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Abstract

Due to today’s transition from visiting physical stores to online shopping, predicting
customer behavior in the context of e-commerce is gaining importance. It can in-
crease customer satisfaction and sales, resulting in higher conversion rates and a
competitive advantage, by facilitating a more personalized shopping process. By uti-
lizing clickstream and supplementary customer data, models for predicting customer
behavior can be built. This study analyzes machine learning models to predict a pur-
chase, which is a relevant use case as applied by a large German clothing retailer.
Next, to comparing models this study further gives insight into the performance dif-
ferences of the models on sequential clickstream and the static customer data, by
conducting a descriptive data analysis and separately training the models on the dif-
ferent datasets. The results indicate that a Random Forest algorithm is best suited
for the prediction task, showing the best performance results, reasonable latency, of-
fering comprehensibility and a high robustness. Regarding the different data types,
models trained on sequential session data outperformed models trained on the static
customer data by far. The best results were obtained when combining both datasets.
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Management summary

Context

Predicting customer behavior in the context of e-commerce is becoming more im-
portant nowadays. It increases customer satisfaction and sales, by facilitating an
increase of customer experience through personalization, recommendations and
special offers. By utilizing clickstream and additional customer data, predictions
can be carried out, ranging from customer classification, purchase prediction, and
recommender systems to the detection of customer churn. A variety of machine
learning models and data are available to conduct these kinds of predictions.

Research Problem

Categorizing whether a web shop session will end in a purchase or not, is a rel-
evant use case in the context of predictions in e-commerce. This categorization
followed by the display of gift cards to non purchasing customers, to convince them
of a purchase nonetheless, has proven to increase turnover of a large German cloth-
ing retailer. A variety of possible prediction models as well as different data sources
exist to carry out such predictions. This paper aims at retrieving well-suited pre-
diction models and comparing their performances across different data types, such
as static and dynamic data, to establish how customers can be best classified as
buying or no buying. This results in the following research question:

How can a customer in a web shop be categorized as a buying or no buying cus-
tomer?

Methodology

This research was structured based on the Cross Industry Standard Process for
Data Mining (CRISP-DM) methodology. Suitable models, being boosted tree, Ran-
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MANAGEMENT SUMMARY v

dom Forest (RF), Support Vector Machine (SVM), Feed-forward Neural Network
(FNN), Logistic Regression (LR) and Recurrent Neural Networks (RNN), were identi-
fied through a literature research. Following, algorithms were trained on three differ-
ent datasets, the sequential session data, the static customer data and a combined
dataset, then evaluated and compared based on different performance metrics, pre-
diction latency and comprehensibility. The RNN was further trained on datasets with
varying degrees of required feature engineering. All algorithms as well as the eval-
uation and comparison were implemented in Python.

Results

The obtained results indicate that the RF performed best while showing reason-
able prediction latency. Regarding the comprehensibility, no difference between the
different algorithms was observed. The performance of different datasets shows
that a combined dataset leads to the best results, where customer information en-
hances the results only slightly. An overview of the results regarding the different
datasets and algorithms concerning the ROC AUC value can be observed in Table
1. Further, a promising effect regarding time-consuming feature engineering was
observed for the RNN, where fewer and less engineered features led to better re-
sults than a larger amount of more heavily engineered features as used for the other
algorithms.

Table 1: ROC AUC results for all algorithms and datasets.

Algorithm/ Data Type Combined Data Sequence Data Customer Data
Boosted tree 0.79 0.78 0.64
RF 0.82 0.81 0.67
FNN 0.73 0.67 0.67
SVM 0.67 0.74 0.39
LR 0.8 0.78 0.65
RNN 0.74 0.74 0.66

Conclusion

This study shows that web shop sessions can be well categorized as buying or no
buying sessions, with an RF showing the best performance. Further, by training on
different datasets this study was able to emphasize that session based data, mainly
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generated from the customer clickstream, is most important for predicting purchase
probabilities. This indicates that personal customer information, often associated
with privacy concerns and regulations, is not necessarily needed to predict cus-
tomer behavior well. Additionally, by training an RNN on less engineered features, it
was displayed that stateful models perform well while requiring less time-consuming
feature engineering, when detecting sequential patterns.
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Chapter 1

Introduction

The research domain of this master thesis, being the analysis, classification, and
prediction of customer behavior in the field of e-commerce, is introduced in this
chapter. Research in this area is motivated in the first part (Section 1.1). Resulting,
a research question, and sub-questions are formulated in Section 1.2. Finally, the
structure of the thesis is outlined in Section 1.3.

1.1 Motivation

As a result of today’s knowledge-based economy and the information society, e-
commerce is becoming increasingly popular all over the globe. The most common
type being the Business-to-Customer trade, typically represented as online stores,
displacing physical stores quickly (Suchacka & Chodak, 2016). The transition from
physical to online shopping can be inferred by numbers such as an increase in to-
tal retail sales in Germany of 3% in 2016, whereas the e-commerce sales rose by
an estimated 12.5% to 58.52 billion dollars and are expected to exceed 86 billion
dollars at the end of 2021 (Retail Ecommerce in Germany: A Major Digital Market
Growing in Size and Sophistication, 2017). The rapid growth of e-commerce has
transformed the shopping process as a whole and along with it the traditional buyer-
merchant relationships. This change is accompanied by challenges that companies
need to address. Such challenges entail more competition and a volatile relation-
ship between customers and merchants since customers and their preferences are
no longer personally known, resulting in less loyal customers. Therefore, attract-
ing customers, gaining their trust and retaining them becomes a main objective in
modern e-commerce (Nakayama, 2009; Salehi, Abdollahbeigi, Langroudi, & Salehi,
2012). Web shop visitors leave more traces than ever before. Large amounts of per-
sonal information as well as clickstream data, recorded during each web shop visit,
are collected, connected and stored for analysis with data mining techniques. Knowl-
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CHAPTER 1. INTRODUCTION 2

edge retrieved from these analyses can improve customer satisfaction, by making
the shopping process more efficient, more engaging and increasingly personalized
(Magrabi, 2016), mitigating the risks associated with the aforementioned challenges.
In the long run, this can lead to a competitive advantage resulting from a higher con-
version rate and increased turnover (Hop, 2013; Suchacka & Chodak, 2016).

The analysis of customer purchase behavior dates back to the beginning of e-
commerce (Bellman, Lohse, & Johnson, 1999) and has many applications nowa-
days. Examples are item recommendations for customers (Y. Tan, Xu, & Liu, 2016;
Hidasi, Quadrana, Karatzoglou, & Tikk, 2016), the classification of customers into
certain categories such as buyers, visitors, etc. (Moe, 2003; Fajta, 2014), predicting
the purchase probability in order to offer a higher quality of service to customers that
are more likely to buy (Lo, Frankowsik, & Leskovec, 2014; Korpusik, Sakaki, Chen,
& Chen, 2016; Suchacka & Templewski, 2017; Lang & Rettenmeier, 2017) and the
timely detection of customer churn in order to prevent such (Xie, Li, Ngai, & Ying,
2008; Castanedo, Valverde, Zaratiegui, & Vazquez, 2014). This thesis is similar to
the detection of customer churn, being concerned with predicting the abortion of a
shopping process in order to prevent it. Prevention is possible through, for example,
showing recommended items or displaying gift cards to motivate a purchase. Pre-
dictions of customer actions are often based on personal customer data, clickstream
data and supplementary data from other sources. Various machine learning meth-
ods exist to perform classification on the collected clickstream data. Examples are
regular machine learning models such as Logistic Regression (LR), Support Vec-
tor Machines (SVM), Decision Trees (DT), Random Forest (RF) and Feed-forward
Neural Networks (FNN) as well as stateful models such as Higher-order Markov
Chains (HMC) and Recurrent Neural Networks (RNN).

Motivated by the increasing importance of classifying customer behavior and a
large number of possible prediction models and data sources, this thesis aims at
implementing and comparing suitable models trained on different datasets to iden-
tify the most appropriate one for predicting the abortion probability of a web shop
visitor. Hence, a binary classification task of a visitor belonging to the aborting or
not aborting category. This classification followed by the display of gift cards in order
to persuade the visitor to stay in the web shop has been tested by a large German
clothing retailer in an A/B test and showed an increased conversion rate from 8%
to 10% under assumptions of a cost-benefit analysis. It is, therefore, a suitable and
relevant use case for testing classification models and different data types in the
context of e-commerce.

Testing the models on different dataset types was motivated by literature: Pre-
vious studies have shown that a combined dataset of clickstream and customer
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data leads to the best performance results when predicting buying probabilities as
compared to using the datasets separately. Here, the static customer data can
only slightly increase the already good performance of the dynamic clickstream data
(Bogina, Kuflik, & Mokryn, 2016; Lee, Ha, Han, Rha, & Kwon, 2015; Poggi, Moreno,
Berral, Gavald, & Torres, 2007). This thesis aims at replicating the results from lit-
erature and additionally enhancing the findings by providing further insight into the
predictive power of the different datasets through an exploratory data analysis. This
analysis is expected to give reasoning about the bad performance of static customer
data compared to dynamic clickstream data.

In the study of Lang and Rettenmeier (2017), an RNN was implemented to pre-
dict the probability of a purchase occurring within a web shop session. The study
claims that RNNs, being stateful models equipped with a memory, provide a possibil-
ity of reducing labor-intensive feature engineering in the context of sequential data.
Lang and Rettenmeier do not include a comparison about how RNNs perform on
datasets with different degrees of feature engineering, and do, therefore, not prove
if less feature engineering does indeed show as good results as heavily engineered
features. Resulting from this and since the sequential clickstream data seems to
be a natural fit for RNNs, this study aims at training an RNN on datasets with dif-
ferent levels of feature engineering, to establish how well RNNs perform on less
engineered features. This shows how RNNs might offer the possibility to reduce
feature engineering, which is very important for e-commerce since it is typically a
time-consuming task that requires a lot of expert knowledge.

Finally, after obtaining the results, these are tested for their robustness, to display
how different conditions, such as the used device or day of the week, could influence
the models’ performance. This improves on the findings in literature since none of
the reviewed papers analyze how the obtained results might behave under different
conditions, even though this is important to assess since it helps to understand how
a model would perform under real conditions after deployment.

1.2 Problem definition

Resulting from the facts stated in Section 1.1, in this thesis, machine learning models
are identified and implemented for solving the task of classifying a web shop visitor
as aborting or non aborting, in the following referred to as no buying and buying
sessions.

The models are applied to different data types, namely clickstream data gen-
erated by each visitor of the web shop as well as customer data if a visitor could
be identified. This is done to establish which model and data is best-suited for the
task of predicting the buying probability of an online shopping session, in terms of
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performance, latency, and comprehensibility. Latency is important since in the use
case, predictions have to be conducted in real-time and model comprehensibility is
considered since the demand for explaining decisions made by machine learning
models is rising. The boosted tree model that is already being used by the German
clothing retailer, will act as a baseline for the comparison of the different algorithms.
To provide further insight and reasoning about the varying performances on different
datasets, an exploratory data analysis on the clickstream and static customer data
is conducted.

An RNN, representing the class of stateful machine learning models, is addition-
ally trained on datasets, which required fewer feature engineering, to show if stateful
models provide good results while reducing the need for feature engineering.

After obtaining the results of the different models on all datasets, the models are
tested for their robustness to different conditions. Examples of such conditions are
the gender of the visitor or the device on which the web shop was visited. This anal-
ysis indicates how the models will perform under real conditions after deployment.

Deployment is out of scope for this research and can only be regarded as an
implication if a tested model outperforms the baseline model.

From all of the previously mentioned points the research question as stated be-
low results:

Research Question: How can a visitor in a web shop be categorized as a
buying or no buying?

Five subquestions are needed to completely answer the main research question and
are stated in the following:

Sub Question 1: How can an exploratory data analysis provide insight into
the prediction problem?

Sub Question 2: Which machine learning model is best suited to solve
the prediction problem?

Sub Question 3: How do different data types, such as dynamic clickstream
and static customer data, influence the models’ performance?

Sub Question 4: Can stateful models produce good results while requiring
less feature engineering?
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Sub Question 5: How robust is the best-suited algorithm to different con-
ditions?

1.3 Report organization

The remainder of this report first discusses findings from the literature, analyzing
model performance on similar tasks as the one at hand in Chapter 2. Then the meth-
ods, consisting of the research framework, the utilized algorithms and software as
well as the evaluation metrics are described in Chapter 3. The methodology chap-
ter is followed by the data Chapter 4 discussing data pre-processing, a first data
analysis and the used features. Then the implementation including hyper-parameter
tuning is described in Chapter 5. The results are presented in Chapter 6 and dis-
cussed afterward in Chapter 7. The thesis ends in Chapter 8 with a conclusion,
giving answers to all above-stated research questions.



Chapter 2

Literature review

This chapter reviews the results and algorithms used by studies concerned with a
similar binary classification problem as the one at hand. To create a broader under-
standing of the problem and the different algorithms, binary classification and the
algorithms used for solving it are each explained before reviewing their application
and performance in literature. All reviewed literature is summarized in Table 2.1,
showing details on the data and results obtained in each study. Looking at the table
one has to keep in mind that comparing results across studies is difficult since dif-
ferent data types, evaluation metrics, evaluation thresholds, etc. were used. Finally,
a gap analysis of the reviewed literature is conducted.

2.1 Binary Classification

Data mining has various applications with classification being the most common one.
Being a predictive analytics task, the aim of classification is to predict a categorical
target variable from a set of input variables. This target variable can be expressed
either through various categories or be of binary nature (Kotu & Deshpande, 2014).
The task at hand is a binary classification task since the target variable has two cat-
egories: buying and no buying. In order to predict the target variable a generalized
relationship between input and target variable is learned from a labeled dataset. It
is then applied to new data for classification. Learning algorithms should both fit the
training data and generalize well over new data (P. Tan, Steinbach, & Kumar, 2005).
Various machine learning algorithms exist that have different methods of extracting
this relationship.

6
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Table 2.1: Used data, algorithms and results obtained by different studies.
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2.2 Learning algorithms for binary classification

The most common type of machine learning algorithms for a binary classification
task are vector-based methods. Belonging to this category are DTs, RFs, SVMs,
LR, and FNNs. The baseline model of this study also associates with this category
being part of the DT algorithms. Common to these algorithms is to learn supervised
with a set of feature vectors and corresponding outputs (Heaton, 2016). They are
eager learning models, where a classification model is constructed based on a given
training dataset before new data is classified according to the model. The opposites
are lazy learners, such as the K-nearest Neighbor (KNN) algorithm, where training
data is simply stored and a test data point is awaited for classification (Han, Pei, &
Kamber, 2011).

All of the above-mentioned methods are stateless machine learning algorithms;
they do not have any memory and always return the same answer given the same
input. This is well-suited for most classification tasks, however, it is difficult to model
patterns over time, since the different states have to be modeled through complex
feature engineering, creating inaccuracies and increasing complexity by raising the
number of input features. Nevertheless, the ability to model time sequences and
extract patterns over time can be useful for the research at hand, since the click-
stream data used in this study is of sequential and time-dependent nature. Fortu-
nately, stateful models exist, equipped with a memory, to remember previous states
and to extract sequential patterns without the need for engineering time-dependent
features explicitly. Examples of such models are RNNs and HMCs. All of the men-
tioned algorithms are explained below, each followed by their applications and per-
formances in literature.

2.2.1 Decision Trees

DTs consist of a set of split conditions which divide a heterogeneous population into
smaller, more homogeneous subgroups regarding a certain variable. The aim is to
create the most homogeneous subgroups. Various algorithms exist to find the best
splits such as the Hunts algorithm, which follows a greedy strategy consisting of
local optimum decisions (P. Tan et al., 2005). Simple DTs have the advantage of
being convertible to simple, understandable classification rules (Han et al., 2011).
This comprehensibility decreases as the models grow larger and more unbalanced
(Rokach & Maimon, 2014). In general, DTs offer a relatively fast learning and pre-
diction speed. Even though the different types vary regarding comprehensibility,
they are still easier to understand than black box models such as FNNs or SVMs
(Rokach & Maimon, 2014). Disadvantages are the required feature engineering, the
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inability to implicitly model time sequences and an increased complexity regarding
trees with categorical variables consisting of many categories. Methods compro-
mising only singular DTs, called non-ensemble DTs, tend to over-fit and be unstable
regarding noisy data (Hop, 2013).

Boosted Decision Trees

Boosted DTs belong to the ensemble methods, consisting of more than one DT.
Here, a sequence of trees is built, where each tree results from the prediction resid-
uals of the previous tree (Friedman, 2002). An example for such a method is the
baseline model used for this study. Boosted DTs have proven to be a very powerful
method for predictive analytics by winning a lot of Kaggle machine learning compe-
titions (Kaggle – The Home of data Science and Machine Learning, 2017), but are
less comprehensible than simple DTs, since they consist of many trees.

Random Forest

Bagging is another example for ensemble trees, where many large trees are fit to
the bootstrap re-sampled versions of the data and are classified by majority vote
(Breiman, 1996). RF improves on Bagging by de-correlating the trees. After each
tree split a random sample of features is chosen and only these are considered for
the next split. The results are again based on the majority vote of the single trees. By
using a large number of classifiers, Bagging and RFs, improve on the weaknesses
of non-ensemble DTs, such as robustness and over-fitting. They train faster than
the boosted trees but need more time for the prediction (Breiman, 2001). Neverthe-
less, Bagging and RFs still depend on feature engineering and cannot model time
dependencies.

DTs show great results throughout literature being applied to very similar prob-
lems as this research. Bogina et al. (2016), for example, used different DT algo-
rithms to classify a session as a buying or no buying session. Next to clickstream
data also a setup with additional data about item sales statistics was used, which
increased the prediction performance. In the case where only clickstream data was
used, being the closest to our use case, a Bagging RepTree showed the best re-
sults. It was implemented in Weka, a tool that supports data analysis with different
machine learning techniques (Frank, Hall, & Witten, 2016) and showed a preci-
sion of 0.824, a recall of 0.808, an F1-score of 0.806 and a ROC Area under the
curve (AUC) of 0.889.

Poggi et al. (2007) trained different machine learning models on clickstream
data which was transformed into HMCs prior to processing. Only 14,500 transac-
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tions were used for training this model. The authors tested separately for static ses-
sion information and static and dynamic session information combined. The results
show that combining static and dynamic session data only increased the prediction
performance slightly. The results further show that the J48 model, a DT, outper-
formed an LR classifier with a recall of 0.708 compared to a recall of 0.681.

In the prudsys Datamining Cup 2013, the challenge was to classify buying ver-
sus no buying sessions from clickstream data (DMC 2013, 2013), where the training
dataset contained 429,013 data points. The winning team from the University of
Dortmund achieved an accuracy of 0.972 by using Bagging of 600 C4.5 DTs (Hop,
2013). Hop also competed in the prudsys Datamining Cup 2013 and compared RFs
with SVMs and an FNN. RFs outperformed the other two methods with an accuracy
of 0.903, the SVM showed the second best accuracy with 0.868, whereas the FNN
only achieved an accuracy of 0.755. Next to the high accuracy Hop also mentions
other advantages of the RF method: Compared to SVMs the computational effort
of training is low and it requires minimal hyper-parameter tuning making it easy and
fast to use.

Lastly, Niu, Li, and Yu (2017) also estimated purchase probabilities with RFs
while not mainly focusing on clickstream data itself, but on search queries and click
positions. For building the model they included information about mouse clicks, static
and dynamic session data as well as static customer data. To train and evaluate the
model a rather large amount of 1,530,738 records was used. Their study shows
that a RF outperformed the LR with an accuracy of 0.76, a sensitivity of 0.73 and
a specificity of 0.82, compared to results of 0.61, 0.61 and 0.60 respectively. Next
to the prediction results, they also show some descriptive statistics of the customer
shopping behavior such as the average amount of formulated queries being 8.3 and
that a visitor spends around three minutes on an article detail page.

2.2.2 Support Vector Machines

An SVM separates two classes by fitting a hyperplane between them. Doing this,
only one hyperplane is used, which differs from DTs where a hyperplane is added
after each split. In cases where multiple separating hyperplanes can be found, the
SVM detects the maximum-margin hyperplane, maximizing the distance to data
points of both classes. Such a hyperplane is shown in Figure 2.1. This leads to
a higher generalizability and therefore to better test accuracies.

If a feature space is not linearly separable, a kernel-function is used to map
data on a higher dimensional feature space where the data becomes linear sepa-
rable (Hofmann, 2006). By mapping inputs to a high-dimensional feature space, it
becomes possible for SVMs to not only model linear relationships but to also con-
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Figure 2.1: Optimal separating hyperplane with maximal margin. Retrieved from
Hofmann (2006).

duct non-linear classification (Cortes & Vapnik, 1995). Four basic kernel functions
are listed below (Hsu, Chang, & Lin, 2003):

Linear = K(xi, xj) = xTi xj (2.1)

Polynomial = K(xi, xj) = (γxixj + r)d, γ > 0 (2.2)

Radial basis function (RBF ) = K(xi, xj) = exp(−γ||xi − xj||2), γ > 0 (2.3)

Sigmoid = K(xi, xj) = tanh(γxixj + r) (2.4)

Where K(xi, xj) is the kernel function, mapping the training vectors xi into a higher
dimensional feature space. y, r and d are kernel specific parameters (Hsu et al.,
2003).

Regarding their performance, SVMs show a high accuracy as well as fast pre-
diction times. They further work very well with high-dimensional data input. Disad-
vantages are long training times and their difficulty to be interpreted. Further, next to
feature engineering, also hyper-parameter tuning is required, which can be difficult
and time-consuming (Han et al., 2011).

The aforementioned study by Hop (2013) shows that SVMs could not outper-
form the RF algorithm but performed better than the FNN. Also, Lee et al. (2015)
made use of an SVM to predict the purchase probability of a certain item. Next
to clickstream data also item information was incorporated. To compare the im-
portance of the different data types on the prediction performance, three models
were separately trained and tested on the item data, the clickstream data, and the
combined dataset. The results show that the item data generated the worst re-
sults whereas the combined dataset performed best. Nevertheless, the results on
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the complete dataset and only the session data are very similar, indicating that the
static item information does not contain high predictive power. The results on the
complete data show an accuracy of 0.8, a ROC of 0.79, a precision of 0.74, a recall
of 0.92 and an F1-score of 0.82.

2.2.3 Logistic Regression

LR, also called Logit regression, belongs to the class of generalized linear models
and is used to predict categorical target variables. This is achieved through a logistic
function, which has the shape of a sigmoid curve, taking values between 0 and 1.
This function is modeled by combining input values linearly with coefficients, as
shown in Equation 2.5. Where y is the output, b0 the bias term and b1 the coefficient
for the input value x (Russell & Norvig, 1995).

y =
eb0+b1x

1 + eb0+b1x
(2.5)

Every column of the input vector learns a coefficient from the training data through
maximum-likelihood estimation (Hastie, Tibshirani, & Friedman, 2002). LR is very
fast regarding prediction and training times, it is, hence, one of the most popular ma-
chine learning algorithms for binary classification. It, nevertheless, requires feature
engineering and the encoding of categorical variables. It is also sensitive to noise,
therefore, outliers should be removed before the training. Further, LR does not per-
form well on highly correlated input factors. Hence, it can be helpful to only use prin-
cipal components, linearly uncorrelated variables, for the regression (Jolliffe, 1982).
This can be achieved through a Principal Component Analysis (PCA), a method to
extract the principal components from a set of possibly correlated variables.

LR has been used in a variety of the reviewed papers but has always been
outperformed by other machine learning methods, shown in the above-mentioned
studies of Poggi et al. (2007) and Niu et al. (2017). Similar findings were obtained
by a study from Lang and Rettenmeier (2017), where an RNN outperformed the LR
in predicting the purchase probability based on clickstream data, static session data,
and customer data with a ROC AUC of 0.843 and 0.832 respectively.

2.2.4 Feed-forward Neural Networks

FNNs are one of the simplest types of Artificial Neural Networks. Input data only
flows forward through the network, from the input nodes to the hidden nodes and
finally the output nodes (Zell, 1994). Nodes are organized in layers, where every
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Figure 2.2: An FNN with two hidden layers, three input and two output nodes. Re-
trieved from A Practical Introduction to Deep Learning with Caffe and
Python (2016).

node in a layer connects to all nodes of the previous layer. An exemplary architec-
ture can be seen in Figure 2.2. The connections have different weights assigned,
which are generated during the learning phase, for example via back-propagation.
Every node has an activation function and only fires according to this function. Out-
put is the probability of each class, which add up to one. With enough hidden units,
an FNN can approximate any function. From a statistical point of view, FNNs per-
form a nonlinear regression. Such neural networks have the disadvantage of long
training times and little comprehensibility. Next to feature engineering, they require
hyper-parameter tuning. Nevertheless, they have shown very good performances
throughout literature and generalize well to unseen patterns, while being tolerant to
noisy data (Han et al., 2011).

Other than the before mentioned research by Hop (2013), which displayed a
bad performance for FNNs, Suchacka and Templewski (2017) were able to achieve
a high accuracy (0.996) and recall (0.878) for an FNN on clickstream data to predict
purchases in sessions. They used static and dynamic session data as well as static
customer data to train the model. The large performance difference to the paper
of Hop might be due to the fact that Hop used a rather simple FNN with only one
hidden layer and that different data was used to train and test the models in the two
papers.

2.2.5 K-nearest Neighbor

As mentioned before, the KNN is a lazy learning algorithm, where training data is
simply stored and a test data point is awaited for classification (Han et al., 2011).
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All of the stored training instances correspond to points in an n-dimensional feature
space. A point’s nearest neighbors are defined by distance measurements, most
commonly Euclidean distance. An unlabeled test data point will be assigned the la-
bel most common amongst its k -nearest neighbors. The advantages of this method
are its robustness to noisy data and a very fast training speed. Disadvantages are
an increased complexity of dimensionality through irrelevant features and therefore a
decreased performance, highlighting the importance of feature engineering, longer
prediction times compared to eager learning models and a low comprehensibility
with high-dimensional input.

The KNN model has been applied regularly in e-commerce regarding recom-
mender systems, where products are recommended to a web shop visitor based on
the preferences of its nearest neighbors. For classifying customer behavior on the
other hand only one study by Suchacka, Skolimowska-Kulig, and Potempa (2015)
could be found. The aim of the research was to classify customer web shop ses-
sions in buying or browsing sessions. As a model, a KNN algorithm was used with
clickstream data split by sessions as input. 26,000 records were used for training
and 13,000 for testing. Different configurations were tested, with an 11-NN model
showing the best results, with a sensitivity and accuracy of 0.875 and 0.9985 re-
spectively.

2.2.6 Recurrent Neural Networks

Due to their statefulness, RNNs have been applied to many sequence modeling
tasks, such as natural language processing. Their structure is similar to FNNs with
additional loops adding memory and feedback to the system as displayed in Figure
2.3. The latent state of the RNN is changed and updated with every new input.
This state represents learned features and adds a broader abstraction to the input
features, causing less need for feature engineering as the other methods (Brownlee,
2016; Lang & Rettenmeier, 2017). Reducing the amount of feature engineering does
not only save time and reduces complexity but is also expected to yield improved re-
sults, since feature engineering is an abstraction of the real data through which im-
portant information can be lost. Through the RNN’s memory, detection of sequential
patterns in the data is enabled, making it a good fit for the clickstream data used in
this thesis. RNNs are trained with back-propagation through time, which is an adap-
tation of regular back-propagation, where errors are back-propagated through the
network and weights are updated accordingly (Brownlee, 2016). This error gradient
vanishes or explodes when the input sequence gets longer, and therefore results in
an information loss, known as the vanishing gradient problem (Bengio, Simard, &
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Figure 2.3: On the left an architecture of an RNN showing backward connections
compared to an FNN with only forward connections on the right. Re-
trieved from Mulder et al. (2015).

Frasconi, 1994; Korpusik et al., 2016). A solution to the vanishing gradient prob-
lem offers the Long short-term memory (LSTM) network. In LSTMs neurons are
replaced by memory cells. These cells operate through gates that manage the cells’
input, output and state. These gates are activated with a sigmoid function making
the information flow through the cell conditional (Brownlee, 2016). As a result, in-
formation that increases prediction accuracy is kept in the memory cell, solving the
vanishing gradient problem (Hochreiter & Schmidhuber, 1997).

As mentioned above, RNNs and LSTMs decrease the amount of feature engi-
neering and can model time dependencies of the input data. The paper of Lang and
Rettenmeier (2017) shows how the influence of different customer actions on the
prediction outcome can be visualized, providing a high interpretability. Drawbacks
are both extended prediction and training times compared to other machine learning
methods. They further require hyper-parameter tuning, which can make architec-
tural choices complex (Lang & Rettenmeier, 2017).

RNNs are applied in the most recent studies on predicting customer behav-
ior. Lang and Rettenmeier (2017) used clickstream data and customer information
to predict the purchase probability of a customer with LSTMs. The model outper-
formed the also tested FNN and LR with a ROC AUC of 0.841, 0.832 and 0.843
for FNN, LR and RNN respectively. On the downside, RNNs need a lot of data and
time to train. The exact numbers are not disclosed in the paper but millions of user
histories are mentioned on which the model was trained. Even though RNNs re-
quire a lot of training data they decrease the amount of needed feature engineering.
Lang and Rettenmeier (2017) express this in an image shown in Figure 2.4. While
vector-based methods need information from a lot of handcrafted features, RNNs
can extract this information from the sequence of customer actions given to them.

Another study that used LSTMs for purchase prediction was conducted by
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Figure 2.4: On the top Approach 1, common vector-based models that need hand
crafted features to explicitly model sequential information compared to
Approach 2 on the bottom, an RNN that can extract all important infor-
mation from a sequence by itself. Retrieved from Lang and Rettenmeier
(2017).

Korpusik et al. (2016). Here, successive tweets of people indicating a purchase
intent were analyzed. The LSTM outperformed an FNN, with an accuracy of 0.82
versus 0.73. Again, the exact amount of data to train the models was not mentioned.
But the model consisted of 50 hidden layers, which is complex and probably required
a lot of data to be trained.

2.2.7 Higher-order Markov Chains

A Markov model is a stochastic model, used to model randomly changing systems
where it is assumed that the next state is only dependent on the current state. This
memoryless property of a stochastic process is called the Markov property and dis-
played by Equation 2.6. Markov models express the probability to get from a current
state into a certain next state (Barbour & Petrelis, 2008; Craven, 2011).

P (Xn = xn|Xn−1 = xn−1, ..., X0 = x0) = P (Xn = xn|Xn−1 = xn−1) (2.6)

HMCs are used to model dependencies considering previous states. A Markov
chain of order 2 for example, will take the previous step into account in order to cal-
culate the transition probability for the next state. Therefore, a Markov chain of order
k implies that the probability of switching into state n+ k depends on the k previous
states. With this, HMCs are often used for sequence classification and time series
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analysis and are therefore well suited for the analysis of clickstream data. The main
disadvantage is that HMCs can become computationally very expensive as the or-
der increases (Dewey, 2016).

The already mentioned study by Poggi et al. (2007) trained a DT and LR algo-
rithm on weblog data transformed into two HMCs, one for purchasing and one for
non-purchasing customers. To train the model the log files of the web shop were
used, with seven important variables: Timestamp, session ID, type of accessed
page, whether the customer was logged in, whether it was a returning customer and
if the customer purchased or not (target variable). Next to this static information,
the sequential dependency of the accessed pages by using second-order Markov
chains was modeled. For training, only 7,000 transactions were utilized. The best
result was obtained by a decision tree algorithm that achieved a recall of 0.78. No
study could be found that made use of HMC as the actual prediction model instead
of only a data pre-processing tool.

2.3 Implications

This section draws implications from the literature regarding the performance, de-
pending on the used model as well as the type of utilized data. Resulting, gaps in
literature are identified.

2.3.1 Algorithm performance

Comparing models’ performance across papers, as displayed in Tables 2.1, is diffi-
cult since the utilized data differs both regarding content and dataset size. Especially
the size differs largely ranging from 3,655 samples used by Korpusik et al. (2016)
to 76,375,439 as mentioned in the paper of Lee et al. (2015) and presumably even
more used by Lang and Rettenmeier (2017). It is further difficult since the models’
implementations regarding hyper-parameters are not known and evaluation metrics
and thresholds differ across papers. Looking at performance within the papers one
can see that DTs, as well as RFs, show the best results. In Hop (2013) a DT and
RF score first and second before SVM and an LR. Also, in the paper of Niu et al.
(2017), an LR model is outperformed by an RF model. Similar results can be found
in the paper of Poggi et al. (2007) with a DT performing slightly better than an LR.
Another algorithm outperforming all other algorithms used on the same dataset is
the RNN. In the paper of Lang and Rettenmeier (2017) it was tested against an
FNN and LR and in the paper of Korpusik et al. (2016) only against an FNN. Even
though these results indicate that DTs in general, as well as RNNs, might be best



CHAPTER 2. LITERATURE REVIEW 18

suited for the task at hand, Wolpert, Macready, David, and William’s (1995) ”Free
lunch theorem” states that there is no algorithm that universally performs best on all
problems. Therefore, all models should be implemented and tested on the data and
prediction task of this study to establish which one is best suited for this specific use
case. Nevertheless, two models can be excluded, first, the KNN since it has slow
prediction times while the use case asks for a real-time prediction. Further, the very
good performance shown by Suchacka et al. (2015) is questionable since it is not
compared to any other algorithm and only reports the best association rule. Though,
this association rule is not useful, if the session step that is to be classified does not
contain the same attributes. Secondly, the HMC can be excluded from further anal-
ysis since its complexity will be too high if multiple timesteps are considered. It has
also not been applied for prediction in literature and was only used as a data prepro-
cessing step by Poggi et al. (2007). As a result, the machine learning models that
were being implemented and evaluated in the remainder of this thesis are boosted
trees, RF, SVM, LR, FNN, and RNN.

2.3.2 Dataset performance

Not only the different algorithms influenced the performance of the classification,
but also different data used for training the models. Three of the above-mentioned
studies trained and tested algorithms with different data types and could show dif-
ferences in the performance. Bogina et al. (2016) displayed that enhancing ses-
sion data with additional item information could increase the performance slightly.
Also, Poggi et al. (2007) observed that combining static and dynamic session data
improves the performance compared to only using static information. Lee et al.’s
(2015) results suggest that using dynamic session data highly improves the predic-
tion compared to using static item information. Using both led to a slight increase
compared to only using the session data. This thesis aims at replicating these re-
sults from the reviewed literature. Therefore, algorithms will be separately tested on
static customer data, sequential and static session data and on a combined dataset
containing both static customer data and static and sequential session data. Ana-
log to the findings in literature the customer dataset is expected to yield the worst
results followed by the dataset containing only session data. Combining the two
datasets should result in the best prediction performance, where the difference in
performance between customer and session data is expected to be much larger
than between the session data and the complete dataset.
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2.3.3 Literature gap

Even though the papers from Bogina et al. (2016), Lee et al. (2015) and Poggi et al.
(2007) analyzed the impact that different data types can have on the results, none
of the papers included reasoning on why static data performed worse compared to
sequential data. This paper aims at giving some additional data insight to support
these findings through an exploratory data analysis.

While all papers disclose results of their classification performances, no paper
gives a detailed insight into the performance of the algorithms under different condi-
tions, such as the difference between weekdays and the weekend, or between using
a mobile device or a desktop computer for shopping. This thesis aims at exploring
the prediction performance of the models under different conditions, to give a more
realistic assessment of the actual performance in the real use case.

Lastly, none of the papers that assess stateful RNN models, such as the re-
search by Korpusik et al. (2016) and Lang and Rettenmeier (2017) explore an
analysis of feature engineering efforts, even though it is an important concern in
e-commerce, since it is time-consuming and requires a lot of expertise and RNNs
offer the possibility of reducing such. Resulting, this thesis will train the stateful RNN
model on datasets with two different degrees of required feature engineering, to see
how this influences the prediction performance.



Chapter 3

Methodology

This chapter contains an explanation of the methodology framework that was used
to structure this study, followed by the explanation of evaluation metrics on which the
model comparison will be focused. The chapter ends with the tool selection.

3.1 Research framework

The research framework used in this study is the Cross Industry Standard Process
for Data Mining (CRISP-DM). CRISP-DM is a data mining model summarizing all
important steps undertaken in a data mining project. It provides a structured ap-
proach to the planning and conduction of a data mining project. Being first presented
and published in 1999 (Chapman, 1999) it remains one of the standard models to-
day (Piatetsky-Shapiro, 2014). The model splits the data mining process into six
phases, as shown in Figure 3.1. The order of steps is arbitrary and largely depen-
dent on the outcome of the previous step. The arrows in the diagram describe the
strongest relationships. The outer circle stands for the cyclic nature of data mining
tasks: Learned lessons and solutions from a data mining project often lead to new
business questions and trigger a new process (Chapman et al., 2000). The six dif-
ferent steps are explained below. A more detailed overview of the six stages can be
seen in Table 3.1.

1 Business understanding: This phase considers project objectives from a
business perspective. Generated insights are transformed into a data mining
problem definition.

2 Data understanding: During the data understanding phase, data is initially
collected and analyzed to generate first insights and for accomplishing famil-
iarity with the data.

20
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Table 3.1: Generic tasks in bold and output in italic of the six different phases of the
CRISP-DM model. Retrieved from Chapman et al. (2000).

Figure 3.1: Phases of the CRISP-DM reference model. Retrieved from Chapman
et al. (2000).
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3 Data preparation: This phase entails all of the steps undertaken to generate
the final dataset of variables from the initial raw data, which will serve as input
to the modeling tools.

4 Modeling: In the modeling phase, modeling techniques are applied. This in-
volves both model selection and further fine-tuning of the models’ parameters.
Since several techniques exist for modeling the same data mining problem
various models can be considered.

5 Evaluation: After implementation, the models’ performance has to be evalu-
ated and compared. It is important to assess whether the goals, defined during
the business understanding phase, are met.

6 Deployment: In order to actually benefit from the model it needs to be de-
ployed. This requires for the model to be integrated in live systems and fed
with live data, in order to make valuable predictions.

These six stages provide a guideline to the research at hand: Business understand-
ing was established through the background information on customer classification
in the e-commerce context in the introductory Chapter 1. This resulted in a data
mining problem definition formulated as a research question in Section 1.2. Further,
understanding of the actual prediction task was provided in the literature review on
classification and machine learning algorithms in Chapter 2. A description of the
data and a first insight leading to Data understanding will take place in Chapter 4.
Chapter 4 also includes Data preparation in terms of data pre-processing as well as
feature engineering and selection. Modeling, including hyper-parameter tuning and
training, is described in the implementation Chapter 5. Evaluation and comparison
of the different algorithms are performed in Chapter 6. The Deployment step is out
of scope for this research, since it only focuses on comparing different algorithms in
respect to the already implemented and deployed baseline model, as described in
Section 1.2.

3.2 Evaluation metrics

This section describes the evaluation metrics used to compare the different algo-
rithms. Resulting from the business understanding, the evaluation will be based on
performance metrics, interpretability as well as prediction latency.
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Figure 3.2: Confusion matrix, showing true positives, true negatives, false positives
and false negatives.

Performance measures

Various measures exist to assess and compare the performance of machine learn-
ing models on a binary classification task. These metrics are based on the so-
called confusion matrix, Figure 3.2, from which one can derive the correctly pre-
dicted cases, indicated in green, called true positives and true negatives. These are
the cases where a visitor did not purchase anything and a no buying session was
predicted and sessions where a purchase occurred and was also predicted. Also,
the wrongly predicted cases can be identified, as indicated in orange, the false neg-
atives, and the false positives, where a purchase occurred but none was predicted
or where no purchase occurred but one was predicted.

From the confusion matrix, various performance metrics can be derived. All
metrics calculated from the confusion matrix depend on the chosen classification
threshold, based on which the confusion matrix was created. The threshold in-
dicates which of the prediction results, being probabilities ranging from 0 to 1, is
transferred to the positive or to the negative class. Choosing the threshold depends
on the use case, since it influences the number of false negatives and false posi-
tives, therefore changing the values of the performance metrics. The most common
metrics are accuracy and error, which are displayed in Equation 3.1 and 3.2. Ac-
curacy describes the percentage of correct results, whereas the error rate is the
number of wrongly classified results. Most classification models aim at achieving a
high accuracy, or equivalently a low error rate (P. Tan et al., 2005). Accuracy is not
always a good measure, especially not for imbalanced datasets. Better estimators
which provide more information about the type of error, are precision, recall, and the
F1-score. Precision, also called positive predict value, is the number of true posi-
tives divided by the number of all positive classified cases, see Equation 3.3. The
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recall, also called sensitivity, is the number of true positives divided by all positives
in the data set, see Equation 3.4. In the F1-score both recall and precision are con-
sidered equally as shown in Equation 3.5. (Manning, Raghavan, & Schuetze, 2008).
Another very important measure is the specificity which stands in contrast to the
sensitivity and measures the proportion of negatives that are correctly identified as
such (Equation 3.6). The trade-off between these two can be modeled through the
ROC AUC, which displays the effect of different thresholds on the two metrics. The
ROC AUC score is, therefore, threshold-independent. An example of ROC curves is
displayed in Figure 3.3. The straight line C displays a ROC AUC of 0.5 which cor-
responds to the probability of guessing and line A shows a perfect prediction with a
ROC AUC value of 1. Line B shows a regular ROC curve with a value of 0.85, which
approaches line A as predictions get better (Zou, OMalley, & Mauri, 2007). Most of
the reviewed papers use accuracy and the ROC AUC as the performance indicator,
since it provides a possibility to consider sensitivity and specificity and to nicely plot
their dependency without worrying about the chosen threshold (Castanedo et al.,
2014; Lo et al., 2014; Lang & Rettenmeier, 2017; Zhang et al., 2014).

Accuracy =
Number ofcorrect predictions

Total number of predictions
=

TP + TN

TP + FP + FN + TN
(3.1)

Error rate =
Number ofwrong predictions

Totalnumber of predictions
=

FP + FN

TP + FP + FN + TN
(3.2)

Precision =
Number oftrue positives

Total number of positive predictions
=

TP

FP + TP
(3.3)

Recall =
Number of true positives

False negatives+Number of true positives
=

TP

FP + TP
(3.4)

F1 Score =
2

1
Recall

+ 1
Precision

=
2

FN+TP
TP

+ FP+TP
TP

(3.5)

Specificity =
True negatives

True negatives+ False positives
=

TN

TN + FP
(3.6)

There is no static rule to estimate which metric is best suited for a classification
task, instead, it depends on the use case. For the case of this study, it is less impor-
tant to identify every no buying session. It is more important that the ones who are
identified as no buying sessions are really such since it would be a wastage to hand
a gift card to someone who intended to purchase anyway. This fact is expressed
through the precision and the specificity, which are therefore the most important
measures. Nevertheless, most preferable are models that also consider the recall,
since there are situations, where it is important to find all cases belonging to the
positive class. For this, the ROC AUC is a very good measure since it considers
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Figure 3.3: Three different ROC curves. A being the perfect curve, B a regular
curve and C displaying the chance of guessing. Retrieved from Zou et
al. (2007).

both the performance of specificity and recall. To make the results of all algorithms
comparable it is important to use the same input data for each. Further, the clas-
sification threshold should be the same across all algorithms, in this case, it was
decided to be set to 0.5. Lastly, to establish which algorithm performs best on which
datatype the algorithms will be tested on three different datasets: The customer
dataset, only compromising static customer data, the sequence dataset, containing
time-depended clickstream data and static session information and the complete
dataset consisting of the combined data.

Latency

Next to the model performance the latency is very important since the algorithms
are intended to be used for deployment in the web shop to carry out real-time pre-
dictions, in order to immediately react to customer behavior. Here, the training times
can be neglected since training is done in an off-line fashion and retraining is only
intended on a regular basis with longer time intervals. Classification latency plays a
crucial part, being the time between the data input and the models’ output.
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Comprehensibility

Next, to those different measurements, the models will be compared based on com-
prehensibility. As machine learning is applied in our everyday lives the demand for
understanding the predictions is growing (Ribeiro, Singh, & Guestrin, 2016). With
the General Data Protection Regulation law, taking effect in the European Union in
2018, users will even have the ’right for explanation’, offering users the possibility
to request explanations about algorithmic decisions (Goodman & Flaxman, 2016).
Comprehensibility is, therefore, becoming very important. Since comprehensibility
can be difficult to define and is very subjective it is not considered to be the main
evaluation metric.

3.3 Tool selection

Python will be used for implementing the different machine learning algorithms.
Python is a general-purpose high-level programming language (Python, 2017). It
is used throughout the machine learning community also due to its many libraries
that contain various predictive analytics algorithms. One of the most known libraries
is Scikit-learn, which will also be used in this thesis (Sk-learn, 2017). It provides
state-of-the-art implementations of many machine learning algorithms, while main-
taining an easy-to-use interface and is therefore well suited for the research at hand
(Pedregosa et al., 2011). For implementing the FNN and RNN, Keras will be used,
a high-level neural network library for Python (The sequential model API, n.d.).



Chapter 4

Data

In this part, the data being used for the training and testing of the models is de-
scribed. The utilized data is clickstream data from the web shop of a large German
clothing retailer. The software that records the data, was developed in-house and
stores the interactions of visitors with the web shop in high detail. This is in line with
the definition of Dumais, Jeffries, Russell, Tang, and Teevan (2014) describing click-
stream data as records that store user interactions with an application in a highly
detailed manner. Further, a first data analysis is conducted to facilitate data under-
standing. The chapter concludes with the feature engineering as well as feature
selection process.

4.1 Data description

Session data exists for each web shop session of a visitor. Such a session is defined
as one visit to the web shop that times out after one hour of inactivity, then a new
session starts. This approach of splitting interactions into sessions is a validated
approach called gap sessions, described by Chen, Fu, and Tong (2004). Throughout
literature, a 30-minute gap is more common (Chen et al., 2004; Stevanovic, Vlajic,
& An, 2011; Suchacka & Chodak, 2016). To identify sessions, a cookie-based ID
is generated, which changes after one hour of inactivity. Each session is split into
a sequence of interactions with the web shop called landmark. A landmark always
consists of at least the following structure:

landmark = attribute/value
where a landmark can take n different attributes with n different values. All

attributes and values of a landmark belong to the same sequence number with the
same timestamp to record different informations about one event. A new landmark is
written every time an interaction with the web shop occurs or the web shop renders
an action. The goal is to calculate the buying probability each time a new page
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Figure 4.1: Example of a Landmark, with sequence 0, session ID 112274872, name
UserInfo and some attributes with different values.

is opened or an item is added to the shopping basket and to then save it as an
additional attribute of the current landmark, based on which business decisions,
such as displaying gift cards, can be carried out. An example of a landmark can
be seen in Figure 4.1. All landmarks are stored with a session ID, a timestamp, a
sequence number, their name, attributes and values in a database. For training and
testing the models, only the landmarks that described the customer, the session or
customer interactions were kept, such as navigating to a page and adding something
to the shopping basket, to reduce the size of the dataset.

Customer data only exists if the visitor could be identified. This means if a
visitor actively logged in or was automatically logged in due to restoring a cookie.
If the visitor is identified various data exists to describe the customer, such as the
gender, the age, the postal code as well as purchase and activity history. All of this
data is anonymous and does not allow for matching it to a certain person.

4.2 Data pre-processing

The models will be trained with session and customer data of the week from 31.07.2016
until 07.08.2016 since this data was used to train the baseline model and the same
data should be used for all algorithms to facilitate a comparison as mentioned in the
evaluation section in Chapter 3. Data was transformed such that each visitor action
within a session was written to one row of the database.

From the data, the sessions not being caused by humans but by bots had to be
removed. The detection and elimination of traffic generated by bots is an important
task in clickstream analysis (Suchacka & Chodak, 2016). Fortunately, navigational
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patterns generated by bots differ from the ones produced by humans (Stassopoulou
& Dikaiakos, 2009; Suchacka, 2016). Resulting, it was decided to remove all ses-
sions without cursor movement, or in the mobile case touch interaction. These ses-
sions can be identified by analyzing the written landmarks, where the device infor-
mation is stored and one can see that no landmark was written that indicates an
interaction. This applied in about 50% of the sessions. It is very plausible that such
patterns were caused by bots. In the cases where they have been caused by hu-
mans, it is most likely that the page was opened accidentally (e.g. if the tab was still
opened on a smart-phone and appeared accidentally when the web browser was
accessed). These cases are also not relevant for the use case; therefore, they can
be removed along with the traffic caused by bots. Also, all traffic generated by em-
ployees caused by testing and development of the web shop, was removed prior to
further data pre-processing steps. These cases are marked by specific landmarks
that either indicate testing or deployment and can therefore easily be removed.

The first seven visitor interactions of each session were excluded since in the
real-time use case prediction commences only after seven interactions to not show
gift cards too early to the visitor. Interactions were also removed after a visitor pur-
chased and then continued with the online shopping in the same session. This was
done because in the use case, gift cards will not be shown to a visitor after hav-
ing purchased once since receiving a gift card right after having purchased might
upset the customer. This resulted in 3,841,913 remaining visitor interactions hav-
ing occurred in 237,632 different web shop sessions of which 86.27% ended in no
purchase. As input for the algorithms, not sessions as a whole, but each interac-
tion within the session will be used separately. Buying sessions typically consist of
more interactions with the web shop, therefore the percentage of interactions from
no buying sessions is only 76.71% out of all interactions. This data, consisting of
the clickstream generated by the visitor, was used as the sequence dataset. To cre-
ate the complete dataset, customer information was joined to the sequence dataset
once a visitor was identified. Before identification or if no identified occurred the
customer values are NULL. Since customer information was solely joined to the
clickstream data, the complete dataset consists of the same amount of records as
the sequence dataset, but the single records consist of more data. Lastly, to create
the customer dataset, only sessions could be used where a visitor was identified.
Since this was only the case in 88,789 sessions, the customer dataset only consists
of 88,789 records of which 81.28% belong to the no buying category.
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Figure 4.2: The influence of the weekday on the buying and no buying decision.

4.3 Data understanding

To generate a first understanding of both the sequence as well as the customer data
a first exploratory data analysis based on Excel was conducted.

4.3.1 Sequence dataset

To provide a first insight into the sequence dataset, sequence data was chosen that
remains constant throughout a session. These categorical data columns are week-
day, device and entry channel. All of these variables were plotted in relation to the
total number of buying and no buying sessions as well as in relation to the percent-
age of buying sessions out of all sessions. Buying and no buying were chosen since
they are the two levels of the target variable. Therefore, the two plots both give an
impression on how different variables influence the target variable of the prediction
problem at hand.

From the bars displayed in Figure 4.2, one can see that the amount of buying
and no buying sessions does not differ largely between the days of the week. For Fri-
day and Sunday the total amount of buying sessions is slightly increased whereas
for Saturday the no buying sessions are decreased compared to the other days.
Looking at the percentage of buying sessions in regard to the total amount of daily
sessions, displayed through the line plot in Figure 4.2, one can see that from Thurs-
day on the percentage of buying sessions rises, with its peak on Sundays before
it drops again on Mondays. This indicates that on the weekends including Fridays,
the shopping behavior seems to differ from the weekdays. A possible explanation
could be that during the week people only browse and look for nice items, hence
less buying sessions, whereas on the weekends the actual purchase occurs.
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Figure 4.3: The influence of the entry channel on the buying and no buying decision.

Figure 4.3 shows the influence of the different entry channels on the buying
versus no buying decision. To understand the graph better the different channels
are explained below.

• AFF: Affiliate marketing, such as discounts or gift cards provided by third party
websites

• MAIL: The e-mail channel, such as newsletters, service letters, etc.

• POR: Banner advertisement on websites

• PSM: Price search engine, a search engine that looks for the lowest prices

• RET: Retargeting, personal advertisement on third party pages

• SEM: Search engine advertisement, such as Google advertisements

• SEM BR: Search engine advertisement brand specific, such as Google adver-
tisements that are a result of a specific brand search

• SEO: Search engine optimization, meaning a web search engine’s unpaid re-
sults

• SEO BR: Search engine optimization brand specific, meaning a web search
engine’s unpaid results specific to a brand name

• SMA: Social media advertisement, such as advertisements on facebook

• OTHERS: Mainly entering the website directly, via entering the URL or book-
marks. Can also be smaller channels
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Figure 4.4: The influence of the device on the buying and no buying decision.

One can clearly see from the bars in Figure 4.3 that the MAIL, OTHERS and
SEM BR channel are the most used channels to enter the web shop. The large
amount of sessions being entered through the OTHERS channel might be caused
by the fact that under the keyword OTHERS a lot of channels are combined. The
OTHERS channel also compromises a large number of cases where the web shop
URL was entered directly into the browser. The high traffic through the OTHERS
channel can therefore also be explained by the high number of catalog subscribers
that manually enter the web shop URL in the browser after the catalog raised their
interest. Looking at the line chart showing the buying percentage in Figure 4.3,
one can see that AFF results in the highest percentage of buying sessions. This
very high number is most likely due to the fact, that affiliate marketing entails gift
cards and discounts, which result in more buying sessions. AFF is followed by
MAIL, SEO BR, SEM BR and the OTHERS channel. SEM BR and SEO BR result
probably in a higher buying ratio compared to SEM and SEO since the visitor was
directed towards this specific online shop and not only towards an article that can
be found in many other online shops.

In Figure 4.4 the variable device is plotted. Under the keyword mobile, the mo-
bile app, as well as the mobile browser, are condensed. One can see from the bars
in Figure 4.4 that desktop PCs and mobile devices are being used more than tablets.
The most buying sessions occur on a desktop PC the least on a tablet. Looking at
the line chart in Figure 4.4, one can see that the highest purchase percentage is
on desktop PCs, followed by tablets. On mobile devices, the lowest percentage of
buying sessions occurs. A possible explanation is that a mobile device might be
used more often for browsing and selecting items. Whereas, larger devices, such as
tablets and desktop computers, are preferred to conduct an actual purchase, possi-
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Figure 4.5: The influence of the customer identification on the buying and no buying
decision.

bly due to the fact that the size facilitates the input of login and payment information.
Lastly, to analyze which effect the identification of the visitor during the web

shop session had on the buying decision, the customer identification variable was
plotted. Results are displayed in Figure 4.5. The bars show that the number of
identified visitors is smaller than the number of unknown ones, which was expected.
It can also be seen that identified visitors buy more often and abort the shopping
process less compared to the unknown visitors. The line chart displays that the
percentage of buying sessions is more than 15 percent higher with known visitors
than with unknown ones. The results indicate that the information whether the visitor
could be identified or not can enhance predictive performance since the two different
levels of the variable influence the buying decision differently.

4.3.2 Customer dataset

As a next step, some variables from the customer dataset were analyzed in the
same fashion, to generate an understanding of the customer data. For analysis,
the variables age, gender, and last device were chosen. They can be best plotted
since they do not take too many different values. Gender and device are categorical
variables and age takes values between 18 and 88.

Figure 4.6 shows the analysis for the last device being used by the visitor in a
previous shopping session. Again, the desktop device was most commonly used in
previous visits closely followed by the mobile devices, tablets were used the least.
Regarding the buying percentages, desktop PCs and tablets result in the highest
buying percentage. The pattern matches exactly the results from plotting the vari-
able device. This variable does therefore not add any new information for solving
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Figure 4.6: Figure (a) and (b) showing the influence of the last device on the buying
and no buying decision.

Figure 4.7: The influence of the gender on the buying and no buying decision.

the prediction task.
In Figure 4.7 the influence of the gender on the buying decision is displayed.

From the bars in Figure 4.7, one can clearly see that more women visit the web
shop than men. The total number of women is about ten times higher than the total
number of men, also the number of buying and no buying sessions conducted by
women is around ten times as high as the one of men. Looking at the buying per-
centage, displayed as the line in Figure 4.7, one can see that the percentages differ
by less than three percentage points. The buying percentage of men is only slightly
higher than the one of women, 32.5 compared to 35 respectively. This variable does
therefore also not offer a lot of predictive power about the buying decision.

Lastly, in Figure 4.8 the influence of the age variable is displayed. In Figure 4.8
the bars show that the most customers are between 26 and 52 years old, where
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Figure 4.8: The influence of the age on the buying and no buying decision.

around 40 years the number of customers slightly drops, resulting in a binomial
distribution with peaks at 26 and 52. For customers younger than 26 the number
of customers decreases as the age decreases, analogously for people older than
52 the number of customers decreases as the age increases. The small rise for
people around 80, results from aggregating all visits for ages older than 80, a so-
called boundary effect. The buying and no buying behavior follows a similar curve
as the total number of visitors. This relationship becomes clearer from the plotted
line, displaying the buying percentage. The ratio of buying sessions is around 30%
for all ages, only between the ages 33 and 57 the ratio rises to around 35%. The fact
that the ages do not largely seem to differ in their buying and no buying behavior,
especially regarding the ages that occur the most, results in the age variable not
having a high predictive power.

In general, looking at the customer features, the data suggests that it is of high
importance to the purchase prediction whether a visitor could be identified or not.
The specific customer attributes themselves do not add a lot of information and are
therefore not very influential on the purchase decision.

4.4 Features

This part describes the feature engineering and feature selection to generate input
for the machine learning algorithms.
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4.4.1 Feature engineering

Feature engineering is the process of using domain knowledge and expertise to
extract features from data that represent the underlying problem to be used as input
for machine learning models. It is a not well-defined process, nevertheless, it is
one of the most important steps in the development of a machine learning model.
No matter how good the model is, it will not be able to predict correctly if the input
features are not representative of the task. Feature engineering can be problematic
since engineered features are often over-specified and incomplete (Castanedo et
al., 2014).

In this study, 28 features were retrieved from the clickstream data to capture
session characteristics and 20 features from the customer data to describe the cus-
tomer. All of the 48 features, split by sequence and customer features, can be seen
in Table 4.1. The table shows feature names, a short explanation, the data type and
whether a feature can be nullable. It is further indicated which features remain con-
stant throughout a whole session. Values for features that are not constant, always
describe events that occurred in the previous step. The green variable is the target
variable, it, therefore, does not belong to the feature set.

Except for the RNN, none of the to be implemented algorithms can model time
sequences. Therefore, certain features were explicitly created to capture the time
dependencies in the data, for example time delta lastpage, time delta lastWK, and
sessiondauer. These algorithms also require heavier feature engineering than the
RNN, as a consequence the feature set contains sums, averages, maximum and
minimum calculations. Further, each subsequent step in a session contains accu-
mulated information about the previous steps, such as the total of visited pages, the
total duration up to this point, the total amount of viewed article detail pages, etc. All
of this should not be necessary when using an RNN, since it uses entire sequences
as input. Therefore, a second simplified feature set was created which still compro-
mises all customer features but fewer sequence features. It only contains the type
of visitor interaction, the visited page and some additional features containing page
information such as the article price. These features are related to a certain type of
page and are therefore often NULL. For example, adaP, the price of an article, only
takes a value if an article detail page was visited. All other features can be retrieved
from these. The feature set, therefore, contains the same information as the large
dataset, but refrains from explicitly modeling variables, enabling to be closer to the
actual clickstream data by using minimal feature engineering. To see whether the
RNN can learn all other features by itself, and therefore decrease the feature engi-
neering effort, it will be trained and tested on the regular as well as the RNN dataset
and the results will be compared. The feature set used for the RNN can be seen in
Table 4.2. Customer features are left out in this table since they are redundant to
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Table 4.1: Engineered features, with name, description, value and whether it can
be not defined. A feature with * remains constant throughout a session.
Orange features were excluded in the feature selection phase. The green
feature is the target variable.
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Table 4.2: RNN features, with name, description, value and whether it can be not
defined. A feature with * remains constant throughout a session. The
green feature is the target variable. Customer data corresponds to cus-
tomer data in Table 4.1

.

the ones used in the other feature set. Next to engineering the features, the dataset
also requires further processing to make it suitable as input for the machine learning
models. All algorithms, except the ones belonging to the DT category, require to re-
place missing values and to encode categorical variables, which are both described
in the following. Some algorithms even require further data pre-processing, these
specific steps will be described in the implementation section of each algorithm.

Categorical variables

Most algorithms require for categorical variables to be encoded. This concerns
the features device, aktion, wday, kanal, lastentryrej, firstpage, lastpage, gender,
lastDevice and the RNN features event type, page category and entry kanal. Most
commonly two different methods are used for encoding, namely label and one-hot
encoding. With label encoding each unique category of a feature gets an integer
value assigned. These values have a naturally ordered relationship, which machine
learning algorithms are able to learn. This is therefore well suited for ordinal vari-
ables. For categorical variables without an ordinal relationship, label encoding is not
suitable. It could result in wrong predictions since an order of categories is assumed
which is nonexistent. Here, one-hot encoding can be applied. This entails that a
binary variable is added for each unique category (Brownlee, 2017). Since all of
the categorical variables, in this case, are on a nominal scale and some algorithms
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such as SVMs perform better on one-hot encoded data (Hsu et al., 2003), one-hot
encoding was applied to the data.

Missing values

Lastly, missing values had to be imputed. The most common techniques to solve
the problem of missing values is to either remove, predict or impute them. Removing
records with missing values is only possible if the missing values occur completely
at random (Gelman & Hill, 2016). This is not the case here since the absence of cus-
tomer data does not occur randomly. Whether predicting or imputing leads to better
results depends on the use case. Here imputation was chosen since it showed the
best results in the paper of Hop (2013). For algorithms that do not require normaliza-
tion of the data such as boosted trees and RFs unique value imputation was chosen
analogously to the paper of Hop (2013). This means replacing missing values by
a value that does not occur in the dataset, in this case -100. Next to good results
this method provides speed and simplicity. Unique value imputation should not be
used for algorithms that require normalization of the data such as SVMs and FNNs,
since the imputed values, being outliers, have a large influence on the normalization
process. For these algorithms, missing values were imputed with the mean values
of the corresponding features. Hence, a mean value imputation was performed.

4.4.2 Feature selection

Feature selection is the process of retrieving a subset of relevant features from the
before engineered features. The aim is to remove redundant or irrelevant features
to simplify the model, shorten training times, and reduce dimensionality and the
chance of over-fitting (James, Witten, Hastie, & Tibshirani, 2013).

After closely analyzing the above-constructed features, six features were ex-
cluded resulting in a feature set of 43 features, the excluded features are marked in
Table 4.1 with orange color. Step was removed since it is redundant with page cnt.
Customer type, PLZ1 and start hour were removed because all of them are cat-
egorical variables with many categories that increase the complexity of the algo-
rithms a lot, while not increasing prediction performance. Further, Customer type
contained too detailed information about the customers, raising privacy concerns.
Checkout login had to be removed since it was a trivial solution to the classification
task. If it is known that someone logged into the checkout process, it is very likely
that a purchase indeed occurred and the session was not aborted. It is also not
available in the real-time implementation of the model. Trees facilitate the analysis
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Figure 4.9: Importance of the 43 selected features as shown by the boosted tree
baseline model. Customer features are marked in yellow font and ses-
sion features in black.

of variable importance. The 43 final features were inputted into the already existing
boosted tree model and variable importance was assessed. Results are shown in
Figure 4.9. It can be seen that certain features are by far more important than oth-
ers. Most important is the session feature avg adaP, which is the average price of
all viewed articles. Aktion (the type of interaction) and bestellkarte (if an order form
was used) are the least important. Nevertheless, since all features seem to provide
some information gain, it was decided to keep all of them.
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Implementation

5.1 Implementation and hyper-parameter tuning

This section describes the implementation as well as hyper-parameter tuning for all
implemented algorithms. Hyper-parameter tuning is only conducted on the complete
dataset, since it is the dataset that, based on literature, is expected to yield the best
results. Running hyper-parameter tuning on all datasets was impossible due to time
and computational constraints.

Boosted Tree

The boosted tree was built analogously to the already implemented boosted tree
model since it is the baseline to which other algorithms will be compared. The
already used model was built in R, a programming language used for statistical
computing and graphics (R: The R Project for Statistical Computing, 2017). Since
all other algorithms will be built in Python it was decided to rebuild the baseline
model, to ensure that performance differences are not due to used software and
libraries, but to actual differences of the algorithms. The original model was built
with the XGBoost library for R, which is a gradient boosting framework including a
linear model and a tree learning algorithm (XGBoost R Tutorial , 2016). Fortunately,
the same algorithm exists in Python (Scalable and flexible gradient boosting, 2016).
The model could therefore simply be transferred to the new programming language.
Hyper-parameter tuning was already done when the algorithm was first engineered
through grid search. These same parameter settings were used in Python and are
explained below. As already mentioned in the literature research, boosted trees
have the advantage of not requiring too much hyper-parameter tuning.

• max depth = 12: Describes the maximum depth of a tree, which is used to
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control over-fitting, since higher depths will result in learning very specific rela-
tionships (Jain, 2016).

• learning rate = 0.2: Describes the learning rate of the model. It leads to an
increased robustness by shrinking the weights in each step (Jain, 2016).

• min child weight = 100: Defines the required minimum sum of weights of
observations in a child node. It is useful to control over-fitting and under-
fitting. Higher values prevent the model from learning too specific relationships,
whereas too high values could result in under-fitting (Jain, 2016).

• num rounds = 400: Number of learning iterations carried out by the algorithm.
A larger number results in a better performance while increasing training times.

All other tunable parameters were set to their default settings. For completion, the
Python code of setting the hyper-parameters can be found in Appendix A Figure A.1.

Random Forest

To build the RF the implementation of the scikitlearn library RandomForestClassi-
fier was used (RandomForestClassifier , 2017). Since RFs are not very prone to
over-fitting, (Breiman, 2001) they do not require a lot of hyper-parameter tuning.
Mainly, there are three different parameters influencing prediction performance:

• max features: Describes the maximum number of features the algorithm tries
for an individual tree. Generally, a higher number of features increases per-
formance since the number of options at each node is increased. However,
this does not necessarily hold true since an increase in features will also lead
to a higher correlation of the individual trees (Srivastava, 2015). According
to Geurts, Ernst, and Wehenkel (2016) a good solution for classification prob-
lems lies around the square root of the number of features. However, to find
the most optimal solution each case has to be tested.

• min samples leaf: Meaning the minimum amount of samples in the end nodes
of the tree, where a smaller leaf size can lead to the effect of capturing more
noise in the data.

• n estimators: Describes the number of trees to be trained. This parameter
has no local optimum; therefore a larger number always leads to an increase
in performance (Hop, 2013). This is in contrast with the goal of decreasing
training and prediction speed (Srivastava, 2015).
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Figure 5.1: ROC AUC results of the grid search for the parameters max features
and min samples leaf for the RF algorithm.

For n estimators, a number was chosen large enough to show a good perfor-
mance while still resulting in reasonable training times. This number was 400, which
is slightly bigger than the 300 trees chosen by Hop (2013). To estimate the values
for max features and min samples leaf that maximize the ROC AUC score, a grid
search was carried out with values of 0.05, 0.2, 0.5 and 0.7 for max features and
50, 100, 160 and 200 for min samples leaf. A grid search is the testing of all possi-
ble parameter combinations and retrieving the best setting through cross-validation
(Hsu et al., 2003). Here, grid search was conducted with only 300 estimator trees.
This leads to overall worse results than training with the 400 trees, but still shows
the effect of the different parameter settings on the performance, while maintaining
reasonable training times. From the results, displayed in Figure 5.1, one can see
that increasing the number of samples per leaf led to a slight performance increase.
This effect becomes less for smaller numbers of max features. The yellow line rep-
resenting 200 samples per leaf which showed the overall highest ROC AUC score
reaches a plateau between a factor of 0.2 and 0.05 for max features, resulting in 9
or 2 features of the 43 features respectively. These numbers are close to the sug-
gested square root rule of Geurts et al. (2016), which would result in 7 features.
Based on these results min samples leaf was set to 0.2 and max features to 200
for training the final RF model. For completion, the Python code for setting the RF
hyper-parameters can be found in Appendix A in Figure A.2.
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Support Vector Machine

The implementation of the SVM follows the main constraint that training time com-
plexity is more than quadratic with the number of data samples. This results in the
fact that the utilized scikitlearn implementation of the algorithm does not scale well
to datasets with more than a couple of 10,000 samples (SVC, 2017). It was decided
to use 100,000 data samples to train the algorithm since it was the highest number
of samples still leading to reasonable training times. The input data needed to be
scaled to values ranging from 0 to 1. Since SVMs are prone to misclassifying the
minority class in unbalanced datasets (Liu, An, & Huang, 2006) and only a subset
of the data was used to train the SVM anyways, the subset was sampled such that
buying and no buying sessions were equally present.

The effectiveness of an SVM depends on the used kernel, its parameters, and
the soft margin parameter C. Hsu et al. (2003) suggest to use the RGB kernel.
This kernel only has one kernel parameter, namely γ. The according formula can
be found in Chapter 2 in Section 2.2.2. This, therefore, leaves C and γ for hyper-
parameter tuning, which was again accomplished by grid search. Values for γ were
0.0001, 0.001, 0.01 and 0.1 and C was tested with values 0.0001, 0.001, 0.01 0.1
and 1. The results in Figure 5.2 show that the highest value was obtained with a C
value of 1 and a γ of 0.1. In general, the configurations with a C value of 1 resulted
in the highest ROC AUC score, the smaller C got the further the score decreased.
For the final implementation C of 1 and γ of 0.1 were chosen. For completion, the
Python code for setting the SVM hyper-parameters can be found in Appendix A in
Figure A.3.

Feed-forward Neural Network

For building the FNN the Sequential model implementation of Keras was used (The
sequential model API, n.d.). This implementation provides a framework, which
leaves the possibility for intensive hyper-parameter tuning. Hyper-parameters used
in FNNs can be split into two categories, determining the training and the structure
of the network. Important training parameters are the loss function, the number of
epochs and the batch size. The loss function compares the network’s output against
the intended ground truth output (Neural Network Hyperparameters, 2015). Here,
the chosen loss function is binary crossentropy, which is commonly used for binary
classification problems. The epochs describe the number of times the dataset is
passed through the network, where too small numbers result in under-fitting and
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Figure 5.2: ROC AUC results of the grid search for the parameters C and γ.

too high numbers in over-fitting. After testing various configurations the number of
epochs was set to 50 since for higher numbers the prediction performance on the
test dataset decreased again. Lastly, since, due to memory constraints, not all data
can be passed through the network at once, a batch size has to be chosen. If mul-
tiple data points are passed to the network, the average of all resulting gradients
is used for updating. This yields the advantage of not capturing as much noise as
updating for every single data point. The FNN was tested with different batch sizes
where a batch size of 1012 yielded the best results and was still computationally fea-
sible. Hyper-parameters regarding the structure of the FNN are concerned with the
size and non-linearity of each layer as well as the total amount and configuration of
different layers. Tuning these parameters results in too many different configurations
for conducting a grid search. Therefore, a coordinate descent was used, where only
one parameter is adjusted at a time to reduce the validation error (Neural Network
Hyperparameters, 2015). This resulted in a final architecture with five dense lay-
ers of sizes 700, 350, 200, 64 and 1 separated by three dropout layers, to reduce
over-fitting. The complete architecture in Python code can be found in Figure A.5 in
Appendix A.5.

Logistic Regression

For implementing the LR the LogisticRegression model from sklearn was used. LRs
make certain assumptions about the input data in order to perform well. One of
which is that there is only a little or no multicollinearity among the independent vari-
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ables (Assumptions of Logistic Regression, 2017). Therefore, a PCA was carried
out before inputting the data into the algorithm. PCA is used to convert a set of
possibly correlated variables into linearly uncorrelated variables, which are called
principal components. Unfortunately, the PCA did not improve model performance,
therefore, it was excluded in the final implementation. Regarding hyper-parameters,
only C can be tuned. Small values of C result in a higher regularization strength
which under-fits the data. Whereas a higher value for C results in more complex
models that are likely to over-fit the data. Conducting a grid search with values
of 0.1, 1, 10 and 100 revealed that C did not influence the model’s performance.
Therefore, C was set to 1 for the final implementation. For completion, the Python
code for setting the LR hyper-parameters can be found in Appendix A in Figure A.4.

Recurrent Neural Network

To build the RNN the recurrent layers implementation of Keras was used (RNN,
2018). As for most other algorithms the data has to be normalized before it can
be used as input. But the RNN requires even more data pre-processing because it
needs sequences as input instead of feature vectors. While Lang and Rettenmeier
(2017) used the complete length of a session as the length for the input sequences,
where shorter sessions are padded with zeros to achieve the same length for all
inputs, this method is computationally infeasible in this study. Here, the most occur-
ring interactions within one session were 204,177, to pad all other sequences to this
length is impossible on a regular desktop computer. It further does not contain a lot
of information content since most sessions consisted of fewer interactions. Finally,
the sequence length was set to 20 since it was the highest number that still led to
reasonable computation times. For each session sequences had now to be formed.
The first interaction in a session was chosen, represented as a feature vector, just
like the input for the other models, and padded with 19 zeros. This resulted in the
first input of a session. Then the feature vectors of the first and second interac-
tion were chosen and stacked behind each other, padded with 18 zeros they served
as second input to the RNN. This was repeated so forth for all interactions of all
sessions. If a session was longer than 20 interactions, the oldest interactions were
removed from the input sequence as a new feature vector was added. This resulted
in input matrices of the shape: number of samples x sequence length (20) x number
of features.

After preparing the input for the RNN, hyper-parameters could be tuned. As for
the FNN, one can differentiate between hyper-parameters that determine the train-
ing and hyper-parameters that determine the structure of the network. The most
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important parameters for training, are again the loss function, the number of epochs
and the batch size. For the loss function this time categorical crossentropy was
chosen since it showed better results than the binary crossentropy. The target vari-
able was therefore transformed into a categorical variable, with the two categories
buying and no buying. The batch size was set to 1200 because setting the batch
size higher or lower showed worse results. Lastly, the number of epochs was set
to 16, for an optimal training this amount is not sufficient but due to computational
constraints, this number could not be set any higher. It can be expected that more
training epochs would yield better results. For determining the training parameters
coordinate descent was used as for the FNN. This resulted in a final architecture
of one LSTM layer of size 400, three dense layers with sizes 300, 100 and 2 and
two dropout layers to reduce over-fitting. The complete architecture can be seen in
Figure A.6 in Appendix A.



Chapter 6

Results

In this section, the prediction results achieved by the different algorithms are dis-
played. First the performance results on the three datasets are explained, followed
by a robustness analysis for the best algorithm. Then the prediction speed of the
different algorithms is evaluated and finally, the comprehensibility is discussed.

6.1 Performance results

The performance results are evaluated separately for the three different datasets.
Further, an analysis of the less feature engineered RNN data is conducted. The
metrics were chosen as discussed in Section 3.2. Precision, recall, F1-score, accu-
racy and ROC AUC score were evaluated with precision being the most important
metric for the use case and ROC AUC giving the best impression on the overall per-
formance across different thresholds. The chosen threshold was the same across all
datasets and algorithms and was set to 0.5. For completion, the confusion matrices
of all algorithms on all datasets from which the performance results were calculated
can be found in Appendix B.1 in Figure B.1.

In Table 6.1 the results for the complete dataset are displayed. The results for
the buying and no buying class as well as the overall results are shown. The use
case asks for predicting the no buying class, hence performance on this class is
more important. Overall, it can be seen that the predictions for the no buying class
were better than for the buying class, which most likely results from the unbalanced
dataset, but can also be due to the fact that the no buying class contains ’easier
to detect cases’ such as short sessions or sessions with empty baskets. The LR
achieved the highest precision score for the no buying class with 0.86. The SVM
could achieve the highest recall for this class with a result of 0.96, which results
from neglecting the buying class, with a recall of only 0.1. The best F1-score for the
no buying class, as well as the highest accuracy and ROC AUC was achieved by the
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Table 6.1: Results of all algorithms for the complete dataset with threshold 0.5.
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Figure 6.1: The ROC AUC curve for the complete dataset tested with all algorithms.

RF with 0.83, 0.76 and 0.82 respectively. It was also the only algorithm that could
outperform the baseline model, the boosted tree, regarding all metrics. The worst
performance is obtained by the SVM, it achieves the lowest accuracy and ROC AUC
with values of 0.68 and 0.67. It further achieves the lowest total scores for precision,
recall, and f1-score since it is very bad in predicting the buying class, even though
it was trained with a balanced sub-dataset. The results obtained by the SVM are
worse than the ones obtained during the SVM grid search. This might be caused
by the not balanced test dataset. For the grid search, a 10-fold cross validation was
used, which means that since the training dataset had to be balanced also the test
dataset was balanced. For obtaining the final results, the SVM was also trained
on a balanced dataset but tested with a dataset showing the same distribution of
buying and no buying classes as the actual dataset. This might have led to the
discrepancies in the performance results. Figure 6.1 shows the ROC AUC for each
algorithm in more detail, by displaying the entire ROC curve. One can see that the
ROC curve for the RF, displayed by the orange line results in a higher recall (true
positive rate) and specificity (false positive rate) across all thresholds compared to
all other algorithms. For all other algorithms, it is dependent on the threshold which
algorithm outperforms the others regarding recall and specificity, which results from
the curves crossing each other.

In Table 6.2 the results for the sequence dataset are displayed. The results
show the same pattern as for the complete dataset. The LR has the best precision
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Table 6.2: Results of all algorithms for the sequence dataset with threshold 0.5.

results for the no buying class with 0.86. The SVM results in the best recall, with a
value of 0.92 and the RF scores the best F1-score, the best accuracy, and the best
ROC AUC, with values of 0.83, 0.76 and 0.81 respectively. The RF is again better
than the baseline model regarding all measures. The worst performing algorithm is
the FNN with the lowest accuracy and ROC AUC of 0.71 and 0.67. It also displayed
very low scores for precision, recall, and F1-score. In general, the results for the
sequence dataset are slightly lower than the ones of the complete dataset. The ROC
AUC and recall of the RF algorithm have for example dropped by 1%, in contrast,
the accuracy and F1-score remained the same.

Table 6.3 displays the results achieved on the customer dataset. Immediately
one can see that the obtained results are much worse than the results achieved on
the complete and the sequence dataset. Here, the best ROC AUC results lie at
0.67, compared to values of 0.81 and 0.82 for the sequence and complete dataset.
Also, the results for the buying class are very low, especially regarding recall and
F1-score. The only algorithm that showed decent results on the buying class was
the LR. The best precision results for the non buying class were obtained by the LR,
which resulted in a value of 0.85. The highest recall was at 1 achieved by RF, FNN,
SVM and RNN, due to neglecting the buying class, which resulted in a recall of 0
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Table 6.3: Results of all algorithms for the customer dataset with threshold 0.5.
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or 0.01. The same algorithms achieved the highest F1-score with a value of 0.88,
with again very low scores for the buying class ranging between 0 and 0.2. The best
accuracy score of 0.79 was achieved by the FNN, closely followed by the boosted
tree, RF, SVM and RNN which all obtained a score of 0.78. The highest ROC AUC
of 0.67 was achieved by RF and FNN. The lowest ROC AUC value of 0.39 showed
the SVM. This value is worse than the guessing probability of 0.5, which indicates
that the algorithm learned wrong patterns. In general, the FNN showed the best
results, closely followed by the RF. The best results regarding both classes could
be achieved by the LR since it was the only algorithm that did not neglect the buying
class.

6.1.1 Results on RNN data

Next to training and testing all algorithms on the three different datasets, the RNN
was additionally trained on data containing the same amount of information but fewer
features, requiring less elaborate and time-consuming feature engineering. This ef-
fort focused solely on the sequence data, as described in Chapter 4. Therefore, the
RNN was tested on a new complete dataset and a new sequence dataset, where se-
quence features were replaced by the new features and customer features remained
the same. This effort was undertaken to analyze whether RNNs offer a way to de-
crease the amount of feature engineering, by learning more complex relationships
in the data, especially regarding the sequential input, implicitly.

The obtained results are displayed in Table 6.4. The table shows that for both
the complete as well as the sequence dataset the predictions on the no buying
class achieved higher results for all measures than on the buying class. Further, the
results obtained on the sequence dataset were better than on the complete dataset,
with values of 0.8, 0.82, 0.81, 0.82 and 0.7 for precision, recall, F1-score, accuracy
and ROC AUC on the sequence dataset and values of 0.75, 0.7, 0.76, 0.78 and 0.69
respectively on the complete dataset.

6.1.2 Robustness of results

To understand how the algorithms perform under different conditions, the RF results,
being the best results, were analyzed in regard to certain variables. The chosen
variables are categorical variables from the feature set, being of high importance to
the business decision makers, namely, the day of the week, gender, and device. It
was analyzed how the ROC AUC changes under different levels of these variables.
The ROC AUC was chosen since it is the metric that is not influenced by the selected
prediction threshold. For the analysis, only the complete dataset was used since it
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Table 6.4: Results of the RNN on complete and sequence RNN dataset with a
threshold of 0.5.

yielded the best prediction results and allows for an analysis of both the sequence
as well as the customer features.

Table 6.5: The ROC AUC results in regard to different levels of the day of the week
variable.

Day ROC AUC
Mo 0.82
Tu 0.81
We 0.82
Th 0.83
Fr 0.82
Sa 0.81
Su 0.81

The results of the analysis of the different days of the week can be seen in Table
6.5. The results imply, that the algorithm performs similarly well for all days of the
week. The best ROC AUC result could be obtained for Wednesdays with a value of
0.83. The lowest value of 0.81 was achieved on Tuesdays, Saturdays, and Sundays.
All other days resulted in a ROC AUC of 0.82.

Table 6.6 shows the results of the analysis of the feature device. The differences
here are as minimal as with the day of the week variable. The best ROC AUC results
are obtained with the desktop device with a value of 0.82. The tablet and the mobile
devices resulted in slightly worse results with a ROC AUC of 0.80.

Lastly, in Table 6.7 the effects of the gender on the prediction outcome can be
observed. The best results could be obtained in the cases where the gender was
unknown, which is surprising since it was expected that additional information would
yield better prediction results. In this case, the ROC AUC was at 0.82, whereas for
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Table 6.6: Percentage of correct results in regard to the device.

Device ROC AUC
desktop 0.82
mobile 0.80
tablet 0.80

Table 6.7: Percentage of correct results in regard to the gender.

Gender ROC AUC
unknown 0.82
women 0.79
men 0.79

women and men it could only reach a value of 0.79.

6.2 Latency results

The latency analysis was conducted on the complete dataset. One has to keep in
mind that all algorithms that required one hot encoding, such as the FNN, the LR,
the SVM and the RNN, need to process more features per sample than the RF and
the boosted tree, namely 97 versus 42. Also, since the analysis was carried out
locally on a desktop computer, results can only be understood as indications for
performance of the algorithms in relation to each other. An actual implementation of
the algorithms in the real-time environment will lead to much faster prediction times.

To analyze the latency, prediction times for each algorithm on 100 feature vec-
tors were determined. The analysis was conducted in bulk mode, which means
passing multiple data points to the algorithms at once, in this case, all 100. The
opposite to this would be an atomic mode, where every data point is processed suc-
cessively. Bulk mode was chosen because it offers a more realistic scenario for the
real-time implementation since it is faster than the atomic mode due to optimization,
branching, etc.. Predictions were repeated five times, the resulting boxplots are dis-
played in Figure 6.2. They show that the SVM displayed the longest prediction times
with a mean of 0.85 seconds for predicting the 100 feature vectors, followed by the
RNN with a mean of 0.4 seconds. All other algorithms showed very fast prediction
times, with the best produced by the boosted tree and the LR on average only need-
ing 0.01 and 0.009 seconds respectively for predicting all 100 instances. The RF
and the FNN required a mean of 0.05 and 0.06 seconds for the predictions.
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Figure 6.2: Computed latency for each algorithm performing predictions on 100
data points in bulk mode.

Figure 6.3: Prediction throughput (predictions per second) for each of the tested
algorithms.

Further, the prediction throughput was analyzed. Prediction throughput de-
scribes how many predictions can be completed within one second by each al-
gorithm. The results are displayed in Figure 6.3. The LR clearly has the highest
throughput with 18220 feature vectors per second. It is followed by the boosted
tree algorithm that can throughput 3700 samples in a second. The FNN was able
to throughput 1090 samples per second. All other algorithms showed a very low
throughput with 60, 100 and 10 for the RF, the SVM, and the RNN respectively.
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6.3 Comprehensibility

As explained in the literature review in Chapter 2 some algorithms are more com-
prehensible than others. Whereas simple DTs can be transformed into easy to com-
prehend if-else statements, it is impossible to break down the reasoning of more
complex algorithms such as SVMs into these easy rules. Even the DTs used in this
thesis, being a boosted DT and the RF algorithm, cannot be translated into such
rules anymore since they belong to the group of ensemble trees. Nevertheless,
the DTs have the advantage that they can assess the variable importance, such as
shown in Section 4.4.2. Lang and Rettenmeier (2017) could show that also RNN re-
sults can be made more comprehensible through visualization, achieved by plotting
how the purchase probability changes when the consumer takes certain actions.
This same method was applied here on the RNN results as well as on the RF re-
sults, to replicate the findings from Lang and Rettenmeier and to see if visualizing
non stateful algorithms works just as well. The results can be seen in Figure 6.4
and Figure 6.5. Figure 6.4 shows the buying behavior for a specific buying session
as predicted by the RF. On the x-axis the number of viewed pages is listed. Adding
something to the shopping basket does not result in opening a new page, there-
fore the page number remains constant in these cases. One can see that returning
from an article detail page back to the shop overview, without adding something to
the basket results in a decrease of the purchase probability, as well as returning
to the homepage after visiting the order site. In contrast, adding something to the
shopping basket as well as going to the order website increases the purchase prob-
ability. Especially, the first basket addition increases the purchase probability a lot,
whereas, basket additions do only slightly increase the purchase probability if the
latter is already high. These findings make sense and through the visualization, the
reasoning of the algorithm can be better understood. Similar results can be seen
in Figure 6.5, where the buying behavior of a different buying session as predicted
by the RNN can be seen. The results also show that returning to a shop overview
page, as well as going back to the homepage, decreases the purchase probability,
as can be seen for viewed pages 8, 10 and 15. As in the results displayed by the RF,
adding an item to the shopping basket as well as visiting the order page increases
the purchase probability. Again, the first basket addition has the highest impact on
the purchase probability. This method of visualization can also be applied to the
other algorithms. Therefore, this method as shown by Lang and Rettenmeier helps
to increase comprehensibility of all algorithms.
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Figure 6.4: Buying probability for session ID 5870488249, a buying session, as pre-
dicted by the RF in relation to certain actions.

Figure 6.5: Buying probability for session ID 5865326383, a buying session, as pre-
dicted by the RNN in relation to certain actions.



Chapter 7

Discussion

This chapter discusses the results, demonstrates the limitations of this research and
gives advice for future work.

7.1 Principal findings

This section discusses the principal findings of the results as displayed in Chapter 6
split by the performance results, the latency results, and the comprehensibility anal-
ysis. Finally, a comparison with the baseline model is drawn.

Performance results

In general, the performance results, especially on the sequence and complete dataset,
were very satisfactory for most algorithms yielding good results that are of value for
the management and decision makers, building a basis on which business decisions
can be made. Looking more closely at the performance of the different algorithms
on the three datasets, one can see that some algorithms performed better on all
datasets than others. The RF performed best of all algorithms on the sequence and
the complete dataset, achieving the second highest score on the precision metric
and the highest score on the ROC AUC, which were identified as the most important
metrics in Chapter 3. It can, therefore, be said to be the best algorithm regard-
ing the performance, obtaining the highest scores out of all algorithms regarding all
datasets. These results are in line with the findings from Hop (2013) and Niu et al.
(2017) where the RF also outperformed other algorithms, as reviewed in Chapter 2.
The second best performing algorithm was the LR displaying the highest precision
and second highest ROC AUC on the complete and sequence dataset. Further, it
was the only algorithm not neglecting the buying class when tested on the customer
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dataset. This is in contrast to all reviewed papers, where the LR performed worst
compared to all other tested algorithms (Hop, 2013; Niu et al., 2017; Poggi et al.,
2007). The worst performance shows the SVM algorithm, completely neglecting the
buying class with the customer dataset, and also showing the worst results on the
complete dataset, due to also neglecting the buying class. It is hard to explain these
results since especially for the SVM a balanced dataset was used for training the al-
gorithm. A possible explanation is that the choice of the kernel function was wrong.
Choosing the correct kernel is the most difficult challenge about SVMs, according
to Burges (1998). For the RNN and FNN, one can expect that performance results
would have increased with using more training iterations, which was not possible
due to computational constraints. Especially, regarding the RNN, 16 training epochs
is a very little amount. Concluding, for the performance results one could see that
the well-performing algorithms did not show large differences in their achieved re-
sults. This indicates that if the data is well prepared and features are chosen and
selected thoroughly, most algorithms show good results. Decision makers need to
consider that next to choosing the right algorithm data preparation is one of the most
important steps in a data mining project.

Looking at the results based on the different datasets, the complete dataset led
to the best results, closely followed by the sequence dataset. This applies for each
algorithm. By far the worst results with every algorithm were obtained on the cus-
tomer dataset. These results were expected since they correspond to the findings
from the reviewed literature. The high increase of performance when using dynamic
session data compared to static data was also observed by Lee et al. (2015). That
using both static and dynamic session data enhances the results as opposed to
only using dynamic session data was also found to be true in the studies of Bogina
et al. (2016) and Poggi et al. (2007), where the differences observed by Poggi et
al. (2007) were similarly small as in this study. Nevertheless, none of these studies
aimed at further explaining these findings. A possible explanation can be found in
this thesis in Chapter 4, where different factors from the sequence and the customer
dataset were analyzed. One could see that most analyzed customer features did
not yield high predictive power, such as the gender or the age since across all cat-
egories the percentage of buying sessions was almost constant. This can explain
why predictions solely based on the customer dataset showed such bad results.
Nevertheless, the pure existence of the customer features, indicating that a visitor
could be identified, yielded very high predictive power with 14% of buying sessions
if the visitor was unknown compared to 32% if the visitor could be identified. This
can explain the improved prediction results if both session and static customer data
were combined. The increase might therefore not be due to the customer data it-
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self, but can be attributed to the fact that customer information was available, giving
information about the identification of the visitor. Another reason why the customer
data by itself displayed bad results, can be the small number of training samples.
Since the customer dataset only consisted of the sessions where a customer identi-
fication occurred, it yielded less data than the complete and sequence dataset. This
decreased amount might not have been enough to train the different algorithms. In
general, for the analysis of the sequence compared to the customer data one has
to keep in mind that the sequence dataset did not only contain sequential session
data, but also static session data. So, the results mostly allow for a differentiation
between the performance of session and customer data, but since most of the ses-
sion data was sequential and customer data only of static nature one can assume
to be distinguishing between sequential and static datasets. Concluding, for future
deployments the complete dataset should be used since even though the difference
to the sequence dataset was small, it led to the best results. This is in line with the
current deployment where the boosted tree is also running on the complete dataset.

The results achieved by the RNN tested on the sequential and complete RNN
dataset are surprising. Unlike for the other datasets, the results obtained on the
sequential dataset clearly outperform the results as achieved by predictions carried
out on the complete dataset. This cannot be explained by findings in literature, since
none of the reviewed papers, tested predictions with RNNs on sequential and static
data separately. Lang and Rettenmeier (2017) for example only utilized a combi-
nation of dynamic and static session data and static customer data for training and
testing the RNN. The results obtained in this study might suggest that Lang and
Rettenmeier could have achieved a better performance by only training on the se-
quential session data since the results clearly indicate that RNNs perform better on
only sequential data. This might be due to their capability of predicting entire se-
quences. Another interesting observation can be drawn from the results obtained
by the RNN. When being trained on the feature engineered dataset, the best results
were obtained with the complete dataset with values of 0.72 for precision, recall,
f1-score and accuracy and a value of 0.74 for the ROC AUC score. When trained
on the less feature engineered RNN dataset the best results were achieved on the
sequential data with values of 0.8, 0.82, 0.82, 0.82 and 0.7 for precision, recall,
F1-score, accuracy and ROC AUC score. These results show that the predictions
on the RNN data outperformed the ones on the feature engineered dataset clearly
in all measures except for the ROC AUC score. These findings are astonishing,
especially when looking at the number of used features. Where 43 features are
used for the complete feature engineered dataset and only nine for the sequential
RNN dataset. This shows that the amount of used features is not a good predictor
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of how well a model will perform, but rather the nature of the features themselves
seems to be important. Implying that an RNN trained on a small amount of sequen-
tial features with a small degree of feature engineering provides better results than
being trained on a larger amount of static and sequential heavily engineered fea-
tures. These findings are of high importance since no other reviewed study made
an effort of comparing types and different degrees of feature engineering of features
for sequential machine learning models, even though this can have a strong impact
on predictions conducted in the context of e-commerce. The current belief in e-
commerce seems to be that more features mean better predictions, as can be seen
from the study of Lang and Rettenmeier, conducted for the large German clothing
retailer Zalando. Here, smaller companies with less computational resources seem
to have a disadvantage. With the results of this study now, this does not seem to
be true anymore, since fewer features, meaning less computational effort, resulted
in better findings. Making it possible to carry out precise predictions with a limited
amount of computational resources. Also, with RNNs the usage of static customer
features, that can lead to privacy concerns and require strict storing regulations, is
not necessary anymore, especially, since these have even decreased the prediction
performance. This is a further advantage for e-commerce companies carrying out
predictions.

Latency

Both regarding the prediction times per instance in bulk mode as well as the through-
put per second the LR outperformed the other algorithms by showing the fastest
prediction times, followed by the boosted tree algorithm. This is in line with the re-
viewed literature in Chapter 2 where LR was said to be having fast prediction and
training times. Also, the boosted tree was reported to have faster prediction times
than the RF (Breiman, 2001). The bad latency results of the RNN especially to be
seen in the long prediction times per instance in the bulk mode, also correspond to
the reviewed literature. There it was stated that RNNs display extended prediction
times compared to other machine learning algorithms (Lang & Rettenmeier, 2017).
The even worse results obtained by the SVM are on the other hand surprisingly,
since fast prediction times were listed as an advantage of SVMs in the literature
(Han et al., 2011). Concluding, most of the obtained latency results were expected
since they correspond to the findings in the literature. Decision makers should keep
these results in mind when deploying the models in the real-time environment since
a high latency in this context can yield unwanted results. Nevertheless, to truly es-
tablish which latency results are acceptable and which ones are too high, one has
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to deploy the algorithms in the real-time environment to see how a more powerful
machine decreases the latency.

Comprehensibility

The analysis of the comprehensibility was based on a visualization technique as
applied by Lang and Rettenmeier (2017). This method shows that the buying proba-
bility for each step of the shopping process can be plotted, making it easy to under-
stand which visitor actions yield an increase or decrease in the buying probability.
Visualizing a session as a whole makes the effect of actions on the prediction out-
come more understandable, hence increases the comprehensibility of a model. It
was applied to both a stateful and stateless machine learning algorithm, the RNN
and RF, to see if also models that do not directly predict sequences can be visual-
ized in a sequential fashion. The results show that for both models the prediction
outcomes can be well visualized in a way that intuitively makes sense. Though this
technique showed that comprehensibility of all models can be equally increased,
it can only be applied to sequential data, since it plots the changes in the buying
probability over time. There are other techniques that help to understand black box
models trained on any kind of data. One such example is the LIME technique. It can
explain predictions of any classifier by approaching single predictions locally through
visualizing which features have a positive or a negative influence on the prediction
outcome and how large this influence is (Ribeiro et al., 2016). This visualization
helps to understand predictions better by displaying the factors that led to it. These
factors can be of sequential or static nature, allowing for explanations of predictions
for any kind of data. Through these two techniques, one can see that all machine
learning algorithms can be made comprehensible through visualization. Resulting,
all algorithms perform equally well in this category and can help decision makers to
understand and explain prediction outcomes.

Comparison with baseline model

After the results of all algorithms in regard to all different measures have been dis-
cussed a comparison to the already implemented baseline model is drawn to estab-
lish how the algorithms perform in relation to the implemented standard. Looking at
the performance, especially the RF could improve on the results of the boosted tree.
For the important measures such as precision and ROC AUC results were increased
by up to 3% on all datasets. All other algorithms were not able to outperform the
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Boosted tree regarding all datasets and most performance metrics. Looking, at the
latency the only algorithm being able to show even faster prediction times than the
baseline model was the LR, all other models displayed a smaller prediction through-
put as well as higher prediction times when processing bulks of data. Concerning the
comprehensibility this thesis showed that all algorithms can be interpreted equally
well, therefore no difference to the baseline model resulted. Concluding, the RF
is the algorithm that could replace the currently existing model to increase perfor-
mance. Whether the slower prediction times are sufficient for real-time predictions
has to be assessed after implementation and deployment in the real-time environ-
ment. The RF shows a further advantage compared to the other algorithms. It is
the only algorithm that requires exactly the same data pre-processing steps as the
boosted tree, therefore, processes focused on data preparation in the real-time en-
vironment would not have to be adapted to the new algorithm, which would make
the actual deployment procedure fairly easy.

7.2 Limitations

This section discusses the limitations of this research, which are mostly related to
the fact that the study was carried out locally on a desktop computer and could not
be run on a server due to missing infrastructure and data protection constraints.

Due to the memory and computational constraints of a local computer, factors
such as the amount of training data, creating the padded sequence data for the
RNN input, training iterations, and hyper-parameter tuning were influenced. Re-
garding the training data especially for the FNN and the RNN, which are algorithms
that require large amounts of data to properly find patterns in the data and carry out
good predictions, the used training data was not enough. Using more data would
have most likely led to better prediction results, but had resulted in too long training
times. Regarding the sequence creation for the RNN exceptional constraints were
met. Due to the fact, that the padded sequences get very large they could not be
stored in the memory of the computer anymore, therefore they had to be saved on
disk after processing every 5,000 sequences. The limited memory did further not
allow for using sequences longer than 20 time steps since the computer could not
process longer sequences through the RNN anymore. Therefore, it was not possible
to explore if considering longer sequences had led to better predictions. Regarding
all algorithms the training iterations had to be kept low, where more training iterations
had resulted in better predictions but also in longer training times. This again influ-
enced the FNN and RNN the most, since these algorithms require a lot of training
epochs.

Further constraints concern the utilized data, resulting from the fact that the
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data for this study had to be the same as for the already implemented baseline
model to allow for comparability. Due to this, additional feature engineering could
not be explored. It is imaginable that additional feature engineering had improved
the results. One could have made use of additional data such as click positions,
and hover duration as in the study of Niu et al. (2017). Further, for the customer
dataset, it probably had been better to use an equal amount of data samples as for
the complete and sequence dataset, even if this means that additional weeks of data
have to be used that were not used in the complete and sequence dataset, since
the training set size of the customer data was probably too small for all algorithms.

Concerning the analysis of the sequence compared to the static data, the anal-
ysis would have been clearer if the sequence dataset had only consisted of se-
quential, time-dependent data. In this setting, the sequence dataset described the
session data consisting of both static and sequential features. This does allow for
a distinction between session and customer data, but it does not clearly separate
sequential from static data. So, to truly analyze the influence of sequential versus
static data, the data should be more clearly separated. Further, hyper-parameters
were optimized to fit the complete dataset, there is the possibility that results on the
sequence dataset would have been just as good or even better than the complete
dataset if hyper-parameter tuning had been done for this dataset.

Lastly, the way how the current model is implemented, trained and deployed,
asks for session-based predictions. Therefore, this study was also restricted to con-
ducting session-based predictions. Unfortunately, this approach has some short-
comings. With session based predictions for example purchases that might have
taken place on a later point in time, can be prefetched by displaying a gift card.
So, if someone is currently only browsing because he plans one purchasing on the
weekend, the algorithm correctly detects a no buying session. Resulting a gift card
is displayed, which is only valid for this current session. Most likely the visitor will
make a purchase now instead of, as planned, on the weekend. Even though it looks
like the correct prediction was a success and turnover for that particular day was
increased, the profit was taken away from the weekend when the visitor might have
even purchased without the need of a gift card. This so-called ’front-loading’ effect
is not desirable, and can be avoided if predictions are conducted across sessions,
because then visitors can be identified that do not plan on purchasing in the current
session or in the near future.

7.3 Future work

From the above-mentioned limitations, some recommendations result for future re-
search. First, any follow-up study should be concerned with running the different
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algorithms on a more computationally powerful machine instead of locally on a regu-
lar desktop computer. All algorithms offer the possibility of parallelization, which can
also be utilized on a better machine. This can already help to create more powerful
models, through using more data, conducting a more thorough hyper-parameter tun-
ing and running more training iterations to fully exploit and analyze the algorithms’
potential.

Regarding the data, it would be interesting if using other types of features espe-
cially ones that regard aspects such as click information, results in better predictions.
Therefore, a follow up study could focus on using more information of the data that is
available anyways to see if performance can also be enhanced by improving the data
basis instead of tuning and exploring the potentials of different algorithms. Further,
to really establish the difference between sequential and static customer data future
studies should differentiate between the sequential and the static session data.

Lastly, it would be very interesting to exploit the possibility of reducing feature
engineering and the usage of static customer data with stateful models such as
RNNs further. Especially, since the already obtained results, that implicate the RNNs
perform well on less engineered features of sequential nature, were already very
promising. It is imaginable to solely conduct a study based on comparing the results
of for example the RF algorithm with an RNN which are trained on data containing
the same information but a different number of features, just like it was done in
this study. But here one should train the RNN on a server, so more data and more
epochs can be used. It is imaginable that saving time and human brain power during
feature engineering will, on the other hand, result in longer training times with more
training data to extract important features implicitly and achieve similar results as the
RF trained on the complete dataset. This, therefore, has to be facilitated through a
more thorough training on more powerful and possibly parallel machines.



Chapter 8

Conclusion

This chapter concludes the report by offering answers to the sub-questions and the
main research question.

Sub Question 1: How can an exploratory data analysis provide insight into the
prediction problem?

An exploratory data analysis as conducted in Chapter 4 in Section 4.3, can help
to generate a first insight into the prediction problem, by visualizing important vari-
ables such as gender of the customer or day of the week in relation to the target
variable, in this case, whether a purchase occurred or not. This analysis could al-
ready show that customer-specific attributes might not have a large influence on the
prediction outcome, since the purchase probabilities across the different levels of
the customer variables did not vary largely. Additionally, visualizing data in this way
can help the management to create an understanding of which website visitors ac-
tually purchase and can already prompt decisions on targeting a specific customer
segment with personalized advertisements or special offers.

Sub Question 2: Which machine learning model is best suited to solve the pre-
diction problem?

Based on the results displayed in Chapter 6 the RF model showed the best per-
formance, by displaying good results for all evaluation metrics and offering a rea-
sonable latency. Regarding the comprehensibility, it did not display any differences
to the other algorithms. The RF algorithm offers a good possibility for the German
clothing retailer to increase the performance of the currently implemented model
while causing minimal deployment effort, since it requires the same data and data
pre-processing steps as the current model. In terms of feature engineering efforts,
another well-suited algorithm for this sequential prediction task is the RNN. While
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not having displayed the best results with the heavily engineered features, it showed
a very good performance on the sequential RNN features. It offers the advantages
of requiring less feature engineering and fewer features in general, displaying no
need for customer-specific features, which are often concerned with privacy issues.

Sub Question 3: How do different data types, such as dynamic clickstream and
static customer data, influence the models’ performance?

Different input data influence the performance of the models differently. Regard-
ing the heavily engineered datasets, functioning as input for the stateless machine
learning models, the customer data showed by far the worst results. It could also
only slightly increase the performance when combined with the sequence data. This
showed clearly, that sequence data is most important for predicting purchase deci-
sions in an online store. This implies that future feature engineering efforts should
be focused on the sequence data. It is further imaginable to trim the input feature set
to solely the sequence data, to reduce computational complexity and to decrease
privacy concerns. The importance of the sequential data became even clearer when
training the RNN on the less engineered RNN features. Where the RNN performed
better on only the sequential data than on the combined dataset. It this case the
customer data even reduced the prediction performance, indicating that especially
stateful machine learning models should only be trained with sequential data.

Sub Question 4: Can stateful models produce good results while requiring less
feature engineering?

By training the RNN on the regular, engineered and a less engineered feature set,
one could display that stateful models produce good results with less feature engi-
neering. The results even showed that the less engineered feature set produced
better results than the other feature set, while consisting of fewer features.

Sub Question 5: How robust is the best-suited algorithm to different conditions?

The performance of the best-suited algorithm, being the RF as explained in the
discussion of the results, was analyzed regarding the days of the week, the utilized
device, and the gender of the customer. One could see that for none of the tested
variables the performance differences were drastically, and the algorithm can be
said to be performing well under various conditions. The only surprising effect that
was observed, was that not knowing the gender yielded the best results regarding
the gender variable, which again shows that adding the customer data can even de-
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crease the prediction performance. Further, it is advantageous for decision makers
to know how different settings can influence the correctness of predictions.

Research Question: How can a visitor in a web shop be categorized as a buy-
ing or no buying?

When commencing such a binary classification task, it can be helpful to plot cat-
egorical variables in relation to the target variable, for generating a first insight into
the predictive power of the tested variables. For the actual task of classifying a web
shop visitor as buying or no buying the RF seems to be best suited concerning the
class of the stateless machine learning models. It requires a minimal amount of
data pre-processing, showed good results on all performance measures, displayed
a decent latency and degree of comprehensibility and was robust to various condi-
tions such as utilized device or gender of the customer. The best performance, as
for all other stateless models, was achieved on a combined dataset containing static
and dynamic session data as well as static customer data, where the static customer
data only led to a slight increase in performance. Hence, when concerned with com-
putational capacity and privacy issues, training on a smaller feature set, containing
only session specific data, will still yield powerful results. The only shortcoming of
this model, as with all other stateless models, is that it requires a fair amount of
feature engineering to model the sequential nature of the dynamic session data ex-
plicitly. To avoid this time consuming and expertise requiring task, stateful models,
such as RNNs, can be used due to their capacity of modeling sequences. In this
study, the tested RNN showed promising results, when being tested on fewer, less
engineered features as compared to the regular dataset. The shortcomings with
RNNs are that they require a lot of data pre-processing, such as one-hot-encoding,
normalization, missing value imputation and the conversion of single data points
to sequences. They further require a lot of time and computational power to be
trained and fine-tuned and show longer prediction times. Nevertheless, they hold
great potential for e-commerce, since a lot of important tasks in e-commerce are of
sequential nature.



References 70

References

Assumptions of logistic regression. (2017). Retrieved from http://www

.statisticssolutions.com/assumptions-of-logistic-regression/

Barbour, A., & Petrelis, N. (2008). Lecture 3: Markov chains. Retrieved from http://

www.math.uzh.ch/?file&key1=9151

Bellman, S., Lohse, G. L., & Johnson, E. J. (1999). Predictors of online buying
behavior. Communications of the ACM, 42(12).

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157
– 166.

Bogina, V., Kuflik, T., & Mokryn, O. (2016, 3). Learning item temporal dynamics for
predicting buying sessions. ACM.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2).
Breiman, L. (2001). Random forests. Machine learning, 45(1).
Brownlee, J. (2016, 7). Crash course in recurrent neural networks for deep learn-

ing. Retrieved from https://machinelearningmastery.com/crashcourse

-recurrent-neural-networks-deep-learning/

Brownlee, J. (2017). Why one-hot encode data in machine learning?
Retrieved from https://machinelearningmastery.com/why-one-hot-encode

-data-in-machine-learning/

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.
Data mining and knowledge discovery , 2(2), 121–167.

Castanedo, F., Valverde, G., Zaratiegui, J., & Vazquez, A. (2014). Using deep
learning to predict customer churn in a mobile telecommunication network.
wiseathena.

Chapman, P. (1999). The crisp-dm user guide. NCR Syst. Eng. Copenhagen.
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth,

R. (2000). Crisp-dm 1.0 step-by-step data mining guides. NCR Syst. Eng.
Copenhagen.

Chen, Z., Fu, A. W.-C., & Tong, C.-H. (2004). Optimal algorithms for finding user
access sessions from very large web logs. World Wide Web, 6, 259–279.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273 – 297.

Craven, M. (2011). Markov chain models. Retrieved from https://cw.fel.cvut

.cz/wiki/ media/courses/a6m33bin/markov-chains-2.pdf

Dewey, C. (2016). Markov chain models. Retrieved from https://www.biostat

.wisc.edu/bmi576/lectures/markov-chains.pdf

http://www.statisticssolutions.com/assumptions-of-logistic-regression/
http://www.statisticssolutions.com/assumptions-of-logistic-regression/
http://www.math.uzh.ch/?file&key1=9151
http://www.math.uzh.ch/?file&key1=9151
https://machinelearningmastery.com/crashcourse-recurrent-neural-networks-deep-learning/
https://machinelearningmastery.com/crashcourse-recurrent-neural-networks-deep-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://cw.fel.cvut.cz/wiki/_media/courses/a6m33bin/markov-chains-2.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/a6m33bin/markov-chains-2.pdf
https://www.biostat.wisc.edu/bmi576/lectures/markov-chains.pdf
https://www.biostat.wisc.edu/bmi576/lectures/markov-chains.pdf


References 71

Dmc 2013. (2013). Retrieved from http://www.data-miningcup.de/en/review/

goto/article/dmc-2013.html

Dumais, S., Jeffries, R., Russell, D., Tang, D., & Teevan, J. (2014). Understanding
user behavior through log data and analysis. New York: Springer.

Fajta, J. (2014). Online visitor classification based on mbti model (Unpublished
master’s thesis). Technische Universiteit Eindhoven.

Feng, J. (2017). gcforest github repository. Retrieved from https://github.com/

kingfengji/gcForest

Frank, E., Hall, M., & Witten, I. (2016). The weka workbench. online appendix
for ”data mining: Practical machine learning tools and techniques (4th ed.).
Morgan Kaufmann.

Friedman, H. (2002). Random forests. Stochastic gradient boosting, 38(4).
Gelman, A., & Hill, J. (2016). Data analysis using regression and multi-

level/hierarchical models. Cambridge University Press.
Geurts, P., Ernst, D., & Wehenkel, L. (2016). Extremely randomized trees. Springer

Science + Business Media, Inc..
Goodman, B., & Flaxman, S. (2016). European union regulations on algorithmic

decision- making and a right to explanation. In ICML Workshop on Human
Interpretability in Machine Learning.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques.
Elsevier .

Hastie, T., Tibshirani, R., & Friedman, J. (2002). The elements of statistical learning:
Data mining, inference, and prediction. Biometrics.

Heaton, J. (2016, 3). An empirical analysis of feature engineering for predictive
modeling. IEEE , 1–6.

Hidasi, B., Quadrana, M., Karatzoglou, A., & Tikk, D. (2016). Parallel recurrent
neural network architectures for feature-rich session-based recommendations.
In Proceedings of the 10th ACM Conference on Recommender Systems, 241–
248.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation, 9(8).

Hofmann, M. (2006). Support vector machines-kernels and the kernel trick. An
elaboration for the hauptseminar reading club:support vector machines, 1 –
16.

Hop, W. (2013). Web-shop order prediction using machine learning (Unpublished
master’s thesis). Erasmus University Rotterdam.

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vec-
tor classification (Tech. Rep.). Taipei 106, Taiwan: Department of Computer
Science National Taiwan University.

http://www.data-miningcup.de/en/review/goto/article/dmc-2013.html
http://www.data-miningcup.de/en/review/goto/article/dmc-2013.html
https://github.com/kingfengji/gcForest
https://github.com/kingfengji/gcForest


References 72

Jain, A. (2016, 3). Complete guide to parameter tuning in xgboost (with codes in
python). Retrieved from https://www.analyticsvidhya.com/blog/2016/03/

complete-guide-parameter-tuning-xgboost-with-codes-python/

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical
learning (Vol. 112). New York: Spring.

Jolliffe, I. (1982). A note on the use of principal components in regressio. Journal of
the Royal Statistical Society , 31(3), 300 – 303.

Kaggle – the home of data science and machine learning. (2017). Retrieved from
https://www.kaggle.com/

Korpusik, M., Sakaki, S., Chen, F., & Chen, Y. (2016). Recurrent neural networks for
customer purchase prediction on twitter. In Proceedings of the CBRecSys.

Kotu, V., & Deshpande, B. (2014). Predictive analytics and data mining: concepts
and practice with rapidminer. Morgan Kaufmann, 562–572.

Lang, T., & Rettenmeier, M. (2017). Understanding consumer behavior with recur-
rent neural networks. In Proceedings of the 3rd International Workshop on
Machine Learning Methods for Recommender Systems.

Lee, M., Ha, T., Han, J., Rha, J., & Kwon, T. (2015). Online footsteps to purchase:
Exploring consumer behaviors on online shopping sites. In Proceedings of the
ACM Web Science Conference.

Liu, Y., An, A., & Huang, X. (2006, April). Boosting prediction accuracy on imbal-
anced datasets with svm ensembles. PAKDD, 6, 107 – 118.

Lo, C., Frankowsik, D., & Leskovec, J. (2014). Understanding behaviors that lead
to purchasing: A case study of pinterest. In Proceedings of the KDD 16, San
Francisco, CA, USA.

Magrabi, A. (2016, 11). Top 5 machine learning applications for e-
commerce. Retrieved from https://techblog.commercetools.com/top-5

-machine-learning-applications-for-e-commerce-268eb1c89607

Manning, C., Raghavan, P., & Schuetze, H. (2008). Introduction to information
retrieval. Cambridge University Press.

Moe, W. (2003). Buying, searching, or browsing: Differentiating between online
shoppers using in-store navigational clickstream. Journal of Consumer Psy-
chology , 13(1–2), 29–39.

Mulder, W. D., Bethard, S., & Moens, M.-F. (2015). A survey on the application of
recurrent neural networks to statistical language modeling. Computer Speech
& Language, 30(1), 61 – 98.

Nakayama, Y. (2009). The impact of e-commerce: It always benefits consumers, but
may reduce social welfare. Japan and the World Economy , 21(3), 239–247.

Neural network hyperparameters. (2015, 12). Retrieved from http://colinraffel

.com/wiki/neural network hyperparameters

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.kaggle.com/
https://techblog.commercetools.com/top-5-machine-learning-applications-for-e-commerce-268eb1c89607
https://techblog.commercetools.com/top-5-machine-learning-applications-for-e-commerce-268eb1c89607
http://colinraffel.com/wiki/neural_network_hyperparameters
http://colinraffel.com/wiki/neural_network_hyperparameters


References 73

Niu, X., Li, C., & Yu, X. (2017). Predicitive analytics of e-commerce search behavior
for conversion.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
Duchesnay, E. (2011). Scikit-learn: machine learning in python. Journal of
Machine Learning Research.

Piatetsky-Shapiro, G. (2014). Kdnuggets methodology poll.
Poggi, N., Moreno, T., Berral, J., Gavald, R., & Torres, J. (2007, 7). Web customer

modeling for automated session prioritization on high traffic sites. International
Conference on User Modeling.

A practical introduction to deep learning with caffe and python. (2016, 6). Re-
trieved from http://adilmoujahid.com/posts/2016/06/introduction-deep

-learning-python-caffe/

Python. (2017). Python website. Retrieved from https://www.python.org/

Randomforestclassifier. (2017). Retrieved from http://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestClassifier.html

Retail ecommerce in germany: A major digital market growing in size and
sophistication. (2017, 7). Retrieved from https://www.emarketer.com/

Report/Retail-Ecommerce-Germany-Major-Digital-Market-Growing-Size

-Sophistication/2002102

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining
the predictions of any classifier.

Rnn. (2018). Retrieved from https://keras.io/layers/recurrent/

Rokach, L., & Maimon, O. (2014). Data mining with decision trees: theory and
applications. World scientific.

R: The r project for statistical computing. (2017). Retrieved from https://www.r

-project.org/

Russell, S., & Norvig, P. (1995). Artificial intelligence - a modern approach. Prentice-
Hall, Englewood Cliffs: Artificial Intelligence.

Salehi, F., Abdollahbeigi, B., Langroudi, A. C., & Salehi, F. (2012). The impact
of website information convenience on e-commerce success of companies.
Procedia Social and Behavioral Sciences, 57 , 381–387.

Scalable and flexible gradient boosting. (2016). Retrieved from http://xgboost

.readthedocs.io/en/latest/

The sequential model api. (n.d.). Retrieved from https://keras.io/models/

sequential/

Sk-learn. (2017). Sckit-learn website. Retrieved from http://scikit-learn.org/

stable/

Srivastava, T. (2015, 6). Tuning the parameters of your random forest
model. Retrieved from https://www.analyticsvidhya.com/blog/2015/06/

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
https://www.python.org/
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://www.emarketer.com/Report/Retail-Ecommerce-Germany-Major-Digital-Market-Growing-Size-Sophistication/2002102
https://www.emarketer.com/Report/Retail-Ecommerce-Germany-Major-Digital-Market-Growing-Size-Sophistication/2002102
https://www.emarketer.com/Report/Retail-Ecommerce-Germany-Major-Digital-Market-Growing-Size-Sophistication/2002102
https://keras.io/layers/recurrent/
https://www.r-project.org/
https://www.r-project.org/
http://xgboost.readthedocs.io/en/latest/
http://xgboost.readthedocs.io/en/latest/
https://keras.io/models/sequential/
https://keras.io/models/sequential/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/
https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/


References 74

tuning-random-forest-model/

Stassopoulou, A., & Dikaiakos, M. (2009). Web robot detection: a probabilistic
reasoning approach. Comput Netw , 53(3), 265 – 278.

Stevanovic, D., Vlajic, N., & An, A. (2011). Unsupervised clustering of web sessions
to detect malicious and non-malicious website users. Procedia Comput Sci , 5,
123–131.

Suchacka, G. (2016). Analysis of aggregated bot and human traffic on e-commerce
sites. Proceedings of IEEE FedCSIS14, 2, 1123 – 1130.

Suchacka, G., & Chodak, G. (2016). Using association rules to assess purchase
probability. Information Systems and e-Business Management , 1–30.

Suchacka, G., Skolimowska-Kulig, M., & Potempa, A. (2015). A k-nearest neighbors
method for classifying user sessions in e-commerce scenario. Telecommuni-
cations and Information Technology , 64(3).

Suchacka, G., & Templewski, S. (2017). Applications of neural network to predict
purchases in online store. In Information Systems Architecture and Technol-
ogy: Proceedings of 37th International Conference on Information Systems
Architecture and Technology .

Svc. (2017). Retrieved from http://scikit-learn.org/stable/modules/

generated/sklearn.svm.SVC.html

Tan, P., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Boston:
Addison-Wesley Longman.

Tan, Y., Xu, X., & Liu, Y. (2016). Improved recurrent neural networks for session-
based recommendations. In Proceedings of the 1st Workshop on Deep Learn-
ing for Recommender Systems, 17–22.

Wolpert, D., Macready, W., David, H., & William, G. (1995). No free lunch theorems
for search (Tech. Rep.). 1399 Hyde Park Road, Santa Fe, NM, 87501: Santa
Fe Institute.

Xgboost r tutorial. (2016). Retrieved from http://xgboost.readthedocs.io/en/

latest/R-package/xgboostPresentation.html

Xie, Y., Li, X., Ngai, E., & Ying, W. (2008). Customer churn prediction using improved
balanced random forests. Expert Systems with Applications.

Zell, A. (1994). Simulation neuronaler netze. Addison-Wesley.
Zhang, Y., Dai, H., Xu, C., Feng, J., Wang, T., Bian, J., . . . Liu, T.-Y. (2014). Se-

quential click prediction for sponsored search with recurrent neural networks.
Association for the Advancement of Artificial Intelligence.

Zhou, Z.-H., & Feng, J. (2017). Deep forest: Towards an alternative to deep neural
networks. IJCAI-2017 .

Zou, K. H., OMalley, A. J., & Mauri, L. (2007). Receiver-operating characteristic
analysis for evaluating diagnostic tests and predictive models. Circulation, 115,

https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/
https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/
https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://xgboost.readthedocs.io/en/latest/R-package/xgboostPresentation.html
http://xgboost.readthedocs.io/en/latest/R-package/xgboostPresentation.html


References 75

654–657.



Appendix A

Algorithm Implementation

A.1 Boosted tree hyper-parameters

Figure A.1: The hyper-parameter settings of the boosted tree in Python code.

A.2 Random Forest hyper-parameters

Figure A.2: The hyper-parameter settings of the RF in Python code.
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A.3 Support Vector Machine hyper-parameters

Figure A.3: The hyper-parameter settings of the SVM in Python code.

A.4 Logistic Regression hyper-parameters

Figure A.4: The hyper-parameter settings of the LR in Python code.

A.5 Feedforward Neural Network Architecture

Figure A.5: The architecture of the FNN in Python code implemented with the Keras
library.
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A.6 Recurrent Neural Network Architecture

Figure A.6: The architecture of the RNN in Python code implemented with the Keras
library.



Appendix B

Results

B.1 Confusion Matrices

Table B.1: Confusion matrices for all algorithms on the complete, the sequence and
the customer dataset.
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Appendix C

Deep Forest

Towards the end of the processing time of this master thesis, another promising
algorithm, namely Deep Forest, was discovered. Due to time constraints, a quick
implementation and testing of the complete dataset were conducted. It showed
that the algorithm did not perform better than the previously tested models and was
therefore not included in the main body of this thesis. For completion, the algorithm,
the results and the implications are discussed below.

Deep Forest, as proposed by Zhou and Feng (2017), is a machine learning
model based on a decision tree ensemble approach. The model consists of a cas-
cading forest structure. This structure, being similar to an FNN, processes features
by propagating them through multiple levels, where outputs of one level are the in-
puts for the preceding level. The different levels consist of multiple independent
RFs. It further makes use of multi-crained scanning, which means applying sliding
windows to the features, to allow for sequence processing. Regarding the results, it
has proven to be highly competitive with other deep learning models such as RNNs.
It offers the advantages of a certain robustness to different hyper-parameters, per-
forming well on small-scale training data, the possibility of running in parallel and
being able to process sequences just like RNNs (Zhou & Feng, 2017). All of this
makes it a good fit for the task of this thesis.

Data

The Deep Forest model was tested on the complete dataset first. Since this dataset
yielded the best results for the other algorithms it was also expected to show good
results with the Deep Forest. The goal was then to continue with the RNN dataset
to establish whether the algorithm also performs well on sequences, without heavy
feature engineering. Nevertheless, since the results on the complete dataset, as
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Table C.1: Results of the Deep Forest implementation on the complete dataset.
Deep Forest Results - Complete Dataset
Class Precision Recall F1-score Accuracy Roc Auc
No buy 0.79 0.85 0.82
Buy 0.62 0.53 0.57
Total 0.74 0.75 0.74 0.74 0.68

displayed in the results section, were not good compared to the other algorithms, it
was refrained from further analyzing this.

Implementation

For implementing the algorithm the official gcForest implementation from GitHub
was utilized (Feng, 2017). For a first basic model, the structure and hyper-parameters
found in the exemplary code on GitHub were used. This was already expected to
yield good results since in their paper Zhou and Feng (2017) claim a high robust-
ness to different hyper-parameters. After this implementation, a slightly more com-
plex model was chosen, with an increased amount of RFs in each cascading layer.
Unfortunately, due to memory constraints, this model was too large to be saved and
loaded and could therefore not be assessed. Hence, the result section only contains
to results of the first implementation.

Results

The results as displayed in Table C.1, show that the algorithm performed better
on the no buying than the buying class. The precision, recall, and F1-score of the
buying class are 0.79, 0.85 and 0.82 respectively. For the no buying class, the re-
sults are 0.62, 0.53 and 0.57. The achieved accuracy is 0.74 and the obtained ROC
AUC score is at 0.68.

Discussion and Conclusion

Looking at the results one can see that precision, recall, F1-score, and accuracy
are similar to the other tested algorithms. Regarding the ROC AUC score the ob-
tained results are bad compared to the other algorithms, with only the SVM model
showing a lower value. This, therefore, indicates that with other thresholds, the ob-



APPENDIX C. DEEP FOREST 82

tained results would be worse than for the other algorithms. An increase of model
complexity might increase the results, since the here implemented architecture was
kept very simple. Unfortunately, this was not possible due to memory constraints of
the utilized computer. If more resources or a parallel architecture are available the
model could be tested with more complexity and the sequence approach, being also
computationally expensive, could be implemented and analyzed. Even though the
obtained results were not as good as expected, the model should not be neglected
in future studies since it offers the possibility of sequence processing while requiring
fewer training data than deep neural networks.
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