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Abstract

Nedap needs to improve the update process of the Access Control controller tomake their product highly
availablewith only seconds of downtime each update. The current update process uses a straightforward
approach which downloads the update, checks the files, stops the application, overwrite all files and
reboots into the new system. After a full reboot, the access control application starts including fetching
all authorisations from the server and initialising all connected hardware. This results in at least 3
minutes of downtime which can increase to 23 minutes due to the number of authorisations and the
complexity of the system.

This research aims to determine if the update process can be improved by implementing existing update
techniques to update the kernel and filesystem within seconds and additionally add fail-safe measures
to revert to the last working system in case of a failed update. The time measured as improvement
indicator is the relative speed up between the downtime occurring to the access control software during
an update. The downtime starts from the point in time the application is killed and stops when it is fully
up and running again.

Based on the insights in the old update process and two Design Space Explorations to kernel update
techniques and checkpoint and restore techniques, we propose a new update process. This new process
implements a second partition to store the update, uses Kexec to load and execute a new kernel directly
from the running one and uses CRIU to create a checkpoint of the access control application which
can be restored after a reboot. Additionally, a watchdog is implemented to reset the device in case the
update fails and reboot into the last working system by using the second partition.

By using the new update process, a kernel and file system update is performed with only seconds of
downtime. After performing tests on a full system emulation tool a system update is performed with
13.8 seconds of downtime. Comparing this to the old update process results in a relative speed up of
factor 5.6 to 11.
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Chapter 1

Introduction
Nedap Security Management focusses more and more on Access Control as a Service (ACaaS). ACaaS
removes most of the hardware on-premise and delivers the same service from the cloud. Benefits from
this approach are fast provisioning of products and the ability to always be up to date and run the latest
software. Apart from migrating from on-premise products to the cloud, the fast-growing number of
global customers of Nedap Security Management is notable. These customers have multiple offices
around the world with thousands of doors to secure and employees to authenticate. While availability
is of importance for these customers, maintenance of the access control solution is a complex task.
Combining the ACaaS trend and the increment of global customers, the demand to be highly available
all the time is increasing. To provide a high degree of availability, the time a system is unable to provide
its functionality, called downtime, must decrease. This most often consists of decreasing the time to
recover from crashes and decreasing the time required to update the software of products.

Even though the availability is of importance for Nedap, the demand of updating has also increased due
to the publicity of the hack of the Mifare Classic cards back in 2008 [56]. Scientists of the Radboud
University performed reverse engineering to decode the full algorithm of the chips used in the cards and
therefore became able to clone the cards or change the data on it. In the Netherlands alone, already 2
million of these cards were used for example by public transportation. Currently, public transportation
cards are replaced, but world-wide hotels, police offices, companies, and government buildings are
still easy to hack [27]. One of the reasons for not updating the old cards is the complexity of replacing
them. Switching to newer card versions is not as easy as replacing all cards but adds the requirement to
update the access control system to support the new cards.

To be highly available throughout the year while remaining secure by performing an update, the telecom
industry introduced the five nines (99.999%) uptime requirement [1]. This requirement translates
to hardware downtime of 5 minutes and 15 seconds a year. For software, the percentage is lower,
namely 99.95%, which is 1 day, 19 hours and 48 seconds of downtime a year. Almost two days of
downtime can be acceptable to telecom providers but for the global customers of Nedap Security
Management with 24/7 activity, even a minute of downtime per year is too much. Their security must
be continuously functional, and every second of downtime can endanger the security. Therefore every
second of downtime needs to be organised and carried out carefully.

1.1 Problem description
One of the biggest challenges to increase the availability as stated before is decreasing the downtime of
an update. Currently, the update process of the embedded controller of the Nedap Security Management
takes minutes, and during the biggest part, the software is unavailable and performs no authorisations.
Many customers resolve this by updating their controllers overnight. They can, for example, prepare it
during the day by copying the update to the controllers and set everything up but delay the actual update
to execute it during the night. For global customers with a lot of controllers and especially customers
with 24/7 of activity, this is not feasible. To perform a successful update, these customers must plan
the update with great care and arrange guards to secure the doors during an update. In the end, this
involves high costs by planning, hiring guards and performing the update.
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1.2 Background

This section presents more information about the solutions of Nedap Security Management to
understand the fundamentals of this research. Section 1.2.1 explains the software-based security
management platform introduced back in 2000. Part of the access control platform is the controller, an
embedded hardware piece, responsible for authenticating people and subsequently grant access to
areas. This research particularly focusses on the update process of the controller and therefore Section
1.2.2 presents more details about the controller.

1.2.1 Advanced Enabling Organic System (AEOS)

As a solution to access control, Nedap introduced AEOS as a modular hard- and software system. In
recent years several features are added such as intrusion detection, vehicle identification, graphical
alarm handler, video surveillance and locker management. AEOS consists of four hardware layers, which
are all installed on-premise. Figure 1.1 depicts these layers.

Figure 1.1: AEOS architecture

The first layer is the client, most often located at the reception of a building. Via the web-based
application, the user can add or remove employees and visitors. For all these employees and visitors, the
user can change or append information like telephone numbers, access control cards and authorisations.
For example, the user can add an employee who is only authorised during the day and only to the office
he or she is working. Besides the administrative tasks, the user can also view events such as an alarm
or if someone is trying to access a room without the required credentials.

The second layer consists of the AEOS server. The server is located at the customer and acts as the
hearth of the platform. On one side, it hosts the web-based application for the client, which the users
can use as stated before. On the other side, it establishes a connection to all controllers to share
authorisations and information. All the data from the client and controllers is stored securely in a
database, and the server synchronises new authorisations frequently with all controllers.

The third layer contains the controllers, known as the AEOS processing unit (AEpu). The AEpu is an
embedded device introduced to reduce the response time and to remain functional during network
losses. This research focusses mainly on this embedded platform, and therefore more information
about the AEpu is provided in Section 1.2.2.

The last layer contains all the readers connected to a controller. The controller is developed to be
flexible and handle various kinds of readers. For example, it is possible to connect card readers with or
without a keypad, fingerprint readers and palm-vein readers. Many other brands made their readers
compatible to connect to the AEOS platform and are fully functional within the access control platform.
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1.2.2 AEpu
The previous section presented the AEpu as the connection layer between the readers and the server.
This section gives more insight into the newest version of the AEpu called Blue, see Figure 1.2. The
controller integrates two hardware boards in one case:

1. Control board: The central processing unit which contains a Marvell Sheeva ARMv5TE
microcontroller from the88F6000Kirkwood series. At least 256MBDDR2Random-accessmemory
(RAM), 16MB NOR flash and 2GB NAND flash are available on the control board. The actual
specifications differ per customer.

2. AEOS bridge (AEbridge): The connection board to facilitate connections for connecting readers,
locks and emergency buttons. Additionally, it provides an asynchronous serial point-to-point
interface (RS-485 [40]) to communicate with other controllers. Using the RS-485 bus, one single
AEpu can control multiple other controllers to extend the number of available connectors.

Figure 1.2: Blue AEpu

Each AEpu contains two input and two output connectors on the left side of the controller to control
locks and buttons. Additionally, each controller can connect up to two readers with the connectors on
the right side. With using the RS-485 connection and additional controllers, an AEpu can control up to
32 readers over a distance of 1200 meters.

Several software components are mandatory to boot the blue AEpu. The boot procedure starts with the
bootloader. Currently, Das U-boot 1.1.4 is running on the AEpu. The bootloader initialises the hardware
and starts the kernel. The kernel takes over control and functions as the communication layer between
the user space and the hardware. On the AEpu the Linux kernel 2.6.34 is running. After the initialisation
of data structures, drivers and devices, the kernel calls the initialisation scripts of the user space. The
user space mounts file systems, sets up connections and starts services, such as the ssh-daemon and
finally the Java access control software.

1.3 Goal
The goal is to research and develop an update process that decreases the downtime of the AEOS
controller. The new update process must be fit for all controllers from the current hardware version
up to future products. Because several other measures are mandatory before the new update process
can run on the current controller, such as a modified bootloader and kernel, the proof of concept is
implemented on a hardware emulation tool with the same processor architecture as the AEpu.
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The main research question for this research is:

Is it possible to combine existing update techniques to improve the controller’s availability and perform a
full device update within a contiguous application downtime of half a second?

Four requirements are introduced to address this challenge and align with the expectations of Nedap:

1. Updating should involve as less programmer effort as necessary.

2. An update should not affect the current behaviour of running software.

3. The software must be open-source and highly supported.

4. The software must support at least the current version of the AEpu.

1.4 Scope
Up till now in literature, implementations are presented for each part of the update process individually.
Studies propose interesting techniques but often focus on only updating the kernel or updating the file
system. Additionally, most studies neglect the fail-safety; they propose a new update technique but
do not implement recover mechanisms to resolve severe errors like a corrupt kernel. Given the urge
to improve the availability of the product, it is of importance to improve the complete update process,
including fail-safe measures to recover from crashes. Particularly, this research focusses on the update
techniques of the controller software to address the challenges of updating the software within seconds.
The new update approach should recover automatically from failures during the update process to
ensure the controller remains functional.

A full controller update, including fail-safe measures and with minimal downtime is challenging. Due
to the time constraints and the priority of Nedap Security Management to update the kernel and file
system in coming releases to implement new features such as IPv6, this research focusses on a new
fail-safe update approach of the kernel and file system with minimal downtime. This implies that a
proof of concept for updating the Java application and bootloader is out of scope. Because the system
does not continuously use the bootloader during runtime, it is possible to update it without downtime.
Furthermore, the Java application requires more insights in the application to determine how to update
it most efficiently. Application specific behaviour such as RAM-usage and flash usage is essential and
further research is necessary before implementing an update solution.

As stated in Section 1.3, the new update process should be able to operate on the current newest
controller, Blue. Due to the old kernel version which misses many valuable functions, a one-time update
using the old update process must be performed to install required applications and scripts for the
new process. Because a one-time old update is necessary after all, the new update process can be
developed using new scripts and applications without dependencies to old applications. During this
research, the least necessary kernel version is determined, required for implementation.

1.5 Report outline
The structure of the rest of this research is as follows. Chapter 2 provides insight into the update process
for the controller currently used by Nedap. It introduces five phases required to perform a full update
and gives details about what is executed each phase and its duration. In the end, it introduces the
minimal and maximal downtime of the update process. Chapter 3 contains a literature research to
relevant update techniques, similar to the solution proposed in this research. With the knowledge of
the current update process and relevant techniques used in literature, Chapter 4 performs a Design
Space Exploration (DSE) to kernel updating techniques. A DSE is a systematic analysis to research a
specific system. Because the specifications and metrics of interest are often complex to deal with,
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DSE uses a trade-off analysis between certain parameters, such as timing, resource usage and costs.
The chapter first discusses several techniques, and finally, it compares these techniques using a trade-
off table. Chapter 5 has a similar structure and performs a DSE to checkpoint/restore techniques
to persist application states over a reboot. Based on the DSE of the kernel update techniques and
the checkpoint/restore methods, Chapter 6 proposes the first steps towards a new update process.
This chapter explains the options of the chosen methods and the required changes made to make the
methods applicable to the AEOS controller. Chapter 7 subsequently introduces the additional phases
of the new update process, such as fail-safe methods. After the explanation of the full new update
process, Chapter 8 presents the results of the new update process in terms of a relative speed up. It
analyses the timings of the phases which cause downtime of the old update process and compares it to
the downtime phases of the new update process. Finally, Chapter 9 presents possibilities for future
work and Chapter 10 finishes with the conclusion.





Chapter 2

Current update process

The first step to know how to improve the update process of the AEOS controllers is to examine the
current process. This chapter provides the required insight into the current update process. First, it
explains the different possibilities for an update and how to start it. After that, it introduces a visualisation
of the current update process with five phases, whereafter it discusses each phase. Finally, this chapter
concludeswith the duration of the update process including theminimal andmaximal downtime required
for an update.

The current update process is a straightforward approach. The controller downloads the update files,
checks them, overwrites the existing files and finally reboots the entire controller. The user can initiate
this update process by using AEOS monitor (AEmon); a graphical application developed to configure all
AEOS controllers inside a network. With the use of AEmon, users can configure different behaviours
per door. For example, a system is set up with several doors connected to one single controller. To
be able to use, for example, a reader with a touchpad on one door and a tag-reader on the other door,
the controller needs configuration. All these configurations are constructed beforehand in AEmon and
afterwards deployed to the controllers.

Additionally, using AEmon, users can view loggings, view reports and start an update. Currently, to
update the AEpu several options are possible. The first option is whether to update all controllers or
only groups or individual controllers. The second option enables the ability to update only parts of
the system, such as libraries, the application or the complete system. With the third option, users can
choose to upload the update files, upload and update on a specific time or perform the upload and
update immediately.

When the user chooses the last option to perform the upload and update immediately, five phases are
executed, depicted in Figure 2.1. In case a user decides to delay the update, the process halts after
phase 1 and phase 2 starts after the delay. In the next part, each phase is examined to determine if an
improvement in decreasing downtime is possible.

Figure 2.1: Current update phases

Phase 1 starts with downloading all files from the computer running AEmon to the AEpu. Because
validation of the files takes place before transferring, no extra integrity or security measures are
implemented and downloading takes place using the secure copy protocol (scp). Transferring of the
update files consists of three steps:

1. Copying the Linux system files to the update directory on the AEpu. When transferring is complete,
the controller checks the archive with the use of MD5-hashes. After validating, AEmon initiates an
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extraction to the update directory.

2. Copying the new Java runtime files as an archive. This archive is also validated and consequently
extracted in the same update directory.

3. Copying the new Java application, validating and extracting to the update directory.

After phase 1, all update files are present on the controller, ready to overwrite the existing files. First,
the AEOS Java application needs to be shut down. When the application is down, all connected doors
are in a default state, which is dependent on the hardware used, normally open or normally closed.

Phase 2 consists of copying new files over the old files. Before copying the new files, some clean-up
takes place. The clean-up makes sure no dependency conflicts occur after an update. At least it deletes
the zone information, the SQL library and all AEpu application files. After the clean-up, the new file tree
is being copied over the existing root, overwriting all old files.

After setting up the new file system, phase 3 takes care of updating the bootloader, bootloader
configuration and the Linux kernel. It first checks the integrity using MD5-hashes. Additionally, a
file on the controller contains all the hashes of previous updates to determine if the controller needs
an update or not. After the checks, the corresponding NOR flash partition is erased and rewritten.
Respectively, for the bootloader, bootloader configuration and kernel. When all writes are complete, the
update process restores the certificates and updates the file permissions and encryptions.

To use the new bootloader and kernel, the systemmust reboot, illustrated in phase 4. An option exists to
update only the application and dependencies. In that case, a full reboot is not necessary, and the AEpu
application can start directly. A full reboot of the device takes approximately 15 seconds, depending on
the initialisation of hardware in the kernel and starting of services in user space.

Whether the system has performed a reboot or not, the Java application needs a restart. Phase 5
contains the full boot of the complete Java application. Several services are implemented to give
flexibility to the softwareplatform. For example, intrusiondetectionusesdifferent services in comparison
to locker management. The downside of this approach is the complexity of the initialisation phase. The
90 seconds depicted in phase 5 of the figure, contains a full reboot of a clean application without any
configuration. When global customers with many authentications and complex configurations updates
their controllers, a restart of the application can take up to 20 minutes.

With all phases analysed, the total downtime becomes visible. Calculating it consists of summing all the
durations from phase 2 up to the end of phase 5. This results in a total downtime for a full controller
update of 205 seconds. Because all durations are the minimal durations, this total downtime is also
minimal. Using the maximum restart time of the Java application, the total downtime can take up to 23
minutes.

In summary, the current update approach consists of five phases, while four introduces downtime.
Copying and overwriting (phase 2 and 3) takes 100 seconds, the reboot takes 15 seconds, and the reboot
of the application takes at least 90 seconds. Conclusively, this takes at least 205 seconds of downtime
to update the whole controller. This downtime can increase to 23 minutes due to the complexity of the
configuration. The rest of this report contains the research to improve the current update phases by
decreasing the downtime and adding fail safety.



Chapter 3

Relevant update systems

Most of the literature related to update techniques consists of a solution for one single problem, such
as updating the kernel without a reboot. Nonetheless, for Nedap Security Management, all steps of the
update are important and only combining the most promising solutions resolves the downtime issue.
This chapter describes literature which implements a full solution to deliver a complete update process.
First, it analyses two research articles which do implement a similar solution as the proposed solution
of research. Secondly, it discusses OSs, which delivers a special feature to abstract the interface and
implementations from each other to decrease downtime during updates. While this chapter mainly
focusses on a complete update solution, Chapters 4, 5 and 9.1 focusses on a specific part of the update
process.

3.1 KUP
Kashyap et al. [43] proposes an instant updating technique with the use of CRIU as checkpoint/restore
mechanism and Kexec to update the kernel with a partial reboot. KUP consists of six stages responsible
for the checkpoint and the restore process:

1. Checkpoint all running applications to restore after an update.

2. Store the checkpoint in persistent memory to fetch it after an update.

3. Switch from kernel and skip bootloader stage.

4. Boot the new kernel.

5. Initialise system services because no checkpoint is available for these services.

6. Restore all applications.

To prevent system failures, they implement a safe fallback method. Before switching the kernel, KUP
also loads the old kernel into memory. If a fault occurs during an update on kernel level or application
level, KUP is able to switch directly back to the old kernel. This method resolves issues due to a new
kernel on both system level and application level, but it implements no measures to resolve issues due
to failing checkpoints and restores. In case the checkpoint or restore of an application fails, the update
continues, and KUP is not able to restore the application afterwards.

Additional to implementing checkpoint/restore and kernel execution techniques, the KUP system also
optimises them by introducing two methods to optimise the use of Kexec and one method to optimise
CRIU. The first method ensures that Kexec only starts a processor-core when it is required upon reboot.
This method could save up to six seconds for systems with 80 processor-cores. For the AEOS controller
with only one core, this optimisation is not beneficial. Secondly, KUP skips polling unusedPCI slots during
execution of Kexec, saving 8.5 seconds on a 16-core machine. To optimise CRIU, KUP uses persistent
storage over reboot to decrease the fetching time. This technique does not store the checkpoints in
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flash but keeps it in RAM which removes the time to transfer the data from flash to RAM before usage.
The results of this optimisation method differ per size of checkpoint but can decrease the checkpoint
and restore time by seconds.

By using Kexec and CRIU and implementing the optimisations, KUP can perform a full update in seconds,
dependent on the running applications and system. Unfortunately, the authors never published the
source code and therefore, no support is guaranteed, which was one of the requirements in Section
1.3. Nevertheless, analysing the methods used in their article is valuable and can provide insight into
promising methods.

Contrary to the KUP system, the proposed solution in this research implements an update process
for embedded architectures with minimal resources. Therefore no daemon is required to check for
failures, and no second kernel is stored in memory to switch back. This results in less overhead and
fewer memory requirements.

3.2 Seamless kernel update
Siniavine and Goel [58] proposes a solution based on the same principle of creating a checkpoint of an
application and performing a kernel update whereafter it restores the checkpoint. To checkpoint and
restore the application, they implement their own system, which saves data structures and resources of
any application. For each resource, it saves the address and the entry point in the checkpoint to a Save
table. If a resource already exists, it creates a pointer to the value of the hash table.

The system preserves the checkpoint in memory during a reboot by reserving memory pages during
the boot process. This ensures that the boot process does not use these pages and the checkpoint
can be used directly from memory after reboot. The restore process creates a Restore table and on
each successful resource restore, it writes the corresponding identifier to it. Checking this table for
completeness results in a successful restore with all resources. Besides the resources, the proposed
system restores thread states, memory states, open files, sockets, pipes, Inter-Process Communications
(IPCs) and terminals.

Because the focus of the authors lies in reinitialising user space applications, this system does not
implement a new kernel update mechanism to decrease downtime. Instead, they perform a full reboot
after creating the checkpoint. This full reboot ensures the system starts the new kernel, and after that,
it restores the application. During the update process, no fail-safe measures are implemented, and
because of the full reboot, the downtime is just above 10 seconds on a 3 GHz dual-core with 2GB of
RAM.

Unlike the seamless kernel updatemethod, the solution in this research does implement a kernel update
technique to reduce the downtime further. Because one of the goals is to improve the availability of the
controller, fail-safety is essential. The seamless kernel update technique does not implement any fail
safety measures while this research does. A failure during an update using the seamless kernel update
methods possibly bricks the system.

3.3 Migration OSs
Besides techniques to update existing modules as the bootloader, kernel and file system, the ability
exists to design a new OS to make abstractions between interfaces and implementations. This adds
the ability to replace components without disruptions. For example, exokernel designed by MIT
enables the applications to communicate more easily with the hardware by using a microkernel [33].
Because it implements most of the hardware communication on application level, updating or swapping
components is possible without a reboot. Other possibilities which use the same approach are Proteos
[34], Barrelfish [13] and LibOS systems as Drawbridge [12].
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Sprite [53] and LOCUS [63] are OSs specialised for migrations of processes over network setups.
Additionally, MOSIX [11] proposes the same solution on library level. With the use of these techniques,
processes can be moved from a source machine to a destination machine of the same architecture.
Using a combination of a checkpoint/restore and a migration technique, the methods can migrate a
process within milliseconds of downtime. After the migration, system calls are forwarded or redirected
to the new system. For systems with a high availability requirement, these OSs deliver a practical
solution.

However, unlike the OS techniques, the system proposed in this research does not modify the kernel or
running system to enable faster updates. It optimises the current process by switching kernels without
losing the state of applications. This implies less programmer involvement for updating and the ability
to use the mainstream Linux kernel and application versions without modifications including the new
updates.





Chapter 4

Kernel update methods

Regarding the update process explained in Chapter 2, a part of the downtime is due to the reboot of
the system. This full reboot is mandatory to make use of the updated Linux kernel. This chapter first
presents an insight into the functioning of the Linux kernel and the necessity of a reboot. After that,
it explains two possibilities to update a kernel, whereafter several techniques are presented of both
flavours. Finally, the approaches are compared on four criteria using a trade-off table.

The Linux kernel is the connecting layer
between the hardware and the
applications running in user space, Figure
4.1. The kernel currently used by the
controller is monolithic, which means it
is fully responsible for device drivers, file
system, memory management, network
stack and IPC in contradiction to micro-
kernelswhich executesmost functionality
in user space. In monolithic kernels, an
application makes use of system calls, to
access the hardware. The kernel consists
of the syscall interface, the generic kernel
code and an architecture dependent layer.
The kernel code is the same for all
systems, independent of the underlying
hardware. To support specific hardware,
users can configure the architecture layer.
This layer consists of drivers which can
be replaced to communicate with the
underlying hardware.

Figure 4.1: Linux kernel

Updating the Linux kernel interrupts the connection between the hardware and the user space. Because
the file system, process management and memory management are part of the kernel and crucial for
running applications, it is not possible to swap the kernel and continue running applications. Hence, to
update the kernel, the system has to reboot and restart all applications.

Two flavours of kernel updating mechanisms are present in literature, patching and soft reboot
mechanisms. Patching techniques are commonly used by desktop versions of Linux nowadays. For
example, Canonical Livepatch for Ubuntu systems. This service delivers an approach to perform critical
updates without requiring a reboot. In general, the patching software bundles the differences in source
code and save it as a file called a patch. For a kernel patch, techniques combine these files into a kernel
module which can be loaded while running. The patching software then does the actual update by
redirecting calls from old functions to the functions from the new kernel module. The downside of this
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approach is the increasing kernel size. Every kernel patch, the software adds a kernel module including
the updated code to the existing code, resulting in a bigger kernel. Advantage of patching is the little
downtime. Depending on the size of the patch, only microseconds of downtime is necessary.

Soft reboot techniques do not use kernel modules to add code, but the techniques are more like the
conventional way of updating the kernel. These techniques perform a reboot but skip some non-crucial
parts or reboot a virtual machine aside of the running one. Both are resulting in less downtime and a
completely new kernel. The downside of some of these approaches is the resource usage of running
two systems simultaneously. Skipping some phases of a boot can also be problematic because it skips
checks and initialisations. The most significant advantage of using a completely new kernel instead
of performing a patch is the smaller risk of crashes due to changing interfaces and systemcalls over
updates. Besides, after an update, the kernel is running an exact copy compared to other systems
whereby patching increases differences.

Coming sections explain the internals of several kernel update techniques of both flavours. To give
a more comprehensive overview, Table A.1 of Appendix A presents a comparison which shows the
features of each technique.

4.1 Ksplice
Ksplice is one of the oldest patching techniques for Linux kernels and was formerly open-source. Back
in 2011 Oracle bought the complete source code of Ksplice and made it available for Premier Support
Customers only [42]. Initially, the community developed Ksplice for x86 architectures, but they add
ARM support from version 0.9.0 with a minimal version 2.6 of the Linux kernel [8].

According to Arnold and Kaashoek [7], Ksplice uses the object code of the kernels instead of the source
code to create a patch. It uses two techniques to accomplish this: pre-post differencing and run-pre
matching.

Pre-post differencing uses the original kernel source code and the patched code to build two working
kernels. After that, it compares the object code and metadata of both kernels to extract all changed
functions. Finally, pre-post differencing stores each function individually in object files which are
combined to create a kernel module. The running kernel can load this module without interrupting
running user space applications.

After loading the patch module, it is not functional yet. Ksplice first needs to resolve all memory
addresses of the functions to swap. Run-pre matching takes care of this by comparing each byte of the
running kernel to the module. Additionally, it checks if no unintentional changes take place by patching.

When finished resolving and checking the memory, it is ready to perform the actual update. To ensure
no system calls are executed during updating, Ksplice uses stop machine. This function captures all
the available Central Processing Units (CPUs) and runs the Ksplice function on one single core. If the
function is not able to capture all CPUs, Ksplice pauses and tries again after a delay. Because of this
implementation, Ksplice is not able to patch functions which are always on the call stack within the
kernel and therefore never inactive. As a result, it only supports 88% of the security patches from May
2005 to May 2008.

4.2 kGraft
In response to the acquisition of Ksplice by Oracle, Section 4.1, Linux distributions SUSE and Red Hat
cooperated to develop an open-source alternative. In the end, this results in two almost identical
approaches, kGraft and Kpatch. SUSE developed kGraft, and it is available from SUSE Enterprise 12
distributions, including kernel version 4.0. SUSE enterprise requires an 64-bit architecture of AMD, Intel,
IBM or ARM [59].
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SUSE [60] presents the internal functionality of the open-source application. In comparison to Ksplice,
it uses the same technique to compare the running kernel and the patched kernel, resulting in a module
with all changed functions. Switching from the running functions to the ones bundled in the module is
possible due to compiling with function profiling enabled. This option allocates five bytes in front of
each function containing a call instruction. After the patch starts, kGraft replaces the first byte with an
INT3 (breakpoint) instruction to provide atomicity for replacing the rest of the bytes. Then it uses ftrace
to replace the other four bytes by the address to the new function. Finally, the first byte is replaced by
the JMP instruction to call the new function instead of the old one.

kGraft applies an approach similar to Read-Copy-Update (RCU) and so-called trampolines, to prevent
the kernel from crashing due to changes in function interfaces. The trampoline function is called on
each kernel entry and checks if the kernel should use an old or new function. This decision is based on
a per-thread flag to determine if the new function already can be used. After deciding, it jumps to the
called kernel function. Conclusively, this makes sure an old function calls only old functions, and new
functions only new ones. When all thread flags changed successfully to the new functions, patching is
complete, and kGraft removes all flags and trampolines.

Because all CPUs remain operational and all applications can continue running, the downtime is
negligible. Only the trampolines introduced to avoid kernel crashes introduce delays due to checks and
jumps.

4.3 Kpatch

As a result of the cooperation of the SUSE and RedHat communities, RedHat introduces Kpatch available
from Red Hat Enterprise Linux 7 with kernel version 4.0 [37]. Red Hat Enterprise Linux supports x86-64,
IBM Power, IBM z systems and from version 7.4 it supports ARM64 architectures [38].

Because the community for development is almost identical to kGraft, the internal functionality is similar.
According to Conference [18], creating the patch is entirely identical to kGraft, and therefore it compares
the kernel code and creates a module with the changed functions.

The actual patching differs little and is a combination of the techniques used by Ksplice and kGraft. It
uses stop machine to halt all CPUs except the CPU which is running Kpatch. This technique guarantees
that no system calls are possible during the patch. When all CPUs are stopped, it changes the addresses
of the old functions to the addresses of the new functions included in the module. Similar to kGraft, it
uses ftrace to change these addresses.

4.4 KernelCare

KernelCare is also a patching technique but differentiates from the previous techniques by offering
their product as a service. The service of CloudLinux provides patches for all architectures [17] and is
available from Linux kernel version 2.6.18. Because they deliver the full process as a service, CloudLinux
supports all patches [9]. The additional effect of the service is the closed source integration with only the
Linux kernel module as open-source code [16], resulting in almost no information about the internals.
According to the available information, the service automatically downloads new kernel patches to the
system and applies them with use of their kernel module.

The kernel module takes care of loading the patch into address space, handle relocations from old
functions to new ones and making sure no system calls are executed during patching. Because all
patches are developed and applied by CloudLinux, they can customise each patch to ensure support for
all updates and all architectures.
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4.5 Kexec
Relative to the previous patching techniques is Kexec a technique which enables a system to load and
boot a new kernel directly from user space. This results in a full update of the kernel with a partial
reboot. Initially, Kexec supports only x86 architectures and is available from mainline kernel version
2.6 onwards [54]. From 2007, the kernel adds the required configurations for the ARM architecture,
and therefore Kexec also supports the ARM architectures. Normally, during boot, the bootloader loads
the kernel, but Kexec skips this stage and directly executes the new kernel. Providing a fast reboot
but introduces consequences which the user must take into account. With a full boot, the hardware
initialisation resets all devices into a sane state. Because the initialisation is part of the bootloader
stage, Kexec skips it, and therefore the user must take care of resetting devices.

This section summarises an overview of the internals of Kexec provided by Nellitheertha [50]. According
to his information consists Kexec of two components. The first component is kexec-tools, which is the
user space application to load the kernel and restart into it. The second component is a kernel module
used by the user space component to perform the actual switch between kernels.

To actually load and restart into a new kernel directly from a running kernel, Kexec uses three stages:

1. Copy the new kernel into memory.

2. Move the kernel into dynamic kernel memory.

3. Copy to the final destination and start the new kernel.

Loading the kernel implements the first two stages, in which Kexec parses the input file and constructs
the segments for each kernel part dependent on the architecture. For example, the ARM architecture
uses two segments, one for the kernel and one for the device tree blob. Each segment consists of
the addresses of the buffers in user space memory and kernel memory and their sizes. After parsing
and constructing the segments, Kexec loads them into the user space memory. Thereafter, stage two
executes the system call sys kexec to copy the segments into the kernel pages and additionally allocates
memory for the reboot code buffer.

The third stage is rebooting into the new kernel. To start this stage, the sys reboot function is called with
a special flag, LINUX REBOOT CMD KEXEC. This ensures it transfers control to the function machine kexec,
which is dependent on the architecture used but in general, it stops all interrupts, loads the device tree,
copies the assembly code to the allocated buffer and jumps to this code.

The assembly code finally copies the new kernel over the running kernel and jumps to the address of
the new kernel forwarding the kernel option parameters given by the user.

4.6 ShadowReboot
A much newer reboot technique is ShadowReboot by Yamada and Kono [65]. The authors propose a
solution to shorten the downtime of a kernel update by making use of Virtual Machines (VMs). The
running system must support VMs which is available for ARM from mainline Linux kernel version 2.6.21
[25]. ShadowReboot is only experimentally tested on x86-64 systems, and therefore ARM support is
not guaranteed.

ShadowReboot implements a Virtual Machine Monitor (VMM) to spawn a reboot-dedicated VM parallel
to the running system. Since only the reboot-VM reboots, the applications on the original system can
continue without interruption. When the reboot-VM is up and running again using the new kernel, it has
to transfer the running applications from the original system to the VM.

Transferring the applications and their states from the original system to the VM is made possible by
taking a snapshot of the system. This snapshot contains a complete file system, including the application
states at the time of the snapshot. After the creation of a snapshot, ShadowReboot restores it into the
rebooted VM. Resulting in an identical system running on a new kernel.
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Because ShadowReboot does not shut down the applications during snapshot creation, states can
change between creation of the snapshot and before the restore. The system does not transfer these
changes to the VMand therefore are lost. The advantage of keeping the applications alive is the reduction
of downtime. The downtime for applications consists of the VM fork and the restore time of a snapshot.
ShadowReboot is tested on a Dell OptiPlex with a 3 GHz dual-core and 4 GB RAM, running five Linux
distributions with kernel version 2.6.34. The authors varied the memory sizes of the machines to 256,
512, 1024, 2048 and 2560 MB. The results show a 96,6% shorter downtime in comparison with a
normal reboot for 256 MB of memory. Overall the average downtime of a kernel update is about 5
seconds, varying from 1,9 to 9,86 seconds.

4.7 Dwarf
Dwarf is the newest technique which is introduced in 2018 by Terada and Yamada [62]. They propose
an approach based on multiple VMs. Dwarf is experimental and tested on a Linux desktop from kernel
version 2.6.39. The technique is experimental, and the authors did not test Dwarf on ARM architectures.

In comparison to ShadowReboot, Section 4.6, Dwarf loads the update into a new VM but does not take
a snapshot of the running system but transfers the applications including memory pages and process
files to the new VM. The Dwarf hypervisor is crucial for transferring the application. It spawns new VMs
and takes care of copying and transferring control between the systems.

The VMs used for Dwarf only use virtual CPUs and memory. All other I/O devices are not virtualised
but are in control of the hypervisor. When the hypervisor transfers control of the applications, it also
de-attaches the I/O from the old VM and attaches it to the new machine.

Dwarf can only handle updates which are backwards compatible, and it is not able to update the
structure of memory mappings because memory is transferred between machines and requires the
same structure. Because Dwarf uses a hypervisor to switch between VMs, it is continuously active and
updating the hypervisor itself is not considered in the literature. Hence, a full reboot is required. Dwarf
results in an average downtime of 2.0 to 2.6 seconds by performing a full kernel update on a quad-core
processor with 16 GB of memory.

4.8 Comparison
This section consists of aDSEof all techniques. First, it explains each criterion based on the requirements,
and after that, a score is given to each requirement. Finally, it presents the results of the comparison
with an explanation.

4.8.1 Criteria
A set of general requirements is given in Section 1.3. Based on the requirements, criteria on which the
parts are analysed are set up. Each kernel update technique discussed in this chapter is compared
according to these criteria. It is essential that the proper technique is chosen to elaborate further on in
this research and later on in the proof of concept.

The comparison in this chapter uses the following criteria to find the best update technique for the new
update process:

1. Full update: Performs the technique a full update or does it patch the running kernel?

2. Open-source: Is the proposed technique open-source?
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3. Kernel version: Which kernel version is mandatory to use the technique?

4. Hardware compatibility: Is the technique able to run on the AEOS controller?

Each criterion has a specific weight based on its importance within the overall update approach. With
the weight and the numerical interpretation of the signs in Table 4.1, the final score can be derived. For
each technique, the score si is multiplied by the associated weight wi. Adding all these results together
gives the final score of a technique, denoted by Equation 4.1.

Table 4.1: Scoring table

Sign + 0 -
Score 1 0 -1

4X

i=1

si ⇤ wi (4.1)

4.8.2 Results
Important to note is the limited resource availability in the controller during the update. Besides the
physical devices, an update must be easy to roll out, in contrast, to adjust the update code to support
a kernel update. Both results in a high weight of the criteria full update and hardware compatibility.
Because patch techniques add kernel code each update, the limited flash storage can be a problem
over several updates.

Additionally, patch techniques are not always able to performa specific update. Programmer involvement
is required to, for example, change variable types during runtime. Therefore a full update is more
applicable for the controllers of AEOS. Implementation of VMs to switch between kernel versions is
interesting for desktops and servers with high availability requirements. Because the controller consists
of a single core processor, VMs have to share the processing time resulting in low performance. This
eventually even increases the downtime tested by the authors of ShadowReboot and Dwarf.

The criteria about the kernel version and if the technique is open-source are less relevant and therefore
weighted low. The kernel version is included to know which minimal kernel version is required for using
the update technique. Because, as stated in Section 1.4, the assumption can be made that customers
have to perform a one-time update with the current approach before the new approach is usable, it is
less important for implementation.

Table 4.2 shows the trade-off table for the kernel update techniques. Next, the results are discussed.

Ksplice is a powerful technique for Oracle desktop and server users. The patching approach is beneficial
for critical kernel updates, and with downtime less than a second, almost no interruption is noticeable.

Table 4.2: Trade-off kernel update techniques

Full update Open-source Kernel version Hardware compatibility Total
Weight 3 1 1 3 8
Ksplice - - + (2.6) + 0
kGraft - + - (4.0) - -6
Kpatch - + - (4.0) - -6
KernelCare - - + (2.6) + 0
Kexec + + + (2.6) + 8
ShadowReboot + + + (2.6) - 2
Dwarf 0 + + (2.6) - -1
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Because the usage is limited to Oracle Premier customers and patching is less valuable for embedded
devices, Ksplice is in comparison to the other techniques less applicable for this research.

kGraft and Kpatch are similar but both available for their own Linux distribution. They are relatively new,
and therefore at least kernel version 4.0 and a 64-bit architecture is required. Including the fact that
they are both patching techniques, they are less applicable to run on an AEpu.

KernelCare is different in the provision of patches. It delivers its application as a service with excellent
support. Therefore it can ensure to patch all critical updates available. Because it is a patching technique
and it is a service product including the support advantages, it scores average in comparison to the
other techniques.

Kexec scores maximally because of the open-source full update techniques used and a good fit for
embedded devices. It implements an approach to fully update a kernel with a partial reboot. This
ensures each update takes no extra memory and it can run on embedded devices with limited resources.

ShadowReboot is an approach using VMs to switch between systems and therefore use a newer kernel
in only seconds of downtime. Because two systems have to run simultaneously, the controller of AEOS
is too limited in processing power.

Dwarf is similar to ShadowReboot but scores less on the full update criterium because it is not able to
update memory mappings. This limits the capabilities in which Dwarf is usable, and therefore, it scores
less than ShadowReboot.





Chapter 5

Checkpoint and restore methods

Performing a full kernel update requires shutting down all the running applications. As Chapter 2
presents, the time required to start the Java application is significant. Checkpoint/restore techniques
are interesting to subdue this problem. Creating a checkpoint consists of saving register set, address
space, allocated resources and other process private data. These stored data can be restored after a
reboot with the same state as before the checkpoint. The advantage of checkpoint/restore is, therefore,
the ability to skip initial tasks and resume running at the same state as before the creation of the
checkpoint.

Kadekodi [41] classifies current checkpoint/restore techniques by their scope. Depending on their level
of operation, two classes can be defined: checkpoint/restore on application or system level.

An application-level checkpoint system checkpoints one specific application, and it can be adjusted to
store parts of the application at a predefined timestamp. The downside of this approach is the need to
rewrite the application to predefine when to store application states during execution of the application.
The advantage is the ability to decide what to store when, resulting in a more efficient way of making a
checkpoint.

The system-level approach creates checkpoints at OS level. It does not depend on a specific application,
and the user can update the checkpoint application without affecting other applications. The downside
is that a checkpoint does not take application specific details into account and therefore making a
checkpoint can result in higher downtime and bigger files.

This chapter presents checkpoint/restore approaches based on application and system level. Each
section explains the internals of an approach, and finally, Section 5.6 compares them.

5.1 DMTCP
Ansel, Arya, and Cooperman [2] propose DMTCP, which is a checkpoint/restore mechanism developed
on application level. The application to checkpoint should be linked to the provided DMTCP library
before use. The authors base the implementation on previous work called MultiThreaded Checkpointing
(MTCP), which proposes a technique for making checkpoints of individual processes [3]. DMTCP adds
the ability to checkpoint and restore socket and file descriptors, and other artefacts of distributed
software.

Creating a checkpoint with DMTCP consists of sevens stages:

1. Normal execution: Wait until the checkpoint is requested.
2. Suspend user threads: Suspend all threads and save the owner of File Descriptor (FD).
3. Elect FD leaders: Elect the leader for each FD. With misusing the flag F SETOWN of function fcntl

the owner of an FD can be changed. All processes change the owner of the FD, and therefore, the
last process wins the election.
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4. Drain kernel buffers: The leader of each socket flushes the socket by reading until no more data is
available. After that, it writes the connection information table to the disk.

5. Write checkpoint to disk: Save all user space memory to a checkpoint file.
6. Refill kernel buffers: Send back the drained data to the socket buffers.
7. Resume user threads: All applications can resume their execution because the checkpoint process

is finished.
To perform a restore, also seven stages are required:

1. Reopen files and recreate Pseudo Terminal (PTY): Reopen all FDs, excluding socket connections to
remote processes.

2. Recreate and reconnect sockets: Find the new address of the process and after that re-establish
the sockets.

3. Fork processes: The restore application forks intoN processes, whereN is the number of processes
to restore.

4. Rearrange FDs for user process: Rearrange all FDs with use of dup2 and close to agree on the
arrangement prior to the checkpoint.

5. Restore memory and threads: Restore all local process memory and treads of the application.
6. Refill kernel buffers: Fill all buffers to resume as if it just finished making a checkpoint.
7. Resume user threads: Continue executing the application as before a checkpoint.

DMTCP creates a wrapper around the system call connect and accept which recreates and reconnects
sockets. This wrapper stores information about sockets such as globally unique socket IDwhich remains
constant even over relocations.

The downside of this approach is the fact that DMTCP only can checkpoint applications which do not
use libraries and kernel Application Programming Interfaces (APIs), like inotify to monitor file system
events. Additionally, due to intercepting and forwarding requests, performance issues may arise during
execution.

DMTCP supports Linux distributions with kernel version 2.6.9 upwards. It is ported to the ARM
architecture by using Embedded Application Binary Interface (EABI) API but no port for ARMv5 is
currently available [29]. Because the AEOS controller supports EABI API, it is possible to port it to be
functional on the AEpu [26].

5.2 BLCR
Duell [31] proposes BLCR, an open-source system level checkpoint/restore mechanism designed for
high performance applications. It is developed as a kernel module and a user space library.

The application to checkpoint has to register a threaded callback, which blocks in the kernel until the
application requests a checkpoint. When the utility initiates a checkpoint, it opens a particular file and
calls ioctl on it containing a structure argument, a target identifier and a file handler to which the utility
should write the content. The structure argument and target identifier is most often a process and its
process ID.

The ioctl also unblocks the callback thread which runs the thread-based callback functions in user
space. Once all threads complete their callback functions, one thread is chosen to write the header
of the checkpoint file, including information about all threads, their parent/child relationships and all
shared resources. After that, the kernel module VMADump is invoked to write the registers, signal
information and Process Identifier (PID) of all threads to the checkpoint file. After dumping this data, it
marks the checkpoint completed, and it kills all processes.

The restart utility uses the ioctl function to create the parent and as many children as it needs for the
threads. Upon creation, all children read their information from the checkpoint file using the kernel
module VMADump. One of the threads also reads the header and uses this information to restore the
PIDs and the relationships between parent and children.
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The downside of this mechanism is the requirement to modify the application to checkpoint and restore.
The application must load a library which implements the callback functions. Because this technique is
developed with the focus on high-performance applications, support for Transmission Control Protocol
(TCP) and UNIX sockets is not added. BLCR supports Linux kernels from version 2.6 and ARM support is
currently experimental [46].

5.3 CRIU

CRIU [22] is a system level user space application to checkpoint an application to several files inmemory
and restore it at the same state as before the checkpoint. The files in memory include memory pages,
FDs and inter-process communication.

Creating a checkpoint consists of three stages [21]:

1. Collect process tree and freeze it: By using the given PID, CRIU walks through the virtual file system
/proc to collect all the threads and children. With use of ptrace it freezes all tasks.

2. Collect tasks’ resources and dump:

(a) Read and dump Virtual Memory Areas (VMAs), mapped files, FDs and core parameters from
/proc.

(b) Inject bytes for mmap. Run an injected system call with ptrace to allocate memory for parasite
code.

(c) Copy code to allocated memory and set address to parasite code.

(d) Dump credentials and contents of memory from parasite context.

3. Clean-up: Drop all parasite code and restore original code. CRIU detaches to continue running the
application without modifications.

Restore consists of four stages [21]:

1. Resolve shared resources: Read image files and find processes which share their resources.

2. Fork the process tree: Call fork as many times as needed to recreate all processes required.

3. Restore basic task resources: Open files, prepare namespaces, map memory areas, create sockets
and call chdir and chroot to change current directory and root for the process.

4. Switch to context, restore and continue: Use the restorer code to munmap and mmap. This restores
the memory mappings, credentials and threads. Finally, it restores all timers to make sure they
are not fired too early.

According to their website, CRIU is mainly implemented in user space but to provide some access to
process credentials and inject parasite code it relies on the system call ptrace. Additionally, it is used
to dump open files, credentials, registers and task states into image files. During creating a checkpoint
of a process tree, CRIU checkpoints each connected process child individually.

If the PID is set correctly to the same PID at the time of the checkpoint, CRIU restores the application
in the same state as it was while creating the checkpoint, including open files, memory and other
information from the image files. When finished, CRIU removes the injected code and returns the control
to the process.

Currently, CRIU only supports ARMv6 and onwards because of usage of the atomic instructions ldrex
and strex which are not part of the ARMv5 instruction set [19].
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5.4 OpenVZ
OpenVZ is a mechanism to create isolated Linux containers [51]. Containers are like stand-alone devices
including root access, user management, IP addresses, memory, processes, files, system libraries and
configuration files. In comparison to VMs, containers are much smaller and less resource intensive
because it only containerises applications while VMs virtualises a complete OS.

Because setting up a container involves configuring users, IP addresses and other configurations, it
increases the programmer complexity. Additionally, to support OpenVZ, a custom kernel must be used,
and this implies updates to the mainline kernel are not directly supported.

Because the application to checkpoint is fully isolated from the system underneath, it is possible to
create a checkpoint of a container including the running applications state and restore it on-demand.
Currently, OpenVZ makes use of CRIU to checkpoint and restore containers. Therefore, compared to
CRIU, only the ability to use containers is added by this technique [23].

5.5 LXC
LXC is similar to OpenVZ but supports the mainline kernel to containerise applications. It combines
cgroups and isolated namespaces for Linux [47]. Cgroups are kernel features which can limit or isolate
the resource usage of a collection of processes. Namespaces are also kernel features to provide a
different view of resources to different processes. A process can have therefore the same PID as another
process as long as they are not in the same namespace.

Furthermore, LXC uses CRIU for creating a checkpoint of a container and hence, it only adds the
advantages of using containers.

5.6 Comparison
This section uses DSE to compare the proposed techniques. First, based on the requirements, it shows
the criteria and a corresponding score for each one of them. After that, it presents the results of the
comparison with an explanation.

5.6.1 Criteria
The general requirements are given in Section 1.4. Based on these requirements, the criteria for
checkpoint/restoremechanisms are set up. Each checkpoint/restore technique discussed in this chapter
is compared according to these criteria. To build a new update approach, it is of importance the best fit
is chosen and used later on according to the requirements given. Because all the proposed techniques
are open-source, this criterion is not used in the comparison.
The comparison of the checkpoint/restore techniques in this chapter uses the following criteria:

1. Mainline kernel: Does the technique use the mainline Linux kernel, or does it implement its own?

2. Transparent: Is the technique transparent to the application it has to checkpoint/restore? Are
application adjustments required to use the technique?

3. Sockets: Is the technique capable of creating a checkpoint of UNIX sockets such as TCP?

4. Kernel version: Which kernel version is mandatory to use the technique?

5. Hardware compatibility: Is the technique able to run on the AEOS controller?

Each criterion has a specific weight based on its importance within the new update approach. The
method of scoring is identical to the one used in Section 4.8 even as the equation used to calculate the
final score of each technique.
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5.6.2 Results
The final proposed update process must improve the overall way of updating. One of the requirements
is decreasing the downtime but also the programmer effort of an update is important. Programming
should be about fixing bugs and adding features instead of making sure the update performs well on
each controller separately. Therefore the criteria about using the mainline kernel and transparency to
the application are important, hence have a high weight. Implementing the new update approach in
current products is also of importance, and therefore, the hardware compatibility has a high score. The
support of creating checkpoints of sockets is less important than others. The controllers are developed
to deal with network losses and system failures. If a socket does not close during a checkpoint, the
application resolves a reconnect as soon as possible. On the other hand, if a technique supports creating
checkpoints of socket states, less disruption of the normal operation takes place and therefore, scores
average. The kernel version is less important, as stated in Section 4.8 because Nedap updates it before
this approach is released.

Table 5.1 presents the trade-off table of the checkpoint/restore techniques discussed in this chapter.
Next, each technique is discussed according to the criteria.

Table 5.1: Trade-off checkpoint/restore techniques

Mainline kernel Transparent Socket support Kernel version Hardware compatibility Total
Weight 3 3 2 1 3 12
DMTCP + - + + (2.6) + 6
BLCR + - - + (2.6) + 2
CRIU + + + - (3.11) 0 7
OpenVZ - + + - (3.11) - 0
LXC + + + - (3.11) - 4

DMTCP is a good fit for creating a checkpoint on the AEOS controller. It uses the mainline kernel to
ensure critical updates can be applied as a new kernel version is released. Because it is an application
level approach, it uses a library, and therefore, the application has to be adjusted. Additionally, this
decreases the performance due to wrappers around system calls. DMTCP introduces wrappers to
checkpoint sockets, but applications which use external libraries are not supported. Because kernel
version 2.6 includes the system calls of DMTCP and the AEOS controller supports EABIs used by this
technique, it scores above average.

BLCR is a system level checkpoint/restore technique but the user must couple it to the application, to
register callback functions. Due to the system level approach, the checkpoint and restore process takes
mostly place in kernel space and on OS level. It supports mainline kernels from version 2.6 and a port to
the ARM architecture is available but experimental. Due to the focus on high-performance applications,
support for socket checkpoint is not available resulting in a lower total score.

CRIU is a full system-level technique which is fully transparent to the application to checkpoint including
creating checkpoints of their FDs and sockets. It supports devices from the mainline kernel version
3.11 and ARM architectures which supports atomic instructions. Because the controller uses an ARMv5
architecture without atomic instructions, it is not supported. However, it is possible to port atomic
instructions to older ARM architectures by using other instructions. Therefore, the technique scores
high.

OpenVZ is an effective technique to isolate applications from the system and other applications. By
using containers, the security and migration capabilities increases and containers require fewer system
resources than VMs. Because the controller application already makes use of a Java Virtual Machine
(JVM) and extra isolation is not required, containers are less applicable for the new update approach.
OpenVZ is part of the Virtuozzo community which uses their kernel and underneath uses CRIU, therefore
further implementation is less beneficial for this research.

LXC is similar to OpenVZ but makes use of the mainline kernel. Therefore it scores higher, but because
containers are less usable and it only increases the resource usage, it is less applicable overall.





Chapter 6

Implementation of the methods
As a result of Chapters 4 and 5, it can be concluded that a combination of Kexec and CRIU is the best
option to elaborate further on. Kexec uses several kernel options to overwrite the running kernel with
a new kernel resulting in less downtime. CRIU can checkpoint the application in front of an update
and restores it after the partial reboot, to skip the initialisation on the controller. In this chapter, both
techniques are further explained to give more details about the options which are available for both
techniques and how CRIU is ported to the ARMv5 architecture.

6.1 Kexec
Implementing Kexec consists of configuring the kernel and installing the user space tool. From kernel
2.6 the Kexec kernel options are merged and need enabling before compilation [35]. The user space
tooling, Kexec-tools, can be downloaded as a package or as a source from the official website.

After installing Kexec-tools and configuring the kernel, the user can load a new kernel. Loading the
kernel consists of providing the file path of the kernel and additionally, the new kernel command options
and possible other configurations like the location of initrd or memory configurations. After loading,
the kernel is stored in kernel memory but not yet on the right address, which ensures the system can
continue without effect. It is also possible to unload the kernel.

Executing the direct reboot can be performed the nice way by synchronising the file system, shutting
down interfaces and execute the Kexec reboot. Alternatively, the user can force a reboot to directly
start the new kernel without synchronisation and shutting down. Without carefully synchronisation and
resetting interfaces, states are unknown, and devices might fail to operate after reboot.

After rebooting, the kernel and user space are initialised and operational as before. The new kernel is
started and stored on the kernel address resulting in a fully operational system with a new kernel.

6.2 CRIU
This section explains the port of CRIU to the ARMv5 architecture. Additionally, it describes the different
possibilities of CRIU, for example, using TCP connections, memory tracking and lazy restore.

6.2.1 ARMv5 port
As Chapter 5.3 describes, CRIU is currently not available for the ARMv5 architecture. To port CRIU, the
atomic instructions need to be expanded with instructions supported by the architecture [20]. Looking
closer to the source code of CRIU, it uses the instructions LDREX and STREXmultiple times to exclusively
load and store. Unfortunately, architectures before ARMv6 do not support these instructions, and hence,
a new implementation must be found. Additionally, CRIU currently uses memory barriers to prevent
reordering of instructions. This memory barrier is not compatible with ARMv5, and another approach
should be implemented.
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Atomic instructions
The first question to answer is if the controller requires the atomic instructions. The controller contains
a single core processor, and therefore no processes are executed in parallel. However, CRIU can
checkpoint a process tree containing multiple threads. The situation can occur that multiple threads
are restoring the same data structure, for example, an IPC socket. By restoring, the data structure can
change, which results in race conditions. In the end, the requirement of atomic instructions persist.

The next question is how to solve the atomicity requirement. Multiple solutions are possible for this. The
first is themost straightforward solutionwhich the kernel currently uses, namely to store interrupt states,
disable the interrupts, and afterwards enable and restore them. The second solution is to implement
the atomic functions by implementing the same approach as currently used for ARMv6 and above but by
using ARMv5 capable instructions. A third possible solution is to use kernel helper functions. The kernel
code contains these functions to implement newer instructions into older architectures, for example,
atomic functions as atomic add.

To port CRIU to the ARMv5 architecture, this research proposes a solution based on the simplicity
and the number of instructions. Because disabling interrupts including saving and restoring the states
is a complex task in kernel space and even more complicated in user space [45], this research does
not elaborate this solution further. Using kernel helper functions is interesting because it implements
most functionality by configuring the kernel properly [44]. This reduces the complexity significantly
but increases the kernel size by enabling all helper functions and also the amount of instructions to
use is relatively high because of the requirement of multiple functions to get the same implementation.
Therefore the best fit for the new update approach is to modify the existing atomic functions to use
instructions available for ARMv5 architectures. In the end, this also enables other users to use CRIU on
an ARMv5 architecture by publishing a patch to the community.

CRIU implements the atomic load and store instructions to prevent race conditions while restoring
multiple threads. Changing the instructions while preserving the functionality, consist of a
synchronisation mechanism which ensures multiple threads are not adjusting data at the same time.
Computer scientist commonly uses semaphores to provide this functionality. A semaphore implements
a variable to control access to a shared resource [57]. In older ARM architectures the semaphore
behaviour is commonly implemented by using the SWP instruction [30]. This instruction atomically
copies data from a memory address to a register and stores a value from a register to the memory
address.

Listing 6.1 shows the current instructions to exclusively load, add a value, and exclusively store.

1 1: ldrex %0, [%3] ; exc lus ive load (%r0  M[%r3 ] )
2 add %0, %0, %4 ; add i t ion (%r0  %r0 + %r4 )
3 strex %1, %0, [%3] ; exc lus ive store (M[%r3 ]  %r0 , %r1  status )
4 teq %1, #0 ; tes t equal (%r1 = 0?)
5 bne 1b ; branch not equal (1 before )

Listing 6.1: Instructions for atomic add for ARMv6

Using the SWP instruction instead of the exclusive load and store, it is possible to port the code for ARM
architectures from version 6 to the ARMv5 architecture. Listing 6.2 shows the ported code.

1 mvn %1, #0 ; move not (%r1  NOT 0)
2 1: swp %0, %1, [%3] ; swap (%r0  M[%r3 ] , M[%r3 ]  %r1 )
3 cmp %0, %1 ; compare (%r0 = %r1 ?)
4 beq 1b ; brange equal (1 before )
5 add %0, %0, %4 ; add i t ion (%r0  %r0 + %r4 )
6 swp %1, %0, [%3] ; swap (%r1  M[%r3 ] , M[%r3 ]  %r0 )

Listing 6.2: Instructions for atomic add for ARMv5

As Listing 6.2 presents, the first instruction stores a value in register 1 to act as a lock flag. The value
is set to the maximum possible integer value, ensuring no deadlocks occur due to using a flag which
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is possibly equal to the data stored on the memory address. After swapping the flag to the memory
address and retrieving the content, a compare instruction (line 3) executes a compare to check if the
data is not in use. If it is currently in use by another thread, it keeps trying until the other thread unlocks
the data. If the data is unlocked, the thread can perform the addition, and it atomically stores the new
value back in memory by using the SWP instruction again.

For subtraction, the same approach is implemented but with a sub instruction instead of the add
instruction.

Memory barrier
Compilers often refactor the code to improve the performance of the execution of applications. For ARM
architectures this also implies reordering instructions to hide pipeline latencies or take advantage of
pipelining. Because the order of instructions in the atomic functions is highly important, no reordering
optimisation should occur. The ARM architecture prevents this by implementing memory barriers.

CRIU implements memory barriers for ensuring that no reordering takes place in the atomic functions.
Currently, CRIU uses the following instruction at the start and end of the function:

#define smp mb( ) asm v o l a t i l e ( ”mcr p15 , 0 , %0, c7 , c10 , 5” : : ” r ” (0 ) : ”memory” )

This function executes a functionality not present in the core processor but part of a co-processor, in
this case, a function of the Memory Management Unit (MMU). By using the right registers this instruction
prevents reordering and thus implements a memory barrier [5][4].

The ARMv5 architecture does not implement the memory barrier functionality by using the MMU
command. Thus a compatible equivalent should be used. Looking at the migration guide from ARMv5 to
ARMv7 [6], a GCC inline assembler memory clobber can be used. This assembly code indicates that the
instructions change memory, and no reordering is allowed across the barrier. The memory clobber is
implemented as follows:

#define smp mb( ) asm v o l a t i l e ( ”” : : : ”memory” )

Besides the atomic instructions and the memory barrier, the makefiles are patched to add compatibility
for ARMv5 architectures. Finally, the compiled application is tested.

6.2.2 CRIU configuration
The implementation of CRIU into the new update approach consists of two stages, the checkpoint
before a reboot and the restore afterwards. For both stages, this section discusses the different options
available.

Checkpoint
To create a standard checkpoint, CRIU only needs the PID of the application, and it saves the checkpoint
consisting of several files at the current directory. Formost of the applications, this approach is sufficient,
but if the application uses TCP connections, CRIU must enable repair functions.

Creating a checkpoint including the TCP connections and states, the user must enable the option
--tcp-established by creating the checkpoint but also by restoring. This ensures it creates a new
file for storing all the established TCP connections. The option uses the TCP REPAIR option from the
kernel to store the current state, and restore it while letting the protocol repair the data sequence. One
particular thing to note is the requirement that the IP addresses do not change between the checkpoint
and restore, otherwise CRIU is not able to restore the TCP connections.

Besides a standard checkpoint, CRIU can create a checkpoint while keeping the application running.
After that, CRIU can detect changes in memory pages over time to checkpoint these changes. This
incremental checkpoint can decrease the freeze time of an application by getting the memory of an
application and start writing it into files without an application freeze. So it only freezes the application
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to get changes in memory. To use incremental checkpoints, the architecture must provide memory
tracking. ARM does not support memory tracking, and therefore it is not considered further in this
research [48].

If the controller can track memory changes, the application can continue after creating a checkpoint.
CRIU can add the changes during a second checkpoint. However, without memory tracking, the
continuation of the application can be fatal if, for example, after creating a checkpoint, the application
establishes a new TCP connections. If the user does not take this into account, the restore might fail, or
the behaviour of the application is affected.

Restore
Restoring an application consists of pointing CRIU to the image files and providing the corresponding
options. For example when a checkpoint is generated with using --tcp-established, the restore
process must also contain --tcp-established.

Besides the standard options, CRIU implements the ability to perform the restore not at once but only
restore the parts which are required to get the application running again. This technique is called Lazy
restore and makes use of functionality introduced in kernel version 4.11 [24]. A daemon controls all
the memory pages and checks if any page fault is occurring. If an application tries to access a memory
page which is not yet restored, it causes a page fault. The daemon notices this and populates the
memory with the memory page from the checkpoint. Currently, all systems with userfaultfd enabled,
do support lazy restoring. Because it is experimental, shared memory, mapping one page to two places
and synchronisation between pending forks and transfers is not yet implemented.

One general limitation of checkpoint/restore is the requirement that the application must have the
same PID after the restore as before the checkpoint. This can be a problem when another process is
using this PID during the restore resulting in an error. Killing this process can resolve the issue, but
sometimes the process is in use, or it is a system process, and killing does not solve the issue. As a
solution, the new update approach uses the PID namespace. The PID namespace isolates the ID of
a process from the rest of the system. The namespace itself gets an available PID from the system,
and inside the namespace, the PIDs start from 1 again and therefore the application can get the same
PID again. Figure 6.1 shows an example of the use of PID namespaces, PID 5 starts a namespace, and
inside the namespace, the IDs of the processes starts from 1 again.

Figure 6.1: PID namespace example
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New update process

This chapter describes the design and implementation of the new update process based on the
conclusions of Chapters 4, 5 and 6. Of every step, the design is discussed, followed by the overall
implementation. However, first, the overall design is discussed.

7.1 Overview
As described in Section 1.3, the goal is to research a new update process for an AEOS controller to
decrease the downtime. To meet this goal, the following update process is proposed consisting of
downloading the update files to the controller, checking the integrity, loading the new kernel, creating
a checkpoint of the application, restarting into the new kernel and restoring the application. Figure
7.1 presents the new update process divided into six steps. The steps indicated in orange are the
steps which cause downtime while the blue steps can be performed before stopping the access control
application. Details about the design of each step are discussed next.

Figure 7.1: Overview of the new update process

7.1.1 Download update
Before updating, the update application must transfer all files to the controller. Because this step does
not imply downtime, and it checks all files before transferring, this step is equal to the first phase of the
current update process. Considering this is a proof of concept, AEmon is not used and downloading
update files consists of manual transferring the image using scp. After transferring, the remaining part
of the proof of concept executes automatically.

7.1.2 Perform checks
The proof of concept also implements the integrity checks by using MD5-hashes of step two. This checks
the transferred image files before using them. The most important difference from the current update
process is that the new process does not stop the application after downloading all files, but keeps it
functional by using multiple partitions explained in Section 7.2.
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7.1.3 Load new kernel

The next step is to load the new kernel with the use of Kexec. As Section 6.1 presents, the user must
provide the new kernel and additional options when executing Kexec load. After that, Kexec segments
the new kernel, stores it in user space memory and copies it to the kernel pages. Because only the
kernel is loaded and the running system remains intact, the application can continue executing.

7.1.4 Checkpoint application

While the new kernel is successfully stored and ready to start, the new update process creates a
checkpoint of the application to persist the state of it over a reboot. The new update process only
creates a checkpoint of the AEOS Java application, including all its processes, because other running
processes do not introduce significant initialisation time. Creating a checkpoint and restoring them
would, therefore not reduce the downtime. To know which application to checkpoint by CRIU, the new
update process must find the PID of the application. The Linux command ps reports a snapshot of
current processes with PID, executable name and cumulated CPU time. Searching through this list
results in the corresponding PID. If the correct PID is found, the update process runs CRIU using the
PID-namespace script as described in Section 6.2. Finally, after the checkpoint, the script checks the
log-file to determine if the creation is succeeded and therefore if the update can proceed.

7.1.5 Restart kernel

With the creation of the checkpoint, the application is shut down, which implies downtime. The main
goal of this research is to ensure as less downtime as possible. Therefore the new update process
restarts the system as soon as possible after the checkpoint. Because the kernel is already present
in the kernel pages, the process synchronises the disks, shuts down interfaces and quits the system.
Executing Kexec transfers control to the reboot process of Kexec and starts the new kernel as described
in Section 4.5. Because Kexec sets the kernel and corresponding settings during the load stage, no
further actions are required and only firing Kexec is sufficient.

7.1.6 Restore application

After a successful reboot, the system is running on a new kernel and with a new file system. The
checkpoint process before the reboot stores the image files on the second partition and therefore they
are directly accessible after the reboot. The restore process consists of executing CRIU using the same
options as provided during the creation of the checkpoint. After a successful restore, the application
continues in the same state as during the checkpoint. The access control application is running again
after an update of the kernel and file system.

7.2 Fail-safe methods
Most of the returned controllers are broken by a failed update. Users are often not able to recover from
these issues and are required to send the controller back to Nedap. Nedap flashes new software on the
chip and returns it to the user. To make sure the controller remains functional over a failed update, the
new update process needs to be atomic. An update process is atomic if a transition takes place from
old software to a fully operational new version, with no other state possible, even if power losses occur.
The system always boots a valid new version of the software if it succeeds or a valid old version if the
update fails [64].

This section proposes two techniques to ensure update atomicity. The first technique is to use multiple
partitions to prevent overwriting working code and the ability to reset your device. The other technique
is to use a hardware watchdog to monitor the behaviour of the system and act upon. The new update
process uses both to guarantee an atomic update process.
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7.2.1 Multiple partitions
The first technique to provide fail safety for an update is using two or more partitions [64][14].
Currently, the controller uses several partitions on the NOR flash to separate the bootloader, bootloader
configurations and the kernel and one partition on the NAND flash, Figure 7.2. The AEOS application
is only using a small part of the partition on the NAND flash and therefore using multiple partitions is
possible.

Figure 7.2: Current partition layout

Figure 7.3 shows the partitioning of the flashes of the proof of concept. Each controller consists of a
minimum of 2 GB NAND flash; hence, each partition is 1 GB. Additionally, each partition consists of a
full system, including kernel files and the file system. Depending on the maximum size of AEOS, the
partition layout can be adjusted. For example, system setup is imaginable consisting of four partitions;
one for system A, one for system B, a configuration partition and a data partition. This adds the ability to
reset the AEOS Java application by erasing the configuration partition. It is even possible to remove
all data and perform a full data fetch in case the saved data is corrupt. An additional benefit of using
multiple partitions is the decrement of flash degradation. NAND flash can only handle a finite number of
erases due to the implementation of the semiconductor layer. Over time, the bit-error rates increases
and the flash becomes unreliable. By using multiple partitions, erasing is only required for one partition
per update resulting in a longer flash lifetime.

Figure 7.3: New partition layout

To perform a fail-safe update, the system solely uses one partition for the new version and the other
partition for the running system. During the update, the following steps take place:

1. Check which partition the system currently uses.

2. Mount the second partition to be able to write the update files.

3. Download the new file system to the second partition.

4. Check the integrity using MD5-hashes.

5. Change kernel parameters to ensure the system reboots into the second partition.

6. Reboot the system.



36 7. New update process

7.2.2 Watchdog
The previous technique ensures noworking code is overwritten during the update but does not guarantee
the device reboots automatically into the last working partition if a failure occurs. For example, the
checkpoint of the Java application has become corrupt during writing and therefore, does not start.
Adding a watchdog can resolve this particular issue and also add extra fail-safe measures for other
issues.

A watchdog is a hardware or software system to automatically detect software anomalies during runtime
and reset the system in case such anomaly occurs [49]. Generally, the system sets a counter with
the initial watchdog value and counts down from that value to zero. The software system detects the
watchdog value and periodically resets it. If the counter reaches zero before a reset, the system reboots.
Especially for embedded systems which need to be self-reliant, these fully autonomic technique is
commonly implemented. A general setup is shown in Figure 7.4

Figure 7.4: Watchdog setup

Implementing a watchdog starts with opening a watchdog device in /dev/watchdog. When open, the
watchdog starts counting from the initial value to zero. To keep the system from resetting, the process
must perform a watchdog reset at least once a minute [28]. If no write to the device is performed before
the deadline, the system resets. When the new software system is running successfully, the watchdog
can be disabled by closing the device.

Resetting the systemmight not be enough to remain functional. When an entire file system is corrupt, or
the application is broken, the system must switch back to the last working state. The bootloader U-boot
implements a solution for this by implementing bootcount [32].

The bootcount is a variable located in the bootloader configuration which increments at each reboot.
A second variable implements bootlimit to ensure the bootloader only tries to boot a specific
configuration (kernel and file system) a predefined number of times. When the bootloader reaches the
bootlimit value, it executes the configuration stored in altbootcmd.

The new update process sets the bootlimit value to 1 to ensure the bootloader switches immediately
to the altbootcmd setup in case of an update failure. The low limit decreases the downtime by ensuring
the system only resets once to boot directly back to a functional system. In case the system boots
successfully in an updated version, the process changes the altbootcmd and bootcmd to point to the
new working system. To change the bootloader configuration, the kernel system call fw setenv can be
used.

7.3 Implementation
Combining these techniques into one process delivers a new update process with as less downtime as
possible and on the same time ensuring fail-safe operation by using two partitions and enabling the
watchdog to reset the device to the last working state. Figure 7.5 presents the complete new update
process including fail-safety.
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Figure 7.5: Implementation of new update process

The new update approach normally runs only the five phases of the upper part of the figure. These
phases are required to download, check the files, checkpoint an application, reboot and restore the
application. As stated in Section 7.1, only the phases to checkpoint the application, reboot into the new
kernel and restore the application, causes downtime if the update runs successfully. If the update fails
in one of the first three phases, the application continues running without downtime. This ensures that
the access control system is still functioning, and the user must resolve the error before trying to update
again.

If one of the last two phases fails, the system is already down and can only revive by returning to the old
system. Therefore, the system triggers the watchdog; the system reboots into the old system and starts
the application using the conventional approach. This fail-safe mechanism introduces extra downtime
by resetting the whole device and starting the application without restore but ensures the system is
always able to revert to the last working state.

Appendix B contains the implementation of this approach. It is implemented in two shell scripts to meet
the coding languages Nedap Security Management uses. One script contains the phases from 1 to 4,
and the second script contains the last phase. This last phase contains restoring the application and
is triggered automatically on each boot of the system by using the initialisation manager of the Linux
system.





Chapter 8

Results

In the previous chapters, the new update process and its techniques are explained. This chapter covers
the results of this new update process in terms of relative speed up between the old process and the
new process. Because the focus of this research is to increase availability by decreasing downtime, this
chapter focusses on the comparison of the downtime phases of the old and the new update process.
The other phases can be performed before stopping the application or after the restart of the application
to avoid downtime.

Running the new update process on the AEOS controller requires a minimal Linux kernel version 3.11
and a file system containing Kexec and CRIU. Nedap Security Management is currently developing a
new bootloader, kernel and file system but, unfortunately, these are not yet available for testing the
new update process. Therefore, QEMU, a full system emulation tool is used to imitate the architecture
of the controller. The first section of this chapter explains the differences between the hardware and
the emulation system. Because the differences introduce performance discrepancies, the old update
process is also analysed in the emulation system to get a relative speed up. This is explained in the
second section. After that, the new update process on the emulated system is explained, and finally,
they are compared to give a conclusive relative speed-up.

8.1 Differences between hardware and emulation

Figure 8.1: Differences in systems
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As stated at the beginning of this chapter, the new update process requires a new kernel and file system,
including Kexec and CRIU. For testing the process, a new Linux build is developed with the use of Yocto,
consisting of Linux kernel 4.18, a Poky distribution and all required applications and scripts. For more
information about Yocto, the new Linux build and how to rebuild the system for future usage, inform
appendix C.

Besides the difference in Linux and the OS of the current controller and the emulation, also the hardware
is not equal. Figure 8.1 shows the most important hardware specifications for both the AEOS controller
and the emulated system. Section 1.2.2 already explained the hardware specifications of the AEpu
but important to note is that it consists of an ARMv5 architecture, the combination of NOR and NAND
flash and the use of the U-boot bootloader. Comparing these specifications to the system used for the
emulation tool, three important differences show up.

The first difference is the uncertainty of the maximum processing power of the system in the emulation
tool. Instead of running the applications on one core with a maximum of 800 MHz clock frequency, such
as the AEOS controller, QEMU makes use of dynamic translation [61]. Dynamic translation converts the
application code of the emulated architecture on demand to instructions supported by the host. After
that, it runs directly on the host architecture. This implies that QEMU is not able to limit the processing
power, which results in performance discrepancies with regard to the controller. Ultimately, this also
affects the required downtime of the update process.

The second difference is the absence of the NOR flash in the emulation. The reason for this is that
the development board used as architecture in QEMU does not support NOR flash and only can use
NAND flashes. Other hardware boards are available, but these use different processor architectures. To
test the functionality of CRIU, the ARMv5 architecture is more important, and therefore the NOR flash
is omitted. This results in a system with only NAND flashes and to simulate the two partitions of the
new update process, the emulation includes two flashes. One for partition A and one for partition B. In
the end, QEMU loads the kernel from the host system directly into the RAM of the emulated system,
executes it and starts the user space from one of the NAND flashes.

The third difference is that QEMU does not use a bootloader upon boot. Because all the emulated
hardware is virtual, QEMUmanages the states and initialisation. During a boot, QEMU skips the hardware
detection and initialisation, normally part of the bootloader, and directly runs the provided kernel.

The three differences in hardware do not influence the functionality of the software compared to running
it on the AEpu. However, the performance can vary due to the differences in processing power and
peripherals. In the end, the functionality of the new update process can be analysed, but to provide
results in terms of speed up between the old and new process, both have to be implemented on the
emulator. By analysing and comparing both the old and the new update process on the emulator, it is
possible to measure a relative speed up.

8.2 Old update process in emulation

The old update process consists of five phases, as Chapter 2 explains. It downloads the update, copies
and checks the update files, flashes the NOR with the new bootloader and kernel, reboots the complete
system and starts the new application. Because downloading the update does not introduce downtime,
this phase can be skipped from the test. Because the NOR flash and the bootloader are both not
implemented in the emulation, giving one conclusive measurement of the downtime of the old update
process in emulation is not possible. However, to be able to compare the old and new process, this
section introduces a pessimistic and optimistic bound of the old update process.
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8.2.1 Pessimistic bound
The pessimistic bound is introduced as the maximum downtime the old update process introduces
on the emulated system. Figure 8.2 shows the five phases of the pessimistic bound of the old update
process. The copy and checks phase, kernel and file system phase and start application phase are all
analysed running in the emulation. Because of the lack of a NOR flash and a bootloader, the second and
third phase cannot be measured. The measurements of flashing the NOR and running the bootloader
are therefore reused from Chapter 2 and because the emulator uses hardware with more processing
power, the assumption is made that flashing the NOR and executing the bootloader takes at least the
same time or less on the emulated system.

Figure 8.2: Old update approach pessimistic

The timemeasurement starts after the update process finishes downloading all the files to the emulated
controller. It starts with checking the integrity of the new file system, whereafter it overwrites all the
files, and finally, it checks the integrity of the new bootloader and kernel. At the second phase, it delays
for 70 seconds equal to the time the AEpu requires to erase and rewrite the NOR flash. The third phase
includes the first part of the reboot, but because QEMU does not use a bootloader, the test delays
the process by 3.8 seconds, equal to the time U-boot requires to initialise and start the kernel on the
controller. After this phase, the emulator reboots, which includes starting the new kernel and booting
the new file system. Finally, the AEOS Java application starts and the update is finished.

The old update process takes at most 151.3 seconds of downtime on the emulated system. As stated
before, this is the upper bound of the old update process because it uses virtual hardware with better
performance.

8.2.2 Optimistic bound
The optimistic bound is introduced as the minimal downtime the old update process can take on the
emulated system. Figure 8.3 shows the three phases of the optimistic bound. Comparing this bound to
the pessimistic one results in the lack of the phases which are not measured on the emulation. Because
the assumption is made that the emulator is faster than the AEOS controller, it can at most be that
fast that flashing the NOR and running the bootloader takes no time. With zero downtime of these two
phases, only three downtime phases remain, which consists of the copy and checks phase, kernel and
file system phase and the start application phase.

Figure 8.3: Old update approach optimistic

Because the remaining three phases are equal to phase 1, 4 and 5 of the pessimistic bound, also the
timings of these phases are equal. This results in an optimistic bound of 77.5 seconds.

8.2.3 Comparison of pessimistic and optimistic bound
Removing the phases of the NOR flash and the bootloader results in a significant difference in downtime
of 73.8 seconds. The assumption is made that the downtime of the old update process in emulation
takes between the optimistic and pessimistic bound of respectively 77.5 and 151.3 seconds. Because
there is no possibility to measure or calculate the actual downtime, only this range can be given to
compare the update processes.
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8.3 New update process in emulation
Figure 8.4 shows the new update process fully simulated in QEMU. Because the new process uses two
partitions, it introduces no downtime by copying the update files to flash. Additionally, it performs all
checks and measures to set up the update while running the AEOS Java application, which reduces
the downtime even further. Ultimately, this results in three phases which introduces downtime, the
checkpoint, Kexec reboot and the restore phase. For the remaining phases required to perform a full
update using the new update process, see Section 7.3.

The new update process uses CRIU and Kexec, which both are responsible for the downtime. Whenever
the update process is ready to restart into the new kernel, CRIU is used to create a checkpoint of the
AEOS Java application. During this creation, CRIU kills the application, which starts the downtime of
the system. When it finishes the creation and saving of a checkpoint in the first phase, the system is
ready for a reboot. Kexec performs this partial reboot by directly starting the new kernel from the kernel
space of the currently running kernel. When both the new kernel and the new file system of the second
partition are successfully started, CRIU restores the Java application. At the end of this phase, the
system is running using a new kernel and file system while using the Java application as if it was never
stopped.

Figure 8.4: New update process

Figure 8.4 also includes the downtime introduced by each phase. The checkpoint, Kexec reboot and
restore phase are all executed on the emulation system and introduce downtime to the access control
application. The first phase saves the states of the application and stops it to store also the registers and
stack. From the point in time it stops the application until it finishes the complete checkpoint process,
which takes 1.8 seconds. Directly after that, Kexec reboots the system into the new kernel and file
system, introducing the most significant part of the downtime, namely 11 seconds. After a reboot, the
initialisation script automatically restores the application with all its connections, memory and states
resulting in a downtime of 1.0 second.

Conclusively, the complete new update process introduces 13.8 seconds of downtime, where the
checkpoint and restore phases are responsible for 2.8 seconds and the Kexec reboot for 11 seconds.

8.4 Comparison and discussion
As can be seen in previous sections, most of the phases of the old update process are removed by using
checkpoint/restore and kernel execution. The phases to copy, check, and flash the NOR are still required
but can be performed without downtime due to introducing multiple partitions and booting into the new
kernel directly from the old kernel.

Table 8.1 shows the timings of each phase of the old processes and the new process. What stands out
is the high-performance gain of the phases before and after a reboot. By introducing multiple partitions
and Kexec which loads the kernel directly from any location instead of using the NOR flash, we remove
all downtime before stopping the Java application. The old process required at least 25 seconds for
copying and checking the files and up to 70 seconds for flashing the NOR.

After all update files are written, the old update processes initiate a reboot. The new process, however,
requires an additional step because it does not quit the application before copying the files. The new
update process kills the application at the very least point before the reboot. This killing is performed
by CRIU while creating a checkpoint of the application and takes 1.8 seconds of downtime.
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Table 8.1: Results

Phase Old (pessimistic) (s) Old (optimistic) (s) New (s)
Copy and checks 25.0 25.0 0
Flashing NOR 70.0 0 0
Checkpoint 0 0 1.8
Bootloader 3.8 0 0
Kernel and file system 23.0 23.0 11.0
Restore 0 0 1.0
Start application 29.5 29.5 0
Total downtime 151.3 77.5 13.8

The old update processes perform a full reboot of the system to start using the new bootloader, kernel
and file system which takes from 23 to 26.8 seconds. This time is required to detect and initialise the
hardware and boot the kernel and file system. The new update process skips the bootloader entirely
and directly starts the new kernel. Because all hardware is already initialised and no reset is performed,
the reboot takes only 11 seconds.

A big part of the downtime of the old update process is introduced by restarting the application. In the
emulation, this takes 29.5 seconds, but depending on the configuration and number of authentications,
this can take up to 20 minutes. Because before the reboot a checkpoint of the application is created,
the new update process uses this to restore the application. After a restore which takes 1.0 second, the
state of the application is equal to the state before the reboot, and the application can continue running.

The results of table 8.1 suggests that the new update process updates the kernel and file system within
13.8 seconds in comparison to the 77.5 to 151.3 seconds of the old update process. This leads to
a relative speed up of factor 5.6 to 11.0. Because emulation is used instead of the actual controller,
the possible differences between the emulation and the implementation on the AEOS controller are
discussed next.

As stated earlier, the hardware in emulation differs from the hardware of the AEpu. Comparing the old
update process on the controller and the old update processes of the emulation, several differences
emerged. First of all, due to the higher processor power, copying and checking the update files is faster
in emulation. Moreover, starting the AEOS Java application is much faster on the emulated system
than on the controller. Comparing the boot processes of the AEpu and the emulation shows that the
actual hardware is faster. This can be due to the configuration of the kernel and the file system. When
optimisation takes place to decrease the number of drivers and processes to start during boot, the boot
time also decreases. These differences introduce inaccuracy in the test results, and it is essential to
note that the speed up is only relative and therefore not conclusive for the final implementation on the
AEOS controller. When Nedap successfully ports the new bootloader and kernel to the controller, a
conclusive speed up can be measured.
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Future work

During the research, some beneficial options and techniques emerge which Nedap should investigate
in further research. Some of these techniques do not apply to the current hardware but are valuable
for future products of Nedap Security Management. First, the results of research to possibilities of
updating the AEOS Java application are described consisting of a Dynamic Software Updating (DSU)
and a handing over technique. Finally, several other general research topics and possible techniques
are described.

9.1 AEOS software update

The new update process currently updates the kernel and file system using techniques to checkpoint
and restore the Java application and directly run the new kernel from the old one. This approach reduces
the downtime of the update process significantly. However, this approach does not implement updating
the Java application in comparison to the old update process.

To determine a new update technique for the AEOS application, research is performed to Java update
techniques. However, to implement a proof of concept of these techniques, more research is required.
This research should focus on the ability to run two Java applications simultaneously for a short term
and the number of application changes required for the techniques proposed in this chapter. Because
the Java application update is not part of this research and requires more insights into the application
itself, this chapter presents two promising techniques which can be researched further.

The first update strategy is a commonly used technique called DSU. This technique creates a patch for
the code to update and takes advantage of the class loading ability of a JVM. The second technique is a
more recent one used to hand over program execution from an old version to the new one.

9.1.1 Dynamic software update

DSU mechanisms migrate a running software system to a new version without stopping the application.
The Java bytecode inside a JVM consists of classes, stacks and the heap. Updating a Java application
during runtime consists therefore of locating old classes and update them to the newer ones. After that,
the update application locates all old objects in the heap to replace them with new objects.

Figure 9.1 presents a common way of DSU. At the start, the new and old code are compared to create a
patch. This patch normally contains all new or changed classes and transformer objects which tells
the updater how to transform existing variables or functions to new ones. When a patch is created, the
update performs a request to install. From that point, the running software decides when to update,
commonly specified in the control flow. When the application is ready to update, it installs the new
patch and continues running.
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Figure 9.1: Dynamic software update

Gu et al. [36] present Javelus, a DSU mechanism which updates changed code during suspension and
migrates objects on-demand after resuming. It is implemented on the Java HotSpot JVM and supports
arbitrary changes of Java classes with a disruption of milliseconds.

Javelus consists of two phases: offline preparation and online updating. The offline preparation phase
is comparable to the phases in Figure 9.1 from the comparing to the actual patch. The patch contains a
transformer object which the user must adjust to ensure that Javelus can convert the current code to
the new code. The online update phases are the stages from the request to the end of the update and
consists of four phases: patch loading, safe point checking, code updating and objects updating. The
first phase loads the patch and prepares the metadata. The second phase waits for a safe point, which
is a state in the program where all the threads are suspended, and all stack frames can update. Javelus
waits and retries to find such point and otherwise fails after certain retries. The third phase updates all
the classes and refreshes all inline or compiled code. Lastly, the fourth phase resumes the application
and intercepts access to objects which are not yet updated, to make sure Javelus updates them before
use.

Javelus can make use of two different modes. The first mode is eagerly updating, which is updating all
classes at once, resulting in a variable downtime due to the size of the patch. The second mode is lazy
updating. Lazy updating is a method to update the crucial classes during the actual patch but postpone
the rest of the classes to point in time when the new class is required. This increases the number of
classes which have to be updated on-demand but decreases the pausing time of the application. From
their results, both the eager and lazy approach takes a pausing time less than a second.

Orso, Rao, and Harrold [52] present Dynamic Updating through Swapping of Classes (DUSC), which
does a similar thing but with using proxy classes to swap the updated classes. With the use of the proxy
classes, no involvement of the running application is necessary. DUSC transforms each class in a bundle
of classes, consisting of an implementation class, an interface class, a wrapper class and a state class.
The update manager contacts the wrapper class upon update request to swap. Because it only swaps
the classes, the actual pausing time is reduced, and their results show an increment of the execution
time of less than half a second.

9.1.2 Handing over
Concurrently running multiple instances of an application was presented in the 1970s by Chen and
Avizienis [15]. Introduced initially to minimise the risk of having the same bug in multiple versions of an
application. By voting in case of control flow divergence, the most promising results are determined.
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Hosek and Cadar [39] proposes Mx, a system for multi-core processors to target crash bugs. It
enables two versions of an application to run concurrently without modifications. Mx performs the
synchronisation at system call level, and it can restart crashed applications by checkpoint/restart. Mx
first analyses both binaries and constructs amapping of the control flow of the old application to the new
one. After that, it starts both applications, synchronises them and monitors divergences. Mx discovers
crashes, restores the crashed application, patches it to resolve bugs and continues executing.

Several other frameworks are proposed already [8][16][44]. The main thing in common is the goal of
increasing the reliability of software in multi-processor systems. The AEpu is, however, a single core
embedded system and has limited resources. Continuously running two versions of an application and
additionalmonitor software is not applicable. Nevertheless, the idea about running versions concurrently
is still interesting to apply for short terms.

Balena [10] presented the idea of the hand-over update strategy further at Dockercon 2016. They used
their balenaOS to update a drone while flying, resulting in a downtime of 50 to 200 ms. The main loop
of the application must be adjusted to check if a new instance of the application is running, for example,
by creating and writing to a UNIX socket. When the second instance starts, it tries to connect to this
socket and reads from it. Since a connection is established, the first instance knows a newer version is
running, and it transfers necessary data. When finished transferring, it notifies the supervisor it is ready
to shut down. The supervisor kills the old version of the application and the second instance recreates
sockets and connections, and continues running.

Because the AEOS Java application is already running inside a JVM, the advantage of this can be taken.
To change from the old version of the software to a newer one, it is possible to run both versions
simultaneously. If the old software version detects the new version, it transfers the configuration and
authorisations to remove the requirement for fetching initialisation data from the server. If all the data
is successfully transmitted, the old JVM can quit, and the new JVM can establish all the necessary
connections and continue running. Because the old application can send everything during the start of
the new application, always one of the instances is in control. This reduces the downtime significantly,
and only a small amount of downtime is left when the new instance establishes connections after the
old application stopped.

Some softwaremodifications are necessary to use this technique. First, both applications are required to
look for other instances of the application. If the update starts a second application, the first application
must establish a connection. Secondly, the first instance must transfer the data via this connection, and
finally, the first instance closes the socket and shuts down. When the first closes the connection, the
second instance can initialise to continue running. This initialisation consists for example of establishing
connections to the server and readers.

In Figure 9.2, the process of handing over is visualised. The second application starts simultaneously but
halts after initialisation. The old application notices the new instance and begins transferring necessary
data. After transferring, the old instance quits, and the updated version establishes all necessary
connections and continues the program execution. Because the execution of this approach depends on
the application, timings of the data transfer and downtime due to re-initialisation cannot be determined
in front. Because transferring data occurs during the execution of the old application, the timing is
not interesting for downtime. However, the initialisation of interfaces introduces downtime, which is
dependent on the number of initialisations required and the execution time it takes to initialise.

Transfer Data

Old app

New app

Figure 9.2: hand-over update strategy
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9.2 Other research topics
While a new update technique to update the Java application further reduces the downtime, several
other improvements and techniques emerge during this research. This section describes these topics
which should be considered in further research and development.

• Implementation of a reset functionality to erase all configuration and data to restore a fresh
installation. By using a partition for data and one for the configuration, completely erasing those
partitions should be sufficient.

• Perform incremental updates of the file system instead of flashing or copying a full new file system
over an old one. By using the differences between versions, an update only includes the affected
files. This requires less bandwidth, which enables big customers to speed up the rollout. Besides
it also decreases the flash degradation because less write cycles per block are required.

• Introduce persistent memory over a partial reboot to eliminate the time required for fetching
checkpoint files from the flash. This decreases the downtime of a checkpoint and restores due to
removing the necessity of writing to and reading from the flash. Important to investigate is the
required memory for saving a checkpoint and the requirements for booting the system.

• The incremental checkpoint and lazy restore are already mentioned in Chapter 6 but cannot be
used on the current hardware. Developing future products should include research on the ability
to support these functionalities. By using incremental dumps and lazy restores, the downtime
of the checkpoint and restore process decreases, which decreases the overall downtime of an
update.

• Analyse the usage of CRIU and Kexec in case of an update failure to speed up the reboot into the
last working partition. In the proposed solution in this research, the full system is rebooted using
the conventional method, including usage of a bootloader and fully restart the Java application.
The possibility exists to skip these phases to decrease the downtime of a failed update.

• Analyse the ability to use Mender to update the controllers. Mender is an open source update
manager for embedded devices. While Nedap Security Management tends to go for cloud-based
products, the process of updating the controllers change. By using an update manager with
support of secure image transfer, multiple partitions and one management server, the process of
updating cloud-connected controllers is simple to manage and fail-safe. Besides Mender, Nedap
should consider possible other update management techniques.

• By introducing new hardware for the controller, the ability to use multiple cores should be
researched. By using multiple cores, the update process should take advantage of this by,
for example, using multiple virtual machines to switch between versions of software without
noticeable downtime.
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Conclusion

Currently, Nedap Security Management uses a straightforward update process which downloads the
update, checks the files, stops the application, overwrites all files and reboots into the new system.
After a full reboot, the application starts again, including fetching all authorisations from the server
and initialising the connected hardware. Due to several trends in the access control market and the
urge to update the Linux environment to a newer version to support new features, the update process
must be improved to guarantee high availability of the AEOS controllers. This research explored the
design of a new update process to improve the current update process and guarantee high availability
using as less downtime as required and introduce fail-safe measures to remain functional over a failed
update. Hence, the research question: Is it possible to combine existing update techniques to improve
the controller’s availability and perform a full device update within a contiguous application downtime
of half a second?

To answer this question, the update process currently used by Nedap is analysed. Besides the phases
of the update process, this also resulted in insight into timings of each phase and the downtime of
the overall update process. As a result of this part of the research, the update process is divided into
five phases. These five phases provide a full update including overwriting the application, rebooting
the system and starting the application. The downtime of these five phases is at least 3 minutes but
depending on the configuration and number of authorisations to fetch from the server, the downtime
can take up to 23 minutes.

A critical part of the old update process is the kernel update which requires a full reboot. During this
reboot, the old kernel stops and the new kernel takes over control. To overcome this full reboot, this
research introduces an investigation into kernel update techniques without a full reboot. An DSE is
performed to compare seven different update techniques and, in the end, Kexec is the most valuable fit
for the new update process. Kexec starts the new kernel directly from the currently running one while
skipping the bootloader during reboot. The most beneficial features are that Kexec already supports
the AEpu hardware, is open-source and updates a full kernel instead of patching the kernel which is not
always possible and if it is possible it adds code to the kernel.

A second important observation from the old update process is the restart of the Java application, which
can take up to 23 minutes. To make sure the application can resume its process after a reboot without
initialisation, research to checkpoint/restore techniques is performed. This research analysed five
techniques, which all create a checkpoint of an application and can restore it on demand. Conclusively,
CRIU is the most beneficial one due to its ability to also checkpoint sockets and FDs. Unfortunately, it
did not support the controller architecture yet. By introducing swap instructions instead of the exclusive
load and store, the code is changed and ported to the ARMv5 architecture. Additionally, memory barriers
are added to ensure the compiler does not interchange instructions in atomic functions to improve
performance. Making sure the application can always be restored even with a taken PID, the PID
namespace is introduced. The PID namespace is a Linux feature to isolate the ID of a process from
the rest of the system. The namespace itself gets an available PID from the system and inside the
namespace, all PIDs starts from 1 again and therefore a restored process can always take the same PID
as it had before.
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Finally, a full new update process is introduced consisting of five phases to download and check the
update, load the new kernel with Kexec, create a checkpoint of the application, reboot into the new
kernel and restore the application afterwards. To ensure the system even remains functional over
a failed update, two additional techniques are implemented. The first technique is using multiple
partitions to separate the currently working code and the updated code. This ensures the system is
always able to revert to the last working system, and additionally, it also removes the requirement to
stop the application before writing the update to its destination. The second technique is the watchdog,
which is an automatic reset triggered on a counter. With carefully resetting the timer, the watchdog can
detect system hangs and other problems. When for example, the system does not boot correctly, or the
application cannot start, the watchdog triggers a reset, and by using the bootloader-environment, it
ensures the last working system is booted.

The newly implemented update process is simulated in QEMU, a system emulation tool, to compare
the speed up between the old approach and the new process. Because not all parts of the system can
be simulated, a deviation in results occur. Therefore a pessimistic and optimistic bound is introduced.
Conclusively, the new update process is executed with a downtime of 13.8 seconds, which is a speed up
between factor 5.6 and 11 compared to the old update process with downtime between 77.5 to 151.3
seconds.

By implementing this new update approach, the system can update within seconds and with fail safety
measures. Only the application running on the system is not updated with this new approach. To update
the Java application with minimal downtime, more insight is required. Two possible techniques are
therefore proposed. The first one is DSU, which patches the running application. The second technique
runs two instances of the application simultaneously to switch from the old version to the new version.
Additionally, several future topics are proposed, which requires more research. These topics include
incremental updates, incremental checkpoints, lazy restore and persistent memory over a reboot.
Before Nedap investigates these topics, the new update process proposed in this research, needs to be
tested and adjusted to the hardware and configuration of the AEOS controller. With this implementation,
the downtime of the update process can be reduced to seconds, and the number of devices returned
due to a failed update reduces.
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Appendix A

Comparison tables



Table A.1: Comparison of kernel update techniques

Ksplice kGraft Kpatch KernelCare Kexec ShadowReboot Dwarf

Architecture IA32, x86-64,
SPARC, ARM

x86-64, IBM Z,
IBM Power, AArch64

x86-64, IBM Z,
IBM Power, AArch64 All i386, x86-64, ppc64,

ia64, ARM, AArch64 x86-64 x86-64

Linux distribution Oracle Linux 7 SUSE Enterprise 12 Red Hat Enterprise Linux 7 All All Gentoo, Fedora, Cent,
Ubuntu, and SUSE Ubuntu

Kernel 2.6 4.0 4.0 2.6.18 2.6 2.6.21 2.6.39
Patching Yes Yes Yes Yes No No No
Stops processes Yes No Yes ? Yes Yes Yes
Reboot required No No No No Yes (partial) No No
Virtual Machine No No No No No Yes Yes



Table A.2: Comparison of persistent application state techniques

DMTCP BLCR CRIU OpenVZ LXC

Architecture x86, x86-64,
ARM

x86, x86-64,
PPC(32), ARM

x86-64, ARM,
AArch64, PPC64

x86, x86-64,
IA64, ARM, SPARC

x86, x86-64, ppc(64),
ARM, AArch64

Kernel 2.6 2.6 3.11 3.11 (OpenVZ) 3.11
Run without pre-loading No No Yes Yes Yes
TCP sockets Yes No Yes Yes Yes
UNIX sockets Yes No Yes Yes Yes
Shared resources Yes No Yes Yes Yes
Multiprocess Yes Yes Yes Yes Yes
Containers No No Yes (OpenVZ and LXC) Yes Yes





Appendix B

Script

This appendix shows the instant update script. It is implemented in shell conform the other scripts
used within Nedap Security Management.

It first sets up a new directory tree for the update files and log files. Thereafter it checks the architecture
of the device and optional subtypes. After checking the new kernel file using MD5-hashes, it checks if
all required applications are installed on the system and which partition is currently in use.

After all checks, it mounts and flashes the second partition with the new file system and creates a
directory for application checkpoint. Now the system is fully set up, Kexec loads the new kernel with
corresponding kernel parameters on line 93. On line 95 the script searches the PID of the application and
uses this to create a checkpoint with CRIU. The criu-ns command is an executable which automatically
uses PID-namespaces as described in chapter 6.

After the checkpoint, old files are removed and it copies last modified files to the second partition. After
a sync and an unmount, the system is partially rebooted by Kexec.

1 # ! / bin / sh

3 # load handy func t ions
. / etc / funct ions

5 . / etc / sysfunct ions

7 ARCH= ‘ getarch ‘
#SUBTYPE=

9 IMAGE=”$1”
TARGET DEVICE=” /dev /vma”

11 SOURCE IMAGE=” / images /$IMAGE”

13 i f [ �d / update ] ; then
rm �Rf / update ;

15 f i

17 mkdir / update / update / log / update / img

19 # we cu r r en t l y only support ax8008 a rch i t e c t u r e
[ ”$ARCH” == ”ax8008” ] | | { exi t 0 ; }

21
# get opt iona l ax8008 subtype

23 SUBTYPE= ‘getax8008subtype ‘
i f [ ”$SUBTYPE” == ”unknown” ] ; then

25 echo ”Unknown ax8008 board subtype ! ”
exi t 1

27 f i

29 i f [ $# �ne 1 ] ; then
echo ”Usage : $0 <kernel�image>”

31 echo ”e . g . : $0 zImage . bin ”
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exi t 1;
33 f i

35 echo ” ”
echo ”Checking ${SOURCE IMAGE} � $ ( date ) ”

37 echo ” ”

39 # check the checksum of the image f i l e f o r upload cons is tency

41 i f ! md5sum �c / images / ”$IMAGE${MD5 PREFIX}” .md5; then
echo ”Source ’${SOURCE IMAGE} ’ checksum f a i l u r e ! ”

43 exi t 1
f i

45
echo ” ”

47 echo ”Checking i f programs are i n s t a l l e d ”

49 i f ! c r i u l o c=”$ ( type �p ” cr iu�ns” ) ” | | [ [ �z $c r i u l oc ] ] ; then
echo ”ERROR: �> CRIU not found ! ”

51 exi t 1
else

53 echo ” �> CRIU i n s t a l l e d ”
f i

55
i f ! kexec loc=”$ ( type �p ”kexec” ) ” | | [ [ �z $kexec loc ] ] ; then

57 echo ”ERROR: �> Kexec not found ! ”
exi t 1

59 else
echo ” �> Kexec i n s t a l l e d ”

61 f i

63 echo ” ”
echo ”Check which pa r t i t i o n i s cu r ren t l y in use”

65 pa r t i t i o n=”$ (awk ’/ˆ root / { p r i n t $1 ;} ’ / proc / cmdline ) ”
p a r t i t i o n=${ pa r t i t i o n :5}

67 echo ” Pa r t i t i o n in use : ’${ pa r t i t i o n } ’ ! ”
echo ” ”

69
i f [ ” $pa r t i t i on ” = ” / dev / vda” ] ; then

71 new par t i t ion=” /dev / vdb”
else

73 new par t i t ion=” /dev / vda”
f i

75
# Do f l ash ing th ing here ! ! !

77
# Make f i l e t r e e on new pa r t i t i o n

79 i f ! [ �d / second ] ; then
mkdir / second

81 f i
mount ${new par t i t ion} / second

83
i f [ �d / second / update / ] ; then

85 rm �Rf / second / update / ;
f i

87
mkdir / second / update / / second / update / log / second / update / img

89
# Load new kerne l in memory

91 cmdline=”$ ( cat / proc / cmdline ) ”

93 kexec � l ${SOURCE IMAGE} ��append=” root=${new par t i t ion} rw highres=o f f console=ttyS0 mem=256M
ip=dhcp console=ttyAMA0,115200 console= t t y ” > / dev / nu l l 2>&1 # load the kerne l with the

co r r ec t parameters

95 # Get PID of running app l i ca t ion
i f ! ps axf | grep test | grep �v grep | awk ’{ p r i n t $1} ’ ; then

97 echo ”ERROR: Appl i ca t ion to dump not found , update kernel anyway ! ”
else

99 pid=”$ ( ps axf | grep tes t | grep �v grep | awk ’{ p r i n t $1} ’ ) ”
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echo ”PID of app l i ca t i on i s ’${pid } ’ ”
101 echo ” ”

103 # Dump app l i ca t ion to new pa r t i t i o n
cr iu�ns dump �t ”${pid}” �D / update / img / �vvv �o / update / log /dump. log > / dev / nu l l 2>&1

105
i f ! grep ”Dumping f i n i shed success fu l l y ” / update / log /dump. log ; then

107 echo ”ERROR: Cr iu dump of app l i ca t i on ’${pid } ’ f a i l e d ! ”
exi t 1

109 f i

111 echo ”CRIU dump successful ”
echo ” ”

113 touch / update /DUMPED
f i

115
# Remove old f i l e s

117 i f [ �f / second /home/ root / test . log ] ; then
rm �f / second /home/ root / test . log

119 f i
# Copy l a s t app l i ca t ion and logs

121 cp �r f /home/ root / test . log / second /home/ root / test . log
cp �r f / update / / second /

123
sync

125
sync # sync a l l o f the disks so as not to lose data

127 umount �a # make sure a l l d isks are unmounted
kexec �e # reboot the kerne l

Restoring is automatically fired on a system reboot. The script checks the CRIU application and the
checkpoint files and subsequently restores the application. If a restore fails or a checkpoint is not found,
this script automatically fires the application from scratch.

1 # ! / bin / sh

3 SOURCE UPDATE=” / update / ”
SOURCE IMAGE=” / update / img / ”

5 SOURCE LOG=” / update / log / ”

7 i f ! c r i u l o c=”$ ( type �p ” cr iu�ns” ) ” | | [ [ �z $c r i u l oc ] ] ; then
echo ”ERROR: CRIU not found ! ”

9 exi t 1
f i

11
i f [ �f ${SOURCE UPDATE}DUMPED ] ; then

13 # Restore found , so cont inue r e s t o r i n g
cr iu�ns restore �D ${SOURCE IMAGE} �vvv �o / update / log / restore . log

15
i f grep ” Restor ing FAILED” / update / log / restore . log ; then

17 echo ”ERROR: Cr iu restore of app l i ca t i on f a i l e d ! ”
exi t 1

19 f i

21 echo ”CRIU restore successful ”
touch ${SOURCE UPDATE}RESTORED

23
else

25 echo ”No restore found ! ! ”
se ts id /home/ root / test . sh < / dev / nu l l &> /home/ root / test . log

27 f i

29 echo ”Kernel update f i n i shed successful at ’$ ( date ) ’ ”





Appendix C

Linux build

A new Linux system is required including Kexec and CRIU, to be able to test the new update approach.
This new build includes Linux kernel version 4.19 which is the latest LTS Linux version and a poky
distribution built with Yocto. This appendix first explains the Yocto project and thereafter describes the
steps required to reuse the environment made for this research.

C.1 Yocto

Yocto is a project which bundles open source projects to create Linux systems regardless of the hardware
underneath. It includes tools to share software layers, configuration tools to customise the build and a
compile tool to create the systemautomatically including bootloader, kernel andfile system. Applications
can be installed and added to the file system upon request such as CRIU and Kexec for this research.

The project makes use of layers and receipts. Each layer can contain several receipts which are the
applications. For example, the layer Python implements the dependencies to run Python applications
on the system. Additionally, in the overall configuration hardware can be set to build for a specific board
or processor. Switching between platforms is as easy as changing the configuration and compiling. For
each image a list of applications is present to determine the applications of the final system. Figure C.1
shows the steps to build a system. With the source, user configurations and hardware configurations,
Yocto builds a package feed to combine it finally in an image. Important to note is that the Yocto project
automatically performs all steps if the user provides all required configurations and files.

Figure C.1: Yocto process [55]
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C.2 How to use
To speed up the process of creating a new image for the AEOS controller and to test the implementation
of this research, a full environment is developed and can be reused or appended for further use. The
compilation of the system is performed in a docker to be independent of the compilation system. Figure
C.2 shows the required steps to compile a Linux file system including the kernel.

Figure C.2: Steps to build Linux kernel and file system

The first step is to clone the files to create a docker. If a docker is not desirable, step 1 and 2 can
be skipped but additional changes in configuration can break the compilation in further steps. This
repository consists of a dockerfile which creates a new docker with the required tools and the scripts to
flash the new Linux file system to the hardware.

The second step is to start the newly created docker, it starts a console on the new system which is
currently a Ubuntu 16.04 distribution.

The third step is to clone the Yocto project and the required layers for our system. This also includes
the nedap-ax8008 layer which contains the ported CRIU application and the configuration files for the
hardware.

After everything is set up correctly, the user must run the configuration script to copy the configuration
files to the required locations and to set up the environment.

The last step is to run the compile script which automatically download necessary tools and compiles a
complete file system including the Linux kernel.
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