
LEVERAGING SERVERLESS CLOUD
COMPUTING ARCHITECTURES

Developing a serverless architecture design framework based on best practices
utilizing the potential benefits of serverless computing

MASTER THESIS

BOLSCHER, R.T.J. (ROBIN, STUDENT M-BIT)

27 August 2019

i

LEVERAGING SERVERLESS CLOUD COMPUTING
ARCHITECTURES

Developing a serverless architecture design framework based on best practices
utilizing the potential benefits of serverless computing

Master Thesis

August 2019

Author

Name R.T.J. Bolscher (Robin)
Programme MSc Business Information Technology
E-mail r.t.j.bolscher@student.utwente.nl
Institute University of Twente
 PO Box 217
 7500AE Enschede
 The Netherlands

Graduation Committee

Name Dr. Maya Daneva
E-mail m.daneva@utwente.nl
Department Faculty of Electrical Engineering,

Mathematics & Computer Science (EWI),
Services, Cybersecurity & Safety (SCS)

Name Prof. Dr. Maria-Eugenia Iacob
E-mail m.e.iacob@utwente.nl
Department Faculty of Behavioural, Management and

Social Sciences (BMS), Industrial
Engineering & Business Information Systems
(IEBIS)

mailto:r.t.j.bolscher@student.utwente.nl
mailto:m.daneva@utwente.nl
mailto:m.e.iacob@utwente.nl

ii

iii

Preface
Before you lies the master thesis titled “leveraging serverless cloud computing architectures”. The
thesis presents a research effort that mainly consists of an extensive literature analysis. Based on
this analysis a framework is constructed that aims to support and improve the design process of
serverless cloud computing architectures. It has been written as part of finalizing the Business
Information Technology (BIT) master programme at the University of Twente. I have been fully
engaged with this research effort from February to August 2019.

Personally, I have always been fond of designing and creating things. Since I was a kid I had the
urge to ‘build something’. This finally resulted in me pursuing my bachelor’s degree in Creative
Technology. During these studies I discovered a passion for applying software technology to fulfil
this urge. Since then I have had the chance to apply this passion in practice as a software engineer
in a number of companies, next to pursuing my bachelor’s and master’s degree. This background
is what eventually drove me to focus my master thesis research on the topic of serverless cloud
computing. I tried to combine my practical experience and academic skills with the goal of creating
something useful for software professionals.

I would like to thank my supervisors, Maya and Maria, for their motivating and open-minded
guidance during this process. Especially, considering the fact that I was stubborn enough to try
and find my own path towards a master thesis project and that this resulted in the direction of my
master thesis being somewhat unconventional for a typical BIT student. Additionally, I would like
to thank my roommates, friends, family and especially my girlfriend Maaike, who gave me space
to focus on my studies and kept supporting me throughout the tough times. Finally, I would like
to thank the participants that voluntarily decided to help me evaluate the framework I constructed.

I hope you enjoy reading this thesis.

Enschede, 27 August 2019

iv

v

Abstract
Serverless computing is a new and interesting cloud computing concept concerned with the
deployment of small pieces of software applications and services as serverless functions.
Practitioners are already using serverless computing architectures in their products. However, from
an academic perspective, to the best of the author’s knowledge, a form of coherent accumulation
of knowledge around this topic is missing. Serverless computing has a lot to offer to software
application architects, developers and owners, however due to the novelty of the technology and
the relatively high architectural and economic impact, its adoption is lacking behind or at the very
least, is not maximally utilized. To overcome this problem the objective of this thesis is to create
a framework for designing serverless architectures which can be used by software architects and
developers who want to design a new serverless architecture or migrate an existing application to
a serverless architecture. To achieve this objective, an extensive literature review analysis is
conducted around various relevant serverless computing topics. This forms the theoretical basis
for the framework. The framework consist of four viewpoints (configuration, software design,
software architecture and deployment) and 5 cross-viewpoint variables (performance, vendor lock-
in, security, costs and serverless suitability), which combined form the proposed framework. The
framework is supported by various recommendations and best practices categorized by each
viewpoint and cross-viewpoint variable. The framework is evaluated by applying it to a case study
and by performing interviews with three domain experts. The goal of the evaluation is to find out
if the framework is aligned with the software architecture design and development practice, and if
it could leverage the design of serverless architectures. Based on the evaluation can be concluded
that the domain experts see added value in the framework and think that it can contribute to
creating better serverless architectures more easily, however they struggle with understanding the
framework based on the graphical representation and the ambiguousness of the viewpoint
definitions. Based on the conclusions of the evaluation the graphical representation of the
framework is revised. The goal of the revision is improve the perceived ease of use, and to apply
recommendations from the interviewees. The main contributions of this research effort is twofold.
First, the proposed serverless architecture design framework (SADF) which has the potential to be
useful to practitioners as an up-front design tool as well as in the form of a design and development
checklist during the development and implementation process. Second, the accumulation and
categorization of relevant knowledge on designing and developing serverless applications and
serverless architectures.

vi

vii

Acronyms
API Application Programming Interface

AWS Amazon Web Services

BaaS Backend-as-a-Service

CDN Content Delivery Network

CRUD Create Read Update Delete

DDOS Distributed Denial of Service

DNS Domain Name System

DSRM Design Science Research Methodology

FaaS Function-as-a-Service

I/O Input/output

IoT Internet-of-Things

IS Information Systems

SADF Serverless Architecture Design Framework

SOA Service Oriented Architecture

TAM Technology Acceptance Model

TOSCA Topology and Orchestration Specification for Cloud Applications

UI User Interface

VM Virtual Machine

VPC Virtual Private Cloud

viii

ix

Table of Figures
Figure 1 Serverless function example ... 3

Figure 2 Sequence diagram of basic FaaS consumption .. 4

Figure 3 Research methodology process overview .. 13

Figure 4 Optimization of resource utilization by serverless computing compared to conventional
VMs deployment. (a) Resource utilization in the cloud. (b) Zoom-in of resource utilization in the
cloud with VMs. (c) Zoom-in of resource utilization in the cloud with serverless © 2018 IEEE 19

Figure 5 Sequence diagram for client focused composition pattern ... 33

Figure 6 Basic example of a serverless composition service implementation 34

Figure 7 Example of database connection pooling in a serverless function 39

Figure 8 Example of 'ports and adapter' based architecture © 2019 Vacation Tracker 41

Figure 9 Example of monolithic serverless function code pattern ... 43

Figure 10 Example of serverless function service code pattern ... 43

Figure 12 Example of serverless function nano-service code pattern .. 44

Figure 11 Example serverless function with separated core logic .. 44

Figure 13 Serverless computing benefits and challenges map ... 47

Figure 14 Flow chart to determine serverless suitability .. 50

Figure 15 Artefact design process overview ... 54

Figure 16 Graphical representation of serverless architecture design framework 58

Figure 17 Decoupled core logic and function handler .. 65

Figure 18 Monolithic serverless function example ... 66

Figure 19 Service serverless function example .. 66

Figure 20 Nano-service serverless function example ... 67

Figure 21 Process description of traffic detection and presentation ... 72

Figure 22 Process description of controlling actuators based on live traffic data 72

Figure 23 Process description of anomaly detection and alerting .. 73

file://///Users/robinbolscher/Documents/Universiteit%20Twente/Business%20&%20IT/Master%20Thesis/deliverables/thesis/Master%20Thesis%20Serverless%20Computing.docx%23_Toc17806686
file://///Users/robinbolscher/Documents/Universiteit%20Twente/Business%20&%20IT/Master%20Thesis/deliverables/thesis/Master%20Thesis%20Serverless%20Computing.docx%23_Toc17806690
file://///Users/robinbolscher/Documents/Universiteit%20Twente/Business%20&%20IT/Master%20Thesis/deliverables/thesis/Master%20Thesis%20Serverless%20Computing.docx%23_Toc17806691
file://///Users/robinbolscher/Documents/Universiteit%20Twente/Business%20&%20IT/Master%20Thesis/deliverables/thesis/Master%20Thesis%20Serverless%20Computing.docx%23_Toc17806694

x

Figure 24 Process description of manual control by road supervisors ... 73

Figure 25 Process description of historic traffic data report generation 74

Figure 26 Architecture design view 1 (entails case processes 1,2 and 4) 81

Figure 27 Architecture design view 2 (entails case processes 3 and 5) .. 82

Figure 28 Revised graphical representation of SADF .. 94

Table of Tables
Table 1 Mapping of research methodology steps onto research questions 14

Table 2 Mapping cross-viewpoint variables onto viewpoints .. 57

Table 3 Serverless benefits and challenges ... 62

Table 4 Serverless suitability characteristics .. 62

file://///Users/robinbolscher/Documents/Universiteit%20Twente/Business%20&%20IT/Master%20Thesis/deliverables/thesis/Master%20Thesis%20Serverless%20Computing.docx%23_Toc17806704
file://///Users/robinbolscher/Documents/Universiteit%20Twente/Business%20&%20IT/Master%20Thesis/deliverables/thesis/Master%20Thesis%20Serverless%20Computing.docx%23_Toc17806705

xi

Table of Contents

Chapter 1. Introduction ... 1

1. 1. Introduction to serverless computing.. 1

1. 2. Benefits and challenges of serverless computing .. 5

1. 3. Problem statement ... 6

1. 4. Research motivation ... 7

1. 5. Research objective .. 7

Chapter 2. Research methodology ... 9

2. 1. Research questions.. 9

2. 2. Research process ... 10

2. 3. Expected contributions .. 13

2. 4. Thesis structure ... 14

Chapter 3. Literature review .. 15

3. 1. Literature review process .. 15

3. 2. Benefits of serverless computing... 17

3. 3. Challenges of serverless computing .. 22

3. 4. Characteristics of serverless suitability ... 27

3. 5. Composition of serverless applications ... 30

3. 6. Best practices for creating and migrating towards a serverless architecture ... 37

3. 7. Conclusions.. 46

Chapter 4. Artefact design ... 53

4. 1. Artefact design process ... 53

4. 2. Literature analysis description .. 54

4. 3. Design of the serverless architecture design framework .. 54

4. 4. Conclusion ... 70

Chapter 5. Case analysis .. 71

xii

5. 1. Case description .. 71

5. 2. Process analysis ... 72

5. 3. Conclusion ... 74

Chapter 6. Evaluation .. 75

6. 1. Case study ... 75

6. 2. Semi-structured interviews ... 84

6. 3. Conclusions and recommendations... 91

Chapter 7. Conclusions and recommendations .. 95

7. 1. Benefits and challenges of serverless computing .. 95

7. 2. Serverless suitability characteristics .. 95

7. 3. Serverless composition .. 96

7. 4. Serverless specific best practices ... 97

7. 5. Serverless architecture design framework .. 97

7. 6. Limitations... 99

7. 7. Recommendations and future work .. 101

References ... 103

Appendix 1. Serverless architecture design legend .. 107

Appendix 2. Interviews .. 109

1

Chapter 1. Introduction
This chapter will present an introduction to serverless computing (Section 1. 1.), and presents the
summary of a literature review on the potential benefits and challenges of the serverless computing
technology (Section 1. 2.).

1. 1. Introduction to serverless computing
Serverless computing is a new and interesting cloud computing concept concerned with the
deployment of small pieces of software applications and services (Baldini, Castro, et al., 2017).
Since 2014 many of the tech giants have invested in this new cloud computing paradigm resulting
in various serverless computing cloud services, for example AWS Lambda (Amazon Web
Services), AWS Cognito (Amazon Web Services), Google Cloud Functions (Google), Google
Firebase (Google), IBM Cloud Functions (IBM), Microsoft Azure Functions (Microsoft), Apache
OpenWisk (Apache) and Auth0 (Auth0). Furthermore, Gartner reports that ”the value of
[serverless computing] has been clearly demonstrated, maps naturally to microservice software
architecture, and is on a trajectory of increased growth and adoption” (Lowery, 2016).

1. 1. 1. Definition of serverless computing

According to Baldini, Castro, et al. (2017) the term ‘serverless computing’ is coined by the
technology industry, therefore it lacks a standardized formal definition. The academic community
only recently started giving attention to this topic, a search for “serverless computing” on Scopus
shows 63 publications since 2016, with the vast majority in 2017 (20) and 2018 (36). Two
definitions of serverless computing, stemming from 2017 and 2018, were found:

1. “[Serverless computing is] a programming model and architecture where small code
snippets are executed in the cloud without any control over the resources on which the code
runs” (Baldini, Castro, et al., 2017).

2. “Serverless computing is a form of cloud computing that allows users to run event-driven
and granularly billed applications, without having to address the operational logic” (Van
Eyk et al., 2018).

Both definitions touch upon some of the key features of serverless computing:

1. Allows for granularly billing by cloud service providers.
2. An event-driven programming model and architecture.
3. Handles most, if not all, operational concerns.
4. Removes control over resources.

There are some additional key features not completely covered by the definitions though, for
example the following mentioned by Chapin and Roberts (2017):

5. Often short-lived.

2

6. Auto-scaling and provisioning.
7. Implicit high availability.
8. Implicit fault tolerance.

Both definitions of serverless computing are quite accurate and overlapping, even though they use
different terminology. For the purpose of the research in this thesis we will consider the term
‘serverless computing’ as indicated below. It is grounded on the definitions of Baldini, Castro, et
al. (2017) and Van Eyk et al. (2018):

“A form of cloud computing that removes all operational concerns for users while allowing
granular scaling and billing by supporting a programming model and event-driven software
architecture that uses small code functions as individual deployment units.”

It is important to note that serverless computing is a misnomer in the sense that serverless
computing does not actually refer to the absence of servers in cloud computing (Jonas, Pu,
Venkataraman, Stoica, & Recht, 2017; Spillner, 2017). From a software developer’s perspective
the name seems more appropriate; serverless computing abstracts away most resource related
concerns (e.g. over-/under provisioning, fault tolerance, scalability, deployment) in such a way
that the developers do not have to think about the server to which their code will be deployed
(Baldini, Castro, et al., 2017; Hendrickson et al., 2016; Varghese & Buyya, 2018; Villamizar et
al., 2017).

Chapin and Roberts (2017) categorize two different types of serverless computing
implementations: (1) Backend-as-a-Service (BaaS) and (2) Function-as-a-Service (FaaS).

1. BaaS is concerned with replacing server side components that were usually implemented
and deployed by the software application owner through off-the-shelf external third party
services. BaaS services expose their functionality, such as a managed database cluster (e.g.
Google Firebase (Google)) or authentication components (e.g. Auth0 (Auth0) and Amazon
Cognito (Amazon Web Services)), through an API.

2. FaaS is a new method of creating and deploying server-side software applications, based
on individual functions as deployment unit. Examples of FaaS providers are AWS Lambda
(Amazon Web Services), Google Cloud Functions (Google), IBM Cloud Functions (IBM),
Microsoft Azure Functions (Microsoft) and Apache OpenWisk (Apache). The most widely
adopted FaaS implementation currently available is AWS Lambda (Amazon Web
Services), many people refer to FaaS implementations as serverless computing (Chapin &
Roberts, 2017). However, FaaS is just one implementation of the serverless computing
concept (Chapin & Roberts, 2017; McGrath, Short, Ennis, Judson, & Brenner, 2016;
Varghese & Buyya, 2018; Yan, Castro, Cheng, & Ishakian, 2016).

Initially BaaS and FaaS seem quite different, the reason to group these two types of services
together, as stated by Chapin and Roberts (2017), is that “neither require you to manage your own
server hosts or server processes”. Even though BaaS and FaaS have some common benefits an

3

explicit distinction will be made in this thesis due to the technical and architectural differences.
Therefore, the main subject of this thesis will be based on the serverless computing implementation
FaaS, whenever BaaS is discussed this will be explicitly mentioned.

1. 1. 2. Introduction to serverless functions

A serverless function is the basic deployment unit of FaaS. Whereas conventional cloud computing
considers large all-encompassing software applications (or services in case of Service Oriented
Architectures (SOA) or microservice architectures) as the basic deployment unit, FaaS allows
individual deployment of functions or operations (Chapin & Roberts, 2017).

These functions are all separately deployed in lightweight containers which can individually be
started (provisioned) the moment the cloud service provider receives an event that wants to use
that specific function of the software application (McGrath & Brenner, 2017; Varghese & Buyya,
2018). Containers are the next evolution in lightweight virtualization techniques for cloud
deployment (Pahl, Brogi, Soldani, & Jamshidi, 2018), and pose several advantages over traditional
Virtual Machine (VM) based deployment such as quick provisioning (server start up time) and less
storage and processing overhead (Hendrickson et al., 2016; Tosatto, Ruiu, & Attanasio, 2015).

A simplified example of a serverless function is demonstrated in Figure 1, it shows a simplified
function that handles an incoming event and sends a text message using the provided event data
via a third-party text message service provider named Twillio (Twillio). Twillio itself can be
considered an implementation of serverless computing, since it functions as a BaaS by providing
various communication related functionalities through an API on a pay-per-use basis.

Figure 1 Serverless function example

4

An important difference between conventional long-running software applications (e.g.
microservices) is that serverless functions are inherently stateless (Chapin & Roberts, 2017;
McGrath et al., 2016). This is enforced by the life cycle of the function instances themselves; they
are provisioned on request and deprovisioned whenever possible. Any temporary state stored in
memory would be deleted upon deprovisioning. This brings challenges for software developers
(forced to use external persistency services), but also opportunities, due to the stateless nature of
serverless functions they can be horizontally scaled extremely easy, merely by increasing
concurrency (Chapin & Roberts, 2017).

The process of consuming a serverless function is shown in Figure 2 and can be summarized on a
high abstraction level as follows:

1. Cloud service provider detects an incoming event.
2. A container will be created running the function.
3. The event will be routed to this container once it has started.
4. The function will process the event.
5. Finally the container will be terminated.

Figure 2 Sequence diagram of basic FaaS consumption

This whole process is executed in a very short time. Although it depends on many different factors
such as programming language, dependencies, and required memory. The most time consuming
part of this process is the creation of the container running the function (Varghese & Buyya, 2018),
this is also called a “cold-start”; the time it takes the cloud service provider to create the container
and starting the function that the incoming event needs access to. Most cloud service providers

5

alleviate this problem by keeping the function “warm” for an arbitrary number of minutes after it
has been used; basically the container, including the function, is not directly destroyed after use,
but kept idle for some time. This eliminates cold start delay since the container can be re-used.

1. 2. Benefits and challenges of serverless computing
Serverless computing offers several benefits over conventional cloud deployment. This paragraph
will shortly address the most prevalent benefits found in recent literature, more detailed analysis
can be found in Section 3. 2.

Whereas conventional cloud deployment of monolithic applications poses scaling issues, a
microservice or serverless computing architecture allows for far more granular scaling and
therefore optimizes resource utilization (Van Eyk et al., 2018; Villamizar et al., 2017). Because of
the optimized resource utilization, over and under provisioning is minimized, resulting in reduced
operational costs. In contrast to conventional VM based deployments, where the application owner
pays for the allocation of the resources whether it is being used or not (Varghese & Buyya, 2018),
serverless computing offers a cost model based on execution time rather than resource allocation
(Adzic & Chatley, 2017; Eivy, 2017; Villamizar et al., 2017). The latter further aligns the
operational costs to actual business demand.

Furthermore, serverless computing, and FaaS in particular, presents novel architectural
opportunities for software developers and software architects such as inherent fault tolerance,
effortless parallelisation of computing and the composition of various serverless functions to create
business value through workflows (Jonas et al., 2017; van Eyk, Iosup, Seif, & Thömmes, 2017;
Varghese & Buyya, 2018; Wagner & Sood, 2016; Yan et al., 2016).

Finally, serverless computing potentially improves the development process by reducing lead time
(Adzic & Chatley, 2017; Baldini, Castro, et al., 2017; Chapin & Roberts, 2017), reducing risk
(Chapin & Roberts, 2017; Ivanov & Smolander, 2018), and allowing software developers to
choose the best language, dependencies and tools for a specific serverless function, in contrast to
being stuck with the decisions made many years ago in a different context in the case of a
monolithic application (Van Eyk et al., 2018).

Serverless computing also poses some severe challenges compared to conventional cloud
deployment. This paragraph will shortly address the most prevalent benefits found in recent
literature. More detailed analysis can be found in Section 3. 3.

First, there are various performance related challenges to the application of serverless computing
in production environments, for example long wait-times due to cold starts (Baldini, Castro, et al.,
2017; Chapin & Roberts, 2017; van Eyk et al., 2017), increased complexity in managing
performance issues due to the underlying serverless platform which is out of control of the
application owner and managed by the cloud provider (Chapin & Roberts, 2017), and more in

6

general, the unpredictability of FaaS performance makes it difficult to provide Quality-of-Service
guarantees which are often desired in business contexts (Yan et al., 2016).

Second, serverless computing brings new or additional development complexities. Developers
need to update their knowledge on the concept and learn to work with new tools specific to FaaS
development and deployment (Chapin & Roberts, 2017; van Eyk et al., 2017), and monitoring,
debugging and versioning becomes more difficult in a serverless context (Baldini, Castro, et al.,
2017; McGrath et al., 2016; van Eyk et al., 2017; Villamizar et al., 2017).

Third, FaaS brings the risk of potential vendor lock-in according to various authors (Adzic &
Chatley, 2017; Baldini, Castro, et al., 2017; Chapin & Roberts, 2017; Eivy, 2017; Villamizar et
al., 2017). Serverless functions are often developed for a specific FaaS platform and might not be
deployable to other platforms without necessary changes, besides, FaaS platforms offer a lot of
additional services such as platform specific storage adapters, scaling, monitoring and logging
tools, authentication components etc., when serverless functions are becoming dependent on these
platform provided services it becomes increasingly more difficult to move to another FaaS
platform eventually.

Fourth, it is not trivial to decompose existing applications into serverless functions (Hendrickson
et al., 2016; McGrath et al., 2016). The ability to do this is necessary to move existing (monolithic)
applications towards a microservice or serverless oriented architecture.

Finally, the potential operational cost reductions are not so straightforward as they might appear.
According to Eivy (2017) the cost reductions “heavily depend on the execution behaviour and
volumes of the application workloads”. Therefore, serverless computing needs to be applied with
care to prevent unexpected high costs.

Concluding, serverless computing has the potential to be of great benefit to software developers,
software architects and software application owners, by improving the software quality while
reducing costs. However, the challenges presented above need careful consideration on a per-case
basis in order to ensure the successful application of serverless computing.

1. 3. Problem statement
The problem central to this thesis is based on the novelty of the serverless computing architecture.
Due to this, researchers and practitioners have yet to establish a knowledgebase with regard to
implementation standards, cost saving techniques, performance optimizations and more general
best practices with regard to implementing serverless computing architectures. Practitioners are
already using serverless computing architectures in their products. However, from an academic
perspective, to the best of the author’s knowledge, a form of coherent accumulation of knowledge
around this topic is missing. This claim is substantiated by van Eyk et al. (2017) who propose the
interesting research challenge of creating a reference architecture for serverless computing
architectures which “would provide developers and researchers with an understanding of the main

7

components shared by FaaS platforms, facilitating new deployments and enabling comparisons of
designs”. The proposed reference architecture is just an example of the gap in usable knowledge
with regard to serverless architectures. Because of this missing or scattered knowledge,
practitioners are, for example, likely to underutilize, misuse, implement anti-patterns, or generate
substantially more costs than would be necessary and by doing so forgoing the envisioned benefits
of serverless computing.

1. 4. Research motivation
The most desirable benefits of serverless computing are aligning operational costs with actual
business demand and cost savings in general, but also more secondary benefits are identified such
as improved agility, reduced lead time, et cetera.

Many businesses currently are not using serverless computing technology or are underutilizing it
due to the many unknowns such as complex cost structures, performance challenges and
uncertainties regarding the implementation of this concept into the current application architecture.

The motivation of this research effort is that serverless computing has a lot to offer to software
application architects, developers and owners, however due to the novelty of the technology and
the relatively high architectural and economic impact, its adoption is lacking behind or at the very
least, is not maximally utilized. Switching to a serverless architecture requires a thoughtful switch,
similar to the one architects and developers had to make when microservices where becoming a
more common architectural style. It certainly is not a one-size-fits-all kind of approach. A
successful serverless computing adoption depends on many factors and requires many important
nonarbitrary considerations.

I hope this work can contribute to the successful adoption of serverless computing by providing
software architects, developers and owners with the handlebars, insights and references to make
informed decisions for their specific applications and to maximize the potential of this interesting
new approach to deploying software in the cloud.

1. 5. Research objective
In order to improve the serverless computing adoption, and maximize utilization of the
corresponding benefits, the objective of this thesis is to create a framework for designing
serverless architectures which can be used by software architects and developers who want to
move an existing application to a serverless architecture or who want to design a new serverless
architecture from scratch. Additionally, this research aims to be interesting for software
application owners as well due to the high economic impact of the serverless software architecture.

To achieve this objective a number of consecutive steps have to be taken. First, a large literature
review analysis has to be executed. This forms the theoretical basis for the framework that will be
developed. The framework will then be evaluated by applying it to a case study and by performing

8

interviews with a number of domain experts. The goal of the evaluation is to find out if the
framework is aligned with the software architecture design and development practice, and if it
could leverage the design of serverless architectures.

9

Chapter 2. Research methodology
This chapter is dedicated to describing the research methodology that is used for this research. It
describes the proposed research questions (Section 2. 1.), the research process that will be
followed to answer these research questions (Section 2. 2.), the expected contributions of this
thesis (Section 2. 3.) and presents the structure of the remainder of this thesis (Section 2. 4.).

2. 1. Research questions
Based on our research objective, a number of core research questions were defined as follows:

RQ1. What are the currently known benefits and challenges of serverless computing?
RQ2. What are the existing approaches or characteristics to determine which parts of an

application are suitable to be implemented in a serverless way?
RQ3. How could cloud native architectures be composed and orchestrated to enable the full

potential of serverless computing?
RQ4. What are the best practices for creating a serverless application from scratch, and for

migrating a non-serverless architecture to a serverless architecture?
RQ5. How can these best practices be applied in a form that supports software architects and

developers in the process of designing a serverless application architecture?

In the following paragraphs the reasoning and goals of the proposed research questions are further
elaborated.

2. 1. 1. Research question 1

In order to apply serverless computing it is key to know what this technology has to offer in
addition to the traditional commonly used cloud computing concepts. Besides, knowing which
challenges the technology currently faces creates a new level of insight which is useful when
thinking about the questions proposed in RQ4 and RQ5.

2. 1. 2. Research question 2

It is important to be able to understand how applications could be decomposed into functions with
the goal of optimizing resource usage in a serverless environment. The goal of this research
question is to provide a set of characteristics that can be used in determining whether a certain part
of a system, a functionality, or an arbitrary piece of code could benefit from being extracted to a
serverless function. This results in knowledge that might be of value for RQ4, since it lays the
foundation for a best practice related to migrating to a serverless architecture, and even for creating
a new serverless application from the ground up.

10

2. 1. 3. Research question 3

This question looks at how the granular serverless building blocks can be composed and
orchestrated into large cloud native architecture solutions in such a way that the full potential of
serverless computing is achieved. Important to consider for this question is the concept of a hybrid
cloud architecture.

Hybrid cloud applications (a combination of various types of cloud computing, on-premise,
private/public cloud, third-party services, linked together through orchestration) pose a challenge
because of the heterogenous nature of the system. It is important to know how to use and develop
these different sorts of cloud computing services in conjunction, and to find out how to maximize
the benefits of each individual sort of service to create economical, easy-to-develop and highly
performant systems. New approaches might be required to assemble serverless components into
larger systems that are easier to understand and reason about.

The goal of this research question is to gather knowledge on the various possibilities regarding
composability of serverless applications.

2. 1. 4. Research question 4

This research question focusses on defining best practices for creating serverless applications from
scratch and the migration from non-serverless architectures towards hybrid serverless
architectures. This question heavily relies on RQ2 and RQ3, which already propose some
important characteristics of this process.

The goal of this research question is to formalize the body of knowledge concerned with the
creation and/or migration of hybrid serverless applications into a set of considerations and choices
which can assist software architects and developers when faced with similar challenges.

2. 1. 5. Research question 5

This research question analyses and combines the knowledge gathered by RQ1, RQ2, RQ3 and
RQ4. Additionally, it looks at how to create a framework which implements the said knowledge
into a form that is usable by software architects and software developers. The goal is to create a
serverless architecture design framework which will aid practitioners in the process of designing
a serverless architecture while applying best practices found in literature. This framework will be
evaluated by applying it to a case study which entails the design of a serverless application
architecture and by performing semi-structured interviews with a set of practitioners.

2. 2. Research process
This research is based on the Design Science Research Methodology (DSRM) as described by
Peffers, Tuunanen, Rothenberger, and Chatterjee (2007). This research effort can be roughly
divided into two parts. The first is the theoretical literature research (steps RMS1 through RMS4)

11

which will be performed using a structured review approach as proposed by Webster and Watson
(2002). The second is concerned with applying this knowledge to design, demonstrate and evaluate
a framework (steps RMS5, RMS6 and RMS7).

The DSRM was chosen since it offers a formal method for doing design science research
specifically for the Information Systems (IS) domain with a focus on producing an artefact that
addresses a predefined problem. The DSRM describes six distinct process steps:

1. Problem identification and motivation
2. Definition of the objectives for a solution
3. Design and development
4. Demonstration
5. Evaluation
6. Communication

The first two DSRM steps are covered by respectively Sections 1. 3. “Problem statement”, 1. 4.
“Research motivation”, and 1. 5. “Research objective”. The third, fourth and fifth steps are
addressed in the remaining chapters of this thesis. The sixth step is not specifically addressed,
however this thesis as a whole can be considered to represent the communication step as it presents
and discusses the results of the application of the DSRM. To answer the research questions and
reach the research objective a number of consecutive research methodology steps (RMS) have to
be taken which are described below.

Part 1 – Background and literature research

RMS1. Literature research on the benefits and challenges of serverless computing.

This step creates the theoretical basis upon which can be built in the next steps by answering RQ1.
A large part of this step is already set forth in Chapter 1.

RMS2. Literature research on identifying characteristics that makes chunks of applications
suitable to benefit from serverless computing.

The goal of this step is to answer RQ2 by delivering a set of characteristics that can help software
developers and architects to determine if a piece of code could/should be deployed serverless or
not.

RMS3. Literature research on the composition, orchestration/choreography of (hybrid) serverless
applications.

This step will produce techniques and methods on how individual serverless function can be
composed into a large coherent software application. Important is to take the hybrid cloud
approach into account where serverless functions co-exist and cooperate with other forms of cloud
native architectural components.

12

RMS4. Literature research on best practices for creating a serverless application from scratch and
for migrating a non-serverless architecture to a serverless architecture.

The goal of this step is to gain insight into best practices for creating serverless application
architectures. This is needed in order to implement this knowledge into a form that can be used by
software architects and developers.

Part 2 – Design, demonstration and evaluation of framework

RMS5. Create a serverless architecture design framework.

Deliverable of this step is a serverless architecture design framework created using the gathered
knowledge (steps RMS1 through RMS4) which serves as a basis for the next steps of this research.
For this step the DSRM is utilized.

RMS6. Apply and evaluate the serverless architecture design framework.

This step entails an application and evaluation of the serverless architecture design framework. It
will be applied on a case study which will function as a first evaluation of the framework.

RMS7. Evaluation of the serverless architecture design framework with domain experts.

The final step of this research method is the evaluation of the serverless architecture design
framework produced by the DSRM in steps RMS5 and RMS6. This will be done by performing
semi-structured interviews with a number of domain experts; preferably three to four. According
to Boyce and Neale (2006) “in-depth interviews are useful when you want detailed information
about a person’s thoughts and behaviours“. Since this is exactly the goal of the evaluation, semi-
structured interviews are chosen as evaluation method. Moreover, this type of interview was
chosen due to the rather broad nature of the problem domain. Additionally, it is hoped that the
domain experts will take the opportunity given by semi-structured interviews to divert from the
topic where needed to provide valuable insights and knowledge the researchers could not have
predicted beforehand. Additionally, the Technology Acceptance Model (TAM) by Davis, Bagozzi,
and Warshaw (1989) will be applied to measure some important aspects of the proposed artefacts
such as perceived usefulness and perceived ease-of-use.

Figure 3 presents a process model of the proposed research methodology steps. The columns
represent the steps described by the DSRM. The first column describes steps in the research
process that have already been presented in Chapter 1. The first four RMS are performed serially
in order to further build upon the knowledge each step provides. These first four RMS are
considered to be the basis of the third DSRM step “design and development”. The fifth and sixth
step are iterative steps and together with the seventh step cover the rest of the third, fourth and fifth
DSRM steps.

13

Figure 3 Research methodology process overview

2. 3. Expected contributions
The research efforts in this work are expected to have a twofold contribution to both researchers
and practitioners in the area of serverless computing.

First, an extensive literature review will be conducted on the topic of serverless computing and the
proposed research questions RQ1, RQ2, RQ3 and RQ4. This is expected to contribute to the state-
of-the-art on this topic by synthesizing the relevant literature into a comprehensive overview and
making relevant connections between the accumulated knowledge.

Second, the serverless architecture design framework produced by applying the DSRM to RQ5 is
expected to be of value to researchers and practitioners. The contribution here is twofold, it
describes the creation of the serverless architecture design framework as well as its application
onto a case study which demonstrates how a serverless architecture could be designed using this
framework. For researchers it demonstrates a more practical approach to the application of
serverless computing which might be used as a basis for further research, additionally it points out
what research areas of the serverless computing topic need further attention from the research
community. For practitioners, such as software developers, software architects and software
application owners, it provides valuable insights into the various ways serverless computing could
be adopted, what common pitfalls and existing challenges are, and how best practices could be
applied.

14

2. 4. Thesis structure
This thesis is organized as follows. Chapter 3. presents the literature review that serves as the
theoretical foundation of this work. Chapter 4. describes the creation of the serverless architecture
design framework (SADF). Chapter 5. describes the case that will be used to apply and evaluate
the serverless architecture design framework. Chapter 6. presents the demonstration and evaluation
of the SADF based on a case study and interviews. Chapter 7. will conclude this work by
summarizing the knowledge and experiences gathered during the execution of this research,
additionally it will present recommendations for practitioners and researchers. Finally, Section 7.
6. will discuss some of the most important limitations to this research effort.

Table 1 presents a mapping of the research methodology steps (RMS) as presented in Section 2.
2. onto the research questions and the DSRM steps. This shows the direct relation between the
actions that will be performed during this research effort and the research questions they try to
address. Additionally, the final column describes in what specific section of this thesis the research
question and corresponding RMSs will be addressed.

Research
question

Research
methodology step

DSRM Step Addressed in
section

RQ1 RMS1 3 - Design and development Sections 3. 2.
and 3. 3.

RQ2 RMS2 3 - Design and development Section 3. 4.

RQ3 RMS3 3 - Design and development Section 3. 5.

RQ4 RMS4 3 - Design and development Section 3. 6.

RQ5 RMS5 3 - Design and development Chapter 4.

RMS6 4/5 - Demonstration and evaluation Chapter 6.

RMS7 5 - Evaluation Chapter 6.

Table 1 Mapping of research methodology steps onto research questions

15

Chapter 3. Literature review
This chapter presents the main theoretical contribution of this thesis which consists of several
separate literature reviews on the subjects of: benefits and challenges of serverless computing
(resp. Section 3. 2. and Section 3. 3.), characteristics of serverless suitability (Section 3. 4.),
composition of serverless applications (Section 3. 5.) and finally best practices for creating and
migrating towards a serverless architecture (Section 3. 6.). This chapter will conclude with the
implications of the found literature for this work by answering the research questions as presented
in Section 2. 1.

3. 1. Literature review process
There are various separately executed literature reviews presented in this chapter. Even though
they were executed separately they followed the same review process: a structured review
approach as proposed by Webster and Watson (2002). The literature reviews presented here are
not exhaustive and are merely structured (and not systematic) in order to quickly create a broad
base of information which in turn can be built upon later on in this research effort. Roughly the
following steps were executed for each literature review:

1. Establish search keywords
2. Execute search on Scopus
3. Select relevant and recent papers by reading titles and abstracts
4. Select useful papers by reading them thoroughly
5. Based on the resulting papers execute additional explorative literature research

The main scientific literature source used is Scopus, however, in some cases (especially the
explorative review part) Google Scholar was used as additional source.

3. 1. 1. Literature review process RQ1

This section shortly addresses the structured literature review for RQ1 which tries to answer the
question of “What are the currently known benefits and challenges of serverless computing?”. This
literature review is addressed in both Section 3. 2. and Section 3. 3. This literature research was
very much explorative, as it served as the initial deep dive into the subject matter. Notwithstanding,
the following search queries were used as basis for this explorative research:

1. “serverless AND benefits”
2. “serverless AND advantages”
3. “serverless AND challenges”
4. “serverless AND issues”

16

3. 1. 2. Literature review process RQ2

This section describes the literature review executed for the purpose of answering RQ2 “What are
the existing approaches or characteristics to determine which parts of an application are suitable
to be implemented in a serverless way?”. The result of this review is described in Section 3. 4. The
following search queries were executed:

1. “serverless AND computing”
2. “serverless AND code”
3. “serverless AND computing AND code AND characteristics”
4. “serverless AND suitable”
5. “serverless AND code AND suitability”

3. 1. 3. Literature review process RQ3

This section presents the structured literature review executed in order to answer RQ3 “How could
cloud native architectures be composed and orchestrated to enable the full potential of serverless
computing?”. The results are presented in Section 3. 5. The following search keywords were used:

1. “serverless AND composition”
2. “serverless AND architecture”
3. “serverless AND orchestration”

This resulted in respectively 6 papers (1st query), 107 papers (2nd query) and 9 papers (3rd query).
Due to the large number of results for the second search query, the fact that the papers were spread
over a large time period (2009 to 2019), and the large concentration of publications in 2017 (22)
and 2018 (36), was decided to only include papers for this query from 2017 through 2019.

After filtering all publications based on their abstracts (and duplicate results) there were 2 papers
(1st query), 19 papers (2nd query) and 5 papers (3rd query) left. Next, the papers were read
thoroughly and selected based on their relevance towards to topic of state-of-the-art serverless
composition. This resulted in a final 13 papers; 2 papers (1st query), 9 papers (2nd query) and 2
papers (3rd query).

Some additional papers were found through explorative literature research or originate from earlier
stages of this research, these papers are incorporated into the text where applicable.

3. 1. 4. Literature review process RQ4

This section presents the structured literature review executed in order to answer RQ4 “What are
the best practices for creating a serverless application from scratch, and for migrating a non-
serverless architecture to a serverless architecture?”. The results are presented in Section 3. 5. The
following search keywords were used:

1. “serverless AND best-practices”

17

2. “serverless AND best practices”
3. “serverless AND guidelines”
4. “serverless AND migration”

This resulted in respectively 2 papers (1st query), 6 papers (2nd query), 1 paper (3rd query) and 12
papers (4th query). After reading the papers’ title and abstract there was respectively 1 paper (2nd
query) and 2 papers (4th query) left that were expected to be relevant to this literature review.
Reading the papers thoroughly resulted in 2 papers that were included in this review.

Since the academic literature yielded very little results, also (exploratively found) grey literature
is included for this review (e.g. blog posts by practitioners, company presentations and white
papers). Additionally, since a lot of literature research on the topic of serverless computing has
preceded this review, a lot of relevant information was extract from papers that were found through
previous reviews related to research questions RQ1, RQ2 and RQ3. The grey literature and the
previously found literature complementary make up for the lack of paper results for this specific
research question.

3. 2. Benefits of serverless computing
This section is concerned with answering the first part of RQ1 “What are the currently known
benefits and challenges of serverless computing?”. Serverless computing offers several benefits
over conventional cloud deployment; granular scaling ability, optimisation of resource utilization,
reduction of operational costs, architectural opportunities and improvements to the development
process. This paragraph presents a non-exhaustive summary of the most important benefits found
in literature.

3. 2. 1. Granular scaling opportunities

The nature of serverless computing allows for very granular scaling compared to more
conventional types of cloud computing. As noted by Villamizar et al. (2017) and Van Eyk et al.
(2018) scaling a monolithic application is difficult since it comprises of many different services,
one service might be in high demand and therefore unnecessarily degrading the performance of all
constituent services. The only solution is to scale the whole monolithic application, even though
some services might be sitting idle (Van Eyk et al., 2018; Villamizar et al., 2017).

Microservices, as described by (Lewis & Fowler, 2014), offer a solution to the aforementioned
scaling issues of monolithic applications. Basically, the monolith is decomposed into the various
services it consists of, these services are then deployed separately, and can therefore be scaled
separately as well (Villamizar et al., 2017). Even though this is a big improvement over monolithic
applications, there are still some benefits to be gained; microservice cloud architectures require
quite some effort when it comes to deploying, operating and scaling (Villamizar et al., 2017).
Ideally, from the perspective of software application owners, these activities would be handled by
the cloud service provider as well.

18

This is why companies like Amazon started creating products like AWS Lambda (Amazon Web
Services) to fill that gap. These serverless computing services enable creating microservices,
without the need to manage servers, that can easily be deployed and are automatically scaled
(Villamizar et al., 2017).

Another benefit stemming from the granular scaling capabilities is the ability to parallelize heavy
workloads almost instantly as demonstrated by McGrath et al. (2016) and their Trek10 media
management service application (MMS) example. The Trek10 MMS is able to re-size several
hundred images in about the same time it would take to re-size just one image. This has been
realized by applying a fan-out approach; a “master” function takes the image resize request and
invokes a new “worker” function to perform the CPU intensive task of resizing the image. This
parallelization reduces the total execution time of resizing hundreds of images as each image is
being resized by a different serverless computing instance.

An important note to make here is that scaling serverless computing functions is done
automatically by the cloud service provider, without any required configuration (Chapin &
Roberts, 2017). Depending on the cloud service provider there are some scaling configuration
options, however the gist is that for each incoming request a new function instance will be created,
running on its own resources, hence the automatic and configuration-less scaling. Because of its
automatic scaling capability, serverless computing is especially useful in contexts where demand
is hard to predict and experiences large spikes and drops.

3. 2. 2. Optimizing resource utilization

The most obvious benefit of serverless computing, and actually a result of the granular scaling
opportunities, is the improved alignment of resource usage to actual demand. In conventional VM
based deployments a server has to be continuously running the deployed software application,
moreover, the resources available to the VM must be of such performant level in order to be able
to handle peak demand at all times which results in continuous high costs and unnecessary over-
provisioning (Chapin & Roberts, 2017).

There are some solutions that allow for better aligning the available computing resources with
actual demand such as Amazon EC2 Auto Scaling (EC2 is an elastic on-demand cloud computing
service based on VMs) (Amazon Web Services). EC2 Auto Scaling allows users to set certain
resource or usage metric related thresholds (e.g. more than 80% CPU used, more than 1 million
requests per minute per instance) which will trigger deployment of more instances when crossed.
Unfortunately there are various downsides to this approach, for example deploying extra instances
can take (more than) several minutes (Van Eyk et al., 2018), which might result in severe
performance issues even before new instances could be deployed. Even worse, from a cost
perspective, would be when new instances are only finished deploying after the peak load has
already began to drop; incurring costs but no performance improvement.

19

Serverless computing optimizes resource utilization by being extremely granularly scalable (Van
Eyk et al., 2018). For each incoming event a new function instance is provisioned (if there are no
free warm instances available at that moment), meaning that serverless computing scales
horizontally almost instantly compared to demand (Chapin & Roberts, 2017). This results in
basically zero under-provisioning, and due to the fact that instances are automatically
deprovisioned when not used, there is also zero over-provisioning. The optimization of resource
utilization of serverless computing compared to conventional VMs is demonstrated in Figure 4 as
presented by Van Eyk et al. (2018).

Figure 4 Optimization of resource utilization by serverless computing compared to conventional VMs deployment. (a) Resource
utilization in the cloud. (b) Zoom-in of resource utilization in the cloud with VMs. (c) Zoom-in of resource utilization in the cloud
with serverless © 2018 IEEE

Another benefit of serverless computing is the implicit built-in fault tolerance. If an error occurs
within a serverless computing instance when processing an event, the instance is restarted and
provided the same input in order to retry (Jonas et al., 2017). This is related to optimizing resource
utilization since the conventional approach to handle fault tolerance is to deploy fail-over
instances, which doubles the operational costs and is part of over-provisioning (Singh, Singh, &
Chhabra, 2012).

3. 2. 3. Reducing operational costs

Conventional cloud computing requires a software application to be hosted on a VM or inside a
container (Varghese & Buyya, 2018). The software application owner pays for the whole time the
VM or container is running the software application, regardless of whether it is being used or not;
a cost model of ‘per VM per hour’, ignoring idle time (Varghese & Buyya, 2018).

When the software application would be deployed serverless, the owner would pay very granularly
based on actual usage of the software application. Serverless computing even allows ‘scaling to

20

zero’ (Baldini, Castro, et al., 2017), meaning that cloud service providers can destroy all deployed
instances resulting in zero costs for the software application owner as long as it is not being used.
The cost model for FaaS is based on execution time rather than resource allocation (Adzic &
Chatley, 2017; Eivy, 2017; Villamizar et al., 2017). Different cloud service providers use different
billing schemes, an example taken from AWS (Amazon Web Services) shows that depending on
the required RAM (ranging from 128MB to 3008MB) a software application owner would pay
from US$ 0.000000208 to US$ 0.000004897 per 100ms of execution time. The cloud service
provider can offer these low prices due to the fact that there is not one large VM continuously
running the entire software application, rather, the software application is divided into many small
serverless functions.

Serverless deployment is not necessarily equally beneficial in all contexts. Especially (parts of)
software applications that are not highly utilized benefit from cost reductions due to serverless
deployment (Warzon, 2016). Furthermore, software applications that experience inconsistent,
burst and compute intensive workloads are expected to benefit from cost reductions when deployed
serverless (Baldini, Castro, et al., 2017; Chapin & Roberts, 2017).

It is nonarbitrary to determine how low-utilized a software application has to be in order for it to
be cheaper when deployed serverless, to this end Warzon (2016) performed a breakeven analysis
between AWS Lambda (Amazon Web Services) and AWS EC2 (Amazon Web Services) which
at least gives an idea on when serverless deployment would be cheaper than conventional
deployment. The breakeven analysis has no singular answer, since there are various configuration
options for both AWS Lambda (e.g. RAM and CPU) and AWS EC2 (different instance types).
The smallest AWS Lambda configuration (128MB RAM) with a function execution time of 100ms
is cheaper than a AWS EC2 m4.large instance up till 295,000 requests/hour. More frequent
requests and an m4.large instance becomes cheaper to run continuously. When execution time
and/or required RAM rises for AWS Lambda functions, the breakeven point lowers quickly;
200ms and 512MB breaks even at 64,000 requests/hour, 200ms and 1GB at 34,000 requests/hour
and 1sec and 1GB at 7,100 requests/hour.

A cost comparison performed in laboratory setting with comparable loads between AWS Lambda,
microservices and conventional monolithic deployment shows the potential of cost savings of 50%
up to 62% compared to microservice deployment and 55% up to 77% compared to monolithic
deployment (Villamizar et al., 2017). Another cost comparison performed on two real software
applications MindMup and Yubl which were migrated to a serverless deployment architecture
results in comparable cost reductions; respectively 66% and 95% (Adzic & Chatley, 2017).
MindMup benefited most from moving file uploads and export conversion function to AWS
Lambda, these are relatively infrequently used and are CPU intensive tasks well-suited for FaaS.
In the case of Yubl (a social network), the benefits were mostly caused by the ability to quickly
scale to spike demands, they used to be over-provisioning a lot to prevent performance issues when
such a spike would hit. Another example is presented by Chapin and Roberts (2017), the authors
compare the serverless and non-serverless implementation of a small turn-by-turn mobile game.

21

Their findings are that both the labour cost of developing the game and the resource costs of
running the necessary cloud infrastructure are reduced, additionally the authors mention a risk
reduction due to inherent FaaS features such as high availability, scaling and security.

Another benefit mentioned earlier is also responsible for cost reductions: implicit failover.
Conventional failover implementations require an additional instance to be running all the time to
pick up the pieces once another instance has failed. This results in double the costs of running the
software application without failover. FaaS has inherent failover, whenever a function execution
fails it will be retried on a newly provisioned function, hence making conventional costly failover
implementations superfluous (Jonas et al., 2017; Wagner & Sood, 2016).

Cost reductions are a huge intrinsic benefit. Moreover the lower costs create new opportunities
that used to be too costly. The shift from capital to operational expenses is one of them, cloud
computing in general removes the necessity of purchasing expensive hardware before a software
application can be deployed. Serverless computing further improves this by enabling companies
to almost perfectly align the costs of hosting a software application to actual business processes
due to its ‘pay-as-you-go’ cost model, additionally it allows companies to monitor costs more
granularly on a per business process basis (van Eyk et al., 2017). Removing barriers to versioning
is another accessory opportunity, each serverless function deployment receives a unique numeric
identifier, and multiple versions of a serverless function can be deployed simultaneously, this
empowers developers in a way that was never possible with conventional cloud deployment since
it would cost twice as much to have two versions of the same software application deployed at
once (Adzic & Chatley, 2017; Van Eyk et al., 2018).

3. 2. 4. Architectural opportunities

Serverless computing, and FaaS especially, presents new architectural opportunities to software
application developers and architects. One of these opportunities is touched on before, inherent
fault tolerance provided by FaaS (Jonas et al., 2017; Wagner & Sood, 2016). This removes the
need for developing and managing fault tolerance from the start, these saved efforts could therefore
be spend more effectively.

Another opportunity is the effortless parallelisation of computing. Due to the automatic horizontal
scaling of serverless functions it is very easy to distribute and parallelize computing when desired
(Varghese & Buyya, 2018). An example is the ExCamera application described by Van Eyk et al.
(2018) where the authors used FaaS for improving the performance of editing, transforming and
encoding videos by parallelizing these tasks over many concurrent serverless functions. McGrath
and Brenner (2017) describe similar performance improvements through parallelisation; a media
management service application that parallelised image resizing making the execution time
independent of how many resizes are being executed simultaneously.

Serverless functions are not necessarily designed for the purpose of chaining multiple functions
together to form specific workflows although they do lend themselves very well for that purpose

22

due to the provided data flow and event-based abstractions (Yan et al., 2016). This is further
substantiated by van Eyk et al. (2017) who envision a ‘workflow’ like composition of serverless
functions in order to facilitate development. Amazon recognized this need and developed the AWS
Step Functions (Amazon Web Services) service which allows “[the coordination of] multiple AWS
services into serverless workflows”, or in other words, it enables the chaining or composing of
serverless functions.

3. 2. 5. Improvements to the development process

A different category of benefits is that of development process improvements. For example, the
independent serverless functions allow developers to choose the best language, dependencies and
tools for that specific use case (Van Eyk et al., 2018). This way they are not bound to choices made
in the past which may not work for their current challenge.

Reducing lead time is another major potential benefit to the development process, not only does it
save labour costs, it also empowers developers to more quickly try and test potential solutions
which enables faster feedback and improves rapid iterations (Adzic & Chatley, 2017; Baldini,
Castro, et al., 2017; Chapin & Roberts, 2017). As a consequence of reducing lead time due to
migration from a monolithic architecture to a serverless driven architecture Adzic and Chatley
(2017) note that the release frequency for a real software application (Yubl) could be greatly
increased, from 6 releases a month to more than 80. This reduction is mainly caused by the fact
that serverless functions remove the need to manage infrastructure and other operational aspects
for developers, which in turn allows them to focus their time and effort on business logic (Adzic
& Chatley, 2017; Baldini, Castro, et al., 2017).

Finally, reduction of risk is mentioned as a result of adopting serverless computing (Chapin &
Roberts, 2017). While Chapin and Roberts (2017) do not mention any further specifics, Ivanov
and Smolander (2018) note that serverless can reduce risk by providing easy deployment and
rollbacks due to the atomic nature of serverless functions.

3. 3. Challenges of serverless computing
This section is concerned with answering the second part of RQ1 “What are the currently known
benefits and challenges of serverless computing?”. Serverless computing poses some severe
challenges compared to conventional cloud deployment; operational cost reductions are not
straightforward, performance issues, development complexities, migration and decomposition
challenges, increased monitoring difficulty, potential threat of vendor lock-in and security
concerns. This paragraph presents a non-exhaustive summarization of the most common
challenges found in literature.

23

3. 3. 1. Performance challenges

Various authors describe performance as one of the main challenges FaaS is currently facing
(Baldini, Castro, et al., 2017; Chapin & Roberts, 2017; van Eyk et al., 2017; Van Eyk et al., 2018).
Examples of these performance issues are relatively long wait-times due to cold starts (Baldini,
Castro, et al., 2017; Chapin & Roberts, 2017; van Eyk et al., 2017) and high latency due to the
HTTP transport protocol (Chapin & Roberts, 2017) but also currently very basic scaling and
scheduling policies (Baldini, Castro, et al., 2017; van Eyk et al., 2017).

Cold starts are especially challenging since the nature of this challenge is inherent to FaaS, the
deprovisioning of functions when not in use. Depending on the load on a specific serverless
function it might or might not cause performance issues, for example, a function that is being used
at least once a second only experiences cold starts once every 10000 executions, or 0,01% of the
time (Chapin & Roberts, 2017). As Chapin and Roberts (2017) mention, the cold start problem
makes predicting FaaS performance especially difficult, but the authors feel that this problem
might be minimized or addressed in the future.

Another interesting performance challenge is that not only on application level performance issues
might occur, but also on the underlying serverless platform managed by the cloud provider, this
makes it much more difficult to predict or optimize code performance (Chapin & Roberts, 2017).

The unpredictability of FaaS performance makes it hard, if not impossible, to provide Quality-of-
Service guarantees (Yan et al., 2016).

3. 3. 2. Development and operations complexities

Since serverless computing is a new architectural concept, it requires developers to change their
modus operandi in some aspects. Let’s consider state, most cloud software developers are
accustomed to developing stateful microservices or monolithic applications, e.g. user sessions,
caching, et cetera, due to the nature of serverless functions this is not possible (Baldini, Castro, et
al., 2017; Chapin & Roberts, 2017). Therefore, developers are forced to use external stateful
components, even persisting the tiniest amount of state. This might increase complexity, but surely
changes how software developers create software.

Another aspect regarding the development process that poses additional challenges when adopting
FaaS is integration testing. Not all cloud service providers offer the tools to test serverless functions
locally, without additional costs of running in the cloud (van Eyk et al., 2017). This brings extra
complexity, as suddenly running tests becomes costly (since the cloud provider charges for tests
equally as any other user would use the serverless function), requires deployment (next to already
deployed serverless functions), and increases complexity due to its distributed nature (Chapin &
Roberts, 2017; van Eyk et al., 2017).

Versioning is another development aspect that suffers from additional complexity according to
various authors (McGrath et al., 2016; van Eyk et al., 2017; Villamizar et al., 2017). McGrath et

24

al. (2016) explain this as due to the individual deployability of serverless functions that can occur
across arbitrary parts of a versioned software application. This is in line with the findings of
Villamizar et al. (2017) who noted during the application of a serverless architecture in a laboratory
setting that due to the many separately versioned parts of such an architecture it is very important
to maintain a proper service versioning by properly defining an upgrade process and increasing
coordination among teams.

Vendor-interoperability is another challenge for developers. Each serverless computing vendor
requires different implementations of serverless functions, hence there is a need for a vender-
agnostic definition or platform which enables developers to move their functions without
adaptation between various cloud service providers (van Eyk et al., 2017). Besides, each platform
might behave different from another; scaling, resource usage, performance, all might be subject to
change between various cloud service providers. Therefore it is important for developers to really
understand the specific platform to which the application is (going to be) deployed (Baldini,
Castro, et al., 2017).

Finally, specific tooling for serverless function development and deployment is required for
various reasons. For example to enable developers in testing and running their code locally (van
Eyk et al., 2017) and to allow distributed monitoring (Chapin & Roberts, 2017). Besides that,
deploying large-scale serverless applications quickly becomes unmanageable, serverless
deployment tools should assist developers in easy-deployment (Chapin & Roberts, 2017),
preferably across multiple cloud service providers as for example the Serverless Framework
(Serverless Inc., 2019) currently does.

Monitoring and debugging becomes especially hard in a serverless context (Baldini, Castro, et al.,
2017). Functions only live for a short amount of time and are completely destroyed afterwards,
removing any trace of their execution (Baldini, Castro, et al., 2017), therefore it is not possible to
attach a remote debugger (Chapin & Roberts, 2017). Besides, distributed monitoring and
debugging is still an area of improvement, it should enable developers or operations personnel to
trace a business request through all the individual components that are processing the request and
form a response or action (Chapin & Roberts, 2017). In conventional cloud computing the concept
of a stack trace often presents developers with the necessary information to track down bugs, such
a concept does not exist for (distributed) serverless computing (Yan et al., 2016).

Another point to note is that even though serverless functions brings many benefits for software
developers, it is not to be forgotten that it also brings additional overhead on a per-function basis.
For example logging, monitoring, versioning/updating, documentation, all these things that used
to be handled on a microservice or monolithic codebase level now have to be handled for each
function separately, at least to some extend (Villamizar et al., 2017).

25

3. 3. 3. Serverless composition

Serverless function composition is another area that requires attention. Composition allows
software developers to create patterns or workflows by calling serverless functions from other
serverless functions resulting in a business function. Another aspect of this challenge is that of the
hybrid cloud, there are more than one cloud platforms provided by various cloud service providers,
according to Baldini, Castro, et al. (2017) it is unlikely that one platform will have all the
functionality a developer could need and will work for every use case, therefore it is important to
consider that composition should be possible between different cloud platforms.

An interesting research challenge that is posed by van Eyk et al. (2017) concerns the currently
missing reference architecture for serverless cloud computing applications. Such a reference
architecture would guide software architects and developers by providing examples and best
practices with regard to implementing (hybrid) serverless cloud applications. According to van
Eyk et al. (2017) a reference architecture “would provide developers and researchers with an
understanding of the main components shared by FaaS platforms, facilitating new deployments
and enabling comparisons of designs”.

3. 3. 4. Increased monitoring complexity

Monitoring becomes more complex as the software to be monitored becomes more complex, this
also holds for serverless functions due to its distributed nature. Villamizar et al. (2017) and Chapin
and Roberts (2017) identify the challenge of tracing the flow of a request made by an end-user
through the various cloud infrastructure components and software services (distributed
monitoring), something that used to be trivial when there was only a single software application
deployed. Not only is monitoring more complex in a serverless context, it is also more important
since the execution of the functions is directly and linearly related to the operational costs (Yan et
al., 2016). Therefore, monitoring needs to be used to see for example if cost savings can be made,
or if a bug is causing growing costs.

3. 3. 5. Migration and decomposition efforts

It is not trivial to decompose an existing application, whether that is a monolithic application or a
number of microservices, into various serverless functions. This might be desired for existing
applications that want to take benefit of serverless computing for parts of their system. Serverless
functions are designed to respond to events and perform certain operations which collectively can
be seen as a full-fledged web application, however McGrath et al. (2016) mention that a traditional
application is not easily split into separate serverless function endpoints. This is supported by
Hendrickson et al. (2016) who note that decomposing monolithic web applications into serverless
functions presents similar challenges as decomposition practices applied to operating systems, web
browsers, web servers and other applications. Adding to the decomposition challenge is the fact
that not all operations are well suited for migration to serverless functions; I/O operations are

26

costlier and less effective than compute operations in a serverless function context (Baldini, Castro,
et al., 2017).

3. 3. 6. Threat of vendor lock-in

Another important issue is the threat of vendor lock-in. Many authors mention that there are
various reasons for FaaS users to be subject to vendor lock-in by the cloud service provider (Adzic
& Chatley, 2017; Baldini, Castro, et al., 2017; Chapin & Roberts, 2017; Eivy, 2017; Villamizar et
al., 2017). Serverless functions are often developed for a specific FaaS platform such as AWS
Lambda, which brings inherent vendor lock-in potential (Villamizar et al., 2017) since it might
take additional effort, or is just not possible, to move the function to a different cloud platform.
Besides, many FaaS platforms offer additional services such as platform specific storage adapters,
scaling, logging and monitoring, configuration management, authentication services and more
(Adzic & Chatley, 2017). These services seem rather convenient at first, but might make it
impossible to move to a different FaaS vendor when desired (Baldini, Castro, et al., 2017).

Adzic and Chatley (2017) make another important observation; serverless architectures enable
client applications to connect directly to storage and authentication services, this results in more
tightly coupled software which in turn requires a lot of rewriting and refactoring when one would
move from one cloud platform to another.

3. 3. 7. Security concerns

Some authors argue that serverless functions bring additional security challenges. Yan et al. (2016)
describe it as “understanding the attack surface of a serverless composition is an on-going issue”,
whereas van Eyk et al. (2017) state that centralizing operational logic in the infrastructure reduces
the attack surface, but also that the new security issues introduced by FaaS (such as resource
sharing) are not fully understood yet. The risk of resource sharing is supported by Wagner and
Sood (2016), they argue that if an attacker would be able to break out of the serverless function
container it would have access to all the containers running code on that specific machine.

3. 3. 8. Reducing operational costs

As discussed before in Section 3. 2. operational cost reduction is one of the main benefits of
adopting serverless cloud computing. Achieving these cost reductions however is not as
straightforward as it might appear, the potential savings of serverless computing “heavily depend
on the execution behaviour and volumes of the application workloads” (Eivy, 2017).

The same author also notes that cost prediction is very difficult, and can only really be estimated
by running the code in the deployment environment (on the FaaS platform of the cloud service
provider) and testing it under expected loads. However, this can become costly so it should be
done with care.

27

Another aspect that should not be forgotten when thinking about cost reductions through serverless
computing is that of the additional service usage. One of the advantages of FaaS is that the cloud
service provider offers many services that connect directly to the serverless functions and offer
functionalities such as authentication, storage, monitoring etc. FaaS is a pay-per-use service, and
so are the additional services. It is very likely that a FaaS implementation will use an API Gateway,
external storage (Amazon S3, DynamoDB) and will have data egress (data leaving the local
network to an external location), the usage costs of these services potentially add up, especially
relatively to the low execution cost of serverless functions (Eivy, 2017).

Eivy (2017) also describes a real-world case study where a cost analysis was performed for a to-
be-developed public facing API endpoint. The usage was projected at 150 executions per second
initially, but could grow to 30,000 executions per second over the next year. Initially FaaS looked
like a perfect fit for this situation, however, when looking closer at the expected growth of the
endpoint, FaaS appeared to become three times more expensive than a conventional reserved
compute instances approach.

3. 4. Characteristics of serverless suitability
This section is concerned with providing an answer to RQ2 “What are the existing approaches or
characteristics to determine which parts of an application are suitable to be implemented in a
serverless way?”. To answer this question a literature review is conducted aimed at finding
software related characteristics that help identify the fit- or unfitness of a part of a software
application to be implemented and deployed in a serverless fashion.

Serverless has been growing in popularity for quite some time, however it is still not entirely clear
in which situations to use this architecture, and just as important, in which situations to not use this
architecture (Grumuldis, 2019). Use cases, often provided by cloud platform providers,
demonstrate a situation in which serverless can be beneficial, however they do not demonstrate in
which situations it is not (Grumuldis, 2019). Therefore, it is important to have the knowledge to
make these decisions as a software developer, software architect or software application owner.

After analysing the literature that was found by executing the search queries defined for this review
(as described in Section 3. 1. 2.) a categorization of serverless suitability characteristics is created
with the purpose of grouping similar characteristics together: response time, invocation patterns,
types of operations, data limits, vendor dependence and runtime restrictions. This categorization
is used in the following sections to group and present the findings of this literature review.

3. 4. 1. Response time

If the software is highly performant and has to fulfil certain response time requirements serverless
might not be the best choice. Although it can perform at acceptable levels, it is difficult to
guarantee due the unpredictable nature of FaaS performance (see Section 3. 3. 1. Performance
challenges). It depends on the specifics of the performance requirements whether the response time

28

(accumulation of resource provisioning and execution) can be considered acceptable (Völker,
2018).

On the other hand, serverless is a good fit for performing background tasks which do not directly
respond to users (Völker, 2018), or which continue running in the background without keeping the
user waiting.

Another aspect to consider related to the response time is the expected size of the serverless
function deployment package. Besides the limitations set by various cloud platform providers (e.g.
AWS limits the package size to 50MB, and the extracted package size to 250MB), the package
size relates to the cold-start time (Grumuldis, 2019). Larger packages, with a lot of dependencies
for example, take longer to initialize which in turn degrades the response time of that specific
function (Abad, Boza, & Eyk, 2018).

3. 4. 2. Invocation patterns

This characteristic is highly connected to the operational costs of a serverless function. It depends
on the invocation frequency and invocation density whether a piece of code can be cost efficiently
deployed in a serverless fashion or not. This is supported by Eivy (2017) who states that cost
reductions “heavily depend on the execution behaviour and volumes of the application workloads”.

In general can be concluded that software applications which experience either low utilization or
dynamic and irregular workloads are a good fit for serverless architectures (Grumuldis, 2019;
Völker, 2018). This can be explained in twofold. First, serverless functions can scale to zero,
meaning there will be no costs incurred when the function is not used. Second, due to the fact that
serverless functions scale automatically and very quickly there is extremely little over and under
provisioning while still keeping up with demand.

Software applications that experience a moderate and especially consistent load are often better
suited when deployed on a light always-on dedicated VM as there is no need to scale for peak
loads and the advantage of scaling to zero of serverless functions would not be used due to the
consistent load.

A more general note of consideration, while serverless functions scale effortlessly, it is important
to make sure that the services being called by these functions scale as well. Otherwise applying a
serverless architecture will only move the bottleneck to less flexible parts of the system
(Grumuldis, 2019).

3. 4. 3. Type of operation

The type of operation that is executed determines if it would be a good fit to be deployed serverless.
For this characteristic the distinction between I/O and CPU bound operations is made. The former
is concerned with read/write operations such as writing an image or large document to a database,

29

but also heavy network communication like downloading a data set. The latter is concerned with
CPU intensive calculations, such as image editing and mathematic calculations.

Code that is CPU bound is in general a better fit for serverless deployment than code that is I/O
bound (Grumuldis, 2019; Völker, 2018). This has multiple reasons. First, I/O operations can be
relatively slow, even if they are quite fast, the serverless function execution has to wait for it to
finish, and considering the execution time based cost model of serverless computing this is wasted
money (Grumuldis, 2019). Second, considering the stateless nature of serverless functions, it is
rather inefficient to perform I/O operations since each invocation has to create a new connection
with the I/O service, which results in lower performance when compared with a dedicated VM that
caches these connections (Völker, 2018).

Additionally, it is important to consider that due to the implicit fault tolerance of serverless
functions, the operations these functions execute should be idempotent (Grumuldis, 2019).
Meaning that the function should produce identical output and side effects for two invocations
with identical input. Since the implicit fault tolerance will retry an invocation in case it failed, the
code should be able to handle the expected idempotency.

3. 4. 4. Data limits

Serverless computing comes with various data limitations, for example on the allocated memory
(e.g. AWS Lambda limit 3008MB RAM), available temporary disk space (e.g. AWS Lambda limit
512MB), deployment package size (e.g. AWS Lambda limit 50MB compressed and 250MB
uncompressed) and request payload size (e.g. AWS Lambda limit for synchronous execution is
6MB) (Grumuldis, 2019). While it is difficult to generalize on this characteristic due to the
differences between various FaaS platforms, it is important to note that these limits are inherent to
the serverless technology and might be a constraining factor in the implementation of a serverless
application. Therefore, it is paramount to consider this characteristic when deciding whether a
piece of code is suitable for serverless deployment or not.

3. 4. 5. Vendor dependence

Another consideration when looking at the serverless suitability of a software application is
whether or not it is acceptable to become, to a certain extent, dependent on the cloud platform
vendor.

The risks of vendor lock-in have been elaborately discussed in 3. 3. 6. These risks might or might
not be worth the benefits of serverless computing, and not all risks are equally dangerous or
impactful. Anyhow, vendor lock-in is a relevant threat and should be considered while choosing
whether or not to go serverless, or even which FaaS provider to commit to (Grumuldis, 2019).

Moreover, most vendors put a relatively high price on data egress (data leaving the cloud vendor’s
network to an external location) which might limit a hybrid cloud approach (a distributed software

30

architecture deployed to different cloud platforms) and enforce the vendor lock-in even further,
forcing the use of platform specific services (Grumuldis, 2019).

3. 4. 6. Runtime restrictions

Serverless computing adds an additional layer of abstraction onto the stack, therefore the software
that is deployed in a serverless fashion needs to be hardware agnostic (Grumuldis, 2019). Besides,
the FaaS environment often provides only a few programming language runtimes which can be
used in the serverless function. Additionally, the software should be able to handle the short-lived
runtime environments and not depend on making local changes due to the automatic
deprovisioning of containers (Grumuldis, 2019).

3. 5. Composition of serverless applications
This section is concerned with RQ3 ”How could cloud native architectures be composed and
orchestrated to enable the full potential of serverless computing?”1. In order to answer this question
a structured literature review is executed with the goal of assembling a state-of-the-art with regard
to serverless computing application architectures, focus will lie on the relevance of serverless
composition, the challenges of serverless composition, currently known methods, (modelling)
tools and architectures related to serverless composition, and finally it will zoom in on a particular
issue; hybrid serverless composition. Before continuing, it is important to clarify some terms.

First, cloud native applications, as explained by Gannon, Barga, and Sundaresan (2017), are often
considered to have the following characteristics:

1. Operates at global scale.
2. Designed to scale to many concurrent users.
3. Assumes fluid and failure prone infrastructure.
4. Testing and updating applications should not disrupt production.
5. Security is considered early in development.

Second, hybrid composition (often also referred to as multi-cloud) is very basically the
composition of services across various cloud platforms, e.g. an application that is deployed partly
on the AWS infrastructure, partly on the Google platform, and possibly even partly on a private
cloud. It is very likely that a cloud platform does not offer all the functionality a developer needs
(not even considering pricing differences), besides there are many scenarios where an application
cannot be built completely serverless or needs to connect with legacy systems, therefore it is
important that software developers and software architects are not confined to a specific cloud
vendor but that there are composition techniques that allow for (relatively) easy cross-cloud

1 This literature review has been executed within the Capita Selecta Software Technology (201400171) course under
supervision of an EWI teacher and has been approved for reuse in this thesis.

31

platform compositions (Baldini, Cheng, et al., 2017; Wurster, Breitenbucher, Kepes, Leymann, &
Yussupov, 2019) .

3. 5. 1. Relevance and challenge of serverless composition

First it is important to consider the question of why serverless composition is a relevant issue.
There are multiple reasons for this. The serverless functions concept is rather young and, according
to Garcia Lopez et al. (2019), lacks adequate coordination mechanisms between functions.
Currently, it is difficult and requires quite some effort to orchestrate a large set of serverless
functions to create a complex application (Garcia Lopez et al., 2019). Furthermore, Baldini, Cheng,
et al. (2017) state that serverless function composition is lagging behind the state-of-the-art.

Serverless (and microservice) architectures are not arbitrarily derived from or created upon
conventional application architectures since they use a less centralized and more distributed
approach, hence requiring a cloud application architecture redesign (Kratzke, 2018). Besides, as
stated before in Section 3. 3. 3. , serverless computing enables the creation of complicated
execution patterns (Baldini, Castro, et al., 2017).

Due to this growing complexity and novel architecture composition approach it is important to
look at what composition models are suitable for serverless architectures and what are “ways to
express (…) compositions of functions, and (…) hybrid-cloud deployment” (van Eyk et al., 2017).
This is supported by Baldini, Castro, et al. (2017) who set forth the goal of developing tools that
support the creation of compositions and their maintenance.

Vaquero et al. (2019) also underline the current challenge of orchestrating serverless functions,
although the authors are more focussed on serverless computing in the context of edge computing
(executing code geographically closer to the consumer) which brings additional but comparable
issues.

Serverless functions are not necessarily conceived with the idea of complex compositions in mind,
however there are many authors who envision such complex compositions in the form of
‘workflows’ (van Eyk et al., 2017; Yan et al., 2016). Not only academics saw this opportunity,
Amazon created their own workflow composition service that allows developers to chain AWS
Lambda functions together to create more complex behaviours, it is called AWS Step Functions.
This service is of course limited to the AWS platform and comes with a pricing scheme, but it
demonstrates the recognized need for serverless composition solutions.

Baldini, Cheng, et al. (2017) present the serverless trilemma which demonstrates the inherent
challenges of serverless composition. Loosely translated the trilemma consists of three competing
constraints for serverless function composition (Garcia Lopez et al., 2019; Soltani, Ghenai, &
Zeghib, 2018):

1. Functions should operate as black boxes.
2. A composition of functions should be a function.

32

3. Invocations should not be double-billed.

What this trilemma means for serverless composition is that there are some inherent limitations to
serverless composition which cannot (yet) be overcome. A composition will always suffer from
one or more of the three constraints. A valid question arises; why is this trilemma useful? At the
very least it provides practitioners with insight into the limitations of serverless function
composition and allows reasoning on which constraint would be acceptable in a certain situation
and which not. Furthermore, it shows what directions of serverless composition could benefit from
further research.

3. 5. 2. Serverless composition state-of-the-art

According to Garcia Lopez et al. (2019) there are two types of serverless composition patterns:

1. Functions that orchestrate other functions.
2. External ‘client schedulers’.

The first type can be seen as an ‘entry’ function that will delegate some of the work to other
functions and finally return once all the results are gathered. For example, a function called
‘calculate total costs’ is the orchestrator, in order to actually determine the total costs it needs to
gather costs for several products, so it will execute other functions ‘calculate costs product A’ and
‘calculate costs product B’ in parallel and add the results and respond to the client that invoked the
‘calculate total costs’ function.

The second type is based on an external application or service which will orchestrate several
functions into a workflow. An example of such a service is the previously discussed AWS Step
Functions. The services exposes an API which when called will forward the request to the
corresponding function which would be the next step in the workflow.

Both approaches have their advantages and drawbacks. In light of the serverless trilemma (Baldini,
Cheng, et al., 2017) the first approach violates the ‘double billing’ (3) principle, whereas the
second approach violates the ‘composition of functions should be a function’ principle.

3. 5. 2. 1. Client focussed composition

With regard to the first type of serverless composition patterns, Kratzke (2018) demonstrates the
concept of client focussed composition. This entails moving the composition from the cloud to the
client application. For example, a smartphone application that handles the orchestration of many
serverless functions itself instead of relying on a microservice or AWS Step Functions-like service
handling the orchestration. Obviously this moves the complexity from the cloud to the client,
which might or might not be desired. Additionally, it is interesting to note that this shifts the
resource provisioning for composition from the cloud to the client and prevents violation of the
‘double billing’ principle. Figure 5 presents a very basic example of how a client focussed
composition pattern could be implemented and shows the growing complexity of the composition

33

client-side, it coordinates API requests to three separate serverless functions and has to manage
the (asynchronous) results.

Figure 5 Sequence diagram for client focused composition pattern

3. 5. 2. 2. Serverless composition services

With regard to the second type of serverless composition patterns, there are quite some companies
that jumped on this opportunity around 2016/2017; Azure Durable Functions, IBM Composer, and
the previously discussed AWS Step Functions. In order to create an entire process out of various
separate tasks (implemented as functions) a software developer needs to write code that
orchestrates these tasks into a process, this can become very complex and difficult to debug.
Serverless composition services such as AWS Step Functions provide a visual tool that enables
the creation and debugging of complex workflows consisting of serverless functions. To give an
idea of how this would work, Figure 6 shows a very basic example of serverless service based
composition. The benefit compared to the client focussed composition pattern is that there is only
one API request to make client-side. All necessary consecutive steps are coordinated and executed
by the serverless composition service.

There are some downsides to serverless composition through these services, most dominantly
performance. This is not unknown to serverless computing, however it should be considered. All
mentioned services experience performance overheads of 0.3 to 10 seconds on sequential
executions, and 18 to 32 seconds on parallel executions (Garcia Lopez et al., 2019).

Garcia Lopez et al. (2019) propose an evaluation framework for serverless composition services
based on a number of metrics; serverless trilemma safeness, programming model, parallel
execution support, state management, software packaging and repositories, architecture, overhead
and billing model. Based on this framework the authors execute an evaluation of the three major
services (as described above). In general they conclude that the performance overheads are too
high on all services, furthermore none of the services is prepared for parallel programming. While

34

all evaluated serverless composition services are considered young and experimental, AWS Step
Functions is currently considered the most mature and performant (Garcia Lopez et al., 2019).

Figure 6 Basic example of a serverless composition service implementation

3. 5. 2. 3. Modelling serverless composition

There were a few serverless composition modelling approaches found in the literature which will
be described here. The first and most common modelling approach is TOSCA (Topology and
Orchestration Specification for Cloud Applications), according to Vaquero et al. (2019) it is
becoming the de facto standard for modelling service orchestration. TOSCA is very useful for
defining services and their building blocks, and requirements and capabilities, however it does not
address serverless composition specific issues such as orchestration of small functions in a (hybrid)
cloud environment at scale (Vaquero et al., 2019).

To that end, Wurster et al. (2019) describe how TOSCA can be used to model serverless
architectures, they explain how to represent functions, events and event sources using the
constructs provided by TOSCA. Wurster et al. (2019) point out that there are some limitations to
this approach; TOSCA does not support function chaining and it is focussed on being an executable
model from which code could be generated.

Perera and Perera (2018) present TheArchitect, which is a tool that can generate a very high level
microservice and/or serverless architecture for a given application. This approach looks at the
problem of serverless composition from another angle but unfortunately does not provide any
insights on the applied composition patterns.

3. 5. 2. 4. Tools and methods

Some methods and tools with regard to serverless composition were found in literature and are
presented here. The first is Serverless Container-aware ARchitectures (SCAR) created by Pérez,

35

Moltó, Caballer, and Calatrava (2018). The SCAR framework enables the development of highly-
parallel event-driven serverless applications based on a custom runtime environment. This custom
runtime environment is created by deploying Docker images on top of AWS Lambda. It greatly
helps overcoming the restricted runtimes that are by default provided by cloud vendors by
facilitating many other programming languages through the Docker platform (Soltani et al., 2018).
After evaluation it seems to not necessarily be a tool that could contribute to (improving) serverless
composition.

Soltani et al. (2018) summarize some other noteworthy tools; PyWren (Jonas et al., 2017),
Podilizer (Spillner & Dorodko, 2017) and Snafu (Spillner, 2017). The first is an opensource project
allows running python code and its dependencies on various serverless computing platforms. The
second is similar in that it tries to automatically convert Java code into small pieces of code that
are ready to be deployed serverless. Snafu on the other hand is put forth as a new design for FaaS
hosts, so this is one abstraction layer deeper than this thesis is focussing on.

Another interesting result is the Cloud Application Maturity Model as presented by Kratzke
(2018). It defines four levels of maturity and corresponding criteria, from low to high maturity;
cloud ready, cloud friendly, cloud resilient, cloud native. The criteria can be used to measure the
maturity of a given cloud application, and it would be interesting to apply this to serverless
architectures as well.

Additionally, Kratzke (2018) presents a reference model for cloud-native applications consisting
of 4 viewpoints (layers); infrastructure provisioning, clustered elastic platforms, service
composing and application. It is interesting to see this reference model as it provides insight into
how a cloud-native stack is constructed, unfortunately it does not focus on the actual serverless
function composition itself which would be positioned in the top two layers; service composing
and application.

3. 5. 2. 5. Hybrid cloud and multi-cloud composition

The introduction of Section 3. 5. explains what is understood by hybrid cloud composition and
why it is relevant. Multi-cloud composition is the concept of have a single software system
deployed to different cloud platform providers. From literature it appears that there is a special
focus on hybrid and multi-cloud composition, therefore this section is created separately from
serverless composition.

Hybrid cloud composition presents the challenge of integrating private and public clouds,
furthermore hybrid cloud deployment becomes even more complex when conventional
deployment technologies are combined with serverless architectures (Wurster et al., 2019).
Vaquero et al. (2019) highlight the concept of an orchestration broker to overcome these
challenges. Broker models are not a new concept, and in fact have been around the area of
distributed computing for the last 20 years (Vaquero et al., 2019). Therefore, it might be a mature
approach to tackling hybrid and multi-cloud composition. Additionally, Vaquero et al. (2019)

36

discuss the possibility of developing adapters and brokering layers for each available cloud vendor
(as there are currently only a few) in order to homogenise access to these different platforms.

In their paper Soltani et al. (2018) try to extend the serverless architecture to a hybrid cloud context
using a container cluster manager technology, this should distribute the serverless architecture on
different cloud platforms while applying the serverless principles in a larger context. To achieve
this, the authors propose a generic distributed peer-to-peer system that wraps serverless application
code in container runtimes. This system can be considered as a first step in enabling hybrid
serverless compositions and should allow the client to benefit both from hybrid cloud and
serverless computing advantages.

3. 5. 2. 6. Architecture use-cases and demonstrations

Various papers reported on the development of a serverless architecture, these might be interesting
to look at since they might provide valuable information with regard to best practices of serverless
composition.

Wurster et al. (2019) show two very basic high-level serverless architectures, the first demonstrates
an implementation of a client focussed composition pattern and the second approach concerns a
hybrid cloud serverless architecture where part of the system is run on a private cloud.

Kratzke (2018) presents a reference architecture for a serverless platform which is focussed on the
workings of a FaaS platform itself, it shows how HTTP requests are routed through various
components and are eventually consumed by a worker function. Again, this approach does not
look at serverless composition itself, although it does create insight into the structure of a FaaS
application.

A notable fact that seemed to be recurring in the literature is the application of serverless
computing in the context of scientific workflows (Malawski, Gajek, Zima, Balis, & Figiela, 2017).
Apparently, the pay-as-you-go model of serverless computing is attractive for academics as is the
instant parallelisation of computation.

3. 5. 3. Improving serverless composition

Literature proposed some recommendations or ideas for future improvements of serverless
composition. The first is a rather interesting approach to serverless composition while respecting
the serverless trilemma. Garcia Lopez et al. (2019) present the idea of suspending serverless
functions while making asynchronous calls to other serverless functions. This would resolve the
issue of double billing where a function has to wait for another function to execute, hence two
functions are running simultaneously resulting in double billing. Furthermore, it respects the other
two items of the trilemma; substitution principle (compositions are functions) and composed
functions can be seen as black boxes. More concrete, the authors propose to expose a method to
the serverless runtime environments which when called halts the execution (and billing) of the

37

function until a certain event is received. This enables developers to create compositions of
serverless functions that respect the serverless trilemma.

A recommendation from Garcia Lopez et al. (2019) is that “the best of orchestration might be
having no orchestration at all”. They argue for very simple orchestration and composition
techniques, as it enables software developers and operators to quickly create and debug.

Finally, the problem of discovering and enabling the re-use of many small functions is put forth,
this is not necessarily a serverless composition specific issue, however it does get worse due to the
very granular and plentiful nature of serverless functions (Garcia Lopez et al., 2019). The absence
of well-defined discovery practices might be addressed by building on classic software engineering
practices such as creating libraries with functions of similar nature, according to Garcia Lopez et
al. (2019).

3. 6. Best practices for creating and migrating towards a
serverless architecture

This section is concerned with RQ4 “What are the best practices for creating a serverless
application from scratch, and for migrating a non-serverless architecture to a serverless
architecture?”. To the purpose of answering this question a structured literature review is executed.
The goal of this section is to describe what has been found in literature with regard to established
best practices for creating, or migrating to, a serverless architecture. This information will be used
to further build upon in later sections. This section will be structured as follows: first a few of the
problem areas of serverless computing are addressed (e.g. costs, performance, vendor lock-in).
Second, best practices related to serverless architecture in general (and migrating towards
serverless architecture) will be discussed.

3. 6. 1. Performance

Bardsley, Ryan, and Howard (2018) argue to keep the serverless function call stack short. This
improves performance since there are less “links in the chain” which have potentially high
latencies or suffer from cold-start times. The same authors make a case for wisely choosing the
programming language which will be deployed as a serverless function. In general interpreted
languages such as Node.js and Python have faster initialization times, on the other hand, compiled
languages such as Java and .NET have a higher maximum performance. Depending on the desired
performance either interpreted or compiled languages may be the way to go. It is important to note
that performance of a specific runtime may vary substantially between cloud platforms, e.g.
Node.js has an acceptable cold start time on AWS, but rather poor performance on Azure Functions
(and vice versa for .NET C#) (Jackson & Clynch, 2018). The takeaway advice with regard to
language performance is to check the language performance on the cloud platform you are
deploying to, it might dramatically improve your application’s performance and simultaneously
save costs.

38

3. 6. 1. 1. Dealing with cold-start time

Quite a few authors discuss mitigating, overcoming or coping with performance issues that are
known to come with serverless architectures. One of the largest performance issues is the cold start
problem (as described in Section 3. 3.).

To overcome this, Lloyd, Vu, Zhang, David, and Leavesley (2018) present “Keep-Alive”
workloads. This approach is based on the re-use of existing infrastructure by preventing serverless
function instances from being killed completely by ‘pinging’ them on a set interval. By pinging
these functions the cloud platform provider will never fully destroy the serverless function
instances and hence removing the cold start problem. This might be a good solution for some,
however it must be noted that this smells like an anti-pattern: serverless functions are designed to
be ephemeral which allows this type of cloud deployment to exist at all (using spare computing
resources temporarily). Using Keep-Alive incurs costs for pinging the serverless functions, so
careful consideration is required to determine if these costs (plus regular serverless computing
costs) are acceptable or that a regular continuously running VM or container service might be more
economical.

Grumuldis (2019) presents other best practices for dealing with cold-start performance issues.
First, reducing the overall size of the serverless function (especially considering libraries) helps to
reduce the cold-start time by speeding up the function initialization time. Second, if possible,
choose to increase the amount of RAM allocated to the function instance, this means almost always
proportionally more CPU power which in turn improves initialization speed of serverless functions
(especially CPU heavy runtimes such as Java). Third, it is advised to reduce the execution time of
the serverless functions. Not only because this might save costs due to the pay-per-execution-time
cost model, but due to the fact that cold-starts occur less often when more function instances are
available to process new requests.

3. 6. 1. 2. I/O bound operations

Serverless functions are best suited for CPU bound operations, I/O bound operations are supported
as well, however the latter is often associated with longer execution times due to dependencies on
local or external file systems. Grumuldis (2019) discusses a way to circumvent this (mostly cost
related) performance issue: using (event based) async operations. This means that a serverless
function can start a write/read operation and then stops, then another serverless function is
triggered by the event that the write/read operation has completed and will continue where the
previous function has stopped. This comes very close to the proposal of Garcia Lopez et al. (2019)
suspending serverless functions when possible.

In order to improve the performance of a serverless function dealing with database connections it
is argued to reuse database connections, this is also known as ‘connection pooling’ and is a
common practice on monolithic and micro-service based applications (Grumuldis, 2019). For
serverless functions this is a bit more difficult due to the ephemeral and stateless nature of such a

39

function. The functions cannot be stateful (i.e. having a connection pool in memory), besides the
pool of connections would be destroyed instantly after execution, requiring each invocation to
open a new connection (with additional overhead). However, there is a way to overcome this,
which only works on warm executions, each function instance can use some memory which can
be used to store a database connection until the instance is destroyed, therefore each subsequent
warm invocation can use the database connection the previous invocation established, resulting in
a performance improvement (Grumuldis, 2019). This implementation is exemplified in Figure 7.

Figure 7 Example of database connection pooling in a serverless function

3. 6. 2. Security

There is not much to be found with regard to serverless security, various authors mention that
serverless applications have a larger attack surface due to the many separate function
configurations. Therefore, Völker (2018) makes a case for applying proper access management,
which basically means that a serverless function is by default not permitted to do anything in the
larger cloud context, only access to resources that is really needed is white listed. This reduces the
impact of a possible breach.

Additionally, PureSec2 describes in a white paper the top 10 serverless security risks:

1. Function event data injection;
2. Broken authentication;
3. Insecure serverless deployment configuration;

2 PureSec, ‘PureSec Launches the First and Most Comprehensive Guide to Shed Light on Security Risks Related to
Serverless Architectures’, Tel Aviv Israel, PureSec, 2019,
https://www.puresec.io/press_releases/sas_top_10_2018_released (accessed 11 June 2019).

https://www.puresec.io/press_releases/sas_top_10_2018_released

40

4. Over-privileged function permissions and roles;
5. Inadequate function monitoring and logging;
6. Insecure 3rd party dependencies;
7. Insecure application secrets storage;
8. Denial of service and financial resource exhaustion;
9. Serverless function execution flow manipulation;
10. Improper exception handling and verbose error messages.

Some of these are general security risks (e.g. insecure application secrets storage) but become
more risky due to the distributed serverless environment. Their white paper also provides best
practices for each security risk respectively which is not repeated here in order to retain our scope.

3. 6. 3. Vendor lock-in

One of the biggest issues of serverless computing, as described in Section 3. 3. , is the risk of
vendor lock-in. There are a few strategies found in literature to mitigate this risk. In a blog post by
the company Vacation Tracker is described that vendor lock-in is not necessarily the right name
for this issue, the author proposes ‘switching cost’3. Since that is actually what is holding you back
from moving your code from one cloud provider to another. In order to keep switching costs low
it is important to keep your application architecture agile to allow for easy migration. The author
argues for a ‘ports and adapter’ based architecture to support this. The best way to describe such
an architecture is through Figure 8. The adapters are abstractions between the business logic and
external components. This allows for quick switching of adapters in case a different database or
other external service needs to be used.

According to Grumuldis (2019) vendor lock-in should not necessarily be seen as a limitation of
serverless but more as a tradeoff: there are various platforms but all offer similar features, albeit
in a different form or implementation. The author also proposes products as Serverless Framework
to help reduce the switching costs and allow for easy migration between various platforms.
Kritikos and Skrzypek (2018) also describe the use of serverless frameworks (e.g. the Serverless
Framework) to combat vendor lock-in by allowing for easy switching between cloud platforms.

3 Vacation Tracker, ‘Fighting vendor lock-in and designing testable serverless apps using hexagonal architecture’,
Vacation Tracker, 2019, https://vacationtracker.io/blog/big-bad-serverless-vendor-lock-in/, (accessed 11 June 2019).

https://vacationtracker.io/blog/big-bad-serverless-vendor-lock-in/

41

3. 6. 4. Costs

There are some authors that are trying to create cost simulators for FaaS (Manner, 2019), or
algorithmically optimize the costs of a serverless application (Elgamal, 2018). However, there are
not many cost related best practices mentioned in literature. One comment by Bardsley et al. (2018)
to keep the function chain short to improve performance might have its reflection on cost savings
as well, but is not its primary goal. In general can be said that proper monitoring is necessary to
keep an eye on operational costs and proper security measures need to be taken so that DDOS (or
similar) attacks do not result in untenable costs.

Additionally, it is important to consider the fact that serverless is not necessarily cheaper than
conventional deployment in all cases. It has the potential to reduce costs if applied properly. We
could fairly confidently state, as a rule of thumb, if your application is experiencing consistently
spread load it is cheaper to go with a dedicated instance, if the load is fluctuating heavily, or just
very low, serverless could result in a lower cloud computing bill (Baldini, Castro, et al., 2017;
Chapin & Roberts, 2017; Warzon, 2016).

3. 6. 5. Monitoring and debugging

Live debugging is not supported by most serverless cloud providers, therefore development and
operations personnel is dependent on posteriori log-based debugging (Manner, Kolb, & Wirtz,
2018). A plug and play solution for this problem could be AWS CloudWatch, which is a
monitoring service that automatically collects a lot of important information on applications
running in the cloud (Tran, 2017). Important to note is that since this is an Amazon product this

Figure 8 Example of 'ports and adapter' based architecture © 2019 Vacation Tracker

42

will add to the vendor lock-in and will only work as expected for other cloud services running on
AWS. There are similar tools available (such as Graphite) but none come close to the features and
integration CloudWatch has to offer. The important features are being able to monitor
performance, set custom alerts, and gain insights into request and response combinations in order
to debug issues after they have occurred.

That being said, it seems that monitoring and debugging is a very cloud platform specific problem
and is most easily solved by using the monitoring tools provided by the cloud platform itself.
Therefore, this can be considered another important aspect when choosing a cloud platform.

3. 6. 6. Architecture and migration

Grumuldis (2019) discusses three code patterns for serverless applications. The author is
considering these code patterns in the context of the Serverless Framework which is a software
tool that allows developers to write serverless functions once and then deploy it to all major cloud
platforms without additional changes. The first is the monolithic pattern (see Figure 9): one
serverless function that serves as the single entry point for the application and executes different
logic based on the payload. This pattern is especially useful when migrating legacy code to a
serverless application for the first time, since it minimizes the need for rewriting the code. There
are also some downsides e.g. hard to monitor and debug, increased package size and therefore
lower performance. The second is the service pattern (see Figure 10): in this pattern each serverless
function is handling all request for a specific (business) domain. This already improves separation
of concerns, simplifies monitoring and debugging, reduces package size and can be managed by
different teams if desired. The third is the nano-service pattern (see Figure 12): this is probably the
most recognizable, each serverless function has a very specific responsibility, for example
performing CRUD operations. This makes monitoring and debugging easier since the functions
are completely separated, allows for better resource allocation due to spread load on the functions,
and reduces impact possible bugs have on the overall serverless application. Downside is that it is
possible that due to infrequent execution some functions might suffer more from cold-starts.

43

Figure 9 Example of monolithic serverless function code pattern

Figure 10 Example of serverless function service code pattern

44

Figure 12 Example of serverless function nano-service code pattern

A presentation by AWS4 describes some best practices and architecture patterns for serverless
computing (especially on AWS). Separate the serverless function handler from core logic, see the
example in Figure 11. Minimize package size of the function to be deployed, this minimizes the
initialization time. Use environment variables to modify operational behaviour, the idea is that the
environment variables can be changed ‘on the fly’ while the code is running in production. Contain

4 Gupta, A. and Hornsby, A, ‘Serverless Architecture Patterns And Best Practices’, AWS, 2017,
https://www.jfokus.se/jfokus18/preso/Serverless-Architecture-Patterns-and-Best-Practices.pdf, (accessed 12 June
2019).

Figure 11 Example serverless function with separated core logic

https://www.jfokus.se/jfokus18/preso/Serverless-Architecture-Patterns-and-Best-Practices.pdf

45

dependencies in the function packages, do not rely on external (CDN) dependencies, they can
become unavailable or unresponsive. Finally the author argues to use the AWS products X-Ray
(for monitoring) and Step Functions (for composition), it is indeed best to use platform provided
products since they work together very well, however keep in mind the vendor dependency and
cross-platform restrictions.

As mentioned by Jambunathan and Yoganathan (2018) the best way to start converting a monolith
to serverless functions is by first moving towards a micro-service based architecture. This brings
amongst other benefits, speed, agility and scalability. After this migration step it is easier to
identify which parts of the application are suitable for serverless deployment.

More importantly, a completely serverless architecture is not always a desired goal. Micro-services
and serverless functions are complementary technologies which are optimally used in conjunction
(Jambunathan & Yoganathan, 2018). The authors give some recommendations for serverless and
micro-service architectures: serverless functions are for stateless short running tasks in contrast to
micro-service which can be stateful and are long running (1), functions scale very precisely, more
so than micro-services (2), use serverless functions when it is really needed or when it has a
substantial improvement (3). The third recommendation is because of the increase complexity
serverless brings to development and operations teams, it should not be considered a default
choice.

Amazon presents the Well-Architected Framework5, which is a whitepaper focussed on five pillars
of design principles and best practices. These pillars are: operational excellence (1), security (2),
reliability (3), performance efficiency (4) and cost optimization (5). For each pillar a couple of
design principles and best practices are defined.

1. Perform operations as code, annotate documentation, make frequent, small, reversible
changes.

2. Implement a strong identity foundation, enable traceability, apply security at all layers,
automate security best practices, protect data in transit and at rest, prepare for security
events.

3. Test recovery procedures, automatically recover from failure, scale horizontally to increase
aggregate system availability, stop guessing capacity, manage change in automation.

4. Democratize advanced technologies, go global in minutes, use serverless architectures,
experiment more often, mechanical sympathy.

5 Belt, D. ‘The 5 Pillars of the AWS Well-Architected Framework’, AWS, 2018,
https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-architected-framework/, (accessed 12 June 2019).

https://aws.amazon.com/blogs/apn/the-5-pillars-of-the-aws-well-architected-framework/

46

5. Adopt a consumption model, measure overall efficiency, stop spending money on data
centre operations, analyse and attribute expenditure, use managed services to reduce cost
of ownership.

Although these recommendations are somewhat AWS biased and not specifically for serverless
architecture, they are good guidelines to use in the construction of cloud applications.

Already addressed in this section is the ‘ports and adapter’ architecture style, which allows for
quick migrations by switching the ports and adapters (see Figure 8). This architecture style is not
only valuable for combating vendor lock-in, it also serves as a way to easily migrate code from
monolithic or micro-services to serverless. The ports and adapters can be switched by ones that
are connection to external serverless function for example.

A general recommendation is to make use of the available serverless frameworks (Kritikos &
Skrzypek, 2018). There are quite a few available, however the Serverless Framework seems to be
leading at the moment according to the serverless framework evaluation by Kritikos and Skrzypek
(2018). These frameworks help with portability of the serverless functions on to various cloud
platforms by offering standardisation and abstracting away from the technical specificities of a
cloud platform (Kritikos & Skrzypek, 2018).

3. 7. Conclusions
This section will present the conclusion for each research question addressed in this chapter. It will
discuss the main findings and tries to synthesize the scattered knowledge on each respective topic.

3. 7. 1. Research question 1

This section concludes RQ1 ”What are the currently known benefits and challenges of serverless
computing?”.

There seems to be a lot of potential for serverless computing, looking at the identified benefits in
recent literature; granular scaling opportunities, optimizing resource utilization, reducing
operational costs, improvements to the development process and various architectural
opportunities.

These benefits will be considered as goals in this work for applying a serverless architecture to a
software application. Additionally, they can be used to discuss to (un-) successfulness of the
application of serverless computing and act as guidance during the various DSRM iterations on
the artefacts which are to be created in this work.

Considering the benefits presented in Section 3. 2. it was to be expected that serverless computing
also comes with a set of challenges. This section described the most prevalent challenges found in
recent literature; performance challenges, complexities related to the development and operations
processes, composition issues, migration and de-composition challenges, the threat of vendor lock-
in, security considerations and non-arbitrary operational cost reductions. This is by no means an

47

exhaustive list of challenges, however it does addresses issues that are common to most, if not all,
serverless computing implementations.

The challenges presented in this section are important for this work. Having a clear picture of the
challenges serverless implementations face helps to identify and create artefacts incorporating
work-arounds or solutions using the DSRM.

The serverless computing related benefits and challenges that are described in Section 3. 2. and
Section 3. 3. are analysed and graphically presented in Figure 13. The red components are
challenges, whereas the green are benefits. Some benefits can be grouped together with challenges
based on the specific area of the serverless computing topic they are concerned with. The figure
also demonstrates how granular scaling and optimising resource utilisation eventually contribute
to the benefit of reducing operational costs. The benefits and challenges that are grouped together

Figure 13 Serverless computing benefits and challenges map

48

could potentially be considered as related concepts when looking at solutions for the challenges or
best practices for the benefits.

3. 7. 2. Research question 2

This section concludes RQ2 “What are the existing approaches or characteristics to determine
which parts of an application are suitable to be implemented in a serverless way?”.

After performing a structured literature review on the topic of characteristics of serverless
suitability it appears that there are very few literature sources addressing this specific issue. And
what these sources present has not been peer-reviewed, nor empirically evaluated in real-word
contexts. In fact, to the best of the author’s knowledge there were only two works that were found
to be very useful; the master thesis of Grumuldis (2019) and the one of Völker (2018). Drawing
on the works of these authors a set of characteristics was identified that concern serverless
suitability; response time, invocation patterns, type of operation, data limits, vendor dependence
and runtime restrictions. Based on these characteristics a flow chart was created (see Figure 14)
which further summarizes and clarifies the body of literature into a practical and concise model.
The contribution of this section to this thesis as a whole is the centralized knowledge around the
characteristics of serverless suitability and the actionable flow chart that can help guide
practitioners in making the choice to go serverless or not.

3. 7. 3. Research question 3

This section concludes RQ3 “How could cloud native architectures be composed and orchestrated
to enable the full potential of serverless computing?”.

Literature showed there is quite some knowledge with regard to serverless composition, however
mostly on either a low or high level; looking at either the FaaS platform architecture or the high-
level application components. A more practical approach with regard to the composition of
serverless functions in a possibly hybrid environment seems to be less represented.

This claim seems to be supported by a couple of authors. Kratzke (2018) argues that existing cloud
standards only focus on a specific cloud service category (mostly on the infrastructure level) and
pass over a more integrated view point, the author proposes that the development of an integrated
reference model which includes best practices of practitioners could contribute to filling this gap.
Furthermore, van Eyk et al. (2017) identify the research challenge of a currently missing reference
architecture for serverless cloud computing applications. They state that such a reference
architecture could assist software developers and software architects by providing examples and
best practices related to the implementation of hybrid serverless cloud applications.

Serverless composition services offer an architecture pattern where a client invokes a single remote
function which starts a cloud-based workflow of multiple serverless function invocations created
using the serverless composition service. This moves the complexity to the cloud and offers better
insights and graphical user interfaces to create workflows. Client focused compositions are an

49

architecture pattern that moves the orchestration of remote API calls to the client. Suspending
serverless functions while making asynchronous calls to other serverless functions is suggested as
an improvement of serverless composition as it would respect the serverless trilemma. Using a
brokering layer in a hybrid serverless architecture context is suggested to manage the complexity
of connecting private and public clouds. This is a well-known concept in computer science and
might therefore be a good solution to this context.

Two modelling approaches were identified that could be applied in a serverless context, however
both have quite a high barrier-to-use. TOSCA is focused on being an executable model which
brings unnecessary complexities with regard to the modeling process. TheArchitect automatically
generates a high level micro-services based or serverless architecture, but requires extensive input
for the tool to work. The Cloud Application Maturity Model (CAMM) presents four levels of
maturity which can be used to measure a cloud-native application’s maturity. It was not designed
for serverless architectures specifically, but could be applied regardless since a serverless
architecture is often a cloud-native application as well. Additionally a reference model for cloud-
native applications consisting of 4 viewpoints was found. This can be applied to serverless as well
for the same reason as specified for the CAMM. The 4 viewpoints can be used as guidelines when
modelling a serverless architecture.

50

Figure 14 Flow chart to determine serverless suitability

51

3. 7. 4. Research question 4

This section concludes RQ4 “What are the best practices for creating a serverless application from
scratch, and for migrating a non-serverless architecture to a serverless architecture?”

Initially the literature review yielded few to none usable results, however based on literature that
was found during previous literature reviews in this thesis quite some usable knowledge could be
gathered. Additionally, some explorative searching resulted in information valuable to the research
question. Grey literature was added from a few sources such as practitioners and companies active
in the serverless computing field. Some of the most notable results are repeated here.

Performance is one of the fields of serverless computing that is well represented in literature, many
sources report on performance comparisons for example. Hence, there are quite a few strategies to
optimize the latency of serverless applications. Regardless, it is important to note that serverless
is best suited for background tasks which do not directly require interaction with users. A way to
separate the user from the serverless execution is making use of an event-driven architecture to
create a non-blocking UI.

Security, remains an issue, as it does for all (cloud) computing projects. It is an ongoing battle to
keep your applications safe. Serverless might have a larger attack surface, but when applying
proper access management (as for every piece of cloud software) this risk can be mitigated
properly.

Vendor lock-in should not be seen as a limitation of serverless but rather as a trade-off. The knife
cuts both ways; serverless cloud platforms provide many platform specific services with features
that cannot be realized by external services, on the other side it tightens the vendor lock-in even
more. As long as the software architect and developer keep an eye on the switching costs of their
applications this is not necessarily a big problem. There are architecture patterns that allow for
quicker (and therefore cheaper) switching, for example the ‘ports and adapter’ pattern. Also, tools
such as the Serverless Framework help to reduce switching costs by acting as an abstraction layer
between the serverless function and the various cloud platforms.

With regard to migration strategies two ideas were found: use a ‘ports and adapter’ architecture
(1) and first migrate to micro-services architecture then slowly move to serverless if required (2).
The first is of course a prerequisite, if your current architecture does not implement this other
strategies need to be found or the architecture needs to be adapted to the ‘ports and adapter’
architecture first. It is important that an architecture is prepared for migration to micro-services or
serverless.

Generally, it is important to conclude that serverless is not always the way to go. There are many
situations where conventional VM or container based deployment is more economical and
performant. Software architects and developers need to be aware of this and recognize situations
where serverless is suitable and not. A rule of thumb could be: if your application is experiencing

52

consistently spread load it is cheaper to go with a dedicated instance, if the load is fluctuating
heavily, or just very low, serverless could result in a lower cloud computing bill.

53

Chapter 4. Artefact design
This chapter is concerned with designing and presenting the artefacts for this thesis. This concerns
the third DSRM step “design and development” (as described in Section 2. 2. “Research process”).
Section 4. 1. presents the specific design process applied in this chapter. Section 4. 2. describes
how the literature reviews presented in Chapter 3. were analysed and applied to the development
of the framework. Section 4. 3. presents the actual design of the serverless architecture design
framework (SADF). Finally, Section 4. 4. will conclude this chapter by summarizing the design
of the SADF.

The SADF will be created based on the literature reviews on the topics of; benefits and challenges
of serverless computing, suitability of serverless architectures, composition of serverless
architecture and best practices of designing a serverless architecture. This framework will guide
the process of implementing a serverless architecture while applying the gathered knowledge on
serverless computing. The goal of this framework is to be used as a guideline for software
practitioners to help them make the most of their architecture design.

In order to position the SADF and clarify its intended purpose, the taxonomy of theory types in
information systems research is applied (Gregor, 2006). Based on the extensive literature analysis
in Chapter 3. the framework tries to present a description and analysis of the topics relevant to the
design process of a serverless architecture. In that regard the framework can be classified as a Type
1 theory (analysis). Additionally, in some cases the framework goes a step further and tries to
explain how to do something, for example in the form of examples, techniques or methods.
Therefore, the framework also has some elements of a Type 5 theory (design and action). Initially
this might seem like an uncommon combination (Type 1 and Type 5), but actually it is described
by Gregor (2006) as a possible interrelationship among theory types.

4. 1. Artefact design process
The artefact design process is further divided into the following steps: identify relevant viewpoints
as basis for the framework (1), identify important cross-viewpoint variables to consider in the
framework (2), construct a framework based on the first two steps (3), use this framework to design
a serverless architecture based on the case (4), evaluate the framework by performing interviews
with domain experts (5), and iterate on the framework by implementing the lessons learned during
the case application and the interview evaluation (6). This sequence of steps (graphically
represented in Figure 15) is chosen since it provides the opportunity to implement the gathered
knowledge into a framework which will be tested and evaluated by applying it to a case study.
Step 4, 5, and 6 are addressed in Chapter 6. where the evaluation and corresponding conclusions
and recommendations are presented.

54

Figure 15 Artefact design process overview

4. 2. Literature analysis description
The structure of the SADF on the one hand, and the best practices, guidelines and knowledge
supporting the framework on the other hand, are both based on extensive literature reviews as
presented in Chapter 3. These literature reviews are focussed on a number of core topics related to
serverless computing; challenges and benefits of serverless computing, characteristics of
serverless suitability, composition of serverless architectures and in general best practices related
to serverless (application) architecture design. This section shortly describes how the literature
from these literature reviews was analysed with the goal of creating the SADF.

Initially, the structured literature reviews with regard to RQ1 (Sections 3. 2. and 3. 3.), RQ2
(Section 3. 4.), RQ3 (Section 3. 5.) and RQ4 (Section 3. 6.) were performed with the goal of
answering the research question. Then, the literature related to each respective research question
was analysed to discover general trends, important topics, often addressed problems and
opportunities. The goal was to create a clear image of the most relevant topics that would affect a
serverless architecture implementation. This resulted in a categorization of topics that are
considered relevant for the serverless (application) architecture design process. By categorizing
these topics it was possible to combine knowledge from various literature sources into a coherent
and structured framework.

After the extensive literature analysis presented in Chapter 3. additional analysis was performed
on the topic categorization itself. The topics were reviewed and categorized again on a meta-level
by grouping similar topics and relating various concepts where possible. This higher level
perspective was created to serve as the foundation of the SADF. The following section describes
the creation of the SADF based on the knowledge sourced from the extensive literature reviews
and analysis.

4. 3. Design of the serverless architecture design framework
This section presents the implementation of a serverless architecture design framework. First,
based on the literature analysis, as discusses in Section 4. 2. , a number of viewpoints and cross-
viewpoint variables are identified (Sections 4. 3. 1. and 4. 3. 2.). Second, the viewpoints and cross-

55

viewpoint variables are combined into a framework definition and are presented visually (Section
4. 3. 3.). Finally, each viewpoint and cross-viewpoint variable is discussed in-depth; common
pitfalls, best practices and other relevant information with regard to each viewpoint and cross-
viewpoint variable is presented (Sections 4. 3. 4. through 4. 3. 12.).

4. 3. 1. Identify viewpoints

Viewpoints are a classification of a complex problem domain into more comprehensible sub-
domains. These viewpoints can be considered as different perspectives on a certain topic, in this
case serverless architecture design. In order to identify viewpoints that are properly connected to
the problem domain and provide a usable classification the literature presented in Chapter 3. is
analysed. After analysing the literature for the first four research questions of this thesis a couple
of important and recurring topics with respect to serverless architecture design start to appear.
These are listed below and will be considered the four corner viewpoints of the serverless
architecture design framework.

VP1. Configuration
VP2. Software design
VP3. Software architecture
VP4. Deployment

Configuration (VP1) is a perspective that is important to serverless applications; in order to deploy
and maintain a serverless application many different components require configuration. This might
seem like an obvious or irrelevant viewpoint, however, it is becoming increasingly complex to
manage these configurations in a large cloud-native application. Especially when going all-in on
serverless computing, since it brings many additional services (e.g. message queues, workflow
composition services) that need to be configured and connected to each other. Moreover, the
serverless functions themselves are also configurable in many ways (e.g. CPU, RAM). This is a
viewpoint that is crucial to a successful serverless application and is therefore included in the
serverless architecture design framework.

Software design (VP2) is about the code level design of a software application6. It is not directly
tied to the architecture of an application, but serverless architectures are very ‘bare bones’,
meaning: the code is extremely closely connected to the actual (cloud-native) architecture. These
two concepts cannot be viewed separately in the context of serverless computing.

6 Codeburst.io, ‘Software Architecture – The Difference Between Architecture and Design’, Mohamed Aladdin,
2018, https://codeburst.io/software-architecture-the-difference-between-architecture-and-design-7936abdd5830
(accessed 29 July 2019).

https://codeburst.io/software-architecture-the-difference-between-architecture-and-design-7936abdd5830

56

Software architecture (VP3) is about the higher level structure of a software application7. It offers
a perspective on the composition of serverless functions within a larger application (either solely
serverless, or a mixed application architecture with various cloud architecture patterns).

Deployment (VP4), is an important viewpoint as inherent to cloud-native software is that it has to
be deployed to the cloud. Specifically in the case of serverless this is somewhat different from
conventional deployment due to its granularity. The granularity of the deployment artefacts allows
for equally granular scaling and operational cost reduction. Depending on each cloud platform the
format of the serverless function has to be changed, each cloud platform uses a different abstraction
for serverless functions. There are many differences between cloud platforms which can be very
relevant when considering where to deploy a serverless application (e.g. performance and costs).
Therefore, deployment is considered the fourth and final viewpoint.

4. 3. 2. Identify cross-viewpoint variables

Cross-viewpoint variables are considered to be characteristics of a serverless architecture that
depend in one way or another on the architecture or application itself. These variables are important
to consider during the entire architecture design process and are affected or addressed by more
than one viewpoint. These variables are identified after analysing the literature in Chapter 3. and
are listed below.

VA1. Performance
VA2. Vendor lock-in
VA3. Security
VA4. Costs
VA5. Serverless suitability

Performance (VA1) is a recurring characteristic of a serverless architecture (Baldini, Castro, et al.,
2017; Bardsley et al., 2018; Chapin & Roberts, 2017; Garcia Lopez et al., 2019; Grumuldis, 2019;
Jackson & Clynch, 2018; Lloyd et al., 2018; van Eyk et al., 2017; Van Eyk et al., 2018; Yan et al.,
2016). It can be considered from the configuration, software design, and software architecture
viewpoint and is affected by many aspects of the serverless architecture.

Vendor lock-in (VA2) is an often discussed aspect of serverless applications (Adzic & Chatley,
2017; Baldini, Castro, et al., 2017; Chapin & Roberts, 2017; Eivy, 2017; Grumuldis, 2019;
Villamizar et al., 2017). It can become a constraining factor when the architecture is not designed

7 Codeburst.io, ‘Software Architecture – The Difference Between Architecture and Design’, Mohamed Aladdin,
2018, https://codeburst.io/software-architecture-the-difference-between-architecture-and-design-7936abdd5830
(accessed 29 July 2019).

https://codeburst.io/software-architecture-the-difference-between-architecture-and-design-7936abdd5830

57

to allow easy (cheap) switching between cloud platform providers. This variable is most relevant
to the software architecture and software design viewpoints.

Security (VA3) is an important characteristic of all software applications. For serverless
architectures there are a few things that are somewhat different from conventional cloud
applications (van Eyk et al., 2017; Völker, 2018; Wagner & Sood, 2016; Yan et al., 2016). This
variable should be considered from two viewpoints: configuration and software architecture.

Costs (VA4) are often the driver for implementing a serverless architecture in the first place,
therefore this is a rather important variable (Adzic & Chatley, 2017; Baldini, Castro, et al., 2017;
Eivy, 2017; Villamizar et al., 2017). It is not trivial to achieve operational cost reductions through
a serverless architecture (Baldini, Castro, et al., 2017; Chapin & Roberts, 2017; Warzon, 2016). It
is primarily affected from two viewpoints: configuration and software architecture.

Serverless suitability (VA5) is considered a cross-viewpoint variable, as it is important to always
determine whether the goal you are trying to achieve, the part of a software system you are
implementing or changing, is actually suitable for a serverless approach. Serverless is not a one-
size-fits-all kind of technology, it is very specific in what it can achieve and when it should be
applied to reap the most benefit (Grumuldis, 2019). There are various considerations to be made
within all four viewpoints that affect the serverless suitability, therefore it is important to keep
track of the variable across all viewpoints (Abad et al., 2018; Grumuldis, 2019; Völker, 2018).

4. 3. 3. Serverless architecture design framework definition and visualization

This section combines the identified viewpoints and cross-viewpoint variables into a graphical
representation of the serverless architecture design framework. Table 2 presents a mapping of the
cross-viewpoint variables onto the viewpoints. This shows the implied connection and overlap
between the cross-viewpoint variables and the viewpoints.

Configuration

Software architecture

Software design

Deployment

Table 2 Mapping cross-viewpoint variables onto viewpoints

Costs

Performance

Security

Vendor Lock-in

Serverless Suitability

58

In order to make the framework more easily comprehensible a graphical representation is created
in the form of Figure 16. This section will shortly explain how this figure is constructed and how
it should be interpreted.

The four large coloured circles represent the four identified viewpoints; software architecture,
software design, configuration and deployment. The circles are positioned in such a way that the
overlap indicates where the viewpoints touch upon each other. The viewpoints have fuzzy
boundaries and (especially in a serverless context) are somewhat entangled. The viewpoints should
be considered as the main perspectives one could take on a serverless software architecture.

The five cross-viewpoint variables are placed within the viewpoints; vendor lock-in, performance,
serverless suitability, security and costs. The position indicates to what viewpoint the cross-
viewpoint variables are most relevant. These are always multiple viewpoints, therefore they are
positioned on the overlapping sections of the viewpoint circles. For example, the cross-viewpoint
variables security and costs are positioned on the overlapping section of the software architecture

Figure 16 Graphical representation of serverless architecture design framework

59

and configuration viewpoint since they are considered to be most relevant to the respective
viewpoints in a serverless context.

The framework should be interpreted as a conceptual model of the serverless architecture design
problem domain. It describes the largest and most relevant concepts identified from literature; the
viewpoints. Additionally, it describes non-functional software (architecture) characteristics which
are identified from literature to be relevant to serverless architecture design. The framework can
be applied either during application development process, or up-front to guide the initial
architecture design. The goal of the framework is to provide handlebars for rationalizing about the
serverless architecture problem domain. It presents the non-functional characteristics that require
special attention in a serverless context. Additionally, it presents the four most important
viewpoints which enforces reasoning about the problem domain from a specific point of view
which should improve the understanding of the problem as well as provide a frame of reference.
The framework is substantiated by many best practices and guidelines for designing and
implementing serverless software architectures. These best practices and guidelines will be
presented in the following sections, categorized by the defined viewpoints and cross-viewpoint
variables.

It is completely up to the practitioner how to apply the framework, it does not require a specific
methodology. As mentioned before, the framework can be applied either during the application
development phase or up-front as a tool to apply while designing the initial software architecture.
An example of how the framework could be used is the following. During the initial architecture
design process the application requirements are analysed from the perspective of each of the
viewpoints and cross-viewpoint variables. This will enforce thinking about the serverless specific
topics and helps to earlier detect potential architectural issues. Additionally, it will ensure that all
the differentiating aspects of serverless are at least discussed once. This makes sure that software
architects or developers do not omit important considerations, especially the ones new to the
serverless computing technology. The guidelines and best practices constituting the framework
can be consulted by the practitioner when needed. They provide guidance in the context of the
viewpoints and cross-viewpoint variables but also present deeper insights into potential problems,
solutions and other relevant concepts.

4. 3. 4. Variable 1 – Performance

The performance variable is influenced by many factors. This section will shortly address the
various factors and to which viewpoint they belong. For more elaborate discussion see the
respective viewpoints.

From the software design viewpoint (VP2) a number of factors can be considered. Cold-starts (the
time it takes for a serverless function instance to be initialized) can become quite slow depending
on the configuration of the function (e.g. RAM/CPU and run time language) (Baldini, Castro, et
al., 2017; Chapin & Roberts, 2017; van Eyk et al., 2017). This is also relevant in light of the
configuration viewpoint (VP1). Cold-starts can drastically affect performance in some cases. Then

60

we also need to take into account that the performance of various run times can differ substantially
between cloud platforms (Jackson & Clynch, 2018). I/O bound operations can slow down the
function execution when waiting for I/O operations to complete, consider adopting an event-driven
design pattern to overcome this (Grumuldis, 2019). In context of the software architecture
viewpoint (VP3) it is advised to keep function chains (in compositions) short, this prevents
accumulating latencies and cold-start delays (Bardsley et al., 2018).

4. 3. 5. Variable 2 – Vendor lock-in

Vendor lock-in is important to consider throughout the design process, since (if not accounted for)
it can become quite an issue at a later moment when the application needs to be moved to another
cloud platform (Adzic & Chatley, 2017; Baldini, Castro, et al., 2017; Chapin & Roberts, 2017;
Eivy, 2017; Villamizar et al., 2017). Vendor lock-in is inherent to serverless computing and cannot
be completely overcome, however there are ways to reduce the so-called ‘switching costs’8. If the
switching costs are kept low moving from one platform to another is oversee able. It also supports
the decision process when considering to migrate to another platform. Vendor lock-in is a
consistent trade-off that should be given the necessary attention in the design process (Grumuldis,
2019). Most notably in the context of the software design and architecture design viewpoints (resp.
VP2 and VP3).

4. 3. 6. Variable 3 – Security

Some argue that serverless suffers from a larger attack surface due to the many endpoints (Yan et
al., 2016). While this is true, it also depends heavily on the cloud infrastructure. To reduce attack
surface consider running the serverless functions inside a VPC which is shielded from the outside
network, or a similar construction (van Eyk et al., 2017). Above all, as with any software
application, it is imperative that proper access management policies are in place (Völker, 2018).
Make sure that the functions only have access to the resources they really need, this reduces the
possible impact of a potential breach.

Finally, dealing with DDOS attacks. Since serverless functions scale very rapidly based on
demand, and due to the ‘pay-per-execution’ cost model a DDOS attack quickly becomes very
costly if not intervened. There are several strategies that can help in situations like this. First, set
up proper budget alarms in the cloud platform’s cost management interface. This makes sure you
are notified when the costs grow above what is expected at a certain moment. Additionally, API
throttling could be applied in the case that the maximum possible load of the application can be

8 Vacation Tracker, ‘Fighting vendor lock-in and designing testable serverless apps using hexagonal architecture’,
Vacation Tracker, 2019, https://vacationtracker.io/blog/big-bad-serverless-vendor-lock-in/, (accessed 11 June 2019).

https://vacationtracker.io/blog/big-bad-serverless-vendor-lock-in/

61

estimated. This means that after a certain amount of function invocations all additional invocations
will be blocked eliminating the possibility of unlimited growing costs due to a DDOS attack.

Security, as described above is mostly a configuration (VP1) effort, but it is important that the
architecture is designed from the ground up with security in mind (VP3). Obviously, the code itself
needs to be secure as well, however serverless functions are often placed behind various other
cloud components which implement firewalls or authentication schemes. Therefore, they are not
directly accessible through the internet which improves security.

4. 3. 7. Variable 4 – Costs

Reducing operational costs is often one of the reasons of adopting serverless technologies. This is
not a trivial effort though, it depends on many factor such as applications workloads (Eivy, 2017).
To make sure this goal is not lost during the design process it is defined as a cross-viewpoint
variable. The viewpoints configuration (VP1) and software architecture (VP3) are most relevant
to this variable. The configuration of the serverless function (e.g. RAM/CPU and language run
time) determine the costs per execution and have a determining factor in the performance (and
therefore duration) of the execution itself. The software architecture determines how often
serverless functions are being invoked, and how composition of functions is handled. Workflow
services provided by the cloud platform or by third-parties will induce extra costs.

4. 3. 8. Variable 5 – Serverless suitability

This variable is treated a bit more extensive here since it is applicable to the configuration
viewpoint VP1, the software design viewpoint VP2, and the software architecture viewpoint VP3
and will not be repeated in the respective viewpoints sections. The information presented in this
section can be used to determine during the design of the architecture whether certain parts of the
system are suitable for a serverless implementation or not.

It is important to get a clear picture of the advantages a serverless architecture has to offer, and
which disadvantages are inherently attached to that. This helps to clarify the potential problems
that need to be overcome during the architecture design process.

Table 3 describes an overview of the benefits and challenges of serverless computing (Baldini,
Castro, et al., 2017; Chapin & Roberts, 2017; Jonas et al., 2017; McGrath et al., 2016; Van Eyk et
al., 2018; Varghese & Buyya, 2018; Villamizar et al., 2017; Wagner & Sood, 2016). These can
help to determine whether a serverless approach could be taken and what problems need to be
addressed. This is not an absolute or definitive list, it merely points out areas of interest that should
be considered during this phase.

62

Benefits of serverless computing Challenges of serverless computing

- Architectural opportunities
- Development process improvements
- Granular scaling

o Optimising resource utilisation
o Reducing operational costs

- Performance
- Vendor lock-in
- Security
- Non-trivial cost reduction
- Composition complexity
- Monitoring complexity
- Development complexity

Table 3 Serverless benefits and challenges

The following list of characteristics (see Table 4) can be used to determine whether part of a
software application or architecture is suitable for a serverless implementation or might not be as
suitable (Abad et al., 2018; Eivy, 2017; Grumuldis, 2019; Völker, 2018). If the application matches
more with the right column than the left it should be reconsidered if a serverless architecture is the
way to go. None of the characteristics are deal breakers, most can be considered as trade-offs or
are to be overcome if proper counter measures are applied. Table 4 is merely meant as an additional
way to identify problem areas in the architecture and steer the choice for a serverless or
conventional architecture.

Suitable for serverless Less suitable for serverless

… experiences highly variable load

… operations are CPU bound

… operations can be idempotent

… is low to moderately performant

… does not exceed serverless data limits

… can cope with runtime restrictions

… vendor lock-in is manageable

… experiences consistent load

… operations are IO bound

… operations cannot be idempotent

… is high performant

… transfers high amounts of data

… cannot cope with runtime restrictions

… vendor lock-in is not acceptable

Table 4 Serverless suitability characteristics

4. 3. 9. Viewpoint 1 – Configuration

Choosing the right programming language for a serverless function is important. Serverless
enables the use of different programming languages on a per function basis, this allows developers
to apply the language that is best suited for solving the problem the serverless function is
addressing.

63

If possible compare the performance of a specific language on the cloud platform you want to
deploy to, it has been shown that performance differs substantially between the various available
cloud platforms (Jackson & Clynch, 2018). In general it seems compiled languages (e.g. Java and
.NET) perform faster once initialized but interpreted languages (e.g. Node.js and Python) have
shorter initialization (and cold-start) times.

When dealing with relatively slow function executions consider upgrading the assigned RAM and
CPU (Grumuldis, 2019). More RAM and CPU translates into higher execution costs per 100ms,
but if the function is CPU bound it might become substantially faster and by doing so compensate
for the higher execution costs. This could result in faster performance and lower or equal costs.

4. 3. 10. Viewpoint 2 – Software design

Here are code quality principles described that can be applied to the serverless code base to
improve it in various ways.

4. 3. 10. 1. Design for performance

Since performance can be a bottle neck in a serverless architecture it is important to identify ways
to optimize or work around it (Baldini, Castro, et al., 2017; Chapin & Roberts, 2017; van Eyk et
al., 2017; Van Eyk et al., 2018).

Depending on the load of the application a percentage of the requests will experience cold-starts
(most cloud platforms keep a function instance warm from 5 to 45 minutes). If the application has
consistent load cold-starts will occur less frequent compared to an application that has fluctuating
loads (Chapin & Roberts, 2017). In order to keep cold-starts as short as possible, a few things
should be considered. Reduce the package size of the function (including possible dependencies),
a smaller package will be quicker initialized (Grumuldis, 2019). Choose the right language and
RAM/CPU, as explained above, interpreted languages (e.g. Node.js and Python) initialize quicker
than compiled languages (e.g. Java) (Jackson & Clynch, 2018). More RAM and CPU positively
influences the initialization time as well (Grumuldis, 2019).

Another strategy is a bit of an anti-pattern. There are many variants of this approach available, but
they all boil down to the following: have a cloud component keep a set a functions warm at all
times (Lloyd et al., 2018). Such a cloud component can be a micro-service or AWS CloudWatch
for example, as long as it can make recurrent ‘keep-alive’ calls to functions to make sure the
instances are not killed. This approach can be extended by a load prediction algorithm which
increases and decreases the pool of warm functions depending on expected load. Consider if the
additional costs of consistently making keep-alive calls to the functions are worth the performance
optimization, maybe a dedicated micro-service instance might be a better candidate if cold-starts
are problematic (especially if the load can be predicted to a certain degree).

64

Already discussed above, but worthy of repeating: keep the function chains short. Regardless of
the composition style applied, it is often good to try to keep the chains short to reduce latencies
and prevent accumulating cold-start delays (Bardsley et al., 2018).

Already mentioned above, but since this is a significant performance determining factor it is
repeated here. The different cloud platforms have varying performances for the same programming
language, check which platform might be best suited for the language you would like to use or
determine the language based on the performance of a specific cloud platform.

I/O bound operations are operations that depend on reading or writing to some kind of persistent
storage (e.g. local file system, remote database). An I/O bound operation can become quite
expensive and low performant in a serverless context as the function is sitting idle while waiting
for the I/O operation to complete (Grumuldis, 2019). Applying an event based code pattern can be
a workaround: dispatch an event that initiates the I/O operation on the remote component (e.g.
reading an image from an AWS S3 bucket) and have another function listening on the event that
is dispatched when the I/O operation is complete, this function will then continue processing the
result from the I/O operation (Grumuldis, 2019).

4. 3. 10. 2. Function re-use and grouping

When a serverless application grows the many functions become an issue to manage. This is not
necessarily a serverless issue only, however it does get worse due to the granularity and plentiful
nature of these functions. It is suggested to apply classis software engineering practices to manage
the serverless functions. For example, re-use of functions can reduce the number of distinct
functions in production systems. In order to support re-use serverless functions can be grouped
together (using the Serverless Framework for example) into libraries of similar functionality, this
improves discoverability of existing functions and their re-use as well. Another method to improve
re-usability of serverless code is to decouple the core logic from the function handler (see Figure
17) 9. By doing so, the core logic can be included as a library and referenced from the function
handler. This makes the core logic re-usable and decoupled.

9 Gupta, A. and Hornsby, A, ‘Serverless Architecture Patterns And Best Practices’, AWS, 2017,
https://www.jfokus.se/jfokus18/preso/Serverless-Architecture-Patterns-and-Best-Practices.pdf, (accessed 12 June
2019).

https://www.jfokus.se/jfokus18/preso/Serverless-Architecture-Patterns-and-Best-Practices.pdf

65

Figure 17 Decoupled core logic and function handler

4. 3. 10. 3. Consider desired granularity of code patterns

The granularity of the applied code patterns is something to consider as well. It needs to fit the
serverless application: it does not make sense to have an extremely granular set of serverless
functions for a small serverless application, whereas a large application might benefit from a more
granular approach due to improved separation of concerns. There are a few levels of granularity
defined as a reference (Grumuldis, 2019).

A monolithic serverless function is a single function handler (or API endpoint) that handles several
separate operations for various business domains (see Figure 18). Which operation will be
executed is based on the payload received by the handler. This is a very low granular approach
and is best fit for very small serverless applications.

A service based serverless function is similar to a monolithic serverless function only different in
that it only handles operations for a specific business domain (see Figure 19). The operation that
will be executed is again based on the payload received by the handler. This is a medium granular
approach best fit for small to medium sized applications.

A nano-service based serverless function is the most granular approach (see Figure 20). It handles
only one specific operation for one specific business domain. This is most common in large
serverless applications where a high level of decoupling and separation of concerns is desired.

Note that the more granular you go, the more overhead is generated by having to deploy, monitor
and develop each single serverless function. It can be argued that it is best to start at a low level of
granularity, and slowly migrate to more granularity as needed. Another important thing to consider
is that the more granular you go, the more likely it is that cold-starts will start to occur as there are
more individual functions with a life cycle of their own.

66

Figure 18 Monolithic serverless function example

Figure 19 Service serverless function example

67

Figure 20 Nano-service serverless function example

4. 3. 11. Viewpoint 3 – Software architecture

Here are architectural quality principles described that can be applied to the architecture to improve
it in various ways.

4. 3. 11. 1. Serverless trilemma

The serverless trilemma demonstrates the inherent challenges of serverless composition (Baldini,
Cheng, et al., 2017). Summarized, the trilemma consists of three competing constraints: functions
should operate as black boxes (1), a composition of functions should be a function (2), invocations
should not be double-billed (3). This trilemma helps when thinking about serverless architecture
composition patterns by providing insight into the trade-offs that are to be made.

4. 3. 11. 2. Composition styles

There are other ways to manage function chaining. Different composition styles have different
goals and advantages. The most obvious composition style is chaining serverless functions by
calling a function from within another function. This way a client using the ‘entry’ serverless
function only has to call and await a single function call as the ‘entry’ function is handling
coordination of further function executions. There are various issues to this approach that you
should be aware of. First, this approach is hard to scale well. It becomes unmanageable to keep
track of which function depends on which function, creating a web of dependencies that quickly
becomes an operational issue. Second, it violates the third serverless trilemma principle (Baldini,
Cheng, et al., 2017). As the ‘entry’ function is calling other functions it has to wait for them to

68

complete before it can return a result to the client. This waiting results in double billing, once for
the function that is waiting and once for the function that is working.

Client focused composition is comparable to a ‘thick client’ where all the composition and
coordination logic is embedded in the client itself (Kratzke, 2018). Instead of calling one serverless
function that coordinates or relies on other functions, the client calls and coordinates these other
functions itself. Although this style does not result in double billing, it must be questioned whether
the client is suited to handle this, keeping in mind that the composition might evolve to become
very extensive and complex. Therefore, in some cases external composition might be desired.

Composition can also be coordinated in the cloud by using a serverless composition service (e.g.
AWS Step Functions or Azure Durable Functions). These services can only be used by serverless
functions deployed on the respective platform. These composition services allow the creation of
workflows by chaining serverless functions together through a visual tool provided by the cloud
platform. The benefit compared to client focused composition is that it reduces complexity on the
client side and allows for easier development of new, and changes to existing, workflows. These
composition services do not violate the double billing principle, however these services charge
similarly to serverless functions, based on execution. Consider if the costs are worth it for your
specific application. Additionally, note that these serverless composition services experience
additional performance overheads ranging from 0.3 to 32 seconds depending on the execution type
(Garcia Lopez et al., 2019).

Especially in the context of hybrid or multi-cloud architectures, but also in general in order to
prepare for vendor lock-in, it can be beneficial to adopt a loosely coupled or agile architecture.
This means adopting architecture patterns that allow relatively easy refactoring. For example,
being able to switch in and out certain components (e.g. queue services, authentication services,
storage solutions) gives the architecture agility by reducing required development efforts. This
also addresses vendor lock-in by keeping the switching costs low. An architecture pattern that
serves this purpose is ‘adapters and ports’ also known as brokering layers (Vaquero et al., 2019).
The concept introduces small interchangeable components called adapters (or ports) which has a
middleware functionality for connecting various services and components. If desired, an adapter
can be added, removed, or changed to accommodate for a change in the architecture.

4. 3. 11. 3. Keep function chains short

With regard to serverless architecture composition it is generally considered best to keep function
chains short (regardless of the chosen composition style) (Bardsley et al., 2018). This has two
reasons: it improves performance since each additional function in the chain adds latency and
potential cold-start delay (1), and it decreases the architecture complexity and helps reducing tight
coupling (2).

69

4. 3. 12. Viewpoint 4 – Deployment

4. 3. 12. 1. Cloud platforms and their differences

Each cloud platform has different characteristics, services, features and more. Therefore, it is
important to properly investigate which cloud platform suits the serverless application best. There
have been performance tests which indicate significant performance differences between cloud
platforms for the same programming language: Node.js seems to perform better on AWS Lambda
than on Azure Functions and for .NET C# vice versa (Jackson & Clynch, 2018). Additionally,
consider the vast eco-system (existing of tools, services, documentation, APIs and more) that come
with a cloud platform. In general AWS Lambda is considered the most mature, but depending on
the serverless applications others might be more suited. It is worth the initial investment, as it can
become costly to switch later on in the process.

4. 3. 12. 2. Hybrid and multi-cloud

Hybrid cloud composition is the concept of deploying a software system partially on a private
cloud and partially on a public cloud. Multi-cloud composition is the concept of deploying a
software system across multiple different cloud platforms. These two concepts are often
interchangeably used, but are in fact different in nature. A proposed solution for managing these
two composition challenges addressed by the software architecture viewpoint (VP4): applying
adapters and brokering layers for each cloud platform to connect either with a private cloud or
with another public cloud platform (Vaquero et al., 2019). The use of adapters and brokering layers
also reduces the vendor lock-in since it allows faster (and therefore lower cost) switching between
cloud platforms10.

4. 3. 12. 3. Consider using a serverless framework

Serverless frameworks (such as Serverless Framework, Apex or Standard Library) are designed to
simplify development of serverless functions, while simultaneously offering standardization and
abstracting away from the technical specificities of a cloud platform by acting as an adapter for
the various FaaS providers (Kritikos & Skrzypek, 2018). The Serverless Framework11 in particular
can deploy serverless functions to most (if not all) of the large FaaS providers without having to
make changes to the code itself. There are many benefits connected to this ability, but the most
notable is that it combats vendor lock-in. At time of writing, the Serverless Framework is
considered the leading serverless framework and is applied by quite a few Fortune 500 companies.

10 Vacation Tracker, ‘Fighting vendor lock-in and designing testable serverless apps using hexagonal architecture’,
Vacation Tracker, 2019, https://vacationtracker.io/blog/big-bad-serverless-vendor-lock-in/, (accessed 11 June 2019).
11 Serverless Framework, ‘Build apps with radically less overhead and cost’, Serverless, 2019, https://serverless.com/,
(accessed 30 July 2019).

https://vacationtracker.io/blog/big-bad-serverless-vendor-lock-in/
https://serverless.com/

70

4. 4. Conclusion
The five cross-viewpoint variables (performance, vendor lock-in, security, costs and serverless
suitability) and four viewpoints (configuration, software design, software architecture and
deployment) give a structure to the problem domain of serverless architecture design. The cross-
viewpoint variables and viewpoints allow for discussing the most relevant and common issues,
opportunities and best practices from a couple of different perspectives. This should contribute to
a better overall understanding of the problem domain and provide guidelines and relevant
information to software architects and practitioners. The identified viewpoints and cross-viewpoint
variables are summarized and presented in Table 2. It also demonstrates the overlap of the cross-
viewpoint variables with the respective viewpoints.

The framework should not be considered to be exhaustive or complete in any form, it is solely
based on what was discovered through the various literature reviews on the subject. These reviews
were not systematic and therefore might miss some relevant literature. The framework should be
viewed as a mental model of the problem domain categorized by the four most relevant
perspectives, with important characteristics described as variables which are considered
throughout the various viewpoints.

The framework as described above (including the guidelines and best practices) is rather extensive
and complicated. In order to make the framework more comprehensible a graphical representation
of the viewpoints and variables has been made based on Table 2 and is presented in Figure 16. The
viewpoints are organized so that the overlap indicates where the different perspectives overlap as
well. It can be concluded that all viewpoints have a certain amount of overlap with all other
viewpoints. The deployment viewpoint is presented as embodying circle around the other three
viewpoints due to it being the corner stone of serverless architectures and its impact on the
remaining viewpoints. The variables are positioned in such a way that the overlap indicates to what
viewpoint they are considered to be most relevant.

71

Chapter 5. Case analysis
This chapter presents a fictitious case description based on which a serverless architecture will be
created. This chapter forms the basis for the fourth and fifth step of the DSRM “demonstration and
evaluation” (as described in Section 2. 2. “Research process”). Based on the case analysis
presented in this chapter a serverless architecture implementation will be created while applying
the SADF. The goal of this implementation (as presented in Section 6. 1.) is to demonstrate and
evaluate the proposed SADF.

5. 1. Case description
This section presents the case that will be used for the development of the serverless architecture
and proposed serverless architecture design framework. It entails a couple of key processes of a
fictitious IoT-enabled traffic control system. The nature of the system itself is not relevant to the
development of the architecture and framework, it only serves as an example to build upon. First,
the general structure of the system will be described. The system consists out of several
components:

4. A Software-as-a-Service based application for traffic monitoring and control
a. Client software for road supervisors
b. Cloud-native backend system serving the clients

5. Various IoT nodes in the real world
a. Road sensors which count traffic
b. Traffic lights which can be controlled
c. Hub nodes which are co-located to the various sensors and actuators
d. Vehicles on the road

Some requirements are created to guide the creation of the serverless architecture:

4. Historic traffic data must be stored persistently
5. Live traffic data must be accessible by road supervisors
6. Road supervisors must be able to manually control the IoT actuators (e.g. traffic lights)

A few key processes of the traffic control system are described below. These are selected to be
implemented in the serverless architecture.

1. Detect traffic through road sensors and display in client software
2. Cloud-native backend processes live traffic data and controls actuators
3. Cloud-native backend detects anomalies and alerts road supervisors
4. Road supervisors manually override actuators
5. Report historic traffic data via e-mail

72

5. 2. Process analysis
This section discusses the processes proposed in the previous section. These processes will be
modelled so that they are correctly understood and can be translated into a serverless architecture.

5. 2. 1. Process 1 – Traffic detection and presentation

The first process is a basic one: it entails the connection between the sensors in the road which
detect vehicles and, eventually, the client software used by the road supervisors to monitor traffic
flows.

Figure 21 Process description of traffic detection and presentation

5. 2. 2. Process 2 – Controlling actuators based on live traffic data

The second process is similar to the first process in that it also starts with the vehicle detection by
sensors in the road. It differs, however, in what happens with these detection events. The goal of
this process is to establish the link between the road sensors, the traffic flow algorithms running in
the cloud, and the traffic light actuators which eventually control traffic flows.

Figure 22 Process description of controlling actuators based on live traffic data

5. 2. 3. Process 3 – Anomaly detection and alerting

The third process is somewhat more complex. Again it starts with the traffic detecting road sensors
which report their events to the cloud where the traffic flow algorithms run. The cloud processes
these events and runs anomaly detection on the traffic flows, such anomalies could be indicators
of a large traffic incident, road blockage, or anything else that would need attention of the road
supervisors. The cloud then needs to alert the road supervisors in various ways; by showing the
anomaly in the client software, by sending out e-mails, making automated phone calls and
triggering visual and acoustic alarms inside the road supervisors office.

73

Figure 23 Process description of anomaly detection and alerting

5. 2. 4. Process 4 – Manual control by road supervisors

The fourth process is related to the manual control of traffic light actuators by road supervisors.
Normally, the system runs on its own and optimizes traffic flow where possible, however, in the
case of a detected anomaly road supervisors need to be able to manually override traffic lights to
manage the chaos. Additionally, in cases where oversized road transport or emergency vehicles
need to be guided through a city it is important that the traffic lights they run into can be manually
overridden to give them a quick pass.

Figure 24 Process description of manual control by road supervisors

5. 2. 5. Process 5 – Generate historic traffic data report

The fifth and final process is about generating a e-mail report based on historic traffic data. A road
supervisors should be able to trigger the generation of such a report from the client software. Given
a few parameters (such as time span) the system should fetch historic data and process it in such a
way that it is usable for the road supervisor as is delivered in his e-mail box.

74

Figure 25 Process description of historic traffic data report generation

5. 3. Conclusion
The five processes described in this chapter are central to the serverless architecture that will be
designed in the following chapter. It is not necessarily relevant what these processes entail,
however they need to be interesting and complex enough so that they will be proper candidates for
demonstrating the benefits, challenges and best practices of applying a serverless architecture.

75

Chapter 6. Evaluation
This chapter presents the evaluation of the SADF. This concerns the fourth and fifth DSRM step
“demonstration and evaluation” (as described in Section 2. 2. “Research process”). The framework
is evaluated in two steps: (1) a serverless architecture design is created by the author based on a
case analysis (presented in Chapter 5.) by applying the SADF (presented in Chapter 4.) and (2)
semi-structured interviews are performed with three domain experts (either software architects or
experienced developers). The goal of the first step is twofold: by applying the framework it is
demonstrated how it could be used in practice, additionally it acts as evaluation by looking at how
the framework aligns with the practice of architecture design. The goal of the second step is to
improve the framework by gathering opinions and experiences from domain experts. This chapter
is divided into two parts. Section 6. 1. presents the case study evaluation and has the dual-purpose
of addressing both DSRM step four “demonstration” and DSRM step five “evaluation”. Section
6. 2. presents the structured interview evaluation and addresses the fifth DSRM step “evaluation”
as well. Finally in Section 6. 3. the chapter will be concluded and recommendations for the SADF
will be presented. Additionally, a revised version of the graphical representation of the SADF will
be presented.

6. 1. Case study
The objective of this section is to create a serverless architecture design by applying the SADF
presented in Chapter 4. The architecture will be based on the case analysis as presented in Chapter
5. Note that it is not the specific design choices that are central to this evaluation, but more so a
practical demonstration of the adoption of the SADF.

Initially, the viewpoints, as defined by the framework, will be discussed in the context of the case
analysis. This will provide the chance to reason about the architecture to-be from a number of
relevant perspectives. Following, the cross-viewpoint variables, as specified by the framework,
will create insight into how the various variables should be treated in the design process.
Combined, these two steps will form the foundation for the serverless architecture design.

6. 1. 1. Viewpoint analysis

6. 1. 1. 1. Configuration

Since there are no requirements regarding the choice of a runtime environment, Node.js can be
considered a good choice. It is available on most, if not all, cloud platforms and offers a large eco-
system with examples, tools, libraries and more. Moreover, it is an interpreted language which
initializes relatively quickly compared to compiled languages. Which is in this case more valuable
than high performant execution once initialized. The performance of the Node.js runtime does
differ between cloud platforms, but is considered acceptable for this purpose. The exact

76

configuration of the CPU and RAM of the serverless functions is to be considered during
development.

6. 1. 1. 2. Software design

This viewpoint is concerned with the actual code of the application and is most relevant during the
implementation of the architecture. Even though, we will present some (probable) choices that
have to be made during the implementation process.

Since performance is not extremely important for the serverless parts of the system this variable is
not addressed in detail. For the highly performant parts of the system a micro-service approach
will be applied. Various performance optimisation techniques are discussed in the framework and
can be applied, but are not required for this architecture. The I/O bound operations will be moved
to the micro-service based part of the system to optimize performance of reading and writing live
traffic data.

Function re-use will be encouraged by decoupling core logic from function handlers and grouping
the core logic into libraries. This offers maintainability advantages in the long run. The granularity
of code patterns is difficult to determine upfront, since it depends on the size and maturity of the
system. Therefore, the objective is to start at a service level based granularity, this offers good
separation of concerns while still being maintainable in the early stages of development.
Eventually, the granularity might move towards a nano-service level if desired.

6. 1. 1. 3. Software architecture

This viewpoint focusses on the higher level application architecture. There are various composition
styles to apply. In general keeping function composition chains short is desired, therefore this will
be pursued in this specific architecture as well. The architecture needs to be designed loosely
coupled and remain agile. This is needed due to the multi-cloud requirement, the system needs to
be able to move between cloud platforms without high switching costs. In order to achieve such
an agile architecture, the architecture style “adapter and ports” will be applied. This results in an
architecture that can be connected and disconnected to various cloud components just by switching
or designing a new adapter or port. These adapters and ports will be small software components
that act as a middleware between the core system logic and the cloud components (such as different
FaaS platforms, message queues, data stores etc).

6. 1. 1. 4. Deployment

This viewpoint is concerned with the deployment aspect of a serverless application. We have
already specified the multi-cloud requirement and hence the application should be able to support
simultaneous deployment of various cloud platforms. This removes the need for choosing a
specific cloud platform based on its price, performance, and various other features.

In order to achieve multi-cloud deployment in an efficient way, the only practical solution known
at the moment is adopting the Serverless Framework. This is a development framework that allows

77

developers to write function handlers once, and based on the specification deploy it to a number
of different FaaS providers. The Serverless Framework can be viewed of as an implementation of
the adapter and ports architecture style discussed in the software architecture viewpoint.

6. 1. 2. Cross-viewpoint variable analysis

6. 1. 2. 1. Performance

For the IoT-enabled traffic control system performance is not a major requirement in general. Most
parts of the system can deal with minor delays, for example the storing of historic traffic data, and
alerting road supervisors of anomalies. Of course, the latter is preferably fast, however a few (milli-
) seconds are not going to make the difference in this context.

A few parts of the system are considered to be high performant: controlling actuators (e.g. traffic
lights) and the anomaly detection based on live traffic data. If needed road supervisors need to be
able to control actuators without delay. Additionally, anomaly detection algorithms should be able
to keep up with the live traffic data flow.

6. 1. 2. 2. Vendor lock-in

Since this is an infrastructure critical system it is of utmost importance that it is highly available.
Most cloud platform providers offer at least a 99.95% monthly uptime percentage, but to increase
the availability in the rare case of a provider wide outage it is desired to deploy the system to
multiple cloud platforms (e.g. AWS and Azure). This requires a multi-cloud approach. The system
should be able to function with at least one of the cloud platforms being unavailable. By applying
a multi-cloud approach vendor lock-in is considerable less problematic as the architecture will be
designed to move over various cloud platforms.

6. 1. 2. 3. Security

Since this system is going to be able to control traffic actuators and possibly communicate with
vehicles on the road it is critical to be well protected. Controlling actuators should only be possible
by road supervisors and the system needs to be protected against false inputs (e.g. DDOS attacks).
The remaining components, such as storing historic traffic data and offering live traffic data
insights should be reasonably protected from outside interference.

6. 1. 2. 4. Costs

Costs are needed to be kept low as possible, since the system will be created on a limited budget.
Also it is important that the costs will not grow exponentially when usage of the system increases.

6. 1. 2. 5. Serverless suitability

For this variable Table 4 is consulted and applied to the case context. Based on that can be
concluded that certain parts of the system might not be best suited for serverless implementation.
As described under the performance variable, certain parts of the system have high performance

78

requirements (e.g. anomaly detection and actuator controlling). Additionally, the anomaly
detection based on live traffic data is highly I/O bound, and requires reading (and writing) high
amounts of data. Due to these two factors it is not desired to design these parts of the system in a
serverless way, it would be better to deploy these parts to dedicated instances which are
continuously running and can be both horizontally as well as vertically scaled for optimal
performance.

The other parts of the system are better suited for a serverless architecture, since performance is
less of an issue, there are no initial runtime restrictions and vendor lock-in acceptable if a multi-
cloud-ready architecture design is implemented.

6. 1. 3. Serverless architecture design

After analysing the viewpoints and variables of the SADF a coherent picture was created of how
the architecture could be designed. It gave direction to the design process and the resulting
architecture. The architecture is created using a modelling tool specifically aimed at AWS cloud
architectures12. Therefore, the cloud components used in the design are AWS specific. However,
the concepts of the design are widely generalizable and the basic cloud components are available
across cloud platforms. For the used cloud components and their description see the legend in
“Appendix 1. Serverless architecture design legend”. In general the architecture is designed from
a relatively high level perspective. This has two reasons: for brevity the designs are kept compact
and to the point, additionally the designs are merely a means to an end. The goal of this chapter is
demonstrating the process of applying the SADF more than designing a complete and highly
detailed cloud-native software architecture.

The architecture is divided into two separate views, this was done to be able to present the design
on A4 paper format. If desired the two views can be merged to generate a complete overview.

The first view presented in Figure 26 entails the architecture with respect to the following case
analysis processes:

- Process 1 – Traffic detection and presentation
- Process 2 – Controlling actuators based on live traffic data
- Process 4 – Manual control by road supervisors

The second view presented in Figure 27 entails the architecture with respect to the following case
analysis processes:

- Process 3 – Anomaly detection and alerting

12 Cloudcraft, ‘Visualize your cloud architecture like a pro – Create smart AWS diagrams’, New York, USA,
Cloudcraft, 2019, https://cloudcraft.co/ (accessed 2 July 2019).

https://cloudcraft.co/

79

- Process 5 – Generate historic traffic data report

6. 1. 3. 1. Description of view 1

This section will address the different architecture components of view 1 (see Figure 26). This
view entails all the components needed for case analysis processes 1, 2 and 4. At the bottom of the
architecture the two types of IoT nodes can be found: road sensors and traffic light actuators.

The road sensors report to a nearby IoT hub whenever traffic is detected. The data from these IoT
hubs are send to a AWS Kinesis real-time data stream. This is a serverless cloud service offered
by AWS which ingests large amounts of data in real-time and does some initial processing
simultaneously, additionally it handles storing the raw data. After the data is stored it is processed
by the micro-service responsible for traffic data processing. This results in processed and
aggregated data that will be stored long term in a relational database.

The traffic light actuators are eventually controlled by the road supervisors through a nearby IoT
hub from the web-client interface. The interface allows the road supervisors to make an API call
to the micro-service responsible for communicating to IoT nodes. These API calls are routed
through ELBs (elastic load balancers) which direct and distribute traffic to available micro-
services. The micro-service then directly targets an IoT hub with the command to change a traffic
light.

The micro-services discussed before are all EC2 instances, which are AWS dedicated elastic cloud
compute instances. There are a few different micro-services in this architecture with different
responsibilities: traffic data processing and anomaly detection (1), and traffic light controlling (2).
These micro-services are all configured to be auto-scaling, meaning that if the load on the micro-
services of a specific type becomes larger than a preconfigured threshold it will start a new instance
to compensate for the increase in load and maintain optimal performance.

The web-client is used by road supervisors to monitor real-time traffic and control traffic light
actuators. The web-client is a web application statically hosted through an AWS S3 bucket (cheap
and simple object storage service) and Route 53 DNS service. It fetches traffic data through API
calls to the micro-service routed via the load balancer. The micro-service retrieves the data from
the relational database. The web-client can register itself to receive updates from the micro-service
as new data comes in, this is done through a publisher/subscriber pattern 13.

This view of the architecture demonstrates the parts of the system that were not entirely serverless
suitable. Therefore, a micro-service based implementation was implemented. The AWS Kinesis
service is an implementation of serverless computing. The micro-services could be replaced by

13 Microsoft Azure, ‘Publisher-Subscriber pattern’, Microsoft Azure, 2019, https://docs.microsoft.com/en-
us/azure/architecture/patterns/publisher-subscriber (accessed 2 July 2019).

https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber

80

serverless functions that react on events by the Kinesis data stream. However, due to the
performance requirement this was not desired. In similar situations where minor delays are
acceptable serverless functions might be a suitable replacement for always-running EC2 instances
(depending on the costs).

6. 1. 3. 2. Description of view 2

This section will address the different architecture components of view 2 (see Figure 27). This
view entails all the components needed for case analysis processes 3 and 5. The lower half of the
architecture is cut off but is identical to the lower half of the architecture presented in view 1.

The first three Lambdas (AWS FaaS instances) are triggered by the micro-service responsible for
traffic data processing and anomaly detection. The micro-service has certain algorithms that detect
abnormal traffic flows and when this is detected three Lambdas are invoked. One which sends an
e-mail to the road supervisors with information on the anomaly that is detected. One that triggers
a visual and acoustic alarm in the road supervisors’ office through a local IoT device. And finally
one that makes an automated phone call to a few of responsible road supervisors. For e-mail and
automated phone calls (third-party) serverless services are used. AWS offers a Simple E-mail
Service (SES) which is invoked from the Lambda. There are various third party serverless services
such as Twillio14 which offer automated phone calls through a single API invocation with a pay-
by-execution cost model. These Lambdas could also be merged, however, keeping them separate
increases agility of the architecture and enables very easy adding, removing and changing the way
road supervisors are notified of anomalies.

Additionally, road supervisors are able to generate historic traffic reports on demand. Through the
web-client a Lambda is invoked which starts a data retrieval process on the relational database.
This can potentially concern large amounts of data that needs to be aggregated by the database,
therefore the Lambda is killed after starting the data retrieval process and another Lambda is
waiting for the event that the data retrieval and aggregation has finished. This second Lambda then
receives the data and continues processing it into an e-mail for the road supervisors. Note that for
the first Lambda one of the micro-services could also be used, this might be necessary if the data
size becomes too big for Lambdas to handle. This is something that should be tested and
experienced in practice. If it is needed to let a micro-service do the data fetching and aggregation
it can still trigger the second lambda which parses the data and triggers the SES to send an e-mail.
This again contributes to the overall agility of the architecture. This is an example of an event
based architecture pattern which helps to overcome the unsuitability of I/O bound operations by
serverless functions. This pattern also respects the third aspect of the serverless trilemma:
“invocations should not be double-billed”.

14 Twillio, 2019, https://www.twilio.com (accessed 2 July 2019).

https://www.twilio.com/

81

Figure 26 Architecture design view 1 (entails case processes 1,2 and 4)

82

Figure 27 Architecture design view 2 (entails case processes 3 and 5)

83

6. 1. 4. Case study results

This section will discuss the findings after applying the SADF onto the case study. Section 6. 1.
presents two contributions: a textual analysis of the case description based on the four SADF
viewpoints and five SADF cross-viewpoint variables (1), and a serverless architecture design
which is created based on the SADF analysis of the case study (2).

The first thing that was noted during the application of the SADF is that it is focussed solely on
the serverless aspects of a software application. This was an intentional choice, creating a coherent
architecture design framework encompassing all possible (cloud-native) software architecture
styles would be too complex and extensive for the scope of this thesis. Nevertheless, this is a
limitation that should be noted. Due to this fact, a practitioner applying the SADF must have at
least basic knowledge of general software architecture design in order to apply the serverless
specific principles.

Connected to the limitation discussed above, the SADF misses connection with general cloud
computing concepts and components. The list of available hardware components, software
components, serverless services and tools is ever growing and difficult to keep up with. In order
to create a state-of-the-art serverless software architecture it might be needed to get familiar with
the current state-of-the-art of the cloud-native ecosystems. This can be considered a limitation of
the SADF, on the other hand, there is room in the framework (especially in the software design
and software architecture viewpoints) to focus on this aspect if desired.

Another observation is that the software design viewpoint is not very well represented by the
textual analysis and the architecture designs. This is caused by the fact that software design is
relatively low level, and the architecture designs were intentionally designed from a higher level
of perspective. Additionally, software design can become extremely granular. Often the software
design of an application is determined during the implementation of the code itself, especially in
development teams adopting an agile development methodology. Therefore, it might be an
improvement to stress the difference between software design and architecture design with respect
to at what point in the software system development and design phase these viewpoints are
relevant.

Because the software design viewpoint is rather difficult to represent (as discussed above) the two
cross-viewpoint variables configuration, performance and vendor lock-in might be under
represented in the SADF based analysis. On the other hand, the SADF explicitly presents the
variables that require (cross-viewpoint) focus in a serverless architecture design. It is then up to
the practitioner(s) to make sure it is given the needed attention in the design and development
process.

During the evaluation it was noted that the cross-viewpoint variable serverless suitability is more
relevant to the software architecture, software design and deployment viewpoints. Its relevance
with regard to the configuration viewpoint can be neglected.

84

In general only a few recommendations resulted from applying the SADF onto the case analysis.
This is mostly caused due to the focus being to a higher degree on the demonstration of applying
the SADF as opposed to a formal evaluation.

6. 2. Semi-structured interviews
In order to evaluate the proposed framework with respect to alignment with practice, usability and
usefulness three semi-structured interviews are conducted. The process for conducting the
structured interviews is based on the process for conducting in-depth interviews as presented by
Boyce and Neale (2006). They describe six steps:

1. Plan (Section 2. 2.)
2. Develop instruments (Section 6. 2. 1. and Appendix 2. Interviews)
3. Train data collectors (-)
4. Collect data (-)
5. Analyse data (Section 6. 2. 2.)
6. Disseminate findings (Section 6. 3. 2.)

Steps 3 and 4 are not explicitly described in this chapter, the other are addressed in their respective
sections. Training data collectors is not necessary, all interviews are conducted by the author.
Collecting data has been performed in practice, but is considered superfluous to describe separately
here.

The goal of the interviews is to get a sense of the usefulness and usability. Additionally, the
alignment with practice and the question whether the framework would be beneficial in the
architecture design process are central to the interviews. To evaluate the usefulness and usability
of the proposed framework the Technology Acceptance Model (TAM) by Davis et al. (1989) is
partially applied. The two variables: perceived usefulness (PU) and perceived ease of use (PEOU)
are to be determined by a set of statements which will be rated by the interviewee on a range from
‘very false’ to ‘very true’. The two variables PU and PEOU are considered “the main variables
required to determine the variance in a user’s intention behaviour” (Davis et al., 1989).

6. 2. 1. Interview structure

The interview is divided into four steps which will be shortly discussed below. Throughout the
interview a semi-structured approach is applied. In practice this means that when necessary the
discussion is diverted from the questions in order to go deeper into the subject. For reference, the
complete interview in both English and Dutch can be found in “Appendix 2. Interview”.

6. 2. 1. 1. Interview step 1

The interview starts with three questions which are aimed at getting to know the experience of the
interviewee with respect to the topic of software architectures and more specifically serverless
architectures. These questions are stated below.

85

1. What is your experience in software architecture?
2. Are you into serverless computing technology?
3. What do you do as part of your job in regard to serverless computing technology and

software architectures?

6. 2. 1. 2. Interview step 2

In the second part of the interview, the interviewer provides explanation about the SADF and how
it came to be. The viewpoints and variables are presented and shortly discussed without trying to
form the opinion of the interviewee too much. This is done using the graphical representation of
the framework as shown in Figure 16. This step also allows for additional questions by the
interviewee concerning the SADF.

6. 2. 1. 3. Interview step 3

The third part of the interview is the core of the semi-structured interview. Four questions are
asked with a few distinct goals. The first question aims at getting the interviewee’s opinion with
regard to the alignment of the viewpoints with respect to the interviewee’s professional experience:

4. To what extent do you think the viewpoints align with the practice that you observe in the
projects that you work on?

The second question is of similar nature but concerns the alignment of the cross-viewpoint
variables:

5. To what extent do you think the cross-viewpoint variables align with practice that you
observe in the projects that you work on??

The third question asks whether the interviewee expects the framework could contribute to
designing better serverless architectures when applied in practice:

6. Do you think applying the framework would result in better serverless software
architectures?

The fourth question asks for a recommendation from the interviewee based on his professional
experience with regard to improving the framework:

7. Thinking from your professional experience, would you add any specific aspect to improve
the framework?

6. 2. 1. 4. Interview step 4

The fourth and final part of the interview consists of 6 statements. The interviewee is asked to rate
these statements with respect to the degree of agreeableness. The rating scale used is as follows:

Very true – True – Neutral – False – Very false

86

Three statements are focussed at assessing the interviewee’s perceived ease of use (PEOU) with
respect to the framework:

8. Learning to use the framework for designing serverless applications would be easy for me.
9. It would be easy for me to become skilful at applying the framework.
10. It is easy for me to understand the framework based on the graphical representation.

Three statements are focussed at assessing the interviewee’s perceived usefulness (PU) with
respect to the framework:

11. Using the framework would enable me to more easily create serverless software
architectures.

12. Using the framework would enable me to create better serverless software architectures.
13. Using the framework would help me to create a more structured understanding of the

problem domain.

6. 2. 2. Semi-structured interviews results

This section will present the results of the semi-structured interviews. First, each interviewee will
be described based on the background information questions. Second, each interview question will
be discussed and the respective answers of the interviewees will be summarized and presented.
Third, the results of rating the statements will be presented.

6. 2. 2. 1. Interviewees

Interviewee 1 (I1) has 4 to 5 years of professional experience with large cloud architectures. These
architectures consist of more than 30 distributed micro-services, connect with tens of thousands of
physical devices and contain about 15 applications of serverless computing. The interviewee is
most experienced with AWS cloud infrastructure and the corresponding FaaS AWS Lambda.

Interviewee 2 (I2) has over 12 years of professional experience with software architecture and
software development. In particular the interviewee mentions to have experience with managing
physical and virtual servers and the corresponding (cloud-based) infrastructure, embedded
software, mobile app development and cloud-native applications. The interviewee has been
working with serverless technologies since its inception around 5 years ago (2014).

Interviewee 3 (I3) has about 7 years of academic and practical experience in the field of IT and
software architectures. Additionally, the interviewee mentions to have experience with cloud-
native technologies such as containers and FaaS, in particular on the AWS cloud platform.

6. 2. 2. 2. Answers to interview questions

4. “To what extend do you think the viewpoints align with the practice that you observe in the
projects that you work on?”

87

I1: The deployment viewpoint is not considered to be an important viewpoint as it is presented
currently. Additionally, it is considered too broad, since it can entail various management related
aspects as well. The boundaries between software design and software architecture are not directly
clear. In general, the viewpoints are considered to be somewhat ambiguous and subjective. Of all
viewpoints, configuration seems to be the most clear. Interviewee argues that the (definition of
the) viewpoints can be changed due to their ambiguity, but the variables remain consistent.
Interviewee stresses that based on the graphical representation the viewpoints are not well-defined
enough, and proposes to add small examples for each viewpoint to make them clearer and more
distinct.

I2: Interviewee remarks that based on the graphical representation it is expected that the size of
the viewpoint circles represent their importance. Interviewee additionally mentions that the
importance of these viewpoints significantly differ between specific software systems. Besides,
the size of the overlap of the circles are expected to have similar meaning. Interviewee notes that
the boundary between software design and software architecture is not very explicit and depends
on interpretation and personal experience. The difference between configuration and software
architecture seemed clearer to the interviewee. Software design and configuration on the other
hand are considered quite overlapping by the interviewee. With regard to the deployment
viewpoint the interviewee mentions that this viewpoint indeed has overlap with all other
viewpoints in practice. In general the interviewee notes that the boundaries between the viewpoints
are not that well defined nor easily interpretable.

I3: The deployment viewpoint is considered rather relevant to the interviewee as this is a
substantial part of the daily job activities. The same holds for the configuration viewpoint. With
regard to the software architecture viewpoint the interviewee states that in practice this is often
something that arises automatically when applying a bottom-up approach. In that scenario, the
viewpoint would make less sense. However, the interviewee mentions that it is better to have an
up-front architecture design to guide the application implementation. Therefore, the viewpoint
would be quite useful to increase the architecture quality. In general, the interviewee argues that
with regard to the viewpoint nothing seems to be missing and the defined viewpoints seem to cover
the serverless architecture problem domain quite well in practice.

5. “To what extend do you think the cross-viewpoint variables align with practice that you
observe in the projects that you work on?”

I1: The variables initially seem to be more relevant and interesting to the interviewee than the
viewpoints. Vendor lock-in is considered very relevant and important to the interviewee. A number
of arguments are given to support this (e.g. dependence, unpredictable, moral argument: code
should be portable). Interviewee argues that the security variable should also be connected to the
software design viewpoint and gives the example of defining which components are allowed to
invoke other functions or components. After discussing that this is considered by the author to

88

belong to the configuration viewpoint the interviewee agrees that it is indeed more connected to
configuration than software design.

I2: Interviewee discusses that vendor lock-in can occur on various levels, and therefore within
other viewpoints as well. For example, choosing a third-party library can form a vendor lock-in
which is related to the software design viewpoint. After explaining that this interview focusses on
the cloud-native aspects of a software architecture the interviewee agrees with the vendor lock-in
variable placement between software architecture, software design and deployment. Also the
interviewee agrees with the relevance of the vendor lock-in variable to practice. In general
interviewee comments that the variables addressed by the framework are considered relevant and
important. Interviewee states that all variables have a relation with all viewpoints depending on
the interpretation and the way you interpret the terms. Suggestion by interviewee, place variables
in the centre of all viewpoints, since the boundaries of the viewpoints are ambiguous the variables
cannot be properly confined by this categorization. Interviewee notes that some variables might
only be relevant during specific phases of the design and development phase of a software project.
The framework does not consider these phases.

I3: Interviewee mentions that the cross-viewpoint variables seem to be properly aligned with
practice. Vendor lock-in is especially important since it is inherent to the serverless technology
according to the interviewee. Initially, the interviewee argued that costs should also be affected by
software design. After discussing this cross-viewpoint variable in the context of serverless
computing the interviewee agreed that software design might not be especially relevant in this
context. At least less relevant than the other two viewpoints. Finally, the interviewee mentions that
security might also be relevant to the software design viewpoint. This observation indicates that
this interviewee also has some issues with the ambiguity of the viewpoint boundaries.

6. “Do you think applying the framework would result in better serverless software
architectures?”

I1: Interviewee agrees that compared to not using any framework the serverless software
architecture would definitely benefit from applying the framework. The reason the interviewee
gives for this is that the framework aids the practitioner by acting as a checklist. This makes sure
that all important aspects are covered during the design process. According to the interviewee a
big problem many people have is determining when to go serverless and when not. The serverless
suitability variable of the framework would be of help in these situations. The interviewee also
sees value in the framework from the perspective of evaluating an (existing) architecture using the
cross-viewpoint variables. This would give insight into the quality of the architecture with respect
to its serverless characteristics. On a more critical note, the interviewee does not see the added
value of the connections between the variables and the viewpoints. It might make more sense to
separate these two concepts since the variables are to be considered from the perspective of all
viewpoints (depending on interpretation), according to the interviewee.

89

I2: It is not directly clear to the interviewee how to apply the framework, whether to use it as a
checklist or as a pre-design phase reference. After explaining that every viewpoint and variable is
supported by various best practices and recommendations the interviewee thinks that the
framework will definitely help in creating better serverless architectures. Apparently, this was not
directly clear from the graphical representation of the framework. Interviewee stresses that the
framework would be most beneficial in the form of a checklist. Additionally, the interviewee notes
that with respect to cloud-native architectures the framework structure makes more sense since it
implies a structured mental model of the design to-be. This would also help thinking about the
boundaries of the various viewpoints and how, when and where to address the variable concepts
according to the interviewee.

I3: The interviewee argues that by applying the framework the software (architecture) quality
would increase. According to the interviewee this is due to the fact that the important
(differentiating) factors of serverless computing (in contrast to regular software architectures) are
listed and are discussed within the proper context. Combined with the guidelines and best practices
this is considered quite useful to the interviewee. The interviewee states that the viewpoints and
cross-viewpoint variables provide extra focus to the important aspects of serverless architectures.
This would help practitioners to improve the decision making process and ample considerations to
be made during the design and implementation of a serverless architecture.

7. “Thinking from your professional experience, would you add any specific aspect to
improve the framework?”

I1: The balance between the various trade-offs concerning serverless computing could be more
emphasized. For example the trade-off between costs and performance, or load and serverless
suitability. In addition, the interviewee states that adding examples to each viewpoint definition
would help to define the boundaries between the various viewpoints and contribute to a better
understanding of the viewpoints.

I2: The interviewee argues that the choice of communication protocols are very important in the
architecture design process. An example given is the choice for using DynamoDB (AWS NoSQL
database service) or MongoDB (third-party NoSQL database system). This sort of choice is not
directly represented by the framework according to the interviewee. The interviewee thinks the
framework is well suited for designing new architectures from scratch, but not so much for
migrating or adapting a currently existing architecture to a more serverless architecture style.

I3: The interviewee approaches the question more from a developer/management kind of
perspective. The interviewee discusses the potential knowledge gap for developers that are not
familiar with serverless computing. Especially in organizations where distinct development and
operations departments are in place, it becomes more complex to manage the deployment and
maintenance of complex serverless applications which exist of many ‘moving parts’. Additionally,
the development workflow would need to be adapted to accommodate for the serverless parts of
the applications since it requires a different way of developing, testing and deploying. Finally, the

90

interviewee states that the impact of the additional complexity due to the serverless granularity on
the development and operations workflow should not be underestimated.

6. 2. 2. 3. Statement rating results

8. Learning to use the framework for designing serverless applications would be easy for me.
o I1: Neutral
o I2: True
o I3: True

9. It would be easy for me to become skilful at applying the framework.
o I1: True
o I2: True
o I3: True

10. It is easy for me to understand the framework based on the graphical representation.
o I1: Not true
o I2: Neutral
o I3: Very true

11. Using the framework would enable me to more easily create serverless software
architectures.

o I1: True
o I2: True
o I3: Neutral

12. Using the framework would enable me to create better serverless software architectures.
o I1: True
o I2: True
o I3: True

13. Using the framework would help me to create a more structured understanding of the
problem domain.

o I1: Neutral
o I2: Neutral
o I3: Very true

6. 2. 2. 4. General comments during the interviews

I1: It was not directly clear to the interviewee what the framework exactly entails. The interviewee
asked if it was merely the graphical representation. After explaining the best practices and
recommendations that are categorized and ordered by the framework the interviewee mentioned
that this was very interesting and potentially useful. Due to the extensiveness of the theory behind
the framework this was not discussed during the interview any further. Besides, with regard to the
rating of the statements, the interviewee mentioned to have some difficulties since the complete
framework and underlying theory was not shown.

91

I2: It was not clear to the interviewee with respect to statement 4 and 5 whether it should be
considered from the perspective of designing new architectures or migrating existing ones. The
author mentioned that it is mostly focussed on the former, but was also interested in the
interviewee’s opinion with regard to the latter. The interviewee mentions with respect to statement
5 that the interviewee usually employs a bottom-up approach when creating software application
(architectures), this means that the up-front design phase is not as dominant as presumed by the
author. Due to this bottom-up approach the framework does not directly fit the practice of the
interviewee since it is considered more as an up-front tool. Additionally, the interview stresses that
the framework seems most useful functioning as a checklist, where the concepts presented by the
framework are more or less reminders for a well-designed architecture.

I3: The interviewee had little general comments during the interview that fell outside the scope of
the questions. The only noteworthy comment is on the dominating position of AWS. The
interviewee argues that with respect to FaaS a vendor lock-in is unavoidable due to the ‘monopoly’
of AWS in this domain. The author somewhat disagrees here, Google, Microsoft, IBM and others
currently have similar, albeit less mature, products. Therefore, substitution products are available
and will continue to be developed further.

6. 3. Conclusions and recommendations
This section presents the conclusions and recommendations based on the two applied evaluation
methods; case study and semi-structured interviews. The limitations to both these evaluations will
be discussed in Chapter 7. Additionally, in this section a revised version of the SADF’s graphical
representation will be presented. The revision is based on the conclusions and recommendations
stemming from the case study and interview-based evaluations.

6. 3. 1. Case study

This section discusses the main findings from the case study. First a general limitation must be
noted which was noticed during the case study. The framework is specifically designed to address
the serverless specific parts of a software architecture. Therefore, the framework does not address
general software architecture aspects. This is intentional, creating an all-encompassing software
design framework is considered out of scope for this thesis.

The software design viewpoint is not very well represented by the framework. Although it is part
of the framework, the way the case study is analysed and the way the software architecture is
designed did not allow for going in depth with regard to the software design. The software design
is often not an upfront exercise but part of the actual software development phase(s). It still
deserves a place in the framework due to the importance of it to the overall serverless application,
however it could not be evaluated properly by applying the framework to this case study. A
recommendation would be to evaluate the framework on a real-world software project where the
software design viewpoint will be covered more extensively.

92

The fact that the software design viewpoint could not be evaluated properly by the case study
shows a larger underlying issue. The framework does not address in which phases of a software
project the various viewpoints or variables should be considered or applied. This can be seen as a
shortcoming of the framework. On the other hand, the framework is not designed to dictate the
process of designing software applications, but should be considered more as a supporting tool
that can be applied throughout the whole process. A possible future improvement to the framework
could be connecting the framework to well-known software design methodologies.

In general must be concluded that the evaluation results from the case study are not substantial.
Some recommendations could be made, but overall the case study functioned more as a
demonstration of the application of the framework than a true evaluation. The added value of the
case study must therefore be found in an example application of the framework, showing how to
analyse a serverless architecture design problem based on the viewpoints and variables as defined
by the framework.

6. 3. 2. Semi-structured interviews

This section discusses the main findings resulting from the interviews. The interviewees agree that
the framework seems useful for creating better serverless software architectures. Additionally, two
interviewees agree that it is expected that the framework helps to create serverless software
architectures more easily by guiding the practitioner, one interviewee is neutral. These findings
result from the semi-structured part of the interview as well as the rating of statements. The
perceived usefulness (PU) is considered quite high. However, two interviewees report that they
don’t expect the framework to help create a more structured understanding of the problem domain
(both rated this statement with neutral). In contrast, one interviewee is very confident that the
framework would help to create a more structured understanding. Regarding the perceived ease of
use (PEOU), two interviewees have some difficulties interpreting the framework based on the
graphical representation. The two interviewees think that learning the framework is not very easy
nor very difficult. The third interviewee seems to be more positive towards easiness of learning
the framework. Additionally, understanding the framework based on the graphical representation
is not considered very easy by the first two interviewees, the third states to have no problems
understanding the framework as it is presented. On the other hand, all three interviewees expect to
easily become skilful at applying the framework. A general note, all interviewees argue that they
see added value in the framework in the context of using it as a checklist during the design and
development phases of a serverless architecture.

Some critical conclusions can be drawn as well. The first two interviewees consider the viewpoint
definitions too ambiguous, the third seems to have some issues with it, however not as prevalent
as the first two. The terms that are used (e.g. software design) are not very well defined and
therefore leave room for interpretation. This could potentially be solved by improving the way the
viewpoints are presented. A recommendation by one of the interviewees is to add examples to each
viewpoint to guide the interpretation of these terms. Another critical note, all interviewees discuss

93

that the relation between the variables and the viewpoints is not so straightforward. Depending on
the interpretation (and application) the variables could potentially be relevant to all viewpoints. A
recommendation to overcome this is to decouple the viewpoints and the variables in the graphical
representation. The viewpoints and variables could still complement each other but do no longer
have strict interrelations graphically presented. In general, the first two interviewees have some
difficulties interpreting the framework based on the graphical representation. This affects the
PEOU considerably. This might be a result from the previously mentioned viewpoint ambiguity
and the non-trivial relations between variables and viewpoints. Interestingly, one interviewee
thought the size of the viewpoint circles indicated its importance. This was not clear to the author
and might need re-evaluation since this is not the case.

6. 3. 3. Revised SADF

Based on the conclusions and recommendations resulting from the case study and the interview
evaluation some changes to the SADF can be made. The changes are almost exclusively limited
to the graphical representation of the framework. This is logical since this graphical representation
has been the sole subject of evaluation.

The most significant recommended changes are related to the ambiguity of the viewpoint
definitions as well as the relation of the cross-viewpoint variables to these viewpoints. The
interviewees had different views on which cross-viewpoint variable should relate to which
viewpoint. Additionally, it has been noted that all cross-viewpoint variables are related to all
viewpoints, depending on interpretation of the practitioner. Therefore, it is recommended to
separate the cross-viewpoint variables from the viewpoints. This will make sure no ambiguous
relations between the viewpoints and cross-viewpoint variables are prescribed by the framework.

The graphical representation is adapted to not describe the presumed relations between the cross-
viewpoint variables and the viewpoints. This leaves room for interpretation by the users and is,
according to the interviewees, likely to align better with practice.

Furthermore, one of the interviewees argued that in order to create more clarity with regard to the
viewpoint definitions and boundaries, examples could be added to guide the user with the
interpretation. The graphical representation is adapted to describe a few examples for each
viewpoint, this might clarify the viewpoint definitions when looking at the graphical
representation.

Another minor revision is the name of one of the cross-viewpoint variables; vendor lock-in. One
of the interviewees correctly noted that vendor lock-in can occur on many levels of the software
architecture. For example, by choosing a third-party library to include in your application. To
remove this ambiguousness the cross-viewpoint variable should be named more specifically, for
this ‘cloud platform vendor lock-in’ is suggested.

94

All the aforementioned recommendations and proposed changes are implemented into a revised
version of the SADF’s graphical representation. The revised graphical representation is presented
in Figure 28.

Figure 28 Revised graphical representation of SADF

95

Chapter 7. Conclusions and recommendations
This chapter is concerned with presenting the general conclusions and recommendations of this
thesis. The conclusions and recommendations will be presented according to the research questions
as defined in Chapter 2.

7. 1. Benefits and challenges of serverless computing
This section concludes the answer to the first research question:

“What are the currently known benefits and challenges of serverless computing?”

After performing a structured literature review a number of serverless computing specific
benefits and challenges have been identified. The following challenges were identified:

- Composition
- Migration and de-composition
- Monitoring complexities
- Development complexities
- Vendor lock-in
- Performance
- Security
- Reducing costs

The following benefits were identified:

- Architectural opportunities
- Development process improvements
- Granular scaling
- Optimising resource utilisation
- Reducing operation costs

These benefits and challenges have been analysed and are graphically presented in Figure 13.
Additionally, they have been incorporated into the SADF in the form of Table 3 and as part of
the cross-viewpoint variables.

7. 2. Serverless suitability characteristics
This section concludes the answer to the second research question:

“What are the existing approaches or characteristics to determine which parts of an application
are suitable to be implemented in a serverless way?”

After performing a structured literature review it can be concluded that there is very little scientific
literature on this subject. Only two academic sources were found to be useful. Based on these

96

sources a set of characteristics has been identified that affect the serverless suitability of a software
component:

- Response time
- Invocation patterns
- Type of operation
- Data limits
- Vendor dependence
- Runtime restrictions

Based on these characteristics a flow chart was created that can be used to more easily determine
the serverless suitability of a specific software component. This flow chart is presented in Figure
14. Additionally, these characteristics are implemented into the SADF in the form of Table 4. This
table can be consulted by practitioners during the design of a serverless architecture to check
whether the software component is suitable for a serverless implementation or if a more
conventional approach based on an always-on compute instance should be considered.

7. 3. Serverless composition
This section concludes the answer to the third research question:

“How could cloud native architectures be composed and orchestrated to enable the full potential
of serverless computing?”

After performing a structured literature review on the topic of serverless composition a number of
different areas of interest with respect to serverless composition were identified:

- Tools and methods
- Architecture use-cases and demonstrations
- Hybrid cloud composition
- Modelling serverless composition
- Recommendations for improving serverless composition techniques
- Function chaining
- Serverless composition services
- Client focussed composition

Obviously, the most straightforward approach to serverless composition is to chain functions by
invoking one from within another. This approach has a number of drawbacks, of which possibly
the biggest: double-billing due to multiple functions running simultaneously. Other styles of
serverless composition were found in literature. Literature discerned between two different types
of composition techniques specific to serverless computing. First, client focussed composition
moves the orchestration and composition of serverless functions to the client, resulting in a ‘thick
client’. Second, serverless composition services are third-party or cloud platform specific

97

workflow composition services. They allow connecting multiple serverless functions together
through a GUI to form a more complex workflow.

In general can be concluded that composition of serverless applications is rather under-developed
from an academic point of view due to the lack of relevant literature with regard to serverless
composition styles and techniques.

7. 4. Serverless specific best practices
This section concludes the answer to the fourth research question:

“What are the best practices for creating a serverless application from scratch, and for
migrating a non-serverless architecture to a serverless architecture?”

The structured literature review for this research questions yielded zero to none usable scientific
sources. To accommodate for this, a lot of literature sources that were found by performing the
first three structured literature reviews were analysed with respect to this particular research
question. Many of these literature sources were found to be very relevant to the topic of best
practices for serverless application and architecture creation. Additionally, an explorative search
strategy was employed to try and find more relevant literature. Grey literature, such as blog posts
and white papers by practitioners and organizations, was included to answer this research question
as well. A number of relevant and distinct topics were categorized based on analysis of the
literature:

- Performance
- Security
- Vendor lock-in
- Costs
- Monitoring
- Architecture

For each of these topics a number of recommendations and best practices were found that are
extensively covered in Section 3. 6. Based on this theory, and in combination with the knowledge
from the first three research questions, the serverless architecture design framework (SADF) was
created. It includes most of the topics and contains many of the recommendations and best
practices, that were identified through answering this research question.

7. 5. Serverless architecture design framework
This section concludes the answer to the fifth and final research question:

“How can these best practices be applied in a form that supports software architects and
developers in the process of designing a serverless application architecture?”

98

This research question is focussed on applying the knowledge that was gathered through the first
four literature review based research questions. The goal is to present this information in such a
way that it becomes usable for practitioners and helps them to create better serverless software
architectures more easily.

To this end the DSRM was applied in order to eventually arrive at an artefact that would serve the
goal of this research question. After analysing the problem domain and the respective literature a
framework was constructed which consists of four viewpoints (configuration, software design,
software architecture and deployment) and five cross-viewpoint variables (performance, vendor
lock-in, security, costs and serverless suitability). Based on these viewpoints and cross-viewpoint
variables a best practices guide was written which is a textual representation of the most common
recommendations found in literature. Additionally, a graphical representation of the framework
was created and is shown in Figure 16.

Following, the framework was evaluated via two methods. First, the framework was applied on a
case study which simulated how practitioners would apply the framework in a real-world software
development project. It demonstrates how the framework could be applied and serves as a first
evaluation step by the author. Second, semi-structured interviews were conducted with three
domain experts in order to assess whether the framework aligns with practice and is actually
deemed useful by practitioners.

The most notable conclusion from the case study evaluation is that the software design viewpoint
could not be fully evaluated due to the limited case study. The architecture was not actually
implemented and therefore the software design viewpoint could not be fully assed by the case
study. The added value of the case study evaluation should be considered to be the demonstration
of the application of the framework, since it shows how the framework supports the analysis of
the architecture design process.

In order to evaluate the, quite textually extensive, framework the graphical representation (as
presented in Figure 16) was used to explain the framework to the interviewees. Based on the semi-
structured interviews a number of additional conclusions can be drawn. Summarized, the
interviewees agree that the framework seems useful for creating better serverless software
architectures more easily: the perceived usefulness is considered quite high. The interviewees
especially mention the expected usefulness of the framework as a checklist reference during the
design and development of a serverless application. According to the interviewees, the framework
seems to be somewhat difficult to understand at first (based on the graphical representation),
however easy master eventually.

The perceived ease of use is less positively evaluated. The interviewees argue that the graphical
representation is confusing for various reasons. Most notably, the viewpoints are considered to be
too ambiguous and not defined well enough. Additionally, according to the interviewees the cross-
viewpoint variables are not confined to the viewpoints they were matched with. The author
positioned the cross-viewpoint variables in the graphical representation as such that they

99

correspond to viewpoints to which they are ought to be most relevant. The interviewees argued
that all the cross-viewpoint variables can be relevant to all viewpoints, it largely depends on the
interpretation of the terms, the boundaries of the definitions and the application context.

Based on the conclusions from the interview evaluations the SADF is revised to improve the
perceived ease of use, and to implement various other recommendations that surfaced during the
interviews. The most significant change is the decoupling of the cross-viewpoint variables and the
viewpoints, in the initial version a relation between these two was presented. After feedback from
the interviewees it was decided that this pre-scribed relation should be removed. Additionally, the
viewpoint definitions are improved in the graphical representation of the SADF. Interviewees
argued that the viewpoints seemed ambiguous at first. To overcome this, short examples related to
each viewpoint were added to the graphical representation in order to provide more context. The
revised graphical representation of the SAF is presented in Figure 28.

Concluding, the artefact resulting from answering this research question, and also the main
contribution of this thesis, is the SADF. It has the potential to be useful to practitioners by
providing best practices and recommendations within a structured framework as well as serving
as a checklist reference of important aspects and considerations during the architecture design
process. Although, there is still room for improvement with regard to the content and completeness
of the framework. A secondary contribution of this thesis is the accumulation and categorization
of relevant information on designing and developing serverless applications and serverless
architectures.

7. 6. Limitations
This section summarizes and presents the limitations of this research effort.

7. 6. 1. Structured literature reviews

The literature reviews were not systematic or exhaustive. Therefore, it should be noted that the
presented literature analysis might be incomplete. Resulting from this, the SADF that is created
based on the literature analysis might suffer from this incompleteness as well. Additionally, the
analysis of the literature might be biased, or otherwise limited by the author’s choices and
interpretation. This is hardly avoidable. However, since the author has both academic and practical
experience with software (architecture) design the impact of this limitation might be minimal.

7. 6. 2. Case study

The case study evaluation is limited in a couple of ways. The application of the framework based
on the case study is limited due to the fact that the case study is relatively small and undetailed
compared to real-world software projects. This was done in order to keep the architecture design
and evaluation manageable within the time constraints of this research effort. A side effect of this
is that the generalizability of the results of the case study is limited. Additionally, the case study

100

only considers the architecture design part of a software project. It ignores the actual software
implementation. Since the thesis focusses on architecture design this is understandable. However,
since parts of the framework relate to the actual implementation of the software (e.g. software
design and configuration) these parts might be under evaluated due to this shortcoming. Finally,
the case study is solely focussed on the serverless aspects of a software application architecture.
This was an intentional choice to manage the scope of this research effort and to create a
framework specifically for serverless architectures.

7. 6. 3. Interviews

The second part of the evaluation, the structured interviews, are conducted on a limited number of
interviewees. This qualitative analysis is therefore limited to the knowledge, experiences and
opinions of these interviewees. Performing the same interviews with a larger group of interviewees
might yield different or additional results. For the scope of this thesis the current number of
interviewees (three) is considered sufficient as it is expected to cover the most important aspects
of the evaluation of the framework. This is supported by Boyce and Neale (2006) who note that
when similar answers are being observed across the interviewees a sufficient sample size has been
reached. This is, to some extent, the case with the results from our interviews.

A noteworthy limitation with respect to the interview-based evaluation is that the framework is
evaluated by using a graphical representation of the framework and some additional explanation.
This might affect the interviewees’ view of the framework, since there is more to the framework
(the textual recommendations and best practices) than the graphical representation only.

An additional limitation is the authors interpretation of the answers given by the interviewees. This
is partly covered by the statements that the interviewees have to rate. This statement rating part of
the interview acts as an additional validation of the answers given by the interviewees to the
structured interview questions. This lowers part of the interpretation bias.

Another bias that should be noted is the one the interviewees might have; a bias towards answering
what is socially accepted. Meaning, the interviewees might, subconsciously or not, give more
positively tuned answers in order to please the interviewer since they are aware that they are
reviewing something the interviewer has created.

The generalizability of the conclusions based on the interviews is another limitation. The
conclusions are based on a small number of interviewees which are not randomly selected,
therefore the results are in most cases not fully generalizable (Boyce & Neale, 2006). Although
this is the case, the interviews are still considered to be quite useful as they provided insights into
the expected usefulness and usability. As noted before, performing the interview evaluation on a
larger sample size would improve the generalizability and might yield different or additional
results. According to Seddon and Scheepers (2012) a key characteristic of sound generalizations
is the representativeness of the interviewees. As described in Section 6. 2. 2. the interviewees are

101

quite representative for the software practitioners domain, they have ample experience with the
subject and varying years of experience in software development in general.

7. 6. 4. Serverless architecture design framework

The SADF is designed to focus on the serverless aspects of a software architecture only. This
choice was made to keep a manageable scope for this research effort. However, it should be noted
that the framework relies on conventional software architecture knowledge, especially for the non-
serverless parts of a software architecture. This is not considered a big issue since the practitioners
that would apply the SADF are quite certainly familiar with designing conventional software
architectures.

The SADF has a limited applicability, since it is designed specifically for designing cloud-native
serverless software architectures. The framework can also be applied on conventional cloud-native
software architectures if the goal is to start with the implementation of serverless components. In
contexts other than these, the framework is most likely of little added value since it was not
designed for this. The generalizability of this research effort is therefore rather limited and
confined to the problem domain of designing cloud-native serverless software architectures. Due
to this, not all software practitioners might benefit from the framework. Only, cloud (software)
engineers, and especially the ones working with serverless technologies. It should be noted that to
apply and understand the framework substantial knowledge of software engineering and software
architecture is required. The framework cannot exist on its own, and depends on practitioners
having conventional software development knowledge.

Finally, the SADF is created based on academic literature, although it is aimed at helping
practitioners. There might be a difference between the topics academic literature addresses and
what practitioners experience in practice. This is partly covered by the interviews, by validating
that the framework aligns with practice. However, it must be noted that the SADF was created
based on academic theory instead of practical experiences by software architects and developers
from real-world software projects. This might result in an inherent mismatch between the
framework and practice.

7. 7. Recommendations and future work
Some general recommendations for future work: evaluating the framework with a larger group of
test subjects. This will result in more varied insights into the quality of the framework. This way
the gaps in, and flaws of the framework can be more thoroughly identified and improved upon.
Performing systematic, or at least more extensive, literature reviews might be considered in order
to make sure that all available knowledge is gathered, analysed and incorporated into the
framework. Additionally, the framework could be evaluated within the context of a real software
project instead of the fictitious case analysis context used in this thesis. This will address the
aforementioned limitations of the minimal evaluation coverage of viewpoints such as
configuration and software design.

102

Based on the initial evaluation by means of the case study and interviews the SADFs graphical
representation was revised. This revision has not been re-evaluated in this work. It would be
interesting to see how the improvements would be perceived by practitioners. Therefore, a re-
evaluation based on the revised SADFs graphical representation is a recommendation for future
work.

Another more foundational recommendation for future work is related to the how the SADF came
to be. It is based on extensive scientific literature research, although its goal is to aid practitioners
with the design and development of serverless architectures. Therefore, there might be a mismatch,
or bias, due to the academic theoretical basis. It would be interesting to develop a similar
framework from a practical perspective. Not from literature, but from actual software development
projects and by interviewing experienced (serverless) software practitioners. This might result in
different perspectives on the SADF and might contribute to completing it. The evaluation showed
that domain experts recognize the potential added valued of the SADF. Therefore, the framework
can be extended and improved upon in the future to make it more complete and clear.

103

References
Abad, C. L., Boza, E. F., & Eyk, E. V. (2018). Package-aware scheduling of FaaS functions.
Adzic, G., & Chatley, R. (2017). Serverless computing: economic and architectural impact.

Paper presented at the Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering.

Amazon Web Services. Amazon Cognito - Simple and Secure User Sign Up & Sign In |
Amazon Web Services (AWS). Retrieved from https://aws.amazon.com/cognito/

Amazon Web Services. Amazon EC2 Auto Scaling. Retrieved from
https://aws.amazon.com/ec2/autoscaling/

Amazon Web Services. AWS Lambda - Serverless Compute - Amazon Web Services.
Retrieved from https://aws.amazon.com/lambda/

Amazon Web Services. AWS Step Functions. Retrieved from
https://aws.amazon.com/step-functions/

Apache. Apache OpenWhisk is a serverless, open source cloud platform. Retrieved from
https://openwhisk.apache.org/

Auth0. Never Compromise on Identity. Retrieved from https://auth0.com/
Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., . . . Slominski, A. (2017).

Serverless computing: Current trends and open problems Research Advances in
Cloud Computing (pp. 1-20): Springer.

Baldini, I., Cheng, P., Fink, S. J., Mitchell, N., Muthusamy, V., Rabbah, R., . . . Tardieu, O.
(2017). The serverless trilemma: Function composition for serverless computing.

Bardsley, D., Ryan, L., & Howard, J. (2018). Serverless performance and optimization
strategies.

Boyce, C., & Neale, P. (2006). Conducting in-depth interviews: A guide for designing and
conducting in-depth interviews for evaluation input.

Chapin, J., & Roberts, M. (2017). What is Serverless? : O’Reilly Media, Inc.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer

technology: a comparison of two theoretical models. Management science, 35(8),
982-1003.

Eivy, A. (2017). Be Wary of the Economics of" Serverless" Cloud Computing. IEEE Cloud
Computing, 4(2), 6-12.

Elgamal, T. (2018). Costless: Optimizing cost of serverless computing through function
fusion and placement. Paper presented at the 2018 IEEE/ACM Symposium on Edge
Computing (SEC).

Gannon, D., Barga, R., & Sundaresan, N. (2017). Cloud-Native Applications. IEEE Cloud
Computing, 4(5), 16-21. doi:10.1109/MCC.2017.4250939

Garcia Lopez, P., Sanchez-Artigas, M., Paris, G., Barcelona Pons, D., Ruiz Ollobarren, A., &
Arroyo Pinto, D. (2019). Comparison of FaaS orchestration systems.

Google. Cloud Functions - Event-driven Serverless Computing | Cloud Functions | Google
Cloud. Retrieved from https://cloud.google.com/functions/

Google. Firebase. Retrieved from https://firebase.google.com/
Gregor, S. (2006). The nature of theory in information systems. MIS quarterly, 611-642.

https://aws.amazon.com/cognito/
https://aws.amazon.com/ec2/autoscaling/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://openwhisk.apache.org/
https://auth0.com/
https://cloud.google.com/functions/
https://firebase.google.com/

104

Grumuldis, A. (2019). Evaluation of “Serverless” Application Programming Model: How and
when to start Serverles.

Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A. C., &
Arpaci-Dusseau, R. H. (2016). Serverless computation with openlambda. Elastic, 60,
80.

IBM. Cloud Functions - Overview | IBM. Retrieved from
https://www.ibm.com/cloud/functions

Ivanov, V., & Smolander, K. (2018). Implementation of a DevOps Pipeline for Serverless
Applications. Paper presented at the International Conference on Product-Focused
Software Process Improvement.

Jackson, D., & Clynch, G. (2018). An Investigation of the Impact of Language Runtime on the
Performance and Cost of Serverless Functions. Paper presented at the 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion).

Jambunathan, B., & Yoganathan, K. (2018). Architecture Decision on using Microservices or
Serverless Functions with Containers. Paper presented at the 2018 International
Conference on Current Trends towards Converging Technologies (ICCTCT).

Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., & Recht, B. (2017). Occupy the cloud:
Distributed computing for the 99%.

Kratzke, N. (2018). A brief history of cloud application architectures. Applied Sciences
(Switzerland), 8(8). doi:10.3390/app8081368

Kritikos, K., & Skrzypek, P. (2018). A Review of Serverless Frameworks. Paper presented at
the 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion).

Lewis, J., & Fowler, M. (2014). Microservices. Retrieved from
https://martinfowler.com/articles/microservices.html

Lloyd, W., Vu, M., Zhang, B., David, O., & Leavesley, G. (2018). Improving Application
Migration to Serverless Computing Platforms: Latency Mitigation with Keep-Alive
Workloads. Paper presented at the 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion).

Lowery, C. (2016). Emerging technology analysis: Serverless computing and function
platform as a service. Gartner, Tech. Rep.

Malawski, M., Gajek, A., Zima, A., Balis, B., & Figiela, K. (2017). Serverless execution of
scientific workflows: Experiments with HyperFlow, AWS Lambda and Google Cloud
Functions. Future Generation Computer Systems. doi:10.1016/j.future.2017.10.029

Manner, J. (2019). Towards Performance and Cost Simulation in Function as a Service.
Manner, J., Kolb, S., & Wirtz, G. (2018). Troubleshooting Serverless functions: a combined

monitoring and debugging approach. SICS Software-Intensive Cyber-Physical
Systems, 1-6.

McGrath, G., & Brenner, P. R. (2017). Serverless computing: Design, implementation, and
performance. Paper presented at the Distributed Computing Systems Workshops
(ICDCSW), 2017 IEEE 37th International Conference on.

https://www.ibm.com/cloud/functions
https://martinfowler.com/articles/microservices.html

105

McGrath, G., Short, J., Ennis, S., Judson, B., & Brenner, P. (2016). Cloud event programming
paradigms: Applications and analysis. Paper presented at the Cloud Computing
(CLOUD), 2016 IEEE 9th International Conference on.

Microsoft. Azure Functions – Serverless architecture | Microsoft Azure. Retrieved from
https://azure.microsoft.com/en-gb/services/functions/

Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2018). Cloud Container Technologies: a State-
of-the-Art Review. IEEE Transactions on Cloud Computing, 1-1.
doi:10.1109/TCC.2017.2702586

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science
research methodology for information systems research. Journal of management
information systems, 24(3), 45-77.

Perera, K. J. P. G., & Perera, I. (2018). TheArchitect: A Serverless-Microservices Based High-
level Architecture Generation Tool.

Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for
container-based architectures. Future Generation Computer Systems, 83, 50-59.
doi:10.1016/j.future.2018.01.022

Seddon, P. B., & Scheepers, R. (2012). Towards the improved treatment of generalization of
knowledge claims in IS research: drawing general conclusions from samples.
European journal of information systems, 21(1), 6-21.

Serverless Inc. (2019). Serverless - The Serverless Application Framework powered by AWS
Lambda, API Gateway, and more. Retrieved from https://serverless.com/

Singh, D., Singh, J., & Chhabra, A. (2012). High availability of clouds: Failover strategies for
cloud computing using integrated checkpointing algorithms. Paper presented at the
2012 International Conference on Communication Systems and Network
Technologies.

Soltani, B., Ghenai, A., & Zeghib, N. (2018). Towards Distributed Containerized Serverless
Architecture in Multi Cloud Environment.

Spillner, J. (2017). Snafu: Function-as-a-service (faas) runtime design and implementation.
arXiv preprint arXiv:1703.07562.

Spillner, J., & Dorodko, S. (2017). Java code analysis and transformation into AWS lambda
functions. arXiv preprint arXiv:1702.05510.

Tosatto, A., Ruiu, P., & Attanasio, A. (2015, 8-10 July 2015). Container-Based Orchestration
in Cloud: State of the Art and Challenges. Paper presented at the 2015 Ninth
International Conference on Complex, Intelligent, and Software Intensive Systems.

Tran, T. H. (2017). Developing web services with serverless architecture.
Twillio. SMS, Short Message Service | Text Messaging for Mobile & Web Apps. Retrieved

from https://www.twilio.com/sms
van Eyk, E., Iosup, A., Seif, S., & Thömmes, M. (2017). The SPEC cloud group's research vision

on FaaS and serverless architectures. Paper presented at the Proceedings of the 2nd
International Workshop on Serverless Computing.

Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uță, A., & Iosup, A. (2018). Serverless is
More: From PaaS to Present Cloud Computing. IEEE Internet Computing, 22(5), 8-
17.

https://azure.microsoft.com/en-gb/services/functions/
https://serverless.com/
https://www.twilio.com/sms

106

Vaquero, L. M., Cuadrado, F., Elkhatib, Y., Bernal-Bernabe, J., Srirama, S. N., & Zhani, M. F.
(2019). Research challenges in nextgen service orchestration. Future Generation
Computer Systems, 90, 20-38. doi:10.1016/j.future.2018.07.039

Varghese, B., & Buyya, R. (2018). Next generation cloud computing: New trends and
research directions. Future Generation Computer Systems, 79, 849-861.

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., . . . Zambrano,
A. (2017). Cost comparison of running web applications in the cloud using
monolithic, microservice, and AWS Lambda architectures. Service Oriented
Computing and Applications, 11(2), 233-247.

Völker, C. (2018). Suitability of serverless computing approaches.
Wagner, B., & Sood, A. (2016). Economics of resilient cloud services. Paper presented at the

2016 IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C).

Warzon, A. (2016). AWS Lambda pricing in context: A comparison to EC2. Retrieved from
https://www.trek10.com/blog/lambda-cost/

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a
literature review. MIS quarterly, xiii-xxiii.

Wurster, M., Breitenbucher, U., Kepes, K., Leymann, F., & Yussupov, V. (2019). Modeling
and Automated Deployment of Serverless Applications Using TOSCA.

Yan, M., Castro, P., Cheng, P., & Ishakian, V. (2016). Building a chatbot with serverless
computing. Paper presented at the Proceedings of the 1st International Workshop
on Mashups of Things and APIs.

https://www.trek10.com/blog/lambda-cost/

107

Appendix 1. Serverless architecture design legend

Elastic Load Balancer (ELB)

AWS Kinesis real-time data stream

IoT hub – small hardware device physically near IoT nodes

Programmatic event

IoT road sensor

IoT traffic light actuator

AWS Route 53 DNS

AWS S3 Bucket – simple object storage service

Relational database instance

EC2 instance – elastic compute cloud – dedicated virtual compute hardware

108

AWS Lambda – serverless function instance

109

Appendix 2. Interviews
English

Step 1. Background questions

1. What is your experience in software architecture?
2. Are you into serverless computing technology?
3. What do you do as part of your job in regard to serverless computing technology and

software architectures?

Step 2. Show the graphical representations of the SADF and shortly discuss how it came to be.

Step 3. Structured interview on the SADF

4. To what extent do you think the viewpoints align with the practice that you observe in the
projects that you work on?

5. To what extent do you think the cross-viewpoint variables align with practice that you
observe in the projects that you work on?

6. Do you think applying the framework would result in better serverless software
architectures?

a. If yes, why do you think the framework would improve serverless software
architectures?

b. If no, why do you think the framework does not contribute to better serverless
software architectures?

7. Thinking from your professional experience, would you add any specific aspect to
improve the framework?

Step 4. Rating statements from ‘very true’ to ‘very false’

Options: Very true – True – Neutral – False – Very false

8. Learning to use the framework for designing serverless applications would be easy for me.
9. It would be easy for me to become skilful at applying the framework.
10. It is easy for me to understand the framework based on the graphical representation.
11. Using the framework would enable me to more easily create serverless software

architectures.
12. Using the framework would enable me to create better serverless software architectures.
13. Using the framework would help me to create a more structured understanding of the

problem domain.

Dutch

Stap 1. Achtergrond informatie

1. Wat is jouw ervaring met software architecture?
2. In hoeverre ben je betrokken bij serverless computing technologie?

110

3. In welke mate ben je op professionele basis bezig met serverless computing technologie
en software architecture?

Stap 2. Laat de grafische representatie van de SADF zien en bespreek kort hoe deze tot stand
kwam.

Stap 3. Gestructureerd interview over de SADF

4. In hoeverre denk je dat de viewpoints aansluiten op de praktijk die je ervaart bij de
projecten waar je aan werkt?

5. In hoeverre denk je dat de cross-viewpoint variables aansluiten op de praktijk die je
ervaart bij de projecten waar je aan werkt?

6. Denk je dat het toepassen van het framework zal resulteren in betere serverless software
architectures?

a. Zo ja, waarom denk je dat het framework zal bijdragen aan betere serverless
software architectures?

b. Zo nee, waarom denk je dat het framework niet zal bijdragen aan betere serverless
software architectures?

7. Redenerend vanuit jouw professionele ervaring, zijn er bepaalde aspecten die je zou
willen toevoegen aan het framework om het te verbeteren?

Stap 4. Geef op een schaal van ‘helemaal waar’ tot ‘helemaal niet waar’ aan in hoeverre je
het eens bent met de volgende uitspraken

Options: Helemaal waar – Waar – Neutraal – Niet waar – Helemaal niet waar

8. Het zal erg makkelijk zijn voor mij om te leren hoe ik het framework kan gebruiken voor
het ontwerpen van serverless applicaties.

9. Het zal erg makkelijk zijn voor mij om bekwaam te raken in het toepassen van het
framework.

10. Het is makkelijk voor mij om het framework te begrijpen op basis van de grafische
representatie.

11. Door het gebruik van het framework wordt ik in staat gesteld om makkelijker serverless
software architectures te ontwerpen.

12. Door het gebruik van het framework wordt ik in staat gesteld om kwalitatief betere
serverless software architectures te ontwerpen.

13. Het gebruik van het framework zou mij helpen bij het gestructureerd begrijpen van de
probleem context.

