
University of Twente
Department of Computer Science

EIT Digital Cybersecurity Specialization

Penetration testing of aws-based
environments

Master thesis

Réka Szabó

Supervisors:

Aiko Pras University of Twente

Anna Sperotto University of Twente

Péter Kiss Sophos Hungary

Fabio Massacci University of Trento

November 2018

Abstract

Since the last millennium, the various offerings of Cloud Service Providers have become
the core of a large number of applications. Amazon Web Services is the market leader at
the forefront of cloud computing with the most significant customer base. In accordance
with Amazon’s policy, security in the cloud needs to be ensured by the clients, which poses
a huge security risk. A favoured technique to evaluate the security properties of computer
systems is penetration testing and the focus of this thesis is how this technique can be
leveraged specifically for AWS environments. A general method is outlined, which can be
applied on the client side to improve the security of applications running in the Amazon
cloud. The existing tools are integrated into the conventional penetration testing method-
ology, and the available toolset is extended to achieve a more comprehensive method. A
major element of the study is authenticated penetration tests, in which case credentials are
provided to the benign attacker, and thus the focus can be on internal misconfigurations
which are often the source of security breaches in AWS environments.

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 What is cloud computing? . 1

1.1.2 Cloud Service Providers . 3

1.1.3 Shared responsibility model . 5

1.2 Research goal . 6

1.3 Research questions . 6

1.4 Research approach . 7

1.5 Structure of the thesis . 7

2 Amazon Web Services 8

2.1 AWS services . 8

2.1.1 Elastic Compute Cloud (EC2) . 8

2.1.2 Amazon S3 . 9

2.1.3 Simple Queue Service (SQS) . 10

2.1.4 DynamoDB . 10

2.1.5 Lambda . 11

2.1.6 CloudWatch . 11

2.1.7 CloudTrail . 11

2.1.8 Route 53 . 11

2.1.9 Management interfaces . 12

2.2 Security in the Amazon cloud . 12

2.2.1 Security Groups (SG) . 12

2.2.2 Virtual Private Cloud (VPC) . 12

2.2.3 Identity and Access Management (IAM) 13

2.2.4 S3 access management . 15

3 Amazon-specific security issues 17

3.1 S3 bucket security breaches . 17

3.1.1 Accenture case . 17

3.1.2 U.S. voter records . 18

3.1.3 AgentRun case . 18

3.1.4 YAS3BL . 18

3.2 EC2 instance metadata vulnerability . 18

3.2.1 EC2 metadata and SSRF . 18

3.2.2 EC2 metadata and HTTP request proxying 19

3.3 IAM policy misuse . 20

3.4 Mitigation and countermeasures . 20

3.4.1 EC2 metadata vulnerability . 20

3.4.2 Protecting S3 data using encryption 21

3.4.3 IAM best practices . 21

i

TABLE OF CONTENTS

3.5 Summary . 21

4 Penetration testing 22
4.1 Penetration testing methodology . 22
4.2 Authenticated penetration test . 23
4.3 Amazon-based web application model . 24
4.4 Penetration testing in the Amazon cloud . 25

5 Non-authenticated penetration test 26
5.1 Reconnaissance . 26
5.2 Scanning . 27

5.2.1 Port scanning . 27
5.2.2 Vulnerability scanning . 28
5.2.3 S3 enumeration . 28

5.3 Exploitation . 29
5.3.1 Extracting keys via a HTTP request proxying vulnerability 29

5.4 Post exploitation and maintaining access . 31
5.4.1 Extracting keys using a reverse shell 31

5.5 Summary . 33

6 Authenticated penetration test 35
6.1 Understanding the victim . 36

6.1.1 Entitlements . 36
6.1.2 Available resources . 37
6.1.3 Resource policies . 37

6.2 Privilege escalation . 38
6.3 Collecting system information and data . 40

6.3.1 S3 bucket enumeration . 40
6.3.2 SQS message collector . 40
6.3.3 DynamoDB scanner . 40
6.3.4 CloudWatch scanner . 41

6.4 Setting up backdoors . 41
6.4.1 Pacu modules . 41
6.4.2 AWS pwn . 42

6.5 Cleaning tracks and staying undetected . 42
6.5.1 Disrupting trails . 42

6.6 Backend service side testing . 43
6.6.1 Fuzzer tool . 43

6.7 Summary . 44

7 Conclusion 45
7.1 Research findings . 45
7.2 Contribution . 46
7.3 Future work . 46

References 48

ii

Chapter 1

Introduction

”The only truly secure system is one that is powered off, cast in a block of
concrete and sealed in a lead-lined room with armed guards - and even then I
have my doubts.”

—Eugene H. Spafford, Purdue University [34]

The expansion of the Internet as well as the introduction of cloud services have posed new,
previously unseen security challenges. Eventually, in the last decade, cloud technologies
gave a new meaning to security in the physical sense and Spafford’s idea of a separated,
sealed room has ultimately vanished.

1.1 Motivation

The paradigm of cloud computing has evolved in the recent years and dramatically changed
the way of delivering, consuming and producing IT resources via the Internet. The char-
acteristics of cloud computing are the main influencing factors why businesses follow the
trend of migrating to the cloud.

1.1.1 What is cloud computing?

Two formal definitions of cloud computing have been laid down to provide a clear picture
around the technology. Both the International Organization for Standardization (ISO)
and the National Institute of Standards and Technology (NIST) considered it to be of
particular importance to outline the definition of cloud computing. In their essence the
two definitions are very much alike, being the NIST version better elaborated [13]:

”Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action.”

The definition includes the most important features of cloud computing and are considered
to be the essential characteristics of the cloud model according to the NIST document.
The five characteristics are the following:

• On-demand self-service - The user can provision computing capabilities when
required, automatically without any human interaction with the service provider.

1

CHAPTER 1. INTRODUCTION

• Broad network access - Capabilities are available over the network, without any
need for direct physical access, and are accessed through standard mechanisms that
promote use by platforms such as smartphones, tablets, laptops.

• Resource pooling - Using a multi-tenant model, the computing resources of the
provider are pooled to serve multiple users, with different physical and virtual re-
sources dynamically assigned according to demands. These resources include storage,
processing, memory and network bandwidth. The customers have generally no con-
trol or knowledge over the exact location of the provided resources, although might
be able to specify the country, state or datacenter.

• Rapid elasticity - Capabilities can be elastically expanded or released, to scale
rapidly commensurate with demand, often automatically. To the user, capabilities
often appear to be unlimited and can be appropriated in any quantity at any time.

• Measured service - The usage of cloud systems is metered so that consumers
can be charged for the provided resources, appropriately to the type of service.
Transparency is important for both the provider and the consumer of the utilized
service.

The Cloud Security Alliance (CSA) mentions one more characteristic of cloud computing,
namely multi-tenancy [4]. Additionally to resource pooling, this property enables that a
single resource is used by multiple customers in a way that their computations and data
are isolated from and inaccessible to one another.

A cloud infrastructure is considered to be the combination of hardware and software
that satisfies the above stated characteristics. According to the NIST cloud model, four
different types of deployment models can be specified:

• Public cloud - The cloud infrastructure is provisioned for open use by the general
public. It is owned by an organization offering cloud services and exists on the
premises of the cloud provider.

• Private cloud - The cloud infrastructure is operated solely for a single organization.
It may be owned and managed by the organization itself or a third party, and it may
be located on or off premises.

• Community cloud - The cloud infrastructure is shared by several organizations
and supports a specific community that have shared concerns. It may be owned and
managed by the participating organizations or a third party, and may be located on
or off premises.

• Hybrid cloud - The cloud infrastructure is a composition of two or more clouds
(private, community, or public) that remain unique entities, but are bound together
by standardized or proprietary technology that enables data and application porta-
bility.

From a more abstract point of view, the cloud infrastructure consists of a physical and an
abstraction layer, corresponding to the hardware resources (typically server, storage and
network components) and the deployed software. The deployment models described above
can be applied across the entire range of service models based on the separation of the
cloud infrastructure. The three categories are Software as a Service (SaaS), Platform as
a Service (PaaS) and Infrastructure as a Service (IaaS). The main difference between the
models is the extent to which the cloud infrastructure is managed by the customer or the
provider, as illustrated in Figure 1.1.

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Cloud computing service models. [6]

Since the last millennium, a new business model appeared, in particular providing different
services in the cloud, in line with the public cloud deployment model.

1.1.2 Cloud Service Providers

Defined by the International Standards Organization, a Cloud Service Provider (CSP) is
a party which makes cloud services available [9]. A CSP focuses on activities necessary
to provide a cloud service and to ensure its delivery to the customer. These activities
include, not exhaustively, deploying and monitoring the service, providing audit data and
maintaining the infrastructure.

Figure 1.2: Timeline of cloud service providers. [12]

Salesforce has been a pioneer in introducing cloud computing to the public by delivering
enterprise applications over the Internet since 1999 [41]. Initially as a subsidiary of Ama-
zon.com, Amazon Web Services (AWS) entered the market in 2006 with the release of
their Elastic Compute Cloud (EC2). Around 2010, Google and Microsoft began to invest
in this area as well.

3

CHAPTER 1. INTRODUCTION

Despite the strong competition, AWS has managed to remain the market leader at the
forefront of cloud computing. Figure 1.3 illustrates the dominance of AWS by 34% of
market share in the last two quarters of 2017.

Figure 1.3: Global market share of cloud infrastructure services in 2017, by vendor. [7]

What does it mean in number of users? In October 2016, AWS reported 1 million ac-
tive business customers, which number kept growing ever since, along with their revenue
[40]. The market dominance of AWS and thus the significant number of users provide a
justification, why Amazon Web Services has been chosen to be the basis of the research.

Using the products of cloud service providers can offer such advantages that can not be
neglected. Maintenance costs are taken over by the vendors and the pay-per-use model
can be highly beneficial for the customers. As a consequence, several organizations have
recently migrated their services to the cloud which are typically provided by third party
vendors.

In fact, the survey of LogicMonitor conducted in December 2017, predicts that 41% of
enterprise workload will be run on public cloud platforms by 2020 [42]. The participants
see that currently, security is the greatest challenge for organizations that are engaged with
public cloud, in particular, 66% of IT professionals believed that security was the biggest
concern. Despite the great demand and the massive surge of cloud migrations happening
in the past years, cloud security is still said to be in a ”delicate state of transition” by
senior director of the security company, RSA [11].

Cloud security consists of two crucial elements, namely security of the cloud and security
in the cloud, as highlighted in the blog of the cloud computing company, Rackspace. The
security and compliance model of Amazon Web Services also adapts this concept, a precise
definition of dividing responsibilities is formulated in the shared responsibility model.

4

CHAPTER 1. INTRODUCTION

1.1.3 Shared responsibility model

Since the majority of the products of Amazon Web Services belong to the Infrastructure as
a Service model, the responsibility model adjusts to the division of the cloud infrastructure,
as shown in Figure 1.4.

Figure 1.4: Shared responsibility model. [22]

AWS is responsible for protecting the infrastructure that runs all of the services offered.
This infrastructure is composed of the hardware, software, networking, and facilities that
run AWS cloud services, including the components from the host operating system and
virtualization layer, down to the physical security of the facilities in which the service
operates.

On the other hand, security in the cloud requires the customers to perform all necessary
security configuration and management tasks of the utilized service. For instance, in
case of renting a virtual computer, the customers are responsible for managing the guest
operating system and software installed by the users on the machine. The customer also
needs to cover the configuration of the AWS-provided firewall on each virtual machine.

In short, AWS provides the requirements for the underlying infrastructure and the cus-
tomer must provide their own control implementation within their use of AWS services.
Patch management and configuration management are examples of shared controls, ac-
cording to the concerned system component.

It is at utmost importance for cloud providers to ensure customers that their service is
secure against cyber-attacks, theft and all kinds of security breaches. Certifications against
regulatory compliances owned by a CSP can assure the users about appropriate security
and protection of data.

However, experience shows that security breaches in the cloud, in most cases, are not
caused by flaws in the infrastructure, but by misconfiguration issues or compromised AWS
credentials. In fact, the prediction of Gartner analyst Neil MacDonald from 2016 seems
to become reality [37]:

5

CHAPTER 1. INTRODUCTION

”Through 2020, 80% of cloud breaches will be due to customer misconfigura-
tion, mismanaged credentials or insider theft, not cloud provider vulnerabili-
ties.”

As a result, insufficient knowledge of professionals, or simply an oversight can effectively
combine two of OWASP’s top ten web application security risks: sensitive data exposure
(#3) and security misconfiguration (#6) [38].

The question arises, how these breaches caused by client-side issues could be prevented.
The results of the LogicMonitor survey make it apparent that taking proper security
measures is in fact a huge concern and could be supported with appropriate testing. In
traditional environments, penetration testing has become a favored technique to evaluate
the security properties of computer systems, and has been adapted in cloud environments
as well.

A penetration test is an authorized simulated attack on a computer system, performed
to evaluate the security of the system and find vulnerabilities that could be exploited by
an attacker. Testing of cloud environments focuses on the security properties of cloud
software, including its interaction with its own components and with external entities [41].

Penetration in the cloud is always specific to the vendor and the utilized services. Even
though Amazon Web Services is currently the most commonly chosen provider, penetration
testing in the Amazon cloud is still in its infancy and deserves further attention. The fact
that just during the research period of this thesis, the first AWS exploitation framework
has been published, justifies the actuality of the topic.

1.2 Research goal

The aim of the research is to examine how penetration testing can be applied on the
client side to improve the security of AWS-based environments. The goal is to integrate
the existing tools into the traditional penetration testing methodology and if necessary,
extend the available toolset, to achieve a comprehensive method. It is aimed to outline a
general concept that can be deployed for applications running in the Amazon cloud.

1.3 Research questions

Based on the previous sections, the following questions are aimed to be answered during
the research:

Q1. What should be the objectives of a penetration test, what vulnerabilities exist in the
Amazon cloud?

Q2. What tools are available for penetration testing in the Amazon cloud and how can
they be adapted to the penetration testing methodology?

Q3. Is the available toolset able to support a comprehensive penetration test? If not, what
tools could be further developed?

The first questions aims to determine what the target of the penetration test should be.
It includes identifying those vulnerabilities that are specific to the Amazon cloud, and
a comprehensive penetration test should discover their existence. The second question
focuses on the current equipment for penetration testing in the Amazon cloud and how
these tools can be related to the traditional methodology. With Q3 the research tries to
find uncovered areas, and provide requirements for further improvement.

6

CHAPTER 1. INTRODUCTION

1.4 Research approach

The research questions are approached the following way. First, the AWS related vulner-
abilities are studied with the help of the available literature, relying on preceding cases
and findings of previous studies. Based on the results, the objectives of the penetration
test can be identified using inductive reasoning and assuming that the observations are
correct.

After the analysis of potential vulnerabilities, the available penetration testing tools are
studied, including their functionalities and their contribution to the objectives of the pen-
etration test. This evaluation is based on the simulations run on test environments. The
test environments are essentially two AWS-based applications provided by Sophos, the
company where the research is carried out as part of an internship. Additionally, using
AWS Free Tier1, a separate AWS environment is established as well, which is vulnera-
ble by design and thus vulnerabilities can be imitated, if not present in the industrial
environments.

Following the penetration testing methodology and considering the results of the previous
questions, those phases and areas can be logically identified which are not yet covered
with the available toolset. According to the findings, requirements can be formulated for
potential new tools in order to fill in the gaps and improve the current state of testing.

1.5 Structure of the thesis

The remainder of the thesis is structured as follows. Chapter 2 gives an overview on a set
of AWS services that are relevant for the thesis, along with the security measures offered
by Amazon. Chapter 3 focuses on the first research question and identifies vulnerabilities
based on former security issues related to AWS. Chapter 4 is built around penetration
testing, focusing on the methodology and introducing the terms non-authenticated and
authenticated penetration testing.

The following two chapters are concentrating on the different phases of a penetration
test. The general methodology is presented following the penetration testing methodology,
each phase adapted to the current environment, focusing on AWS-specific characteristics.
The tools that stand one in good stead for penetration testing in the Amazon cloud are
integrated within the appropriate phase. A new toolset is built in the process as well, to
support certain areas that otherwise would not be covered. Finally, conclusions are drawn
in the last chapter of the thesis.

1https://aws.amazon.com/free/

7

Chapter 2

Amazon Web Services

Among all cloud service providers, Amazon Web Services stands out with its 34% of
market share and a significant customer base. In this chapter, I introduce a number of
AWS services and the elements within the AWS offering which the customer can utilize
to take proper security measures.

2.1 AWS services

AWS provides a wide range of services, from computing resources and storage to machine
learning and media services, in total 145 in 21 different categories as of November 2018.
In the following, those services will be reviewed that are necessary for understanding the
applications tested during the research [54].

Beforehand, a short notice on AWS regions and availability zones. For reasons of efficiency,
the territories supplied by AWS are split into regions, each containing multiple data cen-
ters. These regions are further divided into availability zones (AZ) and every AZ has a
unique identifier code. For instance, in the North American region, Northern California
has the code us-west-1, while the Oregon area is us-west-2. For most of the AWS services,
since each region is completely isolated from the other, a specific region has to be selected
in which the service will be deployed.

2.1.1 Elastic Compute Cloud (EC2)

A core element and most widely used service of AWS is the Elastic Compute Cloud, in
short EC2, which was one of the first three initial service offerings. The service basically
provides scalable compute capacity on an on-demand, pay-per-use basis to its end users.
EC2 supports server virtualization, spinning up virtual machines that are named instances
in the AWS environment. The virtualization technology of AWS is essentially based on
these instances and images.

Amazon Machine Images (AMI) are preconfigured templates that can be used to launch
instances, all containing an operating system and optionally a software application, such
as a web server. Once an AMI is created, its state cannot be changed, modifications can
only be performed within the instances. However, creating custom images is also possible.
First, an instance needs to be launched from an existing AMI, for instance taken from
AWS Marketplace. After customizing the instance, it can be saved and used later to
launch new instances, thus a single image can serve as a base for multiple instances.

According to the default settings, each instance is assigned a private and public IP address

8

CHAPTER 2. AMAZON WEB SERVICES

and DNS hostname pair. The private properties are used to communicate with other
instances in the same network, while the public pair keeps in contact the outside world.
These IP addresses, however, only exist until the termination of the instance. Assigning
a static IP address to an instance can be achieved by using an Elastic IP address (EIP),
which is associated with one’s AWS account. With the help of EIPs, a DNS value can be
dynamically mapped to more than one EIP, if required, for example, during maintenance.

Instance metadata

Amazon provides a service for EC2 instances, called instance metadata that can be used
to configure and manage the running instance [10]. This metadata can be accessed via
a private HTTP interface only from the virtual server itself, however, the data is not
protected by any cryptographic method. Therefore, anyone who can access the instance,
is also able to view its metadata. Each EC2 instance is allowed to view its metadata using
one of the following URLs:

http://169.254.169.254/latest/meta-data/

http://instance-data/latest/meta-data/

By accessing an EC2 Instance via SSH, any HTTP client, such as curl, can be used to
get information from the instance metadata endpoint. The response consists of multiple
categories and contains sensitive information as well, such as security credentials.

Instance user data

Instance user data is a part of the metadata, which is executed when a new instance is ini-
tially launched. User data can be modified only if the instance is in stopped state, however
the updated version is not executed by default. The user data can contain configuration
parameters or a simple script that is run at launch time.

For example, one might run multiple instances with the same general AMI and customize
them using the user data. It might as well include shell scripts to install the necessary
packages, start services or modify file ownership and permissions.

Instance profile

Instance profile is an important attribute of an EC2 instance, as it determines what an
application running on the instance is allowed or not allowed to do. More specifically, an
instance profile is a container for a role, which can be granted different permissions, for
instance, in case the application requires access to other resources, such as S3 buckets.
The meaning of roles in the context of AWS is discussed in more detail in Section 2.2.

2.1.2 Amazon S3

The second service that was included in the initial offerings, is S3. Amazon S3 is a highly
scalable storage as a service with virtually unlimited capacity. The fundamental element
of the service is a bucket that acts as a logical container and stores items which are called
objects in the AWS terminology. Each S3 bucket is created with a name that can globally
serve as a unique identifier, however, they are still created and located within a particular
region. The two main properties of an object are Key and Value. The key specifies the
unique name of the object, while the value is a sequence of bytes used to store the object’s
content.

9

CHAPTER 2. AMAZON WEB SERVICES

2.1.3 Simple Queue Service (SQS)

In November 2004, Simple Queue Service (SQS) was the first AWS service launched for
public usage, before the official re-launch of AWS in 2006. Amazon Simple Queue Service
(SQS) is a message queuing service fully managed by AWS that helps integrating and
decoupling distributed software systems and components. It acts as a middleware to
simplify the process of delivering messages between software components, or producer and
consumer over the Internet. The service allows to send, store and receive messages at any
volume, without losing messages or requiring other services to be available.

Depending on the application requirements, SQS offers two queue types to choose from,
namely Standard Queues and FIFO Queues. Standard Queues support a nearly unlimited
number of transactions per second per API action. On the other hand, FIFO queues
support high throughput, by default up to 300 messages per second, but are able to
handle 3,000 messages per second when 10 messages per operation are batched.

Using Standard Queues, each message is delivered at least once, but occasionally more
than one copy of the message is delivered. A third property is Best-Effort Ordering,
meaning that messages might be delivered in a different order from which they were
sent. On the contrary, FIFO Queues, as the name suggests, work with First-In-First-Out
delivery, therefore the order of the messages is strictly preserved, the sequence of the
sent messages remains the same while receiving them. Lastly, with FIFO Queues, each
message is delivered once and remains available until a consumer processes and deletes it.
Duplicates aren’t introduced into the queue.

2.1.4 DynamoDB

Amazon DynamoDB is a non-relational database service that provides smooth scalability
for its users [1]. The offering also involves encryption at rest and thus sensitive data
is protected with enhanced security, using AES-256 encryption. The core components
in DynamoDB are tables, items and attributes. A table is a group of items that are a
collection of attributes. A primary key belongs to each item to have a unique identifier
in its table, besides the optional secondary index which can give more flexibility to query
the data.

The communication with the DynamoDB web service takes place using a stateless protocol,
HTTP or HTTPS requests and responses are being sent between the client and the server.
The request includes the name of the operation to perform, bundled with parameters. The
response contains the result of the operation, in case of an error, an HTTP error status
and message is returned.

Figure 2.1: DynamoDB request-response model. [1]

10

CHAPTER 2. AMAZON WEB SERVICES

An application must be authenticated before accessing a DynamoDB database and only
permitted actions can be performed. Every request must come along with a cryptographic
signature to ensure that the source is in fact a trusted party. Authorization is handled by
the Identity and Access Management which will be described in Section 2.2.3.

2.1.5 Lambda

AWS Lambda is a serverless compute service that runs code in response to events, and
automatically manages the underlying compute resources. The code can be triggered from
other AWS services, such as modification to an object in an S3 bucket, or a table updated
in DynamoDB. The code can simply be called directly from the application as well.

The code run on AWS Lambda is called a Lambda function. Besides the code, each
function includes configuration information, such as the function name and the runtime
environment. Lambda functions have no affinity to the underlying infrastructure, so that
as many copies of the function can be launched as needed, to scale to the rate of incoming
events.

2.1.6 CloudWatch

Amazon CloudWatch is a monitoring and management service that provides data and
actionable insights for applications and infrastructure resources. It allows the users to
collect all performance and operational data in form of logs and metrics and access them
from a single platform. CloudWatch enables monitoring of the complete stack (applica-
tions, infrastructure, and services) and leveraging alarms, logs, and events data to take
automated actions.

2.1.7 CloudTrail

Besides CloudWatch, there exists another monitoring service within AWS, namely Cloud-
Trail, which is used to track user activity and API usage. With CloudTrail, one can log,
continuously monitor and retain account activity related to actions across the AWS in-
frastructure, including actions taken through the AWS Management Console, AWS SDKs,
command line tools, and other AWS services.

2.1.8 Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web
service [18]. It can be used to route traffic on the Internet for a specific domain, with
the help of a public hosted zone which is basically a container of records. For each public
hosted zone, Amazon Route 53 automatically creates a name server (NS) record and a
start of authority (SOA) record. The start of authority (SOA) record identifies the base
DNS information about the domain. The name server (NS) record lists the four name
servers that are the authoritative name servers for your hosted zone. The format of the
records are the following, the first one being the SOA record and the other four the NS
record.

ns-2048.awsdns-64.net. hostmaster.example.com. 1 7200 900 1209600 86400

ns-2048.awsdns-64.com

ns-2049.awsdns-65.net

ns-2050.awsdns-66.org

ns-2051.awsdns-67.co.uk

11

CHAPTER 2. AMAZON WEB SERVICES

2.1.9 Management interfaces

Lastly, I would like to mention three interfaces to manage Amazon services, namely the
AWS Management Console, the AWS CLI and Boto.

AWS Management Console

This is the most commonly used method to access and work with AWS services. The
Management Console is a web-based user interface which handles all services belonging to
one account.

AWS CLI

The other option is to use the AWS CLI which can be installed on Windows or Linux
machines as long as the latest version of Python is installed on them. The AWS CLI
allows automation of deployment and management of the services, using simple scripts.

Boto

The third option to access and manage AWS services, is via the Amazon Web Services
SDK for Python, called Boto. Boto provides an object-oriented API which I also used
during my work, which will be demonstrated in Chapter 6.

2.2 Security in the Amazon cloud

In this section, I review the security measures offered in the Amazon cloud that can be
applied to enhance security. It is important to be aware of the different possibilities to
secure our systems - or on the contrary, how to expose them to risks.

2.2.1 Security Groups (SG)

The first option is to secure our EC2 instances by using Security Groups. They are
deployed to secure EC2 environments with a set of firewall rules on the in- and outbound
traffic of an instance. The rules are set by specifying the type of application with the port
number and the source IP or DNS address. By default, there are no rules for inbound
traffic, on the other hand, all outgoing traffic is allowed.

2.2.2 Virtual Private Cloud (VPC)

Amazon provides another level of security, in form of the network service, called Virtual
Private Clouds. A VPC enables to build logical subnets and networks as being a logically
isolated part of the AWS cloud. Besides the Security Groups, Access Control Lists (ACLs)
are also utilized to control the traffic through the subnets and the whole VPC.

In a VPC, either public or private subnets can be created. In a public subnet, instances
are routed through the Internet while a private version does not allow it. When initializing
a VPC, one needs to determine a set of IP addresses to be used, in form of a CIDR. In
the default configuration, an Internet Gateway is provided for instances to have Internet
connectivity. In case an instance from the private subnet needs to communicate with the
Internet, a NAT instance is placed into the public subnet to forward the outbound traffic.

12

CHAPTER 2. AMAZON WEB SERVICES

2.2.3 Identity and Access Management (IAM)

The main service offered by Amazon to control privileges is the Identity and Access Man-
agement (IAM). Amazon’s IAM is a web service used in combination with all Amazon
services, providing secure access control mechanisms.

Identities

IAM is essentially based on users, groups and roles that are managed by the administrator
of the AWS account. A user is a fundamental entity within an account, who represents
the person or service who interacts with AWS. Each user is provided with a set of unique
username and password to interact with the AWS services.

One simple account can contain multiple users, for instance, a developer team of a company
may use the same AWS account under different user names with their own credentials.
Users can be organized into another entity within the IAM system, namely a group. A
group is a collection of IAM users with a particular set of permissions assigned to it, for
instance, the group of administrators or the group of developers.

Besides groups, IAM roles can also simplify handling user permissions. The power of an
IAM role lies in its usability. Instead of being uniquely associated with one user, a role is
intended to be assumable to any user who needs it. Therefore, a role does not have any
permanent credentials associated with it. If a user assumes a role, temporary credentials
are created and provided to the user. This can be useful when the requirement is to grant
access to someone only temporarily and to take on different permissions for a specific task
only, for instance, when an audit is performed by a third party.

A specific use case of attaching an IAM role has been mentioned previously, when dis-
cussing the instance profile of an EC2 instance. In case an application is running on an
EC2 instance and this application makes requests to different AWS resources, an IAM role
can be attached to the instance profile with the necessary permissions.

Authentication

Besides using a username-password combination, another option for authentication is an
access key ID - secret access key pair, and log in to AWS programmatically. This method
is useful when using AWS SDKs, REST or Query API operations, for instance, the SDKs
use access keys to handle the signing process of an API request. Similarly, when using the
AWS CLI, the issued commands are signed by your access keys, either passed with the
command, or stored in the configuration files locally.

When an application running on an EC2 instance tries to access other AWS resources,
the requests are signed using temporary credentials, taken from the instance metadata.
The benefit of temporary credentials is that they expire automatically after a set of period
of time, which can be defined manually. Additionally to the access key and secret key,
temporary credentials also include a session token, which must be sent with the request.

Policies

IAM identities and different resources can be allowed (or denied) to interact with each other
by granting permissions which can be assigned by using policies. Policies are essentially
permissions listed in a JSON-formatted document. These policies can be attached to users,

13

CHAPTER 2. AMAZON WEB SERVICES

groups, roles or individual AWS resources as well. It is worth mentioning that initially,
any freshly created IAM identity has no permissions.

Policies can be inline or managed policies, the latter being managed either by AWS or by
the customer. AWS managed policies, as the name suggests, are created and administered
by AWS and are aimed to make the process of assigning proper entitlements easier. AWS
managed policies are designed to provide permissions for many common use cases, define
typical permission sets, for instance, necessary permissions for service administrators or
other specific job functions.

On the other hand, customer managed policies and inline policies are both created and
administered by the customer. The difference is that while a customer managed policy
can be attached to multiple entities within an account, an inline policy is embedded in a
principal entity (a user, group, or role), and thus forms an inherent part of the entity.

Figure 2.2: Relation between IAM entities and policies.

Besides the above classification, policies can be divided into two main categories, depend-
ing on whether they are associated with an identity or a resource. Figure 2.2 illustrates
the two types of policies, the green arrows representing the identity-based policies, and
the orange arrow the resource-based policies.

• Identity-based policies: Implicitly, these permissions are assigned to IAM iden-
tities, users, groups or roles. These rules allow the assignees to perform some action
over an AWS resource. Identity-based policies can belong to both managed and
inline policies.

• Resource-based policies: As the name implies, these policies are attached to
a particular AWS resource and specify which identity can perform which specific
action on the resource. Certain AWS services do support this feature, for instance, S3
buckets. Opposed to identity-based permissions, only inline policies can be attached.

Policies can contain identity-based or resource-based permissions. A permission forms a
statement in a policy and a single policy might contain multiple statements. An example
of a simple policy can be seen below:

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"ec2:DescribeInstances",

"s3:ListAllMyBuckets",

14

CHAPTER 2. AMAZON WEB SERVICES

],

"Resource": "arn:aws:iam::987654321098:user/Alice"

}

]

}

The policy above allows user Alice to perform two actions, to list EC2 instances and to
list S3 buckets. The policies are stored in JSON-format and contain the following keys:

• Version: The version specifies the policy’s language, which currently is 2012-10-17.
The field is not mandatory.

• Statement: The statement element can contain multiple individual statements, en-
closed within curly brackets. The example above consists of one simple statement.

• Effect: The Effect element has two potential values: Allow or Deny. By default, the
value is deny to all AWS resources, in order to avoid not intended permissions.

• Action: The Action element describes what specific actions need to be allowed or
denied. The statements consist of two parts, the name of the particular service,
followed by the action value, such as DescribeInstances or ListAllMyBuckets.

• Resource: The resource element specifies the particular object or service that the
statements will cover. The element is defined by its Amazon Resource Name (ARN),
explained below.

Each AWS resource possesses a unique identifier among all AWS resources, namely the
Amazon Resource Name (ARN). In our example, it specifies that user Alice belongs to
the AWS account ID ’987654321098’.

It is worth mentioning that the wildcard character may also be used when defining poli-
cies. For instance, if ”s3:*” is added to the Action list above, then all possible ac-
tions belonging to the S3 service are allowed to Alice. If the Resource was changed
to ”arn:aws:iam::987654321098:user/*”, then all users belonging to this account would
acquire the listed permissions.

2.2.4 S3 access management

S3 buckets play an important role in the later part of the thesis, therefore this section is
dedicated to access management within the S3 service. S3 service is in a specific position
in the sense that Amazon provides three different methods to manage access over the
resources [29].

IAM identity-based policy

The first option to control access of S3 buckets is using identity-based policies, attached
to either a user, a group or a role as described in the previous section.

S3 bucket policy

The second option is to use a resource-based policy, which can be attached to a specific S3
bucket. It is noteworthy, that the policies can only be used on the bucket level, therefore
the specified permissions apply to all object in the bucket. As all IAM policies, bucket
policies are also written in JSON using the AWS access policy language. An example of
a bucket policy:

15

CHAPTER 2. AMAZON WEB SERVICES

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"AWS": [arn:aws:iam::987654321098:user/Alice,

arn:aws:iam::987654321098:root]

}

"Action": [

"s3:PutObject",

],

"Resource": "arn:aws:s3:::my_bucket/forAlice/*"

}

]

}

The above policy enables the root account 987654321098 and the IAM user Alice under
the same account to perform the PutObject operation on the ”forAlice” folder within the
bucket named ”my bucket”.

Access Control List (ACL)

Amazon S3 access control lists (ACLs) enable you to manage access to buckets and objects.
Each bucket and object has an ACL attached to it which defines the AWS accounts or
groups that are granted access as well as the type of access. The default ACL of a bucket
or an object grants the resource owner full control over the resource.

As a general rule, AWS recommends using either IAM identity-based or resource-based
policies for access control [29]. S3 ACLs can however be useful under certain circumstances,
for instance, if the requirement is to manage permissions on individual objects within a
bucket, bucket policies can not provide the necessary configuration settings.

16

Chapter 3

Amazon-specific security issues

Amazon Web Services is considered to provide a well-secured environment in the cloud,
as shown by several certificates owned by the company. Nevertheless, inappropriate usage
of the services can be the source of severe security breaches. In this section, those vul-
nerabilities are reviewed that have been identified so far and have been proved to be legit
concerns.

3.1 S3 bucket security breaches

Presumably, the most common cause of security breaches related to Amazon services, are
misconfigurations of S3 buckets. According to statistics by a security firm, 7% of all S3
buckets have unrestricted public access, however, not always intentionally [31].

Despite the “locked down by default” structure, multiple companies still suffer from S3
bucket security breaches, by loosening their settings and allowing unauthorized access
to their data. These can derive from misuse of access control policies discussed in the
previous chapter, namely IAM policies and Access Control Lists.

The impact of an S3 related security breach can vary from minor information leakage
to full data breach. For instance, static websites can be hosted as an S3 bucket but
also complete server backups can be pushed to a bucket. Since, by default everything is
denied, to allow a website to be publicly accessible, the bucket policy has to be changed
and everyone needs to be granted ”s3:GetObject” privileges.

Similary, issues might derive from opening permissions to ”Any Authenticated AWS User”.
The name might imply to many that it only includes users of their account, however, it
literally means that anyone with an AWS account can have access to it.

In the following, previous incidents are shortly reviewed when certain errors lead to relevant
security breaches.

3.1.1 Accenture case

In 2017, four Amazon S3 buckets were discovered by Cyber Risk Research to be configured
for public access [24]. As mentioned previously, all S3 buckets have a globally unique
name, therefore these buckets could be bound to Accenture, a management consulting
company. The buckets contained secret API data, authentication credentials, decryption
keys and customer data which could have exposed the clients to serious risk. Fortunately,

17

CHAPTER 3. AMAZON-SPECIFIC SECURITY ISSUES

the publicly available storages were discovered before accessed by anyone with malicious
intent.

3.1.2 U.S. voter records

The incident of Accenture was not the only discovery by Upguard’s Cyber Risk Team. The
largest data exposure of its kind made 198 million records on American voters vulnerable,
including personal and analytics data [53]. In total, the personal information of nearly all
of America’s 200 million registered voters was exposed, including names, dates of birth,
home addresses, phone numbers, and voter registration details, as well as data described
as “modeled” voter ethnicities and religions. The data was stored on a publicly accessible
S3 storage server owned by a Republican data analytics firm, Deep Root Analytics. Due
to a responsible disclosure, the server was secured prior to any publication.

3.1.3 AgentRun case

Health and medical data is always considered to be among the most confidential ones.
AgentRun is a customer management software for insurance brokers and has accidentally
exposed personal and medical information on thousands of customers of major insurance
companies [33]. During an application upgrade, they migrated to an S3 bucket which
configurations were not cautiously handled. The bucket contained sensitive health infor-
mation such as individual’s prescriptions, dosages and costs, besides personal data, in
some cases including income range or ethnicity.

3.1.4 YAS3BL

These three cases are only a slight selection of the several incidents that took place in the
past. The collection of Peter Benjamin called YAS3BL (Yet Another S3 Bucket Leak)
lists all preceding S3 bucket leaks that have been discovered and made public [44]. At the
time of writing the thesis, 27 previous cases are listed with the number of records involved
and the type of data that has been leaked.

3.2 EC2 instance metadata vulnerability

The second type of vulnerability is related to the EC2 metadata service. As it has been
presented previously, the EC2 metadata service is used to configure or manage an instance
and can be accessed via a private HTTP interface, using the following URL:

http://169.254.169.254/latest/meta-data/

In combination with other vulnerabilities, one might access the data stored in the EC2
metadata, which can lead to the disclosure of credentials belonging to the instance profile.

3.2.1 EC2 metadata and SSRF

There have been two distinct cases where Server-Side-Request-Forgery vulnerabilities have
been identified besides the EC2 metadata service and thus lead to compromise of the
credentials.

According to the definition by OWASP, Cross-Site Scripting (XSS) attacks are a type
of injection, in which malicious scripts are injected into otherwise benign and trusted
websites [39]. A Server-Side-Request-Forgery (SSRF) vulnerability might be considered
as a type of XSS vulnerability, it means that functionality on the server can be abused by

18

CHAPTER 3. AMAZON-SPECIFIC SECURITY ISSUES

an attacker, to read or change internal data, e.g. by modifying a URL used by the code
running on the server [20].

The coming incident was discovered by an information security company, called Ionize,
while testing a web application used to generate PDF documents [5]. The first finding
was that the documents were initially rendered as HTML documents and user input was
insecurely reflected into the HTML page, thus allowed XSS attacks. Revealing that the
server was hosted on an EC2 instance meant that the XSS attack has essentially become
an SSRF vulnerability.

Using a payload with script tags allowed them to retrieve the window location being
localhost. By using JavaScript redirect, it was possible to disclose the role from the
metadata and render it into the PDF:

<script>window.location="http://169.254.169.254/latest/meta-data/iam/

security-credentials/"</script>

By adding the rolename at the end of the url, the credentials attached to the role could
be extracted. These keys can be used to make programmatic calls to the AWS API and
the attacker can immediately abuse all permission attached to the role.

The second incident, caused by the combination of the EC2 metadata service and an SSRF
vulnerability, has been discovered in a bug bounty program and lead to full compromise
of the owner’s account, including 20 buckets and 80 EC2 instances [3]. The company was
using a custom macro language from which functions could be injected into JavaScript
code. In particular, the fetch method was found to be a good way to access resources and
retrieve information from the server.

Relying on the unique identifier of the S3 buckets, a couple of buckets were discovered
related to the company, as the name of the buckets contained the name of the company.
For this reason, it seemed reasonable to assume that they might as well utilize AWS
servers for their application. As it was suggested on the SSRF dedicated GitHub page for
AWS cloud instances, the metadata service was tested, if it could be reached [21]. This
was in fact possible, thus the security credentials stored in the metadata could be read.
The credentials allowed the, fortunately benign attacker, to list a large number of EC2
instances and S3 buckets.

3.2.2 EC2 metadata and HTTP request proxying

In his paper on Pivoting in the Amazon cloud, Andres Riancho also draws attention how
EC2 metadata might be accessed through HTTP request proxying.

Figure 3.1: Exposure of instance metadata. [28]

19

CHAPTER 3. AMAZON-SPECIFIC SECURITY ISSUES

If an attacker is able to ask any of the services running on the EC2 instance to perform an
HTTP GET request to an arbitrary URL, then he would as well send the request for the
URL of the metadata service, as seen on Figure 3.1. By receiving the body of the HTTP
response, he can get ahold of the sensitive information stored in the metadata.

Any vulnerable software which allows HTTP proxying could be used to retrieve the meta-
data. The most common vulnerability that allows this type of access is PHP Remote File
Inclusion and consequentially Remote Code Execution by uploading a malicious script
[28].

3.3 IAM policy misuse

IAM is the core service behind access management within the AWS environment and for
this reason, misconfigurations of the service is the main source of vulnerabilities, once an
EC2 instance is compromised. The misuse of IAM policies and permissions can lead to
privilege escalation or data exfiltration, or in fact, the previously mentioned S3 bucket
vulnerability can be a consequence of IAM policy misuse as well.

AWS allows users to apply two kinds of policies regarding who’s managing them, AWS
or customer managed policies. Clearly, using either policy type, it is highly important to
verify that the intended permissions are granted.

One might assume that AWS managed policies can be applied without further considera-
tion, however they should also be handled with caution and checked what exact permissions
are included.

In the spring of 2018, an AWS managed policy was discovered which potentially allowed
granting admin access to any IAM role [51]. This was possible due to the fact that the
policy AmazonElasticTranscoderFullAccess role was attached to the role of the user. This
policy grants iam:PutRolePolicy permission and enables the user to attach any inline
policy to the chosen role, potentially allowing the user to allow all actions on all resources.
After a responsible disclosure, AWS has addressed the issue and removed the mistakenly
added permission.

3.4 Mitigation and countermeasures

This section is devoted to mitigation techniques and countermeasures that can be applied
to eliminate the above mentioned vulnerabilities.

3.4.1 EC2 metadata vulnerability

In the examples presented in Section 3.2.1, the core vulnerability is that the user input
is reflected into the webpage without sanitization. As recommended by the security team
who discovered the issue, disabling JavaScript on the page containing user data would
have reduced the impact, although even with that, iframes could allow other attacks in
some configurations.

However, as highlighted in Section 3.2.2, different vulnerabilities may lead to similar at-
tacks as well and allow anyone having access to the EC2 instance to retrieve credentials
from the metadata. Therefore, it is recommended to restrict its availability by locking

20

CHAPTER 3. AMAZON-SPECIFIC SECURITY ISSUES

down the metadata endpoint so it is only accessible to specific OS users. For instance, on
Linux machines by running the following:

ip-lockdown 169.254.169.254 root

The above command only allows the endpoint to be accessed the root user, therefore an
attacker can only use the metadata service if he is able to gain root privileges.

3.4.2 Protecting S3 data using encryption

Even if an S3 bucket is found to be publicly available, encryption can provide protection
to the stored data. Either client-side or server-side data can be applied. In the latter case,
the data is encrypted at rest, meaning that the data is encrypted as Amazon writes it to
disks in its data centers and the objects are decrypted when accessed by an authenticated
and authorized user.

Client-side encryption does not only protect data at rest, but also while in-transit, as it is
traveling to and from an S3 bucket. In this case, the encryption process and the encryption
keys are managed by the customer and the data is encrypted before uploading.

3.4.3 IAM best practices

Amazon Web Services has published a comprehensive list of technical whitepapers, cover-
ing the topic of security as well. The Security Pillar of AWS Well-Architected Framework
is worth mentioning as it provides a best-practice guidance for architecting secure systems
on AWS, including security practices for the IAM service [26]. The first point of the recom-
mended design principle is to implement a strong identity foundation. Besides protecting
AWS credentials, the other main element of this approach is fine-grained authorization.

Principle of least privilege

Establishing a principle of least privilege ensures that authenticated identities are only
permitted to perform the most minimal set of functions necessary to fulfill a specific task,
while balancing usability and efficiency [26]. This principle aims to limit the potential
impact of inappropriate use of valid credentials. An organization can implement fine-
grained authorization using IAM roles, users and policies and assign only the minimal set
of permissions for these principals.

3.5 Summary

Based on the findings, the most common vulnerabilities of systems using AWS services de-
rive from misconfigurations related to Identity and Access Management, S3 bucket policies
or they derive from the EC2 instance metadata being unencrypted and if accessed, read-
able to anyone. The above described mitigation techniques and best practices, if followed,
should provide a solid basis to establish a secure system. However, as all humans make
mistakes, it is always important to verify that the developed system works as intended
and for this purpose apply appropriate tests. In the field of security, penetration testing
is a well-established method to discover security flaws in the system.

21

Chapter 4

Penetration testing

In this chapter, I give an overview of a a penetration testing methodology to understand the
general concept of a penetration test. Furthermore, a web application model is introduced
to outline the target of the test, the infrastructure of the application in the Amazon cloud.

A penetration test is an attempt to evaluate the security of an IT infrastructure by trying
to exploit vulnerabilities in a harmless manner. The overall process can be divided into a
series of phases which all together form a comprehensive methodology. Albeit, depending
on the exact methodology, the names and the number of the steps may vary, in their
essence the processes are very much alike.

4.1 Penetration testing methodology

Each phase of a penetration test builds on the results of the previous steps, therefore the
order can not be changed. The whole process often involves pivoting, meaning that the
steps are repeated to gain access to further resources [35]. For this reason, the methodology
is also considered to be a cyclic process as depicted in Figure 4.1.

Figure 4.1: Cyclical representation of the methodology. [35]

The first step of a penetration test is reconnaissance, which means gathering information
about the target. The more knowledge is obtained during this stage, the more likely the
tester is to succeed in the later phases.

The second step essentially covers two distinct activities, namely port scanning and
vulnerability scanning. Port scanning results in a list of open ports and potentially the

22

CHAPTER 4. PENETRATION TESTING

identified services that are running on the target. On the other hand, vulnerability scan-
ning deals with specific weaknesses in the software or services that have been discovered.

The exploitation phase highly depends on the results of the previous two steps. It
includes active intrusion attempts which can verify that the found vulnerabilities can
indeed be exploited, thus the system is prone to attacks. This step needs to be performed
with due care and requires the consideration of potential effects to avoid irreversible harm.

The final phase is post exploitation and maintaining access. It covers collecting
sensitive information, discovering configuration settings and communication channels that
can be used for malicious activity. One of the goals of this phase is to maintain persistent
access to the system by setting up a backdoor to access the compromised machine later
on [30].

The above described methodology is based on the zero entry hacking concept, meaning
that the tester was given no help to access the system in advance. Another approach
is an authenticated penetration test, in which case the tester is provided with a set of
credentials. In this scenario, the focus is on the last phase of the penetration test, post
exploitation and maintaining access.

4.2 Authenticated penetration test

Gaining access to an AWS resource might take place in numerous ways. An attacker might
find an exploitation for the application running on an EC2 instance and allow himself to
access the metadata service, as it has been explained in the previous chapter. Besides,
there exist other ways how AWS keys might get leaked. Uber lost millions of records
of personal data, due to hackers breaking into their GitHub account and retrieving the
credentials from their code, in which the AWS keys were included to access S3 buckets
[52]. Social engineering, phishing and password reuse are also potential threats that might
lead to the leakage of the keys.

The authors of the newest AWS penetration framework (Pacu) say that configuration flaws
in the system can be most easily prevented by performing an ”authenticated penetration
test”. An authenticated test means simulating a breach and providing an attacker with a
set of ”compromised” AWS keys, so in this way, the range of AWS services can be fully
examined [50].

According to the formal definition, an authenticated penetration test corresponds to the
post-exploitation phase, since getting hold of the AWS credentials basically means the
compromise of the system. Post-exploitation is considered to be a truly important step of
a penetration test, since the value of the compromised system can be determined by the
value of the actual data stored in it and how an attacker may make use of it for malicious
purposes [30].

With a preliminary assumption that the AWS keys were either leaked, or the attacker
has control of the virtual machine at a certain level, the tester can focus on the internal
settings of the cloud infrastructure. In the previous chapter, it has been demonstrated
that misconfigurations can in fact be a huge concern within an AWS environment. For
this purpose, it is worth to examine how an attacker could move forward from this point
and how the keys could be used for further abuse of the cloud infrastructure behind the
application.

23

CHAPTER 4. PENETRATION TESTING

4.3 Amazon-based web application model

What exactly can be referred to as cloud infrastructure? Within the Amazon cloud, cus-
tomers are allowed to build a customized cloud environment by piecing together different
AWS services. Since the range of available services is so wide, I have selected a number
of services that typically form part of an application running in the Amazon cloud.

During the study, I use a web application model that can be considered to be a general
model of applications using AWS services and also correlates to the products that are
tested during the research. The additionally created test environment is also aimed to
replicate the structure of this model, which is depicted in Figure 4.2.

Figure 4.2: Structure of a typical web appcliation.

Applications under a higher demand typically consist of more than one frontend server
to provide a smooth service. Therefore in each region, a load balancer is used to dis-
tribute the load of connected clients among the currently running frontend servers. In the
case of Sophos, the clients communicating with the load balancer are original equipment
manufacturers (OEMs), Sophos appliances, various cloud services and endpoint users.

In the model, the frontend servers are established on EC2 instances using caching in the
background and communicating with the database, a DynamoDB. Each frontend server
contains cache to serve frequently queried records. S3 is used to store data used by
the application. The instances are connected to the backend services through SQS, to
properly process all messages exchanged between the servers and the backend services.
These services which might be within the corporate network or potentially are further
AWS services. Additionally, Cloudwatch and CloudTrail services are also running in the

24

CHAPTER 4. PENETRATION TESTING

background, collecting logs produced by the application and monitoring account activity.

4.4 Penetration testing in the Amazon cloud

One shall not forget that performing a penetration test in the cloud provided by a third
party vendor ordinarily requires permission from the cloud service provider beforehand.
Amazon provides a request form on their website which has to be submitted, specifying
the resources under test and the expected start and end date of the test [14].

Penetration testing in a traditional environment or in the AWS cloud definitely differs
regarding the scope of the test. In the AWS cloud, the scope is basically defined by the
shared responsibility model that has been described in Chapter 1. The division of the
responsibilities regarding the components of the infrastructure also applies to security
tests. Cloud Service Providers do perform penetration testing on the elements belonging
to their responsibility, however it is the customer’s duty to take security measures under
their scope.

In the shared responsibility model of Amazon, their policy permits the customer to test
User-Operated Services, i.e. resources created and configured by the user [49]. As an
example, AWS EC2 instances can be fully tested, except for attempts to disrupt business
continuity, such as trying to launch Denial of Service (DOS) attacks. However, AWS
managed systems or their infrastructure has to be out of the scope of any penetration test
performed by customers.

25

Chapter 5

Non-authenticated penetration
test

The traditional penetration testing methodology has been discussed in Chapter 4. The
following two chapter walk through the methodology by applying the appropriate tools to
each phase of the test and examining the results with special regard to the Amazon-specific
characteristics.

For the tests run during the research, I used an EC2 instance with Kali Linux installed,
with penetration testing permissions for the target resources, satisfying the AWS testing
policy.

5.1 Reconnaissance

Reconnaissance against the target is aimed to collect as much information as possible for
the following phases. It must be noted that the execution of this step is not exceptionally
specific to the cloud, therefore I highlight those findings only which I find relevant from
the research prospective.

The results partially contain confidential information of the company, for this reason there
are some alterations, for instance in case of the IP addresses or the hostname. Matching
to any IP address or hostname in use, is only a coincidence. (At the time of writing the
thesis, they are unused.)

First, the host tool can be used to discover the IP address belonging to the provided
hostname. Using the -a switch will provide a verbose output and possibly reveal additional
information about the target.

> host -a testforthesis.com

Trying "testforthesis.com"

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52974

;; flags: qr rd ra; QUERY: 1, ANSWER: 7, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;testforthesis.com. IN ANY

;; ANSWER SECTION:

testforthesis.com. 5 IN SOA ns-1317.awsdns-36.org.

awsdns-hostmaster.amazon.com. 1 7200 900 1209600 86400

26

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

testforthesis.com. 5 IN A 99.99.99.91

testforthesis.com. 5 IN A 88.88.88.81

testforthesis.com. 5 IN NS ns-970.awsdns-57.net.

testforthesis.com. 5 IN NS ns-1317.awsdns-36.org.

testforthesis.com. 5 IN NS ns-1736.awsdns-25.co.uk.

testforthesis.com. 5 IN NS ns-112.awsdns-14.com.

The first fact to note is that two IP addresses belong to the hostname which implies that
a load balancer is deployed in the system and multiple servers are used, as in the model
described in Section 4.3. Secondly, it is visible that the returned SOA and NS record have
the same format as used for public hosted zones by the Route 53 service of Amazon.

The nslookup tool is commonly used to find the corresponding IP address to a given
hostname. The tool works both directions, when applicable, a reverse DNS lookup can
provide useful information as well.

> nslookup 88.88.88.81

81.88.88.88.in-addr.arpa

name = ec2-88-88-88-81.eu-west-1.compute.amazonaws.com.

Running the tools with one of the discovered IP addresses, reveals the information that
the host is in fact an Amazon EC2 instance, in region eu-west-1.

5.2 Scanning

The next step after reconnaissance is scanning. As mentioned previously, this phase can
be divided into two subbranches, namely port and vulnerability scanning.

5.2.1 Port scanning

Port scanning basically continues the information gathering that has started during the
reconnaissance phase by identifying open ports and services that are available on the target
system. The execution of this step is similar to any penetration test - using cloud services
or not, therefore the same tool can be used, that has proved its worth under traditional
circumstances. Nmap is a very powerful tool for port scanning in case the suitable flags
are applied.

-Pn: Treat all hosts as online -- skip host discovery

-p <port ranges>: Only scan specified ports

-sV: Probe open ports to determine service/version info

-v: Increase verbosity level

-A: Enable OS detection, version detection, script scanning, and traceroute

-sS: TCP SYN scan

-T<0-5>: Set timing template (higher is faster)

> nmap -Pn -p 1-65535 -sV -v -A -sS -T4 testforthesis.com

Starting Nmap 7.60 (https://nmap.org) at 2018-09-24 11:09 UTC

Nmap scan report for testforthesis.com (99.99.99.91)

Host is up (0.13s latency).

Other addresses for testforthesis.com (not scanned): 88.88.88.81

rDNS record for 99.99.99.91:

27

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

ec2-99-99-99-91.eu-west-1.compute.amazonaws.com

Not shown: 65533 filtered ports

PORT STATE SERVICE VERSION

80/tcp closed http

443/tcp open ssl/http nginx

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: nginx

Running (JUST GUESSING): Linux 3.X|2.6.X|4.X (90\%), Fortinet FortiOS 5.X

(85\%) OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:2.6

cpe:/o:linux:linux_kernel:4 cpe:/o:fortinet:fortios:5.0.6

Aggressive OS guesses: Linux 3.2 - 3.8 (90\%), Linux 2.6.32 - 3.0 (86\%),

Linux 3.11 - 4.1 (86\%), Fortinet FortiOS 5.0.6 (85\%)

No exact OS matches for host (test conditions non-ideal).

Nmap done: 1 IP address (1 host up) scanned in 949.22 seconds

As a result, the open and close ports are returned with the recognized services running
on them, along with their version. The output also includes supported http-methods
and the assumed OS type. Besides, Nmap has recognized the two IP addresses and the
EC2-specific host name as well.

5.2.2 Vulnerability scanning

Vulnerability scanning is the process of locating and identifying known weaknesses in the
services and software running on the target machine [36]. In case the target system has a
known vulnerability, it can be exploited with little effort. In traditional setups, this phase
is most commonly performed with automated tools, such as Nessus, the Nmap Script
Engine (NSE) or OpenVAS. Ideally, at least one vulnerability has been identified which
can be exploited as the third step of the penetration test.

5.2.3 S3 enumeration

Once an attacker has discovered that AWS services are used behind the application, scan-
ning can also be extended to Amazon services. One possible direction is to assume that
S3 buckets are also included in the picture. In the following, two tools are presented that
can help to find potentially open buckets or files associated with the target.

Sandcastle bucket enumeration

Sandcastle is a tool for AWS S3 bucket enumeration, written in Python. The script uses
the name of the target and a wordlist to check whether any buckets can be found associated
with the target’s name. Based on the status code that is returned when trying to access
the bucket, it is clear whether the certain bucket exists and is readable, exists but denies
access or does not exist at all.

The Sandcastle bucket enumeration tool initially requires a target name and a wordlist.
The words are then appended to the target name, the new word becoming the potential
bucket name. A default wordlist is provided which can be edited, or an arbitrary list can
be used as well. By providing the target name ”reka” and using the default wordlist, a
number of matches are shown that returned 403 status code, such as ”reka-dev” (which
has actually been found by accident). It means that the client is not permitted access to
the resource, but the bucket exists. If a 200 status code is returned, the bucket is publicly
accessible and the response also includes the content of the bucket, as seen in Figure 5.1.

28

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

Figure 5.1: Sandbox bucket enumeration.

Albeit an existing bucket is also useful information, the truly successful catch is when not
only a bucket is found, but when this bucket is publicly accessible.

S3 bucket database

Another helpful tool related to the Amazon S3 service is the online database by Gray-
hatwarfare [8]. The database currently contains information about 80,000 open buckets
and approximately 200 million files. One can search for words of interest and browse the
content of the files using the web interface. The files are filtered by their formats and
”uninteresting” files are excluded, such as images.

According to the authors, the purpose of the website is to raise awareness on the open
bucket issue. In case certain files or bucketnames are found that cause any harm, they
will be removed after contacting the developers.

Compared to the Sandbox bucket enumeration tool, the interface gives more freedom
regarding the keywords, thus making the search more customized. However, the database
is only updated manually by the maintainers, therefore it might not contain all the current
information, whereas the Sandbox tool always returns up-to-date results.

5.3 Exploitation

The third phase of a penetration test includes active intrusion attempts which can verify
that the system is indeed prone to attacks. An exploit is a way to bypass a security flaw
or circumvent security controls. Depending on the severity of the exploited vulnerability,
the extent to which the attacker has control over the target may differ significantly.

Exploitation is one of the most ambiguous phase, since there are no two identical systems,
each target is unique. Different operating systems, services or processes all require suitable
attacks. For this reason, a wide range of activities and tools is available to satisfy the needs.

The fact that it has been revealed that AWS services are running in the background can
serve as a good starting point for the attacker. In Chapter 3, a couple of examples have
been demonstrated, where leveraging AWS services combined with specific vulnerabilities
lead to the compromise of the system and exposure of the AWS keys. One is abusing
a HTTP request proxying vulnerability and the metadata service attached to the EC2
instance.

5.3.1 Extracting keys via a HTTP request proxying vulnerability

A web server might function as a HTTP proxy, using a URL parameter to redirect the
request, as in the following example taken from the CloudSecOps blog [16]:

54.148.20.61/?url=http://www.google.com

29

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

In case the server is running on an EC2 instance, Nimbostratus can be used to exploit the
vulnerability.

Nimbostratus

Nimbostratus is a set of tools for fingerprinting and exploiting Amazon cloud infrastruc-
tures, developed by Andres Riancho [27]. The tools are developed in Python and they
were created as a proof of concept for a talk about Amazon’s security testing, specifically
for the Nimbostratus target infrastructure.

One of the tools of Nimbostratus is dump-credentials, which can be leveraged to print
the AWS keys of the server. The URL of the metadata service is known, however the
metadata can only be accessed via a private HTTP interface, therefore the request has to
be sent from the server itself. This is supported by a mangle function which is included
in the toolset, only the vulnerable URL has to be added into the code.

Simulation

An Apache2 web server is running on the EC2 instance that I use for the simulation. It
functions as a HTTP proxy, redirecting the traffic to the given URL parameter as seen in
Figure 5.2.

Figure 5.2: HTTP request proxying.

By adding the vulnerable URL to the mangle function, and running the following com-
mand, the credentials belonging to the EC2 instance are returned.

./nimbostratus -v dump-credentials

--mangle-function=core.utils.mangle.mangle

Nevertheless, these results can also be achieved without using the Nimbostratus tool. The
process is similar to a previously seen situation. First, the instance profile has to be
retrieved from the metadata and then it can be used to access the credentials.

Figure 5.3: Exposed credentials via HTTP request proxying vulnerability.

This example shows how a specific vulnerability related to EC2 instances can be exploited.
Nonetheless, as mentioned previously, attack vectors always need to be adjusted to the
target, which is rarely identical to another system. Eventually, exploitation is such a broad
topic that it is not discussed in more detail within the confines of the thesis.

30

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

5.4 Post exploitation and maintaining access

Post exploitation covers the activities after the victim’s system has been compromised by
the attacker. From this point, the main focus lies on extracting as much information as
possible from the system, without the owners noticing the occurrence of an attack. The
phase deals with collecting sensitive information, discovering configuration settings which
may be used to maintain persistent access to the system.

As it has been discussed in Chapter 4, an authenticated penetration test corresponds to
the post exploitation phase of the methodology. The baseline situation of an authenticated
test is that an attacker is in possession of the credentials and is able to access an EC2
instance. The aim is to discover where he can get from this point.

Before going into more details, another scenario is discussed, where the attacker has not
yet acquired the AWS keys, but is able to establish a reverse shell.

5.4.1 Extracting keys using a reverse shell

In this situation, the AWS-specific module of Metasploit can be of great help.

Metasploit

The Metasploit Framework is an open source tool by Rapid7 written in Ruby, which
offers a wide range of exploits for the latest vulnerabilities as well as an extensive exploit
development environment [46]. The most popular interface to the Metasploit Framework
is the MSFconsole, which enables an easy access to all features of the tool. It is composed
of modules, which are standalone codes, extending the functionality of the framework.
A module can either be an exploit, auxiliary, payload, no operation payload or post-
exploitation module.

Gather AWS EC2 Instance Metadata

One of Metasploit’s post-exploitation module is the Gather AWS EC2 Instance Metadata
module which attempts to connect to the AWS EC2 metadata service and crawl and
collect all metadata known about the session’d host [45]. The session is required to be a
Meterpreter session. Meterpreter is a payload within the framework that provides control
over an exploited target system, running as a DLL, loaded inside of any process on the
target machine.

Contribution to the Metasploit Framework

The Metasploit Framework being the community version of the whole Metasploit Project,
relies a lot on its contributors. Contributing to the framework by building new modules
or fixing bugs is highly promoted by Rapid7.

I am pleased to be one of the contributors to the framework by fixing a couple of bugs in
the code of the module. The first trials of running aws ec2 instance metadata.rb within
the MSFconsole, resulted in unexpected errors and lead to further investigations, at last to
correct the code. The errors included wrong usage of regular expressions, issues with the
merge function, incorrect handling of a special case and using the curl function without
the necessary flags. The fixed version of the code has been merged to the master branch

31

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

of the Metasploit Framework’s repository on GitHub1.

Simulation

In a nutshell, a reverse shell is when one computer connects to another, and the initiating
machine forwards its shell to the destination. I am using two EC2 instances to simulate
the situation, one attacker and one target machine in the same security group. First of
all, it is necessary to allow incoming TCP traffic from sources within the security group
on the utilized port number, which was chosen to be 4443. The basic idea is shown in
Figure 5.4.

Figure 5.4: Reverse shell diagram.

After starting msfconsole, first I establish a reverse shell using the multi/handler exploit
module with the reverse tcp payload. The exploit requires to set the host IP and the port
number as well, as seen in Figure 5.5.

Figure 5.5: Reverse shell exploit.

From the target machine I use Netcat2 to establish the connection between the two ma-
chines. During the simulation, the following command is sent manually to the attacker
who is listening on the other end, the flag implying to send him control over the command
prompt. A possible real-life scenario could be, that a web server that is running PHP, is

1https://github.com/rapid7/metasploit-framework/pull/10394
2https://en.wikipedia.org/wiki/Netcat

32

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

hosted on an EC2 instance. Additionally, the attacker is able to inject a script remotely,
which can be executed by accessing the file via the appropriate URL [15].

nc 172.31.42.138 4443 -e /bin/bash

First, the established session has to be put in the background and be upgraded to a
Meterpreter session, since this Metasploit module can only work with Meterpreter sessions.
This is achieved using the shell to meterpreter post-exploit module. It is possible to check
the active sessions within Metasploit, which can help to set the session to the right Id
number.

Figure 5.6: Upgrade to Meterpreter session.

The last step is to run the aws ec2 instance metadata module itself. It is only necessary
to set the session to the upgraded Meterpreter session’s Id.

Figure 5.7: Gather metadata exploit.

As seen in Figure 5.7, the result of the exploit is saved into a text file which contains all
the available information on the metadata server. Among others, under iam and security-
credentials, one can find the temporary access key, secret key and token.

5.5 Summary

The first two phases of the penetration testing methodology are highly similar to a conven-
tional penetration test. The same tools can be used as in a traditional setup, supplemented
by the S3 bucket enumeration tools. One of the major causes of security breaches, namely

33

CHAPTER 5. NON-AUTHENTICATED PENETRATION TEST

leaving S3 buckets open to the public can be already discovered during the scanning phase
of a penetration test. Clearly, it is only possible if the tester is provided with the names
of the buckets or if the organization is using relatively conventional names, so that they
can be found with the recommended tools.

After performing the first two phases, certain indicators can reveal the fact that AWS
services are used, which might help the attacker to a successful exploit, for instance, by
abusing the metadata service. Regarding the remaining two phases of the penetration
test, two tools have been presented, which can be of great help, in rather specific cases.
However, regardless of the success of the non-authenticated penetration test, an exhaustive
authenticated penetration test can be performed without any constraints.

34

Chapter 6

Authenticated penetration test

An important element of the research is authenticated penetration tests and how this
method can be helpful in discovering improper configuration settings within the AWS
environment. During an authenticated penetration test, it is assumed that the attacker is
in possession of the AWS keys, and the question is, how he can move forward from this
point.

First and foremost, I would like to make a remark on one of the tools that is mentioned
multiple times in this chapter. Within the research period of the thesis, in August 2018,
Rhino Security Labs released the most complex open source toolset related to Amazon
so far, as the authors refer to it, the equivalent of Metasploit for AWS security, Pacu
[50]. Similarly to Metasploit, Pacu is designed with a modular architecture and aims
to cover every step of a penetration testing process. Their offering initially included 35
modules, since then it has been updated to 41 modules, ranging from privilege escalation,
enumeration, log manipulation and miscellaneous exploitation.

A significant part of the research had been carried out before the toolset was published,
including identifying areas, where further tools could be helpful. Since the goal of the
research includes extending the available toolset to achieve a comprehensive method, I
have started to work on a toolset to reach this goal. The development of these tools
was reaching its end when Pacu has been discovered, therefore in some cases overlapping
occurs. This is, however, a great validation of the necessity of these tools. The collection
was named Froud and this is also how I later refer to them.

As mentioned previously, an authenticated penetration test corresponds to the post-
exploitation phase of the whole penetration testing methodology, which covers the fol-
lowing steps [30]:

• Understanding the victim

• Privilege escalation

• Collecting system information and data

• Setting up backdoors

• Cleaning tracks and staying undetected

• Pivoting to penetrate further resources

In an AWS environment these terms might have a slightly different meaning compared to
a traditional setup. The focus is not on the operating system and its users and processes,
but their correspondents in Amazon, IAM users, roles and the utilized services.

35

CHAPTER 6. AUTHENTICATED PENETRATION TEST

6.1 Understanding the victim

First of all, the goal is to explore the environment and to understand what the keys allow
the attacker to do. AWS keys can be used to authenticate programmatic calls to AWS
API operations or to run AWS CLI commands. The possibilities, however, are highly
dependent on the entitlements belonging to the keys. In case they are taken from the
metadata of an EC2 instance, the permissions depend on the role attached to the instance
profile. Furthermore, discovering the available resources can give us a picture on the whole
AWS infrastructure. If S3 buckets are detected, it is also worth checking whether further
policies are attached to them. During this step the following questions are aimed to be
answered:

• Entitlements: What kind of policies belong to the role of the instance profile?
Which exact permissions do they entail?

• Available resources: Which resources are available from the instance, regarding
the services S3, SQS, DynamoDB?

• Resource policies: What kind of resource policies are attached to S3 buckets
additionally?

6.1.1 Entitlements

Discovering the entitlements is one of the cases when a tool from Froud and a Pacu module
overlaps.

Nimbostratus

Besides the previously mentioned feature of the Nimbostratus tool, it can also help to dump
all permissions. However, this dump-permissions function does not list all the permissions
exhaustively, it either looks for some ”common actions” or lists user and group policies
only, missing role policies, which is highly important regarding EC2 instance profiles.

Role policy enumeration

The aim of the role policy enumerator tool of Froud is to discover both managed and
inline policies attached to the role of the EC2 instance profile. The results are presented
in a table, containing all permissions that belong to the found policies.

The tool allows filtering the results using regular expressions. It is possible to search for
specific permissions, such as only those actions starting with ”Put” which can be consid-
ered relatively strong permissions. In my setup, two policies are attached to test role, a
managed policy, AmazonDynamoDBFullAccess and a customized inline policy, test policy.

Figure 6.1: Role policy enumerator filtering.

36

CHAPTER 6. AUTHENTICATED PENETRATION TEST

Pacu enum modules

First, by running the iam enum users roles policies groups module of Pacu, the contained
principles are enumerated and stored in the local database, which is used to manage
retrieved data. Afterwards, the iam enum permissions module extracts the permissions
that belong to the entities within the database. Finally, the whoami command of Pacu
lists all the found permissions, categorized by the found users, roles and groups.

6.1.2 Available resources

Regarding the available resources, one tool that can be helpful is the resource-counter
tool, which counts the number of resources in different categories across Amazon regions
[17]. The results are shown first based on each region, then the total number is displayed.
One drawback is that the results only contain numbers, but the names of the resources
are not returned, which however might be useful later on.

The second tool of Froud is aimed to help discovering available resources within the ser-
vices DynamoDB, S3 and SQS, focusing on those services that are included in the web
application model. The tool uses skew, a package for identifying and enumerating cloud
resources based on a scheme pattern [23]. In particular, the ARN scheme uses the basic
structure of Amazon Resource Names, a unique identifier to every AWS resource. The
tool returns the name of the found resource, along with the specific service and the region.
Filtering is again allowed, based on the type of the service.

Figure 6.2: Resource enumerator.

6.1.3 Resource policies

The third area to check is whether any bucket policies are attached to the discovered S3
buckets. Besides the policies attached to the role of the instance profile, S3 bucket policies
can allow further permissions, or potentially deny the existing ones. One possible scenario
is that a policy attached to a bucket allows the s3:PutObject action using the instance’s
role, even though the IAM policies do not give permission for this operation.

WeirdAAL (AWS Attack Library)

The WeirdAAL project has two main goals, answering the question what an AWS key-
pair can be used for, and provide a repository of useful functions to interact with AWS
services [25]. A great amount of AWS services are included in the offering, such as IAM,
DynamoDB, S3 or SQS. The structure of the tool is module-based similarly to Pacu, and
a module can be called by adding its name as a command-line argument.

37

CHAPTER 6. AUTHENTICATED PENETRATION TEST

The module s3 list buckets and policies of WeirdAAL lists the content of all S3 buckets
and their policies. Both ACLs and bucket policies are returned, if any found.

S3 inspector

S3 inspector is a standalone tool for checking S3 bucket permissions which has been in-
spired by the security breaches related to publicly available buckets [19]. The S3 inspector
checks all buckets within the account for public access and for each bucket returns a report
with:

• Indicator whether the bucket is public or not

• Permissions for the bucket if it is public

• List of URLs to access the bucket if it is public

Figure 6.3: S3 inspector report.

6.2 Privilege escalation

In the AWS terminology ”AdministratorAccess” is the policy, which gives the entity full
access, both regarding actions and resources. However, an attacker might find and abuse
presumably limited permissions to escalate his privileges [32]. One of Pacu’s module specif-
ically focuses on those methods, which can allow the attacker to gain full administrator
access of the AWS account. The initial research was conducted by CyberArk, a security
company focusing on privileged access security. The list of ”stealthy admin policies”,
which must be handled with due care, consists of 10 sensitive IAM policies.

The following cases demonstrate how sometimes harmless-looking permissions can be
abused to escalate privileges.

1. Creating a new user access key: The iam:CreateAccessKey permission allows the
attacker to request a new access key, secret key pair belonging to another user in the
AWS environment. This way the attacker can gain the same level of permissions as
any user of the account, including a full admin user.

2. Creating a new login profile: The iam:CreateLoginProfile permission allows the at-
tacker to create a password for a privileged entity that only has API keys, but no
password-based login profile for the AWS console. For instance, an entity that is not
meant for humans, but for an application’s APIs automatic usage, might not have a
password set up. The new password can be used to impersonate this user, and make
use of the newly gained privileges.

38

CHAPTER 6. AUTHENTICATED PENETRATION TEST

3. Updating an existing login profile: Similarly to the previous scenario, the iam:Update-
LoginProfile permission allows the attacker to change the password belonging to a
login profile and make use of the gained privileges.

4. Attaching a managed policy to an entity: In possession of any of the iam:AttachUser-
Policy, iam:AttachGroupPolicy, iam:AttachRolePolicy permissions, the attacker is
able to escalate privileges by simply attaching a new managed policy, including the
AdministratorAccess policy.

5. Updating an inline policy for an entity: Similarly, any of the iam:PutUserPolicy,
iam:PutGroupPolicy, iam:PutRolePolicy permissions allows an attacker to update
an existing inline policy for a user, group or role. It allows him to add any arbitrary
permission, including full administrator privileges.

6. Creating a new inline policy: Probably the easiest way to escalate privileges is when
the iam:CreatePolicy is attached. In this case, one can add a stealthy admin policy
with a misleading name, such as ”ReadOnlyPolicy”.

7. Adding a user to a group: An attacker with the iam:AddUserToGroup permission
can add him to an existing IAM group, for instance, the admin group, or at least a
group with more privileges.

8. Updating the AssumeRolePolicy: Every role has a policy that defines who can
assume this role. The combination of the iam:UpdateAssumeRolePolicy and the
sts:AssumeRole permissions allows the attacker to change this policy and assume a
more privileged role.

9. Each IAM policy can have up to five policy versions at a time, which can be a
useful feature when a specific policy is updated, but a ”backup” is also wanted. The
iam:CreatePolicyVersion permission allows an attacker to create a new version with
a broader set of permissions. Using the AWS CLI, this version can be set as default
with the same command and without requiring any further permissions.

10. Similarly, the iam:SetDefaultPolicyVersion permission can be used to change the
default version of the policy to an other existing version, which might encompass
more privileges.

Rhino Security Labs continued the research and extended the list, from which I would like
to mention two more methods related to the Lambda service [48]:

11. Passing a role to a new Lambda function and invoking it: The combination of
the iam:PassRole, lambda:CreateFunction and lambda:InvokeFunction permissions
allows an attacker to pass an existing role to a new Lambda function, preferable
a role which has AttachUserPolicy permission. This way, the attacker can entitle
himself full administrator privileges, after invoking the new lambda function.

12. Updating the code of an existing Lambda function: Based on a similar concept,
an attacker with the lambda:UpdateFunctionCode permission, is allowed to upload
the code in an existing Lambda function and access the privileges associated with
the Lambda service role that is attached to that function. This might result in full
administrator access to the account.

Based on the previously collected information, the iam privsec scan module of Pacu se-
lects those escalation methods, which can be performed with the available set of permis-
sions. The selected attack paths are presented to the tester and executed if approved.

39

CHAPTER 6. AUTHENTICATED PENETRATION TEST

6.3 Collecting system information and data

During the first step of the post-exploitation phase, those services have been identified
which can provide valuable data for the attacker. These services could provide sensitive
information either directly or in form of log messages. Below each service, those actions
are listed which can help to retrieve information about the application.

• S3

+ Save the content of a bucket, i.e. the objects.

• SQS

+ Save the content of a queue, i.e. the messages.

• DynamoDB

+ Scan and retrieve all items from the table, save the results locally.

• CloudWatch

+ Scan for all log groups and log streams, save the events from the streams locally.

6.3.1 S3 bucket enumeration

Due to the nature of the service, S3 buckets are without a doubt the biggest concern
regarding data exfiltration. One option is to use the s3 list bucket contents module of
WeirdAAL, which lists all the objects in a specific bucket. To access the contents of the
objects, the module can be used in combination with the s3 download file module. In
both cases, it is necessary to provide the name of the bucket, in the latter the name of the
specific file is needed as well.

Another option is, the s3 download bucket module of Pacu, which basically combines the
discovery and the two modules of WeirdALL. The module scans the current account for
AWS buckets and depending on the user’s decision it prints, or prints and downloads the
data stored in the buckets.

Collecting data from the remaining services was initially not supported by any available
tool. The following three tools have been developed to cover a broader range of AWS
services, concentrating on both data collection and data exfiltration.

6.3.2 SQS message collector

SQS messages can also be in the interest of an attacker, as they contain information about
the application. The SQS tool of Froud saves locally the messages that are currently
available in the specified queue. In case a bucketname is provided, the saved files are
uploaded to this S3 bucket as well. The objects are made public and the publicly accessible
URL is returned, which can be used in any browser.

6.3.3 DynamoDB scanner

Besides S3 buckets, DyanmoDB is the other service within the application, which possibly
stores sensitive information in a direct form. The DynamoDB tool from Froud scans the
table of the given name and saves the results locally, 1000 items per file. The rest of the
operation of the tool is in fact identical to the SQS tool. If a bucketname is provided, the
results are uploaded to this S3 bucket and the publicly accessible URL is returned.

40

CHAPTER 6. AUTHENTICATED PENETRATION TEST

6.3.4 CloudWatch scanner

CloudWatch logs might as well provide useful information about the application. The
CloudWatch tool of Froud, similarly to the previous one, performs not only data collection,
but also data exfiltration. First, it scans for every log group and log stream, then lists
the available log groups and saves the found data locally. Each file contains the log events
belonging to a single stream within a group. There is an option to set the time flag and
determine the time frame for the logs, by specifying the number of hours it should cover
until the requested moment, the default value being 24 hours. Again, if a bucket name is
provided, the messages are also uploaded to this S3 bucket.

This is the second case, when a Pacu module and a Froud tool overlaps. The cloud-
watch download logs module is one of the modules that has been added later to the
framework and oddly enough, it works the same way as the tool just described. It cap-
tures events within the past 24 hours by default, but similarly, the time frame can be
changed.

6.4 Setting up backdoors

The next step of the post-exploitation phase is setting up backdoors. Backdoors play an
important role in maintaining persistent access to the system and using the system as
per the attacker’s needs without starting the attack from the beginning again [30]. A
backdoor is a means of gaining access to a computer by ways that bypass the normal
security mechanisms in place. This can be in the form of bypassing authentication and
securing illegal access to a system.

Regarding AWS environments, setting up a backdoor can be accomplished by abusing
certain functionalities. In particular, incoming rules of security groups, user data script of
EC2 instances, user access keys and passwords, or lambda functions can all be exploited
to maintain persistent access to an account.

6.4.1 Pacu modules

Besides its other components, Pacu also supports the process of setting up backdoors,
based on the following strategies:

• Adding backdoor rules to an EC2 security group: The ec2 backdoor ec2 sec groups
module attaches new inbound rules to a security group to allow access to the EC2
instance. The module can be run by using the default configuration, in particular
the previously found security group with opening all ports from any IP address for
TCP connection. Otherwise, all four parameters can be specified.

• Adding new user access key or password: The idea of creating a new key or a new
password can not only be useful for privilege escalation, as described in Section 6.2,
but for backdoors as well. The iam backdoor users keys and the iam backdoor
users password modules attempt to add either an AWS API key or a password to
the users in the account. The users can either be provided as a parameter, or the
module uses the usernames based on the results of the prerequisite module.

• Altering the user data script: The ec2 startup shell script module can be used to
change the user data script of the EC2 instance. According to its operation, it stops
the instance to update the user data with the chosen shell script, then starts the

41

CHAPTER 6. AUTHENTICATED PENETRATION TEST

instance again. If undiscovered, this can allow an attacker to initiate a reverse shell,
every time the instance is rebooted.

The second tool that can be helpful in establishing backdoors is AWS pwn by Daniel
Grzelak.

6.4.2 AWS pwn

According to the author, AWS pwn is a collection of horribly written scripts for performing
various tasks related to penetration testing AWS, including persistence [2]. The collection
partially overlaps with the modules provided by Pacu, however a number of scripts can
extend the previously described strategies, namely:

• Creating more copies of deleted users: The rabbit lambda script is basically a Lambda
function that responds to ’DeleteUser’ events by creating more copies of the deleted
user. This way, in case the user accessed or created by the attacker is discovered
and deleted, it is automatically re-generated.

• Adding an access key to each newly created user: The backdoor created users lambda
script is a Lambda function, which responds to ’CreateUser’ events and sends the
freshly generated access key and secret key to the given endpoint URL.

• Adding backdoor rules to newly created EC2 security groups: The backdoor created
security groups lambda script adds an arbitrary inbound access rule to new security
groups, in response to each ’CreateSecurityGroup’ event.

6.5 Cleaning tracks and staying undetected

The last but one step of post-exploitation is cleaning tracks and traces, when a malicious
attacker clears logs and any alerts that may have been created because of his intrusion
[30]. Invisibility is an important matter for a real attacker, but also from a security testing
point of view. It is worth investigating, whether the traces could be erased and an intruder
would be able to ”secretly” perform his work.

Within the Amazon cloud, CloudTrail is the service which provides event history of the
AWS account activity. Logs are generated when relevant events occur, ’AttachRolePol-
icy’, ’ConsoleLogin’ or ’DeleteLogGroup’ events, just to mention a few. Cleaning tracks
basically corresponds to disrupting CloudTrail trails in AWS terms.

6.5.1 Disrupting trails

WeirdAAL, AWS pwn and Pacu all provide modules, scripts to clear traces and disrupt
trails. By running the disrupt cloudtrail script of AWS pwn, all the found trails are deleted.
WeirdAAL offers a more modest approach, by running the module cloudtrail describe trails
and the module cloudtrail delete trail modules combined, one can delete certain trails,
specified by its ARN.

An even more discreet method is provided by the detection disruption Pacu module,
which besides disabling and deleting CloudTrail trails, also allows minimizing a trail. It
means that the trail is left enabled, but the settings are changed to a very basic level, to
minimize the amount of logging in the environment without calling conspicuous APIs like
disable or delete.

42

CHAPTER 6. AUTHENTICATED PENETRATION TEST

6.6 Backend service side testing

Up to this point, the assumption has been that an EC2 instance has been compromised
and thus the instance can be accessed directly. However, it is also worth investigating,
how the system could be endangered from a different direction, namely from the backend
system side interface.

According to the web application model described in section 4.3, the backend service side
is connected to the rest of the system through the SQS service. Therefore, a potential
hypothesis can be that an attacker took control over a backend service and is able to send
messages to an SQS queue.

6.6.1 Fuzzer tool

Prior to the research, there existed a fuzzer tool applied on the Internet facing infrastruc-
ture of one of the products at Sophos and it seemed reasonable to adapt this technique to
test the messages coming from the backend services.

Fuzz testing or fuzzing is a software testing technique, which basically consists in find-
ing implementation bugs using semi-random data injection in an automated fashion [43].
Fuzzing can be called as the ”art of automatic bug finding”, and it’s role is to find software
implementation faults, and identify them if possible.

Following this idea, a tool was developed, which sends fuzzed messages to the SQS service
as the backend services would. For generating the messages, I used Kitty1, an extensible
fuzzing framework written in Python.

Description

The fuzzer tool of Froud accepts a JSON ’template’ for the SQS messages, specified in
the config file. Those fields need to be marked with hash marks (#), which are intended
to be fuzzed during the procedure. The corresponding slice of the config file, including an
example SQS template message may look like as follows:

"SQS": {

"fuzz_endpoint_url": "https://sqs.us-west-2.amazonaws.com/

$account_id$/test_queue"

"sqs_message": {

"timestamp":"#2018-10-19#",

"id":#1#,

"data":"#information"

}

}

Results

The tool managed to find two bugs in the tested products, therefore the approach and
the tool both can be considered successful. One of the bugs is a logging error, the system
can not process messages above a certain length. The other issue is an unwanted service
restart. Sending invalid messages to the SQS queue leads to the restart of one of the
services and slows down processing the SQS messages. Even though the backend services

1https://github.com/cisco-sas/kitty

43

CHAPTER 6. AUTHENTICATED PENETRATION TEST

are considered to be reliable regarding the content of the messages, an attacker might
compromise the service and by sending large amount of invalid messages, he might achieve
Denial of Service.

6.7 Summary

The cyclical characteristic of a penetration test is achieved by pivoting, trying to make use
of the previously obtained information. The whole process or partially, the authenticated
penetration test can be started over again with potentially a new set of keys that has been
acquired in the previous round.

On the whole, the outlined method and recommended tools can be applied on any applica-
tion running in the Amazon cloud, resembling the presented web application model. It is
worth mentioning that the successful operation of the different tools depends on whether
the necessary permissions are granted and actions are allowed. Nevertheless, encountering
AccessDenied responses while using specific tools and performing certain actions implies
that the system is protected against that particular attack.

44

Chapter 7

Conclusion

This final chapter reflects the overall research and presents the conclusions. The aim of
the research was to examine how penetration testing can be applied on the client side to
improve the security of AWS-based environments and to outline a general concept that
can be deployed for applications running in the Amazon cloud.

7.1 Research findings

At the beginning of the study, three questions were formulated to achieve the research
goals. First, these questions are answered based on the outcomes of the study.

Q1. What should be the objectives of a penetration test, what vulnerabilities exist in the
Amazon cloud?

A1. The EC2 metadata service is a great starting point for attackers to acquire AWS
keys, if the service can be accessed by leveraging other vulnerabilities, for instance
Server-Side Request Forgery or HTTP request proxying.

However, the majority of security breaches so far has been related to S3 buckets. It
is either due to improper bucket policy attachment or misuse of Identity and Access
Management policies and permissions. Internal misconfigurations can further lead
to privilege escalation, data exfiltration or enable establishing backdoors.

Certain countermeasures exist, how one can eliminate these issues, however the
objective of a penetration test should be to explicitly reveal the vulnerabilities, if
they are present in the system.

Q2. What tools are available for penetration testing in the Amazon cloud and how can
they be adapted to the penetration testing methodology?

A2. The presented penetration testing methodology consists of four phases, from which
the post-exploitation phase can be considered as an independent authenticated pen-
etration test. There exist a great number of tools for testing in the Amazon cloud,
covering both authenticated and non-authenticated tests.

The existing Amazon-specific tools are well integrated into the methodology, with
special regard to the goal of the different phases and the steps of an authenticated
penetration test. In accordance with the findings of the previous question, the
majority of the tools focus on internal configurations and try to take advantage of
improper settings.

45

CHAPTER 7. CONCLUSION

Q3. Is the available toolset able to support a comprehensive penetration test? If not, what
tools could be further developed?

A3. A number of areas have been identified, which are not yet or not properly sup-
ported with the available toolset regarding authenticated penetration tests. These
are ”Understanding the victim” and ”Collecting system information and data”.

The research aimed to improve the current state of testing by developing tools that
focus on these areas. The tools concentrate on discovering the environment of the
compromised system and collecting sensitive information. The discovery covers un-
derstanding the entitlements of the accessed instance and finding further available
resources. Furthermore, the tools support to collect data from different AWS services
and make them publicly accessible.

7.2 Contribution

The objective of a penetration test has been set by identifying those vulnerabilities that
have occurred previously in AWS environments and have caused severe security breaches.
The thesis has underlined the importance of non-authenticated and authenticated pen-
etration tests. The main contribution is that a general method for applications in the
Amazon cloud is provided, including integration of specific tools into the methodology.

The Amazon related module of Metasploit is one of the tools that has been found to be
useful within the post-exploitation phase. A tangible contribution of the research is fixing
the Gather AWS EC2 Instance Metadata module, which has been merged to Metasploit
Framework’s repository.

The goal of the research was to provide a comprehensive method and to extend the avail-
able equipment, if necessary. For this reason, a new toolset has been developed to support
the areas which were uncovered previously, related to discovery and data exfiltration.
Furthermore, a fuzzer tool has been developed as well, for testing the application from
the back-end server side. The new toolset is open source, the repository is available on
GitHub: https://github.com/reka193/froud.

7.3 Future work

Based on the tested products, a web application model has been introduced which has
essentially determined the scope of the test. Even though this predefined model can be
considered realistic, a relatively small proportion of the existing AWS services formed part
of the research. Extending the scope of the penetration test by including more services in
the model would definitely be worthwhile for further research.

It has been discussed how an attacker might stay undetected and clear its tracks, however
it is also worth investigating how an attack can be discovered. One potential method is
to use honeytokens, which are similar to honeypots, in a sense that they are designed
to attract unwitting hackers [47]. As discussed previously, CloudTrail is responsible for
monitoring and logging API calls for particular services, therefore it can be leveraged to
detect when a certain set of AWS keys are used. These honeytokens are created with all
permissions denied, so whenever someone uses them, an access denied error is logged to
CloudTrail and an alarm is triggered. It would definitely be an interesting direction to
explore the possibilities of honeytokens, how they can be utilized, or potentially, detected.

46

CHAPTER 7. CONCLUSION

The tendency of businesses migrating their services to the cloud is not expected to end
in the near future. Amazon is continuously widening the range of their services and
offering new opportunities to improve the cloud infrastructure. It also implies emergence
of new vulnerabilities, attack surfaces and poses additional security risks. Penetration
testing appears to be an effective way to evaluate the security of AWS-based environments,
however the methodology will always have to be adapted to the current state of AWS
infrastructures.

47

Bibliography

[1] AWS DynamoDB Developer Guide. https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/Introduction.html. [Accessed: 28 May 2018].

[2] AWS pwn. https://github.com/dagrz/aws pwn. [Accessed: 1 October 2018].

[3] AWS takeover through SSRF in JavaScript. http://10degres.net/aws-takeover-ssrf-
javascript/. [Accessed: 17 October 2018].

[4] Cloud Security Alliance’s Security Guidance for Critical Areas of Focus in Cloud Com-
puting v4.0. https://downloads.cloudsecurityalliance.org/assets/research/security-
guidance/security-guidance-v4-FINAL-feb27-18.pdf. [Accessed: 31 May 2018].

[5] Cross-site Scripting (XSS). https://www.owasp.org/index.php/Cross-
site Scripting (XSS) . [Accessed: 16 October 2018].

[6] Driving Analytics SaaS, PaaS, and IaaS with Managed Services: The Difference that
Experts Make. https://www.ironsidegroup.com/2015/06/03/driving-analytics-saas-
paas-and-iaas-with-managed-services-the-difference-that-experts-make/. [Accessed: 9
October 2018].

[7] Global market share of cloud infrastructure services in 2017, by vendor.
https://www.statista.com/statistics/477277/cloud-infrastructure-services-market-
share/. [Accessed: 27 August 2018].

[8] How to search for Open Amazon s3 Buckets and their contents.
https://buckets.grayhatwarfare.com. [Accessed: 24 October 2018].

[9] Information technology – Cloud computing – Overview and vocabulary. ISO/IEC
17788:2014(E). [Accessed: 04 September 2018].

[10] Instance Metadata and User Data. https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ec2-instance-metadata.html. [Accessed: 29 May 2018].

[11] Massive Amazon S3 leaks highlight user blind spots in enterprise race to the
cloud. https://www.techrepublic.com/article/massive-amazon-s3-breaches-highlight-
blind-spots-in-enterprise-race-to-the-cloud/. [Accessed: 29 May 2018].

[12] Nach der Cloud: Was kommt jetzt? http://smileit.at/blog/tag/cloud-computing/.
[Accessed: 23 August 2018].

[13] NIST Special Publication 800-145, The NIST Definition of Cloud Computing.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. [Accessed: 16
May 2018].

[14] Penetration Testing. https://aws.amazon.com/security/penetration-testing/. [Ac-
cessed: 23 September 2018].

48

BIBLIOGRAPHY

[15] pentestmonkey - php-reverse-shell. http://pentestmonkey.net/tools/web-shells/php-
reverse-shell. [Accessed: 28 October 2018].

[16] Post Exploitation in AWS using Nimbostratus. https://cloudsecops.com/post-
exploitation-in-aws/. [Accessed: 28 October 2018].

[17] resource-counter. https://github.com/disruptops/resource-counter. [Accessed: 30 Oc-
tober 2018].

[18] Route 53. https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ Wel-
come.html. [Accessed: 23 October 2018].

[19] S3-inspector). https://github.com/kromtech/s3-inspector. [Accessed: 31 October
2018].

[20] Server Side Request Forgery. https://www.owasp.org/index.php/
Server Side Request Forgery. [Accessed: 29 May 2018].

[21] Server-Side Request Forgery. https://github.com/swisskyrepo/PayloadsAllTheThings/
tree/master/SSRF%20injectionsummary . [Accessed: 17 October 2018].

[22] Shared Responsibility Model. https://aws.amazon.com/compliance/shared-
responsibility-model/. [Accessed: 9 October 2018].

[23] Skew. https://github.com/scopely-devops/skew. [Accessed: 2 October 2018].

[24] System Shock: How A Cloud Leak Exposed Accenture’s Business.
https://www.upguard.com/breaches/cloud-leak-accenture. [Accessed: 29 May
2018].

[25] WeirdAAL (AWS Attack Library). https://github.com/carnal0wnage/weirdAAL/.
[Accessed: 2 October 2018].

[26] Security Pillar, AWS Well-Architected Framework.
https://d0.awsstatic.com/whitepapers/architecture/AWS-Security-Pillar.pdf, ”July
2018”. [Accessed: 26 October 2018].

[27] Andres Riancho. Nimbostratus. http://andresriancho.github.io/nimbostratus/. [Ac-
cessed: 25 September 2018].

[28] Andres Riancho. Pivoting in Amazon Clouds.
http://andresriancho.github.io/nimbostratus/pivoting-in-amazon-clouds.pdf. [Ac-
cessed: 25 September 2018].

[29] AWS Security Blog. IAM Policies and Bucket Policies and ACLs! Oh, My! (Control-
ling Access to S3 Resources). https://aws.amazon.com/blogs/security/iam-policies-
and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/. [Accessed: 24
September 2018].

[30] Aditya Balapure. Learning Metasploit Exploitation and Development. Packt Publish-
ing, 2013.

[31] Catalin Cimpanu. 7% of All Amazon S3 Servers Are Exposed, Explaining Recent
Surge of Data Leaks. https://www.bleepingcomputer.com/news/security/7-percent-of-
all-amazon-s3-servers-are-exposed-explaining-recent-surge-of-data-leaks/. [Accessed:
20 September 2018].

49

BIBLIOGRAPHY

[32] CyberArk. The Cloud Shadow Admin Threat: 10 Permissions to Pro-
tect. https://www.cyberark.com/threat-research-blog/cloud-shadow-admin-threat-10-
permissions-protect/. [Accessed: 30 October 2018].

[33] Cyware. Insurance startup AgentRun accidentally leaks customers’ personal and
health information in cloud configuration error. https://cyware.com/news/insurance-
startup-agentrun-accidentally-leaks-customers-personal-and-health-information-in-
cloud-configuration-error-b9e885ff. [Accessed: 20 September 2018].

[34] A. K. Dewdney. In Computer Recreations: Of Worms, Viruses and Core War, page
110. Scientific American, March 1989.

[35] Patrick Engebretson. Chapter 1 - what is penetration testing? In Patrick Engebret-
son, editor, The Basics of Hacking and Penetration Testing (Second Edition), pages
1 – 18. Syngress, Boston, second edition edition, 2013.

[36] Patrick Engebretson. Chapter 3 - scanning. In Patrick Engebretson, editor, The
Basics of Hacking and Penetration Testing (Second Edition), pages 53 – 78. Syngress,
Boston, second edition edition, 2013.

[37] Forbes. The One Cloud Security Metric Every CISO Should Know.
https://www.forbes.com/sites/forbestechcouncil/2018/08/09/the-one-cloud-security-
metric-every-ciso-should-know/33b677b55375. [Accessed: 14 October 2018].

[38] High-Tech Bridge, Security Blog. Databases exposed on the internet in post-
GDPR era. https://www.htbridge.com/blog/databases-exposed-on-the-internet.html.
[Accessed: 10 October 2018].

[39] Ionize, Michael Bielenberg. Stealing Amazon EC2 Keys via an XSS Vulnerability.
https://ionize.com.au/stealing-amazon-ec2-keys-via-xss-vulnerability/. [Accessed: 21
September 2018].

[40] Jon Brodkin. Amazon cloud has 1 million users and is near $10 billion in annual
sales. https://arstechnica.com/information-technology/2016/04/amazon-cloud-has-1-
million-users-and-is-near-10-billion-in-annual-sales/. [Accessed: 15 September 2018].

[41] Ronald L. Krutz and Russell Dean Vines. Cloud Security: A Comprehensive Guide
to Secure Cloud Computing. Wiley Publishing, 2010.

[42] LogicMonitor. Cloud Vision 2020: The Future of the Cloud.
https://www.logicmonitor.com/wp-content/uploads/2017/12/LogicMonitor-Cloud-
2020-The-Future-of-the-Cloud.pdf. [Accessed: 08 September 2018].

[43] OWASP. Fuzzing. https://www.owasp.org/index.php/Fuzzing. [Accessed: 28 Septem-
ber 2018].

[44] Peter Benjamin. YAS3BL (Yet Another S3 Bucket Leak).
https://github.com/petermbenjamin/YAS3BL. [Accessed: 16 October 2018].

[45] Rapid7. Gather AWS EC2 Instance Metadata.
https://www.rapid7.com/db/modules/post/multi/gather/aws ec2 instance metadata.
[Accessed: 25 September 2018].

[46] Rapid7. Metasploit Documentation. https://metasploit.help.rapid7.com/docs. [Ac-
cessed: 25 September 2018].

50

BIBLIOGRAPHY

[47] Rhino Security Labs. AWS IAM Enumeration 2.0: Bypassing CloudTrail
Logging). https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-
cloudtrail-logging/. [Accessed: 5 November 2018].

[48] Rhino Security Labs. AWS Privilege Escalation – Methods and Mitigation.
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/.
[Accessed: 30 October 2018].

[49] Rhino Security Labs, Benjamin Caudill. Penetration Testing in the AWS
Cloud: What You Need to Know. https://rhinosecuritylabs.com/penetration-
testing/penetration-testing-aws-cloud-need-know/. [Accessed: 23 September 2018].

[50] Rhino Security Labs, Spencer Gietzen. Introduction: Pentesting AWS to Secure
the Cloud. https://rhinosecuritylabs.com/aws/pacu-open-source-aws-exploitation-
framework/. [Accessed: 26 September 2018].

[51] Sharath AV. AWS Security Flaw which can grant admin access!
https://medium.com/ymedialabs-innovation/an-aws-managed-policy-that-allowed-
granting-root-admin-access-to-any-role-51b409ea7ff0. [Accessed: 20 September
2018].

[52] The Register. Uber: Hackers stole 57m passengers, drivers’ info. We
also bribed the thieves $100k to STFU. https://www.theregister.co.uk/
2017/11/22/uber 2016 data breach/. [Accessed: 27 September 2018].

[53] Upguard. The RNC Files: Inside the Largest US Voter Data Leak.
https://www.upguard.com/breaches/the-rnc-files. [Accessed: 20 September 2018].

[54] Yohan Wadia. AWS Administration - The Definitive Guide. Packt Publishing, 2016.

51

	Introduction
	Motivation
	What is cloud computing?
	Cloud Service Providers
	Shared responsibility model

	Research goal
	Research questions
	Research approach
	Structure of the thesis

	Amazon Web Services
	AWS services
	Elastic Compute Cloud (EC2)
	Amazon S3
	Simple Queue Service (SQS)
	DynamoDB
	Lambda
	CloudWatch
	CloudTrail
	Route 53
	Management interfaces

	Security in the Amazon cloud
	Security Groups (SG)
	Virtual Private Cloud (VPC)
	Identity and Access Management (IAM)
	S3 access management

	Amazon-specific security issues
	S3 bucket security breaches
	Accenture case
	U.S. voter records
	AgentRun case
	YAS3BL

	EC2 instance metadata vulnerability
	EC2 metadata and SSRF
	EC2 metadata and HTTP request proxying

	IAM policy misuse
	Mitigation and countermeasures
	EC2 metadata vulnerability
	Protecting S3 data using encryption
	IAM best practices

	Summary

	Penetration testing
	Penetration testing methodology
	Authenticated penetration test
	Amazon-based web application model
	Penetration testing in the Amazon cloud

	Non-authenticated penetration test
	Reconnaissance
	Scanning
	Port scanning
	Vulnerability scanning
	S3 enumeration

	Exploitation
	Extracting keys via a HTTP request proxying vulnerability

	Post exploitation and maintaining access
	Extracting keys using a reverse shell

	Summary

	Authenticated penetration test
	Understanding the victim
	Entitlements
	Available resources
	Resource policies

	Privilege escalation
	Collecting system information and data
	S3 bucket enumeration
	SQS message collector
	DynamoDB scanner
	CloudWatch scanner

	Setting up backdoors
	Pacu modules
	AWS pwn

	Cleaning tracks and staying undetected
	Disrupting trails

	Backend service side testing
	Fuzzer tool

	Summary

	Conclusion
	Research findings
	Contribution
	Future work

	References

