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ABSTRACT
Automated Machine Learning (AutoML) techniques ben-
efitted from tremendous research progress recently. These
developments and the continuous-growing demand for ma-
chine learning experts led to the development of numerous
AutoML tools. Industry applications of machine learning
on streaming data become more popular due to the in-
creasing adoption of real-time streaming in IoT, microser-
vices architectures, web analytics, and other fields. How-
ever, the AutoML tools assume that the entire training
dataset is available upfront and that the underlying data
distribution does not change over time. These assump-
tions do not hold in a data-stream-mining setting where
an unbounded stream of data cannot be stored and is likely
to manifest concept drift. This research surveys the state-
of-the-art open-source AutoML tools, applies them to real
and synthetic streamed data, and measures how their per-
formance changes over time. For comparative purposes,
batch, batch incremental and instance incremental estima-
tors are applied and compared. Moreover, a meta-learning
technique for online algorithm selection based on meta-
feature extraction is proposed and compared, while model
replacement and continual AutoML techniques are dis-
cussed. The results show that off-the-shelf AutoML tools
can provide satisfactory results but in the presence of con-
cept drift, detection or adaptation techniques have to be
applied to maintain the predictive accuracy over time.

Keywords
AutoML, AutoFE, Hyperparameter Optimization, Online
Learning, Meta-Learning, Data Stream Mining

1. INTRODUCTION
Developing machine learning models that provide constant
high predictive accuracy is a difficult task that usually re-
quires the expertise of a data scientist. Data scientists
are multidisciplinary individuals possessing skills from the
intersection of mathematics, computer science, and busi-
ness/domain knowledge. Their job mainly consists of per-
forming a workflow that includes, among others, the fol-
lowing steps: data gathering, data cleaning, feature ex-
traction, algorithm selection, and hyperparameter opti-
mization. The last three steps of this workflow are iter-
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ative tasks that involve fine-tuning, which is usually per-
formed by data scientists in a trial-and-error process until
the desired performance is achieved. The ever-growing
number of machine learning algorithms and hyperparam-
eters leads to an increase in the number of configurations
which makes data scientists’ job more laborious than ever.

Considering the above reason and due to the lack of ex-
perts required in the industry, the field of Automated
Machine Learning (AutoML) benefited from considerable
advances recently [7]. AutoML tools and techniques en-
able non-experts to achieve satisfactory results and ex-
perts to automate and optimize their tasks. Although the
field of AutoML is relatively new, it consists of multiple
other sub-fields such as Automated Data Cleaning (Auto
Clean), Automated Feature Engineering (Auto FE), Hy-
perparameter Optimization (HPO), Neural Architecture
Search (NAS), and Meta-Learning [36]. The sub-field of
Meta-Learning is concerned with solving the algorithm se-
lection problem [23] applied to ML by selecting the algo-
rithm that provides the best predictive performance for a
data set. HPO techniques are used to determine the opti-
mal set of hyperparameters for a learning algorithm, while
Auto FE aims to extract and select features automatically.
NAS represents the process of automating architecture en-
gineering for artificial neural networks which already out-
performed manually designed ones in specific tasks such as
image classification [8]. The overarching goal of the field
is to develop tools that can produce end-to-end machine
learning pipelines with minimal intervention and knowl-
edge. However, this is not yet possible using state-of-the-
art open-source tools, thus when talking about AutoML
throughout the paper it means solving the combined algo-
rithm selection and hyperparameter optimization problem,
or CASH for short, as defined by Thornton et al. in [28].
When other techniques from the general field of AutoML,
such as meta-learning, are needed, it is specifically men-
tioned.

Regardless of their increasing popularity and advances,
current AutoML tools lack applicability in data stream
mining. Mainly due to the searching and optimization
techniques these tools use internally, as described in Sec-
tion 5, they have to make a series of assumptions [19].
First, the entire training data has to be available at the
beginning and during the training process. Second, it is
assumed that the data used for prediction follows the same
distribution as the training data and it does not change
over time. However, streaming data may not follow any of
these assumptions: it is an unbounded stream of data that
cannot be stored entirely in memory and that can change
its underlying distribution over time. The problem of ap-
plying AutoML to data streams becomes more relevant if
considering that the popularity of microservices and event-
driven architectures is also increasing considerably [24]. In
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these types of systems, streams of data are constantly gen-
erated from various sources including sensor data, network
traffic, and user interaction events. The growing amount
of streamed data pushed the development of new technolo-
gies and architectures that can accommodate big amounts
of streaming data in scalable and distributed ways (e.g.
Apache Kafka [18]). Nevertheless, despite their relevance,
AutoML tools and techniques lack integration with such
big data streaming technologies.

The workaround solution adopted by the industry con-
sists, in general, of storing the data stream events in a
distributed file system, perform AutoML on that data in
batch, serialize the model, and use the model for provid-
ing real-time predictions for the new stream events [17],
[13]. This solution presents a series of shortcomings in-
cluding predicting on an outdated model, expensive disk
and network IO, and the problem of not adapting to con-
cept drift. In this paper, the problem of concept drift
affecting the predictive performance of models over time
is extensively discussed and measured for models gener-
ated using AutoML tools. For comparison, batch, batch
incremental and online models are developed and used as
a baseline. Moreover, detection and adaptation techniques
for concept drift are assessed for both AutoML-generated
and online models.

The main contribution of this research consists of:

• An overview and discussion of the possible AutoML
techniques and tools that can be applied to data
streams.

• A Python library called automl-streams1 available
on GitHub2 including: a way to use a Kafka stream
in Python ML/AutoML libraries, an evaluator for
pretrained models, implementations of meta-learning
algorithms.

• A collection of containerized experiments3 that can
be easily extended and adapted to new algorithms
and frameworks.

• An interpretation of the experimental results.

In the following sections of the paper the main research
questions are presented, the formal problem formulations
are given for the concepts intuitively described above, and
the related work is summarised. Finally, the experimental
methods and the results are described.

2. RESEARCH QUESTIONS
The proposed research aims to provide relevant experi-
mental results and interpretations of the results as answers
for the following research questions:

RQ1 How can AutoML techniques and tools be applied
to data streams?

RQ2 How do AutoML-tuned models perform over time
compared to offline and online models, in providing real-
time predictions?

RQ2.1 How does algorithm selection using online meta-
learning influence the predictive performance?

1https://pypi.org/project/automl-streams
2https://github.com/AlexImb/automl-streams
3https://github.com/AlexImb/automl-streams/tree/
master/demos

3. PROBLEM FORMULATION
The formal definition of the AutoML problem as stated
by Feurer et al. in [9] is the following:

Definition 1 (AutoML):
For i = 1, . . . , n + m, n,m ∈ N+, let xi ∈ Rd denote
a feature vector of d dimensions and yi ∈ Y the corre-
sponding target value. Given a training dataset Dtrain =
(x1, y1), . . . , (xn, yn) and the feature vectors xn+1, ..., xn+m

of a test dataset Dtest = (xn+1, yn+1), . . . , (xn+m, yn+m)
drawn from the same underlying data distribution, as well
as a resource budget b and a loss metric L(·, ·), the Au-
toML problem is to (automatically) produce test set pre-
dictions yn+1, ..., yn+m. The loss of a solution ŷn+1, ..., ŷn+m

to the AutoML problem is given by:

1

m

m∑
j=1

L(ŷn+j , yn+j) (1)

When restricting the problem to a combined algorithm se-
lection and hyperparameter optimization problem (CASH)
as defined and formalised by Thornton et al. in [28] the
definition of the problem becomes:

Definition 2 (CASH):

Given a set of algorithms A = {A(1), . . . , A(k)} with asso-

ciated hyperparameter domains Λ(1), . . . ,Λ(k) and a loss
metric L(·, ·, ·), we define the CASH problem as comput-
ing:

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

L(A
(j)
λ ,D(i)

train,D
(i)
valid) (2)

4. BACKGROUND
4.1 AutoML Frameworks
To solve the AutoML problem (in its original form or as
a CASH problem) a configuration space containing the
possible combinations of algorithms and hyperparameters
is defined. In the case of artificial neural networks algo-
rithms, an additional dimension represented by the neural
architecture is added to the search space. For searching
this space, different searching strategies and techniques
can be used [29]. For the purpose of this research one rep-
resentative open-source framework [12] was selected for
each type of searching strategy (CASH solver). The se-
lected frameworks and their searching strategy are dis-
played in Table 1.

AutoML Framework CASH Solver

AutoWeka4 Bayesian Optimization

H2O.ai5 Grid Search

TPOT6 Genetic Programming

auto-sklearn7 SMAC

Table 1. Open-source AutoML Libraries

Bayesian Optimization is an iterative optimization pro-
cess suited for expensive objective functions. It consists
of two main components: surrogate models for modelling

4https://www.automl.org/automl/autoweka
5https://www.h2o.ai/products/h2o
6http://epistasislab.github.io/tpot
7https://automl.github.io/auto-sklearn/master

2



the objective function, and an acquisition function that
measures the value that would be generated by the eval-
uation of the objective function at a new point [36]. This
technique is also used in the Sequential Model-based Al-
gorithm Configuration (SMAC) library that allows using
Gaussian processes and Random Forests as surrogate mod-
els [9].

Grid Search, as the name suggests, creates a grid of con-
figurations and searches through them. The advantage of
this approach is that it can be easily parallelized. The
H2O.ai framework makes use of that in order to solve the
CASH problem in a distributed way across nodes in a clus-
ter [14].

Genetic Programming is a technique inspired by the
process of natural selection where concepts such as chro-
mosomes and mutations are used to develop better gen-
erations of solutions to the problem. Tree-based Pipeline
Optimization Tool (TPOT) uses this technique to gener-
ate and optimize machine learning pipelines [21].

4.2 Online learning
Online machine learning approaches such as instance in-
cremental or batch incremental learning are techniques
usually applied to data stream mining and big data. These
algorithms do not require to store the entire training dataset
in memory and can dynamically adapt to changes in the
data distribution. While some algorithms are specially de-
signed for online learning [3] others are an adaptation of
batch algorithms such as Stochastic Gradient Descent, k
Nearest Neighbour and Naive Bayes [31].

Ensemble techniques train a homogeneous [3] or hetero-
geneous [32] set of estimators generating a set of mod-
els. In order to make predictions, a voting method be-
tween the members of the ensemble is established. Each
model makes a prediction and the final prediction is cal-
culated based on a predefined rule such as the majority
vote, weight, etc.

4.3 Concept drift
Concept drift represents the problem of streamed data not
following an underlying distribution and the concept be-
ing learned to change over time. Consequently, predic-
tions made by models become less accurate as time passes.
While some algorithms such as k Nearest Neighbour can
naturally deal with drift by design [30] others need ex-
plicit drift detection methods. All drift detectors assume
that the accuracy of a predictor over a data stream should
improve or stay the same over time. When the accuracy
drops (abruptly or gradually) a warning level or a change
is identified. A simple solution is the Page Hinkley test
proposed in 1954 [22] that involves computing the mean
of the observed values up to the current moment. More
recent solutions adapted to data stream mining consist of
keeping a sliding window and computing relevant statis-
tics over that window. Fixed-size slide window implemen-
tations are used for the Drift Detection Method (DDM)
[10] and Early Drift Detection Method (EDDM) [2]. The
difference between these two is that EDDM aims to im-
prove the detection rate of gradual concept drift in DDM
while keeping a good performance against abrupt concept
drift. Another popular implementation of a drift detector
is ADaptive WINdowing (ADWIN) [4] which will decide
the size of the window by cutting the statistics window at
different points and analysing the average of some statistic
over these two windows.

4.4 Evaluation techniques
Considering the non-stationary nature of an unbounded
stream of data, classic techniques for evaluating the model
on batch data such as train-test split and cross-validation
do not apply to models trained on streamed data [11]. To
overcome this problem and obtain accurate measurements
over time other evaluation methods are introduced.

Periodic holdout evaluation involves storing a prede-
fined number of samples from the stream (holdout) for
testing purposes and renewing the test samples after a
preset amount of time or observed samples. This tech-
nique implies that the data used for testing is never used
for training the model.

Prequential evaluation or the interleaved test-then-train
method in which each sample serves two purposes: first
the sample is used for testing, by making a prediction and
updating the metrics, and then used for training (partially
fitting) the model. Using this method, all the samples are
used for training and no holdout has to be kept in memory.

4.5 Meta-learning
Meta-learning, or learning how to learn [33], although way
older than AutoML, is a field of machine learning that is
often categorized as sub-field of AutoML. Inspired by how
humans learn and the fact that they do not start from
scratch every time but use their previous learning expe-
rience to learn new tasks, meta-learning tries to achieve
the same for machine learning tasks. Meta-learning tech-
niques can be used for either improving existing models,
generating new ones or reducing the configuration space.
To do so in a systematic and data-driven way, the collec-
tion of meta-data is required. The source of meta-data
can differ between the methods used: configurations and
performance from model evaluation, task properties such
as meta-features, and prior models (transfer learning) [34].

When applied to data streams, meta-learning techniques
are often used to predict the weights of base-learners trained
on the incoming samples as part of an ensemble [32]. The
model that predicts the weights of the base-learners or one
base learner (i.e. 100% weight) is usually called a meta-
learner. The source of its knowledge (meta-knowledge)
can be meta-data represented by meta-features [26] ex-
tracted from the current stream or similar streams fol-
lowing the same concept. Furthermore, the meta-learner
can be trained during the processing of the stream or pre-
trained and only used for making online predictions during
the processing part.

5. RELATED WORK
From the literature research carried, it became clear that
the state-of-the-art tools and techniques do not include
any solution for solving the AutoML or CASH problem in
a streaming setting. However, being a well-known problem
in the field, it was part of the NIPS 2018 AutoML Chal-
lenge8 formulated as a life-long AutoML problem. Accord-
ing to the organisers of the challenge, what is considered to
be the main difference between life-long machine learning
(LML) and online learning is that in LML the true labels
can arrive days or weeks later. Either way, the problem
of solving the AutoML on a data stream still holds. Two
solutions that performed well in the challenge are going to
be discussed.

First, Wilson et al. propose AutoGBT [35], a solution that
combines an adaptive self-optimized end-to-end machine

8https://www.4paradigm.com/competition/nips2018
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learning pipeline. It is based on Gradient Boosting Deci-
sion Trees (GBDT) with automatic hyper-parameter tun-
ing using Sequential Model-Based Optimization (SMBO-
TPE). Their solution does not include any explicit drift
detection mechanism and relies on the implicit drift adap-
tation techniques of the implementation of GBDT from
the LightGBT9 library. Although their solution performed
very well for most of the datasets of the challenge, the us-
age of a single type of algorithm can be seen as a happy
path by not being flexible for other tasks or use cases.

Second, Madrid et al. propose LML auto-sklearn [19], a
solution built around the auto-sklearn library, which incor-
porates explicit drift detection using Fast Hoeffding Drift
Detection Method (FHDDM). When drift is detected a de-
cision of either replacing or improving the model is made.
According to their benchmarks, the best results are ob-
tained when the model is replaced by retraining a new one
with the entire dataset seen so far. However, this method
works only until the dataset kept in memory reaches a
certain size which is not a feasible solution for big data.

Furthermore, in other work, aspects of sub-fields of Au-
toML are applied to data streams and online learning. An
example will be meta-learning, used for algorithm selec-
tion based on meta-features [26]. Two possible implemen-
tations of meta-learning algorithms for streams that can
suggest the best predictor for the next sliding window are
extensively discussed in the literature. First, Rossi et al.
proposed MetaStream [25], a meta-learning based method
for periodic algorithm selection between two algorithms.
The approach of MetaStream is to characterize, i.e. ex-
tract meta-features, from a training window and predict
the learning algorithm on a selection window consisting of
future data points. This way, both characteristics from
the past and incoming data are used in the selection pro-
cess. Second, van Rijn et al. [31] proposed a slightly
different approach that involves determining which algo-
rithm among multiple ones will be used to predict the next
window of data based on data characteristics measured in
the previous window and the meta-knowledge. Both ap-
proaches claim to perform better than incremental learn-
ing algorithms and ensembles for their selected datasets.

Consequently, after claiming that extracting meta-features
is a computationally expensive process, van Rijn et al.
[32] proposes a different approach by introducing the On-
line Performance Estimation framework. It represents a
measurement of how ensemble members have performed
on recent examples and adjust their weight in the voting
accordingly. Another solution, Best-last (BLAST), can se-
lect an active (leader) estimator based on the Online Per-
formance Estimation by choosing the one that performed
best over the set of w previous training examples.

6. METHODS
A visual representation of the proposed experiment types
can be observed in Figure 1. A stream of data that can
experience concept drift over time is depicted at the top
of the figure and four experiment types following the same
time axis under it. These experiment types are an ab-
straction of the concrete experiments described in Section
7 and aim to provide a higher-level overview of the meth-
ods experimentally implemented.

Classic model. The first experiment type is represented
by a model fitted with data a priori. The batch of data
used for training is collected from the stream and it is
ensured that it is not streamed later on (i.e. (parts of)

9https://github.com/microsoft/LightGBM

Figure 1. Experiment Types

the training data never used for testing). The types of
algorithms used in this case are classic batch estimators
such as NaiveBayes, LogisticRegression and Linear SVC.

Online learning. The second experiment type implies
using online learning algorithms than can perform (batch)
incremental learning or an ensemble of those such as Ho-
effding Tree, OzaBag, OzaBoost and LeverageBagging.
Some of these algorithms might include drift adaptation
or detection techniques such as ADWIN or use a window
for training weak-learners on the batch data collected in
that window.

Pretrained AutoML model. While the first two types
of experiments do not involve any AutoML approach and
serve as a baseline for the other experiments in this re-
search, the third experiment consists of using state-of-the-
art AutoML libraries to generate the pipeline, select the
algorithms and their hyperparameters.

Online AutoML model. The last experiment type in-
volves implementing theoretically described meta-learning
algorithms such as BLAST or MetaStream and ensembles
that use meta-learning internally. In contrast with the sec-
ond experiment type, this one implies the existence of a
meta-learner (MtL) that determines which model is used
for making predictions or the weight of a model in ensem-
bles. Therefore, at a certain point in time or for a cer-
tain time window, the meta-learned can select a different
model M1,2,...n while in the case of the second experiment
the model M is the only model making a prediction but
evolves over time.

The benchmark data sets include both real and synthetic
ones that are used in the related work and in literature in
general [30]. In order to provide verifiability and repro-
ducibility all the datasets will be published on OpenML10

10https://openml.org/
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under an OpenML Study (a collection of datasets) called
AutoML Streams. An overview of the datasets and their
characteristics is provided in Table 2. While the tech-
niques and methods presented in this paper can be ex-
tended to multi-label classification and regression tasks,
to reduce the scope of the experiments, only single-label
multi-class classification problems were selected.

Dataset Name Type |xn| classes |cls.|
agrawal gen generated 9 {0, 1} 2

stagger gen generated 3 {0, 1} 2

sea gen generated 3 {0, 1} 2

led gen generated 24 {0, . . . , 9} 10

hyperplane gen generated 10 {0, 1} 2

rbf gen generated 10 {0, 1} 2

covtype real 55 {1, . . . , 7} 7

elec real 6 {0, 1} 2

pokerhand real 10 {0, . . . , 5} 6

Table 2. Datasets used for experiments

Agrawal Generator was introduced by Agrawal et al.
in [1]. It represents a common source of data for early
work on scaling up decision tree learners. The generator
produces a stream containing nine features, six numeric
and three categorical. There are ten functions defined for
generating binary class labels from the features. Presum-
ably, these determine whether a loan should be approved
or not. Concept drift is introduced by changing the label-
generating function.

Stagger Generator generates a data stream with abrupt
concept drift, as described in Gama, Joao, et al. in [10].
Each instance describes the size, shape and colour of such
an object. A STAGGER concept is a binary classification
rule distinguishing between the two classes, e.g. all blue
rectangles belong to the positive class[30]. Concept drift
can be introduced by changing the classification rule.

SEA Generator generates 3 numerical attributes, that
vary from 0 to 10, where only 2 of them are relevant to
the classification task. A classification function is chosen,
among four possible ones. These functions compare the
sum of the two relevant attributes with a threshold value,
unique for each of the classification functions[27]. Depend-
ing on the comparison the generator will classify an in-
stance as one of the two possible labels. Abrupt concept
drift is introduced by changing the classification function.

LED Generator generates samples by emulating the el-
ements of a 7-segment display. The goal is to predict the
digit displayed on a seven-segment LED display, where
each attribute has a 10% chance of being inverted. Ad-
ditional features are added in order to generate noise and
concept drift [6].

Hyperplane Generator generates a binary classification
problem of determining if a point is below or under a ro-
tating hyperplane. Hyperplanes are useful for simulating
time-changing concepts because the orientation and posi-
tion of the hyperplane can change in a continuous manner
by changing the relative size of the weights [16]. Drift
is introduced by changing the weights and reversing the
direction of the rotation.

Random Radial Basis Function (RBF) Generator
generates a number of centroids. Each has a random posi-
tion in a Euclidean space, standard deviation, weight and
class label. Each example is defined by its coordinates in

Euclidean Space and a class label referring to a centroid
close by. Centroids move at a certain speed, generating
gradual concept drift [30].

covtype contains the forest cover type for 30 x 30 meter
cells obtained from US Forest Service (USFS). It contains
581012 instances and 54 attributes, and it has been used
in several papers on data stream classification. The source
of this dataset, as well as the elec and pokerhand, is the
website11 of the popular online learning framework MOA.

elec contains data was collected from the Australian New
South Wales Electricity Market. In this market, prices
are not fixed and are affected by the demand and supply
of the market. They are set every five minutes. The class
label identifies the change of the price relative to a moving
average of the last 24 hours.

pokerhand. Each record of the dataset is an example
of a hand consisting of five playing cards drawn from a
standard deck of 52. Each card is described using two
attributes (suit and rank), for a total of 10 predictive at-
tributes. Their class attribute describes the“Poker Hand”.

7. EXPERIMENTS AND RESULTS
The experimental setup of this research aims to provide re-
producibility and allow future research to use the same ex-
perimental framework. However, the current experimen-
tal machine learning tooling is mainly divided between
Java-based and Python-based implementations. Some re-
searchers implement their experiments using tools built
around Weka12 [15]: the AutoML framework AutoWeka
[28] or the data stream mining framework MOA [5]. Oth-
ers prefer using solutions from the scikit-learn13 environ-
ment: the AutoML framework auto-sklearn [9] or the multi-
output streaming platform scikit-multiflow14 [20]. Fur-
thermore, some of these tools rely on specific versions of
operating-system-wide dependencies. To overcome these
problems, an experimental setup using Docker15 contain-
ers is used. Each container provides an isolated environ-
ment that includes all the dependencies required by a cer-
tain tool or framework. This way, the experimental setup
is consistent across environments and scalable. New ex-
periments using a new tool or framework can be added
by simply adding a new container. Moreover, the same
containers used for research and development can then be
used in production, ensuring parity between development
and production environments.

For providing a stream of data similar to the ones usually
used in production, Apache Kafka16, a widely-adopted dis-
tributed and scalable [18] Pub/Sub broker was used. The
datasets described in Table 2 were streamed as topics to
the broker and replayed during training and testing.

Additionally, to implement all the experiment types de-
scribed in Section 6, developing new scripts and techniques
was required. The resulting implementations are collected
under a Python package called automl-streams17 avail-
able on GitHub18. It is built around the scikit-multiflow
framework and its components are therefore cross-compatible
with scikit-learn and scikit-multiflow.

11https://moa.cms.waikato.ac.nz/datasets
12https://www.cs.waikato.ac.nz/ml/weka/
13https://scikit-learn.org/
14https://scikit-multiflow.github.io/
15https://www.docker.com/
16https://kafka.apache.org
17https://pypi.org/project/automl-streams
18https://github.com/AlexImb/automl-streams
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For now, the automl-streams package includes:

• KafkaStream, a way to create a stream for scikit-
mutliflow and other Python libraries from a Kafka
topic.

• EvaluatePretrained, an evaluator for scoring pretrained
models against a stream.

• implementations of classifiers using techniques from
MetaStream [25] and BLAST [32].

• other experimental classifiers that use meta-learning
and meta-feature extraction.

• helper functions for publishing CSV files, Pandas
DataFrames and OpenML Datasets to Kafka topics.

For the rest of the section experiments and results that fit
in one of the experiment-type categories explained above
will be presented.

7.1 Classic model
For this experiment, the batch training algorithms de-
scribed in Table 3 are used. The parameters of these
classifiers are the default ones from their corresponding
implementation in sklearn.

Algorithm Implementation

RandomForestClassifier sklearn.ensemble

DecisionTreeClassifier sklearn.tree

KNeighborsClassifier sklearn.neighbors

LinearSVC sklearn.svm

Table 3. Classifiers used for batch training

The predictive accuracy and Cohen’s kappa metrics were
measured for all datasets. Figure 2 shows a plot of the
predictive accuracy for a single classifier and a selection of
datasets. Figure 8, showing the predictive accuracy of all
classifiers and all datasets, can be found in Appendix A.

Figure 2. Batch-trained model accuracy over time
for a subset of datasets

A comparison of the selected algorithms’ average accuracy
over all datasets is shown in Figure 3. Each violin plot
shows the distribution of the average accuracy across all
datasets, the mean (red), and the median (green).

Figure 3. Batch-trained models accuracy averages

7.2 Online learning model
For online learning, the algorithms listed in Table 4 are
used. Some of them incorporate explicit drift detection
techniques. The evaluation method used for measuring is
the prequential method described in Subsection 4.4.

Figure 4 shows how the mean predictive accuracy changes
over time for a single online classifier and a selected subset
of datasets. Appendix A contains Figure 9 that includes
all the datasets and algorithms.

Figure 4. Online models without and with (HAT)
drift detection. Accuracy over time for a subset of
datasets

A violin plot, showing the distribution of the average accu-
racy across topics for each of the online learning algorithms
is depicted in Figure 12 from Appendix A.
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Algorithm Implementation Type Drift detection

HoeffdingTree skmultiflow.trees Instance incremental None

KNearestNeighbors (KNN) skmultiflow.lazy Batch incremental None

PerceptronMask skmultiflow.neural networks Instance incremental None

SGDClassifier sklearn.linear model Instance incremental None

HoeffdingAdaptiveTree (HAT) skmultiflow.trees Batch incremental ADWIN

LeverageBagging skmultiflow.meta Ensemble ADWIN

OzaBaggingAdwin skmultiflow.meta Ensemble ADWIN

Table 4. Classifiers used for online learning

7.3 Pretrained AutoML model
For automatically generating models, two popular [12] Au-
toML frameworks were selected: auto-sklearn and TPOT.
Each framework has a budget of 180 seconds for training.
The resulting model is evaluated for the streaming data.
TPOT is restricted to maximum 5 generations (genera-
tions=5) and a maximum population of 20 instances for
each generation (population size=20). For auto-sklearn,
a maximum time for fitting each model is set to 30 sec-
onds (per run time limit=30). Example executions of this
experiment for both frameworks are depicted in Figure 5.

Figure 5. AutoML models accuracy over time for
a subset of datasets

A violin plot, showing the distribution of the average ac-
curacy across topics for each of the AutoML-generated
models is depicted in Figure 13 from Appendix A.

7.4 Online meta-learning model
The meta-learning algorithm implemented is inspired by
the solution proposed by Rossi et al., MetaStream [25],
but adapted to solve classification problems. Another dif-
ference is that the set of base-estimators can contain more
than two estimators. For this experiment, the follow-
ing base-estimator algorithms are used: HoeffdingTree,
KNN, PerceptronMask, SGDClassifier. The meta-learner
responsible for choosing the active estimator and incorpo-
rating the meta-knowledge is selected to be an instance
of a sklearn.linear model.SGDClassifier. For extracting
meta-features the pymfe19 library is used. The following
meta-feature categories are extracted: general, statistical,
and info-theory. A description of which meta-features are
included in each category is available on the pyfme web-
site20. In total, 45 features are extracted for each tumbling
window of 300 samples. These meta-features and the in-
dex of the predictor with the best accuracy for the cur-
rent window are used for training the meta-learner online.
This way, the meta-knowledge extracted from the meta-
feature is gradually incorporated into the meta-model. At
the end of each window, the meta-learner predicts which
base-learner will be used for making predictions during the
next window.

Figure 6. Meta-learning model accuracy over time
for a subset of datasets

For comparison, an implementation that only selects the
predictor for the next window to be the one that performed
best in the current window is implemented. The meta-
knowledge is not considered to show the importance of the
meta-features in the MetaClassifier implementation. This
”algorithm” is called LastBestClassifier and a comparison
to the MetaClassifier is in Figure 14 from Appendix A.

19https://pypi.org/project/pymfe
20https://pymfe.readthedocs.io/en/latest/auto_
pages/meta_features_description.html
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Figure 7. All models accuracy averages distribution, mean (red) and median (green)

8. DISCUSSION
The experiments performed show that the presence of con-
cept drift in streaming data is an important factor that
leads to a decrease in predictive accuracy over time. In
the case of the batch-trained models from the first exper-
iment, the decrease is significant for both synthetic data
with abrupt drift and real data. The online learning al-
gorithms performed consistently better in the presence of
both abrupt and slow-changing drift. The online learning
algorithms that include explicit drift detection techniques
(e.g. HAT that includes ADWIN) scored the highest and
the most consistent accuracy over time among all selected
algorithms.

Furthermore, the AutoML frameworks generated models
with a higher initial predictive accuracy but it decreased
rapidly when encountering concept drift. The meta-learning
approach of a heterogeneous ensemble of online learners
resulted in better performance compared to some of the
online ones alone but worse than the online ensembles
equipped with ADWIN. The improvement of using the
selected categories of meta-features led only to marginal
improvements compared to selecting the best classifier of
the last window. These findings are in line with the claims
from the literature saying that meta-feature extracted from
the stream lead to marginal improvements at a high com-
putational cost [32].

However, having a heterogeneous ensemble of diverse al-
gorithms and selecting an active one online proved to be a
useful technique for data streams. As shown in Figure 7,
the distribution of the accuracy averages for the last type
of algorithms has its minimum and maximum values close
to the best values of all the other algorithms. In combi-
nation with HPO and better meta-knowledge, it can be a
valuable addition to an AutoML tool for streaming data.

9. CONCLUSION
This research surveyed and summarised the existing Au-
toML and online learning tools and techniques applicable
to streaming data. It proposed a scalable and portable
benchmarking framework based on Apache Kafka streams
and Docker containers. Consequently, using the intro-
duced framework, it empirically showed how the predictive
performance of models is influenced by concept drift over
time. Finally, a meta-learning technique based on meta-
features extraction was introduced and benchmarked. The
results showed that the implemented meta-learning ap-
proach provides marginal improvements compared to state-
of-the-art ensembles equipped with drift detection, but it
is useful for selecting the active estimator in a heteroge-
neous ensemble. Among other techniques, it has the po-
tential to be the core of an AutoML tool for data streams.

10. FUTURE WORK
Considering the importance and the diversification of the
AutoML problem for data streams, future work ought
to be performed to empirically cover other existing tech-
niques and develop new ones. Using automl-streams, the
experimental framework proposed in this work, more al-
gorithms can be implemented and easily benchmarked in
the same way used in this research. Furthermore, automl-
streams can be used to plot other metrics such as training
and prediction times for a better assessment of the com-
putational cost of the presented techniques. Moreover,
new AutoML frameworks, including the Java-based ones
(H2O.ai, AutoWeka, etc.), can be added and compared to
the ones used above. Finally, considering the need for an
end-to-end AutoML framework in the industry, automl-
streams may be extended with Auto Cleaning, AutoFE,
and HPO components.
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APPENDIX
A. DETAILED AND ADDITIONAL PLOTS
Includes plots for all the datasets and additional plots for
the online, AutoML and meta-learning experiments.

Figure 8. Detailed plots of batch models accuracy
over time grouped by algorithm

Figure 9. Detailed plots of online models accuracy
over time grouped by algorithm
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Figure 10. Detailed plots of AutoML models ac-
curacy over time grouped by algorithm

Figure 11. Detailed plots of meta models accuracy
over time grouped by algorithm

Figure 12. Online models accuracy averages

Figure 13. AutoML models accuracy averages

Figure 14. Meta-learning models accuracy aver-
ages
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