

Porting tree-based
hash table compression to

GPGPU model checking
master’s thesis

by Danny Bergsma

University of Twente, Enschede, The Netherlands

Electrical Engineering, Mathematics & Computer Science (EEMCS)

Formal Methods & Tools (FMT)

graduation committee:

prof.dr. M. Huisman

dr.ing. A.J. Wijs (TU/e)

dr.ir. S.J.C. Joosten

M. Safari MSc

Enschede, 11 December 2019

Table of Contents

Voorwoord (preface) 3

Abstract 4

1. Introduction 5

1.1 Contribution 6

1.2 Overview of thesis 8

2. Background 9

2.1 Model checking 9

2.2 GPGPU programming 11

2.3 Hash functions 18

3. Previous work: lockless hash tables 19

3.1 Uncompressed hash table 19

3.2 Tree-based compression 25

4. Overview of project 29

4.1 Test program 32

4.2 Test setup 32

5. Uncompressed GPU hash table 35

5.1 Stand-alone implementation 35

5.2 Performance evaluation (random data) 41

5.3 Conclusions 51

6. Compressed GPU hash table (recursive) 53

6.1 Stand-alone implementation 53

6.2 Performance evaluation (random data) 58

6.3 Optimised implementations 68

6.4 Conclusions 72

7. Compressed GPU hash table (non-recursive) 74

7.1 Stand-alone implementation 74

7.2 Performance evaluation (random data) 79

8. Performance evaluation: in practice 81

8.1 Summary of practical random-data experiments 81

8.2 Real-world data 82

9. Conclusions 84

9.1 Future work 84

References 86

Appendix A: random data input

Appendix B: experimental data

2

Voorwoord (preface)

Het schrijven van deze scriptie heeft mij veel dingen geleerd: Hiervoor had ik nooit

serieus met C gewerkt. Ook CUDA en GPGPU programmeren in het algemeen waren

nieuw voor mij. Het boek ‘Professional CUDA C Programming’ van John Cheng, Max

Grossman en Ty McKercher leerde je, net als bij de propedeusevakken ‘Programmeren 1’

en ‘Programmeren 2’, vooral de ideeën en concepten van GPGPU programmeren en

“toevallig” ook nog CUDA C (analoog aan object-georiënteerd programmeren en Java bij

de genoemde vakken). Gaandeweg kreeg ik steeds beter de essentie van GPGPU

programmeren door.

Het project was groter dan welk project ik ook eerder gedaan had. Het managen van alle

informatie is dan lastig, zeker als je het grotendeels alleen moet doen; je wilt zoveel

vertellen en bent bang iets te vergeten. En je lezer zit niet zo in de materie als jij…

Op het laatst bleek dat er serieuze tekortkomingen zaten in de code waarop ik had

voortgeborduurd. Daardoor waren de resultaten van de experimenten niet meer valide.

Het verhelpen van de tekortkomingen en vooral het herhalen van al die experimenten

vergden veel doorzettingsvermogen en tijd.

Maar nu ligt hij er, de scriptie. Af en wel, voor zover dat kan. Maar voor nu af genoeg.

Met deze scriptie komt er ook een einde aan mijn masterstudie en mijn leven aan de

Universiteit van Twente. Het heeft een tijd geduurd, met uitstapjes naar Groningen en

Utrecht. Maar elke keer kwam ik terug naar Enschede. Niet zozeer voor de stad, maar

meer voor de sfeer van de universiteit en de opleiding. Beide relatief klein, wat betekent

dat je meer je best moet doen om aandacht te trekken van (toekomstige) studenten.

Ook nieuw, en niet zo suf als sommige andere universiteiten. En er lijkt altijd wel ergens

een nieuw gebouw te worden neergezet of te worden verbouwd…

Het lukte me nooit om goed te integreren. In het midden van het collegejaar kwam ik

vanuit Friesland, na eerst toch maar enkele maanden naar Groningen te zijn gegaan.

Mijn propedeuse haalde ik zo snel als mogelijk was, maar daarna begonnen de

moeilijkheden. Na twee jaar pakte ik mijn bachelorstudie weer op. Aan het eind daarvan

ontmoette ik eindelijk een groepje met wie het wel goed klikte, ook op inhoudelijk

gebied; daarvóór trok ik een groepsopdracht meestal maar naar me toe, ook omdat mijn

ideeën over gewenst niveau geregeld anders waren.

Na een mislukt avontuur in Utrecht, heb ik me door de master in Enschede heen

geworsteld. Inhoudelijk vond ik het wel interessant, zeker de vakken van mijn

specialisatie, al had ik soms het gevoel dat het nog wel wat dieper mocht gaan. Het

afronden duurde echter lang, heel lang. De motivatie was geregeld weg en ik gedij beter

in een meer schoolse omgeving.

Nu begint een nieuwe fase in mijn leven. Het trage afronden stokte niet alleen mijn

studie, maar ook andere ontwikkelingen. Deze nieuwe fase valt samen met een nieuw

kalenderjaar, 2020. Ook als maar een gedeelte van de verwachtingen en wensen voor

2020 uitkomen, zal dit jaar een keerpunt vormen. Een keerpunt naar meer

verbondenheid, ontplooiing en ervaring.

Acknowledgements

I would like to thank my graduation committee, and especially Marieke Huisman and

Anton Wijs, for their feedback and support.

3

Abstract

To reduce the costs of faulty software, methods to improve software quality are very

popular nowadays. One of these methods is model checking: verifying the functional

correctness of the model of a hardware or software system. The model implies a state

space, which consists of all possible states of the system and all possible transitions

between them.

For complex systems, the number of states can be millions or even more. Consequently,

exploring the state space and checking that the system satisfies its specification is

computationally very intensive. Multiple model checking algorithms have been adapted

to make use of the massive parallelism of GPUs by GPGPU programming, resulting in

spectacular performance improvements.

One such implementation is the GPU-based model checker GPUexplore. GPUexplore uses

a hash table for the shared store of visited states in the model checking process.

Considering the spectacular speedups, this hash table is now the bottleneck, as GPU

memory size is relatively limited. Compression of the hash table can be used to reduce

space requirements.

But we first tackled two large flaws in GPUexplore’s uncompressed hash table: replication

of states in the hash table and a hash function that resulted in the inferior distribution of

states across the table. We successfully designed and implemented a replication-free

hash table with a probabilistic-optimal distribution, whose performance was equal to or

even better than the flawed implementation.

Subsequently, we have successfully ported an existing tree-based hash table

compression algorithm designed for multi-core CPUs to stand-alone GPGPU hash tables.

The recursion in the compression algorithm was the main challenge, as this is

implemented differently on GPUs than on CPUs and impacts performance. We made

multiple improvements to the original implementation, aimed at reducing recursive

overhead. Moreover, we designed and implemented a solution without any recursion at

all, consisting of fifteen variants that differ in aspects related to GPU performance.

We used parameterised random data input and state sequences extracted from

real-world models, consisting of up to 375M states, for performance analysis: We

exhaustively examined the impact of different GPU, input and hash table parameters on

performance, both uncompressed and compressed, including the improved versions. We

used the results to find optimal settings for each input/program combination, which

enabled a fair evaluation of compression overhead and for measuring the performance

impact of the improvements.

Ultimately, there was still compression overhead, but very limited, up to a 3.8x

slowdown, corresponding to the scattered memory accesses needed for tree-based

compression. Considering the spectacular speedups of GPU model checking, the

maximum slowdown of 3.8x would not be an issue for integrating compression into GPU

model checkers, which would enable checking bigger models and models with data. As

integration enables possibilities for reducing recursive overhead and the amount of

required memory accesses, compression overhead may then even reduce.

Now, there is only one step left: integrating our compression algorithm into a GPU-based

model checker, ​e.g.​, into GPUexplore, and examining whether the results of our

performance analysis also apply when integrated.

4

1. Introduction

Writing correct software is not an easy task, especially if concurrency is involved. Faulty

software costs billions of dollars a year: costs to remove the bugs, loss of productivity by

users of the software, ​et cetera​. As software is getting more complex and customers

demand higher quality software, methods to improve the reliability of software are very

popular nowadays.

One of the approaches is the use of formal methods: by applying mathematical methods,

e.g.​, logic, the correct functioning of software can be proven. Whereas testing can only

show the presence of bugs, not their absence (quoting Dijkstra), formal methods can. In

our project, we will use one such a method: model checking.

In model checking [​1]​, a model of the system under consideration is given by a formal

description (specification) of its (concurrent) behaviour. In addition, properties that the

system should satisfy, are formalised. Then the model checker can be used to verify that

the model meets its functional requirements (or does not).

The model implies a state space, which consists of all reachable states of the system and

all possible transitions between them. It is constructed by starting from the initial state

and determining what successor states are reachable by applying one of the possible

transitions from this initial state; this process, called reachability, is repeated for those

successor states, repeated for the successor states of those successor states, ​et cetera​.
As an example, consider a traffic light with three states: ‘red’, ‘yellow’ and ‘green’.

Possible transitions are from ‘red’ to ‘green’, from ‘green’ to ‘yellow’ and from ‘yellow’ to

‘red’. Several traffic lights can be combined to compose a more complex system. One of

the properties of interest in this complex system is the absence of an overall system

state where two (or more) traffic lights are in their ‘green’ state. Model checking can be

used to prove that such a state is not reachable from the initial state.

For complex systems, the state space may consist of millions or even more states.

Consequently, constructing this state space and verifying the validity of required system

properties is computationally very demanding and also very memory-intensive. As

performance improvements for Central Processing Units (CPUs) to execute sequential

code have stalled [​2​], model checkers have been developed that make efficient use of

the multiple cores of modern CPUs by parallelising core model checking algorithms [​3​,​4​].
Recently, Wijs ​et al. further parallelised model checkers by adopting the massive

parallelism of Graphics Processing Units (GPUs) [​5​,​6​]. Originally, GPUs were used for

graphics processing, but they can also be used for tasks the CPU was used to execute,

called General Purpose GPU (GPGPU) programming [​7​]. Areas of application, besides

model checking, are media processing [​8​], medical imaging [​9​] and eye-tracking [​10​].
In the GPGPU programming model, a massive number of threads, typically thousands or

even more, run the same program concurrently, but on different data: the Single

Program, Multiple Data (SPMD) execution model. Many (parallel) algorithms have an

implementation for GPUs, often resulting in spectacular speedups, even compared to

optimised parallel algorithms running on the most sophisticated multi-core CPUs.

Porting algorithms designed for multi-core CPUs to GPUs, however, is not a

straightforward task. For example, the explicit memory hierarchy of GPUs is different

from CPUs’ single-level memory model. To get the most out of GPGPU programming,

crucial for computationally intensive tasks as model checking, implementations need to

be tailored to the specifics of GPUs. Moreover, the programming models and frameworks

are different from those for CPU programming: OpenCL [​11​] is a cross-platform, cross-

vendor GPGPU programming framework; CUDA [​12​] only works on NVIDIA GPUs.

5

GPUexplore

GPUexplore is a fully GPU-based model checker, written in C and using the CUDA

framework. It can check the reachability of states in a system, and can also check

functional properties on-the-fly: currently, it can check for deadlocks and safety

properties; the support of liveness properties is planned [​5​,​13​].
GPUexplore uses a GPU adaptation of the lockless hash table implementation by

Laarman ​et al. ​[​14​]: When building the state space, it is important to store the states

that have already been visited, for termination and performance reasons. As in parallel

model checking this shared store is frequently used by multiple threads for lookups and

insertions of states, using ordinary locks to enforce mutual exclusion would result in very

poor performance: the contention is too high.

Laarman ​et al. developed a shared hash table store and associated lookup and insertion

algorithm without locks and tailored the implementation to the specifics of multi-core

model checking, including efficient use of the steep (implicit) memory hierarchy of

modern CPUs. They show that the resulting performance is excellent and scales very well

with the number of cores.

Several GPU implementations and variations of the algorithm exist [​5​,​13​,​15​,​16​,​17​,​18​].

As typically thousands of threads share the same data structure to store visited states,

the contention is even higher here and designing an effective shared store is even more

important for performance.

GPUexplore’s adaptation has been shown to be very efficient and scalable with more

powerful GPUs; the resulting GPGPU state space exploration solution makes efficient use

of the enormous power of modern GPUs and outperforms the most sophisticated

multi-core state space exploration algorithms running on modern CPUs.

Hash table compression

Laarman ​et al. also developed a compressed hash table for multi-core CPU model

checking [​19​]. The compression algorithm is built on top of the same lockless hash table

implementation from [​14​], and allows for the compression of states in the hash table by

sharing common components of the states. They show that this compression technique

results in a giant reduction in the space needed for state space exploration with no

performance penalty.

This algorithm would also be very relevant to GPUs, as GPU memory size (~10GB) is

limited compared to main memory size (~100GB); as now algorithms exist that make

efficient use of GPU’s enormous computing power, memory size becomes the new

bottleneck, ​e.g.​, for models with data.

1.1 Contribution

Our contribution relates to both the uncompressed and compressed hash tables.

Uncompressed hash table

While experimenting with porting compression to GPU-based hash tables, we encoun-

tered multiple flaws in the uncompressed hash table of GPUexplore and fixed them all.

First, we found the possibility for corruption in the hash table, ​i.e.​, a hash table entry

could be a mixture of two input values. This is disastrous for a model checker, which is

often used to verify safety-critical systems. We fixed this issue by reverting to the hash

table implementation of the initial version of GPUexplore [​5​].

6

This version, however, suffers from replication of entries in the hash table. Moreover, the

used hash function results in an inferior distribution of entries across the table. Both

flaws increase the (effective) table fill rate and decreases performance. This is very

disadvantageous to the model checking process, which is very demanding. It also

hinders a fair comparison to other hash table implementations, ​e.g.​, hash tables without

replication, such as our compressed hash table implementation.

We fixed both the replication and the inferior distribution. We removed the replication by

using fine-grained locking. We integrated a very fast, but still mathematically grounded

hash function [​20​] to get a probabilistic-optimal distribution. Our experiments show that

the resulting performance is the same as or even better than that of the flawed

implementation of GPUexplore. Our compressed hash table implementation, that is built

on top of the uncompressed implementation, also benefits from the new hash function,

again without a performance penalty.

Having removed the flaws from both the uncompressed and compressed hash tables, we

were finally able to do a fair comparison.

Compressed hash table

We have successfully ported the multi-core compression algorithm to stand-alone GPU

hash tables, using the CUDA framework. The main challenge was the recursion in the

algorithm, as the call stack is saved to GPU device memory, which is relatively slow and

has a large latency. Initially, this resulted in slowdowns up to 40x, compared to the

uncompressed hash table. After optimising GPU and table parameters, we managed to

reduce the slowdowns, with a maximal slowdown of 5.3x.

We even further reduced the slowdowns by implementing improved versions of the

compressed hash table, aimed at reducing the recursive overhead: versions with less

recursion and more work per recursive call. In this way, we reduced the recursive

overhead to such an extent that now the scattered memory accesses required by

tree-based hash table compression turned out to be the bottleneck.

Indeed, we designed and implemented versions without recursion, but the performance

benefits over our most optimised recursive version were small, with a maximum of 14%.

We created fifteen variants without recursion, that differ in aspects related to GPU

performance. But they achieved almost the same performance each time, as they all

share the same bottleneck of the scattered memory accesses.

Using the optimal version, the maximum slowdown is now 3.8x, small enough for

performance-effective integration of compression into GPU model checkers, ​e.g.​,

GPUexplore, which would enable checking bigger models and models with data.

Integration enables possibilities for reducing the amount of memory accesses required,

possibly further reducing compression overhead.

Extensive performance evaluation

For our performance analysis, we used parameterised random data inputs and state

sequences extracted from real-world models, up to 345M states. To make a fair

performance evaluation, we first exhaustively examined the impact of GPU, input and

table parameters on performance, of the uncompressed and all compressed versions. We

used the results to get optimal settings for each input/program combination. All mutual

comparisons use optimal settings for both contestants.

7

Summary of contribution

Thus, to summarise the major contributions of this thesis are:

● fixing the main flaws of the uncompressed hash table implementation by

designing and implementing a replication-free hash table with a probabilistic-

optimal distribution

● successfully porting tree-based compression to GPU-based hash tables by tackling

the main performance limiter, ​i.e.​, recursive overhead; enabling larger models

and models with data in GPGPU model checking

● exhaustively examining the impact of GPU, input and table parameters on

performance, of both the uncompressed and compressed hash tables; the results

are used for finding parameters that are optimal for performance and they give

an in-depth insight into the performance determiners of the tables, which can

guide performance optimisation efforts when the tables are integrated into a

GPU-based model checker such as GPUexplore

1.2 Overview of thesis

The remainder of this thesis is as follows.

Chapter 2 gives background information on model checking, GPGPU programming and

hash functions. ​Chapter 3 discusses the CPU-based lockless hash table implementations,

both uncompressed and compressed, and GPUexplore’s adaptation of the uncompressed

hash table. Then, ​Chapter 4​ gives an overview of the project and the test setup.

Chapter 5 outlines our stand-alone implementation of the uncompressed GPU hash table,

including several fixes and improvements to the original table. This chapter also features

the performance evaluation of our fixed and improved stand-alone uncompressed GPU

hash table, using parameterised random data. ​Chapter 6 repeats this for the recursive

stand-alone compressed hash table implementations, including mutual comparisons and

comparisons to the uncompressed hash table of Chapter 5. Next, ​Chapter 7 presents our

solution for a non-recursive stand-alone compressed hash table, consisting of fifteen

variants; the subsequent performance evaluation features mutual comparisons and

comparisons to the uncompressed and recursive compressed hash tables from Chapters

5 and 6, respectively.

Chapter 8 highlights the practical results of our performance evaluation with a summary

of the practical random-data experiments of Chapters 5-7 and with the performance

analysis of data extracted from real-world models. Finally, ​Chapter 9 gives conclusions

and suggestions for future work.

Appendix A has all information about the random data inputs we used and its generation.

Appendix B lists all experimental data of our exhaustive performance analysis.

8

2. Background

This chapter gives (more) background information on the topics that are used in the

remainder of this thesis: model checking (​Section 2.1​), GPGPU programming (​Section

2.2​) and hash functions (​Section 2.3​).

2.1 Model checking

In model checking [​1​], a model, ​i.e.​, the formal description of a system, implies a

structure. This structure is a Kripke structure, an extension of a transition system; a

transition system is a directed graph in which nodes represent system states and arcs

represent transitions between states; one or more states are designated as initial states.

In a Kripke structure, a set of atomic propositions is defined and a labelling function

maps each state to the set of atomic propositions that holds in that state. In model

checking, each state is uniquely defined by the set of atomic propositions that holds in

that state. Thus, if there are three atomic propositions, only eight states can be defined,

as the size of the powerset of three elements is 2​3​ = 8.

The number of states thus grows exponentially with the number of atomic propositions;

the set of ​reachable states, ​i.e.​, the state space, however, is usually much smaller. In

general, the state space is not explicitly given, but implicitly, by its specification;

consequently, the state space size is not known ​a priori​.

Traffic light example

As an example, consider this Kripke structure of the traffic light example from ​Chapter 1​:

Figure 2.1: Kripke structure of a traffic light

where ​r​, ​g​, ​y are atomic propositions with the meanings ‘red light is on’, ‘green light is

on’ and ‘yellow light is on’, respectively.

In the state on the left, the set ​{r} states that only proposition ​r holds (propositions ​g

and ​y do not hold), meaning that the red light is on and that both the green and yellow

lights are off. Therefore this is the ‘red state’, whereas the middle node refers to the

‘green state’ and the right node to the ‘yellow state’. Transitions are only possible from

the ‘red state’ to the ‘green state’, from the ‘green state’ to the ‘yellow state’ and from

the ‘yellow state’ to the ‘red state’; the ‘red state’ is the initial state.

With three propositions, eight states can be identified. In this example, only three out of

the eight states are reachable, ​e.g.​, a state with red and green lights on (​{r,g}​) is not

reachable. State space exploration refers to the process of determining what states are

reachable, ​i.e.​, building the state space, starting from (the initial state in) a formal

description of the system.

Multiple traffic lights, or processes, can be combined to get a more complex system,

e.g.​, by specifying how they interact together.

9

State vectors

In general, each state is defined by a state vector, each element of the vector

representing the state of the corresponding process or value of the corresponding

variable (in a system with variables/data). For example, in a model with integer

variables ​x and ​y​, a state in which ​x​=2 and ​y​=3 is represented by the vector (2,3) and a

state in which ​x​=4 and ​y​=7 by the vector (4,7).

As variables can have a large number of values (​e.g.​, 2​32
for a 32-bit integer), this often

leads to ​state space explosion​. There are ways to combat this problem, but,

nevertheless, model checking is computationally very demanding and memory-intensive,

even if elements of state vectors are restricted to a limited number of values (​e.g.​, with

finite-state processes).

Properties

Modelling the system is one thing, defining the required properties is another. These

properties are usually formalised in temporal logic, as Linear Temporal Logic (LTL) or

Computation Tree Logic (CTL). The semantics of these logics are formally defined over

Kripke structures. Algorithms exist that determine whether a model satisfies some LTL or

CTL formula or does not; conceptually, they do a full search through the state space.

For example, the LTL property ​G r ​intuitively expresses that the proposition ​r ​should

hold in every state (​G stands for ‘Globally’). This is clearly not the case in our traffic light

example. However, the LTL property ​F y holds (​F stands for ‘Finally’), as for the only

(infinite) execution possible ​y​ will hold eventually (in the ‘yellow state’).

Properties can be classified into safety and/or liveness properties (or none of them).

Safety properties express that something “bad” should not happen. Invariants, as ​G r​,

are safety properties. Liveness properties assert that eventually something “good” will

happen, ​e.g.​, ​F y​. Freedom from deadlock is another interesting property; deadlock

occurs when there are no outgoing transitions from a state: the system is stuck.

To check for invariant violations and deadlocks, it is not always necessary to build the

entire state space beforehand. When exploring the state space, this kind of properties

can be checked on-the-fly; as soon as a property violation is detected, the model

checking process can stop (and the user can correct the error in the system and/or

modify the property). In this way, only one part of the state space needs to be explored,

saving a lot of time while model checking complex systems.

Types of model checking

In explicit-state model checking, each state is represented individually, ​i.e.​, by a state

vector. For complex systems with a large state vector and/or large number of states, the

space requirements would be enormous. Symbolic model checking manipulates ​sets of

states, symbolically represented by boolean functions in the form of Binary Decision

Diagrams (BDDs). Some model checking problems are well suited for symbolic model

checking, others are best solved by explicit-state model checking.

As model checking is computationally and memory-wise very intensive, algorithms have

been developed that make efficient use of the power of modern multi-core CPUs. These

algorithms have been implemented in the state-of-the-art multi-core model checkers as

LTSmin [​3​] and DiVinE [​4​]. Recently, model checkers have been developed that use the

massive parallelism of GPUs to achieve even better results [​5​,​6​]. ​Section 3.1.2 discusses

several GPGPU implementations of the CPU multi-core lockless hash table solution,

discussed in ​Section 3.1.1​.

10

2.2 GPGPU programming

GPGPU programming is different from CPU programming. For example, it features an

explicit memory hierarchy, enabling for a software-managed cache. This section

discusses the basic principles and constructs of GPGPU programming.

Two GPGPU programming frameworks are in widespread use: First, the cross-vendor and

cross-platform Open Computing Language (OpenCL) framework of the nonprofit
1

technology consortium The Khronos Group [​11​]. Second, NVIDIA’s Compute Unified

Device Architecture (CUDA) framework [​12​], which has support for NVIDIA GPUs only.
2

As CUDA was available first and has some features that are not (natively) supported by

OpenCL, it is still used extensively for GPGPU programming, ​e.g.​, by GPUexplore [​5​].
First, we discuss the main differences between CPUs and GPUs and how they are

combined in heterogeneous systems for efficient computation (​Section 2.2.1​). Then, we

discuss OpenCL (​Section 2.2.2​), whose principles are also valid for CUDA. Finally, we

discuss some CUDA-specific concepts (​Section 2.2.3​), in particular warps.

2.2.1 Heterogeneous systems

CPUs have sophisticated control logic to maximise the performance of a single thread,

e.g.​, by branch prediction and out-of-order execution. They also feature an extensive

cache hierarchy, to decrease memory latency, also essential for single-thread

performance. For years, that performance was further improved by increasing the clock

frequency of CPUs. Due to power and thermal limits, CPU frequencies reached their

maximum years ago. Instead, CPUs are now getting more and more cores. Still, the

architectures of modern CPUs are latency-oriented [​7​].
GPUs, on the other hand, do not have sophisticated control logic or an extensive cache

hierarchy. Instead, the transistors are used for featuring hundreds or even thousands of

simple “cores”. Due to the absence of an extensive cache hierarchy, latency is higher,

but GPU memory bandwidth is also higher than that of main memory. As modern GPUs

can execute thousands of threads concurrently (even more than the number of cores),

zero-overhead context-switching of those threads hides the higher latency to a large

extent: a thread waiting for data from memory is simply switched for a thread that was

also waiting for data from memory, but whose data is now ready. The simple, but many,

cores and efficient context-switching make GPU architectures throughput-oriented [​7​].
Due to the differences between CPUs and GPUs, each is suitable for a specific kind of

problems: CPUs for control-intensive computations, GPUs for compute- and/or data-

intensive computations that can be effectively parallelised. This parallelisation can be

achieved by dividing the problem into multiple smaller, simpler subtasks (task-

parallelism) and/or by executing the same operation on smaller subsets of data in

parallel (data-parallelism) [​7​].

In heterogeneous computing, tasks that are most suited to GPUs are executed by those

and more general purpose tasks by the CPU. Heterogeneous programming models and

frameworks, such as OpenCL and CUDA, can be used for this purpose. Whereas CUDA

supports off-loading (parallel) tasks to NVIDIA GPUs only, OpenCL supports off-loading

to GPUs of various vendors, including AMD and Intel, and to other kinds of devices, such

as CPUs and Field-Programmable Gate Arrays (FPGAs). This makes OpenCL code more

portable, but its genericity makes it also more difficult to get the most performance out

of a specific device [​7​].

1
 ​https://www.khronos.org/opencl/

2
 ​https://developer.nvidia.com/cuda-zone

11

https://web.archive.org/web/20191028182415/https://www.khronos.org/opencl/
https://web.archive.org/web/20191119085949/https://developer.nvidia.com/cuda-zone

Heterogeneous computing also refers to splitting the execution of a task over the CPU

and GPU: the GPU may execute the task faster than the CPU, but as transferring data to

and from GPU memory causes serious overhead, a balanced, combined execution may

be faster than execution by the GPU alone. In some hardware architectures, the CPU and

GPU share the same physical memory, so they can cooperate on a task even more

closely, ​e.g.​, the CPU executes the first (sequential) phase of a task and then the GPU

executes the second (parallel) phase of a task directly on the (in-memory) results from

the first phase, without the need of data transfer to and from separate GPU memory.

OpenCL and CUDA also support the concept of shared virtual memory, in which the CPU

and GPU share a common (virtual) view of memory and the framework takes the

responsibility for all necessary data transfers between main and GPU memory [​7​].

2.2.2 OpenCL

The OpenCL framework defines, among other things, an API and the OpenCL C

programming language, an extended subset of C99, adapted to massive parallelism.

Figure 2.2​ gives an overview of the OpenCL platform model:

Figure 2.2: overview of OpenCL platform model (from [​11​])

The host program, running on the CPU, uses the API to communicate with one or more

Compute Devices. Usually these are GPUs, but CPUs and FPGAs are supported as well.

The Compute Devices execute OpenCL parallel code, called kernels, ​i.e.​, device code.

The API is used to send kernels to Compute Devices, send input data before execution,

receive output data after execution, ​et cetera ​[​21​].
Compute Devices are usually composed of multiple Compute Units, which are similar to

cores in multi-core CPUs. The coarse-grained Compute Units, on their turn, contain

multiple fine-grained Processing Elements, ​i.e.​, very simple cores. Modern GPUs consist

of hundreds or even more of such Processing Elements [​21​].
In the OpenCL nomenclature, threads are called work-items. Work-items are grouped

together into independent work-groups, enabling task-parallelism. The OpenCL kernel is

parameterised by work-group and/or work-item id(s), allowing each work-item to work

on different data, depending on its id(s), enabling data-parallelism. Each work-item has

its own private memory and each work-group has also its own shared memory, called

local memory. All work-groups share global memory. The host can only read from and

write to global memory; global memory serves as an interface between host and device.

12

Work-items are usually mapped to Processing Elements and work-groups to Compute

Units, but the actual implementation is up to the vendor of the Compute Device. The

logical memory spaces private, local and global memory are usually mapped to

Processing Element-local memory, ​e.g.​, registers, to Compute Unit-local memory and to

device memory, respectively [​21​].

Execution model

Multiple work-groups usually execute the same ​program​, but on different data. This

execution model is called Single Program, Multiple Data (SPMD). Work-items in a

workgroup usually execute the same ​instruction​, but on different data, according to the

Single Instruction, Multiple Data (SIMD) execution model. To be more precise, its

execution model is called Single Instruction, Multiple Thread (SIMT), as the work-items

can have different control flows, ​e.g.​, when some work-items take the true-branch and

the others the false-branch of an if-statement. This is called branch divergence [​22​].

Achieving optimal performance

Global memory is very large (GBs), but its latency is also very high; private memory is

very small, but has a very low latency. Local memory is somewhere in between. To get

optimal performance, especially for memory-bound programs, access to global memory

and, to a lesser extent, local memory, should be considered carefully [​21​].
In general, it is optimal for work-items to operate on adjacent memory locations, as their

data can be fetched in just one memory transaction: usually, a cache resides between

the Compute Units/Processing Elements and device memory; if the requested memory

locations all correspond to one cache line, only one memory transaction is needed. For

local or private memory operations this notion is less important [​7​].
For optimal performance, branch divergence should be avoided: in the SIMT execution

model, when one group of work-items executes one branch, the group that will take the

other branch, just waits till the other group has finished executing their branch, resulting

in suboptimal performance [​7​]. A related, even more serious issue is barrier divergence,

explained in more detail on ​page 16​.
To keep as most Processing Elements busy as possible, a large number of work-items

should be used (thread-level parallelism). Another way to achieve this, are more

independent instructions within a kernel, ​e.g.​, by unrolling loops (instruction-level

parallelism). Work-group sizes are also important in achieving the best performance:

they should not be too small or too big. Finding optimal work-group sizes and total

number of work-items are guided by heuristics, but still requires experimentation.

Data races and race conditions

As work-items usually execute the same instruction, this introduces another possibility

for data races. In general, a data race occurs when two or more threads access the same

shared memory location concurrently and at least one of these threads does a write

action. A related, but different, concept is a race condition: in that case, the correctness

of a program depends on the timing or ordering of events.

For example, consider the concurrent execution of the statement ​x := x+1 by two

threads (where ​x is an integer, initialised to zero), possibly running on two different CPU

or GPU cores. This example suffers from both a data race and a race condition: both

threads read from and write to variable ​x​ concurrently and then execution is undefined.

13

Even if no data race actually takes place, the program has a race condition: Depending

on the exact thread interleaving, ​x would be 1 or 2 after completion of both threads, as

addition is not atomic here. As thread interleavings can be different for every execution

of the program, errors due to data races and race conditions are often very difficult to

reproduce and may not manifest during testing, but can be often formally detected.

Weakly-ordered memory model

The weakly-ordered memory model of OpenCL, in which memory operations can be

reordered to a large extent, introduces even more possibilities for a data race to occur:

the order in which a work-item writes to memory locations may not be the same as the

order observed by another work-item. For example, consider the parallel execution of

x := 30

y := 40

and

r1 := y

r2 := x

by two different work-items, where ​x​ and ​y​ are shared variables, both initialised to zero.

OpenCL’s memory model allows the second work-item to read 40 for ​y and 0 (not 30) for

x​. Memory fences can be used to enforce (some) memory ordering (at a performance

penalty): For example, if memory fences are placed between both assignments in both

code fragments, reading 40 for ​y guarantees reading 30 for ​x​. (Note that both fences are

required.) Memory fences also make previous updates by the work-item visible to the

other work-items, by flushing them from work-item-local caches to shared memory:

global and/or local memory, depending on the memory type(s) specified [​11​].

Barriers

To be more precise, the example above would still contain data races, so execution is

undefined. Barriers can be used to fix this issue, as they are used to synchronise

between work-items in the same work-group: each work-item waits at the barrier until

all other work-items in the work-group have reached the same barrier; only then the

execution of all work-items in the work-group, is continued. Fences for local and/or

global memory can be defined at barriers [​11​].
Appropriate use of barriers is crucial for avoiding data races and race conditions, as, in

general, no assumptions can be made about work-item interleavings. Some work-items

may execute in lockstep, ​i.e.​, they will execute the same instruction in parallel, but

usually this is only a subset of all work-items in a work-group [​11​]. But, as barriers also

result in serious overhead, they should only be used if they are really required.

As an example, consider this kernel (all example kernels use a simplified syntax):

void fenceExample(global int a[], local int b[]) {

b[ltid] = ltid;

barrier(CLK_LOCAL_MEM_FENCE);

a[ltid] = b[(ltid+1)%gsize];

}

Code fragment 2.3: barrier and memory fence example

14

where ​ltid is the local work-item id (id of work-item local to work-group) and ​gsize the

work-group size; ​a is an int-array in global memory and ​b is an int-array in local

memory, shared by all work-items in the work-group.

Suppose there is only one work-group. After execution of the kernel, ​a[ltid]​’s value will

be (​ltid​+1) ​modulo gsize​, for every 0 ≤ ​ltid < ​gsize​, ​e.g.​, ​a[0] = 1. If we remove

the barrier, we cannot guarantee this outcome anymore, as there will be a data race on

the entire ​b array; the memory fence is needed to ensure that work-item ​ltid indeed

reads the value set by work-item ​ltid​+1 (modulo ​gsize​) before.

Atomics

Barriers can only be used to synchronise between work-items in the same work-group;

atomics can be used to coordinate concurrent read/write operations on the same

memory location between work-items in different work-groups (or the same), even

across Compute Devices.

Atomic operations, such as atomic addition, are executed atomically, ​i.e.​, they are never

interrupted, in contrast to normal addition as ​x = y+z​. The latter operation is usually

executed as a sequence of multiple instructions, which can be interrupted, ​e.g.​, between

(1) fetching the values of ​y and ​z​, and (2) the addition and storing of the result to ​x​.

Atomics can be seen as very fine-grained locks and are usually implemented on the

hardware level [​11​].
As an example, consider this kernel:

void atomicsExample(global int values[], global int sum) {

atomic_add(sum, values[gtid]);

}

Code fragment 2.4: atomics example

where ​gtid is the global work-item id; ​values is an int-array in global memory and ​sum

is an int variable in global memory.

After execution of the kernel, ​sum​’s value will be the sum of ​values[​0​]​..​values[ksize]​,

where ​ksize is the total number of work-items. This works even if the work-items are

grouped together into multiple independent work-groups.

Sequential consistency

OpenCL 1.2 supports atomic read-modify-write functions only; OpenCL 2.0 adds support

for atomic load (read/get) and store (write/set) functions [​11​]. Concurrent atomic

operations are not considered racy, whereas a concurrent ​non-atomic load/store

operation and an atomic read-modify-write operation on the same variable is racy.

Atomic operations always operate on the actual memory locations (not on cached

versions), so their results are immediately visible to other work-items (provided that the

other work-items do not use non-atomic loads) [​23​].
In OpenCL 2.0, it is now possible to specify a memory order for an atomic operation. At

one extreme, this is still the original weak memory model; at the other extreme, it

corresponds to the sequential consistency memory model [​11​]. The latter is the most

easy and intuitive memory model for programmers to reason about programs. In this

model, the execution of a concurrent program corresponds to some (global) sequential

interleaving of the operations of all threads (work-items) and the order of operations of

each thread in this interleaving is the same as the order in the thread’s code [​24​].

15

OpenCL 2.0 guarantees that an OpenCL kernel without data races and in which all atomic

operations utilise the sequential consistency memory model, ​appears to execute with

sequential consistency [​11​], ​i.e.​, the execution is serialisable.

Barrier divergence

Barrier divergence occurs when one subset of the work-items in a work-group waits at

one barrier and the other subset at another barrier (or at none at all) [​22​], for example,

in this code fragment:

if (a[ltid])

barrier(...)

else

barrier(...)

Code fragment 2.5: barrier divergence example

where ​ltid is the local work-item id and ​a is a bool-array in global memory. If ​a[ltid]

evaluates to true for some work-items and false for others, barrier divergence occurs

and execution of the kernel is undefined.

In (nested) loops, things get even more complicated: For example, consider a main loop

containing a barrier and a nested loop containing another barrier. What happens if all

work-items in a work-group execute the same number of barriers in total, but the

distribution of executions over both barriers is different for subsets of work-items?

Indeed, OpenCL implementations by different vendors give inconsistent results [​22​].
In conclusion, barrier divergence should be avoided.

2.2.3 CUDA

Most of the principles discussed above also apply to CUDA, although the nomenclature is

different: Compute Units are Streaming Multiprocessors (SMs) and Processing Elements

are CUDA cores. Work-items are called CUDA threads and work-groups are called blocks.

All blocks/threads allocated to a kernel are collectively referred to as the grid; by

specifying grid and block dimensions (execution configuration) of a kernel, one specifies

the number of blocks and the number of threads in each block, respectively [​12​].
Per-thread local memory is usually stored in fast on-chip registers, but large arrays, ​et

cetera​, are stored in local memory, which resides in (slow) device memory. Block-local

memory is called shared memory, which is partitioned into 32-bit wide banks; two or

more threads in a warp (see next) should not access the same bank in parallel [​12​].
As (multiple) blocks are assigned to a fixed, single SM, its shared memory is partitioned

among thread blocks resident on the SM and its registers are partitioned among threads

of those blocks. This restricts the number of blocks (and threads) that can be resident on

a single SM; registers may be ​spilled to local memory to make room for other blocks.

Resources are only released when a block fully completes execution; only then a new

block can be loaded onto the Streaming Multiprocessor [​12​].
Global memory resides in device memory, but is usually accessed via a device-wide L2

cache and, depending on configuration, also via per-SM L1 caches. The read-only

memory spaces constant and texture memory also reside in device memory, but have

their own caches and are optimal for specific memory access patterns [​12​].
In host code for setting up and communicating with the GPU device, CUDA makes more

use of extensions to the C language, whereas OpenCL uses more explicit API calls [​12​].

16

Warps

CUDA also features a concept that is not natively supported by OpenCL: warps. Threads

in a block, usually 32, are grouped together into warps. Originally, the threads in a warp

operate in lockstep, thus they are implicitly synchronised, instead of explicitly by a

barrier. This can be used for intra-warp communication via shared memory, by declaring

it volatile. When memory is declared volatile, it is always accessed directly; otherwise, it

is possible that memory operations work on thread-locally cached versions instead [​12​].
When the example from ​Code fragment 2.3 (page 14) is executed by a single warp

(​gsize = 32) and ​b is declared volatile, the barrier, and included memory fence, are not

necessary anymore, resulting in ​Code fragment 2.6 on this page​: due to the lockstep

nature of warps, data races on ​b cannot occur and as ​b is declared volatile, the values

written to ​b are read subsequently. Removing the barrier saves a serious amount of

explicit synchronisation overhead.

void warpSynchronous(global int a[], local int b[]) {

b[ltid] = ltid;

a[ltid] = b[(ltid+1)%gsize];

}

Code fragment 2.6: barrier and memory fence example (warp-synchronous)

Although this so-called warp-synchronous programming was advocated by NVIDIA for a

long time, it is now considered unsafe [​25​]. Indeed, NVIDIA’s newest Volta architecture

has Independent Thread Scheduling (ITS) [​12​]. Many CUDA kernels, explicitly or

implicitly, however assume a warp size of 32 threads.

Also, reordering of memory operations in the execution of the warp is still allowed by the

memory model. In ​Code fragment 2.6​, this issue can be addressed by putting a memory

fence at the location of the removed barrier. In CUDA, memory fences are only used for

memory ordering; to make memory updates visible to other threads, it is still needed to

declare relevant memory volatile (in our example, the ​b array) or to use a barrier

(which, in CUDA, always also includes a global and shared memory fence).

Now, NVIDIA states that CUDA kernels should not rely on implicit warp synchronisation

anymore and that intra-warp communication should take place via warp-level

primitives [​25​]. The CUDA model checker GPUexplore [​5​], however, still uses warp-

synchronous programming, to achieve optimal performance.

Note that the (disadvantageous) effects of branch divergence can only appear within

warps (as only they can operate in lockstep) [​22​]; the (disastrous) effects of barrier

divergence are not restricted to one warp, but to all warps/threads in a block.

AMD, NVIDIA’s main discrete GPU competitor, calls warps wavefronts, but it is not

possible to address them directly via OpenCL, which AMD uses for GPGPU programming

on their GPUs. OpenCL 2.0 introduces sub-groups, which are very similar to warps (and

will probably be mapped to wavefronts, on AMD GPUs, and warps, on NVIDIA GPUs).

This is, however, an optional extension [​23​].

Atomics

In CUDA, only atomic read-modify-write operations are available, no atomic load or store

operations [​12​]. Therefore, for a load operation, only a non-atomic version is available. A

concurrent execution with an atomic read-modify-write operation, such as an atomic

compare-and-set, is, consequently, considered racy in the strict sense.

17

2.3 Hash functions

A hash function maps a, usually large, universe of values to a, usually much smaller,

range of values. A hash function can, for example, be used in a hash table to index the

(primary) bucket for a given input key. For many applications, it is necessary that the

hash function is fast, ​e.g.​, because it is called often. For most applications of hash

functions, it is also necessary that the output values have a good distribution over the

input keys, even with patterns in the input, ​i.e.​, that each key is assigned a

pseudo-random output value.

Universal hash function

A universal hash function captures this notion: a random hash function ​h is called

universal if the probability that two arbitrary, but distinct keys are hashed to the same

output value (called a collision) is ≤ 1/​m​, where ​m is the number of possible output

values; ​h is usually a family of functions, parameterised by random constants. Strong

universality takes this notion even further, to pairwise independence: a random hash

function ​h is called strongly universal if the probability that key ​x hashes to arbitrary ​z​
1

and distinct key ​y​ hashes to arbitrary ​z​
2​ is 1/​m​2​ [​20​].

Multiply-shift

A fast and strongly universal function family for hashing integers is called ‘Multiply-shift’.

This (partial) instantiation of the function hashes 32-bit integer ​x​ to a 32-bit value:

(a * x + b) >> 32

where ​a and ​b are random 64-bit seeds. Multiplication (and addition) is 64-bits here,

discarding any overflow [​20​].

A generalisation of this universal function family allows to hash vectors of 32-bit integers

to a 32-bit value:

((a0 * x0) + (a1 * x1) + (a2 * x2) + ... + b) >> 32

where ​x0​, ​x1​, ​x2​, … are the 32-bit elements of the vector and ​a0​, ​a1​, ​a2​, …, ​b are

random 64-bit seeds [​20​].
The ‘Pair-multiply-shift’ trick substitutes one (fast) addition for one (slow) multiplication,

for each pair of vector elements. For example, the partial hash ​(a0 * x0) + (a1 * x1)

is now being calculated by ​(a0 + x1) * (a1 + x0)​. If the number of elements in a

vector is odd, the partial hash value for the last element can be calculated in the

ordinary ‘Multiply-shift’ way, ​i.e.​, by a single multiplication [​20​].

Hashing to arbitrary ranges

The above functions hash to a 32-bit value. A modulo operation can be used to get a

smaller range of output values, but this operation is expensive. Instead, this function can

be used to restrict the 32-bit (hash) value ​h​ to a smaller range of ​m​ values:

(h * m) >> 32

Multiplication and especially shifting operations are cheap, in particular compared to the

modulo operation. The restricted value is still pseudo-random. For this to work,

multiplication should again be 64-bits (discarding any overflow) [​20​].

18

3. Previous work: lockless hash tables

Reachability, ​i.e.​, building/exploring the state space, is a subtask of many verification

problems in model checking (​Section 2.1​), but it can also be used stand-alone, for

example to detect deadlocks or invariant violations on-the-fly. Starting from the initial

state, the successor states are determined from the system’s formal description, the

successor states of those states are determined, ​et cetera​. The states whose successors

still need to be determined are kept in the so-called open set, which can be implemented

as a stack (depth-first search) or as a queue (breadth-first search) [​1​].
To remember the states whose successors have already been determined, a so-called

closed set is used. This is needed for performance and termination, as states are often

on a cycle in the state space graph and would otherwise be visited infinitely often. A

hash table can be used to implement the closed set. Note that we consider explicit-state

model checking here [​1​].
In a concurrent reachability algorithm, each worker/thread works on its own part of the

open set. Various algorithms exist for load balancing. As the closed set’s implementation,

the hash table, is, however, shared by all threads, it is critical to ensure thread-safety,

e.g.​, that data races and race conditions are not possible. Using ordinary, coarse-grained

locking, would result in very poor performance, due to the high contention. Instead, a

lockless way, ​i.e.​, a synchronisation mechanism without locks, should be used [​14​].

In this chapter, we explain the already existing implementations of lockless hash tables,

both CPU multi-core and GPGPU, in detail. We start with the multi-core uncompressed

hash table and its existing GPGPU implementations (​Section 3.1​). Then, we discuss the

multi-core compression algorithm that is built on top of this hash table (​Section 3.2​); no

GPGPU implementation exists yet.

3.1 Uncompressed hash table

This section first describes the CPU multi-core uncompressed hash table (​Section 3.1.1​)

and then its existing GPGPU implementations (​Section 3.1.2​).

3.1.1 Multi-core implementation

Laarman ​et al. [​14​] developed a hash table design and associated operations that are

optimised for modern multi-core hardware architectures. The size of main memory is

usually very big, but its latency is also high. Modern multi-core CPUs compensate this

latency by using multiple levels of cache; some of these caches are local to the core,

some are shared among multiple or all cores.

To ensure that each core has the same global view of memory, cache coherence

protocols are used: if a core modifies the contents of a memory location and that

memory location has been cached in some (other) local cache before, the protocol

ensures that the local cache is updated, resulting in serious overhead. This introduces

the problem of cache line sharing (also known as false sharing): if two cores work on

different memory locations that are accidentally located at the same cache line, the

extensive, but unnecessary, application of the cache coherence protocol causes a great

amount of overhead.

19

One of the ways to mitigate this overhead, is to minimise the memory working set, ​i.e.​,

the number of different memory locations the algorithm updates in the time window that

these usually stay in the local cache. This is one of the key factors used in the design of

Laarman’s hash table, next to simplicity whenever possible.

As the closed set grows monotonically, the hash table needs only one operation:

find-or-put​, with a state vector as argument (so, the table key is also the data). This

operation is used to insert the data (state vector) into the table (closed set). The

function returns true when the state vector is already in the hash table; when it is not,

the function returns false and the state vector is being added to the hash table. We first

present ​the general working of the find-or-put algorithm​, then we describe ​the data

structure the actual algorithm operates on​. Finally, we explain ​the algorithm in detail​.

Overview of the ​find-or-put​ algorithm

The elements of the hash table are called buckets: a bucket is empty or contains a state

vector. The algorithm hashes the state vector and uses this hash to index the table.

● If that bucket is not empty, its contents will be compared to the vector; as two

different vectors may hash to the same value (called a collision), the bucket may

contain a different vector. If this is the case, the next bucket will be examined;

otherwise the algorithm concludes that the vector is already present in the table

and returns true.

● If the bucket is empty, the algorithm concludes that the vector does not exist in

the table yet and tries to insert the vector by claiming the empty bucket. This

may fail, as a concurrent invocation of the algorithm may try to do the same and

only one succeeds.

○ If it succeeds, it returns false, indicating that the vector was not present in

the table yet and has now successfully been inserted.

○ In the other case, it will compare its vector to the vector just inserted by

the concurrent invocation as both invocations may have tried to insert the

same vector. If this is indeed the case, true will be returned, as the vector

is now present in the table and has not been inserted by this invocation;

otherwise, the next bucket will be examined.

Any examining of next buckets will work in the same way as for the initial bucket.

Hash table design

Figure 3.1 gives an overview of the data structure of the actual hash table, which the

find-or-put​ algorithm operates on. Its elements are explained in turn.

Figure 3.1: overview of the design of the hash table

20

● To handle hash collisions, open addressing is used, instead of chaining. So, when

a non-existent state vector hashes to an index that has already been occupied in

the hash table, a different index will be determined repeatedly, till a free spot is

found; chaining handles hash collisions by a linked list. Chaining would require

in-operation memory allocation, resulting in a larger memory working set.

● Walking-the-line means linear probing on the cache line (benefitting from an

already loaded cache line), followed by (bounded) double hashing (better

distribution), ensuring worst-case constant time complexity. So, if a bucket is

occupied by a different vector, the next bucket in the same cache line will be

tried, then the next next one, ​et cetera​. If all buckets in the cache line are

occupied by different vectors, the vector is rehashed with a different hash

function to get a new bucket index.

● A separate data array, whose length is the same as the number of buckets (=

length of bucket array), stores the actual state vectors, which can be large. This

ensures that the bucket array stays short and can be cached to a large extent,

speeding up subsequent probes. The bucket with index ​i corresponds one-to-one

to the element in the data array with the same index.

● Hash memoisation stores (a part of) the hash in the bucket array. In most

occasions, comparing hashes suffices to conclude that the probed state vector is

different from the one stored in the data array. This saves a lookup in the (large)

data array. Hash memoisation is useful because there is no one-to-one corre-

spondence between hashes and bucket indices, ​e.g.​, due to open addressing.

● Lockless operation on the bucket array: a dedicated value is used to indicate

EMPTY buckets; one bit of the memoised hash is used to indicate that the state

vector has been written to the data array (DONE) or that writing is still in

progress (WRITE).

● Compare-and-swap is used as the operation to change each bucket atomically

from EMPTY, via WRITE, to DONE. This is the only sequence possible.

The compare-and-swap operation ​CAS() has three arguments: ​mem_loc​, ​old and

new​. If the value at ​mem_loc is ​old​, ​new is written at ​mem_loc and the operation

returns true; if the value at ​mem_loc is not ​old​, nothing is written and the

operation returns false. This is all done atomically. As the ​CAS() operation costs

multiple instruction cycles, it should be used with care.

find-or-put​ algorithm in detail

Algorithm 3.2​ (next page) lists the ​find-or-put​ algorithm.

The variable ​count is used to count (line 15) and index the various hash functions (lines

2 and 16); ​THRESHOLD is used to limit the amount of different hash applications (line 4).

The function ​walkTheLineFrom(index) returns all indices in the same cache line as

index​, in a circular way, starting from ​index itself and ending with ​index​-1. They are

used in the ​for​-loop starting at line 5.

If an empty bucket is found while walking-the-line (line 6), this means that the state

vector is not in the hash table yet. Using atomic compare-and-swap (line 7), the

algorithm tries to claim the empty bucket by changing it from EMPTY to WRITE (and

storing its hash). If this succeeds, the actual state vector is written to the data array

(line 8). Now, the bucket is changed to DONE (line 9) and false is returned (line 10), to

indicate that the state vector was not present in the hash table yet and has been

inserted by the current invocation of the ​find-or-put​ operation.

21

Algorithm 3.2: multi-core ​find-or-put​ algorithm (from [​14​])

Claiming an empty bucket (line 7) may also fail, as another, concurrent, invocation of

the ​find-or-put​ operation may try to claim the same bucket and only one succeeds.

This other invocation may even insert the same state vector. In that case, the

non-succeeding concurrent invocation will see at line 11 that the memoised hash just set

by the other invocation is the same as its own hash. It then waits till the succeeding

invocation finishes writing the state vector to the data array (line 12, resembling a

spinlock); afterwards, it concludes that the state vector has (just) been inserted (line 13)

and returns true (line 14).

If the succeeding concurrent invocation inserts a different state vector, the non-

succeeding invocation is able to conclude this at line 11, based on the memoised hash,

or otherwise at line 13. It then continues by proceeding to the next bucket (lines 5-14).

When the state vector that is being probed has been inserted already a long time before,

the algorithm sees that its hash is the same as the memoised hash at line 11. As the

bucket is now already in its DONE state, it proceeds immediately to line 13 and it can

conclude that the state vector was already present in the hash table (line 14).

Essentially, locking takes place at the bucket level and is implemented by the ​while​-loop

at line 12. However, due to the hash memoisation check at line 11, the loop is rarely hit

under normal circumstances.

The algorithm requires exact guarantees from the underlying memory model. For

example, if the memory operations at lines 8 and 9 are re-ordered, the correct working

of the algorithm cannot be guaranteed anymore.

The model checking algorithm has been model checked itself for deadlocks. Indeed, one

bug was found and corrected.

This lockless hash table has successfully been implemented in the multi-core model

checker LTSmin [​3​].

22

3.1.2 GPGPU implementations

Various GPGPU implementations of the multi-core algorithm outlined above exist: ​one by

Neele [​15​], ​multiple variations implemented in GPUexplore [​5​,​13​] and ​one by Verkleij

[​16​]. In this subsection, we discuss the differences of each to the original algorithm.

The first one, by Neele [​15​], is a one-to-one implementation of the original algorithm in

OpenCL. The achieved speedup using up to 256 work-items is almost linear.

Speedup expresses the relative performance of two systems working on the same

problem and is often used in assessing the (relative) performance of parallel processing.

For example, when running ​n threads in parallel is ​n times faster than running one

thread only, linear speedup is achieved. This implies excellent scalability.

GPUexplore

Wijs ​et al. [​5​] developed a version that is more adapted to the specifics of GPUs in their

explicit-state on-the-fly model checker GPUexplore , implemented in NVIDIA’s CUDA.
3

GPUexplore is the first model checker that uses GPUs for building the state space; other

GPGPU model checkers are a hybrid: the state exploration algorithm runs on the CPU,

the actual checking of the properties is done on the GPU. Therefore, those are not

on-the-fly model checkers, whereas GPUexplore can check on-the-fly for deadlocks and

safety properties [​26​].

GPUexplore’s ​find-or-put​ operation

Algorithm 3.3​ lists GPUexplore’s ​find-or-put​ pseudocode:

Algorithm 3.3: GPUexplore’s ​find-or-put​ algorithm (from [​5​])

3
 ​https://www.win.tue.nl/~awijs/GPUMC/index.html

23

https://www.win.tue.nl/~awijs/GPUMC/index.html

In this pseudocode, the state vectors are an integer (32-bit) wide, whereas in the actual

tool implementation wider state vectors are supported.

As cache coherence protocols do not exist (yet) in GPUs, minimising the memory

working set is less important, ​e.g.​, no separate data array is used. Each bucket is 32

times 32-bit wide, corresponding to exactly one GPU cache line, and separated into slots,

each capable of storing exactly one vector; with 32-bit vectors, each bucket has 32 slots.

The ​cache (line 1) is shared by all CUDA threads that belong to the same thread block.

CUDA threads add discovered successors to that cache in shared memory. In this way,

local duplication detection takes place (saving much slower probes in the global hash

table), ​i.e.​, if two threads find the same successor state, it is only probed at the global

hash table once. The local cache is also implemented as a lockless hash table.

Each warp is assigned a state vector from the ​cache ​(line 7). The 32 threads in the warp

then read one full bucket in parallel (line 11). This is called ​warping​-the-line instead of

walking​-the-line and is a type of data-parallelism. As a bucket corresponds to exactly

one cache line, memory access is aligned (request’s first address is a multiple of the load

granularity) and coalesced (contiguous), and it can be fetched in one memory operation.

If one of the 32 threads in the warp finds a match (line 12), this is recorded by

setOldVector(cache[i]) (line 13). Then, for every warp thread, ​isNewVector() at

line 15 evaluates to false, ​!isNewVector() at line 24 evaluates to true, and the warp is

assigned another state vector from the cache (line 7), if there are any left (line 6).

If none of the 32 threads find a match (detected at line 15), the warp leader (thread id

in warp is 0) tries to insert the state vector into the first empty bucket slot (line 19); as

concurrent warps may try to claim the same empty slot, this may fail and then the warp

leader tries the next empty bucket slot.

The algorithm uses warp-synchronous programming, ​i.e.​, it exploits the implicit

synchronisation of all threads in a warp, saving the overhead from explicit

synchronisation; coordination with threads in other warps (possibly in different blocks)

takes place via the ​atomicCAS() operation (which, in the CUDA version, returns the old

value). The shared ​cache is declared ​volatile​, thus updates to ​cache are never cached

thread-locally and no reads from ​cache​ will be handled locally.

Race condition

The actual implementation has a race condition: When the state vectors (and,

consequently, bucket slots) are wider than 64 bits, the entire slot cannot be claimed by

an ​atomicCAS() operation anymore, as that operation supports only integers up to

64-bit; only a part of the slot can be claimed. When two warps (from different blocks)

are trying to insert the same vector, into the same (empty) slot, only one succeeds in

claiming the first part of the slot. If the non-succeeding warp does not wait till the

succeeding one has also filled the other entries of the slot, it cannot detect that its state

vector is already being inserted, leading to a so-called false negative. This results in

some states being visited multiple times and also in replication in the hash table.

The race condition can be removed by introducing a spinlock solution, similar to the one

in the original algorithm. However, it turned out that the overhead introduced by the

spinlock harms performance more than visiting some states multiple times; in practice,

only a small part, about 2%, of the states will be re-visited.

24

GPUexplore 2.0 [​13​] fixes the race condition by observing that atomic memory requests

are scheduled in half-warps. Padding can be used to ensure that slots are not crossing a

half-warp/half-bucket boundary. Then all threads in a warp that work on the same slot,

i.e.​, a vector group, try to claim the ​full slot by doing an ​atomicCAS() operation each, in

parallel; only (the threads from) one warp will succeed in claiming the full slot. Any

competing warp that tried to insert the same state vector at the same time, into the

same slot, but failed, can detect immediately that the state vector has just been

inserted, by comparing its elements to the return values of the ​atomiCAS()​ operations.

GPUexplore 2.0 also shows that it scales very well: it was much faster running on a new

generation of GPUs; this is only possible when its hash table scales as well.

Selecting empty slot by data race

Verkleij [​16​] introduces a data race to the original GPUexplore implementation: if the

state vector is in none of the slots, it selects an empty slot by data race. The warp’s

thread belonging to that slot then tries to claim it. In the original implementation,

outlined above, only the warp leader tries to claim empty slots, starting with the first

empty one encountered. As noted, data races should be avoided.

Configurable bucket size

Cassee ​et al. [​18​] made an extension for more data-parallelism to the hash table design

of GPUexplore 2.0, allowing for a configurable bucket size: instead of a fixed bucket size

of 32 integers, a lower bucket size can be configured, allowing (the threads in) a warp to

operate on multiple vectors and buckets in parallel. For example, with a bucket size of 8,

a warp can operate on four buckets and four vectors in parallel, ​i.e.​, a warp now consists

of four bucket groups of eight threads each.

In general, this reduces the amount of inactive threads in a warp, but it also leads to

uncoalesced memory access, as the (smaller) buckets that are examined in parallel by a

warp, are most likely not located next to each other in global memory. Further,

divergence can increase, as one bucket group may need to examine more slots, possibly

including rehashing, before finding a free slot than another bucket group needs to.

Independent Thread Scheduling may reduce the negative effects of divergence.

Bucket sizes cannot be smaller than the length (number of elements) of each input

vector. Lower bucket sizes may lead to “lost” hash table entries. For example, with a

vector length of 3 elements/integers, a bucket with size 32 can store up to 10 vectors,

whereas four buckets with size 8 can only store up to 4 * 2 = 8 vectors.

Results showed that a lower bucket size was faster with input with many duplicated

vectors (duplication factor of 25 or more), using stand-alone hash tables. However,

integrated into GPUexplore, performance was worse in almost all cases.

3.2 Tree-based compression

In practice, state vectors usually have many subvectors in common with other

(reachable) state vectors. For example, in a successor state often only one element

(slot/variable) of the state vector changes, compared to its originating state, and the

originating and successor states have all other elements in common. This observation

can be used to dramatically reduce the memory space required in explicit-state model

checking, ​e.g.​, to compress the closed set’s hash table, by sharing common subvectors

among state vectors.

25

Compressed tree database

In its original form [​27​], each vector is represented by a balanced binary tree, as can be

seen in ​Figure 3.4​: Pairs of vector elements are grouped together in hash tables at the

fringe of the tree, returning a reference (an index in the hash tables). Then a pair of

those references are grouped together in another hash table, returning another

reference, ​et cetera​. Thus, in this example seven hash tables are used, of which four are

at the fringe. Common subtrees are shared, providing the compression.

Figure 3.4: tree compression (adapted, from [​19​])

Using this tree structure, a ​find-or-put​ operation can be implemented.

Applying this operation on the (a,b,c,d,p,q,u,v) state vector in a fresh situation (all hash

tables empty), results in four references at the fringe (see ​Figure 3.4​). For example, the

pair (a,b) is hashed to index ​7 in hash table #1, (c,d) to ​2 in hash table #2, (p,q) to ​9 in

hash table #3 and (u,v) to ​16 in hash table #4. Then, the reference pair (​7​,​2​) is hashed

to 11 in hash table #5 and (​9​,​16​) to 4 in hash table #6. Finally, the reference pair (11,4)

is hashed to 13 in hash table #7 (root of tree).

Now suppose a subsequent application on the (a,b,c,d,p,q,u,v’) vector (see ​Figure 3.4​).

The pair (a,b) now already exists in hash table #1, so instead of creating a new item in

the hash table, a reference to the existent pair is returned. The same happens for the

pair (c,d) in hash table #2, the pair (p,q) in hash table #3 and for the reference pair

(​7​,​2​) in hash table #5. However, new items (and references) are created in hash tables

#4, #6 and #7.

If the complete vector already exists in (the collection of) the hash tables, this is

detected at the hash table in the root node: then, the pair consisting of the references

returned by the left and right subtree already exists in the hash table. In this case, the

operation returns true and no hash tables have been altered.

Maximal sharing

Laarman ​et al. [​19​] extend this approach by combining all hash tables in one big table.

This ensures maximal sharing. For example, this makes it possible to share the

subvectors (a,b) and (c,d) in the vectors (a,b,c,d) and (c,d,a,b). This also fixes the

problem of finding optimal sizes for each individual hash table.

Note that, in practice, state vector elements are just integers (or more general, bit

patterns), and so are the references, hence they are indistinguishable from each other.

This leads to the following issue: Suppose a ​sub​vector (0,1) has been inserted before.

Now, suppose a non-existent complete vector V is inserted and the left subvector results

in reference 0 and the right one in reference 1. As (0,1) already exists in the hash table,

the algorithm falsely concludes that V already exists.

26

This is fixed by including one additional ​is_also_root_node bit to each bucket in the

hash table. In the example, this bit would not be set initially, as the inserted subvector

(0,1) is not the root node of a (implicit) tree. The algorithm then concludes that V does

not exist in the hash table yet, as the non-set bit states that (0,1) is not the root node of

a (implicit) tree. The algorithm now sets the bit, hence subsequent probes of vectors

equal to V will return true, indicating that V already exists in the hash table.

Results show that in most (larger) models, an (almost) optimal compression ratio is

achieved, ​i.e.​, the average memory usage per state vector is about the size of a (root)

node; in most cases, adding a new state vector only adds a root node, no other nodes.

This also implies that, in general, the achieved compression ratio is better for models

with larger vector lengths.

Especially for smaller models, the order of elements (slots/variables) in a state vector

may impact the compression ratio that is achieved. Finding an optimal order is, however,

an exponential problem. Laarman ​et al.​ could not find a good heuristic.

The notions above are related to the principles of tree-based compression, not to a CPU

or GPU implementation; effects on performance may, however, differ.

Memory structure

To use this compression technique in a hash table that is shared by multiple threads, the

hash table should be designed carefully. Due to the high contention, ordinary locking is

not feasible. Instead, a variation on the lockless hash table design from ​Section 3.1.1 will

be used: a separate data array and hash memoisation are not used anymore. ​Figure 3.5

shows the resulting memory structure:

Figure 3.5: memory structure (from [​19​])

where ​b is the length of each state vector slot in bits; one bit is used for the

is_also_root_node ​bit and a black rectangle indicates that this bit is set. In this

example, a state vector has four slots. The figure shows the memory structure after the

vector (a,b,c,d) has been inserted.

Compression of the open set

As the closed set is now compressed, the open set can now be the memory bottleneck.

Using the same principles, it is also possible to compress the open set: the open set,

which is usually implemented as a stack or queue, now contains references to the closed

set. Using those references, it is possible to reconstruct the full state vector, which can

then be used to find successors.

27

Incremental tree database

Finally, Laarman ​et al. describe an incremental tree structure: If a successor state differs

in only one element, which is often the case, (the tree structure of) the originating state

can be used in the ​find-or-put operation that is applied on the successor’s state vector.

For example, if the left subvector is the same in both state vectors, the reference to the

corresponding subtree is already known from the tree structure of the originating state.

Therefore, it is not necessary anymore to compute this reference bottom-up. The same

principle applies for smaller common subvectors/subtrees, for example, if the left

subvector of the right subvector is the same. This technique results in a serious

performance improvement, as a much less number of memory locations need to be read.

Performance

Despite the multiple table accesses needed for each ​find-or-put invocation, results

show that compression adds almost no overhead in CPU multi-core model checking.

Compressed runs were sometimes even faster than uncompressed ones, especially with

small models, due to better cache utilisation and a lower memory bandwidth. The

compressed hash table also scales better with more cores than the uncompressed table,

due to the lower memory footprint.

28

4. Overview of project

This chapter gives a high-level overview of the project. We start with giving the

motivation​, ​research goals and questions​, ​research methodology and ​products that have

been delivered​. Then, we explain the test program we used (​Section 4.1​) and the test

setup (​Section 4.2​), as they are used in all our experiments, which are explained in more

detail in subsequent chapters.

Motivation

The compression algorithm of ​Section 3.2 has not been ported to GPUs yet. However,

the benefits would be significant, as GPU memory sizes are relatively small. Laarman ​et

al. show that the space reductions in multi-core model checking are enormous, at a

negligible performance penalty [​19​]. Incorporating the state reduction technique Partial

Order Reduction in GPUexplore [​13​] already reduced the space requirements, but the

promise of the compression algorithm is to reduce it even further, enabling the

verification of larger models and models with data.

The multi-core compression algorithm has been implemented recursively, ​i.e.​, applying

the same method on the left and right subvectors/-trees recursively. Implementing the

compression technique on a GPU in a performant way will be a challenge, as recursion

works differently on GPUs, ​e.g.​, the call stack is saved to local memory, which resides in

(slow) global memory.

Research goals and questions

Thus, our main research goal is:

● Reducing the space requirements for GPGPU explicit-state on-the-fly model

checking by implementing an efficient GPGPU compression algorithm for hash

tables, enabling the verification of larger models and models with data.

To achieve this goal, we will address these research questions:

● How can we implement an efficient GPGPU compression algorithm, in OpenCL

and/or CUDA? Can we improve it even further?

○ What is the performance compared to an uncompressed hash table? What

are the performance benefits of the improvements?

To do a fair comparison, we need to address these questions first:

■ What is the impact of GPU parameters, such as the execution

configuration, on the performance of both the uncompressed and

compressed hash tables?

■ What is the impact of input parameters, such as the vector length,

on the performance of both the uncompressed and compressed

hash tables?

■ What is the impact of table parameters, such as the table size/fill

rate, on the performance of both the uncompressed and

compressed hash tables?

■ Using the results from the questions above, what are the optimal

GPU and table parameters for each type of input, for both the

uncompressed and compressed hash tables?

29

Research methodology

We started with a stand-alone version of the uncompressed hash table from GPUexplore

2.0 [​13​], but with a configurable bucket size. The stand-alone implementation is loosely

based on the work of Cassee [​18​]. ​Chapter 5 provides more details about it. All those

implementations are only available as CUDA source code. Ultimately, we aim at

integration into GPUexplore. Therefore, we chose CUDA as the GPGPU programming

framework for our project; results may also be valid for OpenCL implementations.

Cassee also implemented a hash table using Cuckoo hashing [​17​]. Cuckoo hashing

handles collisions by relocating hash table entries. Stand-alone results were promising

[​17​], but integrated into GPUexplore the Cuckoo hashing caused too many false

negatives, as the relocation process is not atomic for vectors larger than 64 bits [​5​].
We implemented our stand-alone compression hash table on top of the uncompressed

hash table and its ​find-or-put operation, just as Laarman ​et al. did [​19​]. This would

make integration into GPUexplore more straight-forward. Using Cuckoo hashing is not

possible, as this would break stable indexing, required for the references in the

compressed table. We made several improvements to our original implementation,

aimed at tackling the main performance limiters. Chapters ​6​ and ​7​ describe more details.

For performance evaluation, we used parameterised random data and state vector

sequences extracted from real-world models (see ​Section 4.2​ for more details).

For each implementation, we first determined the optimal execution configuration (block

and grid dimensions). As this possibly depends on input and table parameters, we

examined the impact of those parameters on the optimal execution configuration. All

subsequent experiments use the optimal execution configuration(s) that are found.

Next, we evaluated the impact of (combinations of) input parameters (vector length,

duplication, number of vectors and, in the case of the compressed versions, compression

ratio) on (relative) performance. We did the same with table parameters (table size/fill

rate and bucket size). Finally, we examined the impact of the combination of input and

table parameters. We also tried to identify any dependencies between parameters.

Using the results from those experiments, we identified optimal table parameters and an

optimal execution configuration for each type of input. This enabled us to do a fair

comparison, for each type of input, between the compressed hash table implementations

and the uncompressed implementation, and between the compressed hash table

implementations themselves. In ​Chapter 8​, this comparison is repeated for real-world

data. It also features a recap of the practical random-data experiments of Chapters 5-7.

Table 4.1​ (next page) gives an overview of all experiments.

Integrated into GPUexplore, performance effects may be different, but our extensive

performance evaluation can be used in guiding optimisation efforts when integrated.

Products

Our project has resulted in these products:

● stand-alone CUDA implementations of the uncompressed hash table from

GPUexplore, including a configurable bucket size and other improvements

● stand-alone CUDA implementations of a tree-based hash table compression

algorithm, both recursive and non-recursive, including improvements

● experimental data: the results of our experiments with GPU, input and table para-

meters on the performance of the uncompressed and compressed hash tables

● this thesis: a report that contains the results of the research, ​i.e.​, the answers to

the research questions and a discussion of the results

30

 experiment

(table identifier)
description

parameterised random data (Chapters 5-7)

optimal execution configuration

(​-E​)

determining optimal block and grid dimensions for

each input and table parameter (+ combinations);

all other experiments use the found configurations

different input

[fixed default low fill rate 0.24

→ adjusted table size

+ default bucket size 32]

(​-I​)

determining the impact of different input parameters

(vector length, duplication, number of vectors,

compressed: compression ratio) on performance, in

isolation and combined (trying to find performance

dependencies); comparing with other versions

different table parameters

[fixed default input]

(​-T​)

determining the impact of different table parameters

(table size/fill rate and bucket size) on performance,

in isolation and combined (trying to find performance

dependencies); comparing with other versions

different input + table parameters (combined):

different input

[​high fill rate 0.80

+ default bucket size 32​]
(​-I-hfr​)

determining the impact of different input on

performance (as ​-I​, trying to find performance

dependencies), on a high fill rate of 0.80; comparing

with low fill rate (​-I​) and other versions

different input

[​low fill rate 0.24

+ ​bucket size 8/4/2​]
(​-I-s8​/​-s4​/​-s2​)

determining the impact of different input on

performance (as ​-I​, trying to find performance

dependencies), on lower bucket sizes of 8, 4 and 2 (if

possible); comparing with bucket size 32 (​-I​), each

other and other versions

different input

[​high fill rate 0.80

+ bucket size 8/4/2​]
(​-I-hfr-s8​/​-s4​/​-s2​)

determining the impact of different input on

performance (as ​-I​, trying to find performance

dependencies), on a high fill rate of 0.80 and on

lower bucket sizes of 8, 4 and 2 (if possible);

comparing with bucket size 32 (​-I-hfr​), low fill rate

(​-I-s8​/​-s4​/​-s2​), each other and other versions

in practice, fixed table size of 256MiB:

different input

[​fixed table size of 256MiB

+ ​bucket size 32​]
(​-I-fn​)

determining the impact of different input on

performance (as ​-I​), in a fixed-sized 256MiB table;

comparing with fixed low fill rate 0.24 (​-I​) and other

versions

different input

[​fixed table size of 256MiB

+ optimal bucket size​]
(​-I-fn-os​, ​PRD​ (Chapter 8))

determining the impact of different input on

performance (as ​-I​), in a fixed-sized 256MiB table

and with optimal bucket size for each input

(determined by experiments above); comparing with

bucket size 32 (​-I-fn​) and other versions

real-world data (Chapter 8)

different input

[​fixed table size of 8GiB

+ optimal bucket size​]
(​RWD​)

determining the impact of different real-world input

on performance, in a fixed-sized 8GiB table and with

optimal bucket size for each input (determined by

experiments above); comparing with other versions

Table 4.1: overview of all experiments

31

4.1 Test program

All hash table implementations are wrapped in a C++ test program. This program

enables users to specify an input vector file. The program reads this file and prints the

vector length (should be constant) and total number of vectors. It then initialises the

hash table, in GPU global memory, and copies all vectors, also to GPU global memory.

Next, the program runs a GPU kernel that inserts all vectors into the hash table. This is

done by a grid-stride loop, ​i.e.​, a grid-wide loop that iterates over all vectors (cyclic

partitioning). In this way, the user can specify arbitrary execution configurations, as long

as the block dimension is a multiple of the warp size, ​i.e.​, 32.

When all vectors have been inserted, the test program runs a GPU kernel that counts all

non-empty entries in the hash table. The program then prints this number. For the

compressed versions, the program also runs a GPU kernel that counts all vectors in the

table (​i.e.​, nodes with their root bit set) and also prints this number.

The program allows users to specify GPU and table parameters:

● block dimension (number of CUDA threads in each block)

● grid dimension (number of blocks)

● number of entries (table size)

● bucket size

4.2 Test setup

This section gives an overview of the test setup; for more details, see Appendix B.1.

The hash tables and the test program require CUDA Compute Capability (CC) 3.0, ​i.e.​,

Kepler and all newer NVIDIA GPU architectures are supported. We also specified CC 3.0

as target architecture for compilation.

We have used the ​nvprof command line profiler for our experiments. This tool not only

gives runtimes for each kernel, but can also be used for collecting metrics, ​e.g.​, the

degree of branch divergence. All runtimes are averages of three runs. We measured a

small (startup) overhead of only 0.03 ms, by inserting just one vector.

Appendix B lists all experimental data.

Ceteris paribus

In our performance evaluation, we first examine the impact of the change of a

parameter in isolation, ​i.e.​, keeping all other parameters unchanged. But, for example,

when we change the amount of duplicated vectors, we also change the table size to keep

the same fill rate. We also account for “lost” entries. For example, for vector lengths 3

we increased the uncompressed table size by 32/30 (bucket sizes 32 and 16) or 4/3

(bucket sizes 4 and 8), to keep the same (effective) fill rate.

The default (low) fill rate is 0.24 and the default bucket size is 32 (as in GPUexplore).

We also included experiments with a fixed table size, and, consequently, different fill

rates for different types of input. This is more like practice, as one, in general, claims a

fixed amount of memory for the hash table, ​i.e.​, as much memory as possible. For the

same reason, we use a fixed table size for the experiments with, for each type of input,

optimal settings (in particular, optimal bucket size).

In both experiments with a fixed-sized table, we use the same table size for both

compressed and uncompressed tables, to account for the space reduction achieved by

compression; in the other experiments, we reduce the table size of the compressed

tables to get the same fill rate when we compare to the uncompressed table.

32

Parameterised random data

We created a Java program that generated random sequences of vectors. Those

sequences, however, were parameterised by:

● vector length, ​i.e.​, the number of elements in each vector

● total number of vectors, including duplicates

● ratio of duplicate vectors

● amount of internal duplication, ​i.e.​, replication of individual vector elements,

which affects the amount of compression possible

Duplicate vectors are randomly distributed over the sequence.

In the compressed tables, vector element values can also be considered as references to

other nodes in the table. To account for this, all vector element values are restricted in

such a way that they can also be used as a reference to the other nodes of a 512MiB

table. Note that this only applies to compressible inputs (vector length 3 or larger).

For more details, we refer to Appendix A.1; Appendix A.2 contains an overview of all

input files we used in our experiments, including all their parameters and meta-data.
4

Real-world data

Using a modified version of REFINER , we have extracted state vector sequences from
5

models often used in (the benchmarking of) model checking. Each process in the model

gets its own (32-bit integer) element in the vector. Using those sequences, which also

include duplicates, we are able to mimic the (order of) ​find-or-put calls that actually

would take place during model checking. We used models from the BEEM , CADP and
6 7

mCRL2 databases; models with a ​.1 suffix have been modified to obtain a larger state
8

space. For all model details, we refer to Appendix B.4.

GPU accelerator: Titan Xp

We use an NVIDIA Titan Xp for our experiments. This graphics card is based on the

Pascal GPU architecture and has a GP102 chip. Its Compute Capability (CC) is 6.1. It has

30 Streaming Multiprocessors (SMs), each consisting of 128 CUDA cores, making a total

of 30 SMs * 128 cores/SM = 3840 cores; its memory configuration is 12GiB GDDR5X.

Theoretical limits are 12,150 GFLOPS (computation) and 547.6 GiB/s (memory).

The GPU accelerator features a per-SM unified L1 and texture cache. When the compiler

detects any reads from read-only global data, they are loaded via this cache (and the L2

cache); the programmer can guide the compiler by using restricted (non-aliasing)

pointers or do an explicit read-only cache read by using the ​__ldg() operation [​12​].

Other global reads (and writes) are loaded via the per-device L2 cache only, but

additional L1 caching (for reads) can be enabled by a compiler option. Thread-local

memory, ​e.g.​, the call stack, resides in device memory, but is cached in L1 and L2 [​28​].
All global memory transactions are 32B, regardless of whether loading is via the L1 (and

L2) caches or via the L2 cache only. This differs from previous NVIDIA GPU

architectures, where transactions via the L1 cache were 128B [​28​]. L1 and L2 cache lines

are still 128B, but now consist of four 32B segments; only the segments requested are

loaded from global memory, any other segments are not pre-fetched [​29​].

4
 ​https://drive.google.com/file/d/1SPXJnfJzNxb3TjwSdhIHp58eRAFEq6oy/view

5
 ​https://www.win.tue.nl/~awijs/refiner/index.html

6
 ​http://paradise.fi.muni.cz/beem/

7
 ​https://cadp.inria.fr/demos.html

8
 ​https://www.mcrl2.org/web/user_manual/download.html

33

https://drive.google.com/file/d/1SPXJnfJzNxb3TjwSdhIHp58eRAFEq6oy/view
https://www.win.tue.nl/~awijs/refiner/index.html
https://web.archive.org/web/20170715215459/http://paradise.fi.muni.cz/beem/
https://web.archive.org/web/20190605061618/http://cadp.inria.fr/demos.html
https://web.archive.org/web/20190126071928/https://mcrl2.org/web/user_manual/download.html

Execution configurations

Block dimension, shared memory size and the number of registers used by each thread

restrict the number of warps that can be resident on a single Streaming Multiprocessor

(SM), ​i.e.​, the number of active warps. Each Pascal SM can host up to 64 warps, ​i.e.​, 64

warps * 32 threads/warp = 2048 CUDA threads. Occupancy is defined as the ratio of the

number of active warps to the number of maximal warps (64).

In general, one should strive for maximal occupancy, as this increases the amount of

thread-level parallelism and enables more possibilities for latency hiding. The CUDA

Occupancy Calculator, included in the CUDA SDK, can help to achieve maximal

occupancy, as it shows the impact of varying block dimensions, shared memory sizes

and register usage on occupancy.

The compiler tries to find the optimal register usage versus occupancy by sometimes

spilling registers to thread-local memory, as this would increase occupancy. The CUDA

compiler also has an option for specifying maximum register usage, forcing register

spilling. Block dimensions are directly controlled by the execution configuration given at

the launch of a GPU kernel. In our experiments, we only use block dimensions that

achieve the highest level of occupancy possible (given some register usage and shared

memory size).

We calculate our initial grid dimension as follows: Based on the block dimension, we

calculate how many blocks we need to achieve maximum occupancy on a single SM. For

example, when the block dimension is 256 threads (256 threads / 32 threads/warp = 8

warps), we need 2048 threads [maximum] / 256 threads/block (or 64 warps [maximum]

/ 8 warps/block) = 8 blocks. We then multiply this number by the SM count to get the

grid dimension. In the example, 30 SMs * 8 blocks/SM = 240 blocks. We also try other

grid dimensions, but they are always a multiple of the number of SMs; as we are

primarily interested in high-level patterns, we do not account for micro-adjustments,

which could, however, yield (a little bit) better performance.

Overloading an SM and/or device, however, may have benefits. For example, when it is

difficult to get an even load distribution per block. The overloading mechanism can then

be used for load distribution: Suppose 120 blocks each have two times more workload as

240 other blocks. Then, the former 120 blocks are loaded onto the device, along with

120 of the latter blocks; when the latter ones have completed execution, the 120

remaining ones are loaded and are finished at the same time as the first 120 blocks.

Overloading can also be used for automatic scalability. Suppose a new GPU has two

times more SMs, ​e.g.​, 60 instead of 30. When the overloading factor was two times (or

even more), the new GPU could complete execution twice as fast. Of course, in reality

this is more complicated, but the same principle holds.

When not using a grid-stride loop (​i.e.​, a grid-wide loop that iterates over all vectors),

the execution configuration has to be adapted to the input size to ensure processing of

the full input; ​e.g.​, the total number of threads in the grid should be equal to the total

number of vectors or elements. But, in general, execution configurations are only related

to performance, not correctness.

34

5. Uncompressed GPU hash table

This chapter starts with a discussion of the stand-alone implementation of the

uncompressed hash table from GPUexplore (​Section 5.1​). We found several flaws in it,

including corruption of vectors, replication of vectors and a hash function with inferior

distribution properties. We fixed them all. Results show that performance has improved.

Then, we present our extensive random-data performance evaluation using the fixed

implementation (​Section 5.2​), ​i.e.​, the impact of GPU, input and table parameters on

performance. Using the results, we found optimal GPU and table settings for each type of

input. The results obtained with these settings are in Chapters ​6 and ​7 used for a fair

comparison between the compressed hash tables and the uncompressed hash table.

Finally, in ​Section 5.3​, we give the most important conclusions of the extensive

performance evaluation of ​Section 5.2​.

5.1 Stand-alone implementation

As stated in ​Chapter 4​, we started with a stand-alone implementation of the

uncompressed hash table from GPUexplore 2.0 [​13​], loosely based on the work of

Cassee [​18​] (​Subsection 5.1.1​). As this implementation may lead to corruption of

vectors, we reverted to the implementation of GPUexplore 1.0 [​5​] (​Subsection 5.1.2​).
This implementation, however, has its own flaws: replication of vectors across the table

and a hash function with an inferior distribution. This does not impact correctness, but

during our experiments we found that the flaws led to a worse performance. Therefore,

we designed and implemented versions without replication (​Subsection 5.1.3​) and with a

probabilistic-optimal hash function (​Subsection 5.1.4​). Results show that we were right.

As the hash table is used in a model checker, which is often used to verify safety-critical

systems, we examined correctness aspects in detail, next to performance aspects.

5.1.1 Original version (GPUexplore 2.0)

The general idea of the stand-alone version is the same as that of ​Algorithm 3.3 (page

23), but does not load vectors from the shared cache; it just operates on the vector that

is given as an argument to the ​find-or-put call. It also allows for vectors consisting of

multiple elements; it tries to claim a complete bucket slot at once. In contrast to the

integrated version, the stand-alone version has a configurable bucket size.

We removed warp-synchronous programming by replacing warp-level primitives with

synchronised (​_sync​) variants. This made the code CUDA 9.0+ compliant, which is

important for Independent Thread Scheduling (ITS), introduced in NVIDIA’s Volta GPU

architecture. ITS may in particular show benefits on lower bucket sizes, as those lower

sizes introduce bucket groups within each warp and those groups may follow different

code paths; ITS may mitigate the effects of the introduced branch divergence.

CUDA 9.0 also introduced Cooperative Groups, a mechanism for the synchronisation of

groups of threads. Warps are a type of Cooperative Groups, but Cooperative Groups

allow other group sizes as well. For example, bucket and vector groups could be

implemented as Cooperative Groups. We have not done so, as bucket and vector groups

never span more than a warp in our implementation; instead, we implemented them

using warp-level primitives. As Cooperative Groups are built on the same primitives,

there would not be any difference in performance, but only at source code level.

35

During our experiments, we encountered replication of vectors, but only when they

consisted of more than four elements. Apparently, atomic memory requests are not

scheduled in half-warps anymore, but per four CUDA threads and this introduces a race

condition. Therefore, when a duplicated vector is inserted by two concurrent

find-or-put invocations, it is possible that both invocations store that vector in the hash

table, in different locations, as an invocation may see the updated contents of only a part

of the bucket slot. In other words, storing a full vector into a bucket slot is now not

atomic anymore.

Even worse, we were able to construct an experiment with corrupted vectors, ​i.e.​, the

bucket slot contained a mix of elements from two different vectors. This would be

disastrous for a model checker, as a model checker may falsely conclude it has already

seen a vector and then decides to not explore the vector further (a false positive).

Successor states of that vector may violate invariants, which is then not detected. The

model checker may then falsely conclude that verification was successful. Therefore, it is

crucial that we remove the possibility for corrupted vectors.

5.1.2 Version without corrupted vectors (GPUexplore 1.0)

To eliminate this possibility for corrupted vectors, we reverted to the insertion procedure

of GPUexplore 1.0 [​5​]: The algorithm tries to claim the first entry of a bucket slot only.

When it succeeds, it fills the other entries. Otherwise, it immediately proceeds to the

next bucket slot, without waiting for the current slot to be filled (​i.e.​, to check for a

duplicate vector).

Replication still occurs, but now also for vectors that consist of four or of a smaller

number of elements: As the apparent scheduling of atomic memory operations per four

threads is nowhere documented and could change any moment, we stick to 32-bit

atomic operations only. This means now only bucket slots of exactly one 32-bit entry

(one vector element) could be fully claimed by a vector group (of one thread); other

vector lengths would require waiting for the completion of writing the full bucket slot by

a concurrent invocation. For reasons of simplicity, our implementation only checks the

return value of the ​atomicCAS() operation for the empty entry (​i.e.​, for a successful

claim). Therefore, also input with vector length 1 may get replicated.

As we are not using the assumption anymore that atomic memory requests are

scheduled in half-warps, slots can now cross half-warp and half-bucket boundaries again.

Although replication (false negatives) is still possible, corruption of vectors (false

positives) is not possible anymore. False negatives hurt performance, but does not affect

correctness, as false positives do.

Reading non-​volatile

When reading hash table entries for comparing them to the elements of the vector that

is being inserted (​Algorithm 3.3 (page 23), line 11), this is done in a non-volatile way,

i.e.​, a stale (old) value may be read, ​e.g.​, when it has been cached (remember that

cache coherence protocols do not exist in GPUs yet).

This does not lead to false positives, as the only stale value that can be read is the

empty entry value, which is a restricted value that vector elements are not allowed to

have; when one or more entries in a bucket slot have the empty entry value, the

algorithm always concludes that the bucket slot does not contain a vector, including the

vector that is being inserted.

36

It, however, may lead to (more) false negatives, as the algorithm may falsely conclude

that a bucket slot does not contain the vector that is being inserted. The subsequent

atomicCAS() operation (line 19) operates on the actual value, but as its return value is

only checked for a successful claim (by comparing it to the empty entry value), the

algorithm just assumes that the bucket slot was taken by another vector and proceeds

with inserting the vector into another bucket slot.

We did experiments with a version that reads hash table entries in a volatile way (line

11). We could, however, not measure any differences in the amount of replication

regardless of whether L1 loading was enabled for all global reads or not. Runtimes were

worse, especially with CC 6.1 as target architecture. Therefore, we decided to keep

reading in a non-volatile way.

Data races

In the strict sense, the non-atomic hash table reads are racy, as there can be concurrent

writes to the same hash table entries, both atomic (first entry of a bucket slot) and

non-atomic (the other entries of a bucket slot). We did experiments with atomic loads,

but as those are not natively supported by CUDA, we mimicked them using atomic

increments by zero, which return the original (and, in this case, also new) values.

We measured a slowdown in performance, especially with bucket sizes 8 and 16.

Because of this and because atomic loads (and stores) are apparently not needed in

CUDA (and thus not supported), we decided to keep non-atomic reads (and non-atomic

writes for the non-first entries of a bucket slot).

Low-level optimisations

We tried several low-level optimisations, for processing multiple types of inputs and both

on the default bucket size of 32 entries and on bucket size 8. We then still used an old

hash function from Cassee, whose higher register pressure lowered occupancy.

Most optimisations have no or almost no effects:

● enabling L1 loading for all global reads: no effect with CC 3.0 as target archi-

tecture (​sm_30​), small positive effect with CC 6.1 as target architecture (​sm_61​)
● using restricted pointers (​__restrict__​), where appropriate, to indicate that the

object the (array) pointer references to is not aliased by another pointer, possibly

enabling some compiler optimisations, ​e.g.​, enabling reading from the read-only

cache: almost no effect, regardless of L1 loading for all global reads or not

● forced inlining (​__forceinline__​), especially of the ​find-or-put function: no

effect, regardless of L1 loading or not

● removing ​const qualifiers (from the input array, ​i.e.​, trying to force loading via L2

cache only): no effect, independent of L1 loading or target architecture

● forcing register spilling (​maxrregcount​), which impacts the optimal execution

configuration, has a large beneficial effect with ​sm_61 and then performance is

getting close to the original performance of ​sm_30​; slight effect with ​sm_30
Other “optimisations” have effects, but mostly negative:

● CC 6.1 as target architecture (​sm_61​): negative, as this leads to a higher register

pressure (and, consequently, a different optimal execution configuration)

● a mixture of CC 3.0 and CC 6.1 as target architectures (​compute_30, ​sm_61​): little

bit slower (same register pressure as ​sm_30​)

In the end, we have not used any low-level optimisation we tried.

37

 5.1.3 Removal of replication

Although replication does not impact correctness, its (performance) effects can be large:

Replication leads to a decrease in the effective table size. It may hurt performance in

several ways: Inserting vectors may take more time as (atomically) writing a replicated

vector takes more time than reading the identical vector that has already been inserted.

But even if the vector does not exist in the table yet, insertion may take longer as it

takes longer to find an empty slot in a highly filled table. False negatives may also lead

to more redundant work that needs to be done by the model checker that uses the table.

Indeed, during our experiments with real-world data we experienced a replication up to

41%, especially on lower bucket sizes. We could only measure a very small replication in

our experiments with random data, as the distribution of duplicated vectors is then

different: randomly (random data) versus very local (real-world data); very local

duplication offers more possibilities for replication, as more duplicate vectors are being

inserted concurrently, especially on lower bucket sizes. The results are different from

GPUexplore (only 2% replication with real-world models), as the hash table access

patterns are different and local duplicate detection takes place, via the shared cache.

As replication natively does not appear in the compressed hash tables of Chapters ​6 and

7​, we need to design and implement a replication-free uncompressed hash table to allow

a fair comparison.

Replication-free implementation

To get a replication-free implementation, we re-introduced the spinlock of the multi-core

implementation of Laarman ​et al. (​Subsection 3.1.1​). As our GPU implementation does

not use distinct bucket and data arrays, but only a data array, we use the first entry in a

bucket slot for locking purposes. Our method to get rid of replication is very similar to

the solution of Laarman ​et al​.
A bucket/vector group now tries to claim an (apparently) empty bucket slot by writing a

temporary ‘writing-in-progress’ element into the first entry of that slot. The most

significant bit (MSB) of this element is set, to indicate that writing is in progress (for this

to work, we require that the MSB of all input vector elements is not set). The other bits

contain the memoised hash.

If a bucket/vector group successfully claimed an empty slot, it subsequently writes all

vector elements, except the first element. Only if those have been written, the vector

group leader writes its own element (​i.e.​, the first element of the vector) into the first

entry of the slot, indicating that writing has been completed. A ​__syncwarp() warp-level

synchronisation primitive ensures that this first element is only being written after the

other threads in the vector group have written their elements. Writing is done in a

volatile way to make sure that the writes are visible to other threads (as long as they

also read in a non-volatile way).

If a bucket/vector group did not succeed in claiming an (apparently) empty slot, it will

read the value returned by the ​atomicCAS() operation, ​i.e.​, the actual value of the first

entry of the slot. If this is the temporary ‘writing-in-progress’ element, it will check the

memoised hash. In many cases, it can already conclude that the vector that is being

inserted by a concurrent invocation is different, as the hashes do not match. But if the

memoised hash is the same as its own hash, the vector that is being inserted is possibly

identical and the vector group spinlocks on the first entry of the slot, till the

‘writing-in-progress’ element has been replaced with the first element of the vector that

is being inserted. It can now check the full slot for an identical vector; this is done

immediately if the ​atomicCAS()​ operation did not return a ‘writing-in-progress’ element.

38

For this to work, reading the slot entries from the hash table should be done in a

non-volatile way; otherwise, a stale (old) value may be read and the algorithm may

falsely conclude that the vector has not been inserted yet. The initial reading (before

claiming an (apparently) empty slot) can still be done volatilely, as long as every bucket

slot that does not contain an entire vector (​i.e.​, one or more slot entries are empty or

the first entry in the bucket slot is a (hash-matching) ‘writing-in-progress’ element) is

considered an empty slot and is subsequently read in a non-volatile way.

Risk of deadlock

When two or more bucket groups in the same warp try to claim the same bucket (bucket

size is lower than 32), there is a risk of deadlock: Only one bucket group succeeds and

the other bucket group(s) then spinlocks on (the first entry of) the bucket slot. If the

threads of the warp operate in lock-step, the constant spinlocking of the non-succeeding

bucket group(s) may obstruct the succeeding bucket group from reaching its “unlocking”

operation (​i.e.​, replacing the ‘writing-in-progress’ element in the first entry of the bucket

slot with the first element of the vector).

During the experiments with our replication-free implementation, we had no deadlocks:

Apparently, the execution of the succeeding bucket group is completed first, including

the unlocking operation (the threads of the other bucket group(s) are then temporarily

disabled). Only then the execution of the non-succeeding bucket group(s) is resumed; as

the first entry in the bucket slot does not contain a ‘writing-in-progress’ element

anymore, spinlocking will not take place and the entire bucket slot can be read

immediately (in a non-volatile way).

This execution order, however, may differ with GPU architecture or compiler version, as

it is nowhere specified. But it then will only lead to deadlock, not to a false ‘verification

successful’ claim. Moreover, the most recent NVIDIA GPU architectures feature

Independent Thread Scheduling: this fixes the issue as threads in a warp do not need to

operate in lock-step anymore. Therefore, we decided to keep our current replication-free

implementation and did not try to design a solution that is not dependent on the

execution order.

Experimental results

With our random-data input, the performance benefits of the replication-free

implementation are very limited, up to 3%. But the replication was already very small

initially, due to the random distribution of duplicated vectors in the random-data input.

In contrast to the situation in GPUexplore [​5​], the spinlocking does not hurt either. We

cannot explain the difference, as the tried spinlocking implementation is not available.

With our real-world data, the performance benefits are more profound, up to 18%. The

benefits are more profound as the initial replication was more severe, up to 41%,

especially on lower bucket sizes, due to the very local duplication in the real-world data.

As there are no false negatives anymore, the program that uses the hash table does not

need to do redundant work anymore. This may lead to even more performance benefits.

All experimental data can be found in the ​[U-H/R]​ table in Appendix B.2.

In conclusion, we designed and implemented a replication-free uncompressed hash

table, with an equal or even better performance compared to GPUexplore’s

implementation with replication. The full table size can now effectively be used and the

program that uses the hash table will not get false negatives returned anymore.

39

 5.1.4 Integration of strongly universal hash function

The replication-free implementation of ​Subsection 5.1.3 fixed one important flaw in the

hash table implementation of GPUexplore 1.0. But during our experiments with

real-world data we found another flaw: Even with a large table size of 8GiB and a

(relatively) small model (and, consequently, a low table fill rate), the amount of

rehashing was very large, much more than expected. Sometimes, even the maximum

bound in rehashing was reached. As this might hurt performance, we carefully looked at

(the distribution of) the used hash function.

GPUexplore’s hash function

The hash function of GPUexplore works as follows:

It is parameterised by two random 32-bit hash constants, to allow for rehashing. A

64-bit ​hashtmp integer variable is used to store the (partial) hash. The hash function

adds every 32-bit state vector element to ​hashtmp​; between each addition, ​hashtmp is

shifted 5 bits to the left. The resulting ​hashtmp value is the same for each parameterised

hash function.

The ​hashtmp value is then multiplied by one of the hash constants and the other hash

constant is added. The resulting ​hashtmp value is now (almost always) different for each

parameterised hash function. The final hash is calculated by ​hashtmp % ​P​, where ​P is a

large prime constant. The hash table index is calculated by restricting the final hash to

the number of hash table buckets, again by a modulo operation.

One of the issues with this hash function arises with large vector lengths: At some point,

the bits related to the first vector elements are shifted out. Essentially, the hash value

now only depends on the last vector elements; in the extreme case, in which the last

vector elements are always the same, each vector will get the same hash, even if the

first elements are different. We fixed this issue by shifting in (on the right) the bits that

are shifted out (on the left), ​i.e.​, we implemented circular shifting.

But we also experienced extreme rehashing with smaller vector lengths. Therefore, we

decided to integrate a mathematically grounded hash function: the strongly universal

hash function of ​Section 2.3​.

Parallel pair-multiply-shift

We not only integrated the fast ‘Pair-multiply-shift’ hash function of ​Section 2.3​, but also

a parallel version: The first threads in a bucket group (​i.e.​, a thread group that tries to

insert a vector into the same bucket slot, consisting of one or more vector groups)

calculate each pair. Then, parallel reduction is used to sum all pairs. Finally, the bucket

group leader adds the ​b hash constant and shifts; all other threads in the bucket group

receive this final hash by using a warp shuffle function. Note that the hash function of

GPUexplore cannot be parallelised, due to the shifting between each addition.

Experimental results

Our results show that, with our random-data input, the amount of rehashing was low

using GPUexplore’s hash function. But even then switching to our strongly universal hash

function improved performance. Apparently, our hash function itself is faster, probably

because no slow modulo operations takes place, in contrast to GPUexplore’s hash

function. Our parallel version improved performance even more.

40

This was especially the case on bucket size 32; lower bucket sizes show less benefits,

probably because the performance bottleneck is now different and the speed of the hash

function has less impact. With vector length 1, the parallel version was slower, due to

the overhead of parallel processing and the absence of benefits from parallel processing.

But, again, this was more profound on bucket size 32 than on lower bucket sizes.

The results with real-world data are different: In contrast to the experiments with

random data, in which we use a low table size, we now use a large table of 6GiB. We

could now measure massive reductions in rehashing by switching to our strongly

universal hash function, up to 75x. Apparently, the distribution of GPUexplore’s hash

function is especially worse in large tables.

The massive reduction in rehashing has also effects on performance: Runtimes were up

to 32% lower. As we only experimented with inputs of vector lengths 3 and 8, our

parallel version of the ‘Pair-multiply-shift’ hash function was always as fast or faster than

the sequential version.

Optimal execution configurations and bucket sizes were different, compared to using

GPUexplore’s hash function; to mitigate the effects of extensive rehashing, “sub-optimal”

execution configurations and bucket sizes need to be selected to get the best

performance when using GPUexplore’s hash function.

All experimental data can, again, be found in the ​[U-H/R]​ table in Appendix B.2.

In conclusion, we integrated the strongly universal (​i.e.​, probabilistic-optimal) ‘Pair-

multiply-shift’ hash function into the uncompressed hash table implementation. This not

only led to a reduction in rehashes, sometimes even massive, but also to equal or better

performance, compared to the uncompressed hash table that uses GPUexplore’s hash

function instead. By implementing a parallel version of ‘Pair-multiply-shift’, we made use

of the massive parallelism provided by GPUs.

5.2 Performance evaluation (random data)

As we now have fixed all flaws in the uncompressed hash table, we can start with our

extensive performance evaluation, using the stand-alone implementation from

Subsection 5.1.4​. We use the parallel version of ‘Pair-multiply-shift’, which is in most

cases faster than the sequential version; as we are primarily interested in compressible

inputs (see Chapters ​6 and ​7​), ​i.e.​, inputs with vector length 3 or higher, we do not mind

if the parallel version is a little bit slower for vector length 1 (and possibly 2 as well).

We start our performance evaluation by determining optimal execution configurations for

each input and table parameter, including combinations (​Subsection 5.2.1​); they are

used in all subsequent experiments.

We then examine the impact of different input (​Subsection 5.2.2​) and table (​Subsection

5.2.3​) parameters on performance. We also try to find performance dependencies

between parameters. Next, we examine the impact of the ​combination of different input

and table parameters on performance (​Subsection 5.2.4​), including comparison to the

experiments of ​Subsection 5.2.2​. The results are used to find optimal table parameters,

in particular the optimal bucket size, for each type of input.

Whereas the experiments listed above are synthetic, our last experiments resemble a

more practical situation (​Subsection 5.2.5​), with a fixed-sized table of 256MiB. We first

experiment using the default bucket size of 32. Next, we use the optimal bucket size(s)

found before and compare the results to those obtained using bucket size 32.

41

Table 4.1 (page 31) gives an overview of all experiments. For more details, see

‘​Research methodology​’ (page 30) and ​Section 4.2: Test setup​ (page 32).

In this performance evaluation we use parameterised random data. In ​Chapter 8​, we do

performance evaluation with real-world data. That chapter also recaps the results of our

final experiment, using the found optimal bucket size(s), from ​Subsection 5.2.5​.

The first four subsections (Subsections 5.2.1-5.2.4) give an in-depth understanding of

the factors that impact the performance of the hash table, but are not necessary for

understanding the general ideas; the last subsection (​Subsection 5.2.5​) and ​Section 5.3:

Conclusions​ present the general ideas.

The table identifiers in the headings refer to the tables in Appendix B.3.1.

In the tables, a blue colour indicates a relevant value; green and red colours are used to

indicate the lowest and highest runtimes, respectively. A bold font (in the ‘speedup’ and

‘slowdown’ columns) indicates a dependency on performance for two or more input or

table parameters.

5.2.1 Optimal execution configuration ​– ​[U-E]

Our stand-alone implementation uses 32 registers per thread (no shared memory

usage). Consequently, we can achieve maximal occupancy, ​i.e.​, 64 warps per SM (=

2048 threads/SM). This maximises the possibilities for latency hiding. Our default block

and grid dimensions are 256 threads and 240 blocks, respectively. We also tried block

dimensions 128 and 512, and various grid dimensions (under- and overloading).

Our default block and grid dimensions were also the optimal execution configuration, but

there were other execution configurations with (almost) the same runtimes: for example,

grid dimension 480 (two times overloading), or block dimension 128 and grid dimension

480 (same total number of threads as our default execution configuration) or 960 (two

times overloading). The overloading configurations can be used for automatic scalability.

Underloading clearly hurt performance.

Our default execution configuration was also optimal for different input and table

parameters. With bucket size 8 and especially bucket size 4, there was much less

difference to the underloading configurations: as there are more concurrent

(uncoalesced) memory transactions per warp, compared to higher bucket sizes, the

memory bus gets saturated and there are fewer benefits from having more warps active.

We used the default execution configuration (block dimension of 256 threads and grid

dimension of 240 blocks), which turned out to be optimal, for the following experiments.

5.2.2 Different input ​–​ ​[U-I]​ ​(fixed low fill rate 0.24 + fixed default bucket size 32)

see ​Table 5.1​ (next page) for a summary of table ​[U-I]

We first examine the impact of input parameters (vector length, duplication and number

of vectors) on performance in isolation. Next, we look at the impact of a combination of

input parameters on performance, to find any performance dependencies.

Vector length​: When varying the vector length, but keeping the total number of

elements the same (and thus changing the total number of vectors), the effects are

almost linear: for example, vector length 1 is almost four times as slow as vector length

4 and vector length 8 is 1.84x as fast.

42

The total number of vectors impacts the runtime so much, as it has an almost linear

relation to the number of (memory) instructions per warp; the vector length is less

important, as it is the strength of warps, or parallel GPU processing in general, to

process multiple (vector) elements at once. The number of vectors also defines the

number of (slow) atomic operations (compare-and-swaps): in the current experiment,

going from vector length 4 to 1 quadruples the number of atomic operations.

 input
runtime

(ms)

speedup

vs.

default of

vector

length

speedup

vs. vector

length 4

default (vector length: 4)

default (8,000,000 vectors, duplication 2.00) 9.31 1 1

less duplication: 1.12 10.41 0.89 1

0.5x number of (unique) vectors 4.60 2.02 1

2x number of (unique) vectors 18.94 0.49 1

lower vector length: 1

default (same total number of elements →

32,000,000 vectors)
32.50 1 0.29

0.25x number of (unique) vectors:

 8,000,000 vectors
7.72 4.21 [1.21]

lower vector length: 2

default (same total number of elements →

16,000,000 vectors)
17.46 1 0.53

0.5x number of (unique) vectors:

 8,000,000 vectors
8.62 2.02 [1.08]

lower vector length: 3 ​[with 32/30 compensation for “lost” entries]

default (same total number of elements →

10,666,666 vectors)
13.37 1 0.70

lower number of (unique) vectors:

 8,000,000 vectors
9.98 1.34 [0.93]

higher vector length: 8

default (same total number of elements →

4,000,000 vectors)
5.05 1 1.84

2x number of (unique) vectors:

 8,000,000 vectors
10.17 0.50 [0.92]

[z.zz] is speedup vs. vector length 4, 8,000,000 vectors (+ same duplication)

Table 5.1: effects different input (uncompressed) ​– ​[U-I]

43

These effects can also be observed when varying the vector length, but now keeping the

total number of vectors the same (and thus changing the total number of elements): the

effects are minimal. For example, vector length 1 is only 1.21x as fast as vector length 4

and vector length 8 is 0.92x as fast. This indicates that the algorithm has a large part

whose runtime is independent of the vector length. As a result, the number of vectors is

far more important for performance than the vector length or total number of elements.

Duplication​: The amount of duplication has a small effect on performance: changing the

duplication factor from 2.00 to 1.12 slows down performance by 11%. Duplication has an

impact on the read/write ratio: with less duplication, more (atomic) writes are needed,

which are slower than (non-atomic) reads.

Number of vectors​: Keeping the vector length the same, but changing the total number

of vectors (and thus changing the total number of elements linearly), has a linear effect,

as expected: doubling the number of vectors also doubles the runtime, as each warp

now executes (almost) twice as many (memory) instructions.

Compensation for “lost” entries (see ​Section 4.2​)​: We could not measure any effect of

the compensation for the “lost” entries of vector length 3. The compensation, however,

was very limited: 32/30.

Combinations/dependencies​: We could not find any clear dependency, apart from a

caching effect with 0.25x number of vectors (vector length 1): as the table size is also

0.25x as small (to keep the same fill rate), a (too) large part of the table can be kept in

cache, bypassing (slow) device memory; in reality, much larger tables and input data are

used and caching effects will appear much less.

5.2.3 Different table parameters ​– ​[U-T]​ (fixed default input)

see ​Table 5.2​ (next page) for a summary of table ​[U-T]

We first examine the impact of table parameters (table size/fill rate and bucket size) on

performance in isolation. Next, we look at the impact of the combination of the table

parameters on performance, to find any performance dependencies.

Table size/fill rate​: When lowering the table size to get a high fill rate (0.80 instead of

0.24), there is a small effect of 5% slowdown, probably due to more rehashing (when

the initial bucket is full): computing a new hash costs time and so requesting a new

bucket (memory location). We do not see effects with fill rates 0.12 and 0.48, as they

are still low.

Bucket size​: Lowering the bucket size clearly improves performance, by 30% (bucket

size 16) and 45% (bucket size 8, compared to bucket size 32). But the relation is far

from linear or logarithmic: the advantageous effects of the parallel processing of multiple

vectors by a single warp and a better distribution (more buckets) are tempered by

saturation of the memory bus, branch divergence (different execution paths within

warps) and more rehashing (as there are fewer slots in each bucket); all effects are

stronger on bucket size 8 than on bucket size 16, but, apparently, this is even more the

case for the negative effects than for the positives ones.

44

Bucket size 4 is even a little bit slower than bucket size 8 (but still faster than bucket

sizes 16 and 32): Remember that the memory transactions of the Pascal GPU

architecture of our Titan Xp accelerator are 32B (see ​Section 4.2​), so when each thread

in a warp requests a 32-bit integer and those integers form an aligned and contiguous

chunk of memory of 128B (which is the case for bucket size 32), this boils down to four

32B memory transactions (4 transactions * 32 B/transaction = 128B); on bucket sizes

16 and 8, two and four contiguous chunks of memory of 64B and 32B, respectively, are

requested, but this still boils down to four 32B memory transaction.

On bucket size 4, however, eight 32B memory transactions are needed, as eight

contiguous chunks of 16B are requested; 16B (50%) of each memory transaction is

wasted, giving a global load efficiency of only 50%, compared to 100% (other bucket

sizes). This really hurts our memory-bound application.

Combination/dependencies​: With a high fill rate, the (positive) effect of lowering the

bucket size is lower, due to even more branch divergence and more rehashing: on a high

fill rate of 0.80, bucket size 16 is now only 22% faster and bucket size 8 24% (compared

to bucket size 32); bucket slot 4 is now even slower than bucket size 16.

The same effect, although less profound, is seen with a medium fill rate of 0.48; on the

other hand, on a low fill rate of 0.12, bucket size 4 is even a little bit faster than bucket

size 8 (1.48 vs. 1.46, compared to bucket size 32).

 table parameters
runtime

(ms)

speedup vs.

bucket size

32

speedup vs.

low fill rate

0.24

default: low fill rate (table size: 256MiB → fill rate 0.24)

default (bucket size: 32) 9.32 1 1

bucket size: 16 7.18 1.30 1

bucket size: 8 6.44 1.45 1

bucket size: 4 6.52 1.43 1

very low fill rate: 2x table size: 512MiB → 0.5x fill rate: 0.12

default (bucket size: 32) 9.31 1 1.00

bucket size: 8 6.36 1.46 1.01

bucket size: 4 6.30 1.48 1.04

medium fill rate: 0.5x table size: 128MiB → 2x fill rate: 0.48

default (bucket size: 32) 9.35 1 1.00

bucket size: 4 7.14 1.31 0.91

high fill rate: 0.3x table size: 76.8MiB → 3.33x fill rate: 0.80

default (bucket size: 32) 9.86 1 0.95

bucket size: 16 8.11 1.22 0.88

bucket size: 8 7.97 1.24 0.81

bucket size: 4 9.03 1.09 0.72

Table 5.2: effects different table parameters (uncompressed) ​–​ ​[U-T]

45

Optimal table parameters​: For each fill rate, except the very low fill rate of 0.12, a

bucket size of 8 is optimal; bucket size 32 gives the highest runtimes. Additionally, a low

fill rate yields the best performance, especially on lower bucket sizes. For our default

input, a high fill rate and a bucket size of 32 are the most worse parameters and are

9.86 ms / 6.30 ms = 1.6x as slow as the optimal ones.

Linear probing – ​[U-T (_lp8)]​ (fixed default input)

see ​Table 5.3​ (this page) for a summary of table ​[U-T (_lp8)]

To compensate for the reduced global load efficiency of 50% on the bucket size of 4, we

have implemented a version with linear probing up to 8 hash table entries: any

rehashing will not immediately take place after a (full) bucket has been examined, but

instead the next bucket, consisting of another four entries, will be examined first; ‘next’

is to be interpreted as the next bucket in a 32B cache line segment, in a circular way.

This saves rehashing costs (calculating a new hash plus requesting a new bucket from

global memory) and benefits from an already loaded cache line segment of exactly eight

(32-bit) entries. The benefits will be even larger on bucket size 2, as its global load

efficiency is only 25%; then, the next ​three​ buckets will be examined before rehashing.

Linear probing introduces some code overhead and causes a slowdown of 0-3% for

bucket sizes 8 to 32, which do not benefit from linear probing as it is up to 8 entries

only; the slowdown is larger for higher bucket sizes, as the code overhead is at

find-or-put operation level and there are more ​find-or-put invocations on higher

bucket sizes. On bucket size 4, however, linear probing gives a speedup of 3-17%; with

higher fill rates, the speedup is larger, as more rehashing would be needed otherwise.

 table parameters
runtime

(ms)

speedup vs.

no ​_lp8
[​Table 5.2​]

default: low fill rate (table size: 256MiB → fill rate 0.24)

default (bucket size: 32) 9.52 0.98

bucket size: 16 7.21 1.00

bucket size: 8 6.45 1.00

bucket size: 4 6.20 1.05

very low fill rate: 2x table size: 512MiB → 0.5x fill rate: 0.12

bucket size: 4 6.11 1.03

medium fill rate: 0.5x table size: 128MiB → 2x fill rate: 0.48

bucket size: 4 6.48 1.10

high fill rate: 0.3x table size: 76.8MiB → 3.33x fill rate: 0.80

bucket size: 4 7.69 1.17

Table 5.3: effects different table parameters (uncompressed lp8) ​– ​[U-T (_lp8)]

46

We have also implemented linear probing up to 32 entries: after examining a full 32B

cache line segment, we then proceed with the other segments in the 128B cache line,

again in a circular way. This saves even more rehashing. We, however, do not benefit

from additionally loaded cache line segments, as those are not pre-fetched (unless those

segments are explicitly requested before). But it prevents many cache lines with “holes”,

i.e.​, cache line segments that are not filled and are wasted cache memory.

Our experiments, however, show no additional performance benefits over linear probing

up to 8 entries only. Apparently, the performance benefits of linear probing are very

related to benefiting from an already loaded cache line segment.

Optimal table parameters​: Now, a bucket size of 4 ​is optimal, on all fill rates. This

remains when we also consider the runtimes of the non-​_lp8 original (​Table 5.2​). But

note that the bucket size can never be smaller than the vector length.

Still, a low fill rate gives the best performance.

5.2.4 Different input + table parameters

In the previous two subsections, we examined the performance effects of input

(​Subsection 5.2.2​) and table (​Subsection 5.2.3​) parameters separately. In this

subsection, we examine the effects of the ​combination of all input and table parameters

on performance.

This subsection presents the results of multiple experiments: We start with the

performance effects of different input on a high fill rate of 0.80​. Then, we present the

performance effects of different input on lower bucket sizes (8 and 4)​. Finally, we

examine the ​performance effects of different input on a high fill rate of 0.80 plus lower

bucket sizes (again 8 and 4)​. We compare the results to each other and to the results on

a low fill rate of 0.24 plus default bucket size of 32 (​Table 5.1​).
The results are used to find ​optimal table parameters​, in particular optimal bucket size,

for each type of input.

Different input [high fill rate] – ​[U-I-hfr]​ ​(default bucket size 32)

see ​Table 5.4​ (this page) for a copy of table ​[U-I-hfr]

 input
runtime

(ms)

speedup vs.

low fill rate 0.24

[​Table 5.1​]

default (vector length: 4, duplication 2.00) 4.88 – 19.98 0.94 – 0.95

less duplication: 1.12 5.63 – 22.57 0.91 – 0.92

lower vector length: 1 7.59 – 36.58 1.00 – 1.02

lower vector length: 2 8.63 – 20.06 0.99 – 1.00

lower vector length: 3

[with 32/30 compensation for “lost” entries]
10.45 – 16.05 0.94 – 0.96

lower vector length: 3

[no compensation for “lost” entries]
10.64 – 16.54 0.92 – 0.94

higher vector length: 8 5.70 – 13.08 0.86 – 0.90

Table 5.4: effects different input [high fill rate] (uncompressed) ​–​ ​[U-I-hfr]

47

We measured a slowdown of 0-14% with different input types, moving from a low fill

rate (0.24) to a high fill rate (0.80) table, dependent on vector length: almost no effect

on vector length 1; more effects on higher vector lengths, due to a higher increase in

rehashing (higher vector lengths have less slots in a bucket). The effects are also more

profound in cases with less duplication: in a high fill rate table, claiming a bucket slot (by

atomicCAS()​) will fail more often and the resulting negative performance effects are

stronger for cases that need to claim more slots, as they have more vectors to insert.

We can now see the effect of compensation for lost entries, on vector length 3:

slowdown is 4-6% compensated and 6-8% non-compensated.

Different input [bucket size 8/4] – ​[U-I-s8/-s4/-s4 (_lp8)]​ ​(low fill rate 0.24)

see ​Table 5.5​ (this page) for a copy of table ​[U-I-s8]

Bucket size 32 → 8 (​Table 5.5​)​: Moving from bucket size 32 to 8, we measured a

speedup of 13-54%.

The speedup is less with lower vector lengths and/or less duplication: A lower bucket

size increases the amount of memory operations that are concurrently in progress,

including the amount of ​atomicCAS() operations. This increases the probability that an

atomicCAS() operation has to wait for the completion (unlocking) of a concurrent atomic

operation on the same hash table entry (and, in practice, locking granularity may even

be more coarse, ​e.g.​, at 32B or 128B level). As cases with lower vector lengths and/or

less duplication have a higher level of ​atomicCAS() invocations, they are more hurt by

this phenomenon.

Note the anomaly of vector length 3: speedup is ​better than on vector length 4. We do

not have an explanation for this behaviour, but it is probably related to “lost” entries.

Bucket size 8 → 4​: Moving from bucket size 8 to 4, the program was 3% slower – 4%

faster, with an average of 1% slower (except vector length 8, as bucket size 4 is then

not possible). Enabling linear probing, on bucket size 4, has a speedup effect of 0-7%,

with an average of 3% faster (no effect on vector length 1).

Therefore, we only need to take a look at bucket size 4 with linear probing: comparing

bucket size 4, with linear probing, to bucket size 8, without linear probing, gives a small

speedup, up to 5% (except a few cases of vector length 1 that were up to 2% slower).

 input
runtime

(ms)

speedup vs.

bucket size 32

[​Table 5.1​]

default (vector length: 4, duplication 2.00) 3.18 – 13.00 1.44 – 1.46

less duplication: 1.12 4.19 – 16.91 1.22 – 1.24

lower vector length: 1 5.79 – 32.29 1.13 – 1.33

lower vector length: 2 6.14 – 16.46 1.20 – 1.40

lower vector length: 3

[with ​4/3​ compensation for “lost” entries]
8.48 – 11.34 1.34 – 1.54

lower vector length: 3

[no compensation for “lost” entries]
8.57 – 11.45 1.32 – 1.51

higher vector length: 8 3.48 – 8.91 1.25 – 1.46

Table 5.5: effects different input [bucket size 8] (uncompressed) ​–​ ​[U-I-s8]

48

 Different input [high fill rate + bucket size 8/4] – ​[U-I-hfr-s8/-s4/-s4 (_lp8)]
see ​Table 5.6​ (this page) for a summary of table ​[U-I-hfr-s8]

Low fill rate → high fill rate (bucket size 8, ​Table 5.6​)​: Changing low fill rate 0.24 to high

fill rate 0.80, on bucket size 8, we measured a speedup up to 5%, for the inputs of

vector length 1, and a slowdown of 5-32%, for the inputs of other length; the effects of

a high fill rate are more profound on bucket size 8 than on bucket size 32 (​Table 5.4​,

page 47), due to more rehashing. Again, the effects are stronger for inputs of higher

vector lengths, as those inputs result in buckets with less (but larger) slots.

The inputs of vector length 1 are now faster, especially those with a less number of

vectors, probably due to (L2) caching effects, as the high fill rate is achieved by a small

table, in global memory. As the input, which resides in global memory as well, is also

loaded via the L2 cache (and via L1), this may also impact the performance related to

input loading. Inputs of other vector length probably also benefit from caching effects,

but the negative effects, apparently, outweigh the caching effects. In reality, we have

larger tables and input (model) sizes and caching effects will be much less profound.

In contrast to the situation on bucket size 32 (​Table 5.4​, page 47), the effects are now

less profound in cases with less duplication: Apparently, those cases are already so much

hurt by more ​atomicCAS() operations on bucket size 8, that changing to a high fill rate

have less negative effects than in cases with more duplication.

Bucket size 32 → 8 (​Table 5.6​)​: For all inputs, bucket size 8 is still faster than bucket

size 32 (​Table 5.4​, page 47), in a high fill rate table: 12-37% faster, for the inputs of

vector length 1, and 4-34% faster, for the inputs of other length. Apart from vector

length 1, the speedup is less than on a low fill rate table (​Table 5.5​, previous page).

Bucket size 8 → 4​: Moving from bucket size 8 to 4, the program was 1-4% slower, for

inputs of vector length 1, and 4-12% slower for inputs of other lengths; the effects are

more profound than in a low fill rate table.

Enabling linear probing, up to 8 entries, has a speedup effect of 1-19%, with an average

speedup of 11%. Again, effects are stronger than in a low fill rate table.

Comparing bucket size 4, with linear probing, to bucket size 8, without linear probing,

gives a speedup of 0-8%, with an average of 3% (except a few cases of vector length 1

that were up to 3% slower). Now, effects are similar to the effects in a low fill rate table.

 input

speedup vs.

low fill rate

[​Table 5.5​]

speedup vs.

bucket size 32

[​Table 5.4​]

default (vector length: 4, duplication 2.00) 0.81 1.23 – 1.25

less duplication: 1.12 0.84 1.12

lower vector length: 1 0.99 - 1.05 1.12 – 1.37

lower vector length: 2 0.92 - 0.95 1.14 – 1.34

lower vector length: 3

[with ​4/3​ compensation for “lost” entries]
0.78 - 0.81 1.15 – 1.25

higher vector length: 8 0.68 – 0.72 1.04 – 1.13

Table 5.6: effects different input [high fill rate + bucket size 8] (uncompressed)

[U-I-hfr-s8]

49

Optimal table parameters

Considering both low and high fill rate tables, bucket size 4, with linear probing, gives

the best performance in our experiments (except for a few cases of vector length 1 with

an optimal bucket size of 8, probably due to caching effects); as the minimal bucket size

for inputs of vector length 8 is 8, bucket size 8 gives the best runtimes for those inputs.

In general, a table with a low fill rate turned out to have a better performance, thus, in

reality, this boils down to claiming as much memory as possible for the hash table. This

also means that, in reality, the size of a table is fixed.

5.2.5 In practice: different input (fixed table size)

The experiments in the subsections above (Subsections 5.2.1-5.2.4) have an artificial

nature. In this subsection, we present a more practical situation, in which we use a

fixed-sized table of 256MiB. We start by examining the effects of ​different input on

performance, using the default bucket size of 32​. We then examine ​the performance

effects of using optimal bucket sizes​, determined in the ​previous subsection​.

Different input [fixed table size] – ​[U-I-fn]​ ​(fixed default bucket size 32)

When fixing the table size, we observe both the effects of different input (​Table 5.1​,

page 43) and a different fill rate for almost all inputs, including a higher fill rate for some

inputs (​Table 5.4​, page 47). Ultimately, we only see effects for the two cases that now

move to a high fill rate of 0.85 (less duplication, 2x number of (unique) vectors; vector

lengths 4 and 8): a slowdown of 11% and 17%, respectively; the latter slowdown is

larger, due to a higher increase in rehashing.

Different input [fixed table size + optimal bucket size] – ​[U-I-fn-os]
see ​Table 5.7​ (this page) for a summary of table ​[U-I-fn-os]

Based on our experiments, the lowest bucket size possible seems to be the optimal

setting. But we have to take into account the ratio of “lost” entries: for example, with

vector length 5, bucket size 16 might be a better choice than bucket size 8, as the ratio

of lost entries of the former is 1/16 compared to 3⁄8 = 6/16 of the latter; the amount of

lost entries impacts the (effective) fill rate and, consequently, performance. We also saw

that enabling linear probing helps, with bucket sizes of 4 or less.

 input runtime (ms)

speedup vs.

bucket size 32

[​U-I-fn​]

default (vector length: 4) 3.03 – 20.81 1.11 – 1.52

lower vector length: 1 5.93 – 32.43 1.12 – 1.36

lower vector length: 2 5.97 – 16.67 1.19 – 1.45

lower vector length: 3

[no compensation for “lost” entries]
6.24 – 11.90 1.27 – 1.60

higher vector length: 8 3.69 – 12.23 1.11 – 1.37

Table 5.7: effects different input [fixed table size + optimal bucket size] (uncompressed)

[U-I-fn-os]

50

While experimenting with those optimal bucket sizes, we, however, discovered that

bucket size 4 (including linear probing) was optimal for vector lengths 1 and 2, and not

bucket sizes 1 and 2, respectively. The positive effects of lower bucket sizes are,

apparently, too much tempered by saturation of the memory bus and high levels of

branch divergence. Indeed, on a high fill rate, bucket size 4 turns out to be even ​more

faster. We already saw before that lowering the bucket size had less benefits for lower

vector lengths.

Similarly, we found an optimal bucket size of 16 for inputs of vector length 8.

Using those optimal bucket settings, we achieved speedups of 11-60%, compared to a

fixed bucket size of 32.

The effects are very similar to the effects of a lower bucket size (​Table 5.5​, page 48),

combined with the effects of a different fill rate, including a higher fill rate for some

inputs (​Table 5.4​, page 47). We see less caching effects, especially for low-vector input

of vector length 1, as the table size is now larger for those cases.

5.3 Conclusions

In this section, we present the most important conclusions of our extensive performance

evaluation (​Section 5.2​).

To get a performance evaluation that can be used for fair comparisons, we first fixed the

main flaws in the uncompressed hash table implementation from GPUexplore:

corruption, replication and an inferior distribution.

The number of vectors and bucket size have a large impact on performance, whereas

vector length and duplication have a minor impact; the total number of vectors

determines performance more than the total number of elements does. The impact of fill

rate is limited up to a certain level (around 0.80), but from that level, the impact

becomes more and more visible.

Based on our experiments, we found these optimal settings:

● for all inputs: a low fill rate, and, as model size is, in general, not known ​a priori​,

the largest hash table possible

● for inputs with vector lengths 1-4: bucket size 4 + linear probing (up to 8 entries)

● for inputs with higher vector lengths: smallest or second smallest bucket size

possible (8, 16 or 32; no linear probing), but taking into account the ratio of

“lost” entries as this may greatly impact the (effective) fill rate and,

consequently, performance (​e.g.​, for inputs of vector length 5, bucket size 8 gives

⅜ as that ratio, compared to a ratio of 1/16 for bucket size 16)

Our results differ from the results of Cassee ​et al. [​18​]: Considering isolated hash tables,

they found that a lower bucket size only had benefits with input with a large duplication

factor (20+); in our experiments a lower bucket size ​always pays off, including cases

with much smaller duplication factors (1.12 and 2.00).

We do not know yet where the difference comes from. It is probably related to different

GPU architectures: Cassee ​et al. used a Titan X, based on the Maxwell GPU architecture;

we used a Titan Xp, based on the Pascal GPU architecture. Maxwell does not cache

thread-local memory (​e.g.​, spilled registers) in the unified L1/texture cache and global

memory load transactions are 128B when loaded via L1, instead of 32B [​28​].

51

Our actual implementation, including the hash function, is also different and Cassee’s

implementation may, consequently, use a different amount of registers, which has an

impact on register spilling. We also do not know if global L1 loading was activated; in

that case, memory load transactions were 128B instead of 32B and this would impact

the effects of lower bucket sizes to a large extent, as we have explained before.

This may also impact the results when the hash table implementations are integrated

into GPUexplore. Using our implementation, settings or our Titan Xp accelerator (based

on the Pascal GPU architecture), results may be different; a lower bucket size will now

maybe also pay off when our hash table is integrated into GPUexplore, in contrast to the

conclusions of Cassee ​et al.​ [​18​].

52

6. Compressed GPU hash table (recursive)

In the ​previous chapter​, we presented the existing uncompressed GPU-based hash table

(although we had to fix multiple flaws first) and its extensive performance evaluation. In

this chapter, we present a novel GPU-based hash table, using tree-based compression,

based on the recursive algorithm of Laarman ​et al. (​Section 3.2​); the next chapter,

Chapter 7​, introduces another GPU-based hash table using tree-based compression, but

now using a non-recursive algorithm.

This chapter starts with an overview of the stand-alone implementation of our

GPU-based hash table, using tree-based compression (​Section 6.1​).
We then examine the impact of GPU, input and table parameters on the performance of

the compressed GPU-based hash table and compare the results to the performance

evaluation of the uncompressed hash table of ​Chapter 5 (​Section 6.2​). Using the results

of our extensive performance evaluation, we determined optimal GPU and table

parameters for each input and managed to speedup execution up to 8 times. Then, we

compare those optimal results to the optimal results in the uncompressed hash table; as

optimisation had much more effects with the compressed table, we managed to reduce

the slowdowns of the compressed versus the uncompressed table, from 40x to 5.3x.

Next, we discuss multiple improvements we implemented to our original implementation,

aimed as reducing recursive overhead: versions with less recursion and more work per

recursive call (​Section 6.3​). We explore the impact on performance and the results show

that we managed to reduce the performance gap even further.

Finally, we give the conclusions of our performance evaluation (​Section 6.4​).

6.1 Stand-alone implementation

Our original implementation closely follows Laarman’s algorithm [​19​] (​Section 3.2​): the

(implicit) compression tree is constructed by recursion (top-down).

The massive parallelism provided by GPUs is used in two ways, as in the uncompressed

hash table (more on this in the ​‘Sequential and parallel operation’ section​):
● Bucket groups: Parallel insertion of vectors, by multiple bucket groups. Each warp

(32 threads) inserts one vector and even more with a lower bucket size than 32.

● Node groups: A bucket is examined in parallel, each node group checking a single

slot in that bucket. Node groups are similar to the vector groups of the

uncompressed hash table; the elements of a compressed hash table are tree

nodes, whereas the elements of an uncompressed hash table are vectors.

We start with an example to illustrate how the algorithm works (​Subsection 6.1.1​).

Then, we explain the algorithm in detail (​Subsection 6.1.2​). Next, we describe several

aspects related to correctness and performance (​Subsection 6.1.3​). Finally, we give the

maximum table size, related to the number of nodes that can be referenced, and ways to

improve this bound (​Subsection 6.1.4​).

6.1.1 Illustrative example

To illustrate how the algorithm, and tree-based hash table compression in general,

works, we give an example of the subsequent insertion of the vectors (1,2,3,4),

(5,6,1,2) and, again, (1,2,3,4) into an empty hash table.

53

To insert vector (1,2,3,4), it is used as an argument to the wrapper function

treeFindOrPut()​. This function calls the recursive function ​treeRec()​, with the same

vector as argument. This top-level ​treeRec() invocation now splits the vector and

recursively calls ​treeRec() on the left and right subvectors, (1,2) and (3,4),

respectively. The two mid-level ​treeRec() invocations now split their subvector

arguments again, into subvectors (1), (2) and (3), (4), respectively, and recursively call

treeRec() on those four subvectors. Subvectors of length 1 are base cases and the four

bottom-level ​treeRec() invocations just return their subvector arguments, ​i.e.​, (1), (2),

(3) and (4), to their callers, the (two) mid-level ​treeRec()​ invocations.

The “left” mid-level ​treeRec() invocation now creates a tree node from the return values

of its (two) recursive ​treeRec() calls: it creates the node (1,2), out of (1) and (2), and

calls ​findOrPut() to insert this node into the hash table. The ​findOrPut() operation is

an adaptation of its implementation in the uncompressed hash table and now returns a

reference (​i.e.​, hash table index) ​L​, to the node (1,2), that has just been inserted into

the table. The ​treeRec() invocation returns this reference to its caller, the top-level

treeRec() invocation. The “right” mid-level ​treeRec() invocation returns a reference ​R​,

to the node (3,4), to the same caller.

The top-level ​treeRec() invocation creates a tree node from the return values of its

(two) recursive ​treeRec() calls: it creates the node (​L​,​R​), out of ​L and ​R​. It then calls

findOrPut() to insert this node into the table and returns the reference ​RN it gets to its

caller, ​i.e.​, to the invocation of the wrapper function ​treeFindOrPut()​.
The wrapper function now checks the root bit of the tree node ​RN references to, which is

in this case still unset. Now, the wrapper function sets the root bit and returns that the

vector is new and has now been inserted.

During the insertion of the vector (5,6,1,2), the “right” mid-level ​treeRec() invocation

tries to insert the node (1,2) by calling ​findOrPut()​. The ​findOrPut() operation,

however, returns a reference (​i.e.​, ​R​) to the existing (1,2) tree node, instead of inserting

it for another time.

The same happens with an existing tree node that contains one or two references to

other nodes, instead of only vector element values. For example, during the insertion of,

again, the vector (1,2,3,4), the node (​L​,​R​) already exists and the reference ​RN is

returned; the wrapper function ​treeFindOrPut() now detects a set root bit and returns

that the vector has already been inserted before.

6.1.2 Compression algorithm in detail

See ​Algorithm 6.1 (next page) for a simplified version of our recursive C function

treeRec()​ that constructs the compression tree.

The type for references to tree nodes in the hash table is ​indextype​, the type for vector

elements and hash table entries is ​inttype​; in our implementation, both are aliases for

the type of an unsigned 32-bit integer (​uint32_t​). As a node consists of two 32-bit

references or vector elements (or a mixture of both), it is 64-bit wide and occupies two

32-bit hash table entries; the MSB of the first entry is used as root bit.

In constructing the tree, we start with the complete vector and then recursively call

treeRec() to construct the subtrees for the “left” and “right” parts of the vector; this

process is repeated till the base case is reached, ​i.e.​, a subvector of length 1. The base

case just returns the subvector, ​i.e.​, its sole element; the other calls return a reference

to the root node of the just constructed subtree, ​i.e.​, the index of that root node in the

hash table. The calling invocation then creates a node, consisting of those returned

references or sole vector elements, inserts the node into the hash table by calling

findOrPut()​ and returns a reference to it, ​i.e.​, the index of that node in the hash table.

54

indextype​ treeRec(​inttype​ *​vector​, ​int​ ​vectorLength​) {
 ​indextype​ result;

 ​if​ (​vectorLength​ == 1)
 result = *​vector​;
 ​else​ { ​// length > 1
 ​int​ split = (​vectorLength​ / 2);
 ​indextype​ node[] = { treeRec(​vector​, split),

 treeRec((​vector​ + split), ​// pointer arithmetic
 (​vectorLength​ - split)) };

 result = findOrPut(node);

 }

 ​return​ result;
}

Algorithm 6.1: ​treeRec()​, the function that creates the compression tree (simplified)

Note that the created node may already exist in the hash table; then, the ​findOrPut()

function returns a reference to the existing node.

Wrapper function: ​treeFindOrPut()

The initial ​treeRec() call returns a reference to the root node of the compression tree for

the inserted vector. This reference is then used in our top-level ​treeFindOrPut()

wrapper function to check whether this was already a root node, indicating that the

vector was already present in the hash table, or not, by atomically checking the root bit

(bitmask ​ROOT_BIT_32​) and setting it:

FoundOrPut​ treeFindOrPut(​inttype​ *​vector​) {
 FoundOrPut​ result;

 indextype​ rootIndex = treeRec(​vector​, d_vectorLength);
 result = ((atomicOr((d_table + rootIndex), ROOT_BIT_32) & ROOT_BIT_32) ?

 SEEN​ : ​NEW​);

 return​ result;
}

Algorithm 6.2: ​treeFindOrPut()​, top-level function for inserting vectors (simplified)

In ​Algorithm 6.2​, ​FoundOrPut is the ​enum for indicating the result of the ​find-or-put

operation: a new vector (​NEW​), an existing vector (​SEEN​) or, in the actual

implementation, a full table (the table is considered full when for rehashing no hash

functions are left anymore). The constants ​d_vectorLength and ​d_table refer to the

length of each input vector and (a pointer to) the start address of the hash table,

respectively. The actual implementation accounts for sole-element vectors, by

by-passing the ​treeRec() function and inserting the vector, padded with an empty

(32-bit) element to get a 64-bit node, directly into the hash table.

55

Adaptations to ​findOrPut()

As ​findOrPut() now only operates on 64-bit (tree) nodes, ​i.e.​, a combination of two

32-bit hash table entries, each node group (was: vector group) now consists of two

CUDA threads, in which one thread checks the first entry of a slot in the table and the

other thread the other (last) entry. If the slot is empty, the node group leader (the first

thread in a node group) tries to claim the full slot, by a 64-bit ​atomicCAS() operation;

the other thread synchronises on the result. This result now also includes the case that a

concurrent invocation inserted the same node; then the hash table reference to that

node is returned, instead of inserting the same node again (in a different slot/bucket), as

the uncompressed implementation from GPUexplore 1.0 (​Subsection 5.1.2​) does.

We have implemented an improvement (​Subsection 6.3.2​), in which we have reduced

each node group to only one thread, by each thread now checking a full 64-bit slot,

instead of only a 32-bit wide entry of it.

The ​findOrPut() function now returns a reference, to the inserted node, instead of

returning whether the inserted vector was new or not; now, the ​treeFindOrPut()

wrapper function has the responsibility for doing this. The adapted ​findOrPut() also

allows for a full table, by returning a reserved value in that case; the actual

implementation of ​treeRec() propagates this value to its caller(s) and, eventually,

returns this value to the calling ​treeFindOrPut()​ invocation.

Sequential and parallel operation

Our implementation of tree-based compression supports the parallel processing of

multiple vectors within a warp, ​i.e.​, by multiple bucket groups. This is directly related to

the set bucket size: with a bucket size of 8, each warp has four bucket groups, each

consisting of eight threads. In this case, each bucket group has four node groups,

consisting of two threads each; node groups are only relevant in ​findOrPut()​.
Bucket groups are also used in the ​treeRec() and ​treeFindOrPut() functions. Hence,

when a warp executes a ​treeRec() or ​treeFindOrPut() operation, each thread in a

warp only operates on the vector of his bucket group; all threads in a bucket group do

exactly the same, except in the operation of the ​findOrPut() function, in which the

threads of a bucket group are separated into node groups and each node group operates

on his own slot (of the same bucket) in the hash table; each thread in a node group

operates on his own entry in that slot.

For each bucket group (vector), constructing the compression tree, ​i.e.​, inserting its

nodes to the hash table, is, however, done sequentially and follows the recursive call

order (depth-first search). ​Chapter 7 introduces a method to construct the tree in

parallel and bottom-up, ​i.e.​, starting at the leaf nodes and then working upwards.

6.1.3 Correctness and performance aspects

This subsection describes several aspects related to correctness and performance.

Intrinsic benefits over uncompressed implementation

As the final version of our uncompressed table, our compressed hash table is

replication-free. But this is natively supported, in contrast to the spinlocking solution in

the uncompressed hash table. As spinlocking may hurt performance, a native solution,

as in our compressed hash table, is preferred.

56

In contrast to the uncompressed hash table implementation, which supports vectors up

to 32 entries, our compressed implementation supports vectors of arbitrary length.

Additionally, hash table entries are only “lost” with vectors of length 1, when they are

padded; but, in the case of input of vector lengths 1 and 2, benefits are very limited

anyway, as no compression is possible and the benefits can only come from

implementation differences, ​e.g.​, the absence of spinlocking.

Reading non-​volatile

When initially checking the full bucket in parallel, the memory reads are still done in a

non-volatile way, ​i.e.​, may return stale values (in our case, the empty entry value). This

still cannot lead to false positives (falsely concluding vector is not new), but, in contrast

to the uncompressed implementation from GPUexplore 1.0 (​Subsection 5.1.2​), can now

also not lead to replication (false negatives): as the subsequent ​atomicCAS() function

call returns the actual (non-cached) value and this value is now checked, an already

existing node will be detected at this point. This may, however, impact performance, but

experimenting with a version that reads in a volatile way, did not lead to a better

performance, independent of target architecture and L1 loading for global reads.

In conclusion, our compressed hash table implementation is correct (no false positives

and no false negatives), despite reading in a non-volatile way. Enabling ​volatile

reading does not increase performance, hence we keep reading in a non-volatile way.

Integration of strongly universal hash function

As in the uncompressed hash table (​Subsection 5.1.4​), we integrated the strongly

universal hash function of ​Section 2.3​. We chose for the ‘Pair-multiply-shift’ variant, as a

parallel version has no benefits: we need to hash 64-bit tree nodes, consisting of a ​pair

of 32-bit entries; parallel processing has only benefits for multiple pairs.

We see the same effects as in the uncompressed hash table:

With random-data input, rehashing was already low using GPUexplore’s hash function

and performance benefits come from a faster hash function, with much less benefits on

lower bucket sizes.

Much more effect with real-world data, using a large table of 6GiB. Then, rehashing

decreased up to 100x and resulting runtimes were up to 16% lower. Optimal execution

configurations and bucket sizes were again different, as using GPUexplore’s hash

function requires “sub-optimal” settings to mitigate the effects of massive rehashing.

All experimental data can be found in the ​[Clr64-H]​ table in Appendix B.2.

Low-level optimisations

We again tried some low-level optimisations, on bucket sizes 32 and 8, and still using

the old hash function implementation of Cassee:

● CC 6.1 as target architecture (​sm_61​): negative, as this leads to a higher register

pressure and stack frames, including those for the recursive calls

● forcing register spilling (​maxrregcount​) has a slight effect with ​sm_61 (more effect

with enabled L1 loading for global reads); no effect with ​sm_30​, as its register

usage does not inhibit achieving maximal occupancy

Again, we have not used any optimisation we tried.

57

 6.1.4 Maximum table size

Having one large hash table, instead of several, smaller, hash tables for each node

location in the tree, not only enables maximal sharing, but we can also claim as much

memory as possible for the table (see ​Section 3.2​, ‘​Maximal sharing​’, page 26).

As one bit of a node is used to indicate whether it is a root node, each node entry can

reference up to 2​31
hash table entries. One value is, however, reserved for indicating the

empty entry. Additionally, for implementation matters, we require that the number of

entries is a multiple of 32 (number of threads in a warp). Therefore, our hash table can

have at most 2​31​
 - 32 entries.

As each entry is 32-bit (= 4 bytes) wide, this corresponds to a table of (2​31
- 32) entries

* 4 B/entry ≈ 8GiB. In practice, the average size per compressed state vector is almost

the size of a root node, which is, in our case, 8 bytes. This means that our 8GiB table

can store up to 8GiB / 8 B/root node ≈ 1,000,000,000 state vectors, of arbitrary length.

As GPU memory sizes are relatively small and compression dramatically reduces space

requirements for model checking, this may be enough for now, but several options exist

for increasing this maximum.

First, we can use a bit array to indicate root nodes; this would also fix the issue that our

current implementation supports 31-bit integers only, instead of full 32-bit integers. A bit

array was not an option for the CPU multi-core implementation, as this would introduce

false sharing, caused by the cache coherence protocol. GPUs do not have a cache

coherence protocol, but an additional global memory access, to the bit array, may hurt

performance much.

Another option is changing the hash table references in such a way, that they reference

(64-bit) nodes instead of (32-bit) entries. We do so in our 64-bit improvement

(​Subsection 6.3.2​), mentioned before.

Both options double the maximum table size and can be used in conjunction.

6.2 Performance evaluation (random data)

In all experiments, we compare the results to the results of the uncompressed hash

table (​Section 5.2​), without linear probing, as linear probing will only be added to our

compressed implementation in ​Subsection 6.3.2​. We focus on the results of inputs with

vector length 3 or higher, as only they are compressible.

Performance evaluation is similar to that of the uncompressed table (​Section 5.2​):
We start our performance evaluation by determining optimal execution configurations for

each input and table parameter, including combinations (​Subsection 6.2.1​); they are

used in all subsequent experiments.

We then examine the impact of different input (​Subsection 6.2.2​) and table (​Subsection

6.2.3​) parameters on performance. We have now also included compression ratio as

input parameter. We also try to find performance dependencies between parameters.

Next, we examine the impact of the ​combination of different input and table parameters

on performance (​Subsection 6.2.4​), including comparison to the experiments of

Subsection 6.2.2​. The results are used to find optimal table parameters, in particular the

optimal bucket size, for each type of input.

Whereas the experiments listed above are synthetic, our last experiments resemble a

more practical situation (​Subsection 6.2.5​), with a fixed-sized table of 256MiB. We first

experiment using the default bucket size of 32. Next, we use the optimal bucket size(s)

found before and compare the results to those obtained using bucket size 32.

58

Table 4.1 (page 31) gives an overview of all experiments. For more details, see

‘​Research methodology​’ (page 30) and ​Section 4.2: Test setup​ (page 32).

In this performance evaluation we use parameterised random data. In ​Chapter 8​, we do

performance evaluation with real-world data. That chapter also recaps the results of our

final experiment, using the found optimal bucket size(s), from ​Subsection 6.2.5​.

The first four subsections (Subsections 6.2.1-6.2.4) give an in-depth understanding of

the factors that impact the performance of the hash table, but are not necessary for

understanding the general ideas; the last subsection (​Subsection 6.2.5​) and ​Section 6.4:

Conclusions present the general ideas. ​Section 6.4 also presents the conclusions of the

performance evaluation of our improvements from ​Section 6.3​.

The table identifiers in the headings refer to the tables in Appendix B.3.2.

6.2.1 Optimal execution configuration ​– ​[C-E​, ​-vl1​, ​-vl2]

Our stand-alone compressed hash table uses 32 registers (no shared memory usage),

enabling maximal occupancy. Consequently, we again started with our default block

dimension of 256 threads and grid dimension of 240 blocks.

However, ​lowering the grid dimension, resulted in lower runtimes: 114ms (grid

dimension 90, 0.375x underloading) versus 147ms (grid dimension 240), a decrease of

22%. Lowering the grid dimension even further, to 60 blocks, was counterproductive,

yielding a runtime of 126ms. We tried block dimensions of 128 and 512 threads, with

various grid dimensions, but we could not measure any differences.

Using other input or table parameters resulted in the same optimal execution

configuration (​i.e.​, a grid dimension of 90 blocks), except for lower bucket sizes and

non-compressible input of vector length 1.

To get optimal runtimes on the lower bucket sizes 8, 4 and 2, we had to lower the grid

dimension further, to 60 blocks. For inputs of vector length 2, we had to lower the grid

dimension even more, to 30, on bucket size 2.

For the non-compressible input of vector length 1, the 4x overloading execution

configuration of 256 threads per block and 960 blocks yielded the best runtime, of

64.8ms, compared to the default runtime of 69.8ms. When changing the bucket size, we

also had to adapt the grid dimension to get the lowest runtimes: 150 blocks (bucket size

16; 0.625x underloading;), 90 blocks (bucket size 8; 0.375x underloading), 60 blocks

(bucket size 4; 0.25x underloading) and 30 blocks (bucket size 2; 0.125x underloading),

all using a block dimension of 256 threads.

We had to lower the grid dimension, ​i.e.​, exposing, counterintuitively, ​less parallelism to

the GPU, to damp the disadvantageous effects of recursion: The (recursive) call stack

resides in device memory, but is cached in (per-SM) L1 caches and the (device-wide) L2

cache. Apparently, from a certain point of (concurrent) recursion, those caches are

overloaded and too many stack frames have to be loaded from device memory, which is

relatively slow and has a large latency. The amount of (concurrent) recursion is only

defined by the vector length (depth of recursion) and execution configuration, not by

other parameters, such as bucket size (a lower bucket size only increases the number of

processed vectors per recursive call).

59

This observation is reinforced by our experiments:

As vector length 1 is the base case, no recursion will take place for inputs of that length

and even an ​overloading execution configuration resulted in the lowest runtimes. We had

to lower the grid dimension on lower bucket sizes to lower the amount of (too many)

concurrent memory requests, which only led to a saturated memory bus. In the

uncompressed table, we saw the same saturation, but we did not have to lower the grid

dimension, as it did not suffer from the (code) overhead of the compression algorithm.

For inputs of vector length 2, we had to lower the grid dimension on lower bucket sizes

as well, as recursive depth is limited here. For the other vector lengths, this also applies,

but to a lesser extent, as recursive depth is larger and the effects of recursion determine

performance more than saturation of the memory bus does; hence, we still need a grid

dimension of 60 blocks to get optimal performance on bucket size 2, in contrast to a grid

dimension of 30 blocks on vectors lengths 1 and 2.

Our improvements (​Section 6.3​) aim at removing the observed recursion overhead:

First, by lowering the amount of recursive calls through incorporating more base cases,

i.e.​, decreasing the depth of recursion (​Subsection 6.3.1​). Next, by doing more work per

recursive call: doubling the number of processed vectors per call (​Subsection 6.3.2​).

6.2.2 Different input ​– [C-I]​ ​(fixed low fill rate 0.24 + fixed default bucket size 32)

see ​Table 6.3​ (next page) for a summary of table ​[C-I]

We first examine the impact of input parameters (vector length, duplication, number of

vectors and now also compression ratio) on performance in isolation. Next, we look at

the impact of a combination of input parameters on performance, to find any

performance dependencies.

Vector length​: The effect of a different vector length is the opposite of the effect in the

uncompressed case: Now, a lower vector length, keeping the total number of elements

the same, results in a ​lower runtime. For example, vector length 2 is 1.25x as fast as

vector length 4 and vector length 8 is 0.87x as fast. This directly relates to the depth of

the recursion; vector length 1 is 2.1x as fast, as no recursion takes place. But the effects

of a different vector length are weaker than in the uncompressed table.

Consequently, the related effect of a different vector length, but now keeping the

number of vectors the same (and varying the total number of elements), still shows a

positive correlation between vector length and runtimes, but the effect is now much

stronger, especially for vector length 1: vector length 1 is now 8.6x as fast as vector

length 4 (versus 1.2x for the uncompressed table), length 2 2.5x as fast (versus 1.1x)

and length 8 0.4x as fast (versus 0.9x).

This also impacts the slowdowns versus the uncompressed table, which primarily depend

on vector length, corresponding to recursive depth: Vector length 1 is only 1.7x as slow,

due to the (code) overhead introduced by the compression algorithm, ​e.g.​, setting the

root bit (which is not necessary in this case). But vector length 2 is already 5.2x as slow,

increasing to 8.7x for vector length 3, 12.2x for vector length 4 and a huge 25.8x for

vector length 8.

Duplication​: The effect of less duplication (more (atomic) writes) is very limited; the

recursive calls are the bottleneck to performance and less duplication does not impact

that. Compared to the uncompressed case, the effect is even more limited, even for

vector length 1, and, consequently, the resulting slowdown is about 10% smaller.

60

 input
runtime

(ms)

speedup

vs.

default

of vector

length

speedup

vs.

vector

length 4

slow-

down

vs. unc.

[​Table

5.1​]

default (vector length: 4)

default (8,000,000 vectors,

duplication 2.00, compr. ratio 0.51)
113.7 1 1 12.2

less duplication: 1.12 115.9 0.98 1 11.1

0.5x number of (unique) vectors 57.1 1.99 1 12.4

2x number of (unique) vectors 221.7 0.51 1 11.7

worse compression ratio: 0.73 115.9 0.98 1 12.5

lower vector length: 1 ​[with 2/1 compensation for “lost” entries]​*

default (same total number of elements →

32,000,000 vectors)
55.4 1 2.05 1.7

0.25x number of (unique) vectors:

 8,000,000 vectors
13.2 4.21 [8.64] 1.7

lower vector length: 1 ​[no compensation for “lost” entries]​*

default (same total number of elements →

32,000,000 vectors)
63.3 1 1.80 2.0

lower vector length: 2*

default (same total number of elements →

16,000,000 vectors)
91.0 1 1.25 5.2

0.5x number of (unique) vectors:

 8,000,000 vectors
45.4 2.03 [2.50] 5.3

lower vector length: 3**

default (same total number of elements →

10,666,666 vectors; ​compr. ratio 0.73​) 116.7 1 0.99 8.7

lower number of (unique) vectors:

 8,000,000 vectors
87.1 1.34 [1.33] 8.7

higher vector length: 8

default (same total number of elements →

4,000,000 vectors)
130.2 1 0.87 25.8

2x number of (unique) vectors:

 8,000,000 vectors
257.7 0.51 [0.44] 25.3

* speedup vs. vector length 4: comparison to compression ratio 0.51

** slowdown vs. uncompressed: comparison to no compensation for “lost” entries

[z.zz] is speedup vs. vector length 4, 8,000,000 vectors (+ same duplication)

Table 6.3: effects different input (compressed) ​– ​[C-I]

61

Number of vectors​: Varying the number of vectors has a (positive) linear effect on

runtimes, as in the uncompressed hash table. The effect is a little bit different from the

effect in the uncompressed hash table, probably due to caching effects (to get the same

fill rate, the compressed table size is ½ of the uncompressed table size, for inputs with

compression ratio 0.51). Hence, the slowdowns versus the uncompressed hash table are

different from 12.2x.

Compression ratio​: When switching to less internal duplication, resulting in a worse

compression ratio (0.73 instead of 0.51), runtimes are now a little bit higher (2%); as in

the case of less duplication, more (atomic) writes are needed, but as, again, the amount

of recursion is not affected, the effect is very limited. As the compression ratio does not

impact the uncompressed hash table, the resulting slowdown is a little bit larger.

Compensation for “lost” entries (see ​Section 4.2​)​: For most inputs of vectors 1,

compensation paid off and resulted in much lower runtimes, up to 12%, probably due to

the large compensation factor of 2/1; in some other cases, runtimes were equal or even

higher, probably, again, due to caching effects (no compensation means a smaller table).

Combinations/dependencies​: We could not find any (other) clear dependencies, apart

from some minor caching effects.

6.2.3 Different table parameters ​– ​[C-T]​ ​(fixed default input)

see ​Table 6.4​ (next page) for a summary of table ​[C-T]

We first examine the impact of table parameters (table size/fill rate and bucket size) on

performance in isolation. Next, we look at the impact of the combination of the table

parameters on performance, to find any performance dependencies.

Table size/fill rate​: Changing the fill rate has minimal effects. As the uncompressed table

showed a small effect when switched to a high fill rate of 0.80, the associated slowdown

is a little bit smaller (11.7x versus 12.2x). We also see the effects of compression, when

comparing to the same table size (instead of the same fill rate): a table size of 76.8MiB

gives a high fill rate uncompressed, but a medium one compressed.

Bucket size​: By contrast, lowering the bucket size has a large effect, as more work is

done per (recursive) call, ​i.e.​, more vectors are processed per call. For example, the

fastest bucket size, of 2, is 5.5x as fast as bucket size 32. The effect of a one step lower

bucket size is almost constant (ca. 1.7x speedup), except when lowering the bucket size

from 4 to 2 (ca. 1.1x speedup). As the effect is much stronger than in the uncompressed

table and is sustained up to a bucket size of 2 (instead of 8), the associated slowdowns,

comparing to the uncompressed table, dramatically decrease from 12.2x (bucket size

32) to 3.2x (bucket size 2, compared to bucket size 4 uncompressed).

Combination/dependencies​: With a high fill rate of 0.80, the effect of lowering the bucket

size is less, up to 13%. Now, bucket size 2 is only 4.8x as fast as bucket size 32. The

benefits of a lower bucket size are now more tempered by increased branch divergence

and rehashing. But as this phenomenon is even stronger for the uncompressed table,

slowdowns are getting ​more smaller for lower bucket sizes than in a low fill rate table:

now, lowering the bucket size from 32 to 2 results in a 4.4x lower slowdown, compared

to a 3.9x lower slowdown in the low fill rate (0.24) table. This is even more apparent

when comparing to the same table size, of 76.8MiB: the slowdown corresponding to

bucket size 2 is now only 2.3x and lowering the bucket size from 32 to 2 results in a 5.0x

lower slowdown (from 11.6x to 2.3x).

62

Optimal table parameters​: For all fill rates, bucket size 2 gives the lowest runtimes and

bucket size 32 the highest.

Additionally, a low fill rate (large table) gives the best performance.

 table parameters
runtime

(ms)

speedup

vs.

bucket

size 32

speedup

vs. low

fill rate

0.24

slowdown

vs. unc.

[​Table 5.2​]

(same

fill rate)

slowdown

vs. unc.

[​Table 5.2​]

(same

table size)

default: low fill rate (table size: 128MiB → fill rate 0.24)

default (bucket size: 32) 113.5 1 1 12.2 12.1

bucket size: 16 64.2 1.8 1 8.9 8.8

bucket size: 8 38.6 2.9 1 6.0 5.7

bucket size: 4 23.1 4.9 1 3.5 3.2

bucket size: 2 20.6 5.5 1 3.2 2.9

very low fill rate: 2x table size: 256MiB → 0.5x fill rate: 0.12

default (bucket size: 32) 114.1 1 0.99 12.3 12.3

very, very low fill rate: 4x table size: 512MiB → 0.25x fill rate: 0.06

default (bucket size: 32) 114.2 1 0.99 - 12.3

medium fill rate: 0.5x table size: 64MiB → 2x fill rate: 0.48

default (bucket size: 32) 113.0 1 1.00 12.1 -

high fill rate: 0.3x table size: 38.4MiB → 3.33x fill rate: 0.80

default (bucket size: 32) 114.3 1 0.99 11.7 -

bucket size: 16 63.9 1.8 1.00 7.9 -

bucket size: 8 41.1 2.8 0.94 5.2 -

bucket size: 4 26.5 4.3 0.87 2.9 -

bucket size: 2 23.7 4.8 0.87 2.6 -

medium fill rate: 0.6x table size: 76.8MiB → 1.67x fill rate: 0.40

default (bucket size: 32) 114.4 1 0.99 - 11.6

bucket size: 16 64.1 1.8 1.00 - 7.9

bucket size: 8 38.8 3.0 0.99 - 4.9

bucket size: 4 23.5 4.9 0.98 - 2.6

bucket size: 2 21.0 5.4 0.98 - 2.3

bucket size 2 compressed is compared to bucket size 4 uncompressed

Table 6.4: effects different table parameters (compressed) ​–​ ​[C-T]

63

6.2.4 Different input + table parameters

In the previous two subsections, we examined the performance effects of input

(​Subsection 6.2.2​) and table (​Subsection 6.2.3​) parameters separately. In this

subsection, we examine the effects of the ​combination of all input and table parameters

on performance.

This subsection presents the results of multiple experiments: We start with the

performance effects of different input on a high fill rate of 0.80​. Then, we present the

performance effects of different input on lower bucket sizes (8, 4 and 2)​. Finally, we

examine the ​performance effects of different input on a high fill rate of 0.80 plus lower

bucket sizes (again 8, 4 and 2)​. We compare the results to each other and to the results

on a low fill rate of 0.24 plus default bucket size of 32 (​Table 6.3​).
The results are used to find ​optimal table parameters​, in particular optimal bucket size,

for each type of input.

Different input [high fill rate] – ​[C-I-hfr]​ ​(default bucket size 32)

see ​Table 6.5​ (this page) for a copy of table ​[C-I-hfr]

Changing to a high fill rate (0.80) table, we could only measure significant slowdowns for

inputs of vector length 1. We do not have an explanation for the latter.

In the uncompressed table (​Table 5.4​, page 47), we measured opposite effects: the

(negative) effects were stronger for higher vector lengths, each bucket having less slots.

In the compressed case, the tree nodes have, however, a fixed length of two (32-bit)

elements and rehashing is only needed when all 16 slots of a bucket (of 32 elements)

are occupied. Apparently, this does not happen often, even when on a high fill rate.

Consequently, the slowdowns of the compressed table, compared to the uncompressed

one, are now in all cases except vector length 1, less than in the low fill rate table,

dependent on vector length: ranging from ca. 0% less (vector length 2) to ca. 12% less

(vector length 8); as the slowdown was (and is) much larger for higher vector lengths,

the absolute reduction in slowdown is even larger: for inputs of vector length 8, the

slowdown now ranges from 19.7x to 23.4x instead of 22.9x to 26.2x.

 input

speedup vs.

low fill rate

[​Table 6.3​]

slowdown​ vs.

uncomp.

[​Table 5.4​]

default (vector length: 4, duplication 2.00) 1.00 – 1.01 11.1 – 11.9

less duplication: 1.12 0.99 – 1.01 9.9 – 10.5

lower vector length: 1

[with 2/1 compensation for “lost” entries]
0.81 - 1.00 1.9 – 2.1

lower vector length: 2 0.96 - 1.00 4.7 – 5.5

lower vector length: 3 0.99 - 1.01 7.1 – 8.2​*

higher vector length: 8 0.98 - 1.01 19.7 – 23.4

* comparison to no compensation for “lost” entries

Table 6.5: effects different input [high fill rate] (compressed) ​–​ ​[C-I-hfr]

64

 Different input [bucket size 8/4/2] – ​[C-I-s8/-s4/-s2]​ ​(low fill rate 0.24)

see Table ​6.6​, ​6.7​ (this page) for copies of ​[C-I-s8/-s2]

Bucket size 32 → 8 (​Table 6.6​): Lowering the bucket size from 32 to 8 for all input types,

results in speedups of 54-102% (vector length 1; non-recursive) and 166–229% (other

vector lengths; recursive); the speedup effect is larger for higher vector lengths, related

to recursive depth. We could not measure a dependence on duplication in this case (but

we could when changing the bucket size from 8 to 4 and from 4 to 2). We could,

however, measure a dependence on compression ratio: with a higher (worse)

compression ratio, the speedup effects were less.

 input

speedup vs.

bucket size 32

[​Table 6.3​]

slowdown​ vs.

uncomp.

[​Table 5.5​]

default (vector length: 4, duplication 2.00) 2.83 – 3.01 5.7 – 6.3

less duplication: 1.12 2.75 – 3.07 4.4 – 5.0

lower vector length: 1

[with 2/1 compensation for “lost” entries]
1.54 - 2.02 1.1 – 1.5

lower vector length: 1

[no compensation for “lost” entries]
1.64 – 1.81 1.1 – 1.5

lower vector length: 2 2.66 - 2.74 2.1 – 2.8

lower vector length: 3 2.93 – 2.99 3.5 – 4.4​*

higher vector length: 8 3.07 - 3.29 9.0 – 12.2

Table 6.6: effects different input [bucket size 8] (compressed) ​– ​[C-I-s8]

 input

speedup vs.

bucket size 4

[C-I-s4]

slowdown​ vs.

uncomp.

(bucket size 8)

[​Table 5.5​]

default (vector length: 4, duplication 2.00) 1.09 – 1.12 3.2 – 3.7

less duplication: 1.12 1.08 – 1.12 2.5 – 3.0

lower vector length: 1

[with 2/1 compensation for “lost” entries]
0.93 - 1.07 1.1 – 1.6

lower vector length: 1

[no compensation for “lost” entries]
0.80 – 1.00 1.1 – 1.8

lower vector length: 2 0.98 - 1.17 1.3 – 1.7

lower vector length: 3 1.11 – 1.12 2.1 – 2.7​*

higher vector length: 8 1.14 - 1.38 4.0 – 5.9

Table 6.7: effects different input [bucket size 2] (compressed) ​– ​[C-I-s2]

* comparison to no compensation for “lost” entries

65

The reason is the same as the reason why duplication made lowering the bucket size less

effective in the uncompressed hash table: A higher compression ratio means more

atomic operations and a lower bucket size increases the number of concurrent atomic

operations. This increases the probability that an ​atomicCAS() operation has to wait for

the completion (unlocking) of a concurrent atomic operation on the same table entry.

As the effect of a lower bucket size is much stronger for the compressed table, especially

for higher vector lengths, the slowdowns compared to the uncompressed table are

reduced to a large extent. For example, inputs of vector length 8 are now 9.0x – 12.2x

as slow, on bucket size 8, compared to 22.9x – 26.2x, on bucket size 32.

Bucket size 8 → 4​: Lowering the bucket size even further, to 4, has almost no effects for

inputs of vector length 1, but results in lower runtimes for the other inputs, ranging from

47% to 79%; again, the effect is stronger for larger vectors.

We now compare to bucket size 8 of the uncompressed table, as bucket size 4 is

uncompressed not possible for inputs of vector length 8 and bucket size 4 is slower than

8 for the other lengths. This again means a reduction in slowdowns. For example, inputs

of vector length 8 are now 5.2x – 7.3x as slow as in the uncompressed table, compared

to 9.0x – 12.2x (bucket size 8) and 22.9x – 26.2x (bucket size 32).

Bucket size 4 → 2 (​Table 6.7​): ​The lowest bucket size possible, 2, yields even lower

runtimes for vector length 2 and higher, up to 38%, but the effect is much weaker than

when the bucket size is lowered from 8 to 4. Again, almost no effects on inputs of vector

length 1.

We can now see the effects of compensation for inputs of vector length 1: runtimes are

increasing less for the compensated cases.

Comparing again to bucket size 8 uncompressed, slowdowns are further reduced for

inputs of vector length 2 and higher; now, vector length 8 is only 4.0x – 5.9x as slow.

Different input [high fill rate + bucket size 8/4/2] – ​[C-I-hfr-s8/-s4/-s2]

Low fill rate → high fill rate (bucket size 8)​: Changing from a low fill rate (0.24) to a high

fill rate (0.80) table, on bucket size 8, now has much more effects, in contrast to the

same change on bucket size 32: runtimes are up to 21% higher. With a bucket size of 8,

a high fill rate causes more rehashing, which leads to higher runtimes; with a bucket size

of 32, this was not the case yet.

The effects are stronger for cases with less duplication or a higher (worse) compression

ratio: in a high fill rate table, claiming a bucket slot (by ​atomicCAS()​) will fail more often

and the resulting negative performance effects are stronger for cases that need to claim

more slots.

Bucket size 32 → 8​: The effect of lowering the bucket size from 32 to 8 is a little bit

smaller than in a low fill rate table (​Table 6.6​, previous page), but still gives much lower

runtimes and still mainly depends on the vector length. As that effect is even a little bit

stronger in the uncompressed table, for vector lengths 4 and 8, slowdowns, comparing

to the uncompressed table, are a little bit smaller in a high than in a low fill rate table.

The effects of the same change in fill rate, but now on bucket sizes 4 and 2, are similar

to the effects on bucket size 8.

66

Optimal table parameters

For inputs of vector lengths 3, 4, and 8, requiring a large amount of recursion, the

optimal bucket size is 2, both in a low and high fill rate table; apparently, mitigating the

effects of recursion, by processing more vectors per recursive call, is the most important

factor. For inputs of vector length 2, only requiring two recursive calls, the best bucket

size is 2 in the case of a low fill rate and 4 in the case of a high fill rate. The

non-recursive inputs of vector length 1 have the lowest runtimes on bucket size 4 or 8

(low fill rate) and 8 (high fill rate).

Again, a low fill rate gives, in general, the best results and in practice this boils down to

claim as much memory as possible for the hash table, ​i.e.​, a fixed table size.

6.2.5 In practice: different input (fixed table size)

The experiments in the subsections above (Subsections 6.2.1-6.2.4) have an artificial

nature. In this subsection, we present a more practical situation, in which we use a

fixed-sized table of 256MiB; this is the same size as in the experiments with the

uncompressed hash table, to account for the space (fill rate) reductions achieved by

compression. We start by examining the effects of ​different input on performance, using

the default bucket size of 32​. We then examine ​the performance effects of using optimal

bucket sizes​, determined in the ​previous subsection​.

Different input [fixed table size] – ​[C-I-fn]​ ​(fixed default bucket size 32)

see ​Table 6.8​ (this page) for a summary of table ​[C-I-fn]

We now observe both the effects of different input (​Table 6.3​, page 61) and a different

fill rate (​Table 6.5​, page 64). We could only measure significant effects for inputs of

vector length 1: slowdowns up to 21%. We still do not have an explanation for this.

As switching to a fixed table size caused a high fill rate for some inputs of vector length 4

and 8 in the uncompressed table (but not in the compressed table) and, consequently,

higher runtimes, we now see a small reduction in slowdowns for those vector lengths,

compared to ​Table 6.3​ (page 61).

 input

speedup vs. fixed

low fill rate 0.24

[​Table 6.3​]

slowdown​ vs.

uncompr.

[U-I-fn]

default (vector length: 4) 0.98 – 1.03 9.7 – 12.6

lower vector length: 1

[no compensation for “lost” entries]
0.79 – 0.98 1.9 – 2.1

lower vector length: 2 1.00 – 1.06 4.8 – 5.3

lower vector length: 3 0.99 – 1.00 7.7 – 8.7​*

higher vector length: 8 0.99 – 1.02 19.1 – 25.8

* comparison to no compensation for “lost” entries

Table 6.8: effects different input [fixed table size] (compressed)

[C-I-fn]

67

Different input [fixed table size + optimal bucket size] – ​[C-I-fn-os]
see ​Table 6.9​ (this page) for a summary of table ​[C-I-fn-os]

Using the optimal bucket sizes determined before, we achieved speedups of 66-117%,

for inputs of vector length 1, and speedups of 268-727%, for the other inputs, compared

to a bucket size of 32 (​Table 6.8​, previous page); we achieved higher speedups with

larger vectors and, consequently, larger vectors are now again faster (with the same

number of elements). As the speedups achieved by optimal bucket sizes are much smal-

ler in the uncompressed table (​Table 5.7​, page 50), we have managed to dramatically

reduce the slowdowns, especially with larger vectors, up to a reduction of 6.1x.

 input

speedup vs.

bucket size 32

[​Table 6.8​]

slowdown​ vs.

uncompr.

[​Table 5.7​]

default (vector length: 4) 4.0 – 5.7 2.2 – 3.8

lower vector length: 1

[no compensation for “lost” entries]
1.7 – 2.2 1.1 – 1.5

lower vector length: 2 3.7 – 4.9 1.3 – 1.6

lower vector length: 3 4.6 – 4.8 2.2 – 2.9​*

higher vector length: 8 5.0 – 8.3 3.1 – 5.3

* comparison to no compensation for “lost” entries

Table 6.9: effects different input [fixed table size + optimal bucket size] (compressed)

[C-I-fn-os]

6.3 Optimised implementations

As recursive overhead seems to be an important performance limiter, we implemented

several variants aimed at reducing that overhead: First, we decreased the recursive

depth by incorporating more base cases (​Subsection 6.3.1​). On top of that optimisation,

we increased the work that is done per (recursive) call by doubling the number of

vectors that is processed per each call (​Subsection 6.3.2​), including the additional

optimisations of linear probing and fixing the bucket size to 2.

We have again used our extensive performance evaluation method and compared each

optimisation to its previous implementation. As the effects that we found are similar to

the effects we already described in detail in ​Section 6.2​, we only describe the highlights

and main differences. All experimental data can be found in Appendix B.3.2.

In ​Chapter 8​, we will use the results to measure the achieved reductions in slowdowns

with respect to the uncompressed table.

6.3.1 Less recursion: more base cases

In our original implementation (​Section 6.1​), only subvectors of length 1 were base

cases in the recursive ​treeRec() function and the wrapper function ​treeFindOrPut()

bypasses the ​treeRec() function for sole-element vectors. In our optimised

implementation, vectors of length 1 and (sub)vectors of length 2 are now base cases in

treeRec()​, saving two recursive calls for the latter; ​treeFindOrPut() does not need to

bypass ​treeRec() anymore for vectors of length 1 (the ​treeRec() function does the

required padding now).

68

Only one recursive call is now required for (sub)vectors of length 3, for the subvector of

length 2, instead of, in total, four calls, saving three recursive calls. Larger (sub)vectors

still require two (direct) recursive calls, but in those cases at least four recursive calls are

saved overall.

Performance evaluation (random data)

see Table ​6.10​ (this page), ​6.11​ (next page) for a summary of ​[Clr-I-fn​, ​-os]

The implementation now only requires 26 registers, instead of 32, but as both do not

restrict achieving maximal occupancy, there are no benefits stand-alone.

As the pressure of recursion on the caches is now less, we need less underloading and

can increase the grid dimension to get maximal performance: Compressible inputs

(vector length 3 and higher) now use a grid dimension of 120 blocks (instead of 90) on

bucket sizes 32 and 16, and a grid dimension of 90 blocks (instead of 60) on bucket size

8. Inputs of vector length 2 now achieve maximal performance with grid dimension 150

on bucket size 32 (was: 90), 120 on bucket size 16 (was: 60) and 90 on bucket size 8

(was: 60); they are the same as for inputs of vector length 1.

The optimal grid dimensions on bucket sizes 4 and 2 have not changed and are still low

(30 or 60). Apparently, the performance bottleneck here is not recursion anymore, but

the saturated memory bus.

The optimal bucket size for inputs of vector lengths 4 and 8 is still 2, the lowest possible.

The optimal bucket size for smaller vector lengths is now 4, as they need no or only one

recursive call and do not benefit from the additional vector that is processed by switching

to bucket size 2.

On bucket size 32 (​Table 6.10​, this page), less recursion really pays off and leads to a

speedup of 29-91%, for vector lengths 2 and higher. The effects are stronger for lower

vector lengths, as the number of recursive calls are then relatively more reduced; ​e.g.​,

inputs of vector length 4 now require 2 calls (less rec.)/6 (more rec.) = 0.33x as many

recursive calls, whereas inputs of vector length 8 now require 6 (less rec.)/14 (more

rec.) = 0.43x as many recursive calls.

Inputs of vector lengths 1 are slower, probably because no bypassing takes place for

those inputs anymore and calling ​treeRec() (non-recursively) leads to one call stack

frame being allocated, as the CUDA compiler cannot detect at compile time that

treeRec()​ will only be called non-recursively for those inputs.

 input

speedup vs.

more rec.

[​Table 6.8​]

default (vector length: 4) 1.50 – 1.58

lower vector length: 1

[no compensation for “lost” entries]
0.59 – 0.74

lower vector length: 2 1.89 – 1.91

lower vector length: 3 1.45 – 1.46

higher vector length: 8 1.29 – 1.34

Table 6.10: effects different input [fixed table size] (compressed, less recursion)

[Clr-I-fn]

69

Although the runtimes of the implementation with less recursion are decreased to a large

extent when instead an optimal bucket size is used (​Table 6.11​, this page), the effects of

a lower bucket size are less profound than in the implementation with more recursion

(​Table 6.9​, page 68). Consequently, most of the performance benefits seen on bucket

size 32 (​Table 6.10​, previous page) disappear on the optimal bucket size. Now, the

implementation with less recursion is only up to 21% faster (instead of 91%); inputs of

vector length 1 are, however, now less slower than on bucket size 32.

Apparently, changing the bucket size to the optimal one in the implementation with more

recursion already removed recursive overhead to such a large extent, that the

(additional) effects of incorporating more base cases (​i.e. ​, less recursion) are limited.

 input

speedup vs.

bucket size 32

[​Table 6.10​]

speedup vs.

more rec.

[​Table 6.9​]

default (vector length: 4) 2.8 – 4.2 1.09 – 1.15

lower vector length: 1

[no compensation for “lost” entries]
1.8 – 2.5 0.79 – 0.93

lower vector length: 2 2.5 – 2.6 1.01 – 1.21

lower vector length: 3 3.7 – 3.8 1.15 – 1.17

higher vector length: 8 4.2 – 7.2 1.08 – 1.14

Table 6.11: effects different input [fixed table size + optimal bucket size]

(compressed, less recursion)

[Clr-I-fn-os]

6.3.2 More work per recursive call: fully 64-bit operations

We can even further reduce the recursive overhead by letting each thread operate on a

full 64-bit node in the ​findOrPut() function, instead of reading a single 32-bit entry (the

atomic compare-and-swap operation is 64-bit, and is done by the node group leader

only). Each node group now consists of only one thread, instead of two. This essentially

means there is no notion of node groups anymore.

We now also use references to (64-bit) nodes instead of (32-bit) entries. This means a

node entry can now reference up to 2​31
- 1 64-bit nodes, instead of 2​31

- 1 32-bit entries.

This corresponds to a (almost) 16GiB table, instead of a 8GiB one, and about

2,000,000,000 state vectors of arbitrary length, instead of 1,000,000,000.

As each warp now hosts 32 “node groups”, each thread operating on a full 64-bit node

(two 32-bit entries), the maximum bucket size increases to 64 entries (32 nodes); with a

bucket size of 2, each warp now hosts 32 bucket groups (each bucket group containing

one thread), instead of 16 (each bucket group containing two threads).

Linear probing

As in the uncompressed hash table (​page 46​), we can use linear probing to mitigate the

effects of reduced global load efficiency, on bucket sizes 2 or 4. This also saves costly

rehashing. This is even more important for the compressed hash table, as the bucket

size can always be 2 (or 4), whereas this is not the case in the uncompressed table (in

which the bucket size cannot be smaller than the vector length).

70

Fixed bucket size (of 2)

Based on the observation that a bucket size of 2 gives (almost) the best compressed

performance in general, we can set it fixed. Previous experiments show that making a

parameter configurable can hurt performance, even if the parameter’s value is set to the

default value [​18​]. As each bucket group now exists of (a “node group” of) one thread,

the notion of bucket groups essentially disappears.

Fixing the bucket size is not possible in the uncompressed hash table, as the bucket size

has to be at least as large as the length of the input vectors, which is not fixed.

Performance evaluation (random data)

see Table ​6.12​, ​6.13​ (next page) for a summary of ​[Clr64-I-fn​, ​-os]

Register usage is the same as for the 32-bit version. But the size of the stack frame for

the recursive ​treeRec() function is dramatically reduced from 40 to 24 bytes. This

means more recursive calls can be “active” concurrently before the caches are

overloaded with stack frames, ​i.e.​, recursion now limits performance to a lesser extent.

The optimal grid dimensions are now the same for each vector length: 120 (bucket size

32), 90 (bucket size 16), 60 (bucket size 8) and 30 (bucket sizes 4 and 2). Apparently,

the optimal grid dimension is not determined by vector length/recursive depth anymore,

but by saturation of the memory bus: a lower bucket size means more concurrent

memory transactions and they saturate the memory bus.

With bucket size 4 and especially bucket size 2, adding linear probing up to 8 entries

increases performance up to 24%. Adding linear probing has more effects in a table with

a high fill rate, as it then saves more rehashing than in a table with a low fill rate.

We could not measure any significant benefits from increasing linear probing up to 32

entries. The same happened when we set the bucket size fixed to 2, even with linear

probing (up to 8 entries).

The optimal bucket size for inputs of vector lengths 4 and 8 is still 2, the lowest possible,

to reduce recursive overhead as much as possible. But the optimal bucket size for the

smaller vector lengths 1, 2 and 3 is now 4 (low fill rate) or 8 (high fill rate; including

vector length 4), as they still need no or only one recursive call and do not benefit from

the additional vector that is processed by switching to bucket size 2.

In conclusion, a lower vector length and/or a high(er) fill rate require a higher bucket

size to get optimal performance.

On bucket size 32 (​Table 6.12​, next page), the 64-bit implementation is much faster

than the 32-bit one, up to 227%. The effects are much stronger than the effects of less

recursion (​previous subsection​). The effects are still dependent on vector length, but we

now see opposite effects: a lower vector length gives a lower speedup, related to

recursive depth; as lower vector lengths have less recursive depth, they benefit less

from reducing recursive overhead (​i.e.​, by doing more work per recursive call).

Changing to the optimal bucket size (​Table 6.13​, next page) improved performance, but

to a much lesser extent than in the 32-bit version (​Table 6.11​, page 70) and in the

version with more recursion (​Table 6.9​, page 68). Hence, much of the performance

benefits of the 64-bit version seen on bucket size 32 (​Table 6.12​, next page) disappear

when using the optimal bucket size. The resulting speedups are, however, still up to

41%, much more than the benefits of the version with less recursion (​Table 6.11​, page

70), especially for larger vector lengths.

71

 input
speedup vs. 32b

[​Table 6.10​]

default (vector length: 4) 2.42 – 2.62

lower vector length: 1

[no compensation for “lost” entries]
1.97 – 2.03

lower vector length: 2 2.03 – 2.05

lower vector length: 3 2.52 – 2.59

higher vector length: 8 2.84 – 3.27

Table 6.12: effects different input [fixed table size]

(compressed, less recursion, 64-bit)

[Clr64-I-fn]

 input

speedup vs.

bucket size 32

[​Table 6.12​]

speedup vs.

32b

[​Table 6.11​]

default (vector length: 4) 1.51 – 2.04 1.24 – 1.29

lower vector length: 1

[no compensation for “lost” entries]
1.18 – 1.33 1.06 – 1.31

lower vector length: 2 1.33 – 1.38 1.06 – 1.11

lower vector length: 3 1.83 – 1.86 1.26 – 1.27

higher vector length: 8 1.99 – 3.08 1.34 – 1.41

Table 6.13: effects different input [fixed table size + optimal bucket size]

(compressed, less recursion, 64-bit)

[Clr64-I-fn-os]

6.4 Conclusions

In this section, we present the most important conclusions of our extensive performance

evaluation (​Section 6.2​) and optimised implementations (​Section 6.3​).

We implemented tree-based hash table compression using the recursive algorithm of

Laarman ​et al. [​19​]. As the call stack is saved to local memory, which resides in slow

device memory, recursive overhead turned out to be severe. Local memory is cached in

L1 (and L2), but those caches are overloaded with too much concurrent recursion.

Therefore, we had to reduce the grid dimension, ​i.e. ​, concurrent recursion, to get

optimal performance.

To reduce recursive overhead itself, we had to lower the bucket size, all the way down to

2. Now, more work is done per recursive call, as those calls are at warp-level. We

implemented two optimisations to reduce recursive overhead even further: less recursion

by incorporating more base cases and, again, more work per recursive call by switching

to 64-bit read/write operations only. Lowering the bucket size had the most effect, up to

a performance speedup of 8.3x. The two implementation optimisations had minor

effects, especially the incorporation of more base cases.

72

Inputs of higher vector length require more recursion and, consequently, recursive

overhead was more profound. But as most optimisations had more effect on those

inputs, this reduced the performance differences with respect to inputs of lower length.

Initially, the performance gap between the compressed and uncompressed hash table

was large, dependent on vector length/recursive depth: up to 26.2x for an input of

vector length 8. But our optimisations narrowed that gap, especially for inputs of higher

vector length, also because the effects of a lower bucket size were much stronger in the

compressed table than in the uncompressed one.

Using our most optimised recursive implementation (less recursion, 64-bit, linear probing

up to 8 entries), we conclude that the number of vectors and bucket size have a large

impact on performance, whereas duplication has a minor impact, especially on the

default bucket size of 32.

On the default bucket size of 32, compression ratio and vector length have a minor

impact; the effect of the latter is even the opposite of that in the uncompressed hash

table: when keeping the total number of elements the same, a lower vector length now

gives a ​lower​ runtime, as it requires less recursion.

On a much lower, optimal, bucket size (2-8), compression ratio and vector length have a

higher impact. Now, when keeping the total number of elements the same, a lower

vector length gives a ​higher runtime. The effects of both parameters are much stronger

than in the uncompressed table; compression ratio does not impact performance in an

uncompressed table at all. The total number of vectors determines performance more

than the total number of elements does, as in the uncompressed hash table.

On the default bucket size of 32, the impact of fill rate is limited, even when it is high.

On lower bucket sizes, especially 2, the impact is limited up to a certain level (around

0.80), but from that level, the impact becomes more and more visible.

The slowdown versus the uncompressed hash table primary depends on vector length:

As we have removed recursive overhead to a large extent, this is now more related to

the number of scattered global memory accesses required for tree-based compression; a

higher vector length requires more of such accesses, hence it has a larger slowdown

versus the uncompressed hash table, whose memory accesses are all non-scattered.

Based on our experiments, we found these optimal settings (for our most optimised

recursive implementation):

● for all inputs: a low fill rate, and, as model size is, in general, not known a ​priori​,

the largest hash table possible

● for inputs with vector lengths 1-3: bucket size 4 + linear probing, up to 8 entries

(low fill rate); bucket size 8 (high fill rate); in general, the fill rate is not known ​a

priori (although the use of compression often leads to a low fill rate), then the

best bucket size is 8, as bucket size 4 would hurt performance more in a high fill

rate table than bucket size 8 would in a low fill rate table

● for inputs with higher vector length: bucket size 2 + linear probing, up to 8

entries; this is the same for both a low and a high fill rate, as mitigating recursive

overhead is still more important

73

7. Compressed GPU hash table (non-recursive)

In the ​previous chapter​, we reduced recursive overhead by lowering the bucket size,

incorporating more base cases and using 64-bit read/write operations only. In this

chapter, we will remove recursive overhead completely by designing and implementing a

solution without recursion, but still using tree-based compression.

In this solution, we begin with the leaf nodes and then work upwards, finishing at the

root node. While building the compression tree bottom-up, we need to (temporarily)

save the references to the constructed nodes; in the recursive solution, they are saved in

the recursive call stack (in local memory), but we now can specify that location by

ourselves. That memory space is one of the parameters that differentiate our fifteen

variants, along with two other parameters that are also relevant for GPU performance:

parallelisation within each vector and type of “reduction”.

First, we discuss our stand-alone implementation, including the fifteen variants we

created (​Section 7.1​). Then, we apply our performance analysis on all variants (​Section

7.2​). We use this analysis to compare the variants to each other, and to the recursive

compressed hash table of ​Chapter 6​.

7.1 Stand-alone implementation

We used the most optimised recursive compressed hash table (​Subsection 6.3.2​) as a

basis for our non-recursive implementation. This includes fully 64-bit operations, linear

probing (up to 8 entries) and a fixed bucket size of 2. However, as those optimisations

are primarily aimed at reducing recursive overhead, they may not be the best choice for

the non-recursive implementation. For reasons of time, we have not examined whether

the optimisations are optimal for the non-recursive implementation as well.

We start with an example to illustrate how the algorithm works (​Subsection 7.1.1​).

Then, we explain the algorithm in detail (​Subsection 7.1.2​). Finally, we give an overview

of the fifteen variants we created, including the three parameters that are used to

differentiate them (​Subsection 7.1.3​).

7.1.1 Illustrative example

To illustrate how the algorithm works, we give an example of the insertion of the vector

(1,2,3,4) into an empty hash table. In this example, when building the tree, we save the

references to the constructed tree nodes to shared memory, but in a different version

this could also be global memory or a thread-local register.

To insert vector (1,2,3,4), it is used as an argument to the wrapper function

treeFindOrPut()​; this is the same wrapper function as in the recursive implementation

of ​Chapter 6​. This function calls the, now, non-recursive function ​treeNoRec()​, with the

same vector as argument.

First, the bottom row of the compression tree is constructed. The ​treeNoRec() function

creates two tree nodes: (1,2) and (3,4), corresponding to the elements of the vector. It

then calls ​findOrPut() to insert these nodes into the hash table; this is the same

findOrPut() function as in the recursive implementation of ​Chapter 6​. Both ​findOrPut()

invocations return a reference, ​L and ​R​, to the tree nodes that have been inserted. The

treeNoRec()​ function saves both references to shared memory.

74

Now, the next row of the compression tree is constructed (bottom-up), by creating new

tree nodes for each pair of references and inserting them into the table. In the example,

the ​treeNoRec() function creates a new tree node (​L​,​R​) and inserts this node into the

table by calling ​findOrPut()​. The latter again returns a reference, ​RN​. The ​treeNoRec()

function now replaces, in shared memory, the ​L reference by the ​RN reference. This

process is repeated for any other pair of nodes in the bottom row (none in the example).

As now a new row of the tree has fully been constructed, each pair of references in this

new row is again bundled to get the next row bottom-up. This process is repeated until

there is only one reference left: the reference to the root node. In our example, ​RN is

the only reference left and this is indeed a reference to the root node of the (implicit)

compression tree for the vector (1,2,3,4).

Now, the ​RN reference is returned to the caller of ​treeNoRec()​, which is the wrapper

function ​treeFindOrPut()​; this wrapper function then checks and sets the root bit, as in

the recursive implementation.

7.1.2 Compression algorithm in detail

We use the massive parallelism provided by GPUs in at least one way:

● Parallel insertion of vectors. Each warp (32 threads) inserts at least one vector.

We can also apply parallelism ​within each vector. This is one of the parameters that

differentiate our fifteen versions. Then additional parallelism takes place:

● Multiple threads insert a single vector together, by constructing the bottom row

and all other rows in parallel (bottom-up).

Note that no parallelisation takes place in ​findOrPut()​ (fixed bucket size of 2).

For more details, we refer to the description of the variants (​Section 7.1.3​).

Non-recursive ​treeNoRec()​ function

Algorithm 7.1 (next page) gives a simplified version of our non-recursive solution (see

Algorithm 6.1​ (page 55) for the recursive counterpart).

The type for references to tree nodes in the hash table is still ​indextype​, the type for

vector elements and hash table entries is ​inttype​; in our implementation, both are

aliases for the type of an unsigned 32-bit integer (​uint32_t​). The function parameter

buildTree references the array where the references to the constructed nodes are saved

while building the compression tree (​e.g.​, an array in shared memory). The constant

d_lowestFullRowLength contains the number of nodes in the lowest tree row that is still

full (​i.e.​, has the maximum number of nodes for that row); the constant

d_incompleteRowLength contains the number of nodes in the incomplete row of leaves

underneath (if there is one; there is such a row iff the vector length is not a power of 2).

We start by constructing the lowest rows of the compression tree: the lowest row of the

tree that is still full and an incomplete row of leaves underneath (if there is one). First,

all the leaves of the incomplete row are constructed by inserting two vector elements

into the hash table each time; each time, two returned node references are used to

construct a non-leaf node in the lowest full row and the reference that has now been

returned by ​findOrPut() is saved to the corresponding location in the ​buildTree array.

After the incomplete row is fully processed, the remaining (leaf) nodes of the lowest full

row are constructed by inserting each time two vector elements into the hash table and

saving the returned reference to the corresponding location in the ​buildTree array. Now

all vector elements have been “distributed” to nodes in the compression tree and the

lowest full row has been filled completely.

75

indextype​ treeNoRec(​inttype​ *​vector​, ​indextype​ *​buildTree​) {

 // processing incomplete, lowest row and lowest full row:

 int​ fullRowIdx = 0, incompleteRowIdx;
 while​ ((incompleteRowIdx = (fullRowIdx * 2)) < d_incompleteRowLength) {
 indextype​ node[] = {findOrPut(​vector​), findOrPut(​vector​ + 2)};
 buildTree​[fullRowIdx] = findOrPut(node);
 vector​ += 4;
 fullRowIdx++;

 }

 while​ (fullRowIdx < d_lowestFullRowLength) {
 buildTree​[fullRowIdx] = findOrPut(​vector​);
 vector​ += 2;
 fullRowIdx++;

 }

 // processing other rows bottom-up, in-place (neighboured pairs):

 int​ rowLength = (d_lowestFullRowLength / 2);
 while​ (rowLength >= 1) {
 for​ (fullRowIdx = 0; (fullRowIdx < rowLength); fullRowIdx++) {
 indextype​ *children = (​buildTree​ + (fullRowIdx * 2));
 buildTree​[fullRowIdx] = findOrPut(children);
 }

 rowLength /= 2;

 }

 // returning root node:

 return​ ​buildTree​[0];
}

Algorithm 7.1: ​treeNoRec()​, the function that creates the compression tree (simplified)

The actual implementation accounts for vectors of odd length, which requires building a

(non-leaf) node that consists of a vector element plus the reference to a (leaf) node of

two vector elements.

As the lowest full row has now been fully constructed, we can construct the other rows

bottom-up, by constructing new nodes consisting of two references, each referencing a

node in the row underneath. This is done in-place in the ​buildTree array, by overwriting

a reference by the reference to the node that is constructed, in the row above, from that

to-be-overwritten reference and another reference from the same row. Hence, the length

of ​buildTree​ is the number of nodes in the lowest full row.

We repeat the procedure listed above until we arrive at the root node. Then, we return a

reference to this root node to the caller of ​treeNoRec()​, the ​wrapper function

treeFindOrPut() (page 55); the actual implementation accounts for full tables, ​i.e.​,

propagating the reserved value that indicates a full table.

Different compression tree

The resulting (implicit) compression trees may be different from the ones created by the

recursive solution; not in number of nodes, but in structure. ​Figure 7.2 (next page) gives

the two different tree structures for a vector of length 6 (​R denotes a reference; a

number (​0​..​5​) denotes a vector element index). This may also impact the compression

ratio that is achieved; in general, achieving a lower compression ratio, ​i.e.​, more

compression has been achieved, gives a lower fill rate and a better performance.

76

Figure 7.2: recursive/non-recursive trees (vector length 6)

Low-level optimisations

We again tried some low-level optimisations, using one variant (​l_np_sm​, see next). We

still used the old hash function implementation of Cassee.

● CC 6.1 as target architecture (​sm_61​): no effect, even though this often led to a

higher register pressure and larger stack frames

● forcing register spilling (​maxrregcount​) has a negative effect (independent of L1

loading for global reads enabled or not), for all cases (​sm_61​)/down-sizing vector

group (​ld​) cases only (​sm_30​)
● reading in a volatile way: negative effect (both for ​sm_30 and ​sm_61​, both for L1

enabled or not), even more negative for the down-sizing vector group (​ld​) cases

and the ​l_np_gm​ case (​sm_61​, L1 enabled)

Again, we have not used any optimisation we tried.

7.1.3 Variants

We have implemented fifteen variants of our non-recursive solution. They differ in the

following ways, related to GPU specifics (not all combinations are possible or relevant):

● Parallelisation within vector.

○ No parallelisation (​1​), see ​Algorithm 7.1 (previous page): As the recursive

implementation, there is no parallelisation within each vector. The nodes

of the compression tree of a vector are all constructed sequentially.

Parallelisation still exists, as multiple vectors are inserted in parallel (​i.e.​,

32 vectors per warp).

○ Constant-sized vector group (​l​): Each warp now consists of multiple

vector groups; each vector group, which in general consists of multiple

threads, is responsible for inserting a single vector. The number of threads

in a vector group equals the number of nodes required for the lowest full

row in the compression tree.

First, each thread in the vector group handles the construction of a single

node in the lowest full row, in parallel. Then, half of the threads each

handles the construction of a single node in the row above, again in

parallel. For the next row above, the number of active threads is again

halved, ​et cetera​, until the root node is reached.

77

Although the number of inactive (divergent) threads constantly increases,

we only need to synchronise across a warp, not across a (larger) thread

block (as in the next case). We could make use of those inactive threads in

the ​findOrPut() operation for a particular node, by letting them examine

other slots in the hash table, essentially increasing the bucket size. We,

however, have not implemented that extension yet.

Still, multiple vectors are inserted in parallel within a warp, but, in general,

less than in the previous case. For example, with a vector group of four

threads, eight vectors are inserted in parallel within a warp, instead of 32.

○ Down-sizing vector group (​ld​): This is the same as the previous case, but

the degree of divergence within warps is now reduced. This is achieved by

vector groups that are down-sized to the number of threads that are

required for the tree row that is being processed, ​i.e.​, the number of

threads equals the number of nodes in that row.

For example, with a block dimension of 256 threads and a lowest full tree

row consisting of four nodes, all 256 threads, in 256 threads / 32

threads/warp = 8 warps, are active to construct those tree rows (for 256

threads / 4 threads/vector = 64 vectors). But when constructing the nodes

in the row above, only 256 threads / 2 = 128 threads, in 128 threads / 32

threads/warp = 4 warps, are active; all (other threads in the) other four

warps are inactive, but as divergence can only occur within a warp, this is

not an issue.

This variation requires block-level synchronisation (​__syncthreads()​),

which is, in general, slower than the warp-level synchronisation from the

previous case. When the number of active threads in a block has been

down-sized to 32 (or less) threads, ​i.e. ​, to a single warp, we could use

explicit warp-level synchronisation (​__syncwarp()​); we, however, could

not measure any benefits from doing so, probably because the other

threads in the block are inactive and do not add any significant overhead

to block-level synchronisation.

● Type of “reduction”, which impacts memory access patterns and is, in particular,

important when accessing global memory.

○ Neighboured pairs (​np​), see ​Algorithm 7.1 (page 76): Nodes are paired

with their immediate neighbour node to construct a new node.

○ Interleaved pairs (​ip​): Paired nodes are separated by a given stride. As

nodes are now paired in a different way, the resulting compression tree

may be different from the one created by the ‘neighboured pairs’ method

(in structure, not in number of nodes); consequently, the achieved

compression ratio (and associated performance) may also be different.

● Memory space where (the hash table references to) the tree nodes are

(temporarily) saved while constructing the compression tree.

○ Global memory (​gm​): This is the same memory space as that of the hash

table and the vector input. Large, but slow.

○ Shared memory (​sm​): This memory space is shared by all threads in a

thread block, so it can (also) be used in constant-sized and down-sizing

vector groups. Shared memory usage may restrict occupancy.

To avoid bank conflicts, we have also implemented variants that accesses

the shared memory in a shuffled way (​s_sm​, only relevant when the

‘neighboured pairs’ (​np​) method is used and not relevant for

constant-sized vector groups (​l​)).

78

○ Registers/thread-local memory (​lm​): Synchronised warp shuffle functions

(​__shfl_sync()​) are used to access the registers (nodes) of other threads

(within the same warp). Register usage may restrict occupancy.

Only relevant when the ‘neighboured pairs’ (​np​) method is used with a

constant-sized vector group (​l​).

7.2 Performance evaluation (random data)

We have again used our extensive performance evaluation method and compared each

version to each other and to the most optimised recursive hash table implementation

(​Section 6.3.2​). As the effects that we found are similar to the effects we already

described in detail in ​Section 6.2​, we only describe the highlights and main differences.

All experimental data can be found in Appendix B.3.3.

In ​Chapter 8​, we will use the results to measure the achieved reductions in slowdowns

with respect to the uncompressed table.

Optimal execution configuration

The variants with no parallelisation within a vector (​1​) need 32 registers (more than the

recursive implementations, except for our initial implementation); the variants with a

constant-sized vector group (​l​) require 32-40 registers and with a down-sizing vector

group (​ld​) even more, 40-46 registers, which restricts achieving maximal occupancy. We

will, however, see that we do not need to achieve maximal occupancy, but this may be

different when the hash table is integrated into a model checker.

As we use a fixed bucket size of 2, saturation of the memory bus determines the optimal

grid dimension and, consequently, this dimension is low: 30 blocks; in a high fill rate

table (low table size), using a higher grid dimension (60 or 90) gives better runtimes,

probably due to caching effects (when more memory requests are loaded from L1 or L2,

a higher grid dimension can be used before saturation occurs, as L1 and L2 caches serve

memory requests faster).

The patterns of performance versus grid dimension are different for variants with

different types of parallelisation within a vector. For example, using a vector group

(constant-sized (​l​) or down-sizing (​ld​)), a grid dimension of 120 blocks is required to

get the best performance with inputs of vector length 8: those inputs have four nodes in

the bottom row of their compression tree and, consequently, only eight vectors are

inserted in parallel by each warp; to compensate for this, a higher grid dimension is

needed to saturate the memory bus.

Variants

The performance of all variants were similar to each other. Apparently, performance is

determined by all (scattered) global memory accesses to the hash table; those accesses

are the same for each variant.

Consequently, when integrating the hash table into a model checker, one can choose a

variant suited for that model checker. For example, when the model checker uses shared

memory for other purposes, one can choose a variant that uses global or local memory

to temporarily store (the references to) the constructed nodes of the compression tree.

79

Comparison to recursive hash table

As ​Table 7.3 (this page) shows, the performance benefits over the recursive

implementation are very limited, with speedups of 3-14% (and an exceptional slowdown

case for vector length 1). Apparently, in the most optimised recursive implementation,

using an optimal bucket size, recursive overhead was already reduced to such a large

extent, that the (scattered) memory accesses are now the bottleneck and not the

recursion anymore.

 input
speedup vs. rec.

[​Table 6.13​]

default (vector length: 4) 1.03 – 1.09

lower vector length: 1

[no compensation for “lost” entries]
0.89 – 1.09

lower vector length: 2 1.07 – 1.10

lower vector length: 3 1.06 – 1.08

higher vector length: 8 1.08 – 1.14

Table 7.3: effects different input [fixed table size]

(compressed, no recursion)

[Cnr-I-fn-s2 (l_np_sm)]

80

8. Performance evaluation: in practice

In the previous three chapters, we presented our stand-alone implementations of an

uncompressed, compressed (recursive) and compressed (non-recursive) hash table,

including an extensive performance evaluation using parameterised random data.

In this chapter, we present the practical highlights of our performance evaluation.

First, we give a summary of the results of our random-data performance evaluation

using a fixed-sized table and optimal bucket size (​Section 8.1​); we use those results to

compare the performance of the most optimal compressed hash table to that of the

uncompressed hash table.

Then, we give the results of our performance analysis using state vector sequences

extracted from real-world models (​Section 8.2​); those results show the performance of

the uncompressed and compressed hash table implementations in practice and we,

again, use the results to compare the performance of the most optimal compressed hash

table to that of the uncompressed hash table.

8.1 Summary of practical random-data experiments

This section gives a summary of the results using a fixed-sized table of 256MiB and an

optimal bucket size, for the uncompressed (​Subsection 5.2.5​), compressed (recursive)

(Subsections ​6.2.5​, ​6.3.1 and ​6.3.2​) and compressed (non-recursive) (​Section 7.2​) hash

table implementations.

For all inputs, except vector length 1:

Of all compressed (recursive) hash table implementations, our most optimised version,

the 64-bit version with less recursion (​Subsection 6.3.2​), gives the lowest runtimes; our

initial version, the 32-bit version with more recursion (​Section 6.1​), gives the highest

runtimes. The runtimes of the best version are 7-60% better than the runtimes of the

worst version; the performance benefits are larger for inputs of higher vector length.

The runtimes of our non-recursive solution (​Chapter 7​), are even better: 3-14%,

compared to our most optimised recursive compressed hash table, and 16-77%,

compared to our initial recursive hash table implementation.

For inputs of vector length 1:

Now, the version with less recursion, but still 32-bit (​Subsection 6.3.1​), gives the worst

runtimes. The runtimes of the other two recursive implementations are very similar. In

all cases, except one, the non-recursive implementation gives the lowest runtimes and

they are 13-16% lower than the runtimes of the worst version.

Table 8.1 (next page) presents the results of the comparison between the best

performing compressed solution (​i.e.​, the non-recursive solution) and the uncompressed

hash table (​Subsection 5.1.4​): Slowdowns are limited, in the range of 1-223%, and are

larger for higher vector lengths; the trees of inputs of higher vector length consist of

more nodes and, consequently, require more scattered memory accesses in the

compressed hash table, whereas a single memory access suffices in the uncompressed

hash table.

The full ​[PRD]​ table can be found in Appendix B.3.4.

81

 input

slowdown​ best

compressed vs.

uncompressed

default (vector length: 4) 1.37 – 2.55

lower vector length: 1

[no compensation for “lost” entries]
1.01 – 1.39

lower vector length: 2 1.00 – 1.36

lower vector length: 3 1.36 – 1.88

higher vector length: 8 1.78 – 3.23

Table 8.1: effects different input [fixed table size + optimal bucket size]

[PRD]

8.2 Real-world data

Next to parameterised random data (​Section 8.1​), we also used state vector sequences

extracted from real-world models to evaluate the performance of our implementations.

As initial test configuration, we used the optimal settings determined in the previous

chapters, but for each parameter we also tried one step up and one step down

(whenever possible); if that step resulted in a lower runtime, we tried another step up or

down, respectively. For example, with an initial bucket size of 2, we also tried a bucket

size of 4; if bucket size 4 gave a lower runtime, we also tried bucket size 8, ​et cetera​.
As, in practice, one wants to claim as much memory as possible for the hash table, we

used a large hash table of (almost) 8GiB (larger is not possible for the 32-bit compressed

versions, as they can only reference up to 2​31
- 1 hash table entries); as the input sizes

of the ​lamport8 and ​szymanski5 cases are very large (multiple GiB) and inputs reside in

global memory, as the hash table does, we used hash tables of 4GiB and 3GiB,

respectively, for those cases.

The structure of the compression tree in the recursive implementation was for some

cases different and as this affected compression ratio, and probably performance too, we

then re-ordered the elements in the input data to achieve the same (or almost the same)

compression ratio; we did not need this in the experiments with random-data input, as

in that input internal duplication is symmetrical, in contrast to (some) real-world data.

Another important difference between the real-world data and our random-data input is

the locality of duplication of vectors: in the random-data input, duplicate vectors are

randomly distributed over the input, whereas, in the real-world data, duplicated vectors

are often clustered. Moreover, for most real-world data, the ratio of duplication is higher

than the ratio in our random-data input.

Table 8.2​ (next page) presents the results of our experiments using real-world data.

In general, they are very similar to the results of our experiments with random-data

input (​Section 8.1​): the initial compressed (recursive) implementation (​Section 6.1​)

gives the worst runtimes; the most optimised recursive implementation (​Subsection

6.3.2​) and the non-recursive implementation (​Chapter 7​) give the lowest runtimes.

82

As we do not account for micro-adjustments in grid dimensions (​Section 4.2​), the lowest

possible runtimes may actually be a little bit different. As the runtimes of the most

optimised recursive implementation and the non-recursive implementation are very close

to each other, they can be considered as being equal to each other. This, again, shows

that performance is not limited by recursion anymore, but by the scattered hash table

memory accesses, inherent to tree-based compression.

Comparing the best performing compressed implementation to the uncompressed table,

we see limited slowdowns, in the range of 1.2x-3.8x, slightly related to vector length.

The full ​[RWD]​ table can be found in Appendix B.4.

 input

(number of vectors,

duplication,

compression ratio)

runtime

uncompr.

(ms)

runtime compressed (ms)
slowdown

best

compr. vs.

uncompr.
base

less

rec.

less

rec. +

64b

non-

rec.

vector length: 3 (min. compr. ratio: 0.67)

1394

(355,339, 1.8, 0.84)
0.51 0.89 0.88 0.82 0.80 1.6

1394.1

(23,792,770, 2.4, 0.75)
25.7 42.4 41.5 38.4 37.4 1.5

vector length: 5 (min. compr. ratio: 0.40)

odp

(641,227, 7.0, 0.44)
0.64 1.68 1.58 1.47 1.41 2.2

odp.1

(31,091,555, 4.0, 0.40)
33.9 69.2 63.7 57.0 58.9 1.7

transit

(39,925,525, 10.6, 0.57)
29.4 107 106 102 97 3.3

vector length: 6 (min. compr. ratio: 0.33)

lamport8

(269,192,486, 4.3, 0.33)
169 654 552 375 388 2.2

szymanski5

(375,297,914, 4.7, 0.33)
269 877 727 349 335 1.2

vector length: 8 (min. compr. ratio: 0.25)

wafer_stepper.1

(16,977,693, 4.5, 0.27)
15.8 48.0 43.5 36.2 40.4 2.3

vector length: 9 (min. compr. ratio: 0.22)

acs

(895,005, 4.5, 0.24)
0.99 3.23 2.62 1.95 2.06 2.0

vector length: 10 (min. compr. ratio: 0.20)

asyn3

(80,686,290, 5.1, 0.20)
61.8 321 289 235 266 3.8

Table 8.2: effects different input [fixed table size + optimal bucket size]

[RWD]

83

9. Conclusions

We first fixed the main flaws in the uncompressed hash table implementation of

GPUexplore: corruption of vectors, replication of vectors and a hash function with an

inferior distribution. We implemented a stand-alone uncompressed hash table, without

corruption or replication, and with a fast, but still probabilistic-optimal, hash function.

Results showed that performance is equal to or even better than the original

implementation from GPUexplore.

Using our improved implementation, we extensively examined the impact of GPU, input

and table parameters on performance. We used the results to find optimal GPU and table

parameters for each type of input. This enabled a fair comparison to the compressed

hash table implementations.

Then, we implemented a compressed hash table, using tree-based compression. This

implementation uses a recursive algorithm and this was a large bottleneck to

performance, as the call stack is saved to local memory, which resides in slow device

memory. We were able to reduce the recursive overhead by lowering the grid dimension,

using a low bucket size, incorporating more base cases and switching to 64-bit

read/write operations only. This dramatically reduced the performance gap with the

uncompressed hash table, especially for inputs of higher vector length.

We, again, extensively examined the impact of GPU, input and table parameters on

performance and found optimal GPU and table parameters for each type of input. We

used the results to assess the performance benefits of each optimisation and to compare

the performance of the compressed to the uncompressed hash table.

To reduce recursive overhead completely, we designed and implemented a compressed

hash table, still using tree-based compression, but now using a non-recursive algorithm.

We created fifteen variants, based on three differentiating parameters that affect GPU

performance. But the performance of all variants was similar to each other and close to

the performance of our most optimised recursive implementation; we already reduced

recursive overhead to such a large extent, that the scattered memory accesses inherent

to tree-based compression are now the performance bottleneck.

We used both parameterised random-data input and state vector sequences extracted

from real-world models to evaluate performance. Results were similar: with our

optimisations we dramatically reduced the performance gap with the uncompressed hash

table, from over 40x to 3.8x.

As the speedups of GPU-based model checkers, such as GPUexplore, are enormous,

compared to the most sophisticated CPU multi-core solutions, that performance gap is

small enough for allowing a performance-efficient integration of our compressed table

into such model checkers. This would allow the verification of larger models and models

with data, which is currently not possible in GPUexplore, primarily due to memory space

limitations. As a result, also the verification of those kinds of models can achieve the

enormous speedups provided by GPU-based model checking.

9.1 Future work

The main future work is to integrate our hash table implementations into GPUexplore, to

examine whether the stand-alone results also apply when the hash tables are integrated.

Previous results [​18​] show that effects may be different integrated. Our extensive

performance evaluation could help to determine why this would be the case and to

provide possibilities for addressing the causes.

84

Integration of uncompressed hash table

Our uncompressed hash table implementation may already speedup the current

(uncompressed) version of GPUexplore. It will fix the dangerous possibility for corruption

of vectors anyway. The effects of a replication-free hash table are probably limited, as

previous results [​5​] showed that the performance effects of false negatives are not

severe in GPUexplore. GPUexplore may, however, benefit from our strongly universal

hash function, which is not only very fast, but also probabilistic-optimal; the current

version of GPUexplore uses a hash function with an inferior distribution, especially in

large hash tables. It is also interesting to examine if a lower bucket size now pays off.

Integration of compressed hash table

Most interesting is the integration of our compressed hash table, as this would allow

GPUexplore to verify larger models and models with data; this may also enlarge the

possibilities to specify models that already can be verified in a more convenient way. As

the performance of the most optimised recursive and the non-recursive table is similar,

one could integrate both, as there might be performance differences integrated.

Integration into GPUexplore would enable an important possibility to address the main

performance limiter, ​i.e. ​, the number of scattered memory accesses: By using the

incremental tree database of ​Section 3.2​, a saved tree of the originating state can be

reused in constructing the trees of successor states. Then, the hash table only needs to

be accessed for the tree nodes that are different. With a vector of length ​k​, this means

only O(log(​k​)) (= height of tree) accesses are needed instead of O(​k​) accesses,

assuming only one vector element changed. This may reduce the performance gap with

the uncompressed hash table even further.

In GPUexplore, the open set (​i.e.​, the states that still need to be visited/explored) could

now also be compressed, ​e.g.​, by letting the open set containing references to (the root

nodes of) the to-be-visited states in the closed set (hash table); before a state is added

to the open set, the closed set is checked and, after that, always contains the state.

When the compressed hash table has been integrated into a GPU-based model checker,

its (integrated) performance can also be compared to that of a CPU-based multi-core

compressed hash table (​e.g.​, the one integrated in LTSmin [​3​]). We have not done a

stand-alone comparison, as we think this would mean comparing apples to oranges. Our

compressed hash table is also very specific to model checking (although it may also be

used for other purposes), hence it makes more sense to do the comparison when it

really matters, ​i.e.​, integrated.

In our performance analysis using real-world data (​Section 8.2​), we allocated a full

32-bit vector element for each process in the model; GPUexplore applies state vector

compression by allocating exactly the number of bits that are required for that process

(​i.e.​, the 2-log of the number of states in the automaton). When the compressed hash

table is integrated into GPUexplore, we can examine how this would affect our results.

Other future work

Unfortunately, for reasons of time, we have not used a different GPU to examine how

well our compressed hash table scales with a more or less powerful GPU.

Our compressed hash table implementations are written in CUDA C and use some CUDA

specifics, such as warp-level synchronisation. Therefore, it would be interesting to port

the implementation to OpenCL, to examine whether the results are then similar.

85

References

1. C. Baier and J.-P. Katoen. 2008. ​Principles of model checking​. The MIT Press,

Cambridge, MA, USA.

2. H. Sutter. 2005. The free lunch is over: a fundamental turn toward concurrency in

software. ​Dr. Dobb’s journal​ 30, 3, 202-210.

3. A. Laarman, J. van de Pol, and M. Weber. 2011. Multi-core LTSmin: marrying

modularity and scalability. In ​Proceedings of the third international conference on

NASA Formal methods (NFM'11)​, volume 6617 of ​LNCS​, M. Bobaru, K. Havelund,

G.J. Holzmann, and R. Joshi (editors). ​Springer-Verlag, Berlin Heidelberg,

Germany​, 506-511.

4. J. Barnat, L. Brim, V. Havel, J. Havlíček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill, and

J. Weiser. 2013. DiVinE 3.0: an explicit-state model checker for multithreaded C

& C++ programs. In ​Proceedings of the 25th international conference on

Computer Aided Verification​ ​(CAV'13)​, volume 8044 of ​LNCS​, N. Sharygina and H.

Veith (editors). Springer-Verlag, Berlin Heidelberg, Germany, 863-868.

5. A. Wijs and D. Bošnački. 2014. GPUexplore: many-core on-the-fly state space

exploration using GPUs. In ​Proceedings of the 20th international conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’14)​,
volume 8413 of ​LNCS​, E. Ábrahám and K. Havelund (editors). ​Springer-Verlag,

Berlin Heidelberg, Germany, 233-247.

6. D. ​Bošnački​, S. Edelkamp, D. Sulewski, and A. Wijs. 2010. GPU-PRISM: an

extension of PRISM for General Purpose Graphics Processing Units. In ​Proceedings

of the 2010 ninth international workshop on Parallel and Distributed Methods in

Verification, and second international workshop on High Performance

Computational Systems Biology​ ​(PDMC-HIBI '10)​, Juan E. Guerrero (editor). IEEE

Computer Society, Los Alamitos, CA, USA, 17-19.

7. D.B. Kirk and W.W. Hwu. 2016. ​Programming massively parallel processors: a

hands-on approach​ (third edition). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

8. B. Cowan and B. Kapralos. 2011. GPU-based acoustical occlusion modeling with

acoustical texture maps. In ​Proceedings of the 6th Audio Mostly conference: a

conference on interaction with sound​ ​(AM'11)​, L. Roque and V. Alves (editors).

ACM, New York, NY, USA, 55-61.

9. S.S. Stone, J.P. Haldar, S.C. Tsao, W.W. Hwu, Z.-P. Liang, and B.P. Sutton. 2008.

Accelerating advanced MRI reconstructions on GPUs. In ​Proceedings of the 5th

conference on Computing Frontiers​ ​(CF'08)​. ACM, New York, NY, USA, 261-272.

10. J. Mulligan. 2012. A GPU-accelerated software eye tracking system. In

Proceedings of the symposium on Eye Tracking Research and Applications

(ETRA'12)​, S. Spencer (editor). ACM, New York, NY, USA, 265-268.

11.Khronos OpenCL Working Group. 2017. The OpenCL specification 2.2. Retrieved

25 September 2019 from ​https://www.khronos.org/registry/OpenCL/specs/

opencl-2.2.pdf​.
12.NVIDIA. 2019. CUDA C programming guide 10.1.243. Retrieved 25 September

2019 from ​http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html​.
13.A. Wijs, T. Neele, and D. Bošnački. 2016. GPUexplore 2.0: unleashing GPU

explicit-state model checking. In​ Proceedings of the 21st international symposium

on Formal Methods (FM’16)​, volume 9995 of ​LNCS​, J. Fitzgerald, C. Heitmeyer, S.

Gnesi, and A. Philippou (editors). Springer International Publishing, Cham,

Switzerland, 694-701.

86

https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

14.A. Laarman, J. van de Pol, and M. Weber. 2010. Boosting multi-core reachability

performance with shared hash tables. In ​Proceedings of the 2010 conference on

Formal Methods in Computer-Aided Design​ ​(FMCAD'10)​, R. Bloem and N.

Sharygina (editors). FMCAD Inc, Austin, TX, USA, 247-256.

15. T. Neele. 2014. ​Design of a scalable hash table on a GPU​. Bachelor’s thesis.

University of Twente, Enschede, The Netherlands.

16. L. Verkleij. 2016. ​Boosting shared hash tables performance on GPU​. Bachelor’s

thesis. University of Twente, Enschede, The Netherlands.

17.N. Cassee and A. Wijs. 2017. Analysing the Performance of GPU Hash Tables for

State Space Exploration. In ​Proceedings of the 3rd workshop on Graphs as Models

(GaM'17) ​, volume 263 of ​EPTCS​, T. Kehler and A. Millers (editors). Open

Publishing Association, 1-15.

18.N. Cassee and A. Wijs. 2017. On the Scalability of the GPUexplore Explicit-State

Model Checker. In ​Proceedings of the 3rd workshop on Graphs as Models

(GaM'17) ​, volume 263 of ​EPTCS​, T. Kehler and A. Millers (editors). Open

Publishing Association, 38-52.

19.A. Laarman, J. van de Pol, and M. Weber. 2011. Parallel recursive state

compression for free. In ​Proceedings of the 18th international SPIN workshop on

Model checking software​, volume 6823 of ​LNCS,​ A. Groce and M. Musuvathi

(editors). Springer-Verlag, Berlin Heidelberg, Germany, 38-56.

20.M. Thorup. 2015. ​High Speed Hashing for Integers and Strings​. CoRR,

abs/1504.06804.

21. J. Tompson and K. Schlachter. 2012. An introduction to the OpenCL programming

model. Retrieved 25 September 2019 from

http://cims.nyu.edu/~schlacht/OpenCLModel.pdf​.
22.A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson. 2012. GPUVerify:

a verifier for GPU kernels. In ​Proceedings of the ACM international conference on

Object Oriented Programming Systems Languages and Applications (OOPSLA'12)​.
ACM, New York, NY, USA, 113-132.

23.E. Bardsley and A.F. Donaldson. 2014. Warps and atomics: beyond barrier

synchronization in the verification of GPU kernels. In ​Proceedings of the 6th

international symposium on NASA Formal Methods (NFM’14)​, volume 8430 of

LNCS​, J. Badger and K. Rozier (editors). ​Springer International Publishing, Cham,

Switzerland​, 230-245.

24. L. Lamport. 1979. How to make a multiprocessor computer that correctly

executes multiprocess programs. ​IEEE Transactions on Computers​ 28, 9

(September 1979), 690-691.

25.NVIDIA. 2019. Tuning CUDA applications for Kepler 10.1.243. ​Retrieved 25

September 2019 from

http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html​.
26.A. Wijs and D. Bošnački. 2016. Many-core on-the-fly model checking of safety

properties using GPUs. ​International Journal on Software Tools for Technology

Transfer (STTT)​ 18, 2 (April 2016), 169-185.

27.S. Blom, B. Lisser, J. van de Pol, and M. Weber. 2008. A database approach to

distributed state space generation. ​Electronic Notes in Theoretical Computer

Science (ENTCS)​ 198, 1 (February 2008), 17-32.

28.NVIDIA. 2019. Tuning CUDA applications for Pascal 10.1.243. ​Retrieved 25

September 2019 from

https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html​.
29.NVIDIA. 2019. Pascal L1 cache. Retrieved 25 September 2019 from

https://devtalk.nvidia.com/default/topic/1006066/​.

87

http://cims.nyu.edu/~schlacht/OpenCLModel.pdf
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html
https://devtalk.nvidia.com/default/topic/1006066/

