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ABSTRACT 

DNS security Extensions (DNSSEC) adds cryptographic signatures to 
DNS. The most popular cryptographic signature algorithm in DNSSEC 
is RSA as of June 2017. Using RSA could cause problems due to the 
relatively large key sizes that are required, such as packet 
fragmentation and DNSSEC servers being turned into an amplification 
vector for distributed denial-of-service (DDoS) attacks, because of the 
large amount of information that is returned. 

Cryptographic signature schemes based on Elliptic Curve 
Cryptography (ECC) gained popularity in DNSSEC due to the smaller 
key sizes that are required to get a 128-bit security level compared to 
RSA. ECC's smaller keys and signatures promise to resolve the 
fragmentation and amplification issues mentioned before. 

As of June 2017, the most popular elliptic curve in DNSSEC is the 
NIST curve P-256. A newer elliptic curve algorithm, Ed25519, which 
uses a so-called Edwards curve has been standardized for use in 
DNSSEC in February 2017, citing security problems with the currently 
used elliptic curves as a motivation. Ed25519 can be seen as an 
alternative for P-256, because both have small key sizes and are at the 
~128-bit security level.  

While Ed25519 has promising properties for DNSSEC such as speed 
and security, it is unclear whether it should be preferred over P-256. 
Therefore, in this paper we study the question: Is it worth switching 
from using P-256 signatures to Ed25519 signatures in DNSSEC? 

In order to evaluate this, the security problems and the performance on 
a variety of hardware architectures that reflect common computing 
platforms, such as servers and small home routers were studied. 

Security concerns related to insecure implementations are already 
being addressed in modern implementations of P-256. A remaining 
security concern could be the trustworthiness of P-256. The 
performance of Ed25519 and P-256 were similar when comparing the 
fast assembly language implementation of P-256 and the reference 
implementation of Ed25519 that were available in OpenSSL as of June 
2017. For an optimal performance of Ed25519 fast assembly language 
implementations of Ed25519 are preferable however, which could then 
make the speed and trust aspects worth it to switch to Ed25519 if it 
becomes widely available. 
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1. INTRODUCTION 
DNS translates human readable domain names into machine readable 
information such as IP-addresses. DNSSEC adds signatures to DNS to 
provide authenticity and integrity.  
Van Rijswijk-Deij et al. found that DNSSEC could cause large DDoS 
amplification factors [1] and fragmentation [2] because of the large 
RSA key sizes that were required to provide a sufficient amount of 
security. Van Rijswijk-Deij et al. proposed to use Elliptic Curve 
Cryptography (ECC) instead, as ECC would be able to provide 
equivalent or better cryptographic security with smaller key sizes, 
which promise to resolve the fragmentation and amplification issues 
mentioned before. [3].   
 

 
Figure 1: DNSSEC stats for .com for 2017-06-15 [4]. 
 
There are different types of curves that can be used for Elliptic Curve 
Cryptography. This paper will only focus on two of them: The NIST P-
256 curve and the Ed25519 curve. The NIST P-256 curve is a so-called 
Weierstrass curve. Signature generation and signature validation using 
this curve are done with the Elliptic Curve Digital Signature Algorithm 
(ECDSA). The Ed25519 curve (formally called the “edwards25519 
curve” [5]) is a so-called twisted Edwards curve. Signature generation 
and signature validation using this curve are done with the Edwards-
curve Digital Signature Algorithm (EdDSA), which is a modified 
version of ECDSA. 
As shown in figure 1, P-256 is the most popular elliptic curve in 
DNSSEC as of June 2017. Ed25519 was standardized for use in 
DNSSEC through RFC8080 [6] in February 2017, citing security 
problems with the currently used elliptic curves such as P-256 as a 
motivation [7] [8].  
What makes Ed25519 comparable to P-256 is that they both have 
approximately the same security level and both have small key sizes. 
For P-256 the public key size is 64 bytes [9]  and for Ed25519 the 
public key size is 32 bytes [6]. 
Using ECC also requires extra load on the resolver in order to validate 
signatures. In 2016, Van Rijswijk-Deij et al. et al concluded that 
resolvers are able to handle the load that was required to validate ECC 
signatures on x86/x64, but also that Ed25519 was faster than ECDSA 
using curve P-256 for verifying signatures [10] and would therefore be 
able to reduce the load even more. 
In this work the benchmarks are done on other architectures as well. As 
DNSSEC software can be run on other architectures as well, such as an 
ARM based Raspberry Pi or a MIPS based OpenWrt home router. 
Which could then be used to replace a third-party DNSSEC-validating 
resolver that could block domains or monitor all the domains that are 
visited. 
Since signature generation speed is also important for DNSSEC servers 
that generate many signatures per second the performance of signature 
generation is also included. 
So while Ed25519 has promising properties for DNSSEC such as 
security and performance, it is unclear whether it should be preferred 
over P-256. 
The main research question studied in this paper therefore is: Is it 
worth switching from P-256 signatures to Ed25519 signatures in 
DNSSEC? 
 
 
 
 
 



The sub questions are: 
• Does Ed25519 offer better security than ECDSA P-256 and 

and are the differences relevant enough to prefer Ed25519 
signatures over P-256 signatures in DNSSEC?  

• How does the performance of ECDSA P-256 compare to 
Ed25519 on different hardware architectures?  

2. Related work 
2.1 Security 
Some work that is related to the security of ECDSA P-256 and 
Ed25519 has been done before. Nystrom [11] noted during a review of 
an early RFC8080 draft that there were no references or proof that 
Ed25519 would offer "improved security properties and 
implementation characteristics compared to RSA and ECDSA 
algorithms", which resulted this statement to be removed from 
RFC8080. There could be reasons to believe that Ed25519 would be 
more secure than ECDSA P-256 however. E.g. when checking Lange 
and Bernstein’s security checklist for elliptic curves in general called 
SafeCurves [12], it can be noticed that P-256 is considered to be 
unsafe, while Curve25519 (which is related to Ed25519) is considered 
to be safe. The relevance and impact of it to DNSSEC was not 
evaluated however. An ECDSA P-256 specific attack has been 
described as well. Brumley et al. [13] found that ECDSA P-256 in the 
latest version of OpenSSL 1.0.1 (which is OpenSSL 1.0.1u) is 
vulnerable to cache-timing attacks, allowing them to recover the 
private key for TLS and SSH. Which could be relevant for DNSSEC, 
as DNSSEC software can rely OpenSSL. Whereas implementations of 
Ed25519 could be protected against cache-timing attacks [14]. In this 
work the significance of these security problems and possible 
mitigations are evaluated for DNSSEC.  
2.2 Performance 
Some related benchmarks for Ed25519 and ECDSA P-256 
implementations have been done already. Existing benchmarks show 
that there are indeed performance differences between different 
implementations. For example: bench.cr.yp.to [15] lists benchmarking 
results for Ed25519 in SUPERCOP, which show that the optimized 
amd64-64-24k version of Ed25519 is on average approximately 2.5 as 
fast the ref10 reference implementation. There are also speed 
improvements for ECDSA P-256. The authors of the optimized 
NIZT256 implementation of ECDSA P-256 [16] claim that it can be 3 
times as fast as the non-optimized version, but did not compare it to 
Ed25519. Rijswijk et al. [10] benchmarked ECDSA P-256 and 
Ed25519 on an Intel processor and compared them, showing that 
Ed25519 in Ed25519-donna is approximately 1.4 times as fast as 
ECDSA P-256 in OpenSSL 1.0.2e on an Intel processor. While this 
work focuses on comparing several implementations of Ed25519 and 
ECDSA P-256 on x64, ARM and MIPS to reflect that DNSSEC 
software can be used on other architectures with other implementations 
of Ed25519 and ECDSA P-256 as well. 

3. Background information 
3.1 Signatures in DNSSEC 
DNSSEC is meant to improve the security of DNS by adding 
cryptographic signature to DNS, which add authenticity and integrity 
to DNS.As described in RFC6781 [17] the term ‘key’ is used loosely in 
DNSSEC, as the reader is expected to familiar with public key 
cryptography and understands that the private part of the key pair is 
used for signing and the public part of the key pair is published in the 
DNSKEY resource record. 
 
In a DNSSEC signed DNS zone there usually uses two types of keys: 
The Zone Signing Key (ZSK) and the Key Signing Key (KSK). The 
KSK is published in the DNSKEY resource record to serve as a trust 
anchor and signs the ZSK. The ZSK signs the other data in the zone. 
Instead of using two keys it is also possible to use one Combined 
Signing Key (CSK) that is published in the DNSKEY resource record 
and signs all the data in the zone.  

The popularity of the cryptographic algorithms for .COM are shown in 
figure 1. As can be seen from figure 1, P-256 is the most popular 
elliptic curve in DNSSEC as of June 2017. While RSA is the most 
popular algorithm for signatures. With SHA1 still being the most 
popular hash algorithm, despite that for SHA1 it has been shown that it 
is feasible to produce a hash collision in which 2 messages produce the 
same SHA1 hash by Stevens et al [18]. Practical hash collisions are 
undesired, as it could allow an attacker to generate a new message for 
which an earlier generated signature would be valid as well. 

3.2 Elliptic Curve Cryptography 
Elliptic Curve Cryptography is a form of public key cryptography from 
which the security relies on the Elliptic Curve Discrete Logarithm 
Problem (ECDLP). The Elliptic Curve Discrete Logarithm Problem is 
that when given a base point P and another point on the curve Q, which 
represents the public key, it is hard to find the multiplicand d, which is 
the secret key, such that Q =dP.  
The approximately 128-bit security level of Ed25519 and P-256 is 
referring to the approximately 2"#$ mathematical operations that are 
required to solve the Elliptic Curve Discrete Logarithm problem using 
the state-of-the-art Pollard's rho method [12]. Doing approximately 
2"#$ operations in a reasonable amount of time is considered to be 
infeasible however.  
That the Elliptic Curve Discrete Logarithm Problem is hard to solve is 
important for ECC-based signature systems to prevent attackers from 
recovering the private key by solving the Elliptic Curve Discrete 
Logarithm Problem. Recovering the private key would allow an 
attacker to forge signatures, which would break the security that a 
signature system is intended to offer. 
Signature algorithms are required to generate and verify DNSSEC 
signatures. ECDSA (Elliptic Curve Digital Signature Algorithm) [19] 
and EdDSA (Edwards-curve Digital Signature Algorithm) use elliptic 
curves for ‘elliptic curve point multiplications’ (also known as ‘scalar 
multiplications’). Which is an operation that is required for key pair 
generation, signature generation and signature verification.  
The two signature algorithms mentioned above can be implemented on 
different curves. In this paper, we look at ECDSA using the NIST P-
256 curve. This curve is a so-called Weierstrass curve, which is the 
classical form for elliptic curves. 
We also look at EdDSA. Ed25519 is an instance of EdDSA that is 
instantiated with the ‘edwards25519’ parameters [5].  Ed25519 
signatures use a twisted Edwards curve, because of the speed 
improvements when using twisted Edwards curves [14].  
This twisted Edwards curve can be transformed into Curve25519 by 
using a substitution and transformed back by using another 
substitution, which makes it birationally equivalent to Curve25519 
[20]. This makes it just as hard to solve the Elliptic Curve Discrete 
Logarithm Problem on this curve as on Curve25519. [14] 
Curve25519 is a so-called Montgomery curve. The Elliptic Curve 
Diffie–Hellman (ECDH) key exchange function that is using 
Curve25519 is referred to as X25519 [20]. Therefore, X25519 should 
not be confused with Ed25519. 

4. Methodology 
In this section the methodology to answer the research questions about 
security and performance are described. 
4.1 Security 
The security of elliptic curve cryptography is evaluated based on what 
has been described in the literature. After which potential security 
issues, their relevance to DNSSEC signatures and possible solutions 
are evaluated.  
4.2 Performance 
In order to generate and verify DNSSEC signatures DNSSEC software 
is used. Benchmarks are done to get an idea what the upper bound is of 
how many signatures and validations per second can be done to see if 
and how much speed improvements can be gained when switching 
from ECDSA P-256 to Ed25519 when assuming highly optimized 
DNSSEC software implementations in which the maximum speed of 



signing and validating primarily depends on the maximum speed of the 
signature algorithm itself and not on other kind of delays.  
Benchmarks are done on different hardware architectures (x64, ARM 
and MIPS) to reflect that DNSSEC software cannot only be used on 
x64 based devices, but also on ARM and MIPS based devices, such as 
routers. 
Different implementations of ECDSA P-256 and Ed25519 are 
benchmarked to reflect the popularity of the implementation and 
performance differences due to optimizations that are present in the 
implementations. E.g. benchmarks for Ed25519 and an optimized 
implementation of P-256 that is called NISTZ256 (also known as 
ecp_nistz256) [21] in OpenSSL are included, because there are popular 
DNSSEC software implementations (such as BIND) that use 
OpenSSL. 
For the benchmarking consecutives signature generations and signature 
verifications are done for 10 seconds after which the average amount 
of signatures/second and verifications/second are calculated first. This 
process is then repeated 100 times after which the mean and standard 
deviation over these 100 runs are calculated. 
5. Security 
In this section the results of the analysis of the security differences 
between ECDSA P-256 and Ed25519 are examined.  
This first parts focuses on ECDSA specific weaknesses, the second 
part focuses on the SafeCurve criteria and the third part focuses on a 
practical example in which a flaw in cryptographic implementations 
could lead to key compromise. 
5.1 ECDSA weaknesses 
A weakness of ECDSA is that it does not only requires the secret key 
to be secret. In the signing process, ECDSA also uses a nonce, called 
'k'. This nonce needs to remain a secret as well. As when this nonce is 
known the private key can be derived and signatures can be forged.  
Information about the secret nonce can be leaked because of unreliable 
random number generators and timing attacks. These issues are 
discussed in the next subsections of the paper. 
5.1.1 Unreliable random number generators 
When the same nonce is used for two different messages, the nonce 
can be derived [22]. After which the secret key can be derived. In order 
to avoid this, ECDSA has traditionally been using randomly generated 
nonces, but when the random number generator that is used to generate 
the random nonce would generate the same number twice, you could 
get two different messages with the same nonce and the same problem 
occurs. If you can guess the nonce value correctly, you could derive the 
private key as well. 
In order to avoid this problem, several solutions have been proposed 
based on the idea of that you can get a unique identifier for each 
message that is also hard to predict, by hashing the private key 
concatenated with the message. In which including the message as an 
input is intended to make the output different for each message and 
including the private key as input is intended to make the output hard 
to predict when you don’t know the private key.  
Variations of this idea have been used in deterministic ECDSA [23], 
EdDSA (including Ed25519) [17] and an OpenSSL patch  in 2013 by 
Langley [24], but they all have to same goal, which is to avoid that you 
get predictable nonces or even the same nonce for two different 
messages, when you have a predictable random number generator.  
5.1.2 Timing attacks 
When a few bits of the nonce are known for several nonces, then the 
private key could be recovered through lattice techniques [25] [26]. 
Information about a few bits of the nonces could not only be obtained 
when a predictable random number generator is used to generate the 
nonces, but also by measuring the time an operation takes if the 
execution time is not constant [27]. Such attacks are called timing 
attacks. Timing attacks can be prevented by using constant-time 
implementations. A constant-time implementation would run 
operations that depend on secret data in a constant amount of time and 
avoids conditional branches that depend on secret data, memory access 

patterns that depend on secret data or operations that depend on secret 
data that have a variable execution time. [28] This will be described in 
more detail in the next subsections. 
5.1.2.1 Conditional branches 
A conditional branch (e.g. if-then-else statements, for and while loops) 
directs a program to to a new memory address if a certain condition is 
true. Conditional branches that could give away secret information 
must be avoided. 
An example of such a conditional branch is described by Brumley and 
Tuveri [27] in which there was an optimization that allowed the 
leading bits of the nonce that were zero to be skipped, which caused 
the scalar multiplications that are required for ECDSA signing 
operations to be faster for small nonce values than for large nonce 
values. In which case it can be assumed that the fastest responses for 
signing operations use nonces with small values which have a certain 
amount of leading bits that are zero. After many signing operations 
several of these signatures with fast response times can be collected. 
From which it is known that nonces some leading bits that are zero 
were used, because they resulted into fast scalar multiplications and 
therefore fast responses. Which allows the private key to be recovered 
through lattice techniques. 
Note that for generating the signature not only a scalar multiplication 
with the secret nonce has to be calculated, but also the inverse of the 
secret nonce (𝑘&"). When either of them has conditional branches, 
memory access patterns that depend on the secret nonce or operations 
that are not constant-time, information could be leaked about the secret 
nonce. [13] [29] 
5.1.2.2 Cache timing attacks 
Processor caches are intended to provide faster access to information 
that was accessed before by storing information in the cache. This 
could allow a cache-timing attack in which a spy process (that could be 
in a virtual machine) on the same physical computer as the victim 
checks if some information was accessed before or not by the victim by 
measuring the time it takes to access the information. When specific 
information is accessed or not depending on the value of the secret 
nonce, you have a memory access pattern that depends on the secret 
nonce and information could be obtained by the spy process about 
some bits of the nonce by checking if that information is in the cache 
or not. When several bits of the nonces for several nonces are obtained 
the private key can be recovered through lattice techniques. 
Solutions have been proposed to always load in more information in 
the cache than is directly needed and use arithmetic to select the right 
information, so an attacker can’t tell if the information was directly 
used or not by what is stored in the cache.  
Constant-time solutions to prevent such timing attacks have been 
available in several Ed25519 [14] implementations and the NISTZ256 
[21] implementation of P-256 in OpenSSL 1.0.2, 1.1.0 and higher that 
is based on the work of Gueron and Krasnov [29].   
5.2 SafeCurves 
In 2013 Bernstein and Lange started a website called SafeCurves that 
lists criteria for a structured analysis of the security of different elliptic 
curves. In this section, it is evaluated how ECDSA P-256 and Ed25519 
compare, based on these criteria. The focus is on how any of the 
described security problems are, or are not relevant in the context of 
DNSSEC. 
When ECDSA P-256 and Ed25519 are evaluated according to the 
SafeCurves criteria, it can be observed that Curve25519 passes all the 
criteria. This result is applicable to Ed25519 as well, because the used 
curve is equivalent to Curve25519. 
P-256, however, does not pass all criteria. In particular, the following 
four criteria:  

1. Rigidity: Which is about trust in the curve parameters.  
2. Completeness: Which is about the completeness of the 

addition formulas   
3. Indistinguishability: Which is about a way to to encode a 

point on the curve as a uniform random string.  



4. Ladders: Which is referring to a way in which scalar 
multiplications on an elliptic curve could be calculated.  

So these four criteria are evaluated for their relevance. 
5.2.1 Rigidity 
Some trust the curve parameters of Curve25519 more than the curve 
parameters of NIST P-256, because there’s a better explanation of how 
the exact values that are used are chosen [12].   
One reason why people are concerned with parameters could be 
because of DUAL_EC_DRBG [30]. DUAL_EC_DRBG was a 
random-looking number generator that was  using elliptic curve 
cryptography for which the parameters can be been chosen in such a 
way that would allow an attacker with the correct private key predict 
the subsequent outputs of the random-looking number generator 
correctly after observing an output [30].  
The argumentation for the Curve25519 parameter choices include 
small values and efficiency at a “comfortable security level” [12].  
Coefficients of NIST P-256 are generated by hashing the seed 
“c49d3608 86e70493 6a6678e1 139d26b7 819f7e90” without an 
explanation on why this seed was chosen. Which led to speculation on 
if P-256 curve would be vulnerable to a secret attack that applies to a 
for example one in a billion curves or not [12].  
If this is really an issue, this would imply that there is an extremely 
large group of weak curves, which would be unlikely to remain 
undiscovered by other researchers as well [31].  The relevance of 
rigidity to DNSSEC would be that some users might feel more 
comfortable with curves they feel that are more trustworthy and could 
prefer them for this reason. 
5.2.2 Completeness 
Elliptic curve cryptography relies on elliptic curve point 
multiplications. These elliptic curve point multiplications can then be 
expressed as elliptic curve point additions. An elliptic curve point 
addition is an operation to add two points on an elliptic curve. In order 
to calculate the results of these additions so-called addition formulas 
are used. 
Completeness is referring to complete addition formulas. A complete 
addition formula means that the same formula can be used to add any 
two points on the curve without exceptions for if the input points are 
equal, opposite or at the neutral element. 
There is a complete addition formula for Edwards curves [32]. Which 
could make it easier for ECC algorithm implementers to make a correct 
implementation. When not all the exceptional cases are implemented 
correctly, it can lead to incorrect results (such as division by zero 
errors). 
There are also complete addition formulas for Weierstrass curves such 
as P-256 [33] [34], but these formulas incur a performance penalty. 
When no complete addition formulas are used, ECC algorithm 
implementers would have to check carefully if every exceptional case 
is implemented correctly and correct it if that would not be the case. 
On the Safecurves page on completeness, Izo and Takagi's 
“exceptional procedure attack” [35] is described. This “exceptional 
procedure attack” could cause leakage of information about the private 
key when the exceptional cases are not implemented correctly. As Izo 
and Takagi already have concluded, this attack is “not relevant to 
ECDSA because the base point of ECDSA is usually fixed as the 
system parameter”. The reason the base point is considered to be fixed 
for standardized curves is that the basepoint that must be used is the 
one that is defined in the standard documents. Therefore, this does not 
apply to DNSSEC. 
5.2.3 Indistinguishability 
Elliptic curve points that are indistinguishable from a uniform random 
string is not a property that is needed for signatures in DNSSEC and 
therefore irrelevant. It is relevant in, for example, key exchange 
protocols that want the transmitted content, including the key exchange 
itself, to be indistinguishable from random data for eavesdroppers to 
bypass censorship.  

5.2.4 Ladders 
Lange and Bernstein recommend ladders for calculating constant time 
scalar multiplications. Which is a recommendation for people who 
implement ECC algorithms. For end-users the important part here is 
constant time operations are used for signing operations. Since non-
constant time operations could give an attacker information (hints) that 
could be used to recover the private key that is used, as discussed in 
section 5.1.2.  
Examples of DNSSEC implementations that support online/on-demand 
signing are PowerDNS and Cloudflare’s DNSSEC implementation. 
Timing attacks could be relevant for DNSSEC signers when online/on-
demand signing is supported when the signing operations are not 
constant-time operations. For signature validation on resolvers this 
would not be a relevant property however, as no secret keys are 
processed during validation. 
5.3 Cache timing attack example 
Implementing constant-time code is hard. Even when the elliptic curve 
point multiplication itself is implemented in constant time, there could 
be other operations that could leak timing information that could lead 
to the compromise of the private key that is used. In this section a 
practical example of what else could go wrong is illustrated. 
Garcia and Brumley [13] discovered in December 2016 that P-256 was 
vulnerable to cache timing attacks in OpenSSL 1.0.1u, despite that it 
featured code for constant time scalar multiplications and nonce 
inversions that were required to generate signatures. The reason that is 
was vulnerable to cache timing attack was because the nonce inversion 
(𝑘&")  operation was not set to be a constant time operation by default. 
Conditional branches were used in order to calculate the nonce 
inversion using the Binary Extended Euclidean Algorithm (BEEA) 
[36], which resulted into different information being loaded into the 
cache when doing the right-shift operations than the subtraction 
operations, that were needed to calculate the nonce inversion using the 
BEEA. This made the nonce inversion vulnerable to cache timing 
attacks in which these operations can be observed by checking if 
certain information is in the cache or not.  
By using the FLUSH+RELOAD [37] cache timing attack technique 
they could observe these right-shift and subtraction operations and 
therefore recover bits of several nonces for the signatures that were 
generated, which allowed them to recover the private key that was used 
to generate these signatures by using lattice techniques. 
The relevance for DNSSEC would be that DNS server software that 
support DNSSEC are using software libraries such as OpenSSL and 
could be vulnerable to such an attack as well when a vulnerable version 
of OpenSSL is used.  
By DNSSEC querying random non-existing subdomains, responses 
including new signatures could be generated for each subdomain for 
the authenticated denial of existence feature in DNSSEC, when the 
online-signer feature is enabled.  
When the signature generation is not constant time such a timing attack 
could be used to recover the private key. After recovering the secret 
key it would be possible to forge signatures, which could compromise 
the security that is offered by DNSSEC for a DNS zone. 
This nonce inversion method is replaced by a constant-time nonce 
inversion method that does not have this problem in OpenSSL 1.0.2, 
1.1.0 and higher. The C and assembly implementations of Ed25519 are 
designed to be constant-time and resistant to cache timing attacks [14] 
and there have not been any successful timing attack against Ed25519 
so far. 
So recommended is to either use a modernized implementation of 
ECDSA P-256 that is resistant against timing attacks and can generate 
unique and hard to predict nonces for each unique message or an 
Ed25519 implementation that is designed from the ground up to offer 
such protection, if that would be preferable (e.g. due to trust issues 
with P-256). The use of outdated and broken implementations of 
ECDSA P-256 are not recommended however. 

 



6. Performance 
The second part of the results concerns the second research question: How does the performance of ECDSA P-256 compare to Ed25519 on different 
hardware architectures? 
Benchmarks have been done on an Intel and ARM processor to represent Intel and ARM based servers and an MIPS processor to represent a MIPS 
based home router. Some implementations include fast assembly language implementations of Ed25519 or ECDSA P-256 for a processor 
architecture that is used. These fast assembly language implementations are referred to as optimized implementation in this section. 
ECDSA P-256 in different versions of OpenSSL are benchmarked. OpenSSL 0.9.8 is taken as the legacy version, 1.0.1 as the non-optimized version, 
1.0.2 as the version that includes the optimized NISTZ256 (also known as ecp_nistz256) implementation of P-256 for x86/x64 and 1.1.0 as the latest 
stable release branch that also includes the optimized NISTZ256 implementation of P-256 for ARM. 
The Ed25519 implementations in Libsodium, OpenSSL and ed25519-donna have been benchmarked. The motivation for including Libsodium and 
OpenSSL is that they are popular cryptographic libraries that work well on multiple architectures. The motivation for including ed25519-donna is 
that it is optimized for x64. Note that Ed25519 has been integrated into OpenSSL 1.1.1-dev since commit 04dec1a from 25 May 2017, 15:53 CEST 
[38] . This version is based on the ref10 reference implementation and it expected to perform worse than an optimized implementation of Ed25519, 
but it makes sense to include it, because implementers could choose to only use OpenSSL, in which case they would get an optimized ECDSA P-256 
implementation, but a non-optimized Ed25519 implementation at the moment. A good reason to only use OpenSSL is to reduce the number of 
dependencies for a software package and because OpenSSL is widely available on many platforms. 
For the MIPS processor, OpenSSL 1.1.x was not available for OpenWrt at the time of doing the benchmarks on the OpenWrt router, which why these 
versions have been of OpenSSL have been excluded. The other implementations have been cross-compiled using the OpenWrt SDK [39] in order to 
run them on OpenWrt. 
Note that the speed is not only varying because of optimizations through several versions of OpenSSL, but also because of bug fixes and other 
(minor) changes that could affect the speed. 
 

6.1 Intel 
Benchmarking results on the Intel Xeon E3-12xx V2 @2.4Ghz for signature verification and signature generation have been shown in table 1V and 
1S and the speed improvements for Ed25519 are shown in table 1CV and 1CS. 

6.1.1 Intel: Verifying 
Table 1V: Verifications/second of P-256 and Ed25519 on a 2.4Ghz Intel Xeon E3-12xx v2 (Ivy Bridge) running Ubuntu 16.04.4 LTS 

 P-256 in 
OpenSSL 0.98x 

P-256 in 
OpenSSL 1.0.1f 

P-256 in 
OpenSSL 1.0.2e 

P-256 in 
OpenSSL 1.1.0f 

Ed25519 in 
ed25519-donna 

Ed25519 in 
Libsodium 

1.0.12 

Ed25519 in 
OpenSSL 1.1.1-

dev 
Verifications/ 

second 1968.6 1944.0 6579.4 6345.8 12345.0 5502.3 6043.9 

Standard 
deviation 28.6 31.0 78.1 83.8 139.1 16.3 43.1 

 
Table 1CV: Signature verification speed improvement of Ed25519 compared to P-256 on a 2.4Ghz Intel Xeon E3-12xx v2 (Ivy Bridge) running Ubuntu 16.04.4 
LTS 

Signature verification speed 
improvements for Ed25519 

Ed25519 in ed25519-donna 
(=optimized for x86/x64) Ed25519 in Libsodium 1.0.12 Ed25519 in OpenSSL 1.1.1-dev 

P-256 in OpenSSL 0.98x ~6.3X ~2.8X ~3.1X 

P-256 in OpenSSL 1.0.1f ~6.4X ~2.8X ~3.1X 

P-256 in OpenSSL 1.0.2e  

(=optimized for x86/x64) 
~1.9X ~0.8X ~0.9X 

P-256 in OpenSSL 1.1.0f  

(=optimized for x86/x64) 
~1.9X ~0.9X ~1X 

 

As shown in table 1CV, Ed25519 verifies signatures faster when comparing the non-optimized versions of Ed25519 to the non-optimized versions of 
P-256. E.g. the non-optimized version of Ed25519 in OpenSSL 1.1.1-dev is ~3.1X as fast as the non-optimized version of P-256 in OpenSSL 1.0.1f. 
Ed25519 is also faster when comparing the optimized version of Ed25519 to the optimized version of P-256. E.g. Ed25519 in ed25519-donna is 
~1.9X as fast as P-256 in OpenSSL 1.1.0f. When comparing the non-optimized version of Ed25519 to an optimized version of P-256 in OpenSSL the 
signature verification speeds are similar to each other. As explained before, such a comparison would make sense, considering that DNSSEC 
software could rely on cryptographic implementations that are available in OpenSSL. 

6.1.2 Intel: Signing 
Table 1S: Signatures/second of P-256 and Ed25519 on a 2.4Mhz Intel Xeon E3-12xx v2 (Ivy Bridge) running Ubuntu 16.04.4 LTS 

 
P-256 in 

OpenSSL 
0.98x 

P-256 in 
OpenSSL 

1.0.1f 

P-256 in 
OpenSSL 

1.0.2e 

P-256 in 
OpenSSL 1.1.0f 

Ed25519 in 
ed25519-donna 

Ed25519 in 
Libsodium 1.0.12 

Ed25519 in OpenSSL 
1.1.1-dev 

Signatures/second 7720.2 7329.9 15909.8 14905.0 40872.0 14463.6 20123.2 

Standard 
deviation 57.0 71.7 361.3 556.2 294.2 237.9 146.7 

 



Table 1CS: Signature generation speed improvement of Ed25519 compared to P-256 on a 2.4Ghz Intel Xeon E3-12xx v2 (Ivy Bridge) running Ubuntu 16.04.4 
LTS 

Signature generation speed 
improvements for Ed25519 

Ed25519 in ed25519-donna 
(=optimized for x86/x64) Ed25519 in Libsodium 1.0.12 Ed25519 in OpenSSL 1.1.1-dev  

P-256 in OpenSSL 0.98x ~5.3X ~1.9X ~2.6X 

P-256 in OpenSSL 1.0.1f ~5.6X ~2.0X ~2.7X 

P-256 in OpenSSL 1.0.2e  

(=optimized for x86/x64) 
~2.6X ~0.9X ~1.3X 

P-256 in OpenSSL 1.1.0f 

 (=optimized for x86/x64) 
~2.7X ~1X ~1.4X 

 

As shown in table 1CS, the non-optimized versions of Ed25519 generates signatures faster than the non-optimized versions of P-256. E.g. the non-
optimized version of Ed25519 in OpenSSL 1.1.1-dev is ~2.7X as fast as the non-optimized version of P-256 in OpenSSL 1.0.1f.  Ed25519 is also 
faster when comparing the optimized version of Ed25519 to the optimized version of P-256. E.g. Ed25519 in ed25519-donna is ~2.7X as fast as P-
256 in OpenSSL 1.1.0f. When comparing the non-optimized version of Ed25519 to an optimized version of P-256 the performance is similar to each 
other. In which the OpenSSL implementation of Ed25519 is slightly faster. 

6.2 ARM 
Benchmarking results on the ARM Cortex A-53@1.2Ghz have been shown in table 2V and 2S and the speed improvements for Ed25519 are shown 
in table 2CV and 2CS. Note that there was no implementation for Ed25519 available that specifically optimizes for ARM at the time of these 
benchmarks. 

6.2.1 ARM: Verifying 
Table 2V: Verifications/second of P-256 and Ed25519 on a 1.2GHz ARM Cortex A-53 running Ubuntu MATE 16.04.4 LTS 

 
P-256 in 

OpenSSL 
0.98x 

P-256 in 
OpenSSL 

1.0.1f 

P-256 in 
OpenSSL 

1.0.2e 

P-256 in OpenSSL 
1.1.0f  

Ed25519 in 
ed25519-donna 

Ed25519 in 
Libsodium 1.0.12 

Ed25519 in OpenSSL 
1.1.1-dev 

Verifications 
/second 130.5 221.2 272.5 752.9 695.0 531.9 556.4 

Standard 
deviation 14.6 21.5 35.7 66.2 44.3 33.1 30.7 

 

Table 2CV: Signature verification speed improvement of Ed25519 compared to P-256 on a 1.2GHz ARM Cortex A-53 running Ubuntu MATE 16.04.4 LTS 

Signature verification speed 
improvements for Ed25519 Ed25519 in ed25519-donna Ed25519 in Libsodium 1.0.12 Ed25519 in OpenSSL 1.1.1-dev 

P-256 in OpenSSL 0.98x ~5.3X ~4.1X ~4.3X 

P-256 in OpenSSL 1.0.1f ~3.1X ~2.4X ~2.5X 

P-256 in OpenSSL 1.0.2e ~2.6X ~2.0X ~2.0X 

P-256 in OpenSSL 1.1.0f 

 (=optimized for ARM) 
~0.9X ~0.7X ~0.7X 

As shown in table 2CV, the 3 Ed25519 implementations have faster signature validations than to the non-optimized version of P-256 in OpenSSL 
0.9.8x,1.0.1f and 1.0.2e, but they have a comparable or slightly lower signature verification speed than the optimized P-256 implementation in 
OpenSSL 1.1.0f 

6.2.2 ARM: Signing 
Table 2S: Signatures/second of P-256 and Ed25519 on a Cortex A-53 of a Raspberry Pi 3 

 
P-256 in 

OpenSSL 
0.98x 

P-256 in 
OpenSSL 

1.0.1f 

P-256 in 
OpenSSL 

1.0.2e 

P-256 in 
OpenSSL 1.1.0f 

Ed25519 in 
ed25519-donna 

Ed25519 in 
Libsodium 1.0.12 

Ed25519 in OpenSSL 
1.1.1-dev 

Signatures/ 
second 660.8 988.1 1077.1 1927.2 2179.8 1444.7 1730.8 

Standard 
deviation 56.0 109.1 131.0 159.8 144.6 81.9 105.2 

 

  



 

Table 2CS: Signature generation speed improvement of Ed25519 compared to P-256 on a 1.2GHz ARM Cortex A-53 running Ubuntu MATE 16.04.4 LTS 

Signature generation speed 
improvements for Ed25519 Ed25519 in ed25519-donna Ed25519 in Libsodium 1.0.12 Ed25519 in OpenSSL 1.1.1-dev 

P-256 in OpenSSL 0.98x ~3.3X ~2.2X ~2.6X 

P-256 in OpenSSL 1.0.1f ~2.2X ~1.5X ~1.8X 

P-256 in OpenSSL 1.0.2e ~2.0X ~1.3X ~1.6X 

P-256 in OpenSSL 1.1.0f  

(=optimized for ARM) 
~1.1X ~0.7X ~0.9X 

 

As shown in table 2CS, the 3 Ed25519 implementations have faster signature generation speed than to the non-optimized version of P-256 in 
OpenSSL 0.9.8x,1.0.1f and 1.0.2e, but they have a comparable or slightly lower signature generation speed than the optimized P-256 implementation 
in OpenSSL 1.1.0f. 

6.3 MIPS 
6.3.1 MIPS: Verifying 
Table 3V: Verifications/second of P-256 and Ed25519 on a 0.4 Ghz MIPS AR9331 running OpenWrt 15.05.1 

 P-256 in OpenSSL 
0.98x 

P-256 in OpenSSL 
1.0.1f 

P-256 in 
OpenSSL 1.0.2e 

Ed25519 in ed25519-
donna Ed25519 in Libsodium 1.0.12 

Verifications /second 17.0 31.4 35.0 66.5 239.5 

Standard deviation 0.2 1.0 0.7 0.5 3.1 

 

Table 3CV: Signature verification speed improvement of Ed25519 compared to P-256 on a 0.4 Ghz MIPS AR9331 running OpenWrt 15.05.1 

Signature verification speed improvements for 
Ed25519 Ed25519 in ed25519-donna Ed25519 in Libsodium 1.0.12 

P-256 in OpenSSL 0.98x ~3.9X ~14.1X 

P-256 in OpenSSL 1.0.1f ~2.1X ~7.6X 

P-256 in OpenSSL 1.0.2e ~1.9X ~6.8X 

 

As shown in table 3CV, Ed25519 has a higher signature verification speed than P-256 in OpenSSL. Verifications for Ed25519 in ed25519-donna 
were ~1.9 times as fast verifications for P-256 in OpenSSL 1.0.2e. Libsodium was several times faster. Verifications for Ed25519 in Libsodium 
1.0.12 were ~6.8 times as fast verifications for P-256 in OpenSSL 1.0.2e 

6.3.2 MIPS: Signing 
Table 3S: Signatures/second of P-256 and Ed25519 on a 0.4 Ghz MIPS AR9331 running OpenWrt 15.05.1 

 P-256 in OpenSSL 
0.98x 

P-256 in OpenSSL 
1.0.1f 

P-256 in 
OpenSSL 1.0.2e 

Ed25519 in ed25519-
donna Ed25519 in Libsodium 1.0.12 

Verifications /second 83.9 153.4 137.2 198.6 508.7 

Standard deviation 0.6 2.8 1.0 12.2 13.4 

 

Table 3CS: Signature generation speed improvement of Ed25519 compared to P-256 on a 0.4 Ghz MIPS AR9331 running OpenWrt 15.05.1 

Signature generation speed improvements for Ed25519 Ed25519 in ed25519-donna Ed25519 in Libsodium 1.0.12 

P-256 in OpenSSL 0.98x ~2.4X ~6.1X 

P-256 in OpenSSL 1.0.1f ~1.3X ~3.3X 

P-256 in OpenSSL 1.0.2e ~1.4X ~3.7X 

 

As shown in table 3CS, Ed25519 is performing better than P-256 in OpenSSL. Signature generations for Ed25519 in ed25519-donna were ~1.4 times 
as fast verifications for P-256 in OpenSSL 1.0.2e. Libsodium was several times faster. Verifications for Ed25519 in Libsodium 1.0.12 were ~3.7 
times as fast verifications for P-256 in OpenSSL 1.0.2e 
 
 
 
 
 



 

7. Discussion 
This section reflects on the research results and revisits the research 
questions. 

7.1 Is it worth switching from Ed25519 signatures to P-256 
signatures in DNSSEC? 
This would depend on the case, as explained in the following 
subsections. 

7.1.1 In order to completely switch from ECDSA P-256 to 
Ed25519 in DNSSEC signed zones in June 2017? 
No, there is not enough support for Ed25519 on resolvers. This would 
be a disadvantage, as without wide support, you would lose the 
security advantages DNSSEC provides. The improvements in speed 
and security that are made to modern implementations of ECDSA P-
256 also make that there is less urgency to switch to a new signature 
algorithm. OpenSSL 1.0.2, 1.1.x or higher are recommended for 
ECDSA P-256, because it is featuring faster and secure constant-time 
implementations of ECDSA P-256. OpenSSL 1.0.1 and lower would 
not be recommended for ECDSA P-256, as these versions are slower, 
no longer supported and potentially insecure. Another thing that has to 
be considered is the costs of switching compared to the small amount 
of improvements of Ed25519 compared to modern implementations of 
ECDSA P-256. 
7.1.2 If you have some domains to experiment with and want to 
try the latest algorithms in DNSSEC? 
Yes, the standardization of Ed25519 in DNSSEC is a good opportunity 
for early adopters to experiment with Ed25519 in DNSSEC. 
7.1.3 If the optimized versions of Ed25519 would be become 
widely supported everywhere soon? 
Then Ed25519 could be a good alternative to ECDSA P-256, because 
of the design, speed and reputation.  
The design could make people worry less about potential bugs in some 
implementations and allows smaller public key sizes than ECDSA P-
256, which could further reduce the bandwidth requirements for 
DNSSEC (i.e. communicating the public key in DNSKEY records 
would require half the size of a ECDSA P-256 key). Improved 
signature generation speed and signature validation speed have as 
benefit that they could reduce the server load. Ed25519 has as extra 
benefit that it does not have the same reputation issues that other 
algorithms in DNSSEC face, such as causing DDoS attacks or 
potentially being back doored or causing security issues, which could 
convince more people to implement DNSSEC who currently are not 
implementing DNSSEC.  
7.2 Does Ed25519 offer better security than ECDSA P-256 
and and are the differences relevant enough to prefer 
Ed25519 signatures over P-256 signatures in DNSSEC? 
In some cases, yes. For example, in case of the cache timing attack bug 
for ECDSA P-256 that could lead to key compromise. 
In some other cases it still has not been shown that the attacks would 
be feasible for ECC signatures, but using Ed25519 could give people 
less to worry about. 
Ed25519 has a design that provides more resistance against hash 
collisions, which is a conservative design that could have benefits in 
the long term. But currently there’s no need to worry about hash 
collisions for the SHA256 hash that is used for ECDSA P-256 in 
DNSSEC either.  

There are improvements security of ECDSA P-256 as well, such as 
faster and constant-time implementations to prevent timing attacks in 
which case it could even be argued that is just as secure as Ed25519.  

For NISTZ256 it should also be noted that for early versions of 
NISTZ256 in OpenSSL there were some bugs [40] [41] that could 
cause incorrect results in some exceptional cases. These bugs have  

 
 

been fixed later, so upgrading to the latest version of OpenSSL is 
recommended.  
There could still be undiscovered bugs however, but this should be 
manageable, considering that there could also be many other bugs that 
are not cryptography related that could be much easier to exploit by 
hackers. 

Summarizing, there is no definitive answer on whether Ed25519 is 
more secure than ECDSA P-256 or not, as it would depend on the 
implementation and on how much you trust the curves. 

7.3 How does the performance of ECDSA P-256 compare 
to Ed25519 on different hardware architectures? 
On the Intel processor the fastest implementation of Ed25519 that was 
benchmarked was 2 times as fast as the fastest implementation that was 
benchmarked for ECDSA P-256 for signature generation and 
validation, so there would be a speed benefit of using Ed25519 over 
ECDSA P-256. On the ARM processor the fastest implementation of 
ECDSA P-256 had approximately the same speed as the fastest 
implementation of Ed25519. In this case it also be noted that there was 
no optimized ARM version of Ed25519 available at the time of the 
benchmarking. In which case there would not be a speed benefit of 
using Ed25519 over ECDSA P-256.  
The optimized implementations of Ed25519 have not been available 
everywhere. Libsodium 1.0.12 and OpenSSL 1.1.1-dev 
implementations of Ed25519 that were benchmarked still used the 
reference implementation that had approximately the same 
performance as the optimized version of ECDSA P-256 on the Intel 
and ARM processor. 

It is currently uncertain how widely available the optimized version of 
Ed25519 will become. 

Further improvements in the speed of ECDSA P-256 might be possible 
as well. A NIST sponsored project [42] suggests that it would be 
possible to make signature verification for ECDSA P-256 even faster 
than the NISTZ256 implementation when using a variable time 
implementation. The argumentation that was given for this was that no 
secret information was processed during signature validation and 
therefore no protection against timing attacks would be needed. It was 
not possible to verify this claim about the performance improvements 
however, as the implementation was not publicly available. 
Benchmarks were also done on a MIPS processor. On the MIPS 
processor the fastest implementation of Ed25519 was ~6.8X as fast for 
verifying signatures and ~3.7X as fast for generating signatures as the 
fastest implementation of ECDSA P-256 that was benchmarked. 
Which would make Ed25519 preferable over ECDSA P-256.  

8. Conclusion 
The goal was to investigate if it is worth switching from P-256 
signatures to Ed25519 signatures in DNSSEC for security and 
performance reasons. 

Several security concerns for ECDSA P-256 have already been 
addressed in modern implementations of ECDSA P-256, which makes 
that there’s less urgency for a new signature algorithm, while the 
concern on whether the NIST curves are trustworthy remains. In the 
benchmarks that were done the optimized implementations of Ed25519 
were faster than the optimized and non-optimized versions of ECDSA 
P-256, but the performance of the non-optimized version of Ed25519 
that is still used in some implementations was neck and neck with the 
optimized version of P-256. If optimized versions Ed25519 would be 
widely available for DNSSEC soon, then it could be a good alternative 
for ECDSA P-256. As it would improve upon speed compared to 
currently available open source implementations of ECDSA P-256 
without compromising on security. 
 



 

9. Bibliography 
 

[1]  R. v. Rijswijk-Deij, A. Sperotto and A. Pras, "DNSSEC and its potential for DDoS attacks: a comprehensive measurement 
study," in Proceedings of the 2014 Conference on Internet Measurement Conference, 2014.  

[2]  G. V. D. Broek, R. v. Rijswijk-Deij, A. Sperotto and A. Pras, "DNSSEC meets real world: dealing with unreachability 
caused by fragmentation," IEEE communications magazine, vol. 52, no. 4, pp. 154--160, 2014.  

[3]  R. v. Rijswijk-Deij, A. Sperotto and A. Pras, "Making the case for elliptic curves in DNSSEC," ACM SIGCOMM 
computer communication review, vol. 45, no. 5, pp. 13--19, 2015.  

[4]  R. v. Rijswijk-Deij, M. Jonker, A. Sperotto and A. Pras, "A High-Performance, Scalable Infrastructure for Large-Scale 
Active DNS Measurements," IEEE Journal on Selected Areas in Communications, vol. 34, no. 6, pp. 1877--1888, 2016.  

[5]  S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algorithm (EdDSA), RFC8032, 2017.  

[6]  O. Sury and R. Edmonds, Edwards-Curve Digital Signature Algorithm (EdDSA), RFC8080, 2017.  

[7]  O. Surý, New Curves in DNSSEC, 2016.  

[8]  D. J. Bernstein and T. Lange, "Security dangers of the NIST curves," in Invited talk, International State of the Art 
Cryptography Workshop, Athens, Greece, 2013.  

[9]  P. Hoffman and W. Wijngaards, Elliptic Curve Digital Signature Algorithm (DSA) for DNSSEC, RFC6605, 2012.  

[10]  R. v. Rijswijk-Deij, K. Hageman, A. Sperotto and A. Pras, "The Performance Impact of Elliptic Curve Cryptography on 
DNSSEC Validation," IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 738-750, April 2017.  

[11]  M. Nystrom, "Last Call Review of draft-ietf-curdle-dnskey-eddsa-02," 15 06 2017. [Online]. Available: 
https://datatracker.ietf.org/doc/review-ietf-curdle-dnskey-eddsa-02-secdir-lc-nystrom-2016-12-15/. 

[12]  D. J. Bernstein and T. Lange, "SafeCurves: choosing safe curves for elliptic-curve cryptography.," [Online]. Available: 
https://safecurves.cr.yp.to. [Accessed 01 06 2017]. 

[13]  C. P. Garcia and B. B. Brumley, "Constant-time callees with variable-time callers," 2016. 

[14]  D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y. Yang, "High-speed high-security signatures," Journal of 
Cryptographic Engineering, pp. 1--13, 2012.  

[15]  D. J. Bernstein and T. Lange, "eBACS: ECRYPT Benchmarking of Cryptographic Systems," [Online]. Available: 
https://bench.cr.yp.to. [Accessed 01 06 2017]. 

[16]  The OpenSSL Project Authors, "openssl/crypto/ec/asm/," [Online]. Available: 
https://github.com/openssl/openssl/tree/master/crypto/ec/asm. 

[17]  O. Kolkman, W. Mekking and R. Gieben, DNSSEC Operational Practices Version 2, RFC6781, 2012.  

[18]  M. Stevens, E. Bursztein, P. Karpman, A. Albertini and Y. Markov, "The first collision for full SHA-1.," IACR Cryptology 
ePrint Archive, vol. 2017, p. 190, 2017.  

[19]  D. Jonson, A. Menezes and S. Vanstone, "The elliptic curve digital signature algorithm (ECDSA)," International journal 
of information security, vol. 1, no. 1, pp. 36--63, 2001.  

[20]  D. J. Bernstein, "[Cfrg] 25519 naming," [Online]. Available: https://www.ietf.org/mail-
archive/web/cfrg/current/msg04996.html. [Accessed 3 06 2017]. 

[21]  S. Gueron, "#3149: [patch] Fast and side channel protected implementation of the NIST P-256 Elliptic Curve, for x86-64 
platforms," 22 10 2013. [Online]. Available: https://rt.openssl.org/Ticket/Display.html?id=3149. [Accessed 01 06 2017]. 

[22]  H. Cantero, S. Peter and S. Bushing, "Console Hacking 2010--PS3 Epic Fail," 27th Chaos Communication Congress 
(December 2010), 2010.  

[23]  T. Pornin, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm 
(ECDSA), RFC6979, 2013.  

[24]  A. Langley, "Make `safe' (EC)DSA nonces the default.," 13 07 2013. [Online]. Available: 
https://github.com/openssl/openssl/commit/190c615d4398cc6c8b61eb7881d7409314529a75. [Accessed 10 06 2017]. 

[25]  N. A. Howgrave-Graham and N. P. smart, "Lattice attacks on digital signature schemes," Designs, Codes and 
Cryptography, vol. 23, no. 3, pp. 283--290, 2001.  

[26]  P. Q. Nguyen and I. E. Shparlinski, "The insecurity of the elliptic curve digital signature algorithm with partially known 
nonces," Designs, codes and cryptography, vol. 30, no. 2, pp. 201--217, 2003.  

[27]  B. Brumley and N. Tuveri, "Remote timing attacks are still practical," Computer Security--ESORICS 2011, pp. 355-371, 
2011.  

[28]  Y. Yarom, D. Genkin and N. Heninger, "CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.," in CHES, 
2016.  

[29]  S. Gueron and V. Krasnov, "Fast prime field elliptic-curve cryptography with 256-bit primes," Journal of Cryptographic 
Engineering, vol. 5, no. 2, pp. 141--151, 2015.  

[30]  D. J. Bernstein, T. Lange and R. Niederhagen, "Dual EC: A standardized back door," in The New Codebreakers, Springer, 
2016.  

[31]  N. Koblitz and A. Menezes, "A riddle wrapped in an enigma," IEEE Security \& Privacy, vol. 14, no. 6, pp. 34--42, 2016.  

[32]  D. J. Bernstein and T. Lange, "Faster addition and doubling on elliptic curves," in Asiacrypt, 2007.  

[33]  D. Brown, "Re: [Cfrg] Complete additon for cofactor 1 short Weierstrass curve?," 09 06 2017. [Online]. Available: 
https://www.ietf.org/mail-archive/web/cfrg/current/msg05651.html. 

[34]  J. Renes, C. Costello and L. Batina, "Complete addition formulas for prime order elliptic curves.," in EUROCRYPT (1), 
2016.  

[35]  T. Izu and T. Takagi, "Exceptional procedure attack on elliptic curve cryptosystems," in International Workshop on Public 
Key Cryptography, 2003.  

[36]  A. J. Menezes, P. C. V. Oorschot and S. A. Vanstone, "Chapter 14.4.3," in Handbook of applied cryptography, CRC press, 
1996.  

[37]  Y. Yarom and K. Falkner, "FLUSH+ RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack.," in 
USENIX Security Symposium, 2014, pp. 719--732. 

[38]  S. Henson, "Clear sensitive data in ED25519_sign," 25 05 2017. [Online]. Available: 
https://github.com/openssl/openssl/commit/04dec1ab34df70c1588d42cc394e8fa8b5f3191c. [Accessed 01 06 2017]. 

[39]  OpenWrt, "OpenWrt-SDK-15.05.1-ar71xx-generic_gcc-4.8-linaro_uClibc-0.9.33.2.Linux-x86_64," [Online]. Available: 
https://downloads.openwrt.org/chaos_calmer/15.05.1/ar71xx/generic/OpenWrt-SDK-15.05.1-ar71xx-generic_gcc-4.8-
linaro_uClibc-0.9.33.2.Linux-x86_64.tar.bz2. [Accessed 20 05 2017]. 

[40]  J. Sun, "[openssl-dev] [openssl.org #4284] Bug in nistz256 assembly code.," [Online]. Available: 
https://mta.openssl.org/pipermail/openssl-dev/2016-February/004701.html. [Accessed 03 06 2017]. 

[41]  B. Smith, "[openssl-dev] [openssl.org #4621] BUG: nistz256 point addition check for a = +/-b doesn't work for unreduced 
values," 04 06 2017. [Online]. Available: https://mta.openssl.org/pipermail/openssl-dev/2016-July/007963.html. 

[42]  M. Adelier, "Efficient and Secure Elliptic Curve Cryptography Implementation of Curve P-256".  

[43]  A. Barenghi and G. Pelosi, "A Note on Fault Attacks Against Deterministic Signature Schemes," in International 
Workshop on Security, 2016.  

 

 

 

 

 


