference can depend on two different factors:
After a conditional branch, the processor executes different instructions depend-
ing on which address the processor branched to. Thus, a timing difference can
be based on the timing difference of instructions in these different paths. Sec-
ondly, it can be based on a timing difference between branch prediction success
and failure, as a failed branch prediction requires the pipeline to be flushed and
new instructions to be loaded. As we explained, the branch predictor does not
operate on all forms of branches in the Cortex-A7, thus not all branches can
cause timing channels based on branch prediction.

Type 2 violations occur when secret information determines the address of a
memory access. All memory accesses in the Cortex-A7 are performed by store
instructions and load instructions, which are clear to distinguish from other
instructions. Whenever their address operands rely on secret information, a
cache-based timing channel can exist and thus a type 2 violation is present.

Type 3 violations occur when instruction operands which depend on secret
information determine an instruction’s execution time. We identified that both
issue time and latency of several conditional instructions depend on whether or
not the condition is satisfied. We regard status flags as operands to conditional
instructions. Thus, if secret information influences the processors status flags
and a conditional instruction with variable timing relies on those status flags,
type 3 violations occur.



Chapter 6

Timing Channel Analysis

In this chapter we describe a novel approach to identify timing channels in bi-
nary code. Our approach leverages symbolic execution, self-composition proofs,
and a model of instruction execution time at any level of detail, to model the
relationship between program parameters and program execution time. The
technique can be used for identification of timing channels, quantification of
timing differences, and to symbolically express how this behavior is caused by
program or function parameters.

It differs from previous timing channel identification approaches in several
respects. It is the first such approach which can operate completely independent
of the abstract PC-security model. We achieve this by working on a detailed
symbolic model of the processor’s instruction execution time. Therefore, it can
analyze programs with much higher accuracy than any approach before. Due to
this accuracy, it is the first technique which can identify type 3 timing channels,
and give a more accurate indication of channel exploitability.

The technique leverages symbolic execution and self-composition proof obli-
gations to prove non-interference in execution time. Unlike previous approaches
that rely on self-composition techniques, we perform self-composition not to
prove non-interference of complete program states, but instead focus on ∆time:
the time that individual instructions require to execute. By proving non-
interference in ∆time, we can identify timing channels during symbolic execu-
tion, and do not require the analysis to run to completion before giving results.
Therefore, our technique can pinpoint exactly which instructions lead to timing
channels, and it can easily identify timing channels in non-completing code.

6.1 Symbolic Execution

Binary symbolic execution engines traverse execution paths by symbolic exe-
cution of assembly instructions. The machine state, i.e., register and memory
content, is recorded in the form of symbolic expressions. The state also con-
tains a path constraint, which expresses constraints on the symbols used in the

41



42 CHAPTER 6. TIMING CHANNEL ANALYSIS

symbolic expressions.
Our technique expands the symbolic machine state with timing information.

Our machine state contains a symbolic program execution time expression, sym-
bolic time expressions for registers and memory availability, and a symbolic ex-
pression about the possibility to dual-issue instructions. An extension of the
symbolic execution engine can leverage the timing model to update the timing
information in the machine state for each symbolically executed instruction.

Memory access time and branching time are influenced by external factors,
i.e., it depends on whether accessed memory is located in the cache and whether
the branch-predictor properly predicts the next instruction address. To model
timing behavior of those instructions, we introduce a new symbol whenever we
encounter one of these instructions. This symbol internally determines whether
maximum or minimum execution time is used. This symbol is kept uncon-
strained to model the external influence, which means the symbolic solver can
give multiple values to the time expressions of these instructions.

6.2 Self-Composition Proofs

To prove non-interference and violations thereof, we rely on self-composition.
Self-composition is a technique used to analyze properties over multiple program
runs of the same program, by transforming the problem to a problem over a
single, larger domain, which is a composition of one program run, with a copy
of itself, and a connector which describes their relationship. In our scenario, we
chose a connector which implies non-interference if it can be proven. Using self-
composition to prove the property of non-interference, the problem is reduced
to proving a partial correctness property which can generally be solved by off-
the-shelf solvers.

6.2.1 Self-Composition

Consider R an abstract set of all the named properties of a single program
run. In the combination of symbolic execution and self-composition, this is
classically the set of symbolic expressions that express the values of register and
memory content, as well as the path constraints associated with the program
run. Consider also a well-defined proof obligation function F , that takes a set
of properties, and determines whether they are logically coherent, i.e., they do
not contradict each other. Thus, F (R) is true if R is a feasible program run.
Note that logical coherence of a set of properties requires that each subset of
those properties are also logically coherent, mathematically expressed as:

∀X ⊂ Y : F (Y ) =⇒ F (X) (6.1)

One can create R′, a copy of R, where all properties φ are renamed φ′, which
can be seen as the properties of a parallel program run. Because the relations
between properties in R′ are simply renamed, but still have the same structure,
parallel here means the copied program run took the same execution path as



6.2. SELF-COMPOSITION PROOFS 43

the original run, i.e., the same branches were taken. Because logical coherence
cares only about the relations between properties, and not the names of the
properties per se, the following holds:

F (R) =⇒ F (R′)

A union R ∪ R′ contains all properties of both runs, so that F (R ∪ R′)
determines whether both runs are feasible. Since R and R′ are disjunct due to
renaming, we have:

F (R) =⇒ F (R ∪R′)

To create the self-composition C, a connector c is required which relates
the properties of R to those of R′, e.g., c = (input x 6= input x′). Then, the
self-composition is created as:

C = R ∪R′ ∪ {c}

Because the connector states a relation betweenR andR′, C does not contain
two disjunct sets of properties, like R∪R′ does, but instead forms a relationship
over the two sets of properties. The self-composition proof obligation F (C)
determines whether the two program runs can hold the relation described by c
without contradicting itself. Classical non-interference can be proved by self-
composition if the connector states that if all public inputs between runs are
equal, the public outputs between runs cannot be different, i.e., the secret input
cannot influence public output.

In our scenario, we are specifically concerned with the output of execution
time. In other words, the secret cannot influence execution time, or if all public
inputs between runs are equal, the execution time between runs cannot be differ-
ent. For brevity, we explain the proof obligation with a single public input p, a
single secret input s, and a single public output time t. However, the logic can
easily be extended to any number of variables, by replacing p with P , an ordered
list of all public inputs, and likewise for s. R is a program state at the end of
a program run, and it contains constraints on p, s, and a relation between p, s,
and t. R′ is the renamed duplicate of the same state with p, s, and t renamed to
p′, s′, and t′. To prove non-interference, we construct the following connector:

p = p′ =⇒ t = t′ (6.2)

6.2.2 Instruction-Level Timing Channel Identification

Baliu et al. [10] also applied self-composition to prove non-interference of sym-
bolically executed code. However, as described in section 2.4, they define a
notion of observations, and apply self-composition proofs on program traces be-
tween these points. In contrast, we leave the notion of observations abstract
and consider timed program traces in general. Therefore, we can apply self-
composition proof obligations on the time that each instruction adds to the



44 CHAPTER 6. TIMING CHANNEL ANALYSIS

total execution time. We call this ∆time, according to definition 4. By proving
non-interference in ∆time, we can identify timing channels during symbolic exe-
cution, and do not require analysis to first run to completion or to an observation
point.

∆time is the time that individual instructions add to the total execution time
of a program.

Definition 4: ∆time

To prove non-interference for ∆time, we create a connector by substitution
of ∆time for t in equation 6.2. Thus, we solve the following proof obligation
after each instruction:

F (R ∪R′ ∪ {p = p′ =⇒ ∆time = ∆time′}) (6.3)

As mentioned in section 6.1, execution time for memory-access instructions
and conditional branches depend on external system factors, i.e., cache and
branch-prediction behavior, timing of these instructions is modeled by intro-
ducing a new symbol in the corresponding ∆time expression. However, non-
interference for these instructions does not depend on the ∆time expression
directly. For memory-accesses, the information that leaks through the timing
channel is that of the memory address. Thus, for memory instructions we per-
form non-interference on the memory address expression. For conditional branch
instructions, the timing channel leaks whether the condition is satisfied. Thus,
for branch instructions, non-interference proofs are performed for the condition
expression on the condition flags. This means that next to a proof obligation
with a connector over ∆time, a proof obligation with a connector over these ex-
pressions is also used. From here on, whenever we talk about non-interference
proofs of ∆time, we also mean non-interference proofs of these expressions where
applicable.

The symbol introduced to model the external influence of the cache and
branch-predictor is said to be a public symbol for self-composition. This models
an attacker who can read any such timing differences. If it would not be regarded
as a public symbol, self-composition proofs with a connector over ∆time would
always identify a possible timing difference, even if all publics are kept equal,
because the external influence symbol is unconstrained.

Furthermore, because we are not interested in non-interference over sym-
bolic expressions contained in registers and memory addresses, we do not need
to model these. Instead, we limit R, the program state, purely to the path
constraints recorded in the state. We discard all other state properties.

R, the program state used in self-composition, is limited purely to the path
constraints recorded in the state.

Definition 5: Program state



6.3. ANALYSIS 45

6.2.3 Pure Control-Flow Timing Channel Identification

Non-interference proof obligations over ∆time fail to capture a very specific type
of control-flow timing channels, caused by conditional branches which are unaf-
fected by the branch-predictor. Recall that control-flow timing channels display
timing differences because of differences in executed path length. Whenever the
branch instruction that determines control-flow of these paths is affected by the
branch-predictor, as is often the case, a timing-channel caused by the branch-
predictor can be identified if non-interference does not hold. However, if the
branch instruction is unaffected by the branch-predictor, the timing-channel is
not automatically identified as such.

To account for this, and be able to identify control-flow timing channels as
traditionally analyzed by methods based on PC-security, self-composition needs
to be applied between the final states of the different program paths. This is
a post-processing step which can be applied to catch these timing channels in
hind-sight.

Alternatively, one can model the timing behavior of all branch-instructions
as insecure, even if they are not affected by branch prediction and if the program
paths take equal amounts of time. Onur Acıiçmez [5] has proven that the timing
differences of the instruction-cache can form a timing channel, and this class of
attacks would be covered by this model. The advantage of this approach is that,
like the identification of other timing channels, identification takes place before
symbolic execution of an entire program path is finished.

6.3 Analysis

The approach described above takes a binary, a entry point to start execution,
and description of public and secret parameters. Possibly, the initial state can
be initialized as wished by the analyst, e.g., to put certain values in memory or
to call the program with certain concrete parameters.

During symbolic execution of the binary code, the approach can report on
timing-channels based on non-interference proofs over the self-composition of the
program states. Furthermore, data can be extracted from the symbolic states at
these points to help with further analysis of the identified timing channels. Two
things we have found very helpful, are the address of the violating instruction,
so the violating code section can be inspected, and the symbolic expression of
∆time. This expression can often show a simple relation between the secret
and the time, or it may be more complex, in which case further analysis with a
constraint solver can lead to a better understanding of the relationship.

After symbolic execution of a program path, the total execution time of the
path can be computed. The dynamic range can be computed at this point to
determine the size of timing differences.



46 CHAPTER 6. TIMING CHANNEL ANALYSIS

6.4 Example

We illustrate our technique using example 7. This example implements an S-
box lookup function as is commonly used in many cryptographic functions. An
S-box is a table of different values, which maps inputs to outputs in a non-
linear way. We leave the content of the S-box abstract, by using it as an input
to the function. The function takes a data byte and a key byte, and uses
a bitwise exclusive or of the two as an index into the S-box. Note that our
technique only operates on the assembly code, the pseudo-code is only supplied
for understanding of the function.

<sbox lookup>: b y t e s b o x l o o k u p (b y t e [ ] s b o x ,
EOR r3, r1, r2; b y t e d a t a , b y t e k e y ) {
LDRB r0, [r0, +r3]; i n d e x = d a t a ˆ k e y ;
B r14; r e t u r n s b o x [ i n d e x ] ;

}

(a) ARM Assembly (b) Pseudo-code

Example 7: S-box lookup function

First, we briefly discuss the assembly code of the example. The top line,
“<sbox lookup>:”, is a label which refers to the entry address of the function.
The function can be called by a branch to this label. Function parameters are
passed in registers r0, r1 and r2. The line “EOR r3, r1, r2;” corresponds
to the pseudo-code line “i n d e x = d a t a ˆ k e y ;”, in other words, it performs
the exclusive or of the data and key bytes, and stores the result in register r3.
The line “LDRB r0, [r0, +r3];” corresponds to the pseudo-code line “r e t u r n
s b o x [ i n d e x ] ;”. It loads a single byte from memory, from the address r0 +
r3. r0 corresponds to the function parameter “b y t e [ ] s b o x”: a pointer to
the S-box array. r3 is the just computed S-box entry, and by adding it to r0

the memory address of the entry is acquired. After loading the S-box entry it is
stored in register r0, thus overwriting the pointer to the S-box array. Finally,
line “B r14;” ends the function by branching back to the address contained in
register r14, also known as the link register, in which the program stored the
address from which the function was called.

Our technique is applied on this example as follows. First, one needs to
determine which parameters are secret. Because both the plaintext data and
keymaterial of a cryptographic function should remain secret, the technique
should be instructed that the second and third parameters are secret. The first
parameter, the S-box pointer, is not confidential, so it is public. To increase
human interpretability of the results, we call the symbols of the function pa-
rameters ∗sbox, data and key. The start of the function is set as the entry
point of the binary code, this sets the program counter register pc to the start-
ing address. The total execution time of the initial state is initialized to zero.
Except for the symbolic content of registers r1 to r3, and pc, and the total
execution time, the initial state is uninitialized. The overhead for cache misses



6.4. EXAMPLE 47

is configured at 100 cycles.

After initialization of the technique, symbolic execution is started. The
execution engine first processes the first line of code, “EOR r3, r1, r2;”. The
timing module references the timing model for the function EOR <rd>, <rn>,

<rm>, and finds that it has 1 cycle of issue time and 1 cycle of latency. The
initial state is blank in regards to timing availability of registers, so instruction
operands r1 and r2 are assumed to be immediately available at this point, so
no pipeline bubble is modeled. This means ∆time equals the issue time.

∆time = 1

A self-composition proof obligation is formed to verify non-interference. The
path constraints have not been influenced, so R is empty. Thus, the proof
obligation according to equation 6.3 is:

F (R ∪R′ ∪ {p = p′ =⇒ ∆time = ∆time′}) = F ({p = p′ =⇒ 1 = 1})

Since 1 = 1 is a tautology, i.e., it is always true, the implication p = p′ =⇒
1 = 1 is always true, and F is thus satisfied. Thus, non-interference holds and
there is no timing channel in this instruction. The time of availability of the
result register r3 is updated to current total execution time plus the latency of
the instruction; this sets the time of availability to 1. The total execution time
of the state is incremented by 1. The instruction is then functionally executed
so that the symbolic content of register r3 in the program state is data ⊕ key.

The execution engine then processes the following code line “LDRB r0, [r0,

+r3];”. The timing module references the timing model for the function LDRB

<rt>, [<rn> ,+/-<rm>], and finds that it has a minimum of 1 cycle issue
time. Because it is a memory instruction however, a new symbol, cache miss 0

is introduced to express the external timing influence of the cache. ∆time is
now a symbolic expression:

∆time = (if (cache miss 0 = 1) then 100 else 1)

The timing module also identifies r3 and r0 as early operands, i.e., they are
required one cycle early. However, the current total execution time is 1 cycle,
and r3 is only available from this same cycle. Thus, a pipeline bubble of one
cycle is formed because r3 is not available one cycle early. ∆time is updated
accordingly.

∆time = 1 + (if (cache miss 0 = 1) then 100 else 1)

Because LDRB is a memory instruction, two proof obligations are formed,
one with a connector over ∆time, and one with a connector over the accessed
memory address. The path constraintR is still empty. The first proof obligation,
over ∆time, according to equation 6.3 is:



48 CHAPTER 6. TIMING CHANNEL ANALYSIS

F ({∗sbox = ∗sbox′ ∧ cache miss 0 = cache miss 0′}
=⇒

1 + (if (cache miss 0 = 1) then 100 else 1))

=

1 + (if (cache miss 0′ = 1) then 100 else 1)))

Since cache miss 0 and cache miss 0’ are the only symbols in the ∆time
expression, and these are considered public values which are constrained to the
same value, ∆time is always equal to ∆time′. Thus, F always holds true.

The second proof obligation is formed over the accessed memory address as
follows:

F (R ∪R′ ∪ {p = p′ =⇒ address = address′})

Because R is still empty, we get the following proof obligation if we substitute
the symbolic address for address and address’:

F ({∗sbox = ∗sbox′ =⇒ data⊕ key = data′ ⊕ key′})

Clearly, the implication in this proof obligation is false, as the left hand of
the implication is unrelated to the right hand. Because F does not hold, a
cache timing channel is identified that leaks the accessed memory address. The
execution engine can warn about this address, return the program state, and
identify the leaked relation data ⊕ key as a symbolic expression.

Subsequently, availability of the result register r0, as well as the total ex-
ecution time, are updated with ∆time. Both now hold the following symbolic
expression:

2 + (if (cache miss 0 == 1) then 100 else 1))

The instruction is then functionally executed so that the symbolic content
of register r0 in the program state is updated by the memory content. Because
the S-box was left uninitialized, this can be a symbolic read, modeled by a new
symbol unconstrained read 0.

Finally, the last instruction B r14; is executed. The timing module refer-
ences the timing model and sets ∆time to 1, for which no timing channel is
identified by the self-composition proof. Total execution time is updated by 1
cycle, and symbolic execution finishes.

Only one code path has been identified, so no post processing self-composition
proofs are required to identify pure control-flow timing channels, because they
are not possible if only one code path exists. Total execution time is identi-
fied as 4 or 103, depending on the cache behavior of the one identified memory
instruction. This corresponds to a dynamic range of 14 dB, according to the
approach discussed in section 2.2.



6.5. DISCUSSION 49

6.5 Discussion

Our approach does not rely on specific features of the timing model, as long
as a corresponding implementation to process it symbolically is available. This
means the technique can be applied to timing models of any level of detail.
Models can even be simple extensions of the PC-model, in which only certain
specifically interesting instructions are modeled differently than the PC-model,
and all other instructions simply have 1 cycle issue time and no latency. This
allows to quickly create test environments to identify specific problems only.

The technique does depend on manual processing in two respects. Firstly,
the state needs to be initialized and the technique instructed on public and
secret symbols. Secondly, manual interpretation of the results and leaked infor-
mation is required to determine whether timing channels are actually present.
These required steps prevent the technique from analyzing programs completely
independently.



50 CHAPTER 6. TIMING CHANNEL ANALYSIS



Chapter 7

SMArTCAT

In this section we present SMArTCAT: Symbolically Modeled Architecture Tim-
ing Channel Analysis Tool, which implements our technique as described in
chapter 6. SMArTCAT is built on top of the angr [42] symbolic execution frame-
work, and leverages the timing model for the ARM Cortex-A7 as described in
chapter 5. The tool is meant as an aid for security analysis to determine whether,
and how, secret parameters influence program execution time.

7.1 angr

SMArTCAT is implemented as a Python package working on top of angr. To
properly describe how SMArTCAT works, we briefly explain how angr works.
angr is a framework for symbolic execution, that is, it can load binaries, exe-
cute them using symbolic values instead of concrete values, and return program
results as symbolic expressions.

angr does not operate on binaries directly, instead, it lifts them to an inter-
mediate language called VEX. The lifter uses the Capstone disassembler frame-
work, which can disassemble binaries for multiple machines. Because the lifter
can also handle these different languages, angr can operate on binaries of mul-
tiple machine types too. However, SMArTCAT is limited to the Cortex-A7
because we only created a detailed timing-model for this architecture.

The VEX instructions are interpreted by angr, operating on symbolic ex-
pressions. The program state, i.e., register and memory contents – in the form
of symbolic expressions – are maintained as parts of a symbolic state. States
contain a symbolic solver instance, which keeps track of path constraints, in
the form of symbolic expressions, that apply to the symbolic expressions in
this state, e.g., “input x > 5”. Whenever execution paths branch, the state
is duplicated and constraints are added to each of those states corresponding
to the branch conditions. Concrete values for the symbolic expressions can be
generated by the Z3 solver back-end, and the solver can also be used to deter-
mine whether constraints are satisfiable; which is used for example to determine

51



52 CHAPTER 7. SMARTCAT

SMArTCAT

Symbolic
Pipeline Model

Instruction
Time Model

Self-Composition Solver

Time Tracking Plugin

Violation Identifier

angr

Capstone Z3

Claripy
Instruction
Interpreter

Symbolic Program State

Symbolic Solver plugin

SMArTCAT

1

Figure 7.1: SMArTCAT components and interplay

whether both sides of a branch condition are feasible. In angr, Z3 is accessible
through Claripy, which provides a python front-end and has multiple optimiza-
tions implemented.

angr is not a tool, i.e., it does not perform any analysis itself. Instead, it
is a framework which provides symbolic execution. However, as a framework,
it can be used to build tools on top of it. This allows us to leverage the sym-
bolic execution and detailed state information during any point of execution to
implement our own analysis.

7.2 SMArTCAT Design

The main components of SMArTCAT and angr are displayed in figure 7.1. The
arrows demonstrate which components initialize communication with other com-
ponents. The Symbolic Solver Plugin and Instruction Interpreter of angr have
been monkey-patched to call SMArTCAT functions, i.e., the original functions
have been overwritten with patched code, so that SMArTCAT functions gets
called during symbolic execution. The Time Tracker Plugin uses the Symbolic
Program State plugin functionality to attach itself to angr.

The Instruction Time Model takes Capstone instruction instances and re-
turns their properties relevant for timing. This includes issue time and latency,



7.2. SMARTCAT DESIGN 53

and all properties described in chapter 5, such as register bypasses, early and
late registers, and dual issue capabilities. Based on the instruction properties
and the state of the program, the Symbolic Pipeline Module symbolically com-
putes ∆time and determines how it is influenced. That is, it computes whether
instructions dual issue, bypasses take place, pipeline bubbles form, etc. For
each instruction, it queries the Self-Composition Solver whether non-interference
holds for ∆time, and then updates the time state and availability of registers
and memory locations in the time tracker plug-in. Recall that we consider an
attacker who is able to read timed program traces. If non-interference holds
for ∆time of each instruction, and no control-flow based timing channels are
present, we consider the program secure under our attacker-model and timing
model.

The Time Tracker symbolically keeps track of execution time, expressing
execution time as a function of program inputs. The Time Tracker can use one
of several concretization strategies to optionally concretize execution time up
to the point of symbolic execution. Although concretization poses some limits
on the completeness of the analysis, this can significantly speed up analysis of
programs with complex timing behavior. If concretization is applied, results
are an estimate of execution time only. For example, cache hits and misses and
branch miss-prediction could be left unmodeled. However, as concretization
is applied after timing channel identification, this should not negatively affect
timing channel identification, except for pure-control flow based timing channels
in the scenario that the instruction cache is not taken into account, as described
in section 6.2.3. The Time Tracker is written as a plug-in for the angr program
state, so that when the program path branches, it gets automatically duplicated
along with the other state information.

Symbolic execution and exploration of program paths depends fully on the
angr framework. SMArTCAT users can instruct angr to use different explo-
ration techniques or other functionality offered by angr. However, we make no
guarantees about the analysis results as we have not looked into the effects of
different combinations of settings beyond the default exploration of all possible
paths.

7.2.1 Self-Composition Implementation

Section 6.2 describes the self-composition technique that our tool uses to prove
non-interference of instructions. Recall that the technique works on a combina-
tion of a path’s constraints, a version of the same constraints over renamed sym-
bols, and a connector which relates the renamed symbols to the original symbols.
In this section we describe how the technique is implemented in SMArTCAT,
and which optimisations have been applied to the implementation.

In angr, a program’s path constraints are expressed as symbolic expressions
that can be solved by Claripy, the front-end to Z3. If the constraints are coher-
ent, the expression is said to be satisfiable, and Claripy can attempt to generate
solutions for symbols which adhere to the expressions. However, Claripy does
not have an implementation of the implication relation “ =⇒ ”. According to



54 CHAPTER 7. SMARTCAT

classical logic, a =⇒ b is the same as ¬a ∨ b. However, a naive translation
of the connector p = p′ =⇒ t = t′ to the constraint p 6= p′ ∨ t = t′ does
not express the relation which needs to be proven for non-interference to hold.
Claripy will search for a solution where either p 6= p′ or t = t′ is true, but it
does not tell whether p 6= p′ ∨ t = t′ is true for all possible values of p and t.

Instead, we create a constraint c which is the inverse of the logical formula
of the required connector. To determine coherency, we query the solver for
unsatisfiability. This works because if the solver cannot find a solution to the
constraint, this implies that for all possible values the constraint does not hold;
thus the inverse of the constraint holds for all possible values. The connector
constraint we use for the self-composition is then as follows:

c = ¬(p = p′ =⇒ t = t′) = (p = p′ ∧ t 6= t′)

The self composition C is thus :

R ∪R′ ∪ {p = p′ ∧ t 6= t′}

Recall that t is ∆time, except when determining non-interference of memory
addresses, branch conditions, and complete program paths.

Self-Composition Optimizations

SMArTCAT makes heavy use of self-composition because non-interference proof
obligations are formed for every executed instruction. Multiple optimizations
have been implemented to speed up this part of the analysis.

Optimization 1 is motivated by the significant overhead that would be gen-
erated if all the relevant constraints had to be duplicated and renamed at ev-
ery self-composition proof-obligation that is constructed. Instead, SMArTCAT
constantly keep track of all constraints added to the state, and immediately
duplicate and rename the constraints, thus keeping track of a virtual paral-
lel execution path over which self-composition properties can be derived with
much less overhead per self-composition proof. For the actual self-composition,
both sets of constraints only need to be merged and connected, without any
renaming.

Optimization 2 is one described by Naumann et al. [34]. The keen reader may
have noticed an interesting aspect of self-composed states: they are constructed
from a set of constraints, over several symbols, including public inputs p, and
their copies p′, which are connected by a constraint p = p′ ∧ t 6= t′. However,
since the connector constrains all public copies p′ to the same value as the
original p, there is no actual benefit to duplication and renaming of p. Instead,
as described by Naumann et al., one can create an integrated self-composition
where only unequal symbols are copied and renamed. This creates a smaller
self-composition state which is logically equivalent to the original one, but is
significantly easier to prove for the solver. The constraint t 6= t′ then suffices as
a connector, instead of the original constraint p = p′ ∧ t 6= t′.



7.3. EVALUATION & DISCUSSION 55

For example, if the constraint set R is {5p > 10, t = 2s + p}, then the
partially renamed copy R′ is {5p > 10, t′ = 2s′ + p}. The full self-composition
constraint set R∪R′∪{t 6= t′} is then {5p > 10, t = 2s+p, t′ = 2s′+p, t 6= t′}.

Optimization 3 breaks up the self-composition proof-obligation into multi-
ple smaller proof-obligations before solving the full proof-obligation. This is
motivated by the observation that non-interference holds for most instructions,
and if the workload for these instructions can be reduced, the overall execution
time will improve. Note that the self-composition proofs are used to determine
non-interference in specific time expressions, which are well-defined expressions
over input symbols. Due to equation 6.1 and the well-definedness of F , we can
state that if F (X) holds for all X ⊂ Y , F (Y ) also holds:

(∀X ⊂ Y : F (X)) =⇒ F (Y )

Furthermore, for any well-defined function f and any symbols σ and x, we have:

F ({σ = x}) =⇒ F ({f(σ) = f(x)})

Let t be a well-defined time expression, and let I be the set of all input symbols
over which the expression t is formed. Then, based on the previous properties
of F:

(∀σ ∈ I : F (R∪R′∪{p = p′ =⇒ σ = σ′})) =⇒ F (R∪R′∪{p = p′ =⇒ t = t′})

This means that if non-interference holds for each of the symbols in the
expression, it must also hold for the entire expression. Thus, we can save time
by first determining for which symbols in the expression t non-interference might
possibly not hold, followed by a step of actual non-interference proofs for each of
these symbols. Only if any symbol is found for which non-interference does not
hold, a non-interference proof obligation of the entire expression is constructed
and evaluated. This significantly reduces time for self-composition proofs for
most instructions, for which non-interference holds.

7.3 Evaluation & Discussion

We have tested SMArTCAT on several toy examples as well as real crypto-
graphic functions. The results of the case studies on real cryptographic func-
tions are described in chapter 8. The toy examples proved that SMArTCAT
can identify all types of timing channels and identify relations between secret
inputs and the timing channel. Execution time of one of the toy examples,
a ten instruction linear feedback shift register function, was measured on the
Raspberry Pi 2. The measured time matched exactly with the time predicted
by SMArTCAT. Complexity of measuring larger programs accurately has pre-
vented us from comparing execution time of large functions with SMArTCAT
predictions.



56 CHAPTER 7. SMARTCAT

SMArTCAT suffers from multiple limitations imposed on it by the underly-
ing techniques. As discussed earlier, the used timing model is very specific and
therefore makes the tool only applicable to very specific platforms. This is a
trade-of with the accuracy of security it can guarantee. Any tool can only be as
accurate and widely-applicable as the timing-model on which it depends. Other
timing models could be implemented for the tool, but for each new platform
this requires a significant one-time investment.

SMArTCAT suffers from the same limitations as angr and symbolic execu-
tion in general. Firstly, symbolic execution is slow compared to native execu-
tion on the target platform. Most of our analyses were run on an Intel Core
i7-4800MQ running at 2.70 GHz, on which we symbolically executed 5-30 in-
structions per second. This speed puts a significant limitation on test program
size.

We compared this speed to that of analysis based on the PC-model. Instead
of symbolically modeling the pipeline, SMArTCAT was instructed to only count
executed instructions, for several real cryptographic functions. This compari-
son shows that our approach is only approximately 20% slower than symbolic
timing-channel identification based on the PC-model.

The literature describes multiple techniques with which symbolic execution
speed can be increased. One of the most promising techniques of the moment is
called concolic execution [40], which combines concrete and symbolic execution
to increase program coverage depth. A significant limitation is that the symbolic
relations between secret input and expressions are lost by this technique. A
middle-ground could be to only concretize public values. We leave it for future
work to determine in which situations this can be beneficial.

One obstacle for symbolic execution is state-explosion, in which program
loops cause a significant number of possible execution paths which all need to
be executed by the symbolic execution framework. This problem is especially
significant for loops of a variable number of iterations. Due to the nature of
the specific program instances in which we are most interested, i.e., crypto-
graphic libraries, this does not pose a large obstacle for our work, because most
cryptographic implementations do not heavily rely on loops.

SMArTCAT does not directly tackle the problem of timing channels in multi-
threaded programs, because angr cannot perform analysis which takes multi-
threading into account. We are not aware of any cryptographic implementations
which rely on multi-threading, so this is not an actual problem for the program
instances in which we are most interested.

Identification of timing channels with SMArTCAT relies heavily on non-
interference proofs solved by Z3 through Claripy. However, we have found that
Claripy may not find a solution for certain problems, and it can even return
false results under certain circumstances. We are unsure about the impact of
Claripy’s limitations. However, it is always advised to validate results returned
by SMArTCAT. Claripy may also not halt on certain complex problems within
practical time. However, we note that symbolic expressions in cryptographic im-
plementations generally become complex only when they depend on data or key
material. Thus, when Claripy causes SMArTCAT to hang, it always warrants



7.3. EVALUATION & DISCUSSION 57

manual inspection for timing channels at the instruction it hangs at. We have
found that this happens often when analyzing cryptographic functions, at var-
ious execution depths, but this has not prevented SMArTCAT from producing
usable results.



58 CHAPTER 7. SMARTCAT



Chapter 8

Case Studies

Like most automatic timing channel identification tools described in the lit-
erature, the most important form of validation we applied is by case studies
on cryptographic libraries. In this chapter we describe the cryptographic im-
plementations we tested and our findings. All tested binaries were compiled
for the Cortex-A7 using GCC (Ubuntu/Linaro 5.4.0-6ubuntu1∼16.04.4) 5.4.0
20160609

8.1 OpenSSL

OpenSSL [4] is a generic open-source cryptographic library. Multiple timing
channels have been identified in OpenSSL before [5, 12, 15]. Thus, we assume
that countermeasures against timing channels have not been a priority dur-
ing initial OpenSSL development. We consider it an interesting target to see
whether those findings have led to a timing channel–resistant implementation.
We have tested several cryptographic functions of OpenSSL 1.1.0e. Specifically,
we have focused on encryption and key-setting functions. We have considered
both plaintext and key material as sensitive material which should not leak
through timing channels. For each function, we only discuss the first identified
vulnerability. For the implementation details of all functions, we refer to the
source code [4].

On a side-note, key expansion algorithms are very unlikely functions to be
attacked, because they are generally executed only once, after which the result
is stored. This prevents an attacker from taking multiple measurements in most
situations; we only analyzed these functions for completeness.

8.1.1 Blowfish

Blowfish [39] is a multi-round cryptographic cipher, i.e., it uses a cryptographic
function F , which is applied multiple times to achieve the final result of the
cipher. The round function F of Blowfish is based on four different S-box

59



60 CHAPTER 8. CASE STUDIES

lookups. Recall from section 6.4 that an S-box maps different inputs to different
outputs in a non-linear way. The S-box lookups of Blowfish are based on the
exclusive or function of output from the previous round, and a round key. This
result is split into four bytes which are used as input to four different S-boxes,
with four byte output each. The S-box results are combined to produce the
result of the round function F . Blowfish is a Feistel cipher, which means that
each round, half the round-input is used as input to F , and the result of F is
combined with the other half of the round-input using an exclusive or function.

In 1998 it was already hypothesized by Kelsey et al. [26] that the de-
sign of Blowfish could lead to timing channels due to the large S-boxes it
uses. We have tested the Blowfish encryption as implemented in the function
bf encrypt. SMArTCAT quickly identifies a timing vulnerability in instruction
ldr r5, [r3, r14, lsl #2]. Inspection of the source code files bf enc.c and
bf locl.h clearly shows the S-box function implemented as an array lookup. We
reverse engineered the binary code to confirm that the violating ldr instruction
corresponds to the array access.

SMArTCAT identifies the symbolic expressions which correspond to the
values for r3 and r14, which determine the memory access location. One of
the expressions includes an exclusive or of a key byte with a plaintext byte,
which causes SMArTCAT to identify the timing channel. Line 34 of bf enc.c –
l ^= p[0]; – clearly determines the first S-box entry, and confirms the identi-
fied exclusive or relation between public and secret.

The vulnerability in this implementation of Blowfish is clearly caused by the
implementation of the S-box function as an array lookup. This is believed to be
the fastest way of implementing S-boxes, and is consequently a very common
way to implement them. Unfortunately, array lookups always cause type 2
violations if the lookup depends on a secret value. All S-box lookups in this
function are implemented in this way, so all S-box lookups can theoretically be
learned by an attacker.

Attackers can learn the accessed memory address from cache-based timing
channels, and can thus learn the position of the accessed array element. In the
scenario of Blowfish, this means an attacker can learn key0 ⊕ data0, where key0

is the first round key and data0 the first part plaintext, each 4 bytes long, using
four cache-attacks. We propose the following timing attack to demonstrate
vulnerability of this implementation. It is a multi-stage attack which has a
known-plaintext and chosen-plaintext part.

1. The attacker performs a known-plaintext cache-attack and learns key0 ⊕
data0 from the first round. Since the plaintext data0 is known, key0 is
trivially disclosed.

2. The attacker performs another timing-attack, snooping on encryption of
a victim’s secret data. He performs this attack on the first two encryption
rounds, thus learning the first two S-box lookups:

key0 ⊕ secretdata0



8.1. OPENSSL 61

and:
F (key0 ⊕ secretdata0)⊕ key1 ⊕ secretdata1

Since key0 is already known, secretdata0 is trivially disclosed from the
first address.

3. The attacker can now perform a chosen plaintext timing-attack where he
chooses data0 = secretdata0. By attacking the second round, he learns

F (key0 ⊕ secretdata0)⊕ key1 ⊕ data1

Since he chose data1 himself, this trivially leads to:

F (key0 ⊕ secretdata0)⊕ key1

From this and the data acquired in stage 2, secretdata0 is disclosed.

Since all data encrypted with Blowfish undergoes the same encryption pro-
cess, the above attack can be used to learn the entire plaintext. It should be
noted that this attack relies on a strong assumption; that is, the attacker can
perform cache-attacks from which he learns the accessed S-box entries. In prac-
tice, it is not trivial to perform such an attack, which is probably why these
kind of vulnerabilities are not being exploited on a large scale in the wild.

One of the challenges in actually learning an accessed register location from
a cache-access is the granularity of the cache, i.e., the number of array items
stored on one cache line. However, in the case of Blowfish, S-box entries are
relatively large, i.e., 4 bytes, and cache line sizes for the Cortex-A7 are relatively
small, i.e., 64 bytes. This means deducing the actually accessed array index from
an identified cache-miss is easier than it is for algorithms which use S-boxes with
smaller entries.

We leave it for future work to actually perform the described attack on
Blowfish. However, based on related work on practical cache timing attacks
[12, 35], we are confident that a determined attacker can exploit a cache timing
channel such as this one under certain circumstances.

Blowfish S-boxes are constructed dynamically from key-material, and this
prevents the S-boxes from straightforwardly being implemented as a system of
equations. One high-level approach to implement a constant-time lookup for
any S-box is by a walk over all entries, such as in algorithm 1 for an 8-bit S-box.
Memory accesses in this algorithm are independent of the used S-box index, as
all S-box entries are accessed. First, a bitmask m is computed by collapsing all
bits in i - index to a single bit, and expanding that to 0xff only if i - index =
0. This is a constant time version of “m = (i - index == 0)?0xff:0”. Thus, only
when the walk over all S-box indices arrives at the correct index, it adds the
S-box entry into the result.

However, this implementation is rather inefficient, as for each S-box lookup,
it requires a number of memory accesses in the order of the size of the S-box,
instead of a single memory access in the non-constant time implementation.
Instead of relying on an inefficient constant-time implementation of Blowfish,
it is strongly advised to use modern algorithms which can be more efficiently
implemented in constant time solutions.



62 CHAPTER 8. CASE STUDIES

byte lookup ( byte [ ] sbox , byte index ) {
r e s u l t = 0 ;
f o r ( i =0; i<l ength ( sbox ) ; ++i ) {

unsigned byte m;
m = i − index ;
m |= (m>>4);
m |= (m>>2);
m |= (m>>1);
m = 0 x f f ∗ (mˆ 1 ) ;
r e s u l t += m & sbox [ i ] ;

}
re turn r e s u l t ;

}

Algorithm 1: Generic constant-time S-box lookup solution

8.1.2 AES

AES [43] is a block-cipher based on a substitution-permutation network. Like
Blowfish, it relies on S-boxes to provide a source of non-linearity. The key
schedule algorithm, which turns a short key into separate round keys for ev-
ery round, relies on the same S-box functions. We tested both the encryption
and key setting parts of the algorithm, respectively implemented in the functions
aes encrypt and aes set encrypt key. The AES implementation of OpenSSL
0.9.7a has been found vulnerable before By Bernstein [12]. Constant-time ver-
sions of both the cryptographic function as well as the key-expansion function
have been implemented by Käsper et al. [24].

Running SMArTCAT on aes encrypt, it identifies a type 2 violation at
instruction ldr r4, [r4, #0xc28]. The memory address expression identified
by SMArTCAT includes an exclusive or of a key byte with a message byte.
Source code inspection reveals that, like in the case of Blowfish, the AES S-box
has been implemented as an array. Once again, we reverse engineered the binary
code to confirm that the violating instruction corresponds to the array access.
If an attacker can learn accessed S-box entries, he can mount a known-plaintext
attack to recover the key, which he can subsequently use to deduce plaintext
bytes from timing attacks in which the attacker snoops at the encryption of a
victim’s plaintext.

Running SMArTCAT on aes set encrypt key, it identifies a type 2 vulner-
ability at instruction ldr r10, [r2, #0x28]. The memory address expression
identified by SMArTCAT includes a byte of key material. Thus, an attacker
who learns the accessed S-box entry, also learns the key byte. Once again, source
code inspection reveals the use of the S-box implemented as an array.

Normally, AES operates on S-boxes with 256 entries of 8 bits each. Given
a cache line size of 64 bytes, the entire S-box is spread over just four cache-
lines. This means significantly more effort from an attacker is required for



8.2. TWEETNACL 63

him to deduce the accessed S-box entry from a cache-miss. However, OpenSSL
supports a function to increase performance by operating on extra large S-box
tables, with 8 byte entries. Obviously, significantly less effort is required to
attack a system that uses these tables.

8.1.3 Camellia, CAST, 3DES, SEED

OpenSSL contains multiple other algorithms. To prevent this section from be-
coming too repetitive, we shortly summarize our results for the following al-
gorithms. We tested key setting and encryption functions of the algorithms
Camellia [32], CAST [6], 3DES [11] and SEED [30], which are all based on S-
boxes. For all these functions SMArTCAT was able to identify type 2 violations.
We reverse engineered the library binary, to confirm that all identified timing
channels corresponded to S-box lookups. Furthermore, the memory access ex-
pressions all show a clear relation between key and plaintext material, and the
accessed memory location.

Camellia was already found vulnerable in OpenSSL-1.0.0-beta3 in 2009 by
Zhao et al. [46]. As far as we can tell, the S-box implementation has not changed
since. CAST has been hypothesized to be vulnerable by Kelsey et al. [26].

8.1.4 RC2 and RC4

Furthermore, we tested RC2 [38] and RC4 [25], which are two algorithms not
based on S-boxes. However, these algorithms work with several indexed lookups
into the key material itself, effectively turning these lookups into dynamic S-box
transformations as is the case with Blowfish. Furthermore, RC2’s key expansion
operation uses a Pi-table, which is affectively an S-box based on the digits of Pi.
For both key-setting functions and the RC4 encryption function, SMArTCAT
was able to identify type 2 violations. When analyzing the RC2 encryption
function, SMArTCAT hung at instruction ldr r7, [r1, r7, lsl #2], which
can happen when symbolic expressions become too complex to process auto-
matically. However, with cryptographic algorithms this is an indication that
the instruction warrants further inspection.

Comparison of the binary with the source code of the functions confirms
that the identified instructions are all related to the array accesses. The mem-
ory address expressions identified by SMArTCAT demonstrate a clear relation
between key bytes and the address for both the RC4 encryption and key-setting
function, and the RC2 key-setting function. The relation has only been signif-
icantly obfuscated for the RC2 encryption function, due to the mixing rounds
which precede the memory access.

8.2 TweetNaCl

NaCl is a cryptographic library specifically intended to circumvent timing chan-
nels. During implementation, type 1 and 2 violations were taken into account



64 CHAPTER 8. CASE STUDIES

and carefully circumvented. [13] However, the library has been implemented in
the C programming language, not in assembly. Its C-code has been validated
for timing channels. TweetNaCl [14], also implemented in C, is a version of the
library which has been written to fit into a hundred tweets.

TweetNaCl is an interesting case study because of multiple reasons. Firstly,
type 3 timing channels were not taken into account during implementation of
this library. Secondly, our tool can perform timing channel analysis at a more de-
tailed level than we believe has been used to analyze TweetNaCl before. Lastly,
the Cortex-A7, as any other non-x86 processor, was probably not directly kept
in mind during implementation of the library. It is interesting to know whether
specific timing behavior for this processor could introduce a timing channel in
the library.

We tested TweetNaCl version 201404271. Branching behavior between C-
code and assembly is very closely related, and we have no indication that com-
pilation for the Cortex-A7 would introduce extra branches based on secret pa-
rameters; thus, we have no reason to believe that any possible timing channels
exist due to conditional branches. Instead, we focus on type 3 vulnerabilities
only. As an initial step we located all conditional instructions in a binary com-
piled with the TweetNaCl. Secondly, we identified all functions on which they
depend, and executed SMArTCAT to analyze those functions. We repeated this
process for binaries compiled with the compilation flags Os, Og, and O3; which
are intended for minimal code, debugging, and fastest execution respectively.

Analysis was performed until the conditional instructions were executed.
SMArTCAT did not identify timing channels for any of the tested functions.
This leads us to believe that TweetNaCl is secure with respect to timing channels
for the ARM Cortex-A7. Furthermore, it gives an indication that compiler opti-
mizations do not tend to introduce conditional instructions in binaries compiled
from code which avoids branches that depend on secret values. However, since
type 3 violations may exist for wildly different instructions for other processors,
we cannot conclude that TweetNaCl is secure for all processors.

8.3 Discussion

SMArTCAT was able to identify multiple cache-based timing channels in the
OpenSSL library. For all identified timing channels it is easy to identify the
logical steps required to deduce secret information from an accessed memory-
location. Furthermore, SMArTCAT may hang at instructions that create a
relationship between secret and time which is too complicated to solve auto-
matically.

Many attacks and hypotheses about vulnerabilities in the algorithms imple-
mented in OpenSSL have been known for a long time. Despite this, constant-
time implementations have not been adopted to solve the vulnerabilities. It is
clear to us that the library cannot be trusted to perform cryptographic functions
in constant-time on arbitrary platforms.

1The latest version at the time of writing, released through https://tweetnacl.cr.yp.to



8.3. DISCUSSION 65

Although theoretical attacks on these algorithms exist, practical exploits
may still be burdened by other properties such as S-box size, which influences
the detail by which a timing channel leaks information. However, determined at-
tackers have frequently been able to circumvent practical difficulties [12, 37, 46].
To increase the security of ciphers which rely on S-boxes, the S-box functions
could be implemented by means of a system of equations, as is done in the AES
implementation of TweetNaCl.

Alternatively, the relationship between secrets and accessed S-box entries
can be obfuscated, as demonstrated by RC2, which performs a preprocessing
step on the secret data, before it is used to determine an array lookup. If this
relationship is sufficiently obfuscated, an attacker has a significantly harder time
deducing secret information from timed cache accesses. Especially in the case
of Feistel ciphers, we do not see a reason to not obfuscate secret data, before
it is used as an index to an S-box, as the structure of Feistel ciphers does not
demand that the round function is invertible.



66 CHAPTER 8. CASE STUDIES



Part III

Reflection

67





Chapter 9

Related Work

There have been multiple automated timing channel analysis techniques de-
scribed in the literature before which are related to our work. These approaches
explore different analysis techniques of have different analysis goals.

Molnar et al. [33] first defined PC-security, and created an automatic tech-
nique to verify it on binary code. Their approach is based on fuzz-testing, i.e.,
they execute a program many times using different program parameters, and
analyze the executed code paths of the program. Fuzz-testing is a crude ap-
proach and completeness of program coverage can be limited, because there is
no full exploration applied as is with symbolic execution. On the other hand,
this approach is fully automated which circumvents the requirement of manual
initialization.

As described earlier, PC-security is intended for hardware which executes
each instruction in the same constant time. As this model cannot be applied
to general purpose processors, our approach is more complete because it can
identify type 1, 2 and 3 violations, whereas the approach by Molnar et al. can
only identify type 1 violations.

As described in section 2.4, Almeida et al. [8] transform self-composed code
with ghost-code and annotations such as preconditions and invariants, which
allows them to store a notion of execution time within the program states.
Subsequently, they apply automatic and interactive verification tools to prove
non-interference. The security notion considered by Almeida et al. is an exten-
sion of PC-security, which includes data memory access patterns, so they can
identify a wider range of type 1 and 2 violations. If non-interference cannot be
proven, the verification tools show which code causes the violation.

For programs with complex program loops, this approach suffers from the
same problem as symbolic execution, i.e., state explosion. Furthermore, the
technique is based on automatic and interactive verification solving. This looks
a lot like our approach, except that our technique determines non-interference
automatically, and we require interactive behavior only to further analyze the
actual information leak. The biggest difference between this approach and ours
is that Almeida et al. operate on C source code, and they assume that the

69



70 CHAPTER 9. RELATED WORK

compiler does not violate the security policy. Thus, they cannot identify type 3
violations and the compiler needs to be trusted under their security model.

As described in section 2.4, Balliu et al. [10] apply self-composition in combi-
nation with symbolic execution to derive trees of observational states, in which
each observational state includes the execution time up to that state. Self-
composition in this case is not applied on the program itself, but on the obser-
vation trees. The trees are linked with a connector which defines the relation
between variables in both trees. A verification function is then applied on both
trees to assert that the observational states have equal timing behavior so that
they do not leak secret information. As far as we understand, this technique
is limited to identify the presence of timing channels, but cannot locate the
violating code.

Although both this approach and our approach are based on symbolic ex-
ecution and self-composition, they are applied in different ways. Balliu et al.
apply self-composition on full observation trees. On the other hand, we apply
it during execution, so we can identify timing differences on the fly and identify
differences in timed program traces instead of on observational states only.

The cost model applied by Balliu et al. equals the program counter model, so
timing channel identification is limited to a subset of type 1 violations, whereas
our approach can also identify type 2 and type 3 timing channels.

As discussed in section 3, Păsăreanu et al. [36] apply symbolic execution
to quantify information leakage of timing channels, and to determine which
program inputs lead to maximum information leakage. They open up interest-
ing territory by expanding analysis to information leakage over multiple runs.
Furthermore, they automate a large part of post-analysis of identified timing
channels by automatically determining program parameters which maximize
information leakage. However, their current approach focuses solely on type 1
timing channels, so considering timing channel identification this technique does
not cover as wide a range of timing channels as our approach.



Chapter 10

Conclusions

In this work we set out to research the impact of detailed timing models on tim-
ing channel analysis. We conclude our work based on multiple pillars: feasibility,
cost, completeness, soundness, and practical benefits.

We have demonstrated that it is feasible to construct a detailed timing
model, at least for a relatively simple processor such as the Cortex-A7. This
was possible despite limited information about the processor’s internals, and in
the presence of false information about the timing of certain instruction couples.

We have proven the feasibility of symbolic execution techniques for timing
channel identification that use detailed timing models, to create an accurate
estimation of execution time of binary functions. Practical problems concern-
ing the complexity of symbolic time expressions can partially be overcome by
strategical concretization of the symbolic expressions, which is a necessity when
executing large cryptographic functions.

The cost that our technique induces on the running time of symbolic analysis
seems limited: by our estimations running time is roughly 20% slower than when
only counting instructions with symbolic execution. If we factor in the fact that
our technique can identify timing channels on the fly, i.e., before the tool has
run to the end of analysis, timing channel identification in vulnerable code can
often be performed faster using our technique.

Recall from section 2.3 that PC-security was never intended as a security
scheme for general purpose processors. Instead, it is intended for a processor
which executes all instructions in the same time. Thus, it is clear that for
general purpose processors, our approach can identify more timing channels
than approaches which rely solely on PC-security. Our approach is thus more
complete for this type of processors.

Furthermore, approaches that use the program counter model may identify
timing channels based on a number of executed instructions in different paths,
whereas both paths may actually require the same number of cycles to execute,
due to differences in instruction execution time. In reality, these cases are likely
very limited, and we conclude that our approach offers only marginally more
sound results for general purpose computers.

71



72 CHAPTER 10. CONCLUSIONS

An important facet of any approach is the practical benefit it offers. How-
ever, as what is practical may be highly subjective, this can be one of the hardest
facets to clearly define. On one hand, our case studies have demonstrated the
approach; however, only type 2 vulnerabilities have been identified in the cryp-
tographic functions which we analyzed, and type 2 vulnerabilities do not require
a detailed analysis like we used. On the other hand, it proves that many cryp-
tographic functions do not suffer from type 3 timing channels when compiled
for the Cortex-A7 core instruction set.

We consider our work as a proof that automated timing channel analysis
based on detailed timing models is feasible. It can improve analysis results
without substantial overhead. Future work must demonstrate the relevance for
other processors and code bases.



Chapter 11

Future Work

Guided in part by timing channels identified by Andrysco et al. [9], this work
makes a first step towards improved accuracy of timing channel analysis. How-
ever, there is still significant work to be performed in this field to ultimately
determine its relevance.

Firstly, our work has focused very specifically on a subset of instructions of
the Cortex-A7. Besides conditional instructions, no other causes of operand-
dependent instruction execution time have been identified. If we want to im-
prove our grip on timing channels caused by this behavior, it is important to
improve our understanding of the relationship between instruction operands and
execution time, for different modern processors. It would greatly benefit the ap-
plicability of tools like SMArTCAT if accurate timing models are constructed
for multiple processors.

Secondly, the relationship between high-level code patterns and instructions
which exhibit operand-dependent timing is not always clear. Our case stud-
ies have once again confirmed the relation between naive implementations of
S-boxes and cache-based timing channels. However, as we have not identified
any type 3 timing channels, it leaves to wonder whether they are actually com-
mon in cryptographic software. Obviously, this fully depends on the types of
instructions which are identified to exhibit operand-dependent timing behavior
for different processors.

Lastly, our analysis technique is limited by several challenges that generally
limit symbolic execution, such as the complexity of solving symbolic expres-
sions, as well as complicated initialization of program states and function pa-
rameters. Our approach would greatly benefit from steps made in these fields
which alleviate these challenges. Specifically, if an approach could be devel-
oped to automatically initialize program states and estimate which parameters
should remain secret, our approach could operate automatically without manual
initialization. This would be a big step towards intelligent automated software
testing for timing channels.

73



74 CHAPTER 11. FUTURE WORK



Bibliography

[1] ARM architecture reference manual ARMv7-A and ARMv7-R edition, issue
c. infocenter.arm
.com/help/index.jsp?topic=/com.arm.doc.ddi04
06cAccessed: March 2017.

[2] ARM Cortex-A7 pipeline description.
gcc.gnu.org/git/?p=gcc.git;a=blob;f=gcc/config
/arm/cortex-a7.md;hb=HEAD
Accessed: March 2017.

[3] Cortex-A8 technical reference manual revision r3p2. infocen-
ter.arm.com/help/topic/com.arm.d
oc.ddi0344k/DDI0344K cortex a8 r3p2 trm.pdfAccessed: March 2017.

[4] OpenSSL: Cryptography and SSL/TLS toolkit. www.openssl.org.
Accessed: March 2017.

[5] O. Aciiçmez. Yet another microarchitectural attack: exploiting i-cache. In
Proceedings of the 2007 ACM workshop on Computer security architecture,
pages 11–18. ACM, 2007.

[6] C. Adams. The CAST-128 encryption algorithm. 1997.

[7] J. Agat. Transforming out timing leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 40–53. ACM, 2000.

[8] J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira. Formal verification of
side-channel countermeasures using self-composition. Science of Computer
Programming, 78(7):796–812, 2013.

[9] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham. On subnormal floating point and abnormal timing. In 2015
IEEE Symposium on Security and Privacy, pages 623–639. IEEE, 2015.

[10] M. Balliu, M. Dam, and R. Guanciale. Automating information flow analy-
sis of low level code. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1080–1091. ACM, 2014.

75



76 BIBLIOGRAPHY

[11] W. C. Barker and E. B. Barker. Sp 800-67 rev. 1. recommendation for the
triple data encryption algorithm (TDEA) block cipher. 2012.

[12] D. J. Bernstein. Cache-timing attacks on AES.
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[13] D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a
new cryptographic library. In International Conference on Cryptology and
Information Security in Latin America, pages 159–176. Springer, 2012.

[14] D. J. Bernstein, B. Van Gastel, W. Janssen, T. Lange, P. Schwabe, and
S. Smetsers. TweetNaCl: A crypto library in 100 tweets. In Interna-
tional Conference on Cryptology and Information Security in Latin Amer-
ica, pages 64–83. Springer, 2014.

[15] B. B. Brumley and N. Tuveri. Remote timing attacks are still practical. In
European Symposium on Research in Computer Security, pages 355–371.
Springer, 2011.

[16] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 13–28.
Springer, 2002.

[17] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter. Practical
mitigations for timing-based side-channel attacks on modern x86 proces-
sors. In 2009 30th IEEE Symposium on Security and Privacy, pages 45–60.
IEEE, 2009.

[18] J.-S. Coron and I. Kizhvatov. An efficient method for random delay gen-
eration in embedded software. In Cryptographic Hardware and Embedded
Systems-CHES 2009, pages 156–170. Springer, 2009.

[19] J. M. DiCarlo and B. A. Wandell. Rendering high dynamic range images.
In Electronic Imaging, pages 392–401. International Society for Optics and
Photonics, 2000.

[20] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Security
and Privacy, 1984 IEEE Symposium on, pages 75–75. IEEE, 1984.

[21] P. Greenhalgh. Big. little processing with arm cortex-a15 & cortex-a7.
ARM White paper, pages 1–8, 2011.

[22] W.-M. Hu. Reducing timing channels with fuzzy time. Journal of computer
security, 1(3-4):233–254, 1992.

[23] M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterisation
of observational determinism. In 19th IEEE Computer Security Founda-
tions Workshop (CSFW’06), pages 13–pp. IEEE, 2006.



BIBLIOGRAPHY 77

[24] E. Käsper and P. Schwabe. Faster and timing-attack resistant aes-gcm. In
Cryptographic Hardware and Embedded Systems-CHES 2009, pages 1–17.
Springer, 2009.

[25] K. Kaukonen and R. Thayer. A stream cipher encryption algorithm “arc-
four”, 1999.

[26] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis
of product ciphers. Computer SecurityESORICS 98, pages 97–110, 1998.

[27] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference,
pages 104–113. Springer, 1996.

[28] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic quantification of cache
side-channels. In International Conference on Computer Aided Verification,
pages 564–580. Springer, 2012.

[29] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson. Cross-origin pixel steal-
ing: timing attacks using CSS filters. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 1055–
1062. ACM, 2013.

[30] J. Lee, J. Park, S. Lee, and J. Kim. The SEED encryption algorithm.
SEED, 2005.

[31] H. Mantel and A. Starostin. Transforming out timing leaks, more or less.
In European Symposium on Research in Computer Security, pages 447–467.
Springer, 2015.

[32] M. Matsui, S. Moriai, and J. Nakajima. A description of the Camellia
encryption algorithm. 2004.

[33] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The program
counter security model: Automatic detection and removal of control-flow
side channel attacks. In International Conference on Information Security
and Cryptology, pages 156–168. Springer, 2005.

[34] D. A. Naumann. From coupling relations to mated invariants for check-
ing information flow. In European Symposium On Research In Computer
Security, pages 279–296. Springer, 2006.

[35] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermea-
sures: the case of AES. In Cryptographers’ Track at the RSA Conference,
pages 1–20. Springer, 2006.

[36] C. S. Pasareanu, Q.-S. Phan, and P. Malacaria. Multi-run side-channel
analysis using symbolic execution and max-smt. In Computer Security
Foundations Symposium (CSF), 2016 IEEE 29th, pages 387–400. IEEE,
2016.



78 BIBLIOGRAPHY

[37] C. Percival. Cache missing for fun and profit.
http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf, 2005.

[38] R. Rivest. A description of the RC2 (r) encryption algorithm. 1998.

[39] B. Schneier. Description of a new variable-length key, 64-bit block cipher
(blowfish). In Fast software encryption, pages 191–204. Springer, 1994.

[40] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine
for c. In ACM SIGSOFT Software Engineering Notes, volume 30, pages
263–272. ACM, 2005.

[41] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna.
Firmalice-automatic detection of authentication bypass vulnerabilities in
binary firmware. In NDSS, 2015.

[42] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[43] Standard, NIST-FIPS. Announcing the advanced encryption standard
(AES). Federal Information Processing Standards Publication, 197:1–51,
2001.

[44] S. Zdancewic and A. C. Myers. Observational determinism for concurrent
program security. In Computer Security Foundations Workshop, 2003. Pro-
ceedings. 16th IEEE, pages 29–43. IEEE, 2003.

[45] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. Sidebuster: automated
detection and quantification of side-channel leaks in web application de-
velopment. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 595–606. ACM, 2010.

[46] X.-j. Zhao, T. Wang, and Y. Zheng. Cache timing attacks on camellia block
cipher. IACR Cryptology ePrint Archive, 2009:354, 2009.



Appendix A

ARM Instruction Times

Legend

D Dy: Dual issue as younger and older; Do: Dual issue as older only
I Issue time
L Latency
M Memory instruction: time depends on cache hit
FI Condition false issue time
FL Condition false lock time (latency)
SB Can receive a semi-bypass
ER Early Registers (1 cycle early)
LR Late Registers: number of cycles late

Instruction D I L M FI FL SB ER LR

adc<c> <rd>, <rn>, #<const> Do 1 2 1 2 +
adc<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
adc<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
adc<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
add<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
add<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
add<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
add<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
add<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
add<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rn
add<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
and<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
and<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
and<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
and<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs

79



80 APPENDIX A. ARM INSTRUCTION TIMES

Instruction D I L M FI FL SB ER LR

asr<c> <rd>, <rm>, #<imm> Do 1 2 1 2 rm
asr<c> <rd>, <rn>, <rm> Do 1 2 1 2
bic<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
bic<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
bic<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
bic<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
blx<c> <rm> 2 - 2 -
bx<c> <rm> 1 - 1 -
bxj<c> <rm> 1 - 1 -
clz<c> <rd>, <rm> Do 1 2 1 2 +
cmn<c> <rn>, #<const> Dy 1 1 1 1 +
cmn<c> <rn>, <rm>, <shift> Do 1 1 1 1 + rm
cmn<c> <rn>, <rm> Do 1 1 1 1 +
cmn<c> <rn>, <rm>, <type> <rs> Do 1 1 1 1 + rm, rs
cmp<c> <rn>, #<const> Dy 1 1 1 1 +
cmp<c> <rn>, <rm>, <shift> Do 1 1 1 1 + rm
cmp<c> <rn>, <rm> Do 1 1 1 1 +
cmp<c> <rn>, <rm>, <type> <rs> Do 1 1 1 1 + rm, rs
eor<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
eor<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
eor<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
eor<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
ldm<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldm<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldm<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldm<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldmda<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldmda<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldmdb<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldmdb<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldmib<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldmib<c> <rn>{!}, <registers> 2∗ 1∗ + 2∗ 1∗ rn
ldr<c> <rt>, [<rn>, #+/-<imm>] 1 1 + 1 1 rn
ldr<c> <rt>, [<rn>] 1 1 + 1 1 rn
ldr<c> <rt>, [<rn>, +/-<rm>, <shift>]{!} 1 1 + 1 1 rn, rm
ldr<c> <rt>, [<rn>, +/-<rm>]{!} 1 1 + 1 1 rn, rm
ldrb<c> <rt>, [<rn>, #+/-<imm>] 1 1 + 1 1 rn
ldrb<c> <rt>, [<rn>] 1 1 + 1 1 rn
ldrb<c> <rt>, [<rn>, +/-<rm>, <shift>]{!} 1 1 + 1 1 rn, rm
ldrb<c> <rt>, [<rn>, +/-<rm>]{!} 1 1 + 1 1 rn, rm
ldrbt<c> <rt>, [<rn>], #+/-<imm> 1 1 + 1 1 rn
ldrex<c> <rt>, [<rn>] 1 1 + 1 1 rn
ldrh<c> <rt>, [<rn>, #+/-<imm>] 1 1 + 1 1 rn
ldrh<c> <rt>, [<rn>] 1 1 + 1 1 rn
ldrh<c> <rt>, [<rn>, +/-<rm>]{!} 1 1 + 1 1 rn, rm
ldrsb<c> <rt>, [<rn>, #+/-<imm>] 1 1 + 1 1 rn
ldrsb<c> <rt>, [<rn>] 1 1 + 1 1 rn
ldrsb<c> <rt>, [<rn>, +/-<rm>]{!} 1 1 + 1 1 rn, rm
ldrsh<c> <rt>, [<rn>, #+/-<imm>] 1 1 + 1 1 rn
ldrsh<c> <rt>, [<rn>] 1 1 + 1 1 rn
ldrsh<c> <rt>, [<rn>, +/-<rm>]{!} 1 1 + 1 1 rn, rm
ldrt<c> <rt>, [<rn>], #+/-<imm> 1 1 + 1 1 rn
lsl<c> <rd>, <rm>, #<imm> Do 1 2 1 2 rm



81

Instruction D I L M FI FL SB ER LR

lsl<c> <rd>, <rn>, <rm> Do 1 2 1 2
lsr<c> <rd>, <rm>, #<imm> Do 1 2 1 2 rm
lsr<c> <rd>, <rn>, <rm> Do 1 2 1 2
mla<c> <rd>, <rn>, <rm>, <ra> 1 3 1 2 ra: 2
mov<c> <rd>, #<const> Dy 1 2 1 2 +
mov<c> <rd>, <rm> Dy 1 2 1 2 +
mul<c> <rd>, <rn>, <rm> 1 3 1 2
mvn<c> <rd>, #<const> Do 1 2 1 2 +
mvn<c> <rd>, <rm>, <shift> Do 1 2 1 2 + rm
mvn<c> <rd>, <rm> Do 1 2 1 2 +
mvn<c> <rd>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
mov<c> <rd>, <rm> Dy 1 2 1 2 +
orr<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
orr<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
orr<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
orr<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
pkhbt<c> <rd>, <rn>, <rm>, lsl #<imm> Do 1 1 1 1
pop<c> <registers> 2∗ 1∗ + 2∗ 1∗ sp
pop<c> <registers> 2∗ 1∗ + 2∗ 1∗ sp
push<c> <registers> 3∗ 3∗ + 2∗ 2∗ sp <registers>: 2
qadd<c> <rd>, <rm>, <rn> Do 1 3 1 1 +
qadd16<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
qadd8<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
qasx<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
qdadd<c> <rd>, <rm>, <rn> Do 1 3 1 2
qdsub<c> <rd>, <rm>, <rn> Do 1 3 1 2
qsax<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
qsub<c> <rd>, <rm>, <rn> Do 1 3 1 1 +
qsub16<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
qsub8<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
rev<c> <rd>, <rm> Do 1 2 1 2
rev16<c> <rd>, <rm> Do 1 2 1 2
revsh<c> <rd>, <rm> Do 1 2 1 2
ror<c> <rd>, <rm>, #<imm> Do 1 2 1 2 rm
ror<c> <rd>, <rn>, <rm> Do 1 2 1 2
rrx<c> <rd>, <rm> Do 1 2 1 2
rsb<c> <rd>, <rn>, #<const> Do 1 2 1 2 +
rsb<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
rsb<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
rsb<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
rsc<c> <rd>, <rn>, #<const> Do 1 2 1 2 +
rsc<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
rsc<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
rsc<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
sadd16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
sadd8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
sasx<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
sbc<c> <rd>, <rn>, #<const> Do 1 2 1 2 +
sbc<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
sbc<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
sbc<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
sel<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
shadd8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
shadd16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
shasx<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
shsax<c> <rd>, <rn>, <rm> Do 1 2 1 2 +



82 APPENDIX A. ARM INSTRUCTION TIMES

Instruction D I L M FI FL SB ER LR

shsub16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
shsub8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
smlal<c> <rdlo>, <rdhi>, <rn>, <rm> 1 3 1 2 rdlo: 2
smull<c> <rdlo>, <rdhi>, <rn>, <rm> 1 2 1 1
ssat<c> <rd>, #<imm>, <rn>, <shift> Do 1 2 1 2 + rn
ssat<c> <rd>, #<imm>, <rn> Do 1 2 1 2 +
ssat16<c> <rd>, #<imm>, <rn> Do 1 2 1 2 +
ssax<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
ssub16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
ssub8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
stm<c> <rn>{!}, <registers> 2∗ 3∗ + 2∗ 3∗ rn <registers>: 2
stmda<c> <rn>{!}, <registers> 2∗ 3∗ + 2∗ 3∗ rn <registers>: 2
stmdb<c> <rn>{!}, <registers> 2∗ 3∗ + 2∗ 3∗ rn <registers>: 2
stmib<c> <rn>{!}, <registers> 2∗ 3∗ + 2∗ 3∗ rn <registers>: 2
str<c> <rt>, [<rn>, #+/-<imm>] 1 2 + 1 2 rn rt: 2
str<c> <rt>, [<rn>] 1 2 + 1 2 rn rt: 2
str<c> <rt>, [<rn>, +/-<rm>, <shift>]{!} 1 2 + 1 2 rn, rm rt: 2
str<c> <rt>, [<rn>, +/-<rm>]{!} 1 2 + 1 2 rn, rm rt: 2
strb<c> <rt>, [<rn>, #+/-<imm>] 1 2 + 1 2 rn rt: 2
strb<c> <rt>, [<rn>] 1 2 + 1 2 rn rt: 2
strb<c> <rt>, [<rn>, +/-<rm>, <shift>]{!} 1 2 + 1 2 rn, rm rt: 2
strb<c> <rt>, [<rn>, +/-<rm>]{!} 1 2 + 1 2 rn, rm rt: 2
strbt<c> <rt>, [<rn>], #+/-<imm> 1 2 + 1 2 rn rt: 2
strex<c> <rd>, <rt>, [<rn>] 1 2 + 1 2 rn rd: 2
strh<c> <rt>, [<rn>] 1 2 + 1 2 rn rt: 2
strh<c> <rt>, [<rn>, #+/-<imm>] 1 2 + 1 2 rn rt: 2
strh<c> <rt>, [<rn>, +/-<rm>]{!} 1 2 + 1 2 rn, rm rt: 2
strt<c> <rt>, [<rn>], #+/-<imm> 1 2 + 1 2 rn rt: 2
sub<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
sub<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rm
sub<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
sub<c> <rd>, <rn>, <rm>, <type> <rs> Do 1 2 1 2 + rm, rs
sub<c> <rd>, <rn>, #<const> Dy 1 2 1 2 +
sub<c> <rd>, <rn>, <rm>, <shift> Do 1 2 1 2 + rn
sub<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
sxtab<c> <rd>, <rn>, <rm> Do 1 2 1 2
sxtab16<c> <rd>, <rn>, <rm> Do 1 2 1 2
sxtah<c> <rd>, <rn>, <rm> Do 1 2 1 2
sxtb<c> <rd>, <rm> Dy 1 2 1 2 +
sxtb16<c> <rd>, <rm> Dy 1 2 1 2
sxth<c> <rd>, <rm> Dy 1 2 1 2 +
teq<c> <rn>, #<const> Dy 1 1 1 1 +
teq<c> <rn>, <rm>, <shift> Do 1 1 1 1 + rm
teq<c> <rn>, <rm> Do 1 1 1 1 +
teq<c> <rn>, <rm>, <type> <rs> Do 1 1 1 1 + rm, rs
tst<c> <rn>, #<const> Dy 1 1 1 1 +
tst<c> <rn>, <rm>, <shift> Do 1 1 1 1 + rm
tst<c> <rn>, <rm> Do 1 1 1 1 +
tst<c> <rn>, <rm>, <type> <rs> Do 1 1 1 1 + rm, rs
uadd16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uadd8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uasx<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uhadd16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +



83

Instruction D I L M FI FL SB ER LR

uhadd8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uhasx<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uhsax<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uhsub16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uhsub8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
umaal<c> <rdlo>, <rdhi>, <rn>, <rm> 2 3 2 2 rdh: 1, rdlo: 2
umlal<c> <rdlo>, <rdhi>, <rn>, <rm> 1 3 1 2 rdlo: 2
umull<c> <rdlo>, <rdhi>, <rn>, <rm> 1 2 1 1
uqadd16<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
uqadd8<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
uqasx<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
uqsax<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
uqsub16<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
uqsub8<c> <rd>, <rn>, <rm> Do 1 3 1 1 +
usad8<c> <rd>, <rn>, <rm> 1 3 1 2
usada8<c> <rd>, <rn>, <rm>, <ra> 1 3 1 2 ra: 2
usat<c> <rd>, #<imm>, <rn>, <shift> Do 1 2 1 2 + rn
usat<c> <rd>, #<imm>, <rn> Do 1 2 1 2 +
usat16<c> <rd>, #<imm>, <rn> Do 1 2 1 2 +
usax<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
usub16<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
usub8<c> <rd>, <rn>, <rm> Do 1 2 1 2 +
uxtab<c> <rd>, <rn>, <rm> Do 1 2 1 2
uxtab16<c> <rd>, <rn>, <rm> Do 1 2 1 2
uxtah<c> <rd>, <rn>, <rm> Do 1 2 1 2
uxtb<c> <rd>, <rm> Dy 1 2 1 2 +
uxtb16<c> <rd>, <rm> Dy 1 2 1 2
uxth<c> <rd>, <rm> Dy 1 2 1 2 +

∗ Depends on length of reglister list, indicated time based on list of three registers.
Memory instruction execution times are influenced by cache hits and misses.


