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Abstract—Mobile devices have overtaken personal computers

for everyday tasks. These devices produce massive amounts

of data which contains valuable information. Two fields in

which monitoring of such mobile data is used are application

identification and user action identification. They focus on the

identification of a single user action or identify individual

applications out of a known set. Monitoring this traffic can be

useful for, among other things, fingerprinting traffic, intrusion

detection and user-profiling. One limitation of previous works

is that they are applicable for only a single user action or

application. In this paper we generalise the concept of user

actions by introducing mobile application phases. Application

phases describe the state an application is in after a set of

user actions have been performed. In contrast to user actions,

these phases are application agnostic. This means that a method

capable of classifying application phases is scalable and not

limited to known applications. We formally define seven different

application phases and show how to detect these in Android

logs. We also present four different algorithms to detect these

application phases in encrypted network traffic. We look at

network traffic because it makes the method more scalable than

a host-based solution and has a less privacy invasive nature.

These algorithms use network data from a timeseries perspective

instead of a flow perspective in order to take advantage of

periods where network data is scarce. To assess the quality of

these algorithms we generated two novel datasets consisting of

encrypted network data of 361 Android applications. We were

able to detect the installation of applications with 100% accuracy

and distinguish foreground from background traffic with 93%

accuracy.

I. INTRODUCTION

Device monitoring has been a topic of interest for several
years with applications such as intrusion and extrusion detection
[1], [2], application classification [3], [4] and user profiling [5].
Nowadays, personal computers are increasingly being replaced
by mobile devices [6] due to the fact that smartphone computing
power has increased significantly over the past few years. This
means that people use their smartphones in favor of their
personal computer for more and more tasks and generate
massive amounts of mobile data. Monitoring solutions for
desktop systems cannot be used for the mobile environment
easily because they rely on implementation aspects specific
to desktops. Mobile devices mostly use HTTPS to send their
traffic, and use services like content delivery networks and APIs
used by many applications. This has resulted in an increase in
interest for the possibilities regarding the monitoring of traffic
from these mobile devices.

There are two main methods for device monitoring. Host-
based solutions require an application to be installed on the
device, and therefore are intrusive, not scalable and sometimes
even just not possible. The other method looks at the network
traffic produced by the devices. This allows for more scalability
as it only requires connectivity to the network access point and
since most network traffic is encrypted nowadays, it is also
less privacy invasive. Because of this reason we only focus on
the network-based solutions.

Previous work has already shown that even though most
mobile application traffic is encrypted nowadays, there are still
methods in which information can be inferred [7]–[13]. Two
important fields within network monitoring that have emerged
are application identification and user action identification.
The first group attempts to identify the application generating
the network traffic (e.g. Facebook, Twitter or Instagram).
The other group looks at identifying specific user actions
for those applications in the network traffic. This includes
actions such as sending an email, browsing Instagram photos
or reading news. These fields provide information which can
be used for many different purposes. Security operators can
use the information for monitoring purposes and network load
balancing, advertisement agencies can use this information
for user profiling and targeted advertisement and even rogue
individuals or governments can use the information to target
specific applications or users.

A disadvantage of user actions in this form is that they are
specific to a single application. To fill this gap our work tries to
generalise these user actions by identifying mobile application
phases instead of user actions. With application phases we mean
the state an application is in after a set of user actions are
performed. Therefore, we look at what effect the user actions
have on the application behaviour instead of identifying the
individual actions. We identify seven application phases; started,
installation, foreground, background, authentication, interaction
and closed. Even though application phases are very similar to
user actions we differentiate by an important aspect. Application
phases are application agnostic, which means that they are
mostly generaliseable over multiple applications whereas user
actions are specific for a single application (e.g. you can send
a tweet with the Twitter application, an email with Gmail and
browse photos in the Instagram application). Each of those
user actions are specific to their application, but the resulting
application phase is the same for all of them; foreground.



The goal of this work is to explore and identify different
application phases. Moreover, we aim to identify and classify
these application phases in encrypted network traffic. This
allows us to do monitoring for defensive purposes and usage
statistics analysis. We motivate our work by outlining these
use cases in which application identification can be used.

Defensive Monitoring — Intrusion detection systems (IDS)
monitor all kinds of network traffic. When anomaly-based IDS
encounter network traffic that was not modeled during it’s train-
ing phase, it raises an alert. Therefore, many of these systems
rely on a training phase which is as complete as possible. This
entails that all applications that are going to be used within
an environment need to be present in the training set in order
to limit the number of false positives. One of the problems
anomaly-based IDS cope with is dynamic environments. If an
application is updated, the network environment changes or
user habits change, the observed network behaviour can be
different from what it looked like when the original model was
created. This means that the model is also no longer accurate.
This phenomenon where data distributions change over time
is called concept drift [14]. Concept drift can result in many
false alerts which have to be investigated manually. Using
application phase data we can create a context model for these
intrusion detection systems. E.g. if we detect the installation
of a new application, we expect to see network traffic that is
not yet modeled in our intrusion detection system. Normally,
this would raise an alarm, however with the application phase
context we might be able to more quickly resolve the issue,
or even automatically learn a new model from the traffic that
belongs to the new application.

Usage Statistics Analysis — An actor capable of observing
network traffic could use application phase data to get a detailed
profile of how an application is used by a specific user or a
group of users. Analysis of mobile application usage is an
important field in itself [15], [16]. They ask questions such as
how long applications are used, how often they are used and at
what time of day are they used. The answers to these questions
are used to, among other things, help shape the development
direction of the mobile application landscape and can be used
in advanced recommendation systems [17]. Current methods
mainly obtain this information by installing an application on
the device itself. Installing a monitoring application on the
device is not trivial as the party looking to obtain the usage
statistics may have no access to the device. Application phase
data obtained by only looking at the network traffic would
therefore be very useful.

A. Contributions
In this work we generalise the concept of user actions

to application phases. We identify these application phases
in encrypted network traffic and learn a model capable of
classifying unknown network traffic in these application phases.

Our contributions are as follows:
• We introduce mobile application phases and provide a

formal definition for them based on the identifiers used
to detect them.

• We present an approach to classify mobile encrypted
network traffic in application phases. Our method looks
at network traffic from a timeseries perspective instead of
a flow perspective. We show how this approach is better
suited for the problem of application phase classification.

• We captured a large dataset with encrypted mobile network
traffic on which we evaluate our approach.

II. MOBILE APPLICATION PHASES

In this work we are interested in mobile application phases.
We provide an explanation of the application phases and give
a formal definition for seven mobile application phases based
on the identifiers used to detect them.

Android provides specific log messages related to changes
in application phases. These messages identify the start of an
application phase, or the end of it. We identify 7 different
application phases and show how to detect them based on 11
different log messages. The application phases, a description,
and the formal definition based on those log identifiers can be
found in Table I.

Started — The started phase indicates that an application
has been started, but it has not yet been displayed. This phase
is only used for implementation purposes of the labelling
system and is not a phase we predict. If an application is
not active yet on the Android system, an activity for that
application has to be started by issuing a view intent (usually
the MainActivity). We detect this in the logs by looking for the
‘Timeline: Activity launch request id: <app pkg>’ message.

Installation — The installation phase is defined by the
process of installing a new application from the Google play
store onto the device. The installation phase is important
in helping to improve algorithms to deal with dynamic
environments by providing a context and therefore crucial
for the defensive monitoring use case. This phase includes all
traffic produced between the start of the installation and the
moment the installation process is finished.

In this work we introduce our own start and stop tokens to
indicate the installation phase. We utilize the presence of the
‘install’ button in the Google Play store, which is only visible
if the application is not installed on the Android device. After
activating this button, we logged a message with an identifier
in the form of <start-inst>. If the application was finished
installing on the device, the ‘install’ button changes into two
buttons with ‘Uninstall’ and ‘Open’ for that specific application.
Therefore if we detected this button in the UI after initiating
an installation process the process was complete, and as such a
<stop-inst> identifier was logged. Alternatively the identifiers
from the Google play store can be used, as listed in Table I.

Foreground — Applications are in the foreground phase if
there is an active process running and it is displayed actively
on the device. This means that the user is able to interact
with the application. This phase is useful to aggregate statistics
of application usage. Statistics such as how often people use
an application, and the duration of a single session can be
used for the usage statistics use case. Within Android, the
user interacts with the application and the system via activities.



TABLE I
APPLICATION PHASES AND THE IDENTIFIERS USED TO IDENTIFY THEM IN THE LOG. SOME APPLICATIONS DO NOT HAVE A STOP IDENTIFIER, BUT END

WHEN A DIFFERENT APPLICATION PHASE IS STARTED

Application
Phase Description Start Identifier Stop Identifier

Started A new application process is started Timeline: Activity launch request id: <app pkg> Foreground
Closed

Installation A new application is installed via the
Android play store install request package name=<app pkg> IT: Successful install of <app pkg>

Background The application process is active, but not
displayed on the device ActivityManager: Displayed <different app pkg> Foreground

Closed

Foreground The application process is active, and
actively displayed on the device ActivityManager: Displayed <app pkg> Background

Closed

Interaction The user is interacting with an application
via the device’s keyboard SurfaceFlinger: id= ... createSurf

Removed JnputMethod (8/10)
Removed JnputMethod (-2/10)
Background

Authentication The user performs a login action <start-auth>token <complete-auth>token

Closed There is no application process
running for a specific application

ActivityManager: Killing <pid>/<app pkg>
ActivityManager: Killing ... cause uninstall pkg Started

For each application
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Fig. 1. Visualisation of the state machines. Oval shapes are phases, where the arrows indicate possible state transitions between those phases.

When the Android phone tries to display an application that
has previously been started it requests only a display intent
for the activity and the activity does not have to be started
again. We looked for the identifier that indicates an application
starting phase, if the application was not yet started. Otherwise,
we look for a display event in the logs and captured their
corresponding log messages. The foreground phase can end in
one of two ways. The first option is that another application is
being displayed on the device, sending the application to the
background. The other option is that the application is being
closed. In that case we look for an identifier which indicates a
closing action.

Background — We define an application to be in the
background phase if the application is active (e.g. it was
previously started) but not being actively displayed on the
device. This phase is also interesting for the usage statistics use
case. However, it is also interesting for the defensive monitoring
use case. An application that shows a lot of activity while it is in
the background, might be indicative of malware. We detect that
an application is in the background if we encounter a display
event of a different activity (such as another application or the
home screen). The background phase can end in two ways.

The first option is that the application is being displayed again,
which means that it moves back to the foreground phase. The
second option is that the application is being closed completely
due to the process being killed or because it is being uninstalled.

Interaction — The interaction phase is characterised by an
application in the foreground, constrained on the fact that the
keyboard has to be activated. Interaction traffic can be useful
for several different reasons. If a user is actively interacting it
means that we can get more detailed usage statistics compared
to just the foreground phase. If a user needs to interract with
the Android device through the keyboard, an Android system
service called SurfaceFlinger allocates a frame buffer for the
window on which the keyboard is drawn. When the keyboard
is closed, the created surface is removed. Both of these actions
are logged in the Android system logs with specific identifiers.

Authentication — The Authentication phase is very similar
to the interaction phase in terms of it’s definition. It requires an
application to be in the foreground, and the user is interacting
with the application via the keyboard. However we have
one extra constraint for this phase, which is that the user
is authenticating themselves. Monitoring the authentication
phase has many security related motivations (e.g. it can be



used to track user activity). In general this phase is beneficial
for both the usage statistics and defensive monitoring use case.
There is no default Android process or event that indicates that
a user is logging into an application. We created a custom log
message by logging a ‘start-authentication’ identifier and the
corresponding timestamp when the login scripts were initiated.
When the login scripts were finished, we logged a ‘complete-
authentication’ identifier and the corresponding timestamp.
Once the authentication phase is complete, the state machine
transitions back to the foreground phase.

Closed — The closed phase is not neccessarily a phase
we predict, as the phase is defined as having an application
that is completely closed. This would mean that there is no
activity currently running for that application on the device
and no network data is being generated. This phase is used for
implementation purposes of our labelling system (e.g. when
an application is in the foreground, but it is being closed).
When applications are being closed, the activity manager logs a
specific message which indicates that the activity corresponding
to that application is being killed. We captured all the log
messages that contained the text ‘Activitymanager: killing’.

Another possibility is that Android is uninstalling an applica-
tion. When an application is uninstalled, we saw a specific ‘kill’
message in the logs with the reason for why that application
process was killed. For uninstalling this message was ‘pkg
uninstall’. We logged the messages that contained this message
as specifically a log message corresponding to ‘uninstalling an
application’.

III. METHODOLOGY

The goal of this work is to identify mobile application phases
in encrypted network traffic. Therefore, we first generate and
label an encrypted mobile network traffic dataset. Second we
describe our approach in which we train classifiers on labelled
network traffic and subsequently classify unlabelled network
traffic.

A. Mobile Network traffic
In our work we aim to identify application phases from a

network traffic perspective. In order to observe those application
phases we look at the network traffic produced by mobile
applications. We focus specifically on mobile devices due
to their dynamic nature. Mobile devices are much more
mobile and evolutionary compared to personal computers. More
applications are installed and devices leave and new devices
enter the network. There is also less awareness regarding the
security of mobile devices [18]. Most people have installed
firewalls and anti-virus on their personal computer, but their
mobile devices are left insecure. On top of that the majority of
the network traffic generated worldwide originates from mobile
devices [6].

Because nearly all mobile traffic is encrypted nowadays,
the network traffic should be captured in it’s encrypted form.
There are pre-existing datasets available that meet these
criteria, however in order to evaluate the effectiveness of our
classification method we require ground truth labels for the

network data. Because we introduced new application phase
labels, these pre-existing datasets do not contain labels conform
to our definintions as described in Table I. Applying such labels
manually would be very hard, if not impossible because we
do not have the system logs that correspond to that network
traffic. To overcome this issue we generate a new encrypted
mobile network dataset and label it accordingly.

1) Equipment Setup: This section provides an overview of
the setup we use to capture our network data. We first explain
each of the components and then show how they interact
with each other for the complete setup. An overview of the
equipment setup is depicted in Figure 2.

The first component in the setup is the mobile device. In this
work we focus on the Android operating system as it has the
largest market share in the world [19]. However, any mobile
device could be used if the phase identifiers are translated to
that specific platform. We connect the Android device to the
internet using a WIFI connection and we use a VPN connection
from the device to our server, which allows us to capture the
traffic that arrives on the specific interface belonging to that
VPN. This ensures that we obtain network traffic which is less
noisy. The Android device is also connected to a computer
via usb cable. On that computer the Android Debug Bridge
(ADB) is installed which enables us to send commands to the
Android device and to read log output. Even though access to
the Android device also allows us access to extra information
which could be useful for classification purposes, we do not
use any other information than the network traffic in order to
keep our method non-intrusive and scalable.

2) Data Capture Implementation: The process of data
capture is divided into three phases. During the process of
capturing data, we also programmatically inspect the Android
system logs using an Android system application called Logcat.
Logcat is a command-line tool which dumps several Android
logs containing system messages1. This tool writes specific
log messages related to changes in application phases to an
output file. An overview of the messages used to identify
the phases is listed in Table I. The first step is to start a
new network capture and commence the log dump. Next we
install an application to the device and launch that application.
This introduces installation phase traffic to our dataset. We
then start to generate network traffic by performing touch
interactions on the application using the Android monkey tool2.
This tool is able to perform random touches and swipes on the
device without the need for human interaction. We perform the
interactions automatically because it allows us to capture data
for a much larger group of applications compared to performing
the interactions manually. Finally we uninstall the application
from the phone in order to limit background noise originating
from previously installed applications. We end the capture and
record the name of the application in order to later retrace
what traffic was generated by which application. The process

1Logcat tool, https://developer.Android.com/studio/command-line/logcat,
Accessed 13-08-2019

2Android Monkey, https://developer.Android.com/studio/test/monkey.html,
Accessed 13-08-2019

https://developer.Android.com/studio/command-line/logcat
https://developer.Android.com/studio/command-line/logcat
https://developer.Android.com/studio/test/monkey.html
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Fig. 2. Schematic overview our approach. We first show the network setup
used for data capture. Next we extract information from the raw .pcap files
and apply rolling windows to the network packets. Feature extraction is then
applied on the network packet windows and labels are applied. Finally we train
a classifier on the training data which is able to classify unlabelled network
traffic.

of data capture is automated through a script and repeated for
each application.

B. Labels

The labelling process works by ‘replaying’ and processing
the Android system messages from the logs in chronological
order. To keep track of the application phases, we start
by creating two state machines for our system. These state
machines represent the Android play store and the Android
device itself. Figure 1 provides an overview of the possible
states and transitions. The state machines have an internal
timestamp which indicates the arrival time of the log entry that
was processed last. Initially no applications are registered in
the Android state machine and the Android play store is set
to closed. We set the internal timestamp of the statemachines
to the timestamp of the first observed packet and then iterate
through the network packets we captured. If the timestamp of
the observed packet is greater than the current timestamp of the
statemachines, we need to process all messages observed in the

Android logs up to the timestamp of that network packet. We are
reconstructing what the application phase of each application
on the phone looked like, at the time of receiving the network
packets.

We defined application phases in a way so that only one
phase can be active at the same time. If all entries of the
Android log are processed up to the timestamp of the packet,
we extract the name and the phase of the application which
is active at that specific moment. If the play store is active
instead of an application, we extract it’s phase. This process is
repeated for all network packets. The final output of the whole
process is a set of tuples containing all the network packets
with their corresponding application phase labels.

C. Data Preprocessing
In order for us to be able to learn classification models from

our data, we need to process our raw network captures first.
A schematic overview of the process is depicted in the ‘Data
Preprocessing’ step in Figure 2. The network data we captured
consists of pcap files. Our network data can be represented in
different forms. In this work we considered two types; network
flows and timeseries. A network flow is the combination of all
traffic that belongs to the same tcp stream, where a tcp stream is
identified by it’s 5-tuple (source IP and port, destination IP and
port and the protocol). This type of representation is currently
used in many application identification (e.g. [7], [20]), and
user action identification papers (e.g. [8], [9]). Therefore the
first step of our data proprocessing step consists of taking our
raw network captures and extracting the network packets. In
order to differentiate between incoming and outgoing packets
we used positive and negative packet lengths. Packets that
originated from the device were assigned a positive amount
of bytes and packets that were received by the device were
assigned a negative amount of bytes.

In comparison to other works, we do not try to assign classes
to identifiable pieces of network data, but we try to classify a
continuous application phase. Some application phases consist
(partially) of an absense of data (e.g. background traffic). This
means that if we classify based on flows, we can only classify
observable data and cannot take advantage of an absense of
network data. This can be seen from our dataset where there
is 5.8 times as much foreground traffic as background traffic
when using a flow perspective. This ratio changes to 2.5 when
looking at the data from a timeseries perspective. This has to
do with the fact that the background traffic is concentrated in a
small amount of flows. By looking at the packets individually
we do not limit ourselves to the information from the flow, but
we can use the individual packets.

We tested the effect of learning a classifier on the network
from a flow perspective. In order to do this, we implemented a
random forest classifier using the features as described in [9].
The trained model was not able to correctly identify background
flows and predicted the foreground class for nearly all samples
when trained using a flow perspective. To solve this issue
we take a different approach and look at our network data
from a timeseries perspective. Packets individually look very



similar, however if you look at them in sequences, patterns
start to appear in the data. To obtain sequences, we apply a
rolling window to the packets. The size of the rolling window
can be determined in several different ways. You can have a
deterministic amount of datapoints per window, or you can use
a timed rolling window. Because we want to look at sequences
of packets taking into account their timing, we used a time
based rolling window.

D. Feature Extraction
Several features have been introduced for our classification

problem. We start with some of the limitations of encrypted
network traffic and how we overcome this problem. We then
go over each of the features and the intuition behind it, and
finally show how we calculated them.

With the introduction of encryption, application data no
longer holds textually valuable information. Therefore, classi-
fication systems that rely on the payload of network packets
(i.e. deep packet inspection) are no longer compatible. This
has resulted in a shift from classification based on application
payload to meta-data of network packets. We can still look at
statistical properties of the packets we receive and identify
patterns. There are many differrent possibilities regarding
distributions of packet sizes, arrival times of packets, ratios
between sent and received packets and total amount of traffic.
In our work we look at several features that are extracted
from such statistical features. This process is described in the
‘Feature Extraction’ step in Figure 2.

Count of unique active flows — This feature consists of
the total amount of unique active flows within a time interval.
The rationale of this feature is that application phases interact
with a different number of destinations. E.g. an application in
the background might periodically request some data to update
internal processes, whereas an application in the foreground
actively requests application data, advertisement data and
possibly send data to update it’s crash analytics. We calculated
this feature as follows:

Cunique(t) =
�� F[t�↵,t+↵]

�� (1)

The formula above defines the cardinality of the set of flows
that are active within the time window defined by a packet
at timestamp t. ↵ defines the size of the window and F are
all unique network flows constrained within the interval of
timestamp t.

Count of packets — The count of packets describes how
many packets were sent in a time window. This feature can
help to describe what the distribution of packets is like. The
idea is that some application behaviour cannot be explained by
just packet length statistics, but have to be put in perspective.
For example the total sum of two sequences of packets can be
the same, however the number of packets might be different
(e.g. many small packets or few large packets).

C(t) =
�� P[t�↵,t+↵]

�� (2)

The formula above describes the cardinality of the set of packets
P within the interval of timestamp t.

Packet length statistical features — The packet length is
an important aspect in determining the patterns in network data
and is an indicator of how active an application is [9], [11], [21].
The idea is that mobile applications send and receive different
amounts of data when they are in one phase, compared to when
they are in a different phase. E.g. in the background we expect
an application to show less network activity compared to when
it is in the foreground. Therefore we calculate the minimum,
maximum, average and sum of the packet lengths. We calculate
these features for packets that were received by the device, and
packets that originated from the device separately. Therefore
we obtain 8 different statistical features for the packet lengths.

It is calculated as follows. Given a set of packets originating
from the device Psend, or received by the device Precv within
the time interval [t�↵, t+↵] determined by the rolling window
size ↵, we apply a function f(p) which calculates the statistics
for the packet window:

Bdirection(t) =
X

p2Pdirection

f(p) (3)

DNS records — The last feature we introduced are the
DNS records that correspond to the IP address of the packet.
Those records often contain information about the type of
service or application [22]. E.g. many applications request
advertisement data from a standard advertisement platform;
Google DoubleClick. This valuable information can be used
to determine the phase of an application. E.g. advertisements
are usually only presented when an application is displayed
and thus if we see an advertisement related DNS record, we
can assume the application is in the foreground. We looked
at the DNS requests and responses we encountered during
the network captures. If we observed an IP-address for which
we had previously received a DNS response, we augment the
packet with the domain of the corresponding DNS response.
If we encountered an IP address for which we did not have
a DNS record (e.g. because it was already cached before we
started capturing), we did not add a value. Access to the DNS
cache used by the device would solve this problem. In order
for us to use the DNS responses as a feature for our algorithms,
we needed to encode it to numerical values.

A well known encoding algorithm is one-hot-encoding. In
this type of encoding each unique value of the categorical
feature is encoded as a new binary feature. A problem with
this method is that if there are many different values in your
categorical feature, you end up with a lot of features. Because
our DNS feature has a high cardinality, we apply a different
type of encoding called mean target encoding [23]. In mean
target encoding you calculate the mean of the target for a value
in the categorical variable.

For example if we have the DNS record ‘g.doubleclick.com’
with 3 times the target ‘background’ (0) and 8 times the target
‘foreground’ (1), the mean target encoding for that record will
be (3 ⇤ 0 + 8 ⇤ 1)/11 = 0.72.

This provides us with a single numerical feature correspond-
ing to the DNS records. If we encounter a new value in the
test set, the value is encoded by the prior of the two classes.



E. Algorithms

All machine learning classifiers have specific aspects that
are advantageous or disadvantageous for a specific problem.
We handpicked our algorithms based on these aspects. We
discuss why we picked these algorithms and if applicable how
we iteratively improved or extended our algorithms to the final
models we used.

Learning Method — We divide machine learning algo-
rithms into three groups; supervised learning, unsupervised
learning and regression. Supervised learning is the task of
assigning a target to a new observation. It makes decisions
based on a training period where it learns a mapping between
input and a specific target. Unsupervised learning is the task
of grouping datapoints in such a way, that items in the same
group are more similar than items from a different group. The
similarity is based on the characteristics of the data, instead
of similarity defined by a target label. Finally in regression an
algorithm tries to predict a continuous variable based on a set
of input features.

In our work we are looking to assign categorical appli-
cation phases to observed network traffic and therefore our
problem is considered a classification problem. Supervised
and unsupervised learning algorithms can both be used for
classification. Generally, the main disadvantage of supervised
learning is that the classification algorithm is unable to handle
data that belongs to a class that was not present during training.
However we do not expect to see new classes in the future
and our defined application phases are application agnostic.
Therefore this disadvantage of supervised learning methods is
negligible for our problem. If we were to use unsupervised
learning we would leave out valuable information, and for this
reason, we choose to focus on supervised learning.

Naive Bayes — One type of classifiers that are often used
for machine learning problems are distribution based. The
rationale behind these classifiers is that there exists a different
probability distribution for each of the classes we seek to
identify. Naive Bayes [24] is such a classifier and predicts the
probability that a datapoint belongs to a class based on a set of
independent features. It’s simplicity makes it easy to understand
and the resulting model size is relatively independent of the
training data. It is also not sensitive to overfitting. Because we
have multiple classes, we learn a classifier for each application
phase and predict the class for which the test samples had the
highest posterior probability of belonging to each class.

Decision Tree — The decision tree model [25] is based on a
tree-like structure. These models generally consist of multiple
thresholds, often on several different features. Initially the tree
starts on one feature, and splits the data in two directions.
Each branch then is split again into two groups. This process
repeats itself until all datapoints are classified correctly, or
untill the maximum defined depth has been reached. Afterwards
optimization steps can be applied, e.g. the tree can be pruned
in order to decrease overfitting. Logically, this model is a
good candidate for our problem as we expect that there is a
measureable difference between the application phases. We

expect that the data representing our classes is too complex for
a single threshold, but can be captured by multiple thresholds.
On top of that, decision trees have the advantage that you
can perfectly retrace the steps the model performed to arrive
at it’s prediction. Decision trees however also have some
disadvantages. They can learn complex relationships, but risk
overfitting on the training set in such cases. The decision tree
therefore has a trade-off between high explainability of the
model and an upper limit on it’s complexity. One solution is
to use an ensemble of multiple decision trees, which is why
we further extend this method into a random forest.

Random Forest — Random forests [26] are a type of
ensemble classifier based on decision trees. They consist
of many different decision trees which are fit on a random
subsections of datapoints or features. Due to the random nature
of these subsections it allows the model to capture different
complexities in different sub-trees, and is also more robust
to overfitting. Random forests are able to get a smoother
distinction between two classes compared to a single decision
tree. Therefore we expect that this method is a good candidate
for our classificaion problem.

Neural Network — Neural Networks have shown to be
extremely effective at solving very complex problems such
as enabling self-driving cars and speech recognition. Due to
the ability of neural networks to learn very complex relations,
more so than most other algorithms, our work includes a neural
network classifier.

We start with a basic neural network with fully connected
cells and few hidden layers. Neural networks have input cells,
output cells, and an internal mapping between these two. The
neural network learns a set of weights that maps a certain input
to an output. The internal architecture of the neural network is
what decides what type of relations it can learn, and there are
several different configurations possible.

The initial configuration can learn mappings of individual
datapoints relatively well, however we have data which is
also temporally dependent between datapoints. The application
phases used in our work are related to each other in a temporal
fasion characterized by their prolongued period in which one
of the phases is active, while later a different phase could be
active. We therefore extend our network to a recurrent neural
network. The difference between a recurrent neural network
and a regular neural network is that a recurrent network keeps
track of a latent variable. This allows the network to introduce
information from previous samples while classifying the current
sample. We believe that keeping track of such a latent variable
may help us in predicting the correct class more efficiently.

The final addition we apply to the model is the use of
Long-Short-Term-Memory [27] (LSTM) cells. LSTM cells are
related to the neural network, but are able to learn how specific
previous samples influence the ability to predict later samples
by learning which portions of the data should be remembered
and which should be forgotten. Therefore LSTM cells would
be a very good addition to the neural network.



F. Classification order
In our classification problem we have multiple classes. There

are two methods in which we can predict multiple classes.
Some algorithms naturally handle multi-class classification
(e.g. decision trees and neural networks) where others need
to perform multiple iterations of one-class classifications (e.g.
Naive Bayes) in which we separate one class from the rest. If
we look at our application phases, there is a natural division
between the phases in this same structure, and as such the
classification of the application phases can therefore also be
divided in this way. We have depicted these divisions in
Figure 3.

The first distinction we can make is between installation
traffic and other traffic. Installation traffic is the first application
phase that stands out from the rest. It is the only application
phase that is dependent on an application (the Google play
store). If we are able to separate the installation traffic from
the other traffic we decrease the complexity of our classificaton
problem by one class. The ’other’ traffic can be further split
into two groups; foreground and background traffic. This
division occurs because the foreground traffic can be even
further divided whereas the background traffic has no further
divisions. Finally we can divide the foreground traffic into
interaction and authentication traffic. These two phases are the
most fine-grained phases of the foreground traffic.

Based on these divisions we performed two experiments. In
the first experiment we attempted to identify whether network
traffic belongs to the installation phase or to any of the other
phases. This is the first step in the process. This experiment is
also supported by it’s importance for our defensive monitoring
use case. The second experiment looked at distinguishing
foreground and background traffic, which is one step further in
the tree. This classification step is useful for the usage statistics
and defensive monitoring use cases. The other two phases are
not covered in this work, and are suggested for future work.

IV. EXPERIMENTAL EVALUATION

In this section we present the experiments settings and the
results of the tests we performed. We perform two experiments
as explained in Section III-F. The experiments are both
evaluated on our qualitative and quantitative datasets where we
apply two different techniques of splitting data into a training
and test set in order to achieve the best possible evaluation. We
first discuss the dataset on which we evaluate our approach and
then elaborate on our method of splitting data into a training
and testing set.

A. Datasets
The device we used to generate the network data for our

datasets was a Samsung Galaxy Note 4 running the latest
Android version avaiable for that device, which was 6.0.1. In
total we have captured two datasets for our experiments. One
dataset contains many applications (we will refer to this as
the quantitative dataset), but with smaller amounts of data for
each application. We also captured one dataset with a lower
amount of applications, but with larger amounts of data for
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Fig. 3. Division of classification steps. The first step divides the network
traffic into installation traffic or ’others’. The second step divides network
traffic into foreground and background traffic. Finally the foreground traffic can
be separated into interaction and subsequently authentication. We performed
experiments for the first two steps.

each application (which we will refer to as the qualitative
dataset). The rationale behind the quantitative dataset is that
we would like to test how well our method works for a
broad range of applications. However we also expect that
our system will improve when larger amounts of data are
available. Therefore we have captured our qualitative dataset.
All the applications used in the captures originate from the top
400 most popular applications as of March 29th 2019. Some
applications were left out because they were not compatible
with the Android version that our test device was running,
and some applications were removed from the Android play
store during the experiment. This has resulted in a total of 361
applications for the quantitative dataset and 65 applications
for the qualitative dataset. The full list of applications used in
each dataset is listed in the Appendix.

For the quantitative dataset each application received a
total of 4.000 actions, which were simulated in two iterations
using the Android monkeys. The actions consisted of random
taps and swipes and were constrained to stay within the
specified application (e.g. a random action which would launch
a different application is not possible). A delay of 100ms
between different types of actions were introduced to allow
the application to respond to the input it has received. In the
first iteration we did an initial launch of the application and
sent 2.000 random actions. A seed of 42 was used to allow
for reproducibility. We then simulated activation of the home
button, which sent the application into the background. The
device was left idle on the home screen for 30 seconds before
proceeding to the next iteration. In the second iteration the
application was resumed from the background and another
2.000 actions were simulated, this time with a seed of 69.

For the qualitative dataset each application received 36.000
actions which were simulated in 10 iterations. The first iteration



initiated with a launch of the application, followed by a total of
3.600 actions. After the touch events from the Android monkeys
the application was sent to the background by simulating
activation of the home button. The device was left idle for
2 minutes on the home screen. The next iterations consisted
of resuming the application from the background, simulating
another 3.600 actions and finally sending the application into
the background again.

Some applications require a user to authenticate before the
application’s intended functionality can be accessed. Because
the Android monkeys perform random touch events, the chance
of obtaining such authentication data is practically nonexistent.
Therefore to introduce authentication phase data in our network
traffic we manually created user accounts for a subset of
applications. We perform the login actions by executing a script
that sends specific touch events to the device which simulates
a user logging in. After the login procedure is completed we
execute the same routine as with every other application. We
have also indicated for which applications a login script was
made in the Appendix.

B. Train Test Split

In machine learning we train a classifier on one set of
data, and evaluate it on a different set of test data. Usually
a large initial set of data is split into two parts, which are
then used for training and testing. Standard practice is to use
a (k-fold) random split which decreases the chance of having
a model which coincidentally fits very well on the specific test
set, but which is not generaliseable to new data. We evaluate
our models by choosing a training and test set based on this
method of splitting. However, recent work [28] has suggested
that randomly splitting positively biases your model when
predicting temporally sequential data. The reason for this is
that when randomly splitting, the training set could contain
datapoints from the future, which can hold valuable information
when predicting datapoints of the past. Their work suggests
to enforce a constraint in which all datapoints in the training
set are chronologically before all datapoints in the test set to
prevent any temporal bias. In order to evaluate our models
as completely as possible, we have evaluated our algorithms
using this method of splitting data as well.

For some applications, we were not able to obtain a valid
training and test set by splitting chronologically. A valid
training and test set contains network traffic of both classes.
The reason that we are not able to obtain a valid split is that
there are some applications with very little background traffic.
Therefore if we encountered an application for which we were
not able to obtain a valid train and test split, we skipped it.
We have indicated the applications for which we were able to
get a valid split in the Appendix.

C. Evaluation metrics

There are several different metrics that can be used to
evaluate the effectiveness of a classification algorithm. These
metrics are based on four different outcomes for a prediction.
A true positive (TP) is defined as a prediction where the model

correctly predicts the positive class. A true negative (TN) is
the correct prediction of a negative class. Similarly a false
positive (FP) is a prediction where the sample belongs to
the negative class and the model predicted a positive class.
Finally the false negative (FN) is a sample that belongs to the
positive class and the model predicted the negative class. What
is considered as the positive class depends on the definition.
For our experiments we use the following definitions. In the
first experiment installation traffic is defined as the positive
class, and other traffic is the negative class. For the second
experiment, foreground traffic is considered the positive class
and background traffic the negative class. We use the following
metrics:

Accuracy — Accuracy is defined as the fraction of correctly
predicted samples of all samples. A high accuracy means that
the system is able to generally classify the samples correctly.
We calculated this using the following formula:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision — Precision is defined as the fraction of correctly
identified positive samples of all positive predicted samples. A
high precision means that the system is able to detect positives
with a low false positive rate. We calculated this using the
following formula:

Precision =
TP

TP + FP
(5)

Recall — Recall is defined as the fraction of identified
positive samples out of all positive samples. A high recall means
that the system is able to detect the majority of all positive
samples. We calculated this using the following formula:

Recall =
TP

TP + FN
(6)

F1-score — The F1-score is a weighted combination of the
recall and precision score. This score says something about the
balance between precision and recall and is often used when
both a low false positive rate and a high true positive rate are
neccessary. This is calculated as follows:

F1-Score = 2 ⇤ precision ⇤ recall
precision + recall

(7)

D. Installation phase

We evaluated to what extent our approach can distinguish
between installation and other phases. This experiment helps
us to understand the possibilities regarding the detection of
new applications, for example for the creation of an adaptive
IDS. We considered traffic belonging to either background,
foreground, interaction and authentication as one class, and
predict against the installation class. The main goal of this
experiment was to understand what the differences are between
regular mobile network traffic and installation traffic in order to
create a robust model able to distinguish the two. Therefore we
evaluate the performance of the models, as well as review the
most important features that determine the application traffic.



We set the size of the rolling window to 1 second for
this experiment (e.g. if we have a datapoint with a times-
tamp of 11:04:36.435 all datapoints within [11:04:35.935 –
11:04:36.935] are included). We started by training a decision
tree to classify our network traffic. We split our data into a
training and test set by dividing the data in half chronologically.
Afterwards we reviewed the most important features by
calculating the gini importance. This metric is defined as the
sum of the total decrease in node impurity, weighted by the
probability of reaching that node. The probability of reaching a
node is approximated by the proportion of samples that reach
that specific node.

The most important feature was the DNS records. Specifically
DNS records pointing to a SN encoded subdomain of gvt1.com.
This domain is owned and used by google for application
updating purposes3. This is an indicator that network traffic
from this domain belongs to some sort of installation process.
The sum of bytes received by the device was also an important
feature. The tree set the threshold on 3.2 million bytes received
by the device with a low average of bytes sent by the client.
This is indicating that the device was downloading a large
amount of data with little client activity. The unique count
of flows supported this finding. Sequences where less than
5.5 unique destinations were contacted were also indicative
of installation traffic. The combination of these thresholds
and features, correspond to samples where a large amount
of network traffic originate from a small number of google
domains while the client performs little activity.

We performed classification of the network traffic using the
algorithms explained in section III. The results are listed in
Table II.

The Naive Bayes method scored the least of the four algo-
rithms when looking at the overal metrics. The results improved
when splitting randomly over splitting in chronological order
for both the quantitative and qualitative captures. This is
expected as the distribution is more representative of the whole
distribution when we sample datapoints uniformly.

The decision tree and random forest were the best performing
overall algorithms. We see a notable difference between
random split training and chronological split training. This
is expected as random splitting positively biases the algorithm.
The algorithms achieves a higher precision than recall indicating
it minimizes false positives over false negatives for the
quantitative dataset. For the qualitative dataset we see a higher
recall compared to precision. This is due to the fact that there is
a different distribution of installation traffic compared to ‘other’
traffic for both datasets. The quantitative dataset contains a
larger portion of installation traffic whereas the qualitative
dataset is more skewed towards ‘other’ traffic. When the
positive class is the majority it is easier to minimize false
positives. Similarly when the positive class is the minority
false negatives are easier to minimize. Overall the algorithms
achieve a balance between the precision and recall which is

3https://www.systemtek.co.uk/2017/08/what-is-gvt1-com/, Accessed 13-08-
2019

what we aim for in the installation prediction problem. We
do not expect the installation of new applications to be the
most frequent event in a system. If it does occur, we want to
be sure to detect it, but we do not want a large amount of
false positives. We achieved a high accuracy and F1-score with
both the decision tree and random forest. The random forest
achieved a slightly higher precision compared to the decision
tree and is therefore the best performing algorithm.

For a neural network with LSTM cells we needed to keep
the sequential order of our data aligned when feeding the data
into the network. Therefore, we could not use the random
split, and only evaluated this model using the chronological
split. For the neural network with LSTM cells we created an
architecture which enforces a 10-step memory. This means
that every iteration in the model is able to utilize data from
the previous 10 samples. In order to work with the LSTM the
data was reshaped into a matrix of samples where each sample
consists of 10 adjacent datapoints. These are then sequentially
input into the model.

The LSTM performed the worst of all the algorithms. A
possible cause is that the model suffers from the imbalance in
the dataset as neural networks generally need more training
data compared to other models. For some applications there is
a very large difference in amount of traffic for installation and
others.

E. Foreground vs. Background
In this experiment we address the classification of foreground

and background traffic, which is the second step in our
classification tree. Foreground and background traffic has many
different use cases as described in Section I. We excluded any
traffic from the dataset that does not belong to the foreground
or background class. Here traffic from the interaction and
authentication class are considered to be a subset of foreground
traffic. Therefore we mapped the labels from these two classes
to the foreground class.

For this experiment we require knowledge about the appli-
cation that generated the network traffic inbeforehand because
the models are not yet able to classify the behaviour of the
applications as a single group (e.g. there is a large difference
in behaviour between a barcode scanner and a video streaming
application). There are several options on how to determine
which application generated the traffic, e.g. using an application
identification classifier such as [7]. However, application
identification using a classification method is out of scope
for this work. We solved this by determining this information
during the data capture process as described in Section III.
After separating the network data by application, we looked at
four different classifiers and evaluated their effectiveness. The
classification performance was averaged over the applications
and is listed per algorithm in Table III.

1) Naive Bayes: The first algorithm implemented for this
experiment was Naive Bayes. Naive Bayes scored the least
on all fronts for this classification problem with an average
accuracy of 83% when splitting randomly and 61% when
splitting chronologically on the quantitative dataset. The

https://www.systemtek.co.uk/2017/08/what-is-gvt1-com/


Naive Bayes method performed better for the qualitative
captures compared to the quantitative captures when splitting
chronologically. We believe this is due to the fact that the
model is able to take advantage of the extra information in the
qualitative captures. Compared to the other algorithms Naive
Bayes method scored similarly on recall but performed worse
on the precision. This can be explained by the fact that the
Naive Bayes method has a preference to predict the majority
class and therefore obtains a better recall, but lacks in precision.

2) Decision Tree: The second algorithm showed a large
improvement over the Naive Bayes method. For the decision
tree we assigned a max depth of 15, and the splitting criterion
used was the gini index. We added the max depth in order
to keep the model relatively small and decrease the learning
time of the models. The decision tree scored best out the
four algorithms when splitting in chronological order. The
model came in second place when splitting randomly for the
quantitative dataset. However for the qualitative dataset the
random forest model was able to surpass the decision tree by
a small amount. We believe there is not enough data in the
quantitative dataset to develop a very complex model, which is
why the decision tree outperformed the random forest. This also
explains why the decision tree performed less than the random
forest in the qualitative dataset. The dataset is a bit skewed
towards the foreground class where we have between 2.5 and
3 times as much foreground traffic. Because the decision tree
scores higher on the precision, we believe that the model is
able to actually distinguish between the two classes, instead of
defaulting to the majority class as in the Naive Bayes method.

3) Random Forest: After using the decision tree classifier
we also learned a random forest. For this algorithm we also
defined a max depth of 15 for the random forest model in order
to decrease the learning time. The random forest was the best
performing algorithm out of all four on accuracy, precision
and recall (except for a chronological split on quantitative
captures). In comparison to the Decision Tree, the accuracy and
precision showed a large improvement, where the recall only
showed minor improvements. This means that the ensemble
trees are able to decrease the false positives where the true
positives and false negatives stay relatively the same. The model
performed significantly better on the random split compared
to the chronological split for all metrics.

4) RNN with LSTM: The neural network performed compa-
rably with the Naive Bayes method based on accuracy. However,
the precision and recall are much lower compared to the other
algorithms. This can be explained by the fact that the RNN
mainly predicts the majority class possibly caused by the fact
that there is a class imbalance. This is also reflected in the
higher recall compared to the precision for the RNN model as
the recall is dependent on the number of false negatives.

V. DISCUSSION

In this section, we dicuss the interpretation of our findings.
We first provide some interesting notions about the algorithms
in combination with our use cases. Afterwards we compare

TABLE II
CLASSIFICATION PERFORMANCE FOR THE MODEL USED IN THE

INSTALLATION TRAFFIC EXPERIMENT

A
c
c
u

r
a

c
y

P
r
e
c
is

io
n

R
e
c
a

ll

F
-m

e
a

s
u

r
e

Q
u

a
n

ti
ta

ti
v
e

c
a

p
tu

r
e
s

Randomly split

NB 0.79 0.77 0.70 0.70
DT 0.99 0.99 0.99 0.99
RF 0.99 0.99 0.99 0.99

LSTM - - - -
Chronological split

NB 0.76 0.74 0.65 0.66
DT 0.82 0.83 0.73 0.75
RF 0.85 0.86 0.72 0.79

LSTM 0.78 0.75 0.70 0.71
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Random split

NB 0.86 0.87 0.84 0.83
DT 1.00 1.00 1.00 1.00
RF 1.00 1.00 1.00 1.00

LSTM - - - -
Chronological split

NB 0.78 0.57 0.68 0.56
DT 0.96 0.90 0.93 0.92
RF 0.96 0.92 0.93 0.93

LSTM 0.88 0.79 0.68 0.71

TABLE III
CLASSIFICATION PERFORMANCE FOR THE MODELS USED IN THE

BACKGROUND AND FOREGROUND EXPERIMENT
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Randomly split

NB 0.83 0.68 0.77 0.66
DT 0.91 0.81 0.80 0.77
RF 0.93 0.85 0.80 0.78

LSTM - - - -
Chronological split

NB 0.61 0.48 0.52 0.45
DT 0.70 0.62 0.54 0.49
RF 0.69 0.62 0.52 0.47

LSTM 0.63 0.33 0.46 0.36
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Random split

NB 0.80 0.61 0.65 0.57
DT 0.92 0.80 0.79 0.78
RF 0.93 0.84 0.79 0.79

LSTM - - - -
Chronological split

NB 0.73 0.54 0.57 0.51
DT 0.83 0.71 0.61 0.60
RF 0.84 0.74 0.61 0.60

LSTM 0.78 0.41 0.50 0.43



our work with previous work and then highlight the limitations
and suggest solutions for future work.

A. Findings
This section outlines the findings from our research. We

start with the algorithm choices for each use case and then we
elaborate on the effect of chronological splitting the dataset in
train and test. Finally we explain which method of splitting
data is more realistic and touch upon methods in which an
actor could evade our monitoring method.

1) Algorithm Choice: We have previously outlined two
different use cases for why we are interested in mobile
application phases. There are many more use cases, and each
of these have different metrics that are important. The models
we used in our experiments score differently on these metrics
and therefore we advise to choose the model based on the
metric that is important to the problem.

The Naive Bayes method and the RNN with LSTM cells
scored the lowest of all models, and favor predicting the
majority class in general. Because the accuracy and reliability
were rather low, we believe that these methods are not sufficient
to solve the problems outlined in this work. A possible solution
to improve these models is to decrease the class imbalance
through sampling.

The decision tree scored high on the accuracy and recall
score. The model requires a low time to complete training
and has a high explainability factor. Therefore if the use case
requires a quick model where a high true positive rate is desired,
the decision tree is a very good option.

When precision is more important, we advise to use a random
forest. This model requires more training time and is less
comprehensible, but achieves a higher precision and comparable
or slightly higher recall than the decision tree. It also performed
the best in the experiments we performed.

The evolutionary intrusion detection system requires a high
accuracy and precision because false positives are one of
the main problems in these systems. Therefore this use case
requires a system with a high precision and accuracy. The
random forest showed the best results on these fronts as it
achieved a high accuracy, recall and precision. Usage statistics
have a less strict requirement for a low amount of false positives,
as it’s decisions are based on statistics of large amounts of
datapoints and not individual events. Therefore this use case
mainly focuses on accuracy and the F1-score. When training
time and storage are not a problem a random forest can be
used, however the decision tree scored nearly as high as the
random forest on the F1-score.

2) Chronological Split: The models used in our experiments
improved significantly with the qualitative dataset compared to
the quantitative datasets when splitting in chronological order.
We believe this is due to the fact that we observe a larger
amount of events at the beginning of the qualitative dataset
which are then repeated later on in this dataset, whereas in the
quantitative dataset, we observe more new events later on in
the dataset. This means that our model is not (yet) optimized
for these smaller training phases, and therefore is less accurate

in predicting these events. This highlights the need for a model
that is able to handle smaller amounts of data and able to adapt
to new data and future changes as it can significantly improve
classification performance.

In our opinion, the chronological split is more realistic
compared to a random split, because the random split essentially
introduces datapoints from the future to the training set. This
is especially useful in the case for dynamic environments as
with mobile applications. We often see new datapoints, and this
factor should be taken into account during training. In order
to get a realistic expectation of how the model can perform, a
chronological split should be used. The random forest showed
the most promise when trained on the chronological training
set.

3) Evading the system: Evading monitoring detection is a
very important aspect for adversaries. Our system is based on
statistical properties of packet lengths. This makes our system
vulnerable to evasion through the introduction of noise by
obfuscation of packet lengths. Attackers could use a method
as described by Chaddad et al. [21].

B. Comparison With Other Works
To the best of our knowledge we are the first to attempt to

classify mobile application phases and therefore there is no
direct related work we can compare our method with. However
if we look at mobile application phases and what they consist of,
we can identify two main components. You can view application
phases as the resulting behaviour state for applications after
some type of user action are performed. E.g. the user action
‘send email’, is done in the ‘foreground’ phase for that specific
application. Therefore the two fields with which we compare
our work follows directly from these components.

The first field we compare our work with is user action
identification and it is the most similar to our work. User
actions are usually specific to a certain application. This means
that they are generally not applicable to other applications.
Our mobile application phases are application agnostic and
therefore can be generalised over the entire mobile application
landscape. This generalisation from user actions to application
phases does decrease the granularity of the output information
and for some use cases a different method is better suited
than ours, especially when detailed user information is crucial
(e.g. user profiling or user action-based IDS). Another benefit
of application phases compared to user actions is that even
though we use a supervised learning classifier, new phases
are much less likely to be introduced in comparison to user
actions. In terms of classification performance Conti et al. [8]
achieves slightly better results to that of ours. Their method
classifies user actions for seven different applications and
achieves accuracy and F1-score between 90 and 100%.

Saltaformaggio et al. [9] also performs classification of user
actions in encrypted mobile network traffic. Their method
does not rely on prior-knowledge of which application the
network traffic originated from, which is a benefit. Their method
achieves on average an accuracy of 74% with precision and
recall between 33% and 100%.



The second similar group are application identification
methods. Both fields rely on the identification of network traffic.
Mobile application identification methods usually rely on flow
based prediction, such as in Taylor et al. [7]. They created
AppScanner which identifies mobile applications based on a
set of fingerprints created from encrypted network traffic. Their
fingerprints are based on statistical features of aggregated flows.
We have shown that such flow-based methods are not very
effective in classifying mobile application phases. Their work
achieves an accuracy between 77% and 96% when predicting
applications.

C. Limitations
The main limitation of our work is lack of realistic network

data. The network traffic used for this experiment was generated
using random interactions by Android monkeys, performed in a
in a predictable manner. We always performed a set of actions,
then paused for a pre-determined amount of time, and resumed.
Another factor concerning the realism of the network data is
caused by the randomness in the interactions. Because they are
generated randomly they may not fully resemble human-like
interaction. E.g. some applications also require interactions in
a specific sequence or external factors, in order to execute their
inteded functionality. A barcode scanner requires barcodes to
execute its functionality, and messaging apps require a second
actor to interact with.

One of the features that we use for our classification is based
on the DNS records. The DNS records may change, or we
could see a completely new DNS record. If we have no prior
knowledge to which class these changed or new records belong
we cannot use the information to classify. Therefore any new
DNS record that was not present in the training of the model,
will be futile. In a real world setting we may have no access
to the DNS records. In such case, we could perform a reverse
DNS lookup to obtain the record.

D. Future Work
More realistic data could be gathered by using less pre-

dictable sequences. For example we could replace the pause
inbetween two interaction sequences to a random amount to
introduce long and short background sequences. We could also
group applications based on how they are used in real life. For
example, if you look at how messaging applications are used in
comparison to games, we expect to see a different use pattern.
Messaging applications are used for a short time, then moved
to the background. This process repeats very often. Games on
the other hand, are most likely to be used for a longer period,
and then moved to the background for a longer period as well.
This information could be incorporated into the system.

Realistic authentication data is very hard to obtain, because
most people only login once every so often, and stay logged
in. Therefore to obtain realistic data for this application phase
many different users are required.

A possible solution for the small amount of labeled data is
to use an idea by D. Mocanu and E. Mocanu [29]. Their idea
involves one-shot or few-shot learning to decrease the need

for a large amount of labeled training samples. They learn a
mixture model of variational auto-encoders which automatically
incorporates new predicted data samples after an initial learning
period, and then re-trains the model using the new datapoints.
This would allow the system to develop over time and only
needs a small initial training phase.

We were not able to identify interaction and authentication
traffic in our work. The main problem is that we have very little
interaction and authentication data which makes it incredibly
hard to learn patterns from this data. In relation to the previous
statement on how to improve the realism of the dataset we
also advise to look at the possibility of incorporating more
interaction and authentication data. For example data which
includes people chatting via a messaging application would
introduce a lot of interaction traffic. Another option could be
using something like a text-processing application (e.g. notes
or email) as these applications also use the keyboard.

Finally one of the problems we still face is that we
need to learn a model for each application, as there is a
difference in network behaviour between (some) applications.
The application phases are application agnostic, but the model
is in it’s current state not yet able to classify the network
traffic using just a single model. In order to create a robust and
easy to understand system, we would like to limit the amount
of models used, by grouping similar applications together.
Therefore one of the ideas we have is the combination of a
clustering method that groups applications into several clusters
of similar applications and then use a supervised method to
learn a model for each of those groups. This would allow
the system to classify completely unknown applications as
well, by first identifying the cluster it is most similar to, and
then classifying it’s traffic with the model that belongs to that
cluster.

VI. RELATED WORK

Mobile application phase detection is a new area of research.
There are some related fields, for which we will highlight
the most important work in this section. Similar works can
be divided into two main groups. Application identification
is an area of research in which the goal is to identify which
application has generated observed network traffic. The second
group consists of works that try to identify specific user actions.
User actions range from identifying the act of reading a twitter
message to browsing through instagram photos and listening
to music. We will discuss some of the most important related
works for each of these categories.

A. Application identification
There are several works on application identification. Taylor

et al. [7] created AppScanner which identifies mobile appli-
cations based on a set of fingerprints created from encrypted
network traffic. Their fingerprints are based on statistical
features of aggregated flows. Subsequently AppScanner tries to
identify these fingerprints in live network traffic using a SVM.

AppScanner has several limitations, as it only announces
a prediction if their model’s confidence is high enough.



Additional research into AppScanner [20] has shown that the
system struggles with ambiguous flows (traffic that is similar
across applications typically due to third-party library usage
across multiple applications). It also has reduced accuracy over
time and creates fingerprints that are non-transferable between
distinct devices.

Zhao et al. [22] focus on identifying applications in an
open world setting. They try to make their system capable of
handling unknown traffic by classifying applications in three
steps. Their work classifies traffic into a known or unkown
category first to limit wrong predictions on unkown traffic.
Subsequently they divide traffic into ambiguous or target traffic
and finally try to identify the target application of the traffic.

Rezaei et al. [30] aim to identify google applications in
encrypted network traffic. Their method focuses on pre-training
an algorithm on a set of generic traffic and re-train on a specific
small set of target network traffic in order to limited the need
of labeled network traffic. Their method is only capable of
classifying a small set of applications.

Papadogiannaki et al. [11] focus on a real-time pattern
matching system for packet lengths to predict the originating
service that generated the network traffic. They aim to identify
services such as messaging, voice calls and video chats for
Facebook, Skype, Viber and WhatsApp. The specific order and
size of packets are however dependent on network conditions
and therefore this method might not be very reliable in practice.

B. User action identification
Conti et al. [8] try to classify pre-defined user actions such

as sending an email in the Gmail application, opening a user
profile or sending a direct message in the Facebook application.
Their results show that the user actions can be identified with
precision of over 90% on encrypted network traffic using
a random forest. The main limitation of this research is its
reliance on supervised learning, which means that only the
pre-defined user actions can be identified. Secondly, they are
looking for actions of pre-determined length which simplifies
the problem.

Saltaformaggio et al. [9] attempt to classify fine grained
user activities from eavesdropped encrypted network traffic
with their method called Netscope. Netscope classifies without
the need of prior knowledge of which application generated
the network traffic. Netscope uses a multi-class SVM for it’s
predictions and achieves an average precision and recall of
78.04% and 76.04% respectively. There are very high deviations
ranging from 100% to often below 50% with a minimum of
36% which indicates that this method is not very reliable.

Grolman et al. [13] look to classify user actions in mobile
applications for several different settings. Mobile environments
change frequently and they came up with a method to classify
user actions by minimizing the need to re-train their model
for a new device or different application version. They do this
by transfering some of the parameters of the old model to the
new model. Their method assumes knowledge that the there
is a difference between the traffic on which the model was
trained and the target traffic which is not trivial. Their method

is also vulnerable to model pollution as they include unlabeled
training samples in their transfer learning.

VII. CONCLUSION

In this work we have formally defined seven novel mobile
application phases and made a first attempt at identifying these
application phases in encrypted network traffic. We generated
two datasets for which we captured mobile network traffic of
361 mobile applications and show how to obtain the application
phase ground truth for the network traffic. We also highlighted
that the realism of the datasets used was the main limitation
of this work and proposed several solutions that may improve
upon this and therefore could improve our system.

We proposed a set of features and a classification method
to identify installation traffic from everyday application traffic.
We evaluated this approach on these new datasets and show
that is is able to achieve over 99% accuracy with a perfect
F1-score. We also show that several different classifiers are
able to distinguish foreground and background traffic. The best
performing algorithm was a random forest classifier and was
able to classify network traffic with 93% accuracy and a 0.79
F1-score.

The results of our experiments show a lot of promise for our
previously explained use cases. The identification of installation
traffic could provide a great opportunity for adaptive systems
such as an evolutionary IDS and other defensive monitoring
systems, and we have shown that we can accurately identify
this type of traffic. Foreground and background traffic could
be useful for both usage statistics analysis and defensive
monitoring and we were able to identify this traffic with a high
accuracy.

REFERENCES

[1] R. Bortolameotti, T. van Ede, M. Caselli, M. H. Everts, P. Hartel,
R. Hofstede, W. Jonker, and A. Peter, “Decanter: Detection of anomalous
outbound http traffic by passive application fingerprinting,” in Proceedings
of the 33rd Annual Computer Security Applications Conference, ser.
ACSAC 2017. New York, NY, USA: ACM, 2017, pp. 373–386.
[Online]. Available: http://doi.acm.org/10.1145/3134600.3134605

[2] J. J. G. Adeva and J. M. P. Atxa, “Intrusion detection in web
applications using text mining,” Engineering Applications of Artificial
Intelligence, vol. 20, no. 4, pp. 555 – 566, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197606001412

[3] S. Zander, T. Nguyen, and G. Armitage, “Automated traffic classification
and application identification using machine learning,” in The IEEE
Conference on Local Computer Networks 30th Anniversary (LCN’05)l,
Nov 2005, pp. 250–257.

[4] B. Park, Y. J. Won, M. Kim, and J. W. Hong, “Towards automated
application signature generation for traffic identification,” in NOMS 2008
- 2008 IEEE Network Operations and Management Symposium, April
2008, pp. 160–167.

[5] G. Alotibi, N. Clarke, Fudong Li, and S. Furnell, “User profiling
from network traffic via novel application-level interactions,” in 2016
11th International Conference for Internet Technology and Secured
Transactions (ICITST), Dec 2016, pp. 279–285.

[6] “Desktop vs Mobile vs Tablet Market Share Worldwide,” https://gs.
statcounter.com/platform-market-share/desktop-mobile-tablet, Accessed:
04-09-2019.

[7] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “AppScanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” Proceedings - 2016 IEEE European Symposium on Security and
Privacy, EURO S and P 2016, pp. 439–454, 2016.

http://doi.acm.org/10.1145/3134600.3134605
http://www.sciencedirect.com/science/article/pii/S0952197606001412
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet


[8] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
Android Encrypted Network Traffic to Identify User Actions,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 1, pp.
114–125, 2016.

[9] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on Fine-Grained User Activities
Within Smartphone Apps Over Encrypted Network Traffic,” Proceedings
of the 10th USENIX Workshop on Offensive Technologies (WOOT 2016),
2016. [Online]. Available: https://www.usenix.org/conference/woot16/
workshop-program/presentation/saltaformaggio

[10] P. Casas, P. Fiadino, and A. D’Alconzo, “When Smartphones Become
the Enemy: Unveiling Mobile Apps Anomalies Through Clustering
Techniques,” Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges, no. 1, pp. 19–24, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2980055.2980058

[11] E. Papadogiannaki, C. Halevidis, P. Akritidis, and L. Koromilas,
“OTTer: A scalable high-resolution encrypted traffic identification engine,”
in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2018, vol. 11050 LNCS, no. 1, pp. 315–334. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-00470-5{ }15

[12] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and A. S. Uluagac, “Peek-a-Boo: I see
your smart home activities, even encrypted!” 2018. [Online]. Available:
http://arxiv.org/abs/1808.02741

[13] E. Grolman, A. Finkelshtein, R. Puzis, A. Shabtai, G. Celniker, Z. Katzir,
and L. Rosenfeld, “Transfer learning for user action identication in mobile
apps via encrypted traffic analysis,” IEEE Intelligent Systems, vol. 33,
no. 2, pp. 40–53, 2018.
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APPENDIX

App name Quantitative
captures

Qualitative
captures

Login
script Chronologically splittable

pedometer.stepcounter.calorieburner.pedometerforwalking X X
net.wooga.junes journey hidden object mystery game X X
com.budgestudios.googleplay.MyLittlePonyPocketPonies X
com.budgestudios.googleplay.BarbieDreamhouse X
com.crossword.bible.cookies.find.english X X
com.word.game.fun.puzzle.prison.escape.captain X X
com.tutotoons.app.jungleanimalhairsalon2.free X X
com.themobilecompany.ANWBWegenwacht X X
losebellyfat.flatstomach.absworkout.fatburning X X
com.bestringtonesapps.freeringtonesforandroid X X
com.timuzsolutions.prisonbreaksurvivalgames X
com.daily.zodiac.signs.horoscope.palmistry X X
com.superbinogo.jungleboyadventure X X
com.tutotoons.app.mybabyunicorn.free X
tv.twitch.android.app X X X
com.facebook.mlite X X X
com.facebook.lite X X X
com.twitter.android X X X
com.facebook.katana X X X X
com.instagram.android X X X X
com.pinterest X X X
com.spotify.music X X X X
com.custom.pickmeup X X
com.google.android.apps.youtube.music X X X
com.sausageflip.game X X X
com.alibaba.aliexpresshd X X X
game.free.rise.hole.up.io.love.balls.toss.up X X X
com.etermax.trivia.preguntados2 X X X
app.nl.socialdeal X X X
com.microsoft.office.outlook X X X
nl.voetbaltv.app X X
com.youmusic.magictiles X X X
com.snapchat.android X X X
com.playrix.gardenscapes X X X
com.ghost.sibyl X X X
com.playrix.homescapes X X X
nl.marktplaats.android X X X
com.zhiliaoapp.musically X X X
com.colorup.game X X X
com.contextlogic.wish X X X
nl.ns.android.activity X X X
com.sec.android.easyMover X X X
com.roblox.client X X X
com.h8games.helixjump X X X
com.google.android.apps.chromecast.app X X X
com.kiloo.subwaysurf X X X

Continued on next page
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App name Quantitative
captures

Qualitative
captures Login script Chronologically splittable

io.voodoo.crowdcity X X X
com.agminstruments.drumpadmachine X X X
com.dhgate.buyermob X X X
com.playgendary.tanks X X
com.takeaway.android X X X
io.voodoo.paper2 X X X
com.supercell.brawlstars X X X
com.marsvard.stickermakerforwhatsapp X X X
com.app.tgtg X X X
com.google.android.play.games X X X
com.lgi.ziggotv X X X
com.zplay.Mrbow X X X
nl.uitzendinggemist X X X
com.playgendary.polyspherecoolgame X X
com.playgendary.kickthebuddy X X X
com.playrix.township X X
com.codigames.market.idle.tycoon X X X
com.king.petrescuepatrolsaga X X
de.zalando.mobile X X X
nl.wehkamp.shop X X X
nl.nos.app X X X
de.stocard.stocard X X X
com.king.candycrushsaga X X X
com.nextdoor X X X
com.fugo.wow X X X
com.casox.Popsmachine X X X
com.google.android.apps.translate X X X
nl.flitsmeister X X X
com.spacegame.homedesign X X X
com.gpp.sushibar X X X
com.google.android.apps.youtube.kids X X X
app.kryds.android X X X
com.mcdonalds.mobileapp X X X
com.lafourchette.lafourchette X X X
tw.mobileapp.qrcode.banner X X X
com.easybrain.sudoku.android X X
com.bol.shop X X
com.brokenreality.planemerger.android X
se.ace.fishinc X X
com.parkmobile X
com.puzzles.game.halloweeen.one X X
com.bitstrips.imoji X X
nl.tpp.mobile.android X X
com.nbstudio.towercolor X X
com.picnic.android X X
com.iposedon.bricksbreakerballs X X
com.playgendary.tom X X
com.clement.ballmayhem X X
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com.booking X X
com.outfit7.mytalkingtom2 X X
com.vova.android X X
nl.mrticket.jumbo.dagjeuit X X
nl.negentwee X X
nl.afas.pocket2 X X
com.snow.drift X
com.mindy.grap1 X
com.pacybits.fut19draft X
com.easybrain.chamy X X
com.hbwares.wordfeud.free X X
com.veraxen.jigsawpuzzlescollectionhd X X
camera.photo.beauty.editor X
fm.castbox.audiobook.radio.podcast X X
com.hy.sfacer X X
com.outfit7.talkingtomgoldrun X
com.google.android.apps.docs.editors.docs X
com.pdf.viewer.pdftool.reader.document X X
com.appidea.pixelswordfishio X X
nl.sanomamedia.android.nu X X
com.waze X X
pl.lukok.draughts X X
com.pixel.art.coloring.color.number X X
com.tinder X X
com.nintendo.zara X X
air.com.hypah.io.slither X
com.gramgames.mergedragons X X
com.emoticon.screen.home.launcher X X
com.digidust.elokence.akinator.freemium X X
com.nickappintl.android.nickelodeon X X
com.google.android.apps.googleassistant X X
com.adobe.reader X X
com.amanotes.classicalpiano X X
com.upjers.zoo2animalpark X
com.parking.game X
com.funda.two X X
qr.code.barcode.maker.scanner.reader X X
com.zzkko X X
com.gamma.scan X X
be.persgroep.android.news.mobilead X X
com.NikSanTech.FireDots3D X X
nl.dekamarkt.smaakmakers X X
com.linkedin.android X X
future.me.old.baby.astrology X X
com.samsung.android.voc X X
com.riseup.game X
nl.tvohkids.android X X
com.google.earth X X
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com.supercell.hayday X X
nl.efteling.android X X
com.supportware.Buienradar X X
com.antivirus X X
abs.workout.sixparkabs.fit X X
com.akzonobel.nl.flexa X X
chimp.works.td4 X
com.alibaba.intl.android.apps.poseidon X
com.hm.goe X X
com.azurinteractive.humanevolution X X
com.paint.number.davinci X X
com.discord X X
nl.pathe.thuis X X
com.ubercab X X
com.joom X X
com.google.android.apps.authenticator2 X X
com.icemobile.jumboclient X X
com.ea.gp.fifamobile X
com.zerodesktop.appdetox.qualitytime X X
com.xs2theworld.voetballNL X X
com.ketchapp.screamhero X X
net.zedge.android X X
me.pou.app X X
com.picsart.studio X X
com.reddit.frontpage X X
com.cmplay.tiles2 X X
com.brokenreality.bigcapitalist3.android X X
com.oneshoe.yellowbrick X X
bubbleshooter.orig X
com.differencetenderwhite.skirt X X
com.masomo.headball2 X X
com.supertapx.lovedots X
com.neonplay.casualrollersplat2 X
com.duolingo X X
com.nianticlabs.pokemongo X X
com.microsoft.office.word X X
com.soundcloud.android X X
nl.VakantieVeilingen.android X X
com.mgc.runnergame X X
com.fgol.HungrySharkEvolution X
nl.telegraaf X X
com.fluffyfairygames.idleminertycoon X X
com.supercell.clashroyale X X
com.outfit7.mytalkingangelafree X
com.ea.gp.simsmobile X X
com.candywriter.bitlife X
com.life360.android.safetymapd X X
de.autodoc.gmbh X X
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nl.tellow.app X X
com.icemobile.albertheijn X X
com.bigframes.color road X X
com.mobilityware.spider X X
com.whaleapp.hiddenhotel X X
com.matteljv.uno X X
com.google.android.calendar X X
no.mobitroll.kahoot.android X X
com.geishatokyo.snowballio X X
nl.hema.mobiel X X
com.miniclip.eightballpool X X
com.colorswitch.switch2 X X
com.polarsteps X X
com.fingersoft.hillclimb X X
com.game5mobile.lineandwater X X
com.popreach.dumbways X X
com.ikea.kompis X X
com.planetart.fpnl X X
com.autoscout24 X X
com.myklarnamobile X X
nl.onlineretailservice.reclamefolderandroid X X
com.badoo.mobile X X
com.skype.raider X X
com.sec.android.app.shealth X
com.flashlight.torch.screenlight.party X X
com.kingsgroup.ww2 X X
com.etermax.preguntados.lite X X
com.miniclip.basketballstars X
com.yottagames.mafiawar X X
nl.skyradiogroup.skyradio X X
com.dropdom.blockpuzzle.hwwgame X X
com.ketchapp.mrgun X X
games.onebutton.golfbattle X
martonline.elkedaggratis X X
com.FDGEntertainment.redball4.gp X X
com.outfit7.mytalkingtomfree X
com.jafolders.allefolders X
com.firsttouchgames.story X X
nl.oberon.tmobile.my X X
com.pixelberrystudios.choices X X
com.samsung.android.oneconnect X X
com.pnixgames.minigolfking X X
video.like X X
com.payconiq.customers X X
nl.rtl.rtlnieuws X
com.google.android.apps.photos X X
light.crown.face.camera X X
com.crazylabs.snake.colors X X
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com.supercell.clashofclans X X
com.fungames.blockcraft X X
com.freegame.newvehicle X X
com.two.bros.games.dot.to.dot X X
photocollage.photoeditor.collagemaker X X
com.lemongame.klondike.solitaire X X
com.bello.shootingworld X X
com.dvloper.granny X
com.paypal.android.p2pmobile X X
tv.peel.mobile.app X X
com.colorphone.theme.dialer X
com.surpax.ledflashlight.panel X X
evolution.music.tiles.challenge X
org.mozilla.firefox X
com.amazon.aa X
com.duapps.recorder X X
net.rention.mind.skillz X X
nl.achmea.interpolis.wegwijsvr X X
com.microsoft.office.onenote X X
app.qrcode X X
com.ftw and co.happn X X
com.biglime.cookingmadness X X
com.sonos.acr X X
com.nordcurrent.canteenhd X
com.microsoft.office.excel X X
com.aim.racing X X
com.gameloft.android.ANMP.GloftDMHM X X
com.gpp.beefactory X X
com.instagram.layout X X
org.videolan.vlc X X
com.hello.CakeCookingShop X X
com.instagram.boomerang X X
eu.coolblue.shop X X
com.myfitnesspal.android X X
com.tellurionmobile.realmcraft X X
com.strava X X
game.bubble.shooter.dragon.pop X
com.spilgames.UphillRush X X
com.unitedwardrobe.app X X
com.futureplay.boots X X
com.kpn.epg X X
com.halfbrick.fruitninjafree X X
de.aboutyou.mobile.app X X
com.magisto X X
com.moonactive.coinmaster X X
com.airbnb.android X X
nl.squla.unitab X X
com.dropbox.android X
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com.eyu.piano X X
digifit.virtuagym.foodtracker X X
com.inditex.zara X X
com.miniclip.footballstrike X
com.playgendary.sportmasterstwo X X
bumperbattle.io.game X X
com.ubercab.eats X X
eu.socialschools.socialschools X X
wastickerapps.stickersforwhatsapp X X
com.xs2theworld.weeronline X X
com.hp.printercontrol X X
com.imo.android.imoim X X
nl.tls.ovchip X
com.amanotes.beathopper X X
com.amazon.mShop.android.shopping X X
com.miniclip.bowmasters X
com.yazio.android X X
com.zeptolab.ctr.ads X X
com.apple.movetoios X X
com.rovio.dream X X
com.aa.extreme.city.gt.car.stunts X
com.piriform.ccleaner X X
com.futureplay.minecraft X X
com.crazylabs.lady.bug X X
com.microsoft.office.powerpoint X X
com.themobilecompany.Onderweg X X
com.getsomeheadspace.android X X
com.europosit.pixelcoloring X X
com.camerasideas.trimmer X X
com.gamebasics.osm X X
com.lego.bricksmore X X
com.billiards.city.pool.nation.club X
de.flixbus.app X X
com.nordvpn.android X X
com.futureplay.battleground X X
com.groupon X X
com.google.android.music X X
nl.kruidvat.voordeelkaart X
com.iscoolentertainment.snc X
com.fws.plantsnap2 X X
com.aqupepgames.projectpepe X
com.atpc X X
io.voodoo.holeio X X
com.fungames.sniper3d X X
com.roller.paint X X
de.zalando.lounge X X
com.ea.games.r3 row X X
com.playappking.busrush2 X
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de.bonprix X X
com.jetstartgames.chess X
com.pang.candyjewel.google X
com.microsoft.launcher X X
com.mtvn.Nickelodeon.GameOn X X
com.flightradar24free X X
com.motionvolt.flipbounce X X
com.ubisoft.runeguard X
com.whatsapp X X
nl.rijksoverheid.digid.pub X X
nl.ah.insecten X
com.abnamro.nl.tikkie X X
com.netflix.mediaclient X
nl.belastingdienst.maa2018.pub X X
com.ing.mobile X X
nl.rijksoverheid.mbb.pub X X
com.shazam.android X X
nl.rtl.videoland X
nl.rabomobiel X X
com.abnamro.nl.mobile.payments X X
com.azure.authenticator X X
com.tencent.ig X X
org.telegram.messenger X X
com.igg.android.lordsmobile X X
nl.kpn.mijn X X
com.wetransfer.app.live X X
com.vodafone.android X X
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