DE EFFECTEN VAN CONTEXTUELE VIDEO’S OP RELATIONEEL WISKUNDEBEGRIP VAN LEERLINGEN

Eindverslag Onderzoek van Onderwijs
Master Science Education & Communication

Léon Klunder (s0002895)
Voorwoord

Dit is het eindverslag van mijn Onderzoek van Onderwijs en daarmee de afsluiting van mijn masteropleiding Science Education & Communication aan de Universiteit Twente. Het onderzoek is uitgevoerd op het Twents Carmel College, locatie De Thij. Ten tijde van het onderzoek liep ik hier tevens stage.

Graag wil ik van deze gelegenheid gebruik maken om zowel mijn begeleiders van de Universiteit Twente, Gerard Jeurnink en Jan van der Meij, als die van TCC De Thij, Inge Snippe en Jessica Groenewolt, te bedanken voor de goede begeleiding van mijn onderzoek. Zonder hun opbouwende commentaar was het verslag dat nu voor u ligt van veel mindere kwaliteit geweest.

Daarnaast wil ik heel graag mijn 2 stageklassen, 4 vwo Wi A1 en 4 vwo Wi B2, bedanken. Niet alleen voor hun deelname aan het onderzoek, maar vooral voor de leuke tijd die ik mede dankzij hen heb gehad op TCC De Thij.

Veel leesplezier!

Léon Klunder
Samenvatting

Wiskundedidactici zijn het er al ruim een eeuw niet over eens of wiskunde zonder of met context onderwezen moet worden. In dit onderzoek wordt gekeken naar een nieuwe, meer dynamische vorm van context: contextuele video’s. Met behulp van contextuele video’s wordt een stuk wiskunde onderwezen aan de hand van voor de leerlingen relevante onderwerpen. In het bijzonder wordt er gekeken hoe contextuele video’s op een positieve wijze kunnen bijdragen aan het relationele wiskundebegrip van leerlingen. Hiervoor is gekeken naar het wiskundebegrip van leerlingen die meerdere lessen met contextuele video’s hebben gevolgd.

Uit de resultaten blijkt dat de contextuele video’s zorgen voor authentieke ervaringen die door de leerlingen over lange tijd gekoppeld worden aan de onderliggende wiskunde. Hoewel er nog geen direct bewijs is dat het relationele begrip van de leerlingen verbeterd is door het zien van contextuele video’s, zijn er wel aanwijzingen gevonden dat contextuele video’s de potentie hebben om onder de juiste voorwaarden het relationele begrip van leerlingen op positieve wijze te beïnvloeden.
Inhoudsopgave

VOORWOORD .. 1
SAMENVATTING .. 2
INHOUDSOPGAVE .. 3
1 INLEIDING .. 4
2 THEORETISCH KADER ... 5
 2.1 CONTEXT IN HET WISKUNDEONDERWIJS .. 5
 2.2 RELATIEEL EN INSTRUMENTEEL BEGRIP .. 7
 2.3 COGNITIEVE SCHEMA’S .. 7
 2.4 CONTEXTUELE VIDEO’S ... 8
3 ONDERZOEKSVRAGEN EN VERWACHTINGEN ... 10
 3.1 ONDERZOEKSVRAGEN ... 10
 3.2 VERWACHTINGEN ... 10
4 METHODE .. 12
 4.1 RESPONDENTEN ... 12
 4.2 PROCEDURE .. 12
 4.2.1 Lessen met contextuele video’s .. 12
 4.2.2 Voorbeeld-les met contextuele video: Blackjack ... 13
 4.2.3 Reflectie op de voorbeeld-les .. 15
 4.2.4 Data verzameling ... 15
 4.3 INSTRUMENTEN ... 17
 4.4 ANALYSE ... 17
5 RESULTATEN .. 22
 5.1 RESULTATEN STAP 1 ... 22
 5.2 RESULTATEN STAP 2 ... 23
 5.3 RESULTATEN STAP 3 ... 24
6 CONCLUSIES EN AANBEVELINGEN ... 25
 6.1 DISCUSSIE RESULTATEN EN CONCLUSIES DEELVRAGEN .. 25
 6.2 CONCLUSIE HOOFDVRAG ... 28
 6.3 AANBEVELINGEN .. 28
7 LITERATUUR/REFERENTIES ... 30
8 BIJLAGEN .. 31
 BIJLAGE 1: OVERZICHT LESSEN MET CONTEXTUELE VIDEO’S .. 31
 BIJLAGE 2: LESVOORBEREIDINGSFORMULIER BIJ DE VOORBEELD-LES .. 38
 BIJLAGE 3: VOORBEELD VAN EEN MINDMAP .. 40
 BIJLAGE 4: VOORBEELD VAN DE ANTWOORDBLADEN .. 41
 BIJLAGE 5: VOORBEELDEN VAN SCOREN RELATIEEL BEGRIP .. 42
 Voorbeeld 1: Stap 1 – Relationeel begrip score 1 .. 42
 Voorbeeld 2: Stap 1 – Relationeel begrip score 5 .. 43
 Voorbeeld 3: Stap 2 – Relationeel begrip score 2 .. 44
 Voorbeeld 4: Stap 2 – Relationeel begrip score 4 .. 45
 Voorbeeld 5: Stap 3 – Relationeel begrip score 3 .. 46
 Voorbeeld 6: Stap 3 – Relationeel begrip score 4 .. 47
1 Inleiding

Het onderwerp van dit onderzoek is de rol die contextuele video’s spelen in het verbeteren van relationeel wiskundebegrip bij leerlingen. Tot dusverre werd context in het wiskundeonderwijs vooral toegepast in verhaaltjes en afbeeldingen. Contextuele video’s zijn een meer dynamischere en daarmee nieuwe vorm van context, gebaseerd op de resultaten van jarenlange discussies en onderzoeken naar de rol van context in het wiskundeonderwijs. Door middel van dit nieuwe type context kan wiskunde door middel van authentieke ervaringen relevant gemaakt worden voor de leerlingen, zodat de onderliggende wiskunde op een betere manier blijft hangen.

Het doel van dit onderzoek is om uit te zoeken of contextuele video’s inderdaad een positieve invloed hebben op het wiskundebegrip van leerlingen en zo ja, op welke manier deze contextuele video’s in de lessen verwerkt moeten worden om succesvol te zijn. De hoofdvraag die bij dit onderzoek beantwoord zal worden is dan ook als volgt:

Hoe kunnen contextuele video’s bijdragen aan beter relationeel wiskundebegrip van leerlingen?
2 Theoretisch kader

In dit hoofdstuk zullen de belangrijkste begrippen gerelateerd aan dit onderzoek worden gedefinieerd.

2.1 Context in het wiskundeonderwijs

Hoe moet het vak wiskunde onderwezen worden? Een intrigerende vraag waar waarschijnlijk iedereen wel een mening over heeft vanuit zijn/haar eigen ervaringen van de middelbare school. Daarnaast blijkt het ook een moeilijke vraag te zijn. Vooraanstaande wiskunde-didactici discussiëren al bijna 100 jaar over hoe wiskunde zou moeten worden aangeleerd.

Zo is er in de wiskundewereld veel discussie over de rol van context in het wiskundeonderwijs. Een belangrijke aanleiding voor deze discussies was het werk van Ehrenfest-Afanassjeewa (1924). Zij bepleitte dat leerlingen vooral vanuit hun intuïtie en voorbeelden uit het dagelijks leven kennis moeten opbouwen over wiskunde. Daarna moeten ze pas daadwerkelijk met de formele wiskunde geconfronteerd worden.

Het voorstel van Ehrenfest-Afanassjeewa leidde tot een verontwaardigde reactie van Dijksterhuis (1924). Hij beschouwde het gebruik van intuïtie als een gevaar dat afbreekt aan het begrip van wiskunde.

Conclusie is voorlopig dat het nog niet eenduidig is vastgesteld of context wel of niet voordelig is voor de kwaliteit van het begrip van wiskunde bij leerlingen.

Tegenwoordig wordt er bij het schoolvak wiskunde wel veel context gebruikt. Zo gebruiken de leidende wiskundemethoden in Nederland, Moderne Wiskunde en Getal & Ruimte, beide veel contextuele opgaven. Of dit didactisch gezien voordelig is, wordt door tegenstanders dus zoals eerder aangegeven nog betwist, maar er zijn in ieder geval andere voordelen te behalen door het gebruik van context. Zo had het vak wiskunde nog niet lang geleden een slecht imago (Mendick, Epstein, & Moreau, 2008). Mendick et. al. vonden bijvoorbeeld dat veel leerlingen zich wiskundigen voorstelden als oude, witte mannen met weinig social skills. Ook ontdekken zij dat leerlingen het slechte imago van het vak wiskunde als drempel ervaarden voor het kiezen van wiskunde als vervolgkeuze, omdat ze dachten dat wiskunde niet voor hen weggelegd was.
Een antwoord op dit slechte imago (en rechtstreeks op de bevindingen van Mendick et.al.) kwam van Ziegler en Loos (2010). Zij vonden dat wiskunde voor leerlingen relevant gemaakt kan worden door de 3 zogenaamde gezichten van wiskunde te laten zien:

- Wiskunde als gereedschap voor het alledaagse leven
- Wiskunde als een mooi onderdeel van onze cultuur en historie
- Wiskunde als basis voor high-tech

Ook de Commissie Toekomst Wiskunde Onderwijs (CTWO) constateert dat de contextrijke opzet van het huidige wiskundeonderwijs al zijn vruchten afwerpt (Commissie voor Toekomst WiskundeOnderwijs, 2007). Uit onderzoek van de CTWO blijkt dat wiskunde door de contextrijkere aanpak al een van de meest populaire schoolvakken is geworden onder leerlingen. Wel is de CTWO in 2007 nog kritisch over de manier van toepassen van context. De CTWO geeft aan dat veel contexten niet-realistisch zijn en daarmee niet als authentiek worden ervaren door leerlingen. De CTWO geeft in een opvolgend rapport uit 2012 aan dat er op het gebied van context ten tijde van dit rapport nog geen verdere vorderingen gemaakt zijn (Commissie voor Toekomst WiskundeOnderwijs, 2012).

Het probleem met niet-realistische contexten is ook geconstateerd door Drijvers (2006), wiskundedidacticus bij het Freudenthal Instituut. Drijvers constateert dat er weliswaar veel context al wordt gebruikt in het wiskundeonderwijs, maar nog te weinig op de goede wijze. Hij wijst dit aan aan een aantal oorzaken:

- De context is vaak gekunsteld
- Het misverstand van het dagelijks leven (verhaaltjessommen)
- Het achterwege blijven van abstractie

Toch is ook Drijvers overtuigd van het didactisch nut van context en geeft hij een aantal aanwijzingen voor goed gebruik van contexten:

- Context moet een brug zijn tussen de ervaringswereld en wiskundige wereld en uitnodigen tot abstractie
- Context moet passen bij de leerling, het onderwijsniveau en het doel van het onderwijs
- De context moet langer houdbaar zijn dan één opgave

Ook de CTWO benadrukte in zijn rapport al de punten die Drijvers belangrijk vindt voor een goede context. Daarbij wordt voornamelijk het “passen bij de leerling” benadrukt. Door de authentieke ervaring bij de leerlingen wordt de context volgens de CTWO langer houdbaar en blijft dit bijdragen aan lange termijn begrip van de wiskunde.

In eerder onderzoek analyseerde Kemme (1990) al een aantal bekende wiskundige contexten in meer detail. Daarbij analyseerde hij “de heks” en “de treintjes” als contexten voor negatieve getallen en “de weegschaal” voor het oplossen van vergelijkingen. Kemme ondervond dat het cruciaal is dat de context exact past bij de wiskunde die ermee onderwezen wordt. Bovendien moet de wiskunde direct uit de context afgeleid kunnen worden. Het mag dus bijvoorbeeld niet zo zijn dat er door de docent of leerlingen nog onrealistische aannames gedaan moeten worden om de context goed te kunnen vertalen naar wiskunde.
2.2 Relationeel en instrumenteel begrip

De voorstanders van context in het wiskundeonderwijs, waaronder Drijvers, de CTWO en ondergetekende, zijn het over het algemeen echter wel eens over het doel van het gebruik van context. Door middel van context moet wiskundig begrip betekenisvoller verankerd worden in de cognitieve schema’s van leerlingen. Dit idee wordt door Skemp (2006) beschreven als relationeel begrip. Skemp vatte relationeel begrip samen als “Knowing both what to do and why” en ziet dit als beter wiskundig begrip in relatie tot instrumenteel begrip: “Rules without reasons”. Relationeel begrip kost volgens Skemp meer moeite om aan te leren als instrumenteel begrip, maar levert uiteindelijk wel meer op voor de leerling. Door relationeel begrip is het namelijk mogelijk om de wiskunde flexibel in te zetten en uit te breiden. Ter verduidelijking zal het verschil tussen relationeel en instrumenteel begrip met een voorbeeld worden geïllustreerd:

Een leerling met puur instrumenteel begrip kan bijvoorbeeld waarschijnlijk wel de machtsfunctie \(f(x) = \frac{1}{2}ax^2 + bx + c \) differentiëren tot \(f'(x) = ax + b \) en \(f''(x) = a \), maar weet waarschijnlijk niet de achterliggende betekenis van de nieuwe functies \(f'(x) \) en \(f''(x) \). Dit is jammer bij de behandeling van de formules van een eenparige versnelde beweging bij natuurkunde. Deze leerling zal daar waarschijnlijk de formules voor de verplaatsing \(s_t = s_0 + v_0 \cdot t + \frac{1}{2}a \cdot t^2 \) en snelheid \(v_t = v_0 + a \cdot t \) weer braaf uit zijn hoofd leren en daarbij ook onthouden dat deze formules alleen geldig zijn bij een constante versnelling \(a \). De vraag is echter of de leerling ook echt een verband ziet tussen deze formules en hoeveel er bijvoorbeeld gebeurt als \(a \) een keer niet constant is.

Een leerling met relationeel begrip van differentiëren zal echter, misschien met enige hulp van de docent, herkennen dat de valversnellingsformules zijn afgeleid met behulp van differentiëren. De afgeleide van de formule voor de verplaatsing geeft exact de formule voor de snelheid en de afgeleide van de formule voor de snelheid geeft exact de constante versnelling \(a \). Een leerling met relationeel begrip van het begrip afgeleide zal dit ook als logisch ervaren; de afgeleide van een functie zegt iets over de snelheid waarmee deze functie verandert. Deze leerling zal naar verwachting veel minder moeite hebben om de valversnellingsformules eigen te maken en kan er bovendien vermoedelijk flexibeler mee werken.

2.3 Cognitieve schema’s

In dit onderzoek wordt voor het beoordelen van het begrip van de leerlingen onder andere gebruik gemaakt van zogenaamde mindmaps (zie hoofdstuk 4). De keuze voor het maken van de mindmaps is gebaseerd op de theorie over de opbouw van cognitieve schema’s (Van Streun, 2014) en knowledge structures (Tall, 2013).

Van Streun beschrijft een cognitief schema als een netwerk van knooppunten (bv. feiten, concepten, procedures, beelden) verbonden door relaties. Van Streun pleit voor het creëren van betekenisrijke en zo compleet mogelijke cognitieve schema’s zodat leerlingen op een flexibele manier om kunnen gaan met problemen. Van Streun sluit zich op het gebied van relationeel begrip daarmee aan bij Skemp (2006) en verwijst hier ook expliciet naar.

Tall beschrijft een soortgelijk netwerk van knooppunten en relaties onder de term knowledge structures. Ook hij legt weer de koppeling tussen het begrip relationeel
begrip en zijn eigen definitie van knowledge structures: “Relational understanding has longer-term consequences in building richly connected knowledge structures...”. Omdat de termen “cognitieve schema’s” en “knowledge structures” erg verwant zijn, wordt in het vervolg van dit onderzoek de term cognitieve schema’s gebruikt.

Een voorbeeld van een mogelijk cognitief schema rond de stelling van Pythagoras is gegeven in Figuur 1.

Door de leerlingen een mindmap te laten maken, worden ze gedwongen om na te denken over een bepaald onderwerp en dit te visualiseren op een wijze die overeenkomt met de cognitieve schema’s (Van Streun, 2014) of knowledge structures (Tall, 2013). Door analyse van de mindmaps kan een goed beeld gevormd worden van de rijkheid van de cognitieve schema’s van de leerlingen.

2.4 Contextuele video’s

In dit ontwerponderzoek wordt getracht uit te zoeken of het relationele begrip zoals beschreven in 2.2 ook gekweekt kan worden door middel van een nieuwe, meer dynamischere vorm van context: contextuele video’s. Met contextuele video’s worden video’s bedoeld waarin een context verborgen zit die gerelateerd is aan het te onderwijzen onderdeel met als doel om beter relationeel wiskundebegrip te kweken bij leerlingen. Deze video’s hoeven niet noodzakelijkerwijs ontworpen te zijn voor dit doel, maar kunnen ook alledaagse video’s zijn. Een video wordt pas contextueel als de koppeling met het vakgebied gemaakt wordt; vaak door sturing van de vakdocent. Een voorbeeld van een (potentieel) contextuele video is de oefening van Epke Zonderland op de Olympische Spelen van Londen¹. Deze video kan gebruikt worden om de baan van een parabool te laten zien; bij de afsporing beschrijft het zwaartepunt van Epke Zonderland bij benadering een paraboolvorm (zie Figuur 2). Aan de hand van de contextuele video wordt vervolgens een wiskundig begrip uitgelegd of een opgave gemaakt. In het geval van Epke Zonderland leren leerlingen bijvoorbeeld om aan de

¹ Link naar de video van Epke Zonderland: https://www.youtube.com/watch?v=5ZZQoQdKUoA
hand van de video een formule op te stellen van de baan van Epke Zonderland’s zwaartepunt bij de afsprong.

Figuur 2: Het zwaartepunt van Epke Zonderland volgt bij benadering een parabool

Hoewel er zeer waarschijnlijk docenten te vinden zijn die contextuele video’s gebruiken in hun lessen, is een formele definitie van contextuele video’s verder niet in de literatuur gevonden. De dichtstbijzijnde gevonden definitie is die van affectieve video’s (Verleur, 2009). Verleur beschreef affectieve video’s als video’s die een bepaalde stemming bij leerlingen oproepen. Daarbij bleken leerlingen volgens Verleur beter in staat te zijn om productietaken (interpreteren, evalueren en bedenken) uit te voeren als de affectieve video een positieve stemming oproept. Dit komt volgens Verleur doordat leerlingen in een positieve stemming zich veilig voelen en op zoek gaan nieuwe dingen. Voor reproductietaken bleek een negatieve stemming vanuit een affectieve video beter te werken. Verleur verklaart dit doordat leerlingen zich in een negatieve stemming onveiliger voelen en vanuit hun overlevingsinstinct daarom terugvallen op routinematig werken. Omdat getracht wordt het relationele begrip (oftewel het bevorderen van vooral productietaken) bij leerlingen te verbeteren zouden contextuele video’s daarom ook vooral een positieve stemming bij leerlingen moeten opwekken.
3 Onderzoeksvragen en verwachtingen

In dit hoofdstuk zullen de onderzoeksvragen en de verwachtingen van het onderzoek worden beschreven.

3.1 Onderzoeksvragen

Zoals eerder gezegd is het doel van context om het relationele wiskundebegrip van leerlingen te vergroten. De hoofdvraag bij dit ontwerponderzoek luidt dan ook:

Hoe kunnen contextuele video’s bijdragen aan beter relationeel wiskundebegrip van leerlingen?

De hoofdvraag zal beantwoord worden met behulp van de volgende 3 deelvragen:

1. Welk relationeel wiskundebegrip hebben leerlingen na lessen waarbij contextuele video’s zijn gebruikt?
2. In hoeverre relateren leerlingen relationeel wiskundebegrip expliciet aan al bekende contextuele video’s?
3. In hoeverre relateren leerlingen hun relationele wiskundebegrip expliciet bij nieuwe contextuele video’s?

3.2 Verwachtingen

Zoals beschreven in 2.1 is de rol van context in het wiskundeonderwijs niet onomstreden. Er zijn al tekenen dat de huidige vorm van contextrijk wiskundeonderwijs zijn vruchten afwerpt wat betreft populariteit van het vak wiskunde (Commissie voor Toekomst WiskundeOnderwijs, 2007). Daarbij gelooft het CTWO, samen met Drijvers (2006) en ondergetekende, ook in de didactische waarde van context in het wiskundeonderwijs. Contextrijk onderwijs zou in hun opinie, mits goed toegepast, moeten leiden tot verbeterd relationeel begrip (zie 2.2) en rijkere cognitieve schema’s (zie 2.3).

Het begrip contextuele video (zie 2.4) is bedacht met bovenstaande overwegingen in gedachten. Het is daarom de verwachting dat contextuele video’s, mits op correcte wijze toegepast, een positieve bijdrage leveren aan het relationele wiskundebegrip van leerlingen. Het is de verwachting dat deze positieve bijdrage van de contextuele video’s ook te zien is bij een analyse van de cognitieve schema’s van de leerlingen. Dit moet blijken bij de beantwoording van deelvraag 1.

Daarnaast is het de verwachting dat de contextuele video’s bij (een deel van) de leerlingen zorgt voor een authentieke ervaring omdat de contextuele video’s aansluiten bij zaken die ze kennen uit hun dagelijks leven, zoals ook de CWTO (2007) en Drijvers (2006) beweren (zie 2.1). Volgens Ziegler & Loos (2010) zouden de leerlingen de onderliggende wiskunde daardoor als meer relevant gaan beschouwen (zie 2.1). Door de koppeling van de authentieke ervaring en de perceptie van relevantie van de wiskunde, is het de verwachting dat leerlingen ook grotendeels in staat zullen zijn hun wiskundebegrip te koppelen aan de contextuele video’s die ze al eens eerder gezien

\[\text{De exacte wijze van deze analyse wordt beschreven in hoofdstuk 4}\]
hebben. Of deze verwachting klopt zal moeten blijken bij de beantwoording van deelvraag 2. Ook zal dan moeten blijken of dit wiskundebegrip grotendeels relationeel van aard is.

Indien leerlingen daadwerkelijk relationeel wiskundebegrip hebben opgedaan dan is het de verwachting dat de leerlingen hun wiskundebegrip dus ook daadwerkelijk flexibel kunnen inzetten. Of dit inderdaad het geval is zal moeten blijken bij de beantwoording van deelvraag 3.

Aan de hand van de antwoorden op de verschillende deelvragen kan er een antwoord worden geformuleerd op de hoofdvraag.
4 Methode

In dit hoofdstuk zullen de methode en de randvoorwaarden van het onderzoek uitgebreid beschreven worden.

4.1 Respondenten

Het onderzoek is uitgevoerd op het Twents Carmel College - Locatie de Thij te Oldenzaal ten tijde van de stage voor het vak Schoolpracticum 2. De deelnemers aan het onderzoek waren de leerlingen van de klassen 4 vwo Wiskunde A1 en 4 vwo Wiskunde B2. Dit waren de klassen die gedurende 6 maanden les hebben gehad van ondergetekende en waren daarmee de praktisch logische deelnemers aan dit onderzoek. De samenstelling van deze klassen was zoals vermeld in Tabel 1.

Tabel 1: Gegevens respondenten

<table>
<thead>
<tr>
<th></th>
<th>4 vwo Wiskunde A1</th>
<th>4 vwo Wiskunde B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soort wiskunde</td>
<td>Wiskunde A</td>
<td>Wiskunde B</td>
</tr>
<tr>
<td>Aantal leerlingen</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>Aantal meisjes</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Aantal jongens</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Leeftijden</td>
<td>15-16 jaar</td>
<td>15-16 jaar</td>
</tr>
</tbody>
</table>

Alle 39 leerlingen van deze klassen hebben op dezelfde wijze deelgenomen aan het onderzoek. Wel is het bij incidentele gevallen zo dat leerlingen niet aanwezig waren bij de les waar een contextuele video is getoond (i.v.m. ziekte bijvoorbeeld). De respons van deze leerlingen is in dat geval niet meegenomen bij vragen die expliciet over de betreffende contextuele video gaan. Omdat voor deze leerlingen geldt dat ze verder wel geregeld te maken hebben gehad met contextuele video’s, wordt hun respons voor de overige analyses wel meegenomen.

4.2 Procedure

Het onderzoek kent grofweg 2 belangrijke fases die in 2 aparte paragrafen beschreven zullen worden:

- De lessen met contextuele video’s (4.2.1)
- Verzameling van de data (4.2.4)

In paragrafen 4.2.2 en 4.2.3 zal een voorbeeld-les met een contextuele video gedetailleerd beschreven worden.

4.2.1 Lessen met contextuele video’s

Het is hierbij grotendeels de taak van de docent om een didactische koppeling te maken tussen de contextuele video en het bijbehorende wiskundige onderdeel. Tijdens schoolpracticum 1 (Klunder, 2017) bleek al dat een slechte didactische koppeling tussen contextuele video en bijbehorende wiskunde eerder tot verwarring dan tot beter begrip leidt. In dit geval werd een video met Sven Kramer niet succesvol gekoppeld aan het wiskundige begrip afgeleide. Leerlingen ervaarden deze contextuele video daardoor als losstaand stuk van de les. In dit onderzoek zullen de lesontwerpen horend bij de lessen met de contextuele video’s ook vooraf beoordeeld worden door ervaren wiskundedocenten. In dit geval door docenten van Twents Carmel College, locatie De Thij.

Zoals beschreven in 4.1 is de doelgroep voor het onderzoek 4 vwo, zowel wiskunde A als wiskunde B. Voor 4 vwo wiskunde A waren er 4 onderwerpen waarbij contextuele video’s zijn getoond. Voor 4 vwo wiskunde B waren dit 3 onderwerpen. Aan deze groepen zijn de contextuele video’s vertoond, verspreid over een periode van 6 maanden, waarbij er gestreefd is naar het tonen van 2 contextuele video’s per hoofdstuk/onderwerp. Daarbij wordt er een video redelijk aan het begin van het hoofdstuk getoond. Deze eerste video heeft als doel om de leerlingen enthousiaster te krijgen voor de stof en voor het leren. Deze strategie is ontleend van het 6E-model voor individuele lessen (Windels, 2012) waarbij leerlingen aan het begin enthousiast gemaakt worden om aan het wiskundige onderwerp te gaan werken. Daarnaast kan er met deze eerste video een begin gemaakt worden met het sturen richting relationeel wiskundebegrip. De tweede video wordt aan het einde van het hoofdstuk getoond om nog eens een extra toepassing van de geleerde wiskunde te laten zien. Bij de meeste hoofdstukken uit de methode past dit goed bij de paragraafindeling, waar ook in de afsluitende paragraaf contextrijke sommen worden behandeld.

Ter illustratie zal er een van de gegeven lessen met een contextuele video in detail beschreven worden in 4.2.2. Een reflectie op deze les met betrekking tot de contextuele video is beschreven in 4.2.3. Een beschrijving van de overige lessen met contextuele video’s en de bijbehorende wiskunde is gegeven in Bijlage 1.

4.2.2 Voorbeeld-les met contextuele video: Blackjack

De gekozen les is een les over kansrekening gegeven aan de 4 vwo Wiskunde A klas op 29 mei 2017. Alle 17 leerlingen uit deze klas waren tijdens deze les aanwezig. Het gebruikte lesvoorbereidingsformulier bij deze les is te vinden in Bijlage 2.

Na het welkom heten van de leerlingen laat de docent de contextuele video behorende bij de les zien. De video is een fragment uit de komische film “The Hangover”\(^3\). In de video zien de leerlingen een drietal mannen en een vrouw die in een casino geld proberen te winnen met blackjack. Een van de personen van dit viertal probeert winst te maken door de kaarten te tellen. Hierbij is het duidelijk dat er wiskunde komt kijken bij deze strategie (zie de getallen en berekeningen in Figuur 3). De speler maakt duidelijk veel winst en begint op te vallen bij de bewaking van het casino. Als de bewaking wil in gaan grijpen, weten de vier personen met een list snel te verdwijnen.

\(^3\) Link naar het fragment uit The Hangover: https://www.youtube.com/watch?v=jxTngPDNqk8
Nadat de contextuele video is afgelopen, geeft de docent aan dat aan het einde van de les alle leerlingen in staat zullen zijn om de tactiek van het kaarten tellen uit de video kunnen toepassen. Deze opmerking, samen met de contextuele video zelf, is bedoeld om de interesse van de leerlingen in de achterliggende wiskunde te wekken.

Na deze cliffhanger begint de docent met behulp van een fysiek pakje speelkaarten klassikaal een aantal kansen te berekenen. Eerst vraagt de docent de leerlingen wat de kans is dat je twee ruiten pakt als je twee kaarten trekt. Vervolgens laat de docent een leerling drie kaarten pakken en vraagt de kans naar de betreffende combinatie (in dit geval twee schoppen en een harten). De leerlingen zijn gewend deze kans met de productregel te berekenen:

\[P(2 \text{ schoppen en 1 harten}) = \binom{3}{2} \cdot \frac{13}{52} \cdot \frac{12}{51} \cdot \frac{13}{50} \]

De docent geeft aan dat er een alternatieve methode is voor het berekenen van deze kans met behulp van de kansdefinitie van Laplace en het gebruik van de al bekende combinaties (het zogenaamde vaasmodel):

\[P(2 \text{ schoppen en 1 harten}) = \frac{\text{aantal gunstige uitkomsten}}{\text{totaal aantal uitkomsten}} = \frac{\binom{13}{2} \cdot \binom{13}{1}}{\binom{52}{3}} \]

Het nut van deze alternatieve methode toont de docent vervolgens aan door een andere leerling nu tien kaarten te laten pakken en wederom naar de kans op deze combinatie te vragen. Dit gaat via het vaasmodel beduidend sneller als via de productregel.

Vervolgens schakelt de docent weer terug naar de contextuele video en vraagt de leerlingen naar de kans op blackjack (een aas en een tien/plaatje) bij één pakje kaarten:

\[P(\text{blackjack}) = \binom{4}{1} \cdot \frac{\binom{16}{1}}{\binom{52}{2}} \approx 0,0483 \]

Daarna geeft de docent een leerling de opdracht om goed te onthouden hoeveel azen uit het spel zijn. Een andere leerling krijgt de opdracht om het aantal tienen en plaatjes te tellen. Vervolgens deelt de docent de andere 15 leerlingen elk twee kaarten waarbij de docent hardop de getrokken kaarten noemt. De leerlingen die moesten tellen geven
aan dat er drie azen en zes tens/plaatjes uit het spel zijn. Daarna geeft de docent aan dat opnieuw de kans op blackjack berekend kan worden:

\[P(\text{blackjack}) = \frac{\binom{1}{1} \cdot \binom{10}{1}}{\binom{22}{2}} \approx 0,0433 \]

De docent concludeert dat je door het tellen van kaarten nu weet dat de kans op blackjack kleiner is geworden en dus niet verstandig zou zijn om nu geld in te gaan zetten.

De docent sluit het verhaal af door aan te geven dat bovenstaande tactiek weliswaar werkt, maar ook illegaal is in casino’s. Bovendien beschermen casino’s zich tegen deze tactiek door meerdere pakjes kaarten te gebruiken die daarnaast niet helemaal opgedeeld worden. Kortom, het is tegenwoordig gevaarlijk en zinloos om kaarten te tellen in een casino.

De leerlingen krijgen de opdracht om de rest van de les met sommen bezig te gaan.

4.2.3 Reflectie op de voorbeeld-les
Het instructiedeel van de les verliep naar wens. De leerlingen keken allereerst vrolijk naar de contextuele video; er werd door een aantal leerlingen meegedeeld met de muziek van de video en er werd veel gelachen om de acties van de hoofdrolspeler. Ook tijdens de klassikale instructie werd er goed opgelet. Dit bleek uit het feit dat verschillende leerlingen goede antwoorden gaven op de gestelde vragen over het onderwerp. Het is moeilijk vast te stellen of dit een direct gevolg is van de cliffhanger van de contextuele video, maar de leerlingen waren in ieder geval betrokken bij de les.

Daarnaast bleek ook de interesse van de leerlingen gewekt door de contextuele video. Met name het feit dat dit eigenlijk illegaal is, vonden leerlingen interessant en spannend; ze stelden hier veel aanvullende vragen over. Hierover werden na de opdracht met de kaarten tellen meerdere vragen gesteld. Bovendien leken de leerlingen weinig moeite te hebben met de schakeling tussen de contextuele video en het wiskundige model erachter. Ze konden namelijk de theorie van het vaasmodel direct toepassen op de situatie uit de contextuele video en bovendien werd de conclusie dat kaarten tellen in principe wiskundig gezien voordeel op kan leveren door de leerlingen direct geaccepteerd.

4.2.4 Data verzameling
Aan het einde van de periode van 6 maanden zal het relationele wiskundebegrip van de leerlingen gemeten worden. Dit zal gebeuren in drie stappen; elk van de drie stappen beantwoordt een van de deelvragen uit 3.1. Door de uitkomsten van de drie stappen gezamenlijk te bekijken kan daarmee een goed antwoord geformuleerd worden op de hoofdvraag van het onderzoek.

In de 1e stap zal aan de leerlingen gevraagd worden om voor 2 wiskundige onderwerpen hun wiskundekennis te visualiseren middels een mindmap. Bij het maken van een mindmap moeten de leerlingen zaken die zij bij het onderwerp vinden horen in bolletjes plaatsen. Er is geen beperking over wat er in de bolletjes komt te staan. Als
verschillende zaken met elkaar gerelateerd zijn, moeten ze dit aangeven door een verbinding tussen de bijbehorende bolletjes te tekenen. De leerlingen krijgen als voorbeeld hiervan een mogelijke mindmap van de stelling van Pythagoras te zien (zie Bijlage 3). Een mindmap is daarmee feitelijk een visualisatie van het cognitieve schema van een leerling (zie 2.3).

Hierbij is uiteraard gekozen voor wiskundige onderwerpen waarbij minstens één passende contextuele video is getoond. Vervolgens wordt onderzocht of er zaken te zien zijn die gerelateerd kunnen worden aan het zien van de contextuele video’s (wordt bijvoorbeeld bij het onderwerp kansrekening een directe relatie gelegd met de inhoud van een contextuele video; bijvoorbeeld het tellen van kaarten bij blackjack). Daarnaast kan bekeken worden of de wiskundekennis voornamelijk instrumenteel of relationeel van aard is. Zo wordt verwacht dat bijvoorbeeld bij het begrip afgeleide ook het woord snelheid te vinden, mogelijk zelfs in combinatie met zaken (al dan niet uit de contextuele video’s) die ook daadwerkelijk snelheid hebben.

In stap 2 zal een aantal van de contextuele video’s opnieuw getoond worden aan de leerlingen, zonder daarbij opnieuw actief de koppeling met de bijbehorende wiskunde te leggen. Na het tonen van de video’s zal aan de leerlingen gevraagd worden om zo specifiek mogelijk op te schrijven welke wiskunde bij de contextuele video hoort. Zodoende kan gezien worden of de koppeling tussen de context en de wiskunde goed is bijgebleven bij de leerlingen. Zeker bij contextuele video’s die al enkele maanden voor de meting van stap 2 zijn getoond, zou dit duiden op goed relationeel wiskundebegrip van het onderwerp. Hierbij wordt gekozen voor het tonen van de eerste contextuele video van de laatste 2 onderwerpen. Ten eerste omdat de eerste video heeft moeten zorgen voor enthousiasme voor de stof. Daarmee zou deze contextuele video nog herkenbaar moeten zijn voor de leerlingen. Daarnaast is met de eerste video van het hoofdstuk getracht een begin te maken met het kweken van relationeel wiskundebegrip. Het is interessant om te zien of dit ook daadwerkelijk geslaagd lijkt nadat alle stof uiteindelijk behandel is.

In de 3e stap zal een aantal nieuwe contextuele video’s getoond worden aan de leerlingen, wederom zonder daarbij opnieuw actief de koppeling met de bijbehorende wiskunde te leggen. Na het tonen van de video’s zal aan de leerlingen wederom gevraagd worden om zo specifiek mogelijk op te schrijven welke wiskunde bij de contextuele video hoort. De nieuwe contextuele video’s zullen daarbij uiteraard gerelateerd moeten zijn aan wiskundige onderwerpen waarbij ze al contextuele video’s gezien hebben. Als het relationele wiskundebegrip van leerlingen erg sterk ontwikkeld is, zullen leerlingen mogelijk in staat zijn om zelf wiskundige technieken te koppelen aan de context die ze zien.

De 3 stappen zullen in 2 lessen uitgevoerd worden. In de eerste les worden stap 1 en 2 uitgevoerd. In deze les zal eerst kort uitgelegd worden wat er verwacht wordt van de leerlingen. Ze krijgen vervolgens 2x 10 minuten de tijd om een mindmap te maken van hun kennis over de laatste 2 onderwerpen. Daarna krijgen ze de eerste bekende contextuele video te zien met de vraag om de bijbehorende wiskunde hierbij te formuleren. Hiervoor krijgen ze 5 minuten de tijd. Tenslotte wordt deze laatste opdracht herhaald voor de 2e bekende contextuele video. Stap 3 zal in een volgende les worden uitgevoerd om enige tijd te creëren tussen de al bekende contextuele video’s en de nieuwe contextuele video’s. In deze les krijgen leerlingen weer twee keer een contextuele video te zien. Na de eerste contextuele video krijgen leerlingen 10 minuten
de tijd om bijbehorende wiskunde te formuleren bij de video. Dit herhaalt zich vervolgens voor de 2e video.

4.3 Instrumenten

Om leerlingen zoveel mogelijk vrijheid te geven om hun relationele wiskundebegrip te visualiseren en te verwoorden zijn de antwoordbladen zo simpel mogelijk gehouden. Voor stap 1 is het antwoordblad niet meer dan een vel A3-papier met midden daarop een bolletje met het wiskundige onderwerp. Voor stap 2 en 3 zijn A4-vellen ruitjespapier gebruikt. Bovenaan staat de titel van de video vermeld en daaronder staat de opdracht om zo nauwkeurig mogelijk de wiskunde behorend bij de video te beschrijven. Voorbeelden van de antwoordbladen zijn te zien in Bijlage 4.

4.4 Analyse

Na het verzamelen van de data zal de data per stap, en dus per deelvraag, geanalyseerd worden. Hiervoor zijn alle geproduceerde resultaten van de leerlingen anoniem genummerd en gescoord. Het werk van de leerlingen is opgeslagen in PDF-bestanden en de bijbehorende scores zijn opgeslagen in een Excel-database. Op die manier zijn de resultaten reproduceerbaar en controleerbaar.

Bij stap 1 zijn de verkregen mindmaps beoordeeld op een viertal criteria:

- **Aanwezigheid van een koppeling met de contextuele video:** heeft de leerling een koppeling gelegd tussen het wiskundige onderwerp en het zien van de video’s? Aanwezigheid van een koppeling met de contextuele video zou kunnen duiden op een bijdrage van de contextuele video op de ontwikkeling van het cognitieve schema van de leerling. Er zijn hier drie scores mogelijk:
 - Afwezig: Er is totaal geen verband waar te nemen tussen de mindmap en de inhoud van de contextuele video.
 - Mogelijk: Er is mogelijk een verband waar te nemen tussen de mindmap en de inhoud van de contextuele video, maar het is niet met zekerheid vast te stellen of de leerling hier verwijst naar de contextuele video.
 - Aanwezig: Er is een duidelijk verband waar te nemen tussen de mindmap en de inhoud van de contextuele video.

- **Aanwezigheid van een koppeling met een toepassing:** heeft de leerling een koppeling gelegd tussen het wiskundige onderwerp en een toepassing van dit wiskundige onderwerp in de praktijk? Dit kan de toepassing uit de contextuele video zijn, maar ook een andere toepassing. Aanwezigheid van een koppeling met een toepassing zou kunnen duiden op beter relationeel begrip; de leerling kan blijkbaar de wiskunde flexibel toepassen of op zijn minst herkennen. Er zijn hier drie scores mogelijk:
 - Afwezig: Er is totaal geen verband waar te nemen tussen de mindmap en een toepassing van de wiskunde.
 - Mogelijk: Er is mogelijk een verband waar te nemen tussen de mindmap en een toepassing van de wiskunde, maar het is niet met zekerheid vast te stellen of de leerling hier verwijst naar een toepassing van de wiskunde of slechts naar de inhoud van een opgave.
 - Aanwezig: Er is een duidelijk verband waar te nemen tussen de mindmap en een toepassing van de wiskunde.
- **Mate van relationeel begrip:** op basis van de wiskundige samenhang in de mindmap, en dus in principe van het onderliggende cognitieve schema van de leerling, wordt een inschatting gemaakt van de mate van het relationele begrip van de leerling. Om genoeg onderscheid te kunnen maken tussen verschillende leerlingen wordt het relationele begrip op een schaal van 1 tot 5 gescoord, waarbij 1 betekent dat er geen tot erg weinig relationeel begrip te herkennen is en 5 betekent dat de leerling het wiskundige onderwerp (bijna) volledig doorgrond lijkt te hebben (voor zover de leerling hier uiteraard al onderwijs in heeft gekregen). Het scoren hiervan is (zo goed mogelijk; hierover volgt later in deze paragraaf nog een verdere discussie) volgens de volgende criteria:

 o Score 1: Het antwoordblad is zeer summier ingevuld, geeft geen connectie weer tussen concepten die samenhangen en bevat veel misconcepties.
 o Score 2: Het antwoordblad geeft een aantal (maar lang niet alle) wiskundige zaken horend bij het wiskundige onderwerp weer, legt samenhang tussen een of een paar concepten die samenhangen en bevat hooguit een paar misconcepties.
 o Score 3: Het antwoordblad geeft een behoorlijk aantal wiskunde zaken horend bij het wiskundige onderwerp weer, legt samenhang tussen meerdere bij elkaar horende concepten, bevat weinig misconcepties en laat beperkt inzicht in het gebruik van de wiskundige concepten zien.
 o Score 4: Het antwoordblad geeft de meeste zaken die bij het wiskundige onderwerp horen weer, legt veel samenhang tussen de bij elkaar horende concepten, bevat (bijna) geen misconcepties en laat meerdere malen inzicht in het gebruik van de wiskundige concepten zien.
 o Score 5: Het antwoordblad geeft (bijna) alle zaken die bij het wiskundige onderwerp horen weer, inclusief de samenhang tussen de bij elkaar horende concepten, bevat (bijna) geen misconcepties en laat duidelijk inzicht in het gebruik van de wiskundige concepten zien.

In veel gevallen blijken de antwoordbladen niet perfect in de ene of de andere score te passen. Het scoren van mate van relationeel begrip blijft daarmee enigszins subjectief. Ter illustratie van het scoren zijn in Bijlage 5 een aantal voorbeelden met de bijbehorende analyse en de resulterende scores gegeven.

- **Aanwezigheid van misconcepties:** heeft de leerling aantoonbare fouten in zijn/haar mindmap, en dus in principe in het onderliggende cognitieve schema? Deze misconcepties kunnen duiden op wat gebrekkiger relationeel begrip. Er wordt hierbij onderscheid gemaakt tussen incidentele en structurele misconcepties. Er zijn derhalve drie scores mogelijk:
 o Afwezig: Er zijn geen misconcepties waarnembaar op het antwoordblad.
 o Incidenteel: Er zijn weinig misconcepties waargenomen of de misconcepties zijn veroorzaakt door slordigheid (voor zover waar te nemen).
o Structureel: Er zijn meerdere misconcepties waargenomen of de misconcepties zijn veroorzaakt door gebrek aan begrip (voor zover waar te nemen).

Aan de hand van de resultaten op deze analyse kan een antwoord op deelvraag 1 uit 3.1 geformuleerd worden.

Voor stap 2 zijn de verkregen formulieren beoordeeld op een vijftal criteria:

- **Aanwezigheid van een koppeling met wiskunde:** heeft de leerling een koppeling gelegd tussen de contextuele video en een wiskundig onderwerp? Aanwezigheid van een koppeling van de contextuele video met een wiskundig onderwerp kan duiden op beter relationeel begrip van het wiskundige onderwerp; de leerling kan blijkbaar de wiskunde flexibel toepassen of op zijn minst herkennen. Er wordt hierbij onderscheid gemaakt tussen een gedetailleerde en ongedetailleerde koppeling. Er zijn derhalve drie scores mogelijk:
 o Afwezig: Er is totaal geen verband waar te nemen tussen de contextuele video en een vorm van wiskunde.
 o Ongedetailleerd: Er is een verband waar te nemen tussen de contextuele video en een vorm van wiskunde, maar dit verband is in weinig detail beschreven en/of getekend.
 o Gedetailleerd: Er is een verband waar te nemen tussen de contextuele video en een vorm van wiskunde. Bovendien is dit verband in grote mate van detail beschreven en/of getekend.

- **Niveau van de koppeling met de behandelde wiskunde:** hoe goed heeft de leerling een koppeling gelegd tussen het wiskundige onderwerp dat behendeld werd tijdens de lessen waarin de contextuele video is getoond? Er wordt hierbij onderscheid gemaakt tussen 3 niveau’s: incorrect, deels correct, correct. Dit criterium wordt alleen bekeken voor de leerlingen die daadwerkelijk een wiskundige beschrijving hebben gegeven die enigszins te beoordelen is op correctheid. Bij bijvoorbeeld te beknopte beschrijvingen wordt de score n.v.t. (niet van toepassing) toegekend. Er zijn derhalve vier scores mogelijk:
 o Niet van toepassing: Er is geen verband tussen de contextuele video en de behandelde wiskunde waar te nemen of de beschrijving is te beknopt om op correctheid te kunnen beoordelen.
 o Incorrect: Er is een grotendeels (of volledig) incorrect verband gelegd tussen de contextuele video en de behandelde wiskunde.
 o Deels correct: Er is een verband gelegd tussen de contextuele video en de behandelde wiskunde dat voor grote delen correct is.
 o Correct: Er is een volledig correct verband gelegd tussen de contextuele video en de behandelde wiskunde. Dit hoeft overigens niet exact hetzelfde verband te zijn dat tijdens de behandeling van de contextuele video door de docent gelegd is, maar moet wel over het behandelde onderwerp gaan.

- **Niveau van de koppeling met andere wiskunde:** hoe goed heeft de leerling een koppeling gelegd tussen een ander wiskundige onderwerp en de contextuele video? (Met “ander wiskundige onderwerp” wordt hier elk wiskundig onderwerp ongeacht aan het behandelde wiskundige onderwerp bedoeld.) Er wordt hierbij wederom onderscheid gemaakt tussen 3 niveau’s:
incorrect, deels correct, correct. Dit criterium wordt alleen bekeken voor de leerlingen die daadwerkelijk een wiskundige beschrijving hebben gegeven die enigszins te beoordelen is op correctheid. Bij bijvoorbeeld te beknopte beschrijvingen wordt de score n.v.t. (niet van toepassing) toegekend. Er zijn derhalve wederom vier scores mogelijk:

- Niet van toepassing: Er is geen verband tussen de contextuele video en een andere vorm van wiskunde waar te nemen of de beschrijving is te beknopt om op correctheid te kunnen beoordelen.
- Incorrect: Er is een grotendeels (of volledig) incorrect verband gelegd tussen de contextuele video en een ander wiskundig onderwerp.
- Deels correct: Er is een verband gelegd tussen de contextuele video en een ander wiskundig onderwerp dat voor grote delen correct is.
- Correct: Er is een volledig correct verband gelegd tussen de contextuele video en een ander wiskundig onderwerp.

- Mate van relationeel begrip: op basis van de wiskundige samenhang in de analyse van de contextuele video, wordt een inschatting gemaakt van de mate van het relationele begrip van de leerling. Dit wordt op vergelijkbare wijze gescord als bij stap 1.

Voor stap 3 worden dezelfde criteria als bij stap 2 gebruikt. Enige verschil is dat de leerlingen de contextuele video’s van stap 3 nog niet eerder hebben gezien en er dus geen directe koppeling is met de behandelde wiskunde. De contextuele video’s zijn echter wel dusdanig gekozen dat ze goed bij de behandelde wiskundige onderwerpen passen.

Aan de hand van de resultaten op de analyses van stappen 2 en 3 kunnen antwoorden op respectievelijk deelvragen 2 en 3 uit 3.1 geformuleerd worden.

De analyse van met name de kwaliteit van relationeel begrip van leerlingen is uitermate lastig, omdat je feitelijk in de hoofden van de leerlingen moet kijken om te zien hoe goed ze de wiskundige inhoud echt hebben begrepen en flexibel kunnen toepassen. In stap 1 wordt getracht het cognitieve schema in het hoofd van de leerlingen om te zetten in een fysieke mindmap om het relationele begrip van de leerlingen zo goed mogelijk te kunnen inschatten. Het blijft dan echter in bepaalde gevallen de vraag of leerlingen daadwerkelijk goed relationeel begrip hebben of simpelweg de stof goed uit hun hoofd hebben geleerd zonder de stof daadwerkelijk helemaal te beheersen. In stappen 2 en 3 is dezelfde problematiek aanwezig (weliswaar in een wat andere vorm) en ook daar is de inschatting van de mate van relationeel begrip dus enigszins subjectief.

Door echter via 3 opvolgende stappen het relationele begrip van leerlingen te meten wordt dit probleem voor een deel ondervangen; doordat het relationele begrip van een leerling feitelijk 3 keer wordt gemeten op verschillende manieren, zal een inschattingssfout in een bepaalde stap statistisch gezien minder invloed hebben.

Daarnaast is er na het analyseren van de resultaten een reviewsessie geweest met een studiegenoot om de betrouwbaarheid en validiteit van de resultaten te vergroten. De studiegenoot was op de hoogte van zowel de wiskundige onderwerpen als de
betekenis van het begrip relationeel begrip. De studiegenoot heeft van de eerste zeven leerlingen van beide klassen de resultaten gescoord volgens bovenstaande criteria. Deze scores zijn vervolgens vergeleken met de scores die tijdens de eerste analyse waren gegeven. Dit gaf in eerste instantie bij sommige leerlingen aanzienlijke verschillen. Aan de hand daarvan is er gediscussieerd over een juiste score en de onderbouwing van deze score. Alle resultaten van de leerlingen zijn naar aanleiding van de discussies bij de review daarna nog een tweede keer gescoord. Daardoor is de betrouwbaarheid en validiteit van de scores enigszins verbeterd of op zijn minst beter onderbouwd.

Conclusie van de reviewsessie was echter wel dat het objectief goed kunnen scoren van de resultaten van de leerlingen op relationeel begrip erg lastig is. In veel gevallen zou een mogelijkheid om door te vragen zeer wenselijk zijn geweest. Vanwege praktische overwegingen was dit niet haalbaar binnen de kaders van dit onderzoek. Bij eventueel vervolgonderzoek is een vorm van interview om relationeel begrip te achterhalen bij leerlingen zeer aan te raden.
5 Resultaten

In dit hoofdstuk zal er per meetstap (zie 4.2.4) en dus per deelvraag (zie 3.1) gekeken worden naar de resultaten van het onderzoek. Hoe de scores voor de verschillende criteria tot stand zijn gekomen is beschreven in 4.4. Voor de mate van relationeel begrip zijn daarnaast een aantal voorbeelden van beoordeling beschreven in Bijlage 5.

5.1 Resultaten stap 1

In stap 1 is er gekeken naar de kwaliteit van de mindmaps op basis van 4 criteria. Een overzicht van de resultaten is gegeven in Tabel 2 en Tabel 3. De percentages zijn daarbij in procenten van het totale aantal leerlingen in de betreffende klas.

TABEL 2: RESULTATEN VAN 4 VWO WISKUNDE A VOOR STAP 1

<table>
<thead>
<tr>
<th>4 vwo wiskunde A</th>
<th>Schaal:</th>
<th>Onderwerp 1: Machtsverbanden</th>
<th>Onderwerp 2: Kansrekening</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 leerlingen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koppeling naar contextuele video’s</td>
<td>Afwezig: 100%</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mogelijk: 0%</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aanwezig: 0%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Koppeling naar toepassingen</td>
<td>Afwezig: 88%</td>
<td>53%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mogelijk: 12%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aanwezig: 0%</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>Mate van relationeel begrip</td>
<td>1</td>
<td>29%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>59%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12%</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>Gemiddeld</td>
<td>1,8</td>
<td>2,3</td>
</tr>
<tr>
<td>Aanwezigheid van misconcepties</td>
<td>Afwezig: 65%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidenteel: 35%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structureel: 0%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

TABEL 3: RESULTATEN VAN 4 VWO WISKUNDE B VOOR STAP 1

<table>
<thead>
<tr>
<th>4 vwo wiskunde B</th>
<th>Schaal:</th>
<th>Onderwerp 1: Machten en exponenten</th>
<th>Onderwerp 2: Differentiaalrekening</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 leerlingen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koppeling naar contextuele video’s</td>
<td>Afwezig: 95%</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mogelijk: 0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aanwezig: 5%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Koppeling naar toepassingen</td>
<td>Afwezig: 91%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mogelijk: 0%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aanwezig: 9%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>Mate van relationeel begrip</td>
<td>1</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>32%</td>
<td>23%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>36%</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Gemiddeld</td>
<td>2,6</td>
<td>3,0</td>
</tr>
<tr>
<td>Aanwezigheid van misconcepties</td>
<td>Afwezig: 45%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidenteel: 45%</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structureel: 9%</td>
<td>14%</td>
<td></td>
</tr>
</tbody>
</table>
5.2 Resultaten stap 2

In stap 2 is er gekeken naar de kwaliteit van beschrijvingen van leerlingen op basis van 5 criteria. Een overzicht van de resultaten is gegeven in Tabel 4 en Tabel 5.

TABEL 4: RESULTATEN VAN 4 VWO WISKUNDE A VOOR STAP 2

<table>
<thead>
<tr>
<th>4 vwo wiskunde A</th>
<th>Schaal:</th>
<th>Onderwerp 1: Machtsverbanden</th>
<th>Onderwerp 2: Kansrekening</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 leerlingen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koppeling naar wiskunde</td>
<td>Afwezig: 0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ongedetailleerd: 71%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gedetailleerd: 29%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Niveau van behandelde wiskunde</td>
<td>N.v.t.: 41%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incorrect: 12%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deels correct: 47%</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct: 0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Niveau van andere wiskunde</td>
<td>N.v.t.: 100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incorrect: 0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deels correct: 0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct: 0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Mate van relationeel begrip</td>
<td>1</td>
<td>6%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>65%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Gemiddeld</td>
<td>2,3</td>
<td>2,2</td>
</tr>
<tr>
<td>Aanwezigheid van misconcepties</td>
<td>Afwezig: 88%</td>
<td>76%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidenteel: 12%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structureel: 0%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

TABEL 5: RESULTATEN VAN 4 VWO WISKUNDE B VOOR STAP 2

<table>
<thead>
<tr>
<th>4 vwo wiskunde B</th>
<th>Schaal:</th>
<th>Onderwerp 1: Machten en exponenten</th>
<th>Onderwerp 2: Differentiaalrekening</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 leerlingen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koppeling naar wiskunde</td>
<td>Afwezig: 10%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ongedetailleerd: 20%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gedetailleerd: 70%</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Niveau van behandelde wiskunde</td>
<td>N.v.t.: 15%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incorrect: 5%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deels correct: 60%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct: 20%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Niveau van andere wiskunde</td>
<td>N.v.t.: 95%</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incorrect: 0%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deels correct: 5%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct: 0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Mate van relationeel begrip</td>
<td>1</td>
<td>10%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>45%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Gemiddeld</td>
<td>3,1</td>
<td>2,5</td>
</tr>
<tr>
<td>Aanwezigheid van misconcepties</td>
<td>Afwezig: 65%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incidenteel: 35%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structureel: 0%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Resultaten stap 3

In stap 3 is er gekeken naar de kwaliteit van beschrijvingen van leerlingen op basis van 5 criteria. Een overzicht van de resultaten is gegeven in Tabel 6 en Tabel 7.

TABEL 6: RESULTATEN VAN 4 VWO WISKUNDE A VOOR STAP 3

<table>
<thead>
<tr>
<th>Schaal:</th>
<th>Onderwerp 1: Machtsverbanden</th>
<th>Onderwerp 2: Kansrekening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koppeling naar wiskunde</td>
<td>Afwezig: 0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Ongedetailleerd: 56%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>Gedetailleerd: 44%</td>
<td>63%</td>
</tr>
<tr>
<td>Niveau van behandelde wiskunde</td>
<td>N.v.t.: 25%</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>Incorrect: 6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>Deels correct: 69%</td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td>Correct: 0%</td>
<td>13%</td>
</tr>
<tr>
<td>Niveau van andere wiskunde</td>
<td>N.v.t.: 81%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Incorrect: 6%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Deels correct: 13%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Correct: 0%</td>
<td>0%</td>
</tr>
<tr>
<td>Mate van relationeel begrip</td>
<td>1: 6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>2: 25%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>3: 56%</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td>4: 13%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>5: 0%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>Gemiddeld: 2,8</td>
<td>2,9</td>
</tr>
<tr>
<td>Aanwezigheid van misconcepties</td>
<td>Afwezig: 88%</td>
<td>94%</td>
</tr>
<tr>
<td></td>
<td>Incidenteel: 13%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>Structureel: 0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

TABEL 7: RESULTATEN VAN 4 VWO WISKUNDE B VOOR STAP 3

<table>
<thead>
<tr>
<th>Schaal:</th>
<th>Onderwerp 1: Machten en exponenten</th>
<th>Onderwerp 2: Differentiaalrekening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koppeling naar wiskunde</td>
<td>Afwezig: 5%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Ongedetailleerd: 42%</td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>Gedetailleerd: 53%</td>
<td>42%</td>
</tr>
<tr>
<td>Niveau van behandelde wiskunde</td>
<td>N.v.t.: 5%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>Incorrect: 5%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Deels correct: 79%</td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>Correct: 11%</td>
<td>11%</td>
</tr>
<tr>
<td>Niveau van andere wiskunde</td>
<td>N.v.t.: 100%</td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td>Incorrect: 0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Deels correct: 0%</td>
<td>32%</td>
</tr>
<tr>
<td></td>
<td>Correct: 0%</td>
<td>0%</td>
</tr>
<tr>
<td>Mate van relationeel begrip</td>
<td>1: 0%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>2: 53%</td>
<td>32%</td>
</tr>
<tr>
<td></td>
<td>3: 37%</td>
<td>37%</td>
</tr>
<tr>
<td></td>
<td>4: 11%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>5: 0%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Gemiddeld: 2,6</td>
<td>2,9</td>
</tr>
<tr>
<td>Aanwezigheid van misconcepties</td>
<td>Afwezig: 95%</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td>Incidenteel: 5%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>Structureel: 0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
6 Conclusies en aanbevelingen

In dit hoofdstuk worden er conclusies getrokken op basis van de resultaten van hoofdstuk 5. Daarbij zullen in 6.1 eerst de deelvragen beantwoord worden om uiteindelijk een goed antwoord te kunnen formuleren voor de hoofdvraag (6.2). In 6.3 zullen vervolgens aanbevelingen gedaan worden.

6.1 Discussie resultaten en conclusies deelvragen

De resultaten van stap 1 (zie 5.1) gaven resultaten die niet overeenkwamen met de verwachtingen. In 3.2 is de verwachting uitgesproken dat de contextuele video’s goed zichtbaar zouden zijn in de cognitieve schema’s van de leerlingen. Dit blijkt echter zeer zelden het geval. Bij de wiskunde A-klas verwees bij het 1e onderwerp 0% van de leerlingen naar de contextuele video’s. Bij het 2e onderwerp, ook het meest recente onderwerp, was dit ten minste 18% en mogelijk 30% van de leerlingen. Bij de wiskunde B-klas verwees slechts 5% en 9% naar de contextuele video’s bij respectievelijk het 1e en 2e onderwerp. Als er gekeken wordt naar de koppeling met toepassingen, dan is er zeker bij de wiskunde A-klas wel wat meer terug te vinden in de mindmaps (respectievelijk 12% en 29 tot 47%), maar over het algemeen bestaan de mindmaps toch vooral uit direct aan wiskunde gerelateerde zaken. Oorzaak hiervan zou kunnen zijn dat er bij de opdracht om mindmaps te maken nog op geen enkele manier is gerefereerd aan de contextuele video’s. Wel is de leerlingen expliciet verteld dat er geen beperkingen waren aan wat ze opschreven. Leerlingen moesten derhalve zelf verzinnen dat het wiskundige onderwerp gerelateerd was aan zaken uit de contextuele video’s, maar deden dit blijkbaar niet.

Als er gekeken wordt naar de mate van relationeel begrip dan valt vooral op dat het relationele begrip bij de wiskunde A-klas (gemiddeld respectievelijk 1,8 en 2,3) achterblijft bij dat van de wiskunde B-klas (gemiddeld respectievelijk 2,6 en 3,0). Omdat bij beide klassen weinig relatie is gelegd met de contextuele video’s is het onwaarschijnlijk dat de contextuele video’s hier een rol in hebben gespeeld. Mogelijke verklaring hiervoor is dat er voor wiskunde B vaak toch al meer relationeel begrip vereist is om de over het algemeen moeilijker lesstof goed het hoofd te kunnen bieden. Over het algemeen is het relationeel begrip van leerlingen uit de wiskunde A-klas matig te noemen (gemiddeld zo rond 2 op een schaal van 1 tot 5) en bij leerlingen uit de wiskunde B-klas redelijk te noemen (gemiddeld iets onder de 3 op een schaal van 1 tot 5). Hoe dit zich verhoudt tot leerlingen die geen contextuele video’s hebben gezien is helaas onbekend, omdat er geen mogelijkheden waren om te vergelijken met een controlegroep die geen contextuele video’s gezien heeft onder verder dezelfde omstandigheden. Zo’n controle is in een eventueel vervolgonderzoek wel aan te raden.

Wel is te zien dat de leerlingen uit beide klassen bijna een halve schaal hoger scoren bij het 2e onderwerp ten opzichte van het 1e onderwerp. Dit komt vermoedelijk omdat het 2e onderwerp een stuk recenter onderwezen is. Het 1e onderwerp is in beide klassen

4 Bij de resultaten is er geregeld onderscheid gemaakt tussen de wiskunde A-klas en de wiskunde B-klas, omdat de resultaten daar aanleiding toe gaven. Verschillen tussen de niveaus waren niet per se vooraf verwacht en hebben daarom bij het opstellen van de onderzoeksvragen ook niet geleid tot specifieke deelvragen hierover.

Dit leidt tot het volgende antwoord op de deelvraag “Welk relationeel wiskundebegrip hebben leerlingen na lessen waarbij contextuele video’s zijn gebruikt?“:

Er kan op basis van bovenstaande observaties geconcludeerd worden dat leerlingen bij het denken aan een wiskundig onderwerp niet direct aan toepassingen van dat wiskundige onderwerp denken. Het feit dat ze via contextuele video’s een aantal toepassingen al voorbij hebben zien komen, zorgt er blijkbaar niet voor dat leerlingen vanuit zichzelf denken aan toepassingen van wiskunde. Het zien van contextuele video’s heeft daarom geen direct zichtbaar effect op het relationele begrip van leerlingen van een wiskundig onderwerp.

Waar de verwachtingen bij stap 1 niet uitkwamen, was dit bij stap 2 wel het geval. In 3.2 is de verwachting uitgesproken dat de contextuele video’s een authentieke ervaring zouden opleveren voor de leerlingen waardoor de bijbehorende wiskunde beter zou blijven hangen. Uit de resultaten (zie 5.2) blijkt dat deze verwachting gegrond is: bij de wiskunde A-klas weet elke leerling nog de koppeling tussen de contextuele video en de bijbehorende wiskunde te leggen. Van deze leerlingen weet zo’n 30% (29% en 35% voor respectievelijk het 1e en 2e onderwerp) dit zelfs gedetailleerd te doen en doet zo’n 50% (47% en 59% voor respectievelijk het 1e en 2e onderwerp) dit in ieder geval voor een deel correct. Ondanks dat het zien van de video’s al 42 (voor onderwerp 1) en 28 dagen (voor onderwerp 2) geleden is, weten de leerlingen de contextuele video’s nog goed te koppelen aan de wiskunde.

Bij de wiskunde B-klas worden deze resultaten ook gezien. Daar weet respectievelijk 90% en 95% van de leerlingen de contextuele video’s nog te koppelen aan wiskunde. Bij onderwerp 1 doet zelfs 70% dit nog op een gedetailleerde manier tegen 30% bij onderwerp 2. De percentages voor het niveau van de behandelde wiskunde zijn bij de wiskunde B-klas zelfs nog iets hoger dan bij de wiskunde A-klas: 80% doet dit deels correct of beter voor onderwerp 1 tegen 65% van de leerlingen bij onderwerp 2. Voor de wiskunde B-klas hebben de leerlingen de video’s 101 en 24 dagen geleden voor het laatst gezien voor respectievelijk onderwerp 1 en 2.

Op het gebied van de mate van relationeel begrip is er bij de wiskunde A-klas weinig verschil te zien in vergelijking met de resultaten bij stap 1. Voor het 1e onderwerp is een stijging van het relationele begrip te zien in vergelijking met stap 1 (van 1,8 naar 2,3 gemiddeld), maar voor het 2e onderwerp blijft het relationele begrip nagenoeg gelijk (van 2,3 naar 2,2 gemiddeld). Het verschil bij onderwerp 1 kan worden veroorzaakt door het succes van de contextuele video; er waren bij deze video veel aanvullende vragen van leerlingen, maar dit was niet anders bij het 2e onderwerp. Aannemelijker is daarom dat het verschil wordt veroorzaakt doordat relationeel begrip moeilijk objectief te beoordelen valt zoals beschreven is in 4.4.

Bij de wiskunde B-klas zijn er wel enkele opvallende resultaten op het gebied van relationeel begrip. Bij het 1e onderwerp is er een stijging van 2,6 naar 3,1 gemiddeld,
terwijl er bij het 2° onderwerp een daling is van 3,0 naar 2,5 gemiddeld. Ook op de andere criteria scoort onderwerp 1, zoals hierboven al beschreven, duidelijk beter dan onderwerp 2, terwijl de contextuele video van onderwerp 1 maar liefst 77 dagen langer geleden is vertoond. Er zijn 2 waarschijnlijke verklaringen voor dit opvallende effect. Allereerst is de les met de contextuele video van onderwerp 2 (de video met Sven Kramer; zie ook Bijlage 1) nog steeds niet ideaal. Na de problemen met deze les tijdens schoolpracticum 1 (Klunder, 2017) is deze les weliswaar verbeterd, maar de koppeling met de definitie van de afgeleide blijft waarschijnlijk te oppervlakkig. Hierdoor is de wiskunde niet goed genoeg direct en exact af te leiden uit de contextuele video en voldoet de video te weinig aan de voorwaarden die Drijvers (2006) en Kemme (1990) aan een goede context stelden.

Daarnaast was er aan de contextuele video van onderwerp 1 een veel grotere opdracht gekoppeld dan voor andere contextuele video’s. Dit zou ervoor kunnen zorgen dat de context in deze video veel langer houdbaar blijft en daarmee veel beter voldoet aan de voorwaarde die Drijvers (2006) daarover stelt. Opvallend is dat zelfs enkele leerlingen die deze opdracht niet hebben gedaan (het was een vrijwillige extra opdracht) wel in staat bleken de goede wiskunde te koppelen aan de video.

Samenvattend leidt dit tot het volgende antwoord op de deelvraag “In hoeverre relateren leerlingen relationeel wiskundebegrip expliciet aan al bekende contextuele video’s?”:

Op basis van bovenstaande observaties kan geconcludeerd worden dat contextuele video’s authentieke ervaringen kunnen opleveren voor leerlingen waardoor de bijbehorende wiskunde goed lijkt te blijven hangen. Leerlingen blijken goed in staat te zijn hun relationele wiskundebegrip te koppelen aan contextuele video’s die al bij hun bekend zijn. Dit effect lijkt versterkt te worden als de inhoud van de contextuele video over een langere periode houdbaar blijft.

Ook bij stap 3 worden de verwachtingen uit 3.2 grotendeels waargemaakt. Hier werd voorspeld dat leerlingen hun relationele wiskundebegrip in zouden kunnen zetten om nieuwe contextuele video’s te analyseren. Wederom blijken leerlingen in staat passende wiskunde te bedenken bij de contextuele video’s. In de wiskunde A-klas zijn weer alle leerlingen in staat wiskunde te koppelen aan de nieuwe contextuele video’s. Bij 95% van de leerlingen in de wiskunde B-klas is dit ook het geval.

Voor beide klassen geldt ook dat voor beide onderwerpen de bedoelde wiskunde aan de contextuele video wordt gekoppeld en dat dit in 64 tot 90% van de gevallen in ieder geval deels correct gebeurt. Opvallend daarbij is dat de gebruikte contextuele video’s (ski-vliegen; zie ook Bijlage 1) voor onderwerp 1 van de wiskunde A-klas (machtsverbanden) en onderwerp 2 van de wiskunde B-klas (differentiaalrekening) gelijk zijn, maar dat de leerlingen hier dus andere typen wiskunde in herkennen, afhankelijk van de wiskundestof die ze recent gehad hebben (met name de wiskunde B-leerlingen zouden hier ook machtsverbanden in kunnen herkennen). Het lijkt er dus op dat leerlingen inderdaad hun eigen relationele begrip gebruiken bij het analyseren van de contextuele video’s.

Als gekeken wordt naar de mate van relationeel begrip dan is te zien dat bij de wiskunde B-klas de scores voor relationeel begrip min of meer constant blijven in verhouding tot stap 1. Bij onderwerp 1 is de score nog steeds 2,6 terwijl bij onderwerp 2 de score licht daalt van 3,0 naar 2,9. Bij de wiskunde A-klas is er echter wel een
opmerkelijk verschil te zien. Daar stijgen bij beide onderwerpen de scores voor relationeel begrip: van 1,8 naar 2,8 bij onderwerp 1 en van 2,3 naar 2,9 bij onderwerp 2. Daarmee zijn de scores op het gebied van relationeel begrip van de wiskunde A-klas opeens vergelijkbaar met de wiskunde B-klas. Dit kan mogelijk verklaard worden met het feit dat wiskunde A-leerlingen normaal gesproken niet gewend zijn heel erg relationeel begrip te gebruiken (zoals ook al bij stap 1 geconcludeerd wordt), maar dit bij deze specifieke opdracht wel moeten doen. De nieuwe contextuele video lokt in dat geval dus gebruik van relationeel begrip uit. Deze hypothese zou belangrijke consequenties kunnen hebben voor het trainen van beter relationeel begrip bij wiskunde A-leerlingen en het is dus de moeite waard om deze hypothese in vervolgonderzoek verder te onderzoeken.

Samenvattend leidt dit tot het volgende antwoord op de derde deelvraag “In hoeverre relateren leerlingen hun relationele wiskundebegrip expliciet bij nieuwe contextuele video’s”:

Op basis van de resultaten kan geconcludeerd worden dat leerlingen ook bij nieuwe contextuele video’s goed in staat zijn hun relationele wiskundebegrip te koppelen aan de video’s. Ze gebruiken daarbij duidelijk de wiskunde die ze zelf recentelijk onderwezen hebben gekregen. Daarnaast lijken contextuele video’s bij wiskunde A-leerlingen meer gebruik van relationeel begrip uit te lokken.

6.2 Conclusie hoofdvraag

Nu de deelvragen beantwoord zijn kan er een antwoord worden geformuleerd worden op de hoofdvraag van het onderzoek:

Hoe kunnen contextuele video’s bijdragen aan beter relationeel wiskundebegrip van leerlingen?

Het antwoord op deze vraag luidt als volgt:

Bij analyse van de cognitieve schema’s en het relationele wiskundebegrip van leerlingen is er geen directe invloed gevonden van contextuele video’s. Desalniettemin blijken de contextuele video’s wel degelijk authentieke ervaringen op te leveren en invloed te hebben op het relationele wiskundebegrip van leerlingen. Onder bepaalde condities lijkt er daarbij ook sprake te zijn van een verbetering van het relationele wiskundebegrip van leerlingen.

6.3 Aanbevelingen

Het onderzoek zelf en de conclusies uit 6.1 en 6.2 geven aanleiding tot een aantal belangrijke aanbevelingen:

- Binnen dit onderzoek is er nog geen vergelijking gemaakt met leerlingen die geen lessen met contextuele video’s hebben gevolgd. Omdat er geen directe invloed van contextuele video’s in de cognitieve schema’s van leerlingen is waargenomen (zie 6.1) in dit onderzoek is het aan te bevelen om te onderzoeken of de kwaliteit van het relationele wiskundebegrip van leerlingen verschilt bij het wel of niet zien van contextuele video’s.
- Het objectief beoordelen van relationeel wiskundebegrip is, zoals beschreven is in 4.4, erg lastig bij een onderzoeksmethode waarbij doorvragen niet mogelijk is
Hoewel de resultaten van de verschillende stappen niet tot grote en onverklaarbare verschillen leiden, is het aan te bevelen om de resultaten van dit onderzoek te valideren met een vervolgonderzoek waarbij het ook mogelijk is om verder door te vragen naar het begrip van de leerling. Belangrijk is dan uiteraard wel dat er voldoende leerlingen worden ondervraagd tijdens dit onderzoek om dit onderzoek statistisch valide te houden.

- Contextuele video’s lijken een positiever effect te hebben op het relationele wiskundebegrip indien de context uit de video langer houdbaar is (zie 6.1). Dit komt overeen met een belangrijke voorwaarde die Drijvers (2006) stelt voor een goede context (zie 2.1). Het verdient aanbeveling om deze hypothese verder te onderzoeken om zodoende het relationeel wiskundebegrip van leerlingen te kunnen vergroten.

7 Literatuur/Referenties

Bijlagen

Bijlage 1: Overzicht lessen met contextuele video’s

In Tabel 8 zijn alle contextuele video’s beschreven die tijdens het onderzoek getoond zijn aan de klassen beschreven in 4.1.

TABEL 8: OVERZICHT GEBRUIKTE CONTEXTUELE VIDEO’S

<table>
<thead>
<tr>
<th>Datum</th>
<th>Screenshot video:</th>
<th>Beschrijving video:</th>
<th>Wiskundige context:</th>
<th>Link naar de video:</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-1-2017</td>
<td></td>
<td>In de video probeert een goochelaar 4x op rij te raden in welke hand iemand een muntje heeft verstopt. Het lukt de goochelaar om dit 4x achter elkaar te raden. Bovendien laat hij zien dat hij vooraf een correcte voorspelling heeft gedaan.</td>
<td>De video wordt gebruikt om leerlingen te laten nadenken over het totale aantal mogelijkheden waarop het muntje kan worden verstopt: $2^4 = 16$ verschillende manieren. De video wordt gebruikt om de voorkennis van combinatoria te activeren.</td>
<td>https://www.youtube.com/watch?v=NblnzAx59ck&t=175s (van 2:55 tot 5:35)</td>
</tr>
<tr>
<td>23-1-2017</td>
<td></td>
<td>In de video is de gouden oefening van Epke Zonderland te zien op de Olympische Spelen van Londen met het even legendarische commentaar van Hans van Zetten.</td>
<td>De video wordt gebruikt om een toepassing te laten zien van een parabool via de afsprong van Epke. In dit specifieke geval kan de formule van de parabool geschat worden door een aantal bekende punten van de parabool in te vullen in $y = ax^2 + bx + c$. Vervolgens kan via een stelsel vergelijkingen de formule gevonden worden.</td>
<td>https://www.youtube.com/watch?v=5ZZQoQdKUoA</td>
</tr>
<tr>
<td>Datum</td>
<td>Screenshot video</td>
<td>Beschrijving video</td>
<td>Wiskundige context</td>
<td>Link naar de video</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8-2-2017</td>
<td></td>
<td>In de video moeten deelnemers aan de spelshow Way of live proberen langs 4 muren met elk 4 deuren te komen. Bij elke muur zijn er 2 deuren open, achter 1 deur zit een net en 1 deur zit op slot. Deelnemers die niet langs alle 4 deuren komen vallen af en mogen niet naar het volgende onderdeel.</td>
<td>De video wordt gebruikt om een aantal sommen te maken die te maken hebben met herhalingen van kansexperimenten. Zo moeten de leerlingen bijvoorbeeld de kans uittrekken dat iemand bij de 3e muur in het net terechtkomt.</td>
<td>https://www.youtube.com/watch?v=79FhzMC1XsM&t=390s (van 1:05:00 tot 1:06:43)</td>
</tr>
<tr>
<td>5-3-2017</td>
<td></td>
<td>In de video wordt een politicus door Arjen Lubach op satirische wijze terechtgewezen omdat hij een aantal staafdiagrammen op een misleidende manier presenteert. Er worden een aantal grappige en creatieve verklaringen bedacht voor de foutieve presentatie.</td>
<td>De video wordt gebruikt om leerlingen na te laten denken over een toepassing van centrummaten en andere statistische representaties. Daarnaast worden de leerlingen gewaarschuwd voor de gevaren statistiek met zich meebrengt; de vorm kan de boodschap vertroebelen.</td>
<td>https://www.youtube.com/watch?v=nkKa45Rq_ko&t=154s (van 2:34 tot 3:50)</td>
</tr>
<tr>
<td>17-3-2017</td>
<td></td>
<td>In de video wordt het beleid van de nieuwe Amerikaanse president Donald Trump op satirische wijze op de hak genomen door Arjen Lubach. De video ging binnen een paar dagen viral over de hele wereld.</td>
<td>De video wordt gebruikt om voorbeelden van viral video’s te geven. De leerlingen krijgen de opdracht om te voorspellen hoe een viral video (of ander item) zich door de tijd verspreid. Op deze manier komen ze in aanraking met het wiskundige onderwerp exponentiële groei.</td>
<td>https://www.youtube.com/watch?v=j-xxis7hDOE&t=39s (van 0:39 tot 2:19)</td>
</tr>
<tr>
<td>Datum:</td>
<td>Screenshot video:</td>
<td>Beschrijving video:</td>
<td>Wiskundige context:</td>
<td>Link naar de video:</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>17-3-2017</td>
<td></td>
<td>In de video is een klasgenoot van de leerlingen te zien die een succesvolle auditie doet in het programma The Voice Kids. De juryleden draaien al na 2 seconden om. De video werd al na 1 weekend meer dan 150.000 keer bekeken.</td>
<td>De video wordt gebruikt om voorbeelden van viral video’s te geven. De leerlingen krijgen de opdracht om te voorspellen hoe een viral video (of ander item) zich door de tijd verspreid. Op deze manier komen ze in aanraking met het wiskundige onderwerp exponentiële groei.</td>
<td>https://www.youtube.com/watch?v=8NZXxzidq90 (van 0:00 tot 1:42)</td>
</tr>
<tr>
<td>22-3-2017</td>
<td></td>
<td>In de video is André van Duin te zien die net het begrip “logica” heeft geleerd van zijn collega bij de scouting. Hij probeert de logica ook toe te passen bij een vraaggesprek met de orkestleider, maar trekt op hilarische wijze een volstrekt verkeerde conclusie op basis van de antwoorden.</td>
<td>De video wordt gebruikt om de voorwaarden voor het aantonen van causale verbonden te behandelen. De leerlingen krijgen de opdracht om aan te geven aan welke voorwaarde(n) in dit geval niet is voldaan.</td>
<td>https://www.youtube.com/watch?v=sAVjJbSxHNE&t=156s (van 2:36 tot 6:05)</td>
</tr>
<tr>
<td>22-3-2017</td>
<td></td>
<td>In de video zijn de personages Amy Farrah Fowler en Sheldon Cooper uit de serie The Big Bang Theory te zien. Amy voert een onderzoek uit naar de reacties van een aapje op enkele foto’s. Bij elke foto reageert Sheldon op exact dezelfde wijze als het aapje op de foto’s.</td>
<td>De video wordt gebruikt om de voorwaarden voor het aantonen van causale verbonden te behandelen. De leerlingen krijgen de opdracht om aan te geven aan welke voorwaarde(n) in dit geval niet is voldaan.</td>
<td>https://www.youtube.com/watch?v=fRcIUDI9Owc</td>
</tr>
<tr>
<td>Datum:</td>
<td>Screenshot video:</td>
<td>Beschrijving video:</td>
<td>Wiskundige context:</td>
<td>Link naar de video:</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>14-4-2017</td>
<td></td>
<td>In de video is te zien hoe een aantal bacteriën in melk zichzelf razendsnel deelt en in een paar uitgroeien tot een grote hoeveelheid bacteriën.</td>
<td>De video wordt gebruikt om leerlingen te laten oefenen met het opstellen van formules behorend bij exponentiële groei met behulp van de standaardformule (N = b \cdot g^t). Leuke uitdaging bij de video is dat (t = 0) niet te zien is.</td>
<td>https://www.youtube.com/watch?v=KIpcCyuypzg</td>
</tr>
<tr>
<td>15-5-2017</td>
<td></td>
<td>In de video is te zien dat een man en zijn dochter in een auto naar een brand staan te kijken op een ogenschijnlijke veilige afstand van 300 yards (= 274 meter). Opeens explodeert de fabriek en raken de man en dochter in paniek. De man en zijn dochter raken niet gewond bij de explosie.</td>
<td>De video wordt gebruikt om te oefenen met het herleiden van machtsverbanden. Door de bolvorm van de explosie blijkt de opgelopen schade (Z) afhankelijk van de afstand (R) tot de explosie met een kracht van (W) volgens het verband (Z = \frac{R}{\sqrt[3]{W}}). De leerlingen krijgen verschillende sommen waarbij er steeds 2 van de 3 variabelen bekend zijn.</td>
<td>https://www.youtube.com/watch?v=jzDC3iKbTzY (van 0:50 tot 1:35)</td>
</tr>
<tr>
<td>29-5-2017</td>
<td></td>
<td>In de video is te zien dat het personage Alan uit de film The Hangover geld probeert te verdienen met blackjack door kaarten te tellen. Omdat dit een illegale tactiek is in casino’s houdt de beveiliging hem in de gaten.</td>
<td>De video wordt gebruikt om de leerlingen leren om te gaan met verschillende kansrekeningen-vraagstukken. Doordat er kaarten al uit het spel zijn, veranderen de kansen bij blackjack. Door de kaarten te tellen kun je dus inschatten wanneer het gunstig is om te spelen en wanneer niet.</td>
<td>https://www.youtube.com/watch?v=jxTngPDNqk8</td>
</tr>
<tr>
<td>Datum:</td>
<td>Screenshot video:</td>
<td>Beschrijving video:</td>
<td>Wiskundige context:</td>
<td>Link naar de video:</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2-6-2017</td>
<td></td>
<td>In de video is een race tussen Sven Kramer en Havard Bökko te zien op een 10 km van een Europees Kampioenschap. Aan het einde van de race versnellen beide schaatsers. Sven Kramer versnelt daarbij net wat harder en eindigt met een aantal enorm snelle slotronden.</td>
<td>De video wordt gebruikt om het nut van de definitie van de afgeleide te laten zien. Er wordt de leerling eerst gevraagd of ze de gemiddelde snelheid van de schaatsers kunnen berekenen op basis van de rondetijden. Daarna wordt er gevraagd of ook de snelheid op een specifiek moment berekend kan worden. Er wordt met een verhaaltje aannemelijk gemaakt dat dit kan met behulp van differentiëren.</td>
<td>https://www.youtube.com/watch?v=-wTKc-Phd_w (van 0:00 tot 1:40)</td>
</tr>
<tr>
<td>21-6-2017</td>
<td></td>
<td>In de video wordt op een creatieve manier uitgelegd op hoeveel verschillende manieren een pak speelkaarten geschud kan worden (door bijvoorbeeld elke miljard jaar een stap te nemen en zo over de evenaar te lopen).</td>
<td>De video wordt gebruikt om leerlingen te laten zien hoe snel een aantal mogelijkheden kan groeien. Dit om aan te tonen waarom het soms nodig is om bij kansrekening kansen uit te rekenen alsof er met terugleggen wordt getrokken in plaats van zonder terugleggen.</td>
<td>https://www.youtube.com/watch?v=T69cguFzZ_w&t=118s (van 1:58 tot 4:13)</td>
</tr>
<tr>
<td>Datum:</td>
<td>Screenshot video:</td>
<td>Beschrijving video:</td>
<td>Wiskundige context:</td>
<td>Link naar de video:</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>23-6-2017</td>
<td></td>
<td>In de video is te zien hoe een bal bij het appartement van de docent omhoog wordt gegooid en uiteindelijk 3 etages later op de grond komt. De video eindigt met 2 schattige katten die voor het raam van een buurvrouw om aandacht vragen.</td>
<td>De video wordt gebruikt om aan de hand van de paraboolvormige baan van de bal en een aantal gegeven tijdstippen en hoogten te berekenen met welke snelheid de bal op de grond terechtkomt. De leerlingen moeten hiervoor in groepjes van 4 eerst een formule opstellen van de parabool om vervolgens via de afgeleide de snelheid op de grond te berekenen. Ook wordt de relatie met de valversnellingsformules van natuurkunde benadrukt.</td>
<td>Niet van toepassing: persoonlijke video</td>
</tr>
<tr>
<td>28-6-2017 en 30-6-2017</td>
<td></td>
<td>In de video zijn een aantal ski-vliegers te zien die met zo’n 100 km per uur van een schans springen en uiteindelijk meer dan 240 meter ver springen. De video wordt begeleid met een sfeervol muziekje.</td>
<td>Deze contextuele video was onderdeel van stap 3 van het onderzoek (zie 4.2.4). De leerlingen moesten zelf een wiskundige context bij de video bedenken. De bedoelde onderwerpen bij deze video waren machtsverbanden en differentiaalrekening</td>
<td>https://www.youtube.com/watch?v=ZTtrdfv8WRI&t=35s (van 0:35 tot 1:34)</td>
</tr>
<tr>
<td>Datum</td>
<td>Screenshot video:</td>
<td>Beschrijving video:</td>
<td>Wiskundige context:</td>
<td>Link naar de video:</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>28-6-2017</td>
<td></td>
<td>In de video is te zien hoe een speler van het spelprogramma Deal or no deal (vergelijkbaar met Miljoenenjacht) bij zijn eerste 4 pogingen direct alle hoofdprijzen wegspeelt. De pech van deze deelnemer leidt tot grote hilariteit bij het publiek.</td>
<td>Deze contextuele video was onderdeel van stap 3 van het onderzoek (zie 4.2.4). De leerlingen moesten zelf een wiskundige context bij de video bedenken. Het bedoelde onderwerp bij deze video was kansrekening.</td>
<td> (van 0:00 tot 2:21)</td>
</tr>
<tr>
<td>30-6-2017</td>
<td></td>
<td>In de video is te zien hoe de wereldbevolking groeit door de jaren heen. Voor elk gebied met een miljoen mensen wordt er een gele stip op de kaart gezet. Onder in beeld worden de belangrijkste gebeurtenissen uit de wereldgeschiedenis bovendien afgebeeld.</td>
<td>Deze contextuele video was onderdeel van stap 3 van het onderzoek (zie 4.2.4). De leerlingen moesten zelf een wiskundige context bij de video bedenken. Het bedoelde onderwerp bij deze video was exponentiële groei.</td>
<td> (van 1:40 tot 3:29)</td>
</tr>
</tbody>
</table>
Bijlage 2: Lesvoorbereidingsformulier bij de voorbeeld-les

Docent: Léon Klunder
Datum: 29-5-2017 (6° uur)
School: TCC – De Thij
Tijd: 50 minuten
Klas: 4 vwo A1
Leerboek: Getal & Ruimte
Paragrafen: 7.1 (Les 2)

Beginsituatie: Leerlingen hebben de voorkennis over combinaties en herhaling van kansexperimenten gemaakt

Onderwerp: Het vaasmodel

Doelstelling: 1. Leerlingen logisch leren nadenken over kansrekening m.b.t. het vaasmodel

Hulpmiddelen: Whiteboard, PowerPoint

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Onderwijsfuncties:</th>
<th>Docent:</th>
<th>Leerlingen:</th>
<th>Tijd:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lesstart</td>
<td>Aangeven programma</td>
<td>Luisteren</td>
<td>5 + 2</td>
</tr>
<tr>
<td>2</td>
<td>Enthousiasmeren</td>
<td>Video van blackjack-film laten zien</td>
<td>Kijken</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Activeren voorkennis/Presenteren kennis</td>
<td>Vraagstukken voorleggen a.d.h.v. pakje kaarten</td>
<td>Actief meedenken</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Enthousiasmeren/Presenteren kennis</td>
<td>Blackjack spelen met klas</td>
<td>Actief meedenken</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Oefenen</td>
<td>Rondlopen en coachen</td>
<td>Maakwerk maken</td>
<td>25</td>
</tr>
</tbody>
</table>

Opbouw les (les 2):

1. **Introductie:**
 a. Aangeven programma

2. **Enthousiasmeren:**
 a. Ik laat een video zien van The Hangover (https://www.youtube.com/watch?v=DeazgPwP3D0) waar iemand met blackjack kaarten telt en daar veel geld mee verdient.

3. **Activeren voorkennis/Presenteren kennis:**
 a. Om de leerlingen wat ideeën te geven voor de bonusopdracht ga ik klassikaal een aantal vraagstukken behandelen m.b.v. een pakje kaarten. Deze zijn initieel nog makkelijker te doen met de kansrekening van hoofdstuk 4, maar vragen na een tijdje om het vaasmodel. Het vaasmodel zelf wil ik overigens (nog) niet behandelen; ik heb liever dat leerlingen eerst zelf over situaties nadenken.
 b. Ik begin met een pakje kaarten en vraag de leerlingen naar de kans dat ik 2 ruitens pak:
 - \(P(2x ruiten) = \frac{13}{52} \times \frac{12}{51} = \frac{1}{17} \)
 c. Ik geef aan dat je dit ook op een andere manier kunt berekenen via de kansdefinitie van Laplace: \#gunstige mogelijkheden/\#mogelijkheden totaal = \(\frac{13 \text{ boven } 2}{52 \text{ boven } 2} \) = 1/17
 d. Vervolgens maken we de opgave iets moeilijker: ik trek 3 kaarten en vraag naar de kans dat ik de betreffende combinatie krijg. (bv. 2 schoppen en 1 ruiten). Op de oude manier gaat dit als volgt:
- Ik moet een rijtje maken met 2 schoppen en 1 ruiten: dit kan op (3 boven 1) manieren.
- Een voorbeeld van zo’n rijtje is SSR met kans 13/52*12/51*13/50.
- Het product van het aantal rijtjes en de kans is de totaalkans (1 leerling mag dit intikken)

e. Daarna doen we het weer op de vaasmodel-manier:
- Van de 13 schoppen moet ik er 2 pakken: dat kan op (13 boven 2) manieren.
- Van de 13 ruiten moet ik er 1 pakken: dat kan op (13 boven 1) = 13 manieren.
- (Van de overige 26 moet ik er 0 pakken)
- Totaal moet ik van de 52 kaarten er 3 pakken: dat kan op (52 boven 3) manieren.
- Het product van de eerste 3 bullets gedeeld door de laatste bullet is het antwoord (1 leerling mag dit intikken)

f. Vervolgens pak ik 10 kaarten en vraag naar de kans van deze combinatie. Ik begin met het opschrijven van de kans op de 1e manier om te laten zien dat dit erg lang gaat worden…..

g. Daarom onderbreek ik dat en doe het op de vaasmodel manier.

4. Enthousiasmeren/Presenteren kennis:
 a. Ik vraag de leerlingen naar de kans van blackjack (A en een 10/plaatje):
 - Dit is (4 boven 1) x (16 boven 1) / (52 boven 2) = 0,048265…
 b. Vervolgens geef ik 2 leerlingen een opdracht:
 - 1 telt het aantal azen dat al getrokken is
 - 1 telt het aantal 10-en/plaatjes dat al getrokken is.
 c. Dan ga ik met 15 van de 17 blackjack spelen.
 d. De 2 leerlingen met de opdracht vertellen vervolgens hoeveel azen en 10-en/plaatjes er al uit zijn.
 e. Nu berekenen we de kans op blackjack opnieuw en vraag ik wat ze nu zouden doen…..
 f. Ik sluit af door op te merken dat kaarten tellen illegaal is in casino’s, maar dat casino’s zich er ook tegen beschermen door bv. meer pakjes kaarten te nemen…. Kortom: kaarten tellen is tegenwoordig zinloos en gevaarlijk…..

5. Oefenen:
 a. Leerlingen mogen bezig met hun maakwerk: 1-9
 b. Ik loop rond en coach de leerlingen
Bijlage 3: Voorbeeld van een mindmap

Als voorbeeld voor het maken van een mindmap kregen de leerlingen de mindmap van Figuur 4 te zien. In de bolletjes staan zaken die met de stelling van Pythagoras te maken hebben. Dit kunnen stukken tekst, tekeningen, formules, et cetera zijn. Tussen bolletjes die iets met elkaar te maken hebben zijn lijntjes getrokken om deze relatie aan te geven.

Figuur 4: Voorbeeld van een mindmap bij de stelling van Pythagoras
Bijlage 4: Voorbeeld van de antwoordbladen

FIGUUR 5: VOORBEELD VAN ANTWOORDBLAD BIJ STAP 1

FIGUUR 6: VOORBEELD VAN ANTWOORDBLAD BIJ STAP 2 EN 3
Bijlage 5: Voorbeelden van scoren relationeel begrip

Voorbeeld 1: Stap 1 – Relationeel begrip score 1

De leerling die de mindmap uit Figuur 7 heeft gemaakt lijkt weinig tot geen relationeel begrip te bezitten. Er staan weinig zaken in de mindmap en bovendien zijn de zaken niet of nauwelijks gerelateerd aan elkaar. Daarnaast zitten er veel fouten in de mindmap waaruit blijkt dat de leerling de achterliggende gedachtes van de wiskunde niet goed heeft begrepen. Bij de rekenregels zijn er 3 beginnersfouten te ontdekken en de formule \(n = n^t + g \) lijkt vaag op de behandelde formule \(N = b \cdot g^t \) die exponentiële groei weergeeft, maar geeft toch iets heel anders weer. Een score van 1 is hier dus in dit geval toegekend.
Voorbeeld 2: Stap 1 – Relationeel begrip score 5

De leerling die de mindmap uit Figuur 8 heeft gemaakt lijkt uitstekend begrip van het hoofdstuk te hebben. De leerling weet bijvoorbeeld alle behandelde functies uit het hoofdstuk en de daarbij behorende kenmerken systematisch te noteren. Bovendien gebruikt de leerling, blijkbaar zelfbedachte, notaties die niet in de lessen of de methode zijn behandeld. Ook heeft de leerling een behandelde toepassing uit een van de contextuele video’s (over groei van bacteriën) op de goede plaats in de mindmap gezet. Kortom, de leerling lijkt in staat om flexibel met de geleerde stof om te kunnen gaan. Een score van 5 is daarom hier toegekend.
De leerling die de beschrijving uit Figuur 9 heeft opgeschreven heeft nog wel enigszins onthouden welke wiskunde behandeld is bij de getoonde contextuele video. De leerling heeft blijkbaar door dat het verloop van het aantal likes of views exponentieel toeneemt, maar geeft verder niet aan ten opzichte van welke grootheid (in dit geval tijd). Ook geeft de leerling niet aan, door middel van bijvoorbeeld een formule of grafiek, hoe dit verband er verder uit ziet. De beschrijving die de leerling geeft is vrij beknopt. Vandaar dat een score van 2 in dit geval is toegekend.
Voorbeeld 4: Stap 2 – Relationeel begrip score 4

Figuur 10: Een voorbeeld van een score van 4 op relationeel begrip bij fase 2

De leerling die de beschrijving uit Figuur 10 heeft gegeven heeft de wiskunde achter de contextuele video nog goed voor ogen. Net zoals de leerling in Figuur 9 beschrijft de leerling de bedoelde wiskunde achter de contextuele video, maar deze leerling geeft ook blijk van de vorm van zo’n verband en het verband met de tijd. Daarnaast beschrijft de leerling, hoewel niet heel gedetailleerd, waarom er een exponentieel verband verwacht mag worden bij de verspreiding van een viral video. Al met al is een score van 4 in dit geval toegekend.
Voorbeeld 5: Stap 3 – Relationeel begrip score 3

FIGUUR 11: EEN VOORBEELD VAN EEN SCORE VAN 3 OP RELATIONEEL BEGRIP BIJ FASE 3

De leerling die de beschrijving uit Figuur 11 heeft gegeven heeft succesvol herkend dat er in de video sprake is van exponentiële groei. Dit getuigt al van enig relationeel begrip. Ook geeft de leerling aan dat de groei steeds meer toeneemt; een kenmerk van exponentiële groei. Aan de andere kant lijkt de leerling nog niet in staat dit om te zetten in heel gedetailleerde wiskunde, getuige ook het zinnetje “bij die groei hoort een bepaalde functie”. De toegekende score bij dit voorbeeld is daarom 3.
Voorbeeld 6: Stap 3 – Relationeel begrip score 4

De leerling die de beschrijving uit Figuur 12 heeft gegeven heeft net zoals de leerling uit Figuur 11 het exponentiële verband herkend. Deze leerling weet daarnaast echter, hoewel vrij beknopt, te beschrijven hoe het verband bepaalt kan worden, en misschien nog wel belangrijker, wat het nut is van het bepalen van dit verband: het voorspellen van de grootte van de bevolking (de hoeveelheid puntjes) in de toekomst. Deze leerling toont dus vrij veel relationeel begrip, maar weet dit nog niet helemaal te vertalen in wiskundige formules of grafieken. Vandaar dat een score van 4 is toegekend.