
Cyber Security (CSE)

Cyber Security and Robustness (CSR)

Thesis

Quantum-safe TOR
Post-Quantum Cryptography

TUJNER Zsolt

Promo 2020 – Master EIT Digital Cyber Security

Academic Supervisor: Melek Önen PhD, EURECOM
Industrial Supervisors: Maran van Heesch MSc, TNO

Thomas Rooijakkers MSc, TNO

August 30, 2019

DECLARATION POUR LE RAPPORT DE STAGE

DECLARATION FOR THE MASTER’S THESIS

Je garantis que le rapport est mon travail original et que je n’ai pas reçu d’aide
extérieure.
Seules les sources citées ont été utilisées dans ce projet. Les parties qui sont des
citations directes ou des paraphrases sont identifiées comme telles.

I warrant, that the thesis is my original work and that I have not received out-
side assistance.
Only the sources cited have been used in this report. Parts that are direct quotes
or paraphrases are identified as such.

À Biot, in Biot
Date : August 30, 2019

Nom Prénom : TUJNER Zsolt
Name First Name

Signature :

Acknowledgments

I would like to express my gratitude to EIT Digital for the opportunity that
allowed me to have this unique Master study experience.

Furthermore, I would like to express my sincere gratitude to TNO and my indus-
trial supervisors Maran van Heesch and Thomas Rooijakkers for their expertise,
ideas, mentoring and patience. I would also like to thank my academic super-
visor Melek Önen for her expertise, ideas and supervision of my thesis.

Finally, I would like to thank my family, my friends in Hungary and the new
friends I made during the studies for their support, that made it possible for me
to complete this journey.

Contents

1 Introduction 2
1.1 Research goal . 3
1.2 Outline . 3
1.3 Related work . 4

2 Preliminaries 6
2.1 Cryptographic schemes . 6

2.1.1 Symmetric key cryptography 6
2.1.2 Asymmetric key cryptography 7
2.1.3 Key Encapsulation and Key Derivation functions 7
2.1.4 Signature schemes . 9

2.2 Security . 11
2.2.1 Defining security . 11
2.2.2 n-bit security . 12
2.2.3 Attacker models . 13

2.3 Post-quantum cryptography . 14
2.3.1 NIST submissions . 15
2.3.2 Transitioning to Post-quantum cryptography 16

3 TOR network 17
3.1 Introduction to TOR . 18

3.1.1 Nodes in TOR . 18
3.1.2 Circuit creation . 21

3.2 Building blocks and keys . 23
3.2.1 Cryptographic building blocks 23
3.2.2 Keys in TOR . 24

3.3 Issues and attack surfaces . 25

4 Post-quantum TOR 27
4.1 Challenges . 27
4.2 Attack scenarios . 28
4.3 Papers on quantum-safe TOR . 31
4.4 First recommendations for quantum-safe TOR 32

5 Experimental results 35
5.1 Implementation . 35

5.1.1 Onion routing . 35
5.1.2 Open Quantum Safe library and challenges 36
5.1.3 Expected drawbacks . 37

5.2 Experimental setup . 37
5.2.1 System setup . 37
5.2.2 Experiment setup . 37
5.2.3 Classical scheme . 38
5.2.4 Quantum-safe schemes . 39

5.2.5 Hybrid schemes . 39
5.3 Benchmark results of quantum-safe cryptography performance . 41
5.4 Experimental results of quantum-safe circuit builds 45

5.4.1 First quantum-safe results 45
5.4.2 Hybrid implementation results 48

5.5 Conclusions . 49

6 Conclusion 51
6.1 Own contribution . 51
6.2 Future work . 52

Abstract

Nowadays there is vast information publicly available on the internet
and it is ever-expanding. This knowledge should be available to anyone,
but some governments or organizations consider the knowledge gained by
information unwanted. They can abuse their power by blocking access
to the websites on the internet thus, depriving people of their free will.
These oppressive regimes also monitor internet traffic and people who are
out of line may be severely punished. The Onion Router (TOR) network
aims to grant people in such abusive areas anonymity on the internet, but
with the emerge of quantum computers this anonymity is threatened.
In this work, we give insight into a quantum-safe TOR network that grants
anonymity in the quantum world. To do so, we examined which parts of
TOR would become vulnerable in a quantum world. We identified that the
symmetric key, and the long-term, medium-term keys generated by asym-
metric cryptography are the most concerning cryptographic challenges
TOR faces in order to preserve forward secrecy. We suggest changes to
these parts and predict drawbacks regarding the changes. To prove our
predictions, in our experiments we used an existing implementation that
simulates the behaviour of TOR. For benchmarking, an implementation
called SweetOnions was used, later this implementation was updated by
adding quantum-safe schemes. Purely quantum-safe and hybrid imple-
mentations were both tested. The experiments performed measured CPU
cycles required for key generation, message encapsulation and decapsula-
tion, and circuit creation. Message sizes were also measured to see how
quantum-safe cryptography impacts network traffic. Message sizes pose
the biggest challenge for TOR, because sending too many packets can
cripple the whole network. Finally, based on our results, we show that
quantum-safe TOR is possible and suggest two versions - one that can
be used in a purely quantum-safe setting, and one that can be used in a
hybrid setting.

De nos jours, un nombre d’informations en constante expansion sont
disponibles publiquement sur l’Internet. Ces connaissances devraient être
accessibles à tous, mais certains gouvernements ou organisations con-
sidèrent que les connaissances acquises gràce à ces informations sont inde-
sirables. Ils peuvent abuser de leur pouvoir en bloquant l’accès aux sites
Web sur l’Internet, privant ainsi les personnes de leur libre arbitre. Ces
régimes oppressifs surveillent également le trafic Internet et les personnes
qui sortes des limites peuvent être sévèrement punies. Le réseau “The
Onion Router“ (TOR) a pour objectif d’octroyer l’anonymat sur Inter-
net à des personnes se trouvant dans de telles zones d’abus, mais avec
l’émergence des ordinateurs quantiques, cet anonymat est menacé. Dans
ce travail, nous donnons un aperçu d’un réseau de sécurité quantique qui
garantit l’anonymat dans le monde quantique. Pour ce faire, nous avons
examiné quelles parties de TOR deviendraient vulnérables dans un monde
quantique. Nous avons constaté que la clé symétrique et les clés à moyen
et à long terme générées par la cryptographie asymétrique constituaient les
défis cryptographiques les plus préoccupants pour TOR afin que le secret
soit préservé. Nous suggérons de modifier ces éléments et de prévoir les
inconvénients liés à ces changements. Pour prouver nos prédictions, nous

1

avons utilisé dans nos expériences une implémentation existante qui simule
le comportement de TOR. Pour l’analyse comparative, l’implémentation
appelée SweetOnions a été utilisée. Cette implémentation a ensuite été
mise à jour en ajoutant des schémas) quantique-sécuriser. Des implemen-
tations purement quantiques et hybrides ont été testées. Les expériences
effectuées ont mesuré les cycles de processeur nécessaires à la génération de
clé, à l’encapsulation et à la décapsulation de messages et à la création de
circuits. La taille des messages a également été mesurée pour déterminer
l’impact de la cryptographie quantique sur le trafic réseau. La taille des
messages constitue le plus gros défi pour TOR, car l’envoi d’un trop grand
nombre de paquets peut paralyser tout le réseau. Enfin, sur la base de nos
résultats, nous montrons qu’il est possible que TOR devienne quantique-
securisé et proposons deux versions: une pouvant être utilisée dans un
environnement purement quantique-sécuriser et une autre, dans un envi-
ronnement hybride.

1 Introduction

Nowadays information available online is expanding in an unforeseen way, a vast
amount of data is uploaded and shared through social media, IoT, etc. [23].
However, this data also attracts unwanted attention and might paint a bad im-
age of some stakeholders. Consider the case of Edward Snowden who put the
National Security Agency (NSA) in the spotlight by shedding light on how the
American population was wiretapped [22]. When blowing the whistle on such
a large scale one would aim to remain anonymous as this act can negatively af-
fect the career and freedom of the individual. In oppressive regimes, where the
freedom of speech is abused this is even more serious, as any type of negative
speech, whistleblowing or expressing freedom of information may be recognized
as an act of treason and punishments are severe.

The Onion Router (TOR) aims to grant its users anonymity when accessing
the internet. In principle, when using TOR the messages or website connection
requests are sent through a network of relays and after multiple ‘hops’ reach
their destination. So, if Alice wants to send Bob a message, but does not want
an eavesdropper to know that she initiated the contact, Alice can use TOR. The
cryptographic schemes used today and in TOR are based on hard mathematical
assumptions e.g. Discrete Logarithm Problem and integer factorization. These
schemes are assumed to be secure against classical adversaries as solving them
with the currently known algorithms cost exponential time, but with a quantum
computer solving these problems become feasible.

In the mid 1990s, due to the rapid development of quantum technology, Lov
Grover and Peter Shor proposed two algorithms for quantum computers that
now are gaining more attention again. The algorithm proposed by Shor sig-
nificantly speeds up evaluation of mathematical problems like factorization on
a quantum computer. This breaks most of the current commonly used asym-

2

metric key cryptographic schemes [34]. The algorithm of Grover finds pairs in
databases faster than a classical computer, it can be considered as a search al-
gorithm and it weakens symmetric key cryptography [13]. With all the efforts
put into building quantum computers the emerge of quantum computers seems
inevitable. This means that the currently widely used cryptographic schemes
will become obsolete and TOR will no longer provide anonymity. Therefore,
there will be a need to switch to so called quantum-safe cryptographic schemes.

The transition from current - classical - cryptography needs to be started as
fast as possible, but it is expected to have significant effects on IT infrastruc-
ture. This is due to the heavier operations quantum-safe cryptography requires
reported by [33] for setting up connections. Furthermore, network load is also
expected to increase as message sizes are bound to get larger due to the in-
creased encryption sizes. TOR is run by volunteers across the globe and it uses
the most common cryptographic schemes of today, so making it quantum-safe
is a must do task and the effects of changing the cryptography are going to be
felt. Not only by the volunteers running relays but also the average user who
connects to the network is going to experience these drawbacks.

In this thesis we design a quantum-safe TOR. To do this, we investigate what
parts of TOR need to be changed and how urgent the change is, the effects on
user experience and provide recommendations on what the quantum-safe TOR

anonymity network should look like.

1.1 Research goal

The goal of this research is to see how TOR can work in the quantum world. To
help answering this question, we consider four sub-questions to aid our research.
Answering these sub-questions makes it possible in the end to answer the goal
of the research:

1. Which are the most pivotal parts in TOR that need to be made quantum-
safe first?

2. Where and when should quantum-safe cryptography be added to TOR?

3. What performance drawbacks are users likely to face in a quantum-safe
TOR and are these drawbacks confirmed by the experimental results?

4. What are the strengths and weaknesses of a quantum-safe TOR?

1.2 Outline

In Section 2 the preliminaries for this thesis can be found, these include cryp-
tography: symmetric and asymmetric key, key exchange methods, and digital
signature schemes. Furthermore, security definitions and levels of security are
introduced for classical and quantum computing. Post-quantum cryptography

3

is also introduced in this section. In Section 3 the TOR network is introduced,
including connection setup, the cryptographic building blocks and known is-
sues. Attack surfaces on TOR with security guarantees are also discussed in
this section. Section 4 explains what changes are needed to be made to TOR

to become quantum-safe. Furthermore, the challenges faced during the tran-
sition to quantum-safe TOR are explained. In Section 5 we explain how the
experiments were executed. The experimental results for key generation and
circuit build times for quantum-safe TOR are discussed, and recommendations
are given about what a quantum-safe TOR should look like. In the final sec-
tion - Section 6 - the work is concluded with possible open problems and future
research on the topic.

1.3 Related work

Before talking about TOR, first we need to investigate how a user can achieve
anonymity online. Nowadays a user can choose from a variety of solutions to
become anonymous on the internet [21]. When it comes to anonymity there are
two techniques that are considered: high-latency and low-latency anonymity
systems [14].

High-latency systems are also called mix-networks, or mixnets for short. Mixnets
usually add a batching and mixing process to the messages entering the network
adding latency, hence the name high-latency. This makes the linking of mes-
sages at the exit of the network hard. Two mixnet examples are Mixminion [24]
and Mixmaster [17].

Low-latency systems do not modify the packet delay to achieve end-to-end
latency as high-latency systems do. Rather, they pass the messages through
multiple relays to achieve anonymity. One example for low-latency system is
the Invisible Internet Project (I2P) [16, 2] that uses multiple relays to provide
anonymity while users can chat with each other. Another example is the Java
Anon Proxy (JAP) with which users can browse the internet anonymously.

TOR is a low-latency system, that provides both anonymous browsing and com-
munication between users in a secure manner on the internet. The original
paper on TOR by Roger Dingledinde [11] introduces the design, considerations
and security goals of the TOR anonymity network. Furthermore, active and
passive attack scenarios are discussed in the paper. From [11] it is clear that
TOR faces issues in the quantum world as it uses the most common current
cryptographic schemes. In a quantum world these cryptographic schemes are
broken by a quantum computer and thus, TOR can no longer provide anonymity.

When it comes to quantum-safe TOR, there are two papers that are interesting:
Post-Quantum Forward Secure Onion Routing by S. Ghosh and A. Kate [12];
and Circuit-extension handshakes for Tor achieving forwards secrecy in a quan-
tum world by J. M. Schanck, W. Whyte, and Z. Zhang [33]. These are both

4

hybrid solutions - meaning they use a combination of current cryptography and
quantum-safe cryptography. In [12] the Ring-Learning With Errors problem is
used in their own cryptographic protocol design to achieve security against quan-
tum adversaries. Whereas, in [33] a variant of a quantum-safe scheme (NTRU)
is used with the current design of TOR. These papers are further analysed in
Section 4.

Selecting the best fit candidate to replace current cryptography in a quantum
world is not only hard for TOR. A lot of research in quantum-safe cryptogra-
phy is done already, although the focus of the following papers is not directly
quantum-safe TOR. The paper from ETSI [7] gives a lean introduction and
overview of quantum-safe cryptography. In [37], D. Stebila et al. propose a key
exchange method based on the Learning With Errors problem. J. W. Bos et
al. [5] propose a key exchange to make the Transport Layer Security (TLS) pro-
tocol quantum-safe. A lot of work is done to design and analyse post-quantum
cryptography, e.g. a project from the European Union’s Horizon 2020 called
FutureTPM is analysing quantum resistant primitives [15]. This project aims
to identify suitable quantum-safe algorithms for future adoption.

In 2017, the National Institute of Standards and Technology (NIST) opened
a call for proposals on the topic of quantum-safe cryptographic solutions for
new quantum-safe standards [28]. The first round contained 69 submissions.
On January 30, 2019 the candidates for the second round were announced, con-
sisting of 17 asymmetric key encryption and key-establishment algorithms and
9 digital signature algorithms.

5

2 Preliminaries

In this section the preliminaries required to read this thesis are introduced. The
basic cryptographic primitives are explained, followed by notions of security,
quantum computing and post-quantum cryptography.

Symmetric key and asymmetric key cryptography, key exchange and key deriva-
tion functions, and signature schemes are introduced in Section 2.1. In Sec-
tion 2.2 the definitions of security, notions of security followed by describing
attacker types are explained. Finally, in Section 2.3 post-quantum computing
is introduced.

2.1 Cryptographic schemes

In cryptography, the two fundamental operations are encryption and decryption.
For encryption a plaintext message, an encryption function and an encryption
key are needed. By applying an encryption function to the message using the
encryption key, the function outputs a ciphertext. Decryption is the reverse op-
eration of encryption. Using the ciphertext and applying the decryption function
with the decryption key, the original message should be learned as an output.

When encrypting data, the aim of the encrypting party is to disallow anyone
from reading the data who does not have the correct decryption key. Further-
more, the goal is to have the sent data received in the intended - original - form,
and not altered by any third party. These two aims are called confidentiality
and integrity, which are two pillars of the CIA triad - CIA in this setting stands
for confidentiality, integrity and availability.

2.1.1 Symmetric key cryptography

When using symmetric key cryptography, the communicating parties agree on
a symmetric secret key to use for both encryption and decryption. This key
agreement can be done in person as doing this online is not always considered
secure.

Enck(m) = c,

Deck(c) = m.
(1)

In Equation 1 the formal representation of symmetric key encryption and de-
cryption can be seen. Enc and Dec are encryption and decryption functions
respectively, k is the agreed key used for encryption and decryption, m is the
message and c is the ciphertext after encryption. The most common and widely
used scheme for symmetric key cryptography is the Advanced Encryption Stan-
dard (AES).

6

2.1.2 Asymmetric key cryptography

Asymmetric key cryptography works differently than symmetric key cryptog-
raphy. For this scheme the parties each have two keys: a public key, that is
known to every participant and a private key, that is only known to the person
generating it. Encryption is done using the public key of the recipient, while for
decryption the individual private key of the recipient is used. Using the public
and private keys ensures that only the person who has the correct private key
can decrypt the ciphertext.

As an example, two parties - Alice and Bob - would like to communicate with
each other. Alice knows her own public key (pkA), her private key (skA) and
the public key of Bob (pkB). She encrypts her message with the public key of
Bob that guarantees her, that only Bob will be able to decrypt the ciphertext
correctly, which can be represented as

EncpkB
(m) = c,

DecskB
(c) = m.

(2)

In Equation 2 the encryption of the message m is done with the public key of
Bob pkB to obtain the ciphertext c. To decrypt the ciphertext, Bob uses his
private key skB and obtains the message m. The most common scheme used
for asymmetric key cryptography is the Rivest–Shamir–Adleman cryptosystem
(RSA).

Because of the computational demand of RSA it is less commonly used to di-
rectly encrypt user data. Instead, RSA is used to encrypt shared keys used for
symmetric key cryptography which has higher performance speed. Another ap-
proach to asymmetric key cryptography is Elliptic-curve cryptography (ECC).
ECC uses the properties of elliptic curves over finite fields mostly for key ex-
change and digital signatures. The main benefit of ECC is that a smaller key
size on an elliptic curve group could provide the same security level as RSA with
large keys.

Asymmetric key cryptography is a good option when parties communicate
through an untrusted network and do not have previously agreed symmetric
keys. The downside of asymmetric key cryptography is that it is costly com-
pared to symmetric key cryptography.

2.1.3 Key Encapsulation and Key Derivation functions

In this subsubsection methods are introduced on how encryption and decryption
keys can be distributed between parties. A key encapsulation method (hybrid
cipher) is introduced that uses both asymmetric key and symmetric key cryp-
tography, the logic behind key exchange protocols is introduced, and finally key
derivation functions are explained.

7

In the hybrid solution asymmetric key cryptography is used for a Key Encapsu-
lation Mechanism (KEM) and symmetric key cryptography for a Data Encap-
sulation Mechanism (DEM). If Alice would like to communicate with Bob, she
encapsulates a symmetric key k with Bob’s public key and sends the ciphertext
to Bob. Using his private key, Bob can successfully decrypt the message and
obtain the symmetric key that will be used for encrypting the messages.

KeyGen(K)→ (pkB , skB),

EncappkB
→ (c, k),

DecapskB
(c)→ k.

(3)

The construction of an encapsulation method can be seen formally in Equation
3 and is as follows

1. Bob generates a public, private key pair from the domain K using a key
generation function,

2. If Alice wants to communicate with Bob, she generates a symmetric key k
and encapsulates it with the public key of Bob (pkB) to obtain a ciphertext
c,

3. Alice sends the ciphertext c to Bob, who can decapsulate it using his
private key (skB),

4. Now Bob and Alice share a symmetric key k, that they can use for sym-
metric encryption and decryption as in Equation 1.

Another way to create and use symmetric keys is by using key exchange proto-
cols. These key exchange protocols - or KEXs - generate a shared secret between
two parties that wish to communicate. Using the shared secret, the parties can
use a Key Derivation Function to obtain a symmetric key that can be used
for encryption and decryption. The construction of such a secret between two
parties - Alice and Bob - is the following

1. Alice, using her private key (skA) and Bob’s public key (pkB) calculates
the shared secret SA,

SA = f (skA, pkB).

2. Bob does the same, using his private key (skB) and Alice’s public key
(pkA) to calculate the secret SB

SB = f (skB , pkA).

8

The function f is chosen at the start of the key exchange scheme and known
to both parties. After following the protocol, the secrets match (SA = SB) and
can be used as the symmetric key for encryption and decryption.

Currently, the most widely used key exchange protocols are the Diffie-Hellman
(DH) and the Elliptic Curve Diffie-Hellman (ECDH). In the past TOR also used
the Diffie-Hellman key exchange protocol, but due to performance considera-
tions it was replaced by Curve25519 - a type of Elliptic Curve cryptography.

Key Derivation Functions

Parties having the shared secrets may want to use the secret directly as a sym-
metric key. This can be problematic as symmetric key schemes assume a uniform
key distribution. The problem arises if the function to calculate the shared se-
cret is deterministic. In this case the scheme is not secure, and adversaries can
always guess the symmetric key by having the encapsulation. Another possible
issue with using the shared secret as the symmetric key relates to the size of the
secret. It can be either too long or too short for it to become the symmetric
key. As the current standard for symmetric cryptography AES uses key sizes of
128, 192 or 256 bits, the symmetric keys need to meet these criteria.

To overcome the issue for having the correct key format a Key Derivation Func-
tion (KDF) can be used. A KDF can be regarded as a Pseudo-Random Func-
tion, but for this specific use the input and output of the function is of arbitrary
length. Cryptographic hash functions are the most common KDF functions as
they are considered being one-way and meet certain properties:

1. Preimage Resistance: Given a cryptographic hash function H and an out-
put y it should be infeasible to find x such that H(x) = y,

2. Second Preimage Resistance: Given x, it should be hard to find x′ 6= x
such that H(x′) = H(x),

3. Collision Resistance: Finding two distinct values x and x′ (x 6= x′) such
that H(x) = H(x′) should be infeasible.

Hash functions are widely used in cryptography as they are efficient to compute
when generated, but hard when attempted to be reversed. A common use of
hash functions is to ensure data integrity, that is explained in subsection 2.1.4.

2.1.4 Signature schemes

At this point we understand how two parties can achieve data confidentiality by
using asymmetric key or symmetric key cryptography. But this is not enough if
an adversary manages to intercept the communication and manages to modify
the messages sent through the channel. The communicating parties would have
no knowledge that in reality they are receiving messages from an eavesdropper.

9

The aim now is to achieve message integrity, which is the second pillar of the
CIA triad.

We discuss two ways to achieve this:

• Message Authentication Codes (MACs), and

• Digital Signatures

In order to use a MAC, the two communicating parties need to share a secret
key. Using this key, they can ensure that the data has not been tampered with
by producing a tag with a MAC algorithm;

MACk(m) = tag.

where MAC is the function that produces the tag, k is the shared secret key,
and m is the message they wish to keep intact.

Next to the MAC function it is essential that the receiver can verify if the
message sent is still intact. A Verify function takes a tag and a message as an
input and using the secret key, it outputs valid/invalid based on the tag and
message matching;

Verifyk(tag,m) = valid/invalid.

Since MACs require a shared secret key with each party, it is not the best option
for checking data integrity as having a shared secret key prior to the message
exchange is not always possible. Rather asymmetric key cryptographic methods
are used called Digital Signatures, as these rely on public-private key pairs.

If Alice wants to send a message to Bob, she can sign it with her private key
to obtain the signature. Then she sends her message and her signature to Bob.
Now Bob can use Alice’s public key, the message he received from Alice and the
signature that Alice provided to validate if it was really Alice who signed the
message.
Similar to MACs, digital signature schemes also work with two algorithms:

• An algorithm to sign the message with the sender’s private key (sk)

• An algorithm to verify the message with the sender’s public key (pk)

Upon sending the message, Alice computes

SignskA
(m) = sig,

and sends (m, sig) to Bob. When receiving this from Alice, Bob can verify the
message integrity using Alice’s public key by computing

VerifypkA
(m, sig) = valid/invalid.

10

2.2 Security

In this subsection topics related to security are introduced, specifically, defini-
tions of security, n-bit security and attacker models. The security definitions
define the security model and the assumed capabilities of an adversary. The n-
bits of security explain how the security of cryptographic schemes is measured,
while attacker models depend on the goals and capabilities of attackers.

2.2.1 Defining security

In [19, 35] security is defined by defining the security of encryption schemes.
According to [35], an encryption scheme is information-theoretic secure if an
adversary with infinite computing power cannot break the scheme, this is the
definition of perfect security. It can be called a one-way function, where the ad-
versary is given a publicly available function and is asked to invert the function
on an element of the challenger’s choosing - hash functions are a good choice
for this as they are considered information-theoretic secure. On the other hand,
an encryption scheme is considered computationally secure if a polynomially
bounded adversary cannot break the scheme, this is also called semantic secu-
rity. On top of perfect security and semantic security, there is another security
definition for polynomial security called IND security, where IND stands for in-
distinguishability. To prove that a scheme has IND security, we have to show
that no adversary can win the following “find and guess” game with greater
probability than 1

2 ;

1. Find: an adversary creates two messages of equal length denoted by m0

and m1.

2. Guess: the adversary is given an encryption of one of the messages denoted
by c. The adversary has to correctly guess with a probability greater than
half, if the encrypted message was m0 or m1.

If an encryption scheme achieves IND security, it is also considered semantically
secure.

When attacking these schemes an adversary requires some attacker capabili-
ties. For this reason, in the minimum security game the adversary has access
to an encryption oracle. This encryption oracle serves as a ‘black box’ that the
adversary can use to perform encryption on plaintexts of her choosing. This
attack is called a chosen plaintext attack (CPA). Another type of chosen plain-
text attack available is the adaptive chosen plaintext attack (CPA2). In this
setting the adversary can decide from the list of inputs what to encrypt based
on previous plaintexts and their corresponding ciphertexts [4].

In a more complex setting the adversary has access to a decryption oracle as
well. Using this decryption oracle, she can decrypt ciphertexts of her own choos-
ing, but to make the security game non-trivial, the adversary cannot request to
decrypt the challenger’s ciphertext by the oracle. This attack is called a chosen

11

ciphertext attack (CCA).

CCA attacks have a weaker definition for an attack compared to the original,
called lunchtime attacks (CCA1). In this setting, the adversary has only limited
access to the decryption oracle (during lunchtime). At a later time, the adver-
sary is given a ciphertext and she has to decrypt it or try to learn about the
plaintext without using the decryption oracle.

In the event that a cryptographic scheme is compromised, we would like to
be sure that this does not have any effect on the secure communications we had
in the past. This security notion is called forward secrecy and is defined by [35]
as “A system is said to have forward secrecy if compromising of a long-term key
at some point, in the future does not compromise the security of communications
made using that key in the past.”

By adding forward secrecy to the security requirements of a cryptographic
scheme we can ensure that only the sessions that are using the current keys
are compromised. When learning about the compromise, changing the keys
mean that the adversary has to compromise the system again. Furthermore,
our past connections also remain secure, as the compromised keys do not help
adversaries to learn about past communications and data.

2.2.2 n-bit security

The most common way to measure the strength of a cryptographic primitive is
in the number of bits of security. It is denoted by n-bit security, where n stands
for 2n operations that an attacker needs to perform to break the security of a
cryptographic primitive.

As mentioned in Section 2.1, the most commonly used cryptographic schemes
are AES for symmetric key cryptography, and RSA, ECC and DH for asymmetric
key cryptography. AES uses the same key for both encryption and decryption.
This key can be size 128, 192, or 256 bits.

For asymmetric cryptography the case is different, as it relies on hard mathe-
matical problems (e.g. ECC and DH rely on the discrete logarithm problem, and
RSA relies on the integer factorization problem). RSA works with the integer fac-
torization problem, using two large prime numbers that are kept secret a public
and private key is generated. Anyone can use the public key to encrypt, and if
it is large enough it is assumed to be infeasible for a computationally bounded
adversary to decrypt the message without having some knowledge about the
two prime numbers. Table 1 provides an overview of the security bits of the
above-mentioned schemes.

12

Cryptography Algorithm Key size (bits) # bits of security

symmetric
AES 128 128
AES 192 192
AES 256 256

asymmetric

RSA 1 024 80
RSA 2 048 112
RSA 3 072 128
RSA 7 680 192
RSA 15 360 256
ECC 256 128
ECC 384 192
ECC 511 256

Table 1: Symmetric (AES) and asymmetric (RSA, ECC) cryptographic schemes
with key sizes and security bits.

2.2.3 Attacker models

When discussing attacker models, we distinguish between two types of attack-
ers: active and passive. When it comes to active attacks an adversary is allowed
to interfere with the communication between the communicating parties - Alice
and Bob; a passive attacker cannot.

Imagine a third party - Eve - who is eavesdropping in the communication and
sends modified messages. Eve can join the communication as a relay between
Alice and Bob. Eve may establish keys with both Alice and Bob, so when Alice
communicates with Bob, in reality Alice is communicating with Eve who is in-
tercepting messages that she can read and modify. This kind of attack is called
a ‘man-in-the-middle’-attack. Eve is also capable of blocking traffic between
participants, this kind of attack is called Denial of Service (DoS) attack.

In a passive attack the attacker is not allowed to interfere with the commu-
nication, she is only allowed to listen to the communication channel. This
limits attack surfaces, but storing the communication captured is a possibility.
Once it is stored, the adversary can decrypt the data in the future when the
needed computational power will be affordable. This is a worry as we are getting
closer to quantum computing. A quantum adversary may be able to decrypt
the stored data. This is called the ‘store now, decrypt later’ paradigm.

As a result, more pressure is put on cryptographers to introduce quantum-safe
implementations, that will keep data secure against quantum adversaries.

13

2.3 Post-quantum cryptography

Post-quantum cryptography or quantum-safe cryptography - as suggested by
its name - focuses on the cryptography after quantum computers are available.
The goal is to have cryptography that is capable to withstand adversaries with
quantum computing power even on classical computers. The most widely used
asymmetric key cryptographic schemes (RSA, ECC) are going to become inse-
cure against quantum adversaries. Symmetric cryptographic schemes also need
to be considered for change. If transition to quantum-safe solutions is not done,
current cryptographic schemes become vulnerable to quantum adversaries. This
is why quantum-safe schemes are being designed, implemented and tested, so
currently used cryptographic schemes can withstand a quantum adversary’s at-
tack. These quantum-safe schemes are based on mathematical problems that
are hard to compute even for quantum computers.

In 1994 Peter Shor formulated a quantum algorithm [34] (that can run on a
quantum computer) for solving the integer factorization problem. On a quan-
tum computer this algorithm runs in polynomial time, which is an exponential
speed up compared to classical computers, that can solve factorization problems
in exponential time. This is a concern for asymmetric cryptography as it based
on the integer factorization problem. With a quantum computer running Shor’s
quantum algorithm breaking the encryption becomes feasible.

Another notable advancement in quantum computing was done by Lov Grover,
who proposed an algorithm that can be considered as a black-box search algo-
rithm [13]. It can find a specific value in an unordered database. Unlike Shor’s
algorithm the speed up is “only” quadratic, but this means that brute-forcing
symmetric key encryptions can be done faster. Brute-forcing a 128-bit AES

encryption would take about 264 iterations with Grover’s algorithm instead of
2128. In the extended Table 2 an overview of security bits of currently used
schemes can be found against classical and quantum adversaries.

Based on Table 2, it is clear that asymmetric key cryptography will be heavily
affected in the quantum world, but keep in mind that symmetric key crypto-
graphic schemes also need to be adjusted. Symmetric key cryptography can
remain secure but requires using larger key sizes to achieve the current security
guarantees.

The five most common types of post-quantum cryptographic schemes are

• Code-based,

• Lattice-based,

• Isogeny-based,

• Hash-based,

14

• Multivariate.

Cryptography Algorithm Key size
bits of security

classical quantum

symmetric
AES 128 128 64
AES 192 192 96
AES 256 256 128

asymmetric

RSA 1024 80 -
RSA 2048 112 -
RSA 3072 128 -
RSA 7680 192 -
RSA 15360 256 -

ECC 256 128 -
ECC 384 192 -
ECC 511 256 -

Table 2: Symmetric and asymmetric cryptographic scheme security in a quan-
tum world. Schemes marked with ‘-’ are broken in polynomial time using a
quantum computer.

2.3.1 NIST submissions

As already mentioned in Section 1, the National Institute for Standards and
Technology (NIST) has called to arms experts working in cryptography to ad-
dress the challenge to find candidates for quantum-safe cryptography [28]. Cur-
rently, the second round of submissions is being evaluated to find suitable
schemes from the 17 candidates to replace asymmetric cryptography - RSA,
Diffie-Hellman, Elliptic-Curve Cryptography [8].

The security level of the quantum-safe schemes can be measured in bits - just
as with the case of classical computing. The NIST defined a metric that cat-
egorizes quantum-safe submissions into different categories depending on how
secure they are. The submissions for the second round focus on three levels of
security:

• Level 1 security is achieved when a scheme is considered 128-bit secure
against a quantum adversary,

• Level 3 security is achieved when a scheme is considered 192-bit secure
against a quantum adversary,

• Level 5 security is achieved when a scheme is considered 256-bit secure
against a quantum adversary.

15

All three levels of security are assumed to be secure, but they cannot be fully
tested in practice. Instead, because quantum computing capabilities are not
known yet, cryptoanalysis is done on these schemes.

Achieving level 3 and level 5 security is a challenging task. The size of public
keys, private keys, and ciphertexts usually get larger with increasing the security
level. The increasing size of keys result in heavier calculations required for key
generation, encapsulation, and decapsulation (an example for such a scheme is
Frodo [1]). In [33] the technique used is the NTRUEncrypt scheme to achieve
128-bit (level 1) security for the TLS connection against a quantum adversary.
In this thesis we aim to reach level 1 security against quantum adversaries. If
this statement holds, then we can confirm that TOR is quantum-safe and can
be used in the quantum world.

2.3.2 Transitioning to Post-quantum cryptography

The transition to quantum-safe cryptographic schemes is expected to be a
lengthy process. This is due to the fact that cryptographic schemes are never
fully tested, rather over time they become trusted. When schemes become well-
researched and remain safe against attacks over time they are considered secure.
If change from current cryptography to quantum-safe cryptography would be
done quickly, without sufficient research and testing, there would be no scheme
to fall back to when flaws were discovered in quantum-safe schemes. Instead,
hybrid schemes are used - this is different from the KEM/DEM hybrid discussed
in Section 2. In a hybrid scheme, currently used secure cryptographic schemes
are combined with quantum-safe schemes to form a hybrid. This guarantees se-
curity against classical adversaries in case the quantum-safe part of the scheme
is broken.

Hybrid schemes do not come without drawbacks. These drawbacks include
increased bandwidth, the difficulty of code and key management, and multiple
systems could all be using different hybrid schemes. Making these systems work
together is challenging task. The adoption to hybrid schemes must be done in
a cautious manner, not by crippling network traffic or create a chaos in key
management.

16

3 TOR network

The Onion Router or TOR for short is an anonymity network operated by vol-
unteers all around the globe. The roots of TOR go back to the 90s, when
the concept of onion routing was introduced by United States Naval Labora-
tories [38]. The goal was to protect foreign U.S. intelligence communications
from being intercepted and linked to source and destination. Later it was fur-
ther developed by the Defense Advanced Research Projects Agency (DARPA).
In 2004, Roger Dingledine, Nick Mathewson and Paul Syverson have published
the first paper on the TOR network titled Tor: The Second-Generation Onion
Router [11]. The network they propose claims to grant anonymity for the users
between their client and the content they are accessing on the internet. They
achieve this anonymity by using a set of intermediate nodes between the source
(user) and the destination (website).

So, if Alice wants to send Bob a message, but does not want an eavesdrop-
per to know that she initiated the contact, Alice can use TOR. Consider the
following scenario, where Charles, David and Greg provide a TOR-like service.
Alice sends a request to Charles to send a message to Bob. Charles does not
know how to contact Bob, so he asks David to contact Bob and send him the
message. David also does not know how to contact to Bob, so he sends the
message to Greg, who knows Bob. Finally, Greg contacts Bob and delivers him
the message. This is a simple example about the concept of TOR, but from this
example it is clear that an eavesdropper does not know that Alice sent the mes-
sage to Bob - the eavesdropper thinks it was Greg. Only multiple eavesdroppers
working together could learn that it was Alice who sent the original message.

This is different to the traditional internet model, as there the traffic goes
through a public network, and source can be linked with the destination. One
solution that can be used to hide identity is a proxy service, although using
a proxy does not resolve the issue completely. A proxy is a single point that
is used for both entry and exit. When it comes to routing and an adversary
controls the proxy service, the destination a user wishes to contact can directly
be seen. Monitoring in- and outgoing traffic is also easy to do and linking
source and destination is straightforward. Figure 1 shows a standard connec-
tion on the internet, in comparison Figure 2 shows a default connection in TOR.

The following sections give an overview of the TOR network. More specifi-
cally in Section 3.1 the technical side of TOR is introduced, Section 3.2 explains
the building blocks and keys in more detail. Finally, in Section 3.3 the issues
and attack surfaces are discussed.

17

Figure 1: A standard connection on the internet.

Figure 2: A default TOR connection.

3.1 Introduction to TOR

In TOR, when a message is sent through the network it is passed through a
number of nodes before finally reaching its destination. This form of trans-
porting a message makes it hard for adversaries to link source and destination
together. The default number of nodes TOR uses for message transmission is
three. Currently there are around 7 000 nodes in TOR and the way the network
is governed is introduced in the next section.

3.1.1 Nodes in TOR

In order to keep a controlled state of the vast network of TOR, there are so
called Directory Authorities (DA). These are hosted by trusted individuals who
have worked on and are close to TOR. There are a total of nine DAs and they

18

are spread around the world - four of them are in The United States, and five in
Europe. The DAs know about all of the available nodes in the network and their
main function is to store, check, and verify the state of the network. The nodes
controlled by the DAs are called directory nodes. A list of current TOR nodes is
publicly available online [9]. Each node has to publish a descriptor to the DAs,
containing information about the node like IP address, bandwidth, country of
origin, public key, etc. The nodes need to sign this document and send it to
the DAs proving that it is their own information. When the DAs received this
document, they have a vote on the state of the network. This is the reason
why there is an odd number of DAs, there cannot be a tie. Once they agree on
one state a document called consensus is published and all of the DAs have this
same document.

Figure 3: An overview of TOR containing the nine DAs, the Bridge Authority,
and the TOR relays.

As mentioned earlier in Section 3.1 the default number of nodes TOR uses is
three. These nodes have specific names: entry node, middle node, and exit
node. When a user wants to connect to the TOR network, she must use one
of the entry nodes to do so. As there is access to the network, the entry node
forwards the message to the middle node. Finally, the middle node forwards the
message to the exit node, where the message leaves the network and is directed
to the destination. The nodes are chosen by the TOR software based on the
consensus document. This design consideration is to prevent adversaries to be
able to directly link source and destination. The entry node knows about the
source of the message, but only knows the middle node and it is not the des-
tination. The middle knows the entry and exit nodes, but neither of them are
the source or the destination. As for the exit node, it knows the destination of
the message, but does not know the source. Knowing the entry and exit nodes
enable adversaries to deanonymize users, but the middle node makes the task
more complex as entry and exit nodes do not know directly about each other.

19

TOR offers more than ‘just’ anonymous browsing of the internet, there are
so called hidden services available in TOR. These are services that one of the
nodes in TOR is hosting e.g. chat service, web-store, etc. A hidden service can
only be accessed if the specific URL-like address of the service is known (onion
address). In the case of hidden services, the default length of a circuit is five,
as both users ‘meet’ at the third hop as shown in 4.

Figure 4: An overview of two users connecting and using a hidden service.

In some parts of the world anonymity may be considered as a problem and
organizations or governments are trying to prevent internet users from achiev-
ing it. Due to the publicly available list of nodes, these oppressive regimes can
block the IP addresses of the entry nodes thus, the user does not have a way
to access TOR. In TOR there is a solution for this. Next to the nine Directory
Authorities, there is one Bridge Authority that has a list of entry nodes that
are not publicly available online. This makes it possible for people in oppres-
sive regimes to access TOR as these entry nodes are not publicly known and
cannot be blocked. The TOR software has a setting that enables the use of the
Bridge Authority. In the unlikely event that the client cannot connect to the
Bridge Authority due to a successful attack or a connection issue, the user can
still connect to a bridge node. A list of bridge nodes is hard coded into the
TOR client so users from more regulated and strict locations can still access the
network. The node controlled by the Bridge Authority is called the bridge node.

A short summary of the nodes and functionalities of TOR:

• The directory nodes are controlled by Directory Authorities. Directory
nodes know the state of the network and vote on a network state. The
agreed state contains the list of available nodes and is sent to the TOR

client.

20

• The entry node knows the source of the message and the first ‘hop’ on the
TOR network but does not know the destination of the message.

• The middle node knows the entry node and the exit node but knows
neither the source nor the destination of the message.

• The exit node knows the middle node and the destination but does not
know about the source of the message.

• Hidden services are provided by users of TOR, they can be any service
provided on the internet (e.g. chat, streaming media). They have a unique
URL-like address called onion address and can only be accessed using
them.

• The bridge node is controlled by the Bridge Authority. Bridge nodes serve
as entry nodes to the TOR network and are not publicly available to avoid
them being blocked.

3.1.2 Circuit creation

So far, we understand that the Directory Authorities have a view of the network,
the next step is the creation of a secure circuit. The TOR client connects to
one of the DAs to fetch the latest state of the network. From the consensus
document the client constructs a path in a backwards fashion:

1. First the exit node is chosen, in order to have a way out of the network.

2. The middle node is chosen in the second step, this step can be repeated
multiple times if more than three nodes are going to be used.

3. Finally, the entry node is selected by the client.

When a circuit is created in TOR, the network sends two kinds of messages to
the nodes: CREATE and EXTEND. The CREATE message adds the node to the cir-
cuit and creates a shared symmetric key between the node and the client using
RSA. If the addition of the node to the path is successful a CREATED message is
sent to the client.

If the circuit is being extended the EXTEND message is sent through the nodes.
Diffie-Hellman and Elliptic Curve cryptography can be used to handle the cir-
cuit extension request. When the EXTEND message reaches the recipient node,
the node will append an extra node to the circuit using the CREATE message.
Once the extension of the circuit is successful, the EXTENDED message is sent
back to the client to confirm the successful operation. In the original Tor Au-
thentication Protocol (TAP) Diffie-Hellman was used. In the current version of
TOR, TAP is replaced by ntor that uses Elliptic Curve cryptography.

21

Figure 5: An overview of the messages used for circuit creation.

After this procedure the client knows the nodes it will use for the connection,
so it creates a secure channel between the nodes and the client. Using asym-
metric cryptography, the TOR client performs key exchange with the nodes to
obtain a different symmetric key with each node. The client knows the symmet-
ric key for each node on the circuit and encrypts the message with these keys
in a layered way - hence the name onion routing. The destination and message
are encrypted first using the symmetric key of the exit node, followed by the
middle node and entry node:

EncOR1
(EncOR2

(EncOR3
(m, dest))) (4)

In Equation 4 Enc denotes one layer of encryption. The symmetric keys of
Onion Routers 1, 2, and 3 are denoted by OR1, OR2, and OR3. The message
sent is denoted by m and the destination of the message is denoted by dest.

Sending the message through the network encrypted in this layered way means
that each node is able to decrypt its corresponding layer and can forward the
remaining encrypted message to the consecutive node. In the end, the exit node
will know the destination of the message. Note, that there is no secure channel
established between the exit node and the destination of the message.

22

Figure 6: An overview of TOR with the symmetric keys.

3.2 Building blocks and keys

In this section the cryptographic building blocks behind TOR and keys used in
TOR are explained. Both symmetric and asymmetric cryptography is used in
TOR. Asymmetric cryptography is used for circuit creation, while symmetric
cryptography is used for encrypting the message that has been sent through the
network. The documentation for the latest cryptographic versions used in TOR

is available online [10].

3.2.1 Cryptographic building blocks

The asymmetric cryptography used is:

• RSA with 1024-bit keys, with a fixed exponent 65537 and OAEP-MGF1
padding,

• Elliptic Curve cryptography is currently used in the form of Curve25519

and Ed25519.

The symmetric cryptography used is:

• AES-128 , in counter mode with an initialization vector of 0s

Symmetric cryptography is used between the client and the TOR nodes to add
and decrypt layers of encryption when a message is sent through the network.
The security of currently used cryptographic schemes in TOR is listed in Table
3.

23

Algorithm Key size # bits of security
RSA 1 024 80
ECC 256 128
AES 128 128

Table 3: Cryptographic schemes used in TOR with key sizes and security bits.

3.2.2 Keys in TOR

Each node has to maintain a set of keys. These are called long-term, medium-
term, and short-term keys. RSA and Ed25519 are used for all three type of
keys, but Curve25519 is only used for medium-term keys. Table 5 contains an
overview of the keys used in TOR with their functionalities.

The lifetime of these keys is not too strict, but there is a boundary for each
category. Table 4 indicates the lifetime of the keys used by nodes.

Key Lifetime
short-term minutes - 1 day

medium-term 3 - 12 months
long-term 12+ months

Table 4: Keys and their lifetime used by TOR.

Nodes are uniquely identified using their identity key (RSA) and their master
identity key (Ed25519). These two keys together form a unique authentication
key pair. After a node has used this unique key pair to authenticate itself, none
of the keys may be different in the future.

As of its first release in 2004, TOR has grown substantially. Nowadays there are
about two million directly connecting users to the network and another sixty
thousand are connecting through bridge nodes. TOR consists of roughly 7 000
nodes, of which there are about 3 000 entry nodes and 1 000 exit nodes [26]. One
challenge is to keep the network functioning with the number of available nodes.
When everything works as intended this is not an issue, but when a node starts
to behave suspiciously, the network will isolate the node and not use it in the
future. If there are too many misbehaving nodes the result could be a denial of
service for the whole network.

24

Type Key lifetime Key name Function

RSA

long-term identity key Establish relay identity, sign documents and certifi-
cates. Since the introduction of Ed25519, RSA is
only used to establish relay identity.

medium-term onion key Decrypt cells at circuit creation. Used in ntor and
TAP for handshakes.

short-term connection key Establish TLS channels between nodes.
Curve25519 medium-term - Handle handshakes in the ntor protocol.

Ed25519

long-term master identity key Sign medium-term Ed25519 key. This key never
changes.

medium-term signing key Replaces RSA identity key to sign documents and
certificates.

short-term link authentication key Authenticate handshakes after a TOR circuit negoti-
ation.

Table 5: Function of RSA, Curve25519 and Ed25519 keys in TOR.

A second challenge that TOR faces also relates to usability: circuit build
times [25]. In a standard connection there are three hops in the created circuit.
The first hop takes the most time - more than 1.5 seconds in the worst case. The
consecutive second and third hop take up to half a second or more. In the end
circuit build times can take over 2.5 seconds. Introducing quantum-safe schemes
is expected to have a higher load on computation - key generation, encryption
and decryption - and on network communication.

The challenge is to keep user experience at an acceptable level but guarantee se-
curity against quantum adversaries. Furthermore, current nodes should be able
to deal with computational and communicational tasks related to quantum-safe
schemes.

3.3 Issues and attack surfaces

An adversary can have multiple goals e.g., decrypt messages, disable the net-
work, expose flaws in programs used, etc. In the case of TOR, the main goal
of an attack is to deanonymize users. In Section 2 two attack types were men-
tioned: active and passive. These hold for TOR as well. In [11] the authors
mention that TOR is vulnerable against a global passive adversary who can
monitor traffic at the entry and exit nodes of the network. A passive adversary
may observe traffic patterns, and timing correlations. These techniques allow
him to learn which website a user is visiting by linking source to destination.
Such an attack is very costly for any adversary to carry out, as the adversary
would need to monitor a great part of the entry and exit nodes of the network.

An active attack is more interesting as the attacker tries to compromise the
TOR network. The scope of active attacks includes compromising of keys, run-
ning a malicious node, and attacks on the directory nodes. A publication in

25

early 2019 by Enrico Cambiaso et al. gives a clear overview on past and current
attacks on TOR [6]. Cambiaso et al. distinguish between three kinds of attacks
on anonymity:

• Attacks on the client,

• Attacks on the servers,

• Attacks on the network.

Client attacks focus on software related vulnerabilities of the TOR client or
third-party applications. They also assume that the attacker has control over
some entry and exit nodes and manages to force the user to use these nodes.

Server attacks focus on compromising TOR hidden services. The attacker tries
to manipulate/modify the packets/TOR cells sent through the network. In gen-
eral, the goal is to lead the user to a malicious node controlled by the adversary.
If this is successful, the user loses anonymity.

The network attacks have multiple goals. One of the aims is to compromise
bridge nodes as these nodes are not available in the public TOR node listing. If
this is successful, the adversary learns the IP addresses of the bridge nodes and
can block them. If the entry nodes and bridge nodes are blocked, users can no
longer connect to TOR and cannot use the internet anonymously any longer. In
general, the attacks on the network aim to deny access to the TOR network.

One common thing about these attacks on TOR is that none of the above at-
tacks focus on the cryptographic weaknesses of TOR. Instead, the focus is on
other vulnerabilities such as software and the abuse of trusting nodes in TOR.

In the next section we introduce scenarios where the cryptography in TOR can
be abused by quantum adversaries. Furthermore, recommendations are made
about how to make TOR quantum-safe.

26

4 Post-quantum TOR

In Section 1.3, two papers are mentioned that discuss a Post-quantum TOR

network [33, 12], and Section 3.3 explained the possible attacks on TOR. In
this section [33, 12] papers are further elaborated, and possible attack surfaces
of a quantum adversary are discussed. Finally, we answer the first and second
questions of our research.

4.1 Challenges

With quantum computing emerging, the cryptography of TOR needs to be ad-
justed. The quantum vulnerability of asymmetric and symmetric key cryptog-
raphy will open a new attack surface for adversaries. Introducing quantum-safe
cryptography to TOR is the task that needs to be done in order to keep cryp-
tographic vulnerabilities off the list of attack surfaces. This is why it is pivotal
to introduce quantum-safe cryptography to the keys of the nodes.

Scheme Key Attacker capability

RSA

Identity key (long-term) Impersonate a node, send
spoofed descriptors that are
signed by the compromised
identity key.

Onion key (medium-term) Read the content of TOR cells
until the next key rotation.

Connection key (short-term) See encrypted traffic between
nodes.

Curve25519 medium-term Read the content of TOR cells
when a circuit is created.

Ed25519
Master identity key (long-term) Create a new signing key.
Signing key (medium-term) Can sign modified documents

and publish them to the direc-
tory servers.

Link authentication key (short-term) Can authenticate connections
that should be not allowed.

Table 6: Attacker capabilities with compromised asymmetric schemes.

Table 6 explains the attacker capabilities in case the RSA, Curve25519 or
Ed25519 schemes become compromised and the attacker learns about the keys
of the nodes. Symmetric schemes also need modification, although they are not
directly related to quantum-safe schemes. Increasing the key sizes of the AES

symmetric cryptographic schemes are the solutions for this. An AES256-bit
scheme is claimed to achieve 128-bit security against quantum adversaries.

27

4.2 Attack scenarios

As most current attacks on TOR are based on other vulnerabilities than cryp-
tography, in this section we consider attack scenarios on the keys of the nodes
that a quantum adversary possesses. Furthermore, the addition of quantum-safe
cryptography is also be considered in this section.

As discussed in Section 3, there are four types of keys in TOR and all of these
can be compromised by an attacker:

• symmetric key,

• short-term key,

• medium-term key,

• long-term key.

Compromising the symmetric keys enables the adversary to decrypt layers of
encryption and learn the destination of the message. In the case that the at-
tacker only knows the symmetric keys and nothing else, the encrypted message
must be intercepted before entering the network. Otherwise, the TLS connec-
tion will add an extra layer of security. If an adversary does not know all the
symmetric keys, she cannot fully decrypt the message and thus, the circuit is
not fully known, so source and destination remain anonymous.

Compromising the short-term key at an entry node would make the adversary
capable to follow the full length of the circuit from sender to recipient. This
would lead to deanonymization of the user. This attack is possible during the
lifetime of the TLS connection.

In case the adversary knows the short-term key and the medium-term key of a
node, the attacker can impersonate this node. This is doable as the medium-
term key enables the attacker to decrypt CREATE messages and establish new
circuits. Such a node can decrypt one layer of symmetric encryption when the
messages are passed through it. Thus, the previous and next ‘hop’ in the cir-
cuit is known for the attacker. The attack is possible until the rotation of the
medium-term keys.

The long-term key may also be compromised by the adversary. This would
enable the adversary to impersonate the node and send forged descriptors to
the directory nodes. Moreover, the attacker can see previous and consecutive
‘hops’ in the circuit with the encrypted cells.

Current successful attacks on TOR are carried out with colluding adversaries. If
adversaries control the entry and exit nodes in the network, they can share in-
formation with each other and as a result deanonymize communicating parties.

28

Colluding adversaries at the entry and at the exit node who have the medium-
term keys will both know the middle relay in a circuit. Sharing this knowledge
enables them to attempt to deanonymize users, as the users using the common
middle node has the biggest possibility to be communicating with each other.

The colluding attack can also be done when the adversaries at the entry and
exit nodes have compromised the long-term keys. Such an adversary is able
to alter the packets sent through the network. The adversary at the exit node
can inspect the packet received and if the altered packet is received, they can
deanonymize users successfully. Table 7 gives a short summary of the attacker
capabilities when compromising the short/medium/long-term keys.

In the attacks described, the adversary needs to compromise keys generated
by asymmetric schemes. These are currently considered a hard problem, but
for a quantum adversary it becomes more feasible to compromise them. As
described in Section 3.3 current attacks on TOR do not target the cryptogra-
phy, but rather focus on vulnerabilities in TOR related software, hidden services,
bridge node discovery, disabling the network, and on generic attacks like timing.

Common technique of adversaries is to introduce new nodes to the TOR net-
work, but this is a lengthy process due to the policy of the network. New
nodes are even more closely monitored than nodes already in the network for
malicious patterns and if such is recognized, they are excluded from the network.

A quantum adversary can compromise the short/medium/long-term keys of
certain nodes and gain control over it. This poses two issues:

• Deanonymizing users can be done easier if access to nodes is gained,

• Causing a Denial of Service attack becomes a concern if many nodes are
taken offline because of TOR policy.

Table 8 shows the security gains for the attacks previously introduced after the
addition of quantum-safe cryptography. Introducing quantum-safe cryptogra-
phy is not going to solve current vulnerabilities of TOR. Rather, it prevents that
cryptography is added to the list of vulnerabilities and attack surfaces.

29

Attack surface Attacker capability Impact of successful
attack

Compromise symmetric keys Decrypt the message entering the network. Message content learned,
and anonymity lost.

Compromise short-term key at entry
node (connection key)

Follow the circuit during the lifetime of the connection. Anonymity lost.

Compromise short-term and medium-
term keys of middle node (connection
key, onion key)

Impersonate the node until the rotation of the medium-term key. Decrypt CREATE ells, see
encrypted traffic passing
through the node.

Compromise long-term key of a node
(identity key)

Replace the node by sending forged descriptors to directory au-
thorities, see previous and consecutive hops/encrypted cells.

Direct uses to malicious
nodes.

Colluding adversaries with compro-
mised medium-term key at entry and
exit node (onion key)

The middle nodes will be known by both parties, the colluding
parties can match source to destination if the middle node is the
same.

Anonymity lost.

Colluding adversaries with compro-
mised long-term key at entry and exit
node (identity key)

Colluding parties impersonate nodes and can modify packets sent
through the network. Receiving such altered packet, the parties
together deanonymize the user.

Anonymity lost.

Table 7: Attacker capabilities with exploited keys of nodes.

Attack surface Security gain after quantum-safe cryptography
Compromise symmetric keys Larger key size will make it harder or infeasible for the adversary

to decrypt messages.
Compromise short-term key at entry
node (connection key)

TLS becomes quantum-safe, adversary can no longer ”look into”
the traffic between nodes.

Compromise short-term and medium-
term keys of middle node (connection
key, onion key)

Impersonating the node will no longer be possible, as the medium-
term key will be quantum-safe.

Compromise long-term key of a node
(identity key)

Attacker cannot impersonate the node for indefinite time and send
forged descriptors to the directory authorities.

Colluding adversaries with compro-
mised medium-term key at entry and
exit node (onion key)

Cryptographic vulnerability is solved, as the medium-term key
remains secure, adversaries will not know about the middle hop.
Adversaries monitoring entry and exit nodes can still link sender
and destination using timing attacks for example.

Colluding adversaries with compro-
mised long-term key at entry and exit
node (identity key)

Cryptographic vulnerability is solved, as the long-term key re-
mains secure, adversaries can no longer impersonate nodes and
alter packets. Adversaries monitoring entry and exit nodes can
still link sender and destination using timing attacks for example.

Table 8: Security gain with quantum-safe schemes.

Based on Table 8 we can say that with the addition of quantum-safe schemes
to TOR, the vulnerabilities caused by asymmetric key cryptographic schemes
against quantum adversaries can be solved. Moreover, increasing the symmetric
AES key will make ‘store-now-decrypt-later’ attacks infeasible.

30

4.3 Papers on quantum-safe TOR

In Section 1 two papers on quantum-safe TOR were introduced and in this sec-
tion, they are further elaborated. These two papers are Post-Quantum Forward-
Secure Onion Routing (Future Anonymity in Today’s Budget) by S. Ghosh and
A. Kate [12], and Circuit-extension handshakes for Tor achieving forwards se-
crecy in a quantum world by J. M. Schanck, W. Whyte, and Z. Zhang [33].

Published in 2015, in [12] the focus is on keeping forward secrecy and to do
so the short-term keys are the focus. The proposed solution is a custom key
exchange protocol design and it focuses on keeping the short-term keys TOR

uses to negotiate session keys for TLS connections quantum-safe. For long-term
keys, they use current classical cryptography. The protocol is called HybridOR

and is based on lattice problems. In [12] the protocol is reported to be com-
putationally more efficient compared to currently used ntor, but this can be
due to performing less Diffie-Hellman operations. Drawbacks reported in the
paper are related to network communication. Due to the quantum-safe scheme
the amount of data communicated increases. HybridOR is assumed to be secure
under the ring-Learning With Error (r-LWE) assumption. Although, if the r-

LWE assumption becomes insecure against a classical adversary, it will no longer
provide forward secrecy even against classical adversaries.

One year later another paper on quantum-safe TOR was published [33]. The
paper, like [12] also focuses on making the short-term keys quantum-safe. In [33]
the currently used ntor protocol is modified and is called hybrid. Hybrid uses
the combination of long-term keys generated by Diffie-Hellman key exchange,
and short-term keys generated by a quantum-safe scheme NTRUEncrypt. This
implementation is beneficial, as if the quantum-safe part of the key becomes
compromised, the protocol can fall back to the current ntor security guarantees
thus, provide forward secrecy against classical adversaries. The hybrid scheme
is 128-bit IND-CCA secure against quantum adversaries.

The authors of [33] have also made a performance comparison of the differ-
ent TOR protocols. Table 9 contains this comparison. In TOR the standard
packet size is set to 4 096 bits (512 bytes). Table 9 lists the number of bytes the
client needs to send to set up a connection with the server, and the number of
bytes the server sends as a response. Furthermore, the amount of time required
by the client and the server to set up the connection is shown.

31

ntor hybrid HybridOR**
Packets (1 = max 512 bytes) 1 2 3

client → server (bytes) 84 693 1 312
server → client (bytes) 64 673 1 376

client init 84 µs 661 µs 150 µs
server response 263 µs 306 µs 150 µs

client finish 180 µs 218 µs 150 µs
total 527 µs 1185 µs 450 µs

Table 9: A comparison of the currently used ntor protocol, hybrid [33], and
HybridOR [12] protocols. ** [12] assume 100 µs for Diffie-Hellman group opera-
tions and 50 µs for multiplication and addition in r-LWE. The other costs, such
as sampling of the r-LWE secrets are ignored.

Based on Table 9 and [12, 33] we conclude that that adding quantum-safe
schemes to TOR increases the message sizes and the time the client and server
need to communicate. In the case of [12] we can only draw conclusions about the
message sizes and they are even larger than for hybrid. This means even though
the assumed computation costs are more favourable, the increased packet size
has an impact on network load. Furthermore, these works focus on making
short-term keys quantum-safe, that are used when TLS connections are set up
and long/medium-term keys are not considered.

4.4 First recommendations for quantum-safe TOR

At this point, we understand TOR, the vulnerabilities, and have a feeling what
adding quantum-safe cryptography means for TOR. The first and second ques-
tions can be answered of our research.
Recall the first two questions:

• Which are the most pivotal parts in TOR that need to be made quantum-
safe first?

• Where and when should quantum-safe cryptography be added to TOR?

TOR makes use of the public-private keys of the nodes thus, the most pivotal
parts to be updated are the long-term/medium-term/short-term keys of the
nodes and the symmetric keys. Note, in order to make the symmetric keys
secure there is no need to add any quantum-safe scheme. The priority list of
the focused components is:

1. AES symmetric key,

2. long-term/medium-term keys,

3. short-term key.

32

The AES symmetric key does not require a quantum-safe scheme to be updated,
but this has to be changed as soon as possible. Increasing the key size from
the currently used 128-bit keys to 256-bit keys would already solve the prob-
lem. This is a burning issue as adversaries storing current traffic will be able
to decrypt the messages in the future when the needed computational power is
available. Updating the symmetric keys makes ‘store-now-decrypt-later’-attacks
infeasible.

The most important asymmetric part that needs to be secured are the medium-
term and long-term keys. These pose a threat as they do not have frequent
rotations. Thus, the attacker has more time to compromise these keys and if
succeeded, as the keys do not change for a long period of time, the adversary
can impersonate the node until the next key rotation. A compromised node
can redirect traffic to other nodes that have been compromised, this can lead to
deanonymization. A compromised node can also start to behave suspiciously,
and if so it can be excluded from the network. In case of too many nodes being
excluded, TOR could become unstable. Key rotation time is not the sole factor
for the need to update long-term keys. In order to keep the protocol forward
secure, the long-term and medium-term keys need to be updated. This ensures
that a compromised long-term key in the future does not aid the adversary to
learn about past communications with the same key.

Finally, the short-term keys need to be updated. These keys rotate frequently -
every 10 minutes if the connection has no issues - and because of this, the time
for an adversary is limited to compromise the connection. If an adversary man-
ages to compromise the short-term key used for the connection at the entry node,
it can follow the circuit from start to end making it possible to deanonymize
communicating parties. It must be mentioned, that TOR does not create new
circuits for streaming protocol (IRC) to limit the possibilities for an attacker to
link parties. This will also pose as a threat in the quantum world as the circuit
will not be recreated after 10 minutes and an adversary will have more time to
compromise the circuit. Furthermore, TOR currently uses short-term keys for
TLS session negotiations and quantum-safe TLS is being researched [5].

It is clear that short/medium/long-term keys are the areas that need to be
investigated as they are generated using asymmetric key cryptography. More
technically, the nodes need to stop using RSA keys and switch to quantum-safe
schemes for key generation.

AES keys need to be changed as soon as possible. The currently used 128-bit
AES encryption is expected to be vulnerable against quantum adversaries. At-
tackers who are storing current encrypted data will very likely be able to decrypt
it. RSA with 1024-bit keys has yet to be successfully factorized, still NIST ad-
vises to use RSA with 2048-bit keys [3]. A report released by RSALaboratories
claim, that RSA keys of 2048-bits are sufficient until 2030 [18]. Using longer
RSA keys may be the fast fix for the issue, but no matter how long keys are

33

used against a quantum computer, all will be vulnerable to quantum attacks.
Based on [18] after 2030 we do not expect to further enlarge the size of the
RSA keys, and by 2030 quantum-safe keys will be used. Transitioning from
RSA to quantum-safe schemes is not as urgent as updating AES, but starting to
use quantum-safe cryptography for testing and in practice in the upcoming 5-10
years is beneficial. It gives cryptographers and users a glimpse of the advantages
and drawbacks related to quantum-safe schemes and thus, allows more time to
consider other implementations and proposals if needed.

34

5 Experimental results

In this section we describe and discuss the experimental results on quantum-safe
TOR implementations. Specifically, Section 5.1 explains the implementation
used and the challenges faced. Section 5.2 gives an overview of the system
specification used and the steps of the experiment. Section 5.4 contains the
results for the experiments and recommendations on what quantum-safe TOR

should look like. Finally, in Section 5.5 the third and fourth questions for
the research are answered. The final recommendations based on our findings
on quantum-safe TOR are discussed and the main question of the research is
answered.

5.1 Implementation

5.1.1 Onion routing

In order to further understand the impact of quantum-safe cryptography on
TOR we need to perform experimental testing. The original source code for the
TOR project can be downloaded [39] but cannot be altered and experimented
with easily. A TOR-like simulation called SweetOnions, where a small-scale
version of onion routing is emulated using Python 2 was used [20]. The project
is well documented and the instructions on how it works are clear. The cryp-
tographic implementations differ from the ones TOR uses - 2048-bit RSA and
192-bit AES ciphers are used instead of 1024-bit RSA and 128-bit AES that TOR

uses.

To emulate a TOR network with SweetOnions a minimum number of 6 ma-
chines is required:

• one server - the destination to where the messages are sent,

• one directory - the IP addresses and public keys of the nodes are stored
here,

• one client - source of the message,

• three nodes - the IP addresses and public keys are shared with the direc-
tory, when receiving an encrypted message one layer is removed and sent
to the next node.

The SweetOnions implementation can be used to get a feeling on how quantum-
safe schemes will affect the performance of the network. CPU cycles can be
measured for key generation as well as for encryption and decryption. The
packet size that TOR uses is 512 bytes, SweetOnions also emulates this size for
messages, but we need to be careful. The buffer size SweetOnions uses checks
for 4 096 character length, which is not equal to 4 096 bytes. A challenge when
working with the SweetOnions codebase is that the initial code was written for
Python 2, but the Open Quantum Safe [30] libraries use Python 3.

35

5.1.2 Open Quantum Safe library and challenges

The Open Quantum Safe library [30] has multiple implementations of post-
quantum secure schemes. The master branch contains both key encapsulation
and signature schemes. In the scope of this thesis the key encapsulation schemes
are considered.

The original implementation of these schemes is in C, but there is a wrapper
available that can be used for Python [31]. In the Python implementation there
are schemes for NIST security levels 1 to 5, but only the schemes that achieve
level 1 NIST security are tested. The reason behind this decision is if level
1 security is achieved, we consider TOR to be quantum-safe. When changing
to new cryptographic schemes it is important to try to keep the fundamental
parts as unmodified as possible. This is because the currently used protocols
are well-tested, researched and trusted in their current form and changing the
fundamentals can result in some unforeseen challenges. If TOR can be used with
the current packet size, network load and can also be quantum-safe, that would
be extremely beneficial as the core of TOR would not require any change. The
tested schemes to provide level 1 NIST security are

• Frodo-640-AES,

• Frodo-640-SHAKE,

• Kyber512,

• NewHope-512-CCA,

• NTRU-HPS-2048-509,

• Sike-503.

As mentioned in 5.1 the original codebase for SweetOnions is Python 2, but in
order to use the Open Quantum Safe library Python 3 is required. The main
challenges to solve when converting to Python 3 from Python 2 are:

• Formatting,

• Networking,

• Encryption and decryption.

There is a Python package called future that makes the necessary conversions
between Python 2 and Python 3 [32]. Using future solved a good part of our
problems such as converting print statements and input reading operations
to Python 3 format, but there still remained issues. Network communication
works differently in Python 3. With the original implementation string objects
could be sent through the network, but in Python 3 byte type objects are ex-
pected. The same challenge holds for encryption and decryption functions, they
also output byte objects. Thus, new encryption and decryption functions were

36

written, and modifications were made to the network communication as well.
As a result, the SweetOnions implementation can now be run using Python 3
and can be combined with the Open Quantum Safe library.

5.1.3 Expected drawbacks

Before running the experiments, some expectations about the negative effects
that will be observed when introducing quantum-safe schemes are listed:

1. CPU computation times will increase for key generation and for encapsu-
lation/decapsulation compared to RSA. This expectation is based on [33],
where client initiation and server response times are reported to take more
time than for the current ntor protocol.

2. Public and private key sizes will increase which will result in heavier net-
work traffic for Directory Authorities. Based on [12, 33] message sizes
increased, which can be caused by larger encryption keys.

3. Message sizes will increase due to quantum-safe encryption of messages.
As a result, the 512-byte long packets will not be sufficiently large and
fitting one connection into one packet as done for ntor will be not possi-
ble [33]. This means one of the fundamentals of TOR could need modifi-
cation.

5.2 Experimental setup

In this section we give an overview of the system used for our experiments and
how these experiments were carried out. Furthermore, we introduce the design
of our classical, our purely quantum-safe and our hybrid schemes.

5.2.1 System setup

For the experiment local and virtual environments are both used. The technical
specification of the notebook used for the local experiments is Dell Latitude
E7240 TNO Managed Kepler Computer, with Intel Core i5-4310U CPU @ 2.00
- 2.60GHz processor, 8GB RAM, Samsung SSD SM841N mSATA 128GB for
storage and Windows 10 Enterprise 64-bit operating system. Furthermore, an
Ubuntu 18.04 LTS subsystem was installed.

In order to emulate the TOR network, 6 virtual machines were used with In-
tel Core Processor (Broadwell) @ 2.4 GHz processors, 60GB storage, a virtual
network adapter, and Linux version 4.15.0 operating system.

5.2.2 Experiment setup

To have a reliable overview of running the experiments, the different stages of
testing were planned to build up on each other.

37

First, the theorical parts of classical, quantum-safe and the hybrid schemes
were considered. These included planning about what encryption and decryp-
tion of messages should look like and also the format of the messages.

Secondly, the public key, private key and ciphertext sizes are measured con-
sidering the Open Quantum Safe codebase. CPU cycles for key generation is
measured for the classical and quantum-safe schemes.

Thirdly, the encapsulation and decapsulation CPU cycles are measured for RSA

and each quantum-safe scheme.

The SweetOnions TOR network was used for measuring circuit build times
and message sizes for three scenarios: classical implementation, quantum-safe
implementation, hybrid implementation. As this is not the original TOR net-
work the classical implementation serves as a benchmark measure and based on
the numbers, predictions can be given for the actual TOR network.

In order to have comparable results, the CPU cycles were measured. This allows
a better comparison method for the experiment as the network has minimal la-
tency because the virtual machines are in the same virtual network. Measuring
the circuit build times for the original, quantum-safe, and the hybrid implemen-
tations demonstrate the CPU cycles required for circuit creation without the
network latency having any effect.

5.2.3 Classical scheme

In the original SweetOnions implementation the client sends a message con-
taining RSA and AES encryption through the network. The client creates the
correct message format as follows

1. The client generates an AES key and encrypts the message,

2. The client uses the RSA public key of a node to encrypt the AES key used
to encrypt the message,

3. The client combines the two encryptions as one message and sends it to
the node.

The format of the sent message is (RSA(AES key),AES[message]), where () de-
notes asymmetric key encryption and [] denotes symmetric key encryption.
This notation is the same for the other two methods. The client repeats these
steps three times to have the correct wrapping of the message.

After receiving a message in this format, the node can remove the encryption
layer from the message:

1. The node splits the message to an asymmetric and symmetric part,

38

2. The node uses his RSA private key to decrypt the asymmetric encryption
and learns the AES key,

3. After learning the AES key the node decrypts the AES encryption and
learns the message.

5.2.4 Quantum-safe schemes

In order to keep measurements most accurate, we aim not to modify the original
format of sending/receiving messages too much. The quantum-safe schemes do
not use RSA encryption to encrypt the symmetric key, which means that the
RSA part of the message sent in the original implementation should be replaced.
The implementation used for quantum-safe schemes work the following way:

1. The client uses a quantum-safe scheme to generate a shared secret - that
is used and referred to as the (AES key) - and a ciphertext of this shared
secret using the quantum-safe public key of the node (PQC(AES key)),

2. The client uses the AES key to encrypt the message,

3. The client combines the ciphertext of the AES key and the encrypted
message as one and sends it to the node.

The message format the client sends is (PQC(AES key), AES[message]).
When a node receives this message, he can remove the encryption layer from
the message:

1. The node splits the message into the post-quantum and symmetric part,

2. The node uses his quantum-safe private key to decapsulate the ciphertext
and learns the AES key,

3. After learning the AES key the node decrypts the symmetric encryption
and learns the message.

5.2.5 Hybrid schemes

For security considerations a combination of classical and quantum-safe schemes
is tested. In an unforeseen security issue of the quantum-safe schemes, a clas-
sical adversary should not be able to break the encryption. If this were the
case and adversaries managed to decapsulate the AES keys from the ciphertext
when purely quantum-safe schemes are used, the content of the message can be
learned. To overcome this issue, instead of using purely an encapsulated AES

key, the preferred method is to combine RSA and quantum-safe cryptography.
This ensures that an adversary would still need to break the security of RSA in
order to compromise the weakness of the quantum-safe scheme.

The Open Quantum Safe library has a limitation when encapsulating a shared

39

secret. The encapsulation function uses a public quantum-safe key and gen-
erates a shared secret that can be used as an AES key for encryption, and a
ciphertext of this shared secret. Due to this, when using a hybrid, instead
of the client generating an AES key for encrypting the message and using the
quantum-safe scheme to generate a shared secret that can be used as a second
AES key for encryption, it uses the quantum-safe scheme to create the shared
secret that is used for AES encryption, and then the ciphertext of the shared
secret is encrypted with RSA encryption.

The implementation of the scheme is the following:

1. The client generates a shared secret that is used and referred to as the
AES key and a ciphertext of this shared secret (PQC(AES key)),

2. The client uses the AES key to encrypt the message,

3. The client uses the RSA public key of a node to encrypt PQC(AES key),

4. The client combines the two parts and sends the message to the node.

The resulting message format is RSA(PQC(AES key)), AES[message]). When
receiving a message like this, the node can remove the encryption layer as follows:

1. The node splits the message into the asymmetric part and the symmetric
part,

2. The node uses his private RSA key to decrypt and obtain the ciphertext
of the shared secret,

3. The node uses his quantum-safe private key to decapsulate the ciphertext
of the shared secret to learn the AES key,

4. After learning the AES key, the node decrypts the symmetric encryption
to learn the message.

After these considerations the format of the SweetOnions protocol does not
need to be changed. Each node publishes a public key towards the directory
server, this will be either an RSA or a quantum-safe key. The client connects to
the directory server to receive a list of available nodes and their corresponding
public keys. The client picks a route from the list of nodes and in the case of
RSA, generates AES keys that will be used for the symmetric encryption, and in
the case of the quantum-safe schemes uses the scheme to generate the shared se-
cret that is used as the AES key. The client encrypts the message using the AES

key and either encrypts the AES key using RSA encryption (RSA(AES key)), sim-
ply uses the ciphertext generated by the quantum-safe scheme (PQC(AES key))
or encrypts the ciphertext of the shared secret using RSA (RSA(PQC(AES key))).

The node receives a (RSA(AES key), AES[message]) tuple, a (PQC(AES key),

AES[message]) tuple, or a (RSA(PQC(AES key)), AES[message]) tuple. After split-
ting the message, the first part of the message is decrypted to learn the AES key.

40

After learning the AES key, the second part of the received message is decrypted
to learn the message.

5.3 Benchmark results of quantum-safe cryptography per-
formance

In this section we present the results for our measurements, specifically for key
generation, public key, private key and ciphertext sizes, and encryption/decryption
times. The benchmark measures were executed on the virtual machines. The
order of these measurements are:

• Public key, private key and ciphertext sizes,

• CPU cycles for RSA key generation,

• CPU cycles for quantum-safe key generation,

• CPU cycles for RSA encryption and decryption,

• CPU cycles for quantum-safe encapsulation and decapsulation.

In order to get an average result for the CPU cycle measurements, 1 000 itera-
tions were run with each test. Table 10 contains the public key, private key and
ciphertext sizes. Table 11 contains the CPU cycles required for key generation,
this is also shown in Figure 8. Furthermore, Table 11 contains the time re-
quired for key generation in seconds. To do this the CPU cycles were measured
for one second and this number is 2 399 753 472 cycles. Table 12 contains the
CPU cycles needed for encapsulation and decapsulation of a message, Figure 7
demonstrates this for all the schemes tested.

Scheme Public key
size (bytes)

Private key
size (bytes)

Ciphertext
size (bytes)

RSA-1024 < 128 < 128 128
RSA-2048 < 256 < 256 256
RSA-4096 < 512 < 512 512
RSA-6144 < 756 < 756 756
RSA-9216 < 1 152 < 1 152 1 152
Frodo-640-AES 9 616 19 888 9 720
Frodo-640-SHAKE 9 616 19 888 9 720
Kyber512 800 1 632 736
NewHope-512-CCA 928 1 888 1 120
NTRU-HPS-2048-509 699 935 699
Sike-p503 378 434 402

Table 10: The key sizes for RSA and quantum-safe schemes.

41

Key and ciphertext sizes play an important part. Keys have an effect on network
load as they are sent to the Directory Authorities, and the Directory Authorities
distribute them to the client. The ciphertext is important because it is going to
be sent in the purely quantum-safe implementation and in the hybrid, it is sent
after RSA encryption. In Table 10 these key sizes are listed. The ciphertext sizes
for quantum-safe schemes range from 402 to 9 720 bytes. Both Frodo-640-AES

and Frodo-640-SHAKE have ciphertext sizes of 9 720 bytes. This is problematic
for two reasons. First, it would require 19 packets to send only the ciphertext
using the purely quantum-safe schemes, and secondly encrypting 9 720 bytes
with RSA is extremely time consuming.

RSA can encrypt messages as large as its key size. The RSA-1024 that TOR

currently uses is not suitable to encrypt any of the quantum-safe scheme ci-
phertexts, as it can encrypt message sizes up to 128 bytes. Splitting the to be
encrypted message is a possibility when using RSA-1024 but there is no stan-
dard on how to split messages and thus, it is not advised. Splitting would raise
further challenges like creating too much overhead or decryption becoming ex-
pensive as discussed in [29]. Thus, the message is not split into smaller chunks
but instead the size of RSA keys are increased to securely perform encryption.
In case of Frodo an RSA key size of 77 824 bits (9 728 bytes) would be required.
Generating a key of this size and encryption, decryption is extremely lengthy.
In the case of Kyber and NTRU an RSA with key size of 6 144 bits should be used
(768 bytes), for NewHope a key size of 9 216 bits (1 152 bytes), and for Sike a
key size of 4 096 bits (512 bytes) is required. These also require significant time,
but nothing compared to Frodo. Due to this, we decided not to continue testing
the Frodo schemes.

The key generation times affect the nodes as they will generate a public-private
key pair once every month as defined by default in TOR. The results show that
changing the current 1024-bit RSA key to larger keys in order to have hybrids
would have the biggest impact on CPU cycles.

Scheme Number of CPU cycles Time needed
RSA-1024 key generation 61 568 194 0.026s
RSA-2048 key generation 266 140 623 0.11s
RSA-4096 key generation 1 946 034 083 0.81s
RSA-6144 key generation 7 718 455 577 3.22s
RSA-9216 key generation 32 849 985 752 13.69s
Kyber512 key generation 152 973 0.0000637s
NewHope-512-CCA key generation 193 367 0.0000806s
NTRU-HPS-2048-509 key generation 27 632 969 0.011s
Sike-p503 key generation 90 800 645 0.038s

Table 11: The CPU cycles needed for RSA and quantum-safe key generation.

42

Another observation that can be made based on Table 11 is, that all the lattice-
based quantum-safe schemes (Kyber, NewHope, NTRU) require less CPU cycles
for generating keys than currently used RSA-1024. Even the most costly lattice-
based scheme, NTRU, requires 55% less CPU cycles to generate key pairs. On
the other hand, Sike requires 147% more CPU cycles for the generation of keys
compared to RSA-1024. The interesting fact is the huge gap that is present
in the lattice-based schemes (e.g. NTRU is about 181 times more computational
heavy than Kyber).

Key generation only affects the nodes as they generate keys based on the time
defined by TOR. The factor that affects both the nodes and the client is the time
needed to encapsulate and decapsulate messages. Benchmark encapsulation and
decapsulation measurements can be seen in Table 12. The client uses encapsu-
lations at least three times when preparing the layers of encryption. Opposed to
key generation times where all lattice-based schemes were better in performance
compared to RSA-1024, here NTRU requires more CPU cycles for encryption. De-
capsulation on the other hand looks promising for lattice-based implementations
because they all require less CPU cycles to perform decapsulation than RSA. The
case is similar to the key generation performances, NTRU requires the most CPU

cycles among the lattice-based schemes, but it is about 23% faster than the cur-
rently used RSA-1024. The supersingular isogeny-based quantum-safe scheme
Sike requires the most CPU cycles among the tested schemes, it is 124 times
more computationally heavy than RSA-1024 for CPU cycles needed for encap-
sulations and decapsulations in total.

Encapsulation
scheme

Encapsulation
operations

Decapsulation
operations

Total

RSA-1024 410 402 2 078 161 2 488 563
RSA-2048 730 570 5 718 858 6 449 428
RSA-4096 1 975 617 26 433 228 28 408 845
RSA-6144 3 846 650 72 843 854 76 690 504
RSA-9216 7 906 810 216 176 067 224 082 877
Kyber512 170 856 195 106 365 962
NewHope-512-
CCA

228 687 247 457 476 144

NTRU-HPS-
2048-509

636 263 1 609 748 2 246 011

Sike-p503 149 691 623 159 119 760 308 811 383

Table 12: The CPU cycles needed for RSA and quantum-safe encapsulation and
decapsulation.

All lattice-based schemes (Kyber, NewHope, NTRU) have better scores for CPU

cycles than the RSA schemes, which is why we believe that [12, 33] both used

43

Figure 7: CPU cycles needed for cryptographic protocols.

Figure 8: CPU cycles needed for key generation.

lattice-based schemes. Based on ciphertext sizes, Sike is the most fitting can-
didate as the ciphertext size it generates fits in one packet that TOR currently
uses, but the CPU cycles Sike uses makes it not so appealing as it is more than
standard RSA-1024. If the standard of splitting the ciphertexts is agreed or the
basic packet size is increased to 1 024 bytes, both Kyber and NTRU become fitting.

Based on the benchmark measurements, we recommend using either Kyber or
NTRU in TOR as Kyber needs the least CPU cycles and both ciphertext sizes fit

44

in two packets that TOR currently uses.

5.4 Experimental results of quantum-safe circuit builds

In this section the circuit build times are discussed on the SweetOnions TOR

network. Table 13 contains the measurements for wrapping the layers of en-
cryption, decapsulating one layer of encryption, the total circuit build time,
the message sizes, and the number of packets required. The total circuit build
time combines the wrapping of encapsulation layers and calculates the removal
of layers three times. Furthermore, the time needed for circuit creation is also
indicated in seconds. The measurements are done for the original SweetOnions
implementation, the quantum-safe implementations, and the hybrid implemen-
tations. Message sizes and circuit build times are visualized in Figures 9 and 10.

In the following subsections the original implementation of TOR in SweetOnions

measurements serve as the basis. Having these numbers makes it possible to
make a comparison with the addition of quantum-safe cryptography and to
validate the recommendation made previously about using Kyber or NTRU.

Scheme Wrap encryption layers Remove one layer Total circuit build Message size (bytes) Packets needed Time needed
Original 5 131 765 13 714 147 46 274 206 1 223 3 0.02s
Kyber 1 371 999 917 080 4 123 240 3 248 7 0.0017s

NewHope 1 618 934 1 119 668 4 977 938 4 832 10 0.002s
NTRU 2 803 358 4 149 134 15 250 759 3 099 7 0.006s

Sike 452 691 951 271 667 313 1 267 693 889 1 874 4 0.52s
Hybrid Kyber 17 441 512 141 947 032 443 282 608 3 360 7 0.18s

Hybrid NewHope 29 976 092 343 266 964 1 059 776 985 4 944 10 0.44s
Hybrid NTRU 18 348 903 149 772 336 467 665 911 3 360 7 0.19s

Hybrid Sike 458 781 848 312 030 657 1 394 873 819 2 320 5 0.58s

Table 13: The CPU cycles needed for building a circuit and message sizes.

5.4.1 First quantum-safe results

When adding the quantum-safe schemes to the implementation, after our bench-
mark measurements, we expected that the circuit build times would take less
CPU cycles for the lattice-based schemes (Kyber, NewHope, NTRU) and that the
message sizes would require more packets due to the ciphertext sizes, than for
the original implementation. The results confirm that the lattice-based schemes
had less CPU cycles than RSA, but the increase in packets used is more than
double. On the other hand, Sike takes more CPU cycles to build a circuit,
but the increase in the number of packets required is minimal compared to the
original implementation.

In the case of Kyber the CPU cycles required for circuit creation is 91% less
than the original circuit build time. The size of the encrypted message is 266%
larger than for the original implementation and requires 2.3 times more packets.

45

Figure 9: Encrypted message sizes in bytes. The maximum data one packet can
currently store is 512 bytes.

Figure 10: CPU cycles needed building a circuit.

The results for using NewHope are not unexpected after understanding the Kyber
results. The circuit create time is slightly slower compared to Kyber, but still
it is 89% faster than the original circuit build time. As NewHope has the largest
ciphertext size of the three lattice-based schemes it needs 3.3 times more packets
than the original implementation. The ciphertext size is 395% larger than the
original implementation and 149% larger than Kyber512.

46

The final lattice-based scheme tested is NTRU and because of it having the small-
est ciphertext size of the three lattice schemes we were hoping it to fit in less
packets than Kyber. Even by having the least amount of ciphertext size, NTRU
also requires the same number of packets as Kyber. NTRU has the most oper-
ations required among the lattice-based schemes - about 3.7 times more than
Kyber and 3.1 times more than NewHope.

The testing of Sike was important, because so far only lattice-based schemes
were tested. For Sike key generation and encapsulation, decapsulation took
more time than for the lattice-based schemes - as Sike is based on supersingu-
lar isogeny - we were expecting to get different (larger) CPU cycles for building
a circuit. Results show that circuit creation when using Sike is 27.4 times more
CPU heavy than the original circuit build time, and 83.1 times heavier than
the most computationally demanding lattice-based scheme NTRU. Although the
circuit build time might make Sike undesirable to use, it has the smallest ci-
phertext size and the encrypted message size is 1847 bytes - 153% more than
for the original implementation. However, even this increase makes it possible
to fit the encrypted message in four packets.

Having access to the results we would like to make an update on the recommen-
dation in Section 5.3. In order to have the least impact on the network load of
TOR, instead of using Kyber or NTRU, Sike should be used. Although it requires
more CPU operations than lattice-based schemes, the fact that encrypted mes-
sages fit into four packets means that the network load would not be affected in
a major way and only a minor additional latency would be added compared to
the RSA implementation.

Using a lattice-based scheme may be considered as they require less CPU cycles
than Sike. If so, Kyber is a fitting candidate as it uses the same number of
packets as NTRU but requires less CPU cycles. Using lattice-based schemes have
implications on packet sizes and network load and this means two things:

1. Standards for splitting the ciphertext of the shared secret need to be in-
troduced or an increase in packet size is required to fit the ciphertext in
one packet,

2. Circuit build times require less CPU cycles, meaning that circuits are
created faster, and the packets can be sent through the network quicker,
which can cripple the network.

Current packet size of 4 096 bits (512 bytes) is a factor of 2 (212), thus the next
packet size would be 8 192 bits (1 024 bytes; 213), meaning the new standard
message size is the double of the old. Sending two packets of the current size
also means that the message size is doubled but can have further implications
if the splitting is not standardized. Both mean that network load would double
but increasing the packet size would be the better solution. This is because

47

during sending multiple packets some could get lost during transmission. If a
packet is lost the TCP protocol requests the packets again, the client needs to
resend all the packets, adding further latency and traffic to the network. If
lattice-based schemes are used, circuits are created faster, meaning the client
can send or resend packets faster if TCP packets are lost. Sending too many
packets in quick succession can have an effect similar to a Denial of Service
attack on the network.

5.4.2 Hybrid implementation results

Keeping part of the original implementation adds the security that RSA has
against classical adversaries. Due to the need of using RSA with large keys
(4 096, 6 144, 9 216 bits), we expected circuit build times to take more than for
the original implementation and expected encrypted message sizes to be larger
than for the quantum-safe implementations.

As the updated recommendation for the fully quantum-safe TOR was to use
Sike, this is examined first. Using the combination of the original implemen-
tation with Sike, does not have a large increase in CPU cycles for building a
circuit compared to Sike - only a 110% increase -, the encrypted message size
increased by about 124%, which means it does no longer fit in four packets, but
five.

Using the combination of the original implementation with Kyber is 107.5 times
more computational heavy for building a circuit comparted to the purely quantum-
safe implementation of Kyber. The encrypted message is also larger, but only
103% larger than for the purely quantum-safe, and this also fits in the same
number of packets that purely quantum-safe Kyber uses.

The combination of RSA and NTRU performs a bit worse than hybrid Kyber

for circuit creation, it requires 105% more CPU cycles. The encrypted message
sizes are the same as for hybrid Kyber. This is due to using the same RSA key
size to encrypt the ciphertext generated by the quantum-safe scheme.

Finally, the last lattice-based scheme NewHope was tested with the combination
of the original implementation. Compared to the purely quantum-safe NewHope,
the circuit build time requires about 212.9 times more CPU cycles. Similar to
the purely quantum-safe schemes, the encryption size is the largest, but it still
fits in the packets used for the purely quantum-safe implementation.

When using the hybrid implementation only the lattice-based schemes of the
tested schemes have message sizes that fit into the same packet sizes as the
purely quantum-safe schemes. This is due to the length that the large RSA

encapsulation key adds. Thus, having a new standard about how to split the
packet or increasing the packet size when transitioning to a hybrid quantum-safe
TOR seems inevitable.

48

Based on the combined results, the recommendations can be updated. When
using the hybrid implementations all the lattice-based schemes use the same
number of packets as the purely quantum-safe ones (7 or 10), but circuit build
times increase radically. Due to this, we recommend using Sike when transi-
tioning to a quantum-safe TOR. Compared to purely Sike the CPU cycles are
slightly increased for hybrid Sike, network load is increased by 166%, but still
requires less packets than Kyber or NTRU.

5.5 Conclusions

To understand the results, it is important to note, that because the virtual ma-
chines are all on the same virtual network, the network latency is minimal. In
reality TOR nodes are further away and if nodes that are on another continent
are selected, the network latency is significant.

All of the experimental results illustrate that lattice-based schemes have better
performances for key generation and for encryption/decryption than currently
used RSA - as stated by [12]. In [12] it is also reported that larger encrypted
message sizes are required, which is also confirmed by our experiments. None of
the tested schemes fit in the number of packets that TOR currently uses thus,
there is additional network load.

The tested supersingular isogeny-based scheme required more CPU cycles for
key generation and for building a circuit than RSA, Kyber, NewHope or NTRU.
The important fact to note is, that the usage of Sike generates a ciphertext of
the shared secret that fits the current packet size of TOR, meaning the original
packet sizes for TOR can be used. Additional packets are needed to fit the en-
crypted message, but only one, which does not contribute to large network load
as lattice-based schemes.

To keep the security against classical adversaries in case of quantum-safe schemes
prove to have flaws, the original implementation was combined with the quantum-
safe schemes. The lattice-based hybrid schemes experienced a huge increase in
CPU cycles, whereas the increase in Sike was not so marginal. Message sizes
also increased, but this was only an issue for Sike as it required an extra addi-
tional packet.

Comparing to our initial thoughts on performance in Section 5.1.3 we notice
that answering the third question for the research is not black and white. Re-
call the third sub-question: What performance drawbacks are users likely to face
in a quantum-safe TOR and are these drawbacks confirmed by the experimental
results? The CPU cycles for key generation and encapsulation/decapsulation
does not increase when using lattice-based schemes (Kyber, NewHope, NTRU).
However. the use of Sike and 4 096, 6 144, 9 216 bit variants of RSA would in-
crease the CPU cycles for these operations. This trend can also be observed at

49

the circuit build times, where all the purely lattice-based schemes achieved less
CPU cycles used, and the supersingular isogeny-based scheme achieved more
CPU cycles used compared to the original SweetOnions implementation.

We confirm, that the public and private key sizes increase compared to currently
used RSA. When using quantum-safe implementations the Directory Authori-
ties will experience increased network traffic. This is going to further increase,
when using the hybrid schemes as next to storing the large RSA public keys the
Directory Authorities also need to store the quantum-safe public keys.

We also confirm, that the message sizes increase for all quantum-safe and hy-
brid schemes. Using any of the three lattice-based schemes result in more than
double of current packets required. Using supersingular isogeny-based scheme
- Sike - also adds at least one extra packet in order to fit messages. This can
be appealing even if the circuit build time takes longer, as the aim is not to
overload the network with sending too much traffic [27].

Now, after understanding the drawbacks of quantum-safe TOR it is possible
to discuss the strengths and the weaknesses of the tested implementations. Of
course, the biggest strength that all the tested implementations have in com-
mon is that they remain secure against quantum adversaries. Apart from this
the other strength that the lattice-based schemes have is the efficient CPU cycle
usage for key generation and circuit creation compared to RSA. The strength of
Sike is that when used it does not add as heavy network load to TOR as lattices.

The weakness and the downside of using quantum-safe implementations is the
message sizes and packets required to send them. Kyber, NewHope and NTRU

all require at least 7 packets to send data through the circuit, which means
that network load is doubled at minimum. As for Sike, apart from the increase
of message sizes the CPU cycles also increase. Both of these downsides are
inevitable as for the transitioning period from current to quantum-safe cryptog-
raphy a hybrid implementation is the most fitting.

To conclude, based on our experiments Sike should be considered as the can-
didate to replace RSA in quantum-safe TOR. Sike has the least network load
generated which is fundamental for TOR in order not to cause a Denial of Ser-
vice. Quantum-safe TOR is possible, and no matter if lattice or supersingular
isogeny-based schemes are considered in the future, network load will increase.

50

6 Conclusion

6.1 Own contribution

In this work we investigated the concept, possibility and implications of a
quantum-safe TOR. We identified four sub-questions to guide us in answering the
question what a quantum-safe TOR would look like. The sub-questions focused
on the vulnerable parts of the current TOR network and the changes needed
to make these parts quantum-safe, the implications of having a quantum-safe
TOR, and the strengths and performance limits of the proposed quantum-safe
TOR.

We argued that the most important part to be made quantum-safe first is the
AES symmetric key, although this does not require any quantum-safe schemes.
It can be done by doubling the key sizes and using AES-256 instead of AES-128.
Secondly, we point out that the long-term and medium-term keys need to be re-
placed in order to prevent an adversary from impersonating the node. We listed
the short-term keys to be changed lastly. As the design of TOR, circuits change
every 10 minutes, which means the adversary has limited time to exploit the
connection. This is a different approach compared to literature on quantum-safe
TOR networks, both [12, 33] focus on the short-term keys in their work.

The AES keys need to be changed as soon as possible as they are already
vulnerable to ‘store-now-decrypt-later’-attacks. This update does not require
the use of quantum-safe cryptographic schemes but would have a life changing
effect. People living in oppressive regimes need to have life-long protection of
their privacy which needs to be ensured. As for the long-term and medium-term
keys, they should be considered for change in the near future. These keys are
generated using asymmetric cryptography and even though NIST advise the use
of 2048-bit RSA keys, TOR still uses 1024-bit keys. Although 1024-bit RSA keys
have not yet been successfully factored, still updating to RSA-2048 should be
done first, and only after this switch to a hybrid or purely quantum-safe scheme.

Updating TOR to a quantum-safe setting, we expected increase in CPU cy-
cles for key generation and encapsulation/decapsulation, and increased message
sizes due to quantum-safe encryption. To test these assumptions, we modi-
fied an implementation of TOR. Post-quantum cryptographic implementations
are added from the Open Quantum Safe library to the original implementa-
tion, three lattice-based quantum-safe schemes (Kyber, NewHope, NTRU) and
one supersingular isogeny-based quantum-safe scheme (Sike) are tested in a
purely quantum-safe and a hybrid setting.

We observed that in the purely quantum-safe setting the CPU cycles only in-
crease for Sike compared to the original implementation, but for the lattice-
based schemes they are even less, which was also confirmed in [12]. The message
sizes do increase for all tested schemes, but Sike makes it possible to add the

51

smallest amount of extra network load. For the lattice-based schemes the cur-
rent packet size is not large enough to send the ciphertext of the key, and they
would require modifications in related to packet sizes. Based on the current
TOR implementation, if the usage of purely quantum-safe scheme is the goal
we recommend the usage of Sike as it does not contribute hugely to network
load as this is currently the main performance issue in TOR. In the transition
phase where both classical and quantum-safe schemes are used in combination,
the recommendation would still be to use Sike as it adds the least network
load to the network. The Open Quantum Safe library is a research library and
implementations can still improve.

Finally, based on the results the strengths and performance limitations were
discussed. The overall strength the schemes have are security against quantum
adversaries. More generally, the strengths and limitations are the trade-offs of
the CPU cycles used and the message sizes of the schemes. The lattice-based
schemes have low CPU cycle costs but large message sizes whereas the supersin-
gular isogeny-based scheme has high CPU cycle costs but small message size.

To conclude, quantum-safe TOR is possible, but it will have some performance
drawbacks that contribute to network load.

6.2 Future work

For future work it would be interesting to test other type of schemes e.g. code-
based like BIKE. Testing the remaining lattice and isogeny-based schemes is also
an interesting future topic as they might have better performance measurements
than the ones currently available in the Open Quantum Safe library.

In the Open Quantum Safe library, the encapsulation of messages posed as
a challenge. Current encapsulation works with a quantum-safe public key and
generates a random (shared secret, ciphertext) tuple. Investigating the encap-
sulation more closely and making it possible to encapsulate actual messages to
produce a (shared secret, ciphertext) tuple of the message would be very bene-
ficial for future work.

One of the current attacks on TOR specifically target hidden services. Adding
our proposed updates to the hidden services might not be enough to keep them
quantum-safe as they are in the spotlight for attackers. Investigating the addi-
tional security measures that users hosting hidden services can make in order
to remain quantum-safe could be rewarding.

As for field experiments, an implementation of TOR is available called TorLAB [36]
that simulates TOR on a private network of Raspberry PIs. It would be bene-
ficial to recreate the network and extend the measurements of our research to
the network load. This would ensure a more realistic result for expected circuit
build times, as now network latency is omitted.

52

References

[1] Erdem Alkim et al. FrodoKEM Learning With Errors Key Encapsulation.
https://frodokem.org/files/FrodoKEM-specification-20190330.

pdf. Accessed on 2019-08-13.

[2] Felipe Astolfi, Jelger Kroese, and Jeroen van Oorschot. I2P - The Invisible
Internet Project. Leiden University, 2015.

[3] Elaine Barker and Quynh Dang. Recommendation for Key Management.
Part 3: Application-Specific Key Management Guidance. https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.

pdf. Accessed on 2019-08-15.

[4] Alex Biryukov. Adaptive Chosen Plaintext Attack. https://link.springer.
com/referenceworkentry/10.1007/978-1-4419-5906-5_545. Accessed
on 2019-08-12.

[5] Joppe W. Bos et al. Post-Quantum Key Exchange for the TLS Protocol
from the Ring Learning with Errors Problem. IEEE Symposium on Secu-
rity and Privacy Conference Paper, 2015.

[6] Enrico Cambiaso et al. Darknet Security: A Categorization of Attacks to
the Tor Network. Consiglio Nazionale delle Ricerche (CNR-IEIIT), 2019.

[7] Matthew Campagna et al. Quantum Safe Cryptography and Security; An
introduction, benefits, enablers and challenges. ETSI, 2014.

[8] Safe Crypto. NIST Round 2 Candidates. https://www.safecrypto.eu/
pqclounge/round-2-candidates/. Accessed on 2019-06-14.

[9] Dan. TOR Node List. https://www.dan.me.uk/tornodes. Accessed on
2019-06-14.

[10] Roger Dingledine and Nick Mathewson. Tor Protocol Specification. https:
//gitweb.torproject.org/torspec.git/tree/tor-spec.txt. Ac-
cessed on 2019-06-14.

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. 2004.

[12] Satrajit Ghosh and Aniket Kate. Post-Quantum Forward-Secure Onion
Routing (Future Anonymity in Today’s Budget). ACNS Conference Paper,
2015.

[13] Lov K. Grover. A fast quantum mechanical algorithm for database search.
Proceedings, 28th Annual ACM Symposium on the Theory of Computing
(STOC), 1996, pp. 212–219.

[14] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much
anonymity does network latency leak? ACM Trans. Info. Syst. Sec. 13, 2,
Article 13, 2010. doi: 10.1145/1698750.1698753.

[15] Tommaso Gagliardoni (IBM). Future Proofing the Connected World: A
Quantum-Resistant Trusted Platform Module. 2018.

53

[16] InvisibleNet. Invisible Internet Project (I2P). 2003.

[17] JonDoNYM. Mixmaster Remailer. https://anonymous-proxy-servers.
net/en/help/jondo-live-cd18.html. Accessed on 2019-08-12.

[18] Burt Kaliski. TWIRL AND RSA KEY SIZE. https://web.archive.
org/web/20170417095741/https://www.emc.com/emc- plus/rsa-

labs/historical/twirl-and-rsa-key-size.htm. Accessed on 2019-
08-15.

[19] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
CRC Press, 2014.

[20] LeonHeTheFirst. SweetOnions - Making Onion Routing Great Again. https:
//github.com/LeonHeTheFirst/SweetOnions. Accessed on 2019-07-29.

[21] Bingdong Li et al. An Analysis of Anonymity Technology Usage. TMA’11
Proceedings of the Third international conference on Traffic monitoring
and analysis, 2011.

[22] Ewen Macaskill and Gabriel Dance. NSA Files: Decoded. https://www.
theguardian.com/world/interactive/2013/nov/01/snowden-nsa-

files-surveillance-revelations-decoded#section/1. Accessed on
2019-06-14.

[23] Bernard Marr. How Much Data Do We Create Every Day? The Mind-
Blowing Stats Everyone Should Read. https://www.forbes.com/sites/
bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-

the-mind-blowing-stats-everyone-should-read/#7b9dbc3260ba.
Accessed on 2019-08-12.

[24] Nick Mathewson. Mixminion: A Type III Anonymous Remailer. https:
//www.mixminion.net. Accessed on 2019-08-12.

[25] TOR Metrics. Performance. https://metrics.torproject.org/torperf.
html. Accessed on 2019-06-14.

[26] TOR Metrics. Users. https://metrics.torproject.org/userstats-
relay-country.html. Accessed on 2019-06-14.

[27] Tor Blog - mikeperry. Tor’s Open Research Topics: 2018 Edition. https:
//blog.torproject.org/tors-open-research-topics-2018-edition.
Accessed on 2019-08-23.

[28] NIST. Post-Quantum Cryptography Standardization. https : / / csrc .

nist.gov/Projects/Post- Quantum- Cryptography/Post- Quantum-

Cryptography-Standardization. Accessed on 2019-06-14.

[29] pandoragami. RSA maximum bytes to encrypt, comparison to AES in
terms of security? https://security.stackexchange.com/questions/

33434/rsa- maximum- bytes- to- encrypt- comparison- to- aes- in-

terms-of-security. Accessed on 2019-08-28.

[30] Open Quantum Safe Project. C library for quantum-resistant cryptographic
algorithms. https://github.com/open- quantum- safe/liboqs. Ac-
cessed on 2019-07-29.

54

[31] Open Quantum Safe Project. Python 3 bindings for liboqs. https : / /

github.com/open-quantum-safe/liboqs-python. Accessed on 2019-07-
29.

[32] Python-Future. futurize: Py2 to Py2/3. https://python-future.org/
futurize.html. Accessed on 2019-07-29.

[33] John M. Schanck, William Whyte, and Zhenfei Zhang. Circuit-extension
handshakes for Tor achieving forwards secrecy in a quantum world. Pro-
ceedings on Privacy Enhancing Technologies, (4), 2016, pp. 219–236.

[34] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Journal on Comput-
ing, 1995.

[35] Nigel P. Smart. Cryptography Made Simple. Springer, 2016.

[36] Dark Web Solutions. TorLAB. https://github.com/dws-pm/TorLAB.
Accessed on 2019-08-11.

[37] Douglas Stebila and Michele Mosca. Post-Quantum Key Exchange for the
Internet and the Open Quantum Safe Project. 2017.

[38] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous
Connections and Onion Routing. SP ’97. Washington, DC, USA: IEEE
Computer Society, 1997, pp. 44–.

[39] TOR. Download Tor Source Code. https : / / www . torproject . org /

download/tor/. Accessed on 2019-07-29.

55

