
University of Twente.

Bacheloropdracht Technische Wiskunde

Simulatie van zeldzame
gebeurtenissen

Kans op grote benodigde voorraadcapaciteit van systeem met twee
wachtrijen achter elkaar

Simone van den Heuvel

S1558048

Begeleider: Anne Buijsrogge

30 juni 2017

Samenvatting

In dit onderzoek is gekeken naar de kans dat een bepaalde grote
voorraadcapaciteit van wachtrijen nodig is in een systeem met meer-
dere wachtrijen achter elkaar. Hierbij is niet alleen gekeken naar het
aantal halffabricaten in de wachtrijen, maar ook naar de hoeveelheid
plek die deze innemen als de halffabricaten in de verschillende wacht-
rijen niet even groot zijn. Voor het asymptotische gedrag van de hoe-
veelheid eenheden aan halffabricaten in het systeem is met behulp van
een simulatie van één wachtrij en van twee wachtrijen een vermoeden
ontstaan. Er is bewezen dat de ondergrens van dit asymptotische ge-
drag gelijk is aan het vermoeden. Verder is er een bovengrens bewezen
die groter is dan het vermoeden. In het geval dat de halffabricaten in
alle wachtrijen even groot zijn, geldt dat de bewezen bovengrens gelijk
is aan de bewezen ondergrens en het asymptotisch gedrag dus gelijk is
aan het vermoeden.

1 Inleiding

In een fabriekshal met meerdere servers achter elkaar kan het zijn dat de ene
server veel langzamer werkt dan de ander en eigenlijk de aanvoer niet aan
kan. Daarom heeft een fabriekshal een bepaalde voorraadcapaciteit nodig
om de halffabricaten die staan te wachten om de volgende server in te gaan,
zelf op te kunnen slaan. De vraag hierbij is hoeveel capaciteit hiervoor
nodig is, zodanig dat er ook tijdens piekbelasting genoeg ruimte is om de
halffabricaten op te slaan. En met welke kans deze capaciteit niet voldoende
is, waardoor halffabricaten extern moeten worden opgeslagen.

Nu kan het ook nog zijn dat de halffabricaten in de verschillende wachtrijen
niet even groot zijn, maar bijvoorbeeld in een van de servers wordt gehal-
veerd of verdubbeld. Het is dan niet voldoende om alleen te kijken hoeveel
halffabricaten er in de gehele hal aanwezig zijn, want ook de ruimte die deze
innemen moet worden meegenomen. De onderzoeksvraag van dit artikel is
daarom:

Wat is de kans op een grote benodigde voorraadcapaciteit voor
een fabriekshal met twee servers achter elkaar wanneer de half-
fabricaten in de wachtrijen niet even groot zijn?

Vaak komen halffabricaten in een fabriekshal aan met stochastische tus-
senaankomsttijden en ook de servers zullen stochastische bedieningstijden

1

hebben. Wanneer in de literatuur wordt gekeken, wordt voor dit soort pro-
bleemstellingen vaak met simulatie een antwoord gezocht. Vaak wordt daar-
bij ook nog gebruik gemaakt van importance sampling zodat de simulatie
sneller grote aantallen halffabricaten in het systeem heeft, zie [2], [3] en [4].
In deze artikelen wordt voor M |M |1 systemen ook een afleiding gevonden
voor het asymptotische gedrag van het aantal halffabricaten in het systeem.
In [1] samen met [6] wordt er voor dit asymptotische gedrag ook een aflei-
ding gevonden voor een systeem met een eindig aantal G|G|1 servers achter
elkaar. In al deze literatuur wordt alleen gekeken naar een groot aantal
halffabricaten in de wachtrijen en wordt de grootte van deze halffabricaten
niet meegenomen.

In dit artikel wordt eerst met behulp van de literatuur gekeken naar het
asymptotische gedrag van het aantal halffabricaten in het gehele systeem.
Samen met de resultaten van de gemaakte simulatie is er dan een vermoe-
den ontstaan voor het asymptotische gedrag van het aantal eenheden aan
halffabricaten in het systeem. Er is vervolgens bewezen dat de ondergrens
van dit asymptotische gedrag gelijk is aan het vermoeden. Ook is er voor
dit gedrag een bovengrens bewezen. In het geval dat de halffabricaten in
alle wachtrijen even groot zijn, zijn deze boven- en ondergrens gelijk aan
elkaar.

2 Achtergrond

De onderzoeksvraag gaat over twee servers in serie, waarvan een schemati-
sche weergave is weergegeven in Figuur 1. Er zal echter ook gekeken worden
naar een systeem met slechts één server en naar systemen met een eindig
aantal servers achter elkaar. Het aantal halffabricaten in het gehele systeem
is dus het aantal halffabricaten in de wachtrijen voor iedere server plus de
halffabricaten die in de servers aanwezig zijn. Na de laatste server verlaat
de halffabricaat gelijk de hal.

Figuur 1: Schematische weergave fabriekshal.

2

De probleemstelling gaat over de kans dat het aantal halffabricaten in het
systeem een bepaalde grote waarde overstijgt. Hiervoor zou gekeken kunnen
worden naar de stationaire kans dat het systeem zich in een bepaalde toe-
stand bevindt. Dit wordt geschreven als P (L ≥M) = limt→∞ P (L(t) ≥M),
waarbij L(t) staat voor het aantal halffabricaten in het systeem op tijdstip
t. Naast deze stationaire kansen kan er ook gekeken worden naar de kans
dat het systeem eerder een bepaald aantal halffabricaten bereikt, voordat
het systeem weer leeg is. Dit wordt weergegeven als P (tM < t0) met tM het
tijdstip dat er voor het eerst M halffabricaten in het systeem aanwezig zijn
en t0 het tijdstip waarop het systeem weer voor het eerst leeg is.

Er zal echter niet alleen worden gekeken naar de kans op een gegeven aantal
halffabricaten in het systeem, maar ook naar de hoeveelheid ruimte die deze
innemen. Hierbij wordt gi gebruikt voor de grootte van de halffabricaten
in de wachtrij bij server i. De stationaire kans verandert nu naar P (W ≥
N) = limt→∞ P (W (t) ≥ N), waarbij W (t) staat voor het aantal eenheden
aan halffabricaten in het systeem op tijdstip t. Bij de hoeveelheid eenheden
die in een actieve periode, de tijd tussen twee opeenvolgende lege systemen,
bereikt wordt, staat t̂N voor het tijdstip dat er voor het eerst minstens N
eenheden aan halffabricaten in het systeem aanwezig zijn. De kans wordt
nu genoteerd als P (t̂N < t0).

2.1 Stationaire kansen

Wanneer de aankomst- en bedieningsverdelingen exponentieel zijn met res-
pectievelijk variabelen λ en µi, kan het volgende worden gezegd over de
stationaire kansen.

Neem Pi = limt→∞ P (L(t) = i). Voor een enkele server is dan bekend dat
Pi = ρi1(1− ρ1) = ρi1 − ρ

i+1
1 , met ρj = λ

µj
[5]. Hieruit volgt dat:

P (L ≥M) = 1− P (L ≤M − 1)

= 1−
M−1∑
k=0

Pk

= 1−
M−1∑
k=0

(ρk1 − ρk+1
1)

= 1− (ρ0
1 − ρM1)

= ρM1 .

3

Bij twee servers achter elkaar geldt voor de eerste server nog steeds dat
P (L1 = m1) = ρm1

1 (1 − ρ1) met Li het aantal halffabricaten in de wachtrij
van server i, inclusief die in service, op tijdstip t→∞. Voor de tweede server
geldt bij deze verdelingen van de eerste server, dat de aankomstverdeling
ook exponentieel met parameter λ is. Voor de tweede server geldt dus ook
dat P (L2 = m2) = ρm2

2 (1 − ρ2). Voor de gezamenlijke kans geldt dat
P (L1 = m1, L2 = m2) = ρm1

1 (1− ρ1)ρm2
2 (1− ρ2).

Omdat L = L1 + L2, is stationaire kans af te leiden als:

P (L ≥M) = 1− P (L ≤M − 1)

= 1−
M−1∑
k=0

k∑
i=0

P (L1(t) = i, L2(t) = k − i)

= 1−
M−1∑
k=0

(1− ρ1)(1− ρ2)
k∑
i=0

ρi1ρ
k−i
2

= 1−
M−1∑
k=0

(1− ρ1)(1− ρ2)
ρk+1

1 − ρk+1
2

ρ1 − ρ2

= 1− (1− ρ1)(1− ρ2)

ρ1 − ρ2

 M∑
j=1

ρj1 −
M∑
l=1

ρl2


= 1− (1− ρ1)(1− ρ2)

ρ1 − ρ2

(
1− ρM+1

1

1− ρ1
− 1−

(
1− ρM+1

2

1− ρ2
− 1

))

= 1 + ρM+1
1

(
1− ρ2

ρ1 − ρ2

)
− ρM+1

2

(
1− ρ1

ρ1 − ρ2

)
− 1.

Als nu ci = 1−ρi
ρ1−ρ2 , kan de kans worden geschreven als c2ρ

M+1
1 −c1ρ

M+1
2 . Ver-

der impliceert ρ1 < ρ2 dat c1, c2 < 0 en vice versa. Als nu M naar oneindig
wordt genomen, domineert de grootste term dus gaat de kans richting:

lim
M→∞

P (L ≥M) ≈

{
c1ρ

M+1
2 als ρ1 < ρ2

c2ρ
M+1
1 als ρ1 > ρ2.

4

2.2 Aantal halffabricaten in actieve periode

Wanneer er gekeken wordt naar het aantal halffabricaten dat in een actieve
periode bereikt wordt, is er voor een stabiel G|G|1 systeem met een ein-
dig aantal servers achter elkaar bekend dat limM→∞

1
M logP (KM < K0) =

ΛA(−θmin) [1][6]. Hierbij is KM de index van de eerste halffabricaat die
ervoor zorgt dat er M halffabricaten in het systeem zijn en K0 de in-
dex van de eerste halffabricaat die in een leeg systeem arriveert. Daar-
naast is ΛX(θ) = logE[eθX] en θmin = minj(θj) waarbij geldt dat θj =
supθ

{
ΛA(−θ) + ΛBj (θ) ≤ 0

}
. Hierbij is A de verdeling van de tussenaan-

komsttijden en Bj de verdeling van de bedieningstijden bij server j. Nu
geldt er het volgende:

Theorie 1. Voor een eindig aantal servers achter elkaar geldt dat
limM→∞

1
M logP (tM < t0) = ΛA(−θmin).

Bewijs. Uit [1] samen met [6] blijkt dat limM→∞
1
M logP (KM < K0) =

ΛA(−θmin). Ook geldt dat tM =
∑KM−1

k=1 Ak met Ak de tijd tussen de

aankomst van halffabricaat k en k + 1 en t0 ∈
[∑K0−2

k=1 Ak,
∑K0−1

k=1 Ak

]
,

omdat dit tijdstip zit tussen de aankomst van de halffabricaat die een leeg
systeem voor zich ziet en de halffabricaat daarvoor.

We nemen aan dat M > 0 dus nu zijn er twee gevallen mogelijk:

• KM < K0. Omdat Ki gehele getallen zijn, is dit gelijk aan KM ≤ K0−
1. Nu geldt dat t0 ≥

∑K0−2
k=1 Ak =

∑(K0−1)−1
k=1 Ak ≥

∑KM−1
k=1 Ak = tM .

t0 en tM kunnen echter nooit gelijk zijn aan elkaar, dus is t0 > tM .

• KM > K0. Nu geldt dat t0 ≤
∑K0−1

k=1 Ak <
∑KM−1

k=1 Ak = tM .

Hieruit volgt dus dat KM < K0 ⇒ tM < t0 en KM > K0 ⇒ tM >
t0. Wat weer impliceert dat de kans op de gebeurtenissen gelijk is, dus
P (KM < K0) = P (tM < t0). Dit geeft dat limM→∞

1
M logP (tM < t0) =

limM→∞
1
M logP (KM < K0) = ΛA(−θmin).

Een gevolg van deze theorie is:

Gevolg 1.1. Wanneer de aankomsten exponentieel verdeeld zijn met pa-
rameter λ en server i bedieningstijden heeft die exponentieel verdeeld zijn

met parameter µi, geldt dat limM→∞
1
M logP (tM < t0) = log

(
λ

µmin

)
met

µmin = mini µi.

5

Bewijs. Uit Theorie 1 volgt dat limM→∞
1
M logP (tM < t0) = ΛA(−θmin).

Voor de exponentiële verdelingen geldt dat:

θi = sup
θ
{ΛA(−θ) + ΛBi(θ) ≤ 0}

= sup
θ

{
log

λ

λ+ θ
+ log

µi
µi − θ

≤ 0

}
= sup

θ

{
log

λµi
(λ+ θ)(µi − θ)

≤ 0

}
= sup

θ

{
λµi

λµi + (µi − λ)θ − θ2
≤ 1

}
= sup

θ

{
λµi ≤ λµi + (µi − λ)θ − θ2

}
= sup

θ

{
θ2 ≤ (µi − λ)θ

}
= µi − λ.

Dus θmin = µmin − λ met µmin = mini µi.

Voor de kans geldt nu:

lim
M→∞

1

M
logP (tM < t0) = ΛA(−θmin)

= log

(
λ

λ+ (µmin − λ)

)
= log

(
λ

µmin

)
.

2.2.1 Verschillende groottes van halffabricaten

Theorie 1 en Gevolg 1.1 gaan over het aantal halffabricaten in de fabrieks-
hal, maar de onderzoeksvraag gaat ook over de hoeveelheid ruimte die
deze innemen. Wanneer er wordt aangenomen dat de halffabricaten in
alle wachtrijen nog steeds even groot zijn, maar nu g eenheden, blijven
de kansen op een bepaald aantal halffabricaten gelijk. Er geldt dus dat
P (t̂N < t0) = P (tM < t0), met M = N

g . De kans op K eenheden is dus
g keer zo groot als de kans op K halffabricaten. Daardoor ontstaat het
vermoeden dat limN→∞

1
N logP (t̂N < t0) = 1

gΛA(−θmin) = maxi
1
gΛA(−θi).

6

Het asymptotische gedrag hangt dus af van θmin wat gelijk is aan de θ beho-
rende bij de langzaamste server. Wanneer de halffabricaten in de wachtrijen
niet dezelfde grootte hebben, is het vermoeden dat dit gedrag niet altijd meer
afhangt van de langzaamste server. Wanneer de halffabricaten in de snellere
server namelijk veel groter zijn dan bij de langzame, zal de ruimte die nodig
is meer afhangen van de snelle server. Daarom is het vermoeden ontstaan dat
het asymptotische gedrag voor het aantal eenheden aan halffabricaten in het
systeem in de buurt ligt van limN→∞

1
N logP (t̂N < t0) = maxi

1
gi

ΛA(−θi).

3 Simulatie

Om te kijken of het vermoeden kan kloppen, is er van de probleemstelling
een simulatie gemaakt. Dit is gedaan voor een fabriekshal met één server en
met twee servers.

3.1 Enkele server

Voor de simulatie met één server zijn de volgende toestandsvariabelen ge-
bruikt:

T Het tijdstip waarop de simulatie zich bevindt.

Tvorig Het tijdstip van de vorige gebeurtenis.

A Het tijdstip waarop de volgende halffabricaat arriveert.

B1 Het tijdstip waarop de eerste server klaar is met zijn huidige halffa-
bricaat.

W1 Het aantal halffabricaten in de wachtrij voor de eerste server, inclu-
sief de halffabricaat in de server, op tijdstip T .

Wmax Het grootste aantal halffabrictaten in de server bereikt in de huidige
actieve periode.

De stationaire kansen zullen worden bijgehouden in Ltijd, deze houdt bij
hoeveel tijd de simulatie een bepaald aantal halffabricaten in het systeem
heeft. De maximale hoeveelheid halffabricaten die per actieve periode in de
fabriekshal aanwezig was, wordt bijhouden in Lmax.

Om de simulatie iets sneller te laten lopen, is er aangenomen dat de simulatie
begint op T = 0 wanneer de eerste halffabricaat de eerste server in gaat.

7

De simulatie ziet er als volgt uit:

genereer eerste A en B1

W1 ← 1
T ← 0
while T < gewilde tijdspanne do

Tvorig ← T
T ← min(A,B1)
Ltijd[W1]← Ltijd[W1] + (T − Tvorig)
if W1 > Wmax then

Wmax ←W1

else if W1 = 0 then
Lmax[Wmax]← Lmax[Wmax] + 1
Wmax ← 0

end if
if T = A then

W1 ←W1 + 1
genereer nieuwe A
if W1 = 1 then

genereer nieuwe B1

end if
else if T = B1 then

W1 ←W1 − 1
if W1 > 0 then

genereer nieuwe B1

end if
end if

end while.

Het genereren van de nieuwe aankomst- en bedieningstijden hangt van de
verdeling af. Door de soort verdeling en bijbehorende variabelen in te voeren,
worden er random getallen gegenereerd volgens die verdeling. Deze getallen
worden dan telkens opgeteld bij de huidige simulatietijd T .

3.2 Twee servers

Voor de simulatie met twee servers is de simulatie van de enkele server
uitgebreid met de volgende variabelen:

B2 Het tijdstip waarop de tweede server klaar is met zijn huidige half-
fabricaat.

8

W2 Het aantal halffabricaten in de wachtrij voor de tweede server, in-
clusief die in de server.

gi Grootte van halffabricaat in wachtrij i, alleen als geheel getal.

W Het aantal eenheden aan halffabricaten in de eerste en tweede wacht-
rij bij elkaar opgeteld.

In deze simulatie gaan Wmax, Lmax en Ltijd over het aantal halffabricaten in
beide wachtrijen, dus over W . Deze wordt na het gelijkstellen van Tvorig aan
T berekend doorW = W1g1+W2g2. In de simulatie verandertW1 in dezeW ,
wordt er naast A en B1 ook B2 gegenereerd en wordt T = min(A,B1, B2).

Wanneer T = B2 gebeurt nu wat er bij een enkele server gebeurde op T =
B1, hierbij veranderen B1 en W1 in respectievelijk B2 en W2. Als nu T = B1

gebeurt er:

W1 ←W1 − 1
W2 ←W2 + 1
if W1 > 0 then

genereer B1

end if
if W2 = 1 then

genereer B2

end if.

3.3 Betrouwbaarheidsinterval

Wanneer de simulatie is afgelopen, zijn Lmax en Ltijd lijsten geworden met
verschillende waarden voor het aantal eenheden aan halffabricaten in het
systeem. Van deze waarden kan nu per aantal een gemiddelde kans met bij-
behorend betrouwbaarheidsinterval worden berekend. Hiervoor zal er eerst
een simulatie van Q actieve periodes worden uitgevoerd om te bepalen welke
tijd dit inneemt, waarna de simulatie R keer over deze tijdspanne zal wor-
den uitgevoerd. Lmax wordt steeds weer meegegeven en blijft één lijst, Ltijd
wordt een matrix met in elke rij de waarden van een simulatie.

Om het gemiddelde kansen van Ltijd te berekenen, worden de R rijen eerst
allemaal omgezet van tijden naar kansen. De kans dat er in simulatie i
minstens j eenheden aan halffabricaten in het systeem waren, is gelijk aan

Xi,j =
∑∞

k=j Ltijd[i][k]

tijdspanne . Van al deze kansen wordt nu per aantal eenheden aan

9

halffabricaten een gemiddelde kans berekend: X̄j =
∑R

i=1Xi,j

R . Hierna wordt

voor ieder aantal de steekproefvariantie berekend door S2
j =

∑R
i=1 (Xi,j−X̄j)2

R−1 .

Lmax is één lijst over RQ actieve periodes. De gemiddelde kans dat er nu
tijdens een actieve periode meer dan j eenheden aan halffabricaten in het

systeem hebben gezeten, is gelijk aan X̄j =
∑∞

k=j Lmax[k]

RQ . In de lijst van
steekproefvarianties is de waarde bij minstens j eenheden aan halffabricaten

gelijk aan S2
j =

∑RQ
i=1 (Xi,j−X̄j)2

RQ−1 , met Xi,j = 1 als in actieve periode i meer
dan j eenheden aanwezig zijn geweest. Anders is Xi,j gelijk aan 0.

Nadat de gemiddeldes en steekproefvarianties bekend zijn, kunnen de fout-

marges berekend worden. Deze is voor Ltijd gelijk aan z1−α/2

√
S2

R en voor

Lmax aan z1−α/2

√
S2

RQ . Voor een 95% betrouwbaarheidsinterval is α gelijk

aan 0,05 en hoort bij z0,975 = 1, 96. De hieruit komende lijsten samen met
de lijsten van gemiddeldes geeft voor ieder aantal eenheden aan halffabri-
caten in het systeem aan in welk interval de kans ligt dat dit aantal wordt
bereikt.

4 Resultaten

Uit de simulatie komen dus de gemiddeldes en bijbehorende betrouwbaar-
heidsintervallen van twee lijsten, Lmax en Ltijd.

Uit Theorie 1 volgt dat voor het aantal halffabricaten in het systeem geldt
dat:

lim
M→∞

1

M
logP (tM < t0) = ΛA(−θmin),

lim
M→∞

logP (tM < t0)
1
M = logMA(−θmin),

lim
M→∞

P (tM < t0) ≈ eM logMA(−θmin),

lim
M→∞

P (tM < t0) ≈MA(−θmin)M .

Met deze theoretische waarden zullen de resultaten uit de simulatie daarom
worden vergeleken. Omdat deze kans alleen geldt in de limiet, worden er
aankomst- en bedieningsverdelingen gekozen die in de buurt liggen van insta-
biliteit. In die gevallen worden er namelijk grotere waarden van M bereikt.

10

Alle onderstaande resultaten zijn berekend met R = 10000 simulaties van
een duur van Q = 1000 actieve periodes en een 95 procent betrouwbaar-
heidsinterval.

4.1 Enkele server

Voor een fabriekshal met slechts één server komen er uit de simulatie de vol-
gende resultaten, zie Tabellen 1 tot en met 3. Ook de theoretische waarden
MA(−θ1)M zijn gegeven.

Tabel 1: A ∼ exp(1
5), B1 ∼ exp(1

4.5)

M Lmax Ltijd Theoretisch

20 0.015±0.0001 0.120±0.001 0.122

40 0.0016±0.00002 0.0143±0.0004 0.0148

60 0.00018±0.00001 0.00172±0.00014 0.00180

80 0.000020±0.0003 0.000236±0.000056 0.000218

100 0.0000032±0.0000010 0.0000365±0.0000195 0.0000266

Tabel 2: A ∼ exp(1
5), B1 ∼ U(1, 8.8)

M Lmax Ltijd Theoretisch

50 0.008±0.00005 0.185±0.002 0.189

100 0.0011±0.00002 0.0336±0.0009 0.0357

150 0.00019±0.00001 0.00611±0.00042 0.00676

200 0.00003±0.000003 0.00119±0.00020 0.00128

250 0.000006±0.000001 0.000250±0.000096 0.000241

300 0.0000010±0.0000005 0.0000522±0.0000432 0.0000456

Tabel 3: A ∼ U(1, 9), B1 ∼ exp(1
4.5)

M Lmax Ltijd Theoretisch

15 0.0094±0.0001 0.0760±0.0008 0.0726

30 0.00061±0.00001 0.00539±0.00025 0.00526

45 0.000042±0.000004 0.000347±0.000059 0.000382

60 0.0000023±0.0000009 0.0000190±0.0000111 0.0000277

Te zien is dat de waarden van Ltijd bijna allemaal in het betrouwbaarheids-
interval vallen, maar Lmax veel kleiner is. Een reden hiervoor zou kunnen

11

zijn dat bij een enkele server de kans dat het systeem na 1 halffabricaat
alweer leeg kan zijn, relatief groot is. In de resultaten is namelijk te zien
dat Lmax[1] = 1 en Lmax[2] afzakt naar 0.6 of zelfs 0.4, terwijl dit 0.8 of
0.9 hoort te zijn. Er zijn dus relatief veel actieve periodes die maximaal 1
halffabricaat in het systeem hadden, waardoor de kansen op grotere waarden
kleiner worden.

4.2 Aantal halffabricaten bij dubbele server

Voor twee servers achter elkaar waarbij gekeken wordt hoeveel halffabricaten
in de wachtrijen staan, zijn de resultaten te zien in Tabellen 4 tot en met 6.
Hier zijn de theoretische waarden gelijk aan maxiMA(−θi)M .

Tabel 4: A ∼ exp(1
5), B1 ∼ exp(1

4.5), B2 ∼ exp(1
4)

M Lmax Ltijd Theoretisch

25 0.0633±0.0002 0.1255±0.0005 0.0718

50 0.00500±0.00004 0.00917±0.00016 0.00515

75 0.000359±0.000012 0.000662±0.000043 0.000370

100 0.0000253±0.0000032 0.0000523±0.0000128 0.0000266

125 0.00000176±0.00000084 0.00000413±0.00000383 0.00000191

Tabel 5: A ∼ exp(1
5), B1 ∼ U(1, 8), B2 ∼ exp(1

4)

M Lmax Ltijd Theoretisch

20 0.0527±0.0001 0.0784±0.0004 0.0308

40 0.002318±0.000030 0.002875±0.000076 0.000948

60 0.0000788±0.0000055 0.0000965±0.0000161 0.0000292

80 0.00000274±0.000000103 0.00000413±0.00000377 0.00000090

Tabel 6: A ∼ U(1, 9), B1 ∼ U(1, 8.8), B2 ∼ exp(1
4)

M Lmax Ltijd Theoretisch

25 0.0609±0.0001 0.1344±0.0006 0.0927

50 0.00511±0.00004 0.01234±0.00023 0.00858

75 0.000468±0.000013 0.001155±0.000071 0.000795

100 0.0000432±0.0000040 0.0001013±0.0000205 0.0000737

125 0.00000337±0.00000112 0.00000675±0.00000540 0.00000683

12

Hier is te zien dat waarden niet helemaal overeenkomen met de betrouwbaar-
heidsintervallen, maar wel in dezelfde orde van grootte vallen. De verschillen
zouden kunnen zitten in het feit dat de theoretische waarden eigenlijk een
benadering zijn die alleen in de limiet gelden.

4.3 Aantal eenheden aan halffabricaten bij dubbele server

Wanneer er wordt gekeken naar de hoeveelheid eenheden die de halffabrica-

ten innemen, is het vermoeden dat de kans de vorm heeft van maxiMA(−θi)
N
gi .

In Tabellen 7 tot en met 9 worden de resultaten daarom vergeleken met deze
waarden.

Tabel 7: A ∼ exp(1
5), B1 ∼ exp(1

4.5), B2 ∼ exp(1
4), , g1 = 2, g2 = 2

N Lmax Ltijd Vermoeden

50 0.0633±0.0002 0.1257±0.0005 0.0718

100 0.00504±0.00004 0.00923±0.00015 0.00515

150 0.000359±0.000012 0.000642±0.000040 0.000370

200 0.0000238±0.0000030 0.0000388±0.0000095 0.0000266

225 0.00000622±0.00000459 0.00000972±0.00000855 0.00000712

250 0.00000111±0.00000065 0.00000348±0.00000337 0.00000191

Tabel 8: A ∼ exp(1
5), B1 ∼ exp(1

4), B2 ∼ exp(1
2), , g1 = 1, g2 = 25

N Lmax Ltijd Vermoeden

50 0.462±0.0003 0.161±0.0001 0.160

100 0.1257±0.0002 0.0257±0.0001 0.00256

150 0.02721±0.00010 0.00411±0.00002 0.00410

200 0.004779±0.000043 0.000656±0.000010 0.000655

250 0.000779±0.000017 0.000105±0.000004 0.000105

300 0.0001267±0.0000070 0.0000162±0.0000015 0.0000168

350 0.00001856±0.00000269 0.00000249±0.00000058 0.00000268

Net zoals bij de dubbele server waarbij gekeken werd naar het aantal half-
fabricaten, vallen de waarden van het vermoeden weer niet altijd in het be-
trouwbaarheidsinterval, maar zijn de kansen vaak wel in dezelfde orde van
grootte. De waarden van Ltijd komen nog het beste overeen en de waarden
voor Lmax zijn bijna altijd groter dan het vermoeden. Het verschil zou weer
kunnen zitten in het feit dat het vermoeden weer een benadering. Ook kan er

13

Tabel 9: A ∼ U(1, 9), B1 ∼ U(1, 8.8), B2 ∼ exp(1
4), , g1 = 1, g2 = 25

N Lmax Ltijd Vermoeden

200 0.2394±0.0003 0.0607±0.0001 0.0505

400 0.03330±0.00011 0.00299±0.00002 0.00255

600 0.001998±0.000026 0.000146±0.000004 0.000129

800 0.00010102±0.00000596 0.00000769±0.00000089 0.00000649

900 0.00002400±0.00000291 0.00000189±0.00000048 0.00000146

1000 0.000005129±0.000001343 0.000000359±0.000000247 0.000000327

worden meegenomen dat het vermoeden gaat over het asymptotische gedrag
en dus alleen geldt voor grote waarden van N . In Tabel 9 lijkt 1000 heel
groot, maar gedeeld door g2 zijn er eigenlijk pas rond de 40 halffabricaten
in het systeem aanwezig.

5 Bewijs

Met behulp van de simulaties is dus het volgende vermoeden ontstaan:
limN→∞

1
N logP (t̂N < t0) = maxi

1
gi

ΛA(−θi). Omdat de resultaten uit de
simulaties bijna altijd groter waren dan dit vermoeden, zal eerst de onder-
grens worden bewezen.

Theorie 2. Voor een systeem met een eindig aantal servers achter elkaar,
geldt dat limN→∞

1
N logP (t̂N < t0) ≥ maxi

1
gi

ΛA(−θi).

Bewijs. Neem ti,j voor het tijdstip dat er bij server i voor het eerst j half-
fabricaten aanwezig zijn en tj voor het tijdstip dat er in het gehele systeem
voor het eerst j halffabricaten aanwezig zijn. Volgens Theorie 1 geldt voor
het aantal halffabricaten in een systeem met maar één server:

lim
M→∞

1

M
logP (t1,M < t1,0) = ΛA(−θ1).

Wanneer de halffabricaten van deze server nu een grootte van g1 eenheden
krijgen, is tijdstip t1,M gelijk aan t̂1,N waarop voor het eerst N = Mg1

14

eenheden bij de eerste server aanwezig zijn. Nu geldt dat:

lim
N→∞

1

N
logP (t̂1,N < t1,0) = lim

M→∞

1

Mg1
logP (t1,M < t1,0)

=
1

g1
lim
M→∞

1

M
logP (t1,M < t1,0)

=
1

g1
ΛA(−θ1).

Doordat er geen verdere aannames over deze eerste server zijn gedaan,
geldt voor alle servers in het systeem dat limN→∞

1
N logP (t̂i,N < ti,0) =

1
gi

ΛA(−θi), wanneer zij alleen in de serie zouden staan.

Om nu over te gaan naar P (t̂N < t0) kan er worden beredeneerd dat deze
kans altijd groter is dan P (t̂i,N < ti,0). Er geldt namelijk altijd dat t̂N ≤ t̂i,N ,
omdat het onmogelijk is dat er eerder N eenheden aan halffabricaten bij
server i staan dan in het gehele systeem. Daarnaast geldt altijd dat t0 ≥ ti,0,
want het hele systeem kan pas leeg zijn als wachtrij i dit ook is. Hieruit volgt
dat t̂i,N < ti,0 ⇒ t̂N ≤ t̂i,N < t1,0 ≤ t0, dus t̂N < t0. Dit geeft weer dat
limN→∞

1
N logP (t̂N < t0) ≥ limN→∞

1
N logP (t̂i,N < ti,0) voor alle servers

in de serie, dus in het bijzonder ook voor het maximum. Hieruit volgt dat:

lim
N→∞

1

N
logP (t̂N < t0) ≥ max

i
lim
N→∞

1

N
logP (t̂i,N < ti,0)

= max
i

1

gi
ΛA(−θi).

Deze theorie zegt alleen iets over het bereiken van een bepaald groot aantal
eenheden in een actieve periode, maar ook over de stationaire kansen kan
nu het volgende worden bewezen.
Gevolg 2.1. limN→∞

1
N logP (W ≥ N) ≥ maxi

1
gi

ΛA(−θi).

Bewijs. Uit [1] samen met Theorie 1 is bekend dat onder bepaalde voor-
waarden geldt dat P (L ≥ M) ≥ P (tM < t0). Door middel van soortgelijke
argumenten kan worden bewezen dat ook geldt dat:

lim
N→∞

1

N
logP (W ≥ N) ≥ lim

N→∞

1

N
logP (t̂N < t0)

≥ max
i

1

gi
ΛA(−θi).

15

Nu de ondergrens gelijk is aan het vermoeden, is alleen nog nodig te bewij-
zen dat dit ook gelijk is aan de bovengrens. Voor de bovengrens kan het
volgende worden bewezen:

Theorie 3. Voor een systeem met een eindig aantal servers achter elkaar,
geldt dat limN→∞

1
N logP (t̂N < t0) ≤ 1

maxi gi
maxj ΛA(−θj).

Bewijs. Wanneer t̂N < t0 zijn er in die actieve periode dus meer dan N
eenheden aan halffabricaten aanwezig geweest. Dit kan alleen als er minstens

Mmin =
⌈

N
gmax

⌉
halffabricaten in het systeem hebben gezeten, hierbij is

gmax = maxi gi. Er geldt dus dat tMmin ≤ t̂N wat weer impliceert dat
P (t̂N < t0) ≤ P (tMmin < t0). Uit [1] samen met Theorie 1 is bekend dat
onder bepaalde voorwaarden geldt dat P (L ≥ M) ≥ P (tM < t0). Hieruit
volgt dat:

lim
N→∞

1

N
logP (t̂N < t0) ≤ lim

Mmin→∞

1

Mmingmax
logP (tMmin < t0)

≤ 1

gmax
lim

Mmin→∞

1

Mmin
logP (L ≥Mmin).

Uit [1] blijkt dit laatste limiet kleiner te zijn dan ΛA(−θmin), waaruit volgt
dat:

lim
N→∞

1

N
logP (t̂N < t0) ≤ 1

gmax
ΛA(−θmin)

=
1

maxi gi
max
j

ΛA(−θj).

Een gevolg van deze theorie is:
Gevolg 3.1. Wanneer ∀i, j geldt dat gi = gj volgt limN→∞

1
N logP (t̂N <

t0) = maxi
1
gi

ΛA(−θi).

Bewijs. Theorie 2 geeft al dat limN→∞
1
N logP (t̂N < t0) ≥ maxi

1
gi

ΛA(−θi).
Als ∀i, j geldt dat gi = gj , geldt ook dat 1

maxi gi
= 1

gi
= maxi

1
gi

. Met Theorie

16

3 geeft dit:

lim
N→∞

1

N
logP (t̂N < t0) ≤ 1

maxi gi
max
j

ΛA(−θj)

=
1

gj
max
j

ΛA(−θj)

= max
j

1

gj
ΛA(−θj).

Deze boven- en ondergrens samen geeft dat limN→∞
1
N logP (t̂N < t0) =

maxi
1
gi

ΛA(−θi).

Wanneer alle halffabricaten dus even groot zijn, is het asymptotische gedrag
gelijk aan het vermoeden. Er wordt eigenlijk weer alleen gekeken naar het
aantal halffabricaten, waardoor dit hetzelfde resultaat is als in [1]. Het
verschil is alleen dat er nu kan worden meegenomen hoeveel ruimte deze
halffabricaten in zullen nemen.

Als de resultaten van de simulatie worden vergeleken met de waarden van de
bewezen bovengrens, is deze in de limiet vele malen groter en helemaal niet
meer in dezelfde orde van grootte. Het is ook een vreemde intüıtie dat de
kans zich gedraagt naar de langzaamste server en de grootste grootte, terwijl
deze misschien helemaal niet bij elkaar horen. Daarom blijft het vermoeden
dat het asymptotisch gedrag zich gedraagt als de bewezen ondergrens.

6 Conclusie

De onderzoeksvraag van dit artikel was: Wat is de kans op een grote beno-
digde voorraadcapaciteit voor een fabriekshal met twee servers achter elkaar
wanneer de halffabricaten in de wachtrijen niet even groot zijn? In de li-
teratuur is al te vinden welk asymptotisch gedrag het aantal halffabricaten
in het systeem heeft. Niet alleen voor een systeem met twee servers, maar
voor een eindig aantal servers achter elkaar.

Als na de eerste server de halffabricaten een andere grootte krijgen dan er-
voor, is het interessanter om te weten welke ruimte deze grote aantallen
halffabricaten innemen. Hiervoor is met behulp van simulatie een vermoe-
den ontstaan voor het asymptotische gedrag van het aantal eenheden aan
halffabricaten in de fabriekshal. Er is bewezen dat dit gedrag altijd tussen

17

een bepaalde boven- en ondergrens ligt. Ook dit is niet alleen gedaan voor
twee, maar voor een eindig aantal servers achter elkaar. Deze ondergrens
is gelijk aan het vermoeden. De bovengrens ligt er nog boven, maar in het
geval dat de halffabricaten in alle wachtrijen even groot zijn, is deze ook
gelijk aan het vermoeden.

Met dit onderzoek kan dus bepaald worden tussen welke waarden het asymp-
totische gedrag ligt van het aantal eenheden aan halffabricaten in een fa-
briekshal met twee, maar ook voor meer servers. Voor verder onderzoek
zou er nog gekeken kunnen worden of de bovengrens misschien nog kleiner
kan worden bewezen. Ook zou de simulatie kunnen worden verbeterd, waar-
door er sneller grotere aantallen halffabricaten in het systeem aanwezig zijn.
Daarnaast kan de simulatie worden uitgebreid naar meer dan twee servers
om na te gaan of de waarden dan nog steeds in de buurt van het vermoeden
liggen.

Referenties

[1] Anne Buijsrogge, Pieter-Tjerk de Boer, Karol Rosen, and Werner Schein-
hardt. Large deviations for the total queue size in non-markovian tandem
queues. Queueing Systems, pages 1–8, 2017.

[2] Pieter-Tjerk De Boer. Analysis of state-independent importance-
sampling measures for the two-node tandem queue. ACM Transacti-
ons on Modeling and Computer Simulation (TOMACS), 16(3):225–250,
2006.

[3] Philip Heidelberger. Fast simulation of rare events in queueing and relia-
bility models. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 5(1):43–85, 1995.

[4] Shyam Parekh and Jean Walrand. A quick simulation method for exces-
sive backlogs in networks of queues. IEEE Transactions on Automatic
Control, 34(1):54–66, 1989.

[5] Sheldon M Ross. Introduction to probability models. Academic press,
2007.

[6] John S Sadowsky. Large deviations theory and efficient simulation of ex-
cessive backlogs in a GI/GI/m queue. IEEE Transactions on Automatic
Control, 36(12):1383–1394, 1991.

18

A Python code voor dubbele server

import random
import math

#een v a r i a b e l e u i t v e r s c h i l l e n d e v e rde l i n g en ha len
def u i t v e r d e l i n g (verd) :

i f verd [0] == ’ uniform ’ :
X = random . uniform (verd [1] , verd [2])

e l i f verd [0] == ’ exp ’ :
X = −verd [1] ∗ math . l og (random . uniform (0 , 1))

e l i f verd [0] == ’ normaal ’ :
X = random . normalvar iate (verd [1] , verd [2])

e l i f verd [0] == ’ d e t e r m i n i s t i s c h ’ :
X = verd [1]

e l i f verd [0] == ’ hyper ’ :
u = random . uniform (0 , 1)
kans = verd [1]
for i in range (int ((len (verd) −1)/2)) :

i f u < kans :
mu = verd [i ∗ 2 + 2]
break

else :
kans += verd [i ∗ 2 + 3]

X = −mu ∗ math . l og (random . uniform (0 , 1))
return X

#ui t voe ren b i j aankomst
def aankomst (T, B1 , W1, t i j d en , verdA , verdB1) :

i f B1 < T:
B1 = T + u i t v e r d e l i n g (verdB1)
t i j d e n . append (B1)

W1 += 1
A = T + u i t v e r d e l i n g (verdA)
t i j d e n . append (A)
return A, B1 , W1, t i j d e n

#ui t voe ren b i j e inde bed i en ing s e r v e r 1
def bed ien ing1 (T, B2 , W1, W2, t i j d en , verdB1 , verdB2) :

19

W1 −= 1
W2 += 1
i f W1 > 0 :

B1 = T + u i t v e r d e l i n g (verdB1)
t i j d e n . append (B1)

else :
B1 = −1

i f B2 < T:
B2 = T + u i t v e r d e l i n g (verdB2)
t i j d e n . append (B2)

return B1 , B2 , W1, W2, t i j d e n

#ui t voe ren b i j e inde bed i en ing s e r v e r 2
def bed ien ing2 (T, W, t i j d en , verdB2) :

W−= 1
i f W > 0 :

B2 = T + u i t v e r d e l i n g (verdB2)
t i j d e n . append (B2)

else :
B2 = −1

return B2 , W, t i j d e n

#l i j s t van t i j d e n updaten
def updateL t i jd (L , W, T, T vor ig) :

while W > len (L)−1:
L . append (0)

L [W] += T − T vor ig
return L

#l i j s t van maximale l e n g t e wach t r i j updaten
def updateL max (L , W) :

while W > len (L)−1:
L . append (0)

L [W] += 1
return L

#i n i t i e l e s imu l a t i e om t i j d spanne t e berekenen
def s im per \

(aant per , g1 , g2 , verdA , verdB1 , verdB2) :
T = 0

20

A = u i t v e r d e l i n g (verdA)
B1 = u i t v e r d e l i n g (verdB1)
B2 = 0
t i j d e n = [A, B1]
W1 = 1
W2 = 0
W max = W1∗g1 + W2∗g2
L t i j d = []
L max = []
pe r i ode = 0
while per iode < aant per :

T vor ig = T
t i j d e n . s o r t ()
T = t i j d e n . pop (0)
W = W1∗g1 + W2∗g2
L t i j d = updateL t i jd (L t i j d , W, T, T vor ig)
i f W > W max:

W max = W
e l i f W == 0 :

L max = updateL max (L max , W max)
per i ode += 1
W max = 0

i f T == A:
A, B1 , W1, t i j d e n = \

aankomst (T, B1 , W1, t i j d en , verdA , verdB1)
e l i f T == B1 :

B1 , B2 , W1, W2, t i j d e n = \
bed ien ing1 (T, B2 , W1, W2, t i j d en , verdB1 , verdB2)

else :
B2 , W2, t i j d e n = \

bed ien ing2 (T, W2, t i j d en , verdB2)
return L t i j d , L max , T

#s imu l a t i e z e l f
def s i m t i j d \

(t i j d , L max , g1 , g2 , verdA , verdB1 , verdB2) :
T = 0
A = u i t v e r d e l i n g (verdA)
B1 = u i t v e r d e l i n g (verdB1)
B2 = 0

21

t i j d e n = [A, B1]
W1 = 1
W2 = 0
W max = W1∗g1 + W2∗g2
L t i j d = []
while T < t i j d :

T vor ig = T
t i j d e n . s o r t ()
T = t i j d e n . pop (0)
W = W1∗g1 + W2∗g2
L t i j d = updateL t i jd (L t i j d , W, T, T vor ig)
i f W > W max:

W max = W
e l i f W == 0 :

L max = updateL max (L max , W max)
W max = 0

i f T == A:
A, B1 , W1, t i j d e n = \

aankomst (T, B1 , W1, t i j d en , verdA , verdB1)
e l i f T == B1 :

B1 , B2 , W1, W2, t i j d e n = \
bed ien ing1 (T, B2 , W1, W2, t i j d en , verdB1 , verdB2)

else :
B2 , W2, t i j d e n = \

bed ien ing2 (T, W2, t i j d en , verdB2)
return L t i j d , L max

#be t r ouwbaa rh e i d s i n t e r v a l voor L t i j d berekenen
def b i t i j d (u i tk) :

max = 0
for i in range (len (u i tk)) :

i f len (u i tk [i]) > max:
max = len (u i tk [i])

gem = []
for i in range (max) :

som = 0
for j in range (len (u i tk)) :

i f len (u i tk [j]) > i :
som += ui tk [j] [i]

gem . append (som / len (u i tk))

22

var = []
for i in range (max) :

som = 0
for j in range (len (u i tk)) :

i f len (u i tk [j]) > i :
v e r s c h i l = u i tk [j] [i] − gem [i]
som += v e r s c h i l ∗ v e r s c h i l

else :
som += gem [i]∗gem [i]

var . append (som / (len (u i tk) − 1))
fm = []
for i in range (max) :

fm . append (1 . 9 6 ∗ math . s q r t (var [i] / len (u i tk)))
return gem , fm , max

#be t r ouwbaa rh e i d s i n t e r v a l voor L max berekenen
def bi max (L max) :

max = len (L max)
per = sum(L max)
gem = []
var = []
som = per
for i in range (max) :

gem . append (som / per)
v = 1 − gem [i]
var . append ((som∗v∗v+ \

(per−som)∗gem [i]∗gem [i]) / (per−1))
som −= L max [i]

fm = []
for i in range (max) :

fm . append (1 . 9 6 ∗ math . s q r t (var [i] / per))
return gem , fm , max, per

#experiment u i t voe ren
def u i tvoe r en \
(aant sim , aant per , g1 , g2 , verdA , verdB1 , verdB2) :

u i t k t i j d = []
L max = []
T = 0
for i in range (aant s im) :

23

i f i == 0 :
L t i j d , L max , T = \

s im per (aant per , g1 , g2 , verdA , verdB1 , verdB2)
else :

L t i j d , L max = \
s i m t i j d (T, L max , g1 , g2 , verdA , verdB1 , verdB2)

L t i j d k a n s e n = []
t o t a a l t i j d = sum(L t i j d)
som t i jd = t o t a a l t i j d
for j in range (len (L t i j d)) :

L t i j d k a n s e n . append (som t i jd / t o t a a l t i j d)
som t i jd −= L t i j d [j]

u i t k t i j d . append (L t i j d k a n s e n)
gem ti jd , fm t i jd , max t i jd = b i t i j d (u i t k t i j d)
gem max , fm max , max max , pe r i ode s = bi max (L max)
print (’Max r i j l e n g t e ’ , max max − 1 , max t i jd −1)
print (”Maximale l e n g t e per i ode ”)
print (’ gemiddelde ’ , gem max)
print (’ foutmarge ’ , fm max)
print (” S t a t i o n a i r e kansen ”)
print (’ gemiddelde ’ , gem t i jd)
print (’ foutmarge ’ , f m t i j d)
return T, pe r i ode s

print (u i tvoe r en (10000 , 1000 , 1 , 25 , \
[’ exp ’ , 5] , [’ exp ’ , 4] , [’ exp ’ , 2]))

24

	Inleiding
	Achtergrond
	Stationaire kansen
	Aantal halffabricaten in actieve periode
	Verschillende groottes van halffabricaten

	Simulatie
	Enkele server
	Twee servers
	Betrouwbaarheidsinterval

	Resultaten
	Enkele server
	Aantal halffabricaten bij dubbele server
	Aantal eenheden aan halffabricaten bij dubbele server

	Bewijs
	Conclusie
	Python code voor dubbele server

