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ABSTRACT

This paper shows how the VerCors verification toolset can
be used to prove data race freedom and functional correct-
ness of a parallel radix sort algorithm for GPUs. This is a
widely used standard sorting implementation for GPGPU
programming frameworks and therefore its correctness is
of utmost importance. Additionally, it presents the use-
fulness of VerCors as well as its current limitations to the
scientific community.
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1. INTRODUCTION

Sorting is the act of putting elements in an array in a
certain order and is a fundamental problem in computer
science. Several efficient solutions to the sorting problem
exist such as merge sort and quick sort. These algorithms
work on the basis of reordering elements by comparing
said elements with one another.

An alternative approach is to count the occurrence of dif-
ferent elements and reorder the elements based on the
amount of occurrences. Radix sort and counting sort are
examples of algorithms that make use of this principle.
Parallel implementations of sorting algorithms on Graph-
ics Processing Units (GPUs) have been made and often
perform better than their sequential CPU-bound counter-
parts |1 |5]. The use case of GPUs are far wider than only
graphics computations. Special General Purpose GPUs
(GPGPUs) have been developed that are designed to also
do parallel computing tasks that are not graphics related.
GPGPU programs are in general more powerful than sim-
ilar CPU-bound programs when the compute task entails
highly parallel computations. This is due to the high core
and thread count of GPUs [7].

Verifying sorting algorithms is important due to their wide
usage. A lot of programming languages have built-in sort-
ing functions. Incorrect implementations are therefore im-
permissible. However, verification of parallel programs is
hard due to the exponential state space of the problem.
This paper focuses on verifying data race freedom and
functional correctness of a parallel radix sort algorithm
for GPUs.
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Organisation. The paper starts by outlining some back-
ground on radix sort, GPGPU programming, and the Ver-
Cors verification toolset in Sections and re-
spectively. This is followed by the central problem state-
ment containing the research questions of this paper in
Section The research questions posed in the problem
statements are answered in Sections [ through[6] Finally,
the paper is concluded with Future Work, Related Work,
and Conclusion in Sections m and |§| respectively.

2. BACKGROUND

This section discusses background information needed to
understand the paper. It explains the functioning of radix
sort as well as how the steps used in radix sort can be
parallelized. Further more it explains the basics of the
VerCors verification tool and of GPGPU programming.

2.1 Radix Sort

Radix sort is not a comparison sort but a counting sort. It
divides every key into equally sized chunks and repeatedly
sorts the keys for every chunk in three steps: count, prefix

sum and reorder [6].
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Figure 1: Radix sort example using a radix of 4

LSD order: Result:

The size of the chunks is determined by the chosen radix
(or base). The example in Figure [I] uses a radix of 4,
meaning the four possible values of a key chunk are 0, 1,
2, and 3. Moreover, the example can be sorted with two
passes of the algorithm by first sorting the input array on
the Least Significant Digit (LSD), followed by a sort on
the Most Significant Digit (MSD). The sorting of the LSD
is explained in more detail.

The input of the example consists of the following values:

input = [21,11,33,02] (1)

Taking the LSD of all the values of the input array results
in the following input for the first pass of the algorithm:

LSDs =[1,1,3,2] (2)



The first step is to count the number of occurrences of ev-
ery key: 0 never occurs, 1 occurs twice, 2 occurs once and
3 occurs once. The frequency of every number is stored
on the index of the corresponding number. The result is
the following count:

c=10,2,1,1] (3)

The second step is to take the exclusive prefix sum of the
count to get the initial starting index of every key in the
result array. The exclusive prefix sum of a value in an
array is the sum of every value that preceded said value
in the array or more formally: let ¢ be an array of initial
values, and p the array of prefix sums. Every value in p
can be calculated with the following formula:

plil = 3 il (4)

0<j<i
In this example, the reslt is the following prefix sum:
p = [0,¢[0], c[0] + c[1], c[0] + c[1] + c[2]] = [0,0,2,3] (5)

The last step is to reorder the elements of the input such
that the LSDs of the input are in order. Referring back
to the input, the first value that needs to be reordered is
21. 21 has an LSD of 1. The value at index 1 of the prefix
sum is 0. This means 21 needs to be inserted at index 0 of
the result. Additionally, the value at index 1 in the prefix
sum is incremented, so that the next value with an LSD
of 1 gets inserted right next to 21.

Performing this routine for each value of the input results
in an array whose LSDs are sorted in ascending order.

LSDorder = [21,11,02, 33] (6)

Performing this entire algorithm on the MSD and using
the above LSD order as input will result in a sorted array.
Note that in the example 21 and 11 have retained their
original order, meaning that this sort is stable. This is
important because the result of previous passes of the al-
gorithm should persist in later passes of the algorithm.
The three steps of a radix sort pass can be parallelized in
a GPGPU implementation of radix sort.

Parallel Count. An approach to parallelize the counting
of keys is to have a global counter and let all kernels do
atomic increments on this global counter. This is not an
optimal solution because different kernels may block one
another by wanting to increment the same value.

Algorithm 1 Parallel Count Algorithm

1: tempCounts] ][]
2: function PARCOUNT(tid, partition[ |, output| ])
for x € partition do

tempCounts|tid][x] < tempCounts[tid][x] + 1
end for
barrier(tid)
if tid < radix then

for count € tempCounts do

output[tid] < output[tid] + count[tid]

10: end for
11: end if
12: end function

Another more optimal approach is shown in Algorithm
In this approach, a local count for all kernels is kept, which

are all contained in the two dimensional array tempCounts.

When every thread is done, all local counts can be summed
into a global count which could possibly also sum all the
counters in parallel by having a kernel for every index of
the count.

Parallel Prefix Sum. The parallel prefix sum can be cal-
culated either inclusively or exclusively. Blelloch [2] pro-
posed a parallel algorithm to solve the exclusive prefix sum
problem. Kogge-Stone [8] proposed a parallel algorithm to
solve the inclusive prefix sum problem. Both these algo-
rithms have been verified for both functional correctness
and data race freedom in VerCordl Correctness of the
algorithm is assumed in this paper.
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Figure 2: The parallel reorder step in radix sort

Parallel Reorder. Reordering happens in two steps as
can be seen in Figure 2] The input is split up into equal
partitions. Each partition is sorted in parallel. Once every
partition is sorted, each partition can be inserted into the
result sequentially. Since all values in a partition are in
order, all values in a partition can be inserted in parallel
on the offset provided by the prefix sum calculated earlier
and the offset in the partition. The prefix sum can then
be updated based on the amount of each value that has
been inserted to provide offsets for the next partition.

Algorithm 2 Parallel Reorder Algorithm

1: function PARALLELREORDER(tid, input[ ], output] ],
prefixsum| |)

2: for x € input do

3: if getKeyChunk(x, radix, iteration) = tid then
4: output|prefixsum[tid]] + x

5: prefixsum|[tid] <+ prefixsum[tid] + 1

6: end if

7 end for

8:

end function

However, this paper uses the approach as outlined in Al-
gorithm This approach takes the entire input at once
and has an amount of parallel threads equal to the radix.
Every thread is responsible for looking up one specific key.
When found, the thread adds it to the result array corre-
sponding to the index presented by the prefix sum and
update the prefix sum accordingly.

The upside of the second approach is that it is simpler
to implement while still requiring no atomic operations.
This implementation was therefore chosen to be verified
first. It should be noted that the second approach is a lot
slower for large inputs compared to the first approach; In
the first approach, the amount of threads scale with the
input size while in the second approach, it scales with the
size of the radix which is usually small.

2.2 GPGPU programming

To understand the GPU implementation of radix sort and
to convert this implementation to a model that VerCors
understands, it is key to get familiar with common GPU

!The source code of the parallel prefix sum algorithm
can be found at: https://github.com/Safaril991/
prefixsum.
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programming languages. This section will explain gen-
eral GPGPU programming concepts and relate them to
OpenCL and CUDA.

GPGPU programs are written in the form of kernels. A
kernel is a function or program that is executed by each
thread. Kernels are invoked by a host program running on
the CPU that provides instructions to a GPU. The amount
of threads is specified when invoking a kernel. The kernel
then gets executed on the amount of specified threads.
Both in CUDA [7] and OpenCL [10], kernels are void func-
tions. A common workflow for kernel functions is therefore
to initialise the data on the host program, copy that data
to the GPU, execute the kernel function on the GPU and
copy the modified data back to the host program.

To bring structure to a GPGPU program and address-
ability to threads running kernels, threads are assigned to
workers. A worker contains a single thread executing a
kernel. In OpenCL, when a worker has finished a kernel,
it collects a new one from the work queue until no more
kernels are left |[10]. Workers are grouped in work-groups.
Additionally, CUDA features a model called a grid where
work-groups can be laid out in a one, two or three dimen-
sional structure [7].

Workers and work-groups have access to different memory:

e Global memory storing data accesible by all workers.
It is the largest in size but slowest in operation.

e Shared memory storing data belonging to a work-
group that only workers belonging to said work-group
can access. It is small in size but fast in operation.

e Local memory storing data belonging to an individ-
ual worker. Usually local variables of a kernel are
stored here.

Additionally, OpenCL features a memory type called con-
stant memory that is the same as global memory but is
read-only [10]. Figureshows the relation between frame-
work structure and the different memory spaces.
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Figure 3: Memory model used in GPGPU frameworks

2.3 VerCors

VerCors is a tool for mechanised verification for different
concurrency models such as heterogeneous concurrency
(e.g. concurrent Java programs) and homogeneous con-
currency (e.g. parallel GPU programs) [3]. It has verifica-
tion support for a subset of languages including Java, C,
OpenCL and its own internal language, PVL.

The tool uses permission-based separation logic for verifi-
cation, which is an extension of Hoare logic that provides
reasoning about where data is stored in memory [3]. This
enables reasoning about what part of memory is accessible
by each thread. Permissions are represented as a fraction
in the interval (0, 1] where the interval (0, 1) represents a
read permission and 1 represents a write permission. Ad-
ditionally, several read permissions can be added up into
a write permission and alternatively, a write permission
can be divided up into several read permissions. Every
variable has a set of permissions that at any time in the

program is owned by a certain thread or function. Permis-
sions to a variable can be taken and given back between
threads and functions. When a permission model is speci-
fied on a program such that there is no unpermitted access
to a variable and no permissions on a variable overlap be-
tween threads or functions, the program is proven to be
data race free.

Verification happens by using the concept of programming
by contract. Programs can be annotated with precondi-
tions and postconditions, and loop and class invariants.
These annotations are to be written in permission-based
separation logic. If a program is annotated correctly in
every step of the program, the verifier is able to infer and
verify the specified specifications of the program.

To understand this paper, it is important to at least under-
stand the notion of ghost variables and sequences. Ghost
variables are variables that are declared in the contract of
a function. As the name suggests, these variables have no
influence on the functionality of the algorithm and should
solely be used for verification purposes. Because ghost
variables act in the background, permission modeling is
not required for these variables.

Sequences are very similar to arrays, but there are some
key differences between the two. Firstly, sequences are im-
mutable. Secondly, they are more expressive than arrays.
For example, unlike arrays, sequences support slicing, con-
catenation, and support a head and tail function. They
are therefore very useful for verification helper functions
and ghost variablesﬂ

3. PROBLEM STATEMENT

The central research question for this paper is:

How can the VerCors verification toolset verify data race
freedom and functional correctness of the parallel radizx sort
algorithm?

This research question poses a problem that was too large
to solve in the allotted time for this paper, so instead the
paper focuses on the verification of the subroutines used
for the algorithm.

The central research question has been split up in several
sub-questions. There are two sub-questions regarding the
verification problem:

RQ 1.1 How can VerCors verify data race freedom of the

count step and the reorder step in parallel radix sort?

RQ 1.2 How can VerCors verify functional correctness of the

count step and the reorder step in parallel radix sort?

During the production of this paper, several issues were
encountered related to the VerCors tool, spawning the fol-
lowing sub-question:

RQ 2.1 What are the current limitations in the VerCors ver-

ification toolset?

[RQ 1.1]is answered in Sections [f.1] and [5.1] for the count
step and reorder step respectively. A possible approach to
answer is presented in Section [£:2] for the count
step. Section m presents the specifications needed to an-
swer [RQ 1.2| regarding the reorder step. A further ap-
proach to answer the central research question is outlined

in Section[7] Finally, is answered in Section [6]
4. PARALLEL COUNT VERIFICATION

This section discusses how VerCors has been used to prove
data race freedom of the Parallel Count algorithm by out-
lining the permission model for the algorithm. It also

2For more (albeit outdated) information on sequences
see: https://github.com/utwente-fmt/vercors/wiki/
Axiomatic-Data-Types


https://github.com/utwente-fmt/vercors/wiki/Axiomatic-Data-Types
https://github.com/utwente-fmt/vercors/wiki/Axiomatic-Data-Types

discusses a possible approach to prove functional correct-
ness of the algorithm by outlining the specifications that
need to be proven as well as how these conditions could
be proven using VerCors.

4.1 Data Race Freedom

To prove data race freedom, a permission flow needs to
be defined for the algorithm. This section describes the
general idea of this process. The details of the process can
be found in the source cod

The function as a whole revolves around the following
three parameters and requires the following initial per-
missions:

e The input is an array of integers on which the count-
ing will be performed. Read permission is required
on the entire array.

e The output is an array of integers with a length equal
to the radix. It is used to store the final count values
of the algorithm. Write permission is required on the
entire array.

e tempCounts is a two dimensional array of integers of
which the outer array contains one array per thread
to keep count of a partition of the input. These
inner arrays have a length equal to the radix. Write
permission is required on the entire array.

TempCounts Input

innerIndex:

o | m | ey | Wi | Wiy,

1 | Weg | Wty | Wt | Wiy

Wty | Wty | Wt | Wiy,

radix | Weg | Wt | Wt | Wiy
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Figure 4: Permission model for the parallel count algo-
rithm for both before and after the barrier. Wt repre-
sents a write permission for thread i on a variable and Rt;
represents a read permission for thread i on a variable.

The algorithm itself can be defined by a section before
and after the barrier as can be seen in Figure [] Be-
fore the barrier, the input is divided up in equal parti-
tions. Each thread has read permission on a specific par-
tition and write permission on one specific inner array of
tempCounts.

The algorithm synchronises in the barrier when every thread
has calculated the count of its assigned partition of the
input. Permissions are redistributed in the barrier. All
threads drop their read permissions on the input as the
input is not used anymore. Each thread is assigned a spe-
cific thread id. If that thread id falls within the radix, the

3The source code of the parallel count algorithm can be
found at: http://bit.ly/2G3wHrS

thread gets write permission on the variable at the index
(matching its thread id) of the output and write permis-
sion on the variable at that index in every inner array
of the tempCounts. A thread can now sum all the local
counts of a specific value and write the result to the cor-
rect location in the output. Although read permission on
tempCounts would technically be sufficient, write permis-
sion is necessary to prevent a permission leak. A permis-
sion leak occurs when function requires a certain permis-
sion from the function caller but does not ensure that this
permission is returned back to the caller [9].

Although the algorithm presented works for any input size,
a few assumptions have been made to simplify the proof:

e threadCount > radix. Otherwise there are too little
threads to sum all the values to the output after the
barrier.

e partitionsize * threadcount = |input|. Otherwise
some partitions may be partially empty or not the
entire input will be processed.

4.2 Functional Correctness

This section does not present the verification of the func-

tional correctness of the parallel count algorithm, but rather
presents a possible approach on how to use VerCors to

solve this problem. To prove functional correctness the

following two postconditions will need to be proven:

Z z = [(ao, ..., am)| (7

z€(co,---s¢n)

dYooo@wixi)= >y (8)

z;i€(co,---,n) y€(ao,-..,an)

Where (ao, ..., an) is the input array and (co, ..., cn) is the
count result.

Intuition. The first condition ensures that all the input
values have been processed and are present in the count
output. If an input value got skipped or counted double,
the sum of the counts would not match the length of the
input array.

However, the first conditions does not ensure that every
value is counted at the correct index of the output. For ex-
ample, the condition would still hold if the value 3 would
be processed by incrementing the output value at index
2. This is where the second condition becomes important.
It makes sure that the count output is a proper reduction
from the input. If a number were to be miscount, it would
be multiplied by the wrong number on the left hand side
of the condition and lead to a violation of the condition.
Conversely, a count output could be produced such that it
contains miscounts, but still satisfies the second condition.
For example, if the algorithm were to count a single 2 as
two 1’s, the condition would still hold. However, in that
case, it would violate the first condition.

Approach in VerCors. Verifying the first condition con-
sists of two parts; the parallel counting step before the
barrier and the merging step after the barrier. For the
part before the barrier, the condition needs to be verified
for all the individual arrays in tempCounts.

For reasons discussed in Section @, it is not wise to try
and verify properties directly on tempCounts. Instead,
a ghost variable could be created that is of type seq<seq
<int>> and perform verification on this variable. One
also needs to make sure it is at all times consistent with
tempCounts.

Additionally, a helper function is required that can sum up
sequences. This function can be used on each individual
sub-sequence of the ghost variable to create a loop invari-
ant that either verifies that after each loop iteration, the
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sum of the sub-sequence is equal to the number of com-
pleted iterations or verifies that the current sum of the
sub-sequence is one higher compared to the last iteration.
With such a loop invariant in place, it can be verified that
after the loop that each the sum of each sub-sequence is
equal to the length of each partition of the input. The
algorithm has been correctly verified till the point directly
before the barrier using this helper function and the two
dimensional ghost sequence.

Another helper function is required after the barrier to
verify the merge step of the algorithm. The helper func-
tion should be able to sum all values at a certain index of
the inner sequences in a certain range from the beginning
of the outer sequence. So for example, the function call
rangeSum(xss, 0, 10) should return the sum of all the Oth
elements of the first 10 inner sequences.

This function can be used as a loop invariant for the loop
after the barrier. After each loop iteration of thread k,
it should be verified that the current value of the output
count at index k is equal to the sum of all the values at in-
dex k of the first nt" inner sequences where n is the amount
of completed loop iterations. Or put more formally:

n

Z prefizsumli][k] = output[k] (9)
i=0

Where k is the thread id and n the amount of completed
loop iterations.

If the loop invariant holds, it can be verified that after the
loop, each value of the output matches the total sum of all
values at a certain index of the inner sequences and thus
the first condition holds.

The second condition can be verified in a similar way as
the first condition before the barrier. However, a different
helper function will be used that calculates the sum of each
value in a sequence multiplied by its index to produce a
result similar to the left hand side of the second condition.
For the right hand side of the condition, the sequence sum
function can be reused.

The second condition may be directly verifiable after the
loop in the part after the barrier. This may be the case as
at this point in the algorithm, it has been verified that the
individual counts of tempCounts satisfy the second condi-
tion as well as that these counts are correctly merged into
the output (this has been verified by the first condition).
This means that it can directly be inferred that the second
condition also holds for the final output.

S. PARALLEL REORDER VERIFICATION

This section discusses how VerCors has been used to prove
data race freedom of the Parallel Reorder algorithm by
outlining the permission model for the algorithm. It also
provides possible specifications that could be used to prove
functional correctness of the algorithm.

5.1 Data Race Freedom

To prove data race freedom, a permission flow needs to
be defined for the algorithm. This section describes the
general idea of this process. The details of the process can
be found in the source cod

the function as a whole revolves around the following pa-
rameters and require the following initial permissions:

e The input is an integer array. It contains the val-
ues that need to be reordered. Read permission is
required on the entire array.

4the source code of the parallel reorder algorithm can be
found at: http://bit.ly/3amS45n

e The partial input is an integer array. It contains
the relevant part of each value of the input based
on the radix and current iteration of the radix sort
algorithm. It is used to match up the original input
with the relevant prefix sum index. Read permission
is required on the entire array.

e The prefix sum is an integer array and has length
equal to radix + 1. It is used to determine the in-
dex of an input value in the output. Because the
prefix sum needs to be updated after every output
insertion, write permission is required on the entire
array.

e The output is an integer array. Write permission is
required on the entire array.
Input/Partial Input Prefixsum
Index: 0 1 i Index: 0 1 .. rad rad+l
Output
| Wt()| Wt0| Wt()| Wt0| Wt1| Wi | Wtz| Wi, | Wt___| Wi th4Wt th,,{
Index: PSg 1 2 e  PST . ps; .. PS. .. PSrad .. PSrad+l

Figure 5: Permission model for the parallel reorder algo-
rithm. Wt; represents a write permission for thread 7 on
a variable and Rt; represents a read permission for thread
i on a variable. t4;; represents permission for all threads
and f represent an undistributed permission. ps; indicates
the value stored at index i in the prefix sum copy.

The algorithm consists of one parallel block, so permis-
sions only need to be distributed at the beginning of the al-
gorithm. The parallel block spawns an amount of threads
equal to the radix. Figure |5| presents the permission dis-
tribution among all threads involved in the algorithm.
All threads get read permission on both the input and par-
tial input. This is allowed because parallel reads cannot
cause data races; the order of threads that access the vari-
able is irrelevant for the final result. Furthermore, each
thread has write permission on the variable in the prefix
sum whose index matches the threads id.

Similarly, each thread has write permission on a range
specified by the prefix sum. More specifically, the val-
ues in the prefix sum are used as range indicators on the
output. For example, thread 0 has write permission from
indices prefizsum|[0] till prefizsum[1] of the output and
thread 1 has write permission from indices prefizsum[1]
till prefizsum[2] of the output and so on. This is also the
reason why the prefix sum has one extra value appended.
The value contains the value of the last index of the out-
put and only serves as a permission range indicator. It is
not used anywhere else in the program which is why no
thread has any permissions over the value.

However, using the prefix sum as a range indicator for per-
missions is not feasible as the values of the prefix sum get
updated overtime. To solve this issue, a copy of the prefix
sum is created as a ghost variable that remains unchanged
for the entire algorithm to keep the permission ranges in
place.

5.2 Functional Correctness

To prove functional correctness of the reorder step, the
postcondtions of the parallel prefix sum method become
preconditions for the parallel reorder algorithm, to ensure
that the prefix sum parameter of the algorithm is cor-
rect. Additionally, the following two postconditions should
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hold:

sen)(i = — i > y;5) (10)

(CL(),... ,bn) (11)

Where (ao, ..., an) and (bo, ..., b, ) are the input and output
array respectively and (co,...,cn) are the relevant digits
taken from the output for a certain iteration of the radix
sort algorithm with a certain radix.

Intuition. The first condition implies that any two digits
from the partial output are correctly ordered. If this holds
for all digits, the output must be ordered. However, for
this condition to hold, it is not necessary that the output
is a rearrangement of the input. For example an input of
(3, 2, 1) being sorted to (1, 1, 1) would verify.

The second condition makes sure that the input matches
the output by stating that the input should be a bijection
of the output. Together with the first condition, the speci-
fications makes sure that the algorithm creates an ordered
bijection, which means that the output is sorted.

It should be noted that VerCors does not have a built-in
bijection function. However, VerCors does support mul-
tisets in the form of bags. Two equal multisets form a
bijection and a multiset taken from an array also forms a
bijection. So a possible approach could be to convert both
the input and output to a bag and assert that they are
equal to prove they form a bijection.

Vi, y; € (Co,

,an) — (bo,

6. VERCORS LIMITATIONS

Although the VerCors verification toolset is diverse and
PVL expressive, it does have its limitations. Some of these
limitations were encountered during the production of this
paper. This section highlights some of these limitations.
Non-termination of verification. The more complex a
verification case becomes, the longer it takes for VerCors
to prove or disprove certain properties of an algorithm. In
some cases, this can lead to non-termination of the ver-
ification. It becomes clear that at some point VerCors
lacks information to prove the given specification, but is
also unable to disprove the specification, which results in
the verification running indefinitely. An example of such
a case occurs during attempts to prove data race freedom
of the entire parallel radix sort algorithnﬂ

This can become problematic for two reasons. Firstly, it
becomes hard to determine whether a verification that
inherently takes a long time to verify has become non-
terminating and can therefore leave a researcher in doubt.
Secondly, the tool gives no feedback when it has become
un-terminating which makes it difficult in some cases to
pinpoint the cause of the problem.

Multiple read permissions on one variable. In some
verification problems it may occur that multiple read per-
missions are granted to different threads. Although this
should be allowed as no data races can occur in interleav-
ing reads on a variable, the tool may still complain about
insufficient permission. An example of such a case can be
seen in Listing[T]

When running Listing [1} VerCors will give a warning that
there are no triggers available for a quantifier at an un-
defined position. The quantifier referred to in this case is
the \forall on line 6. The trigger is necessary to be able
to reference the same variable in different threads. Usu-
ally this is not a problem either because a variable is only
referenced by one thread at the time or because additional
specifications give enough context for VerCors to still be

5The source code for the verification of data race freedom
of the parallel radix sort algorithm is available at: http:
//bit.1ly/2G3wLrA
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able to infer variable access among different threads. How-
ever, this is not always the case as is the case in Listing
which will report that there is insufficient permission to
grant read permission on the xs array on line 6.

context_everywhere xs != null;
context_everywhere t > 0;
context (\forallx int i; i >= 0 && i < xs.length;
Perm(xsli], 1/2));
void parRead(int[| xs, int t) {
par parRead(int tid=0..t)
context (\forallx int i; i >= 0 && i < xs.length;
Perm(xs[i], 1/(2+t)));

//some Code
}

Listing 1: VerCors example where multiple threads with
read permission on the same variable fails

Two dimensional arrays. The inner arrays of a two
dimensional arrays are not of the same type as the outer
array. When comparing two dimensional integer arrays to
flat integer arrays, their types are Array<Cell<Integer>>
and Array<Integer>. While semantically a flat array is of
the same type as an inner array of a two dimensional array,
PVL treats them as type Array and type Cell respectively,
meaning they are syntactically of a different type.

In most cases this does not present problems as a Cell ob-
ject has the same functionality as an Array object such as
indexing and length querying. However, in more advanced
use cases it can become a problem, two of which are pre-
sented in Listing

void foo(int [J[] xss) {
bar(xss [0]) ; )
xss [0] = new int[xss[0].length];

void bar(int[] xs) {
//some Code

Listing 2: VerCors example where two dimensional arrays
can cause errors

The first problem is presented in line 2 of Listing 2} Call-
ing the bar() function on an inner array of xss will throw
a type Error. A possible work around is to copy over all
the values from xss to a new temporary flat array in a loop
and feed that to the bar() function. However, this makes
verifying specifications on this kind of code unnecessarily
complicated.

The second problem is presented in line 3 of Listing
Beside this operation would not be allowed because a Cell
type is replaced with an Array type, this operation high-
lights another problem: A variable of type Array<Cell<
Integer>> is immutable meaning that it is only allowed
to alter values within a Cell object and not allowed to re-
place a Cell object in its entirety. The type differentiation
in two dimensional arrays makes working with 2 dimen-
sional a complex endeavour.

Using expressions in array indexing. VerCors in
some cases is unable to properly process expressions used
for the indexing of arrays. An example of this can be seen
in Listing [3] The first expression is taken from the source
code of the parallel count algorithm. The second is an
alternative notation for the same expression. The two ex-
pressions are logically equivalent. The difference is that
the first expression does its index calculations when cal-
culating the range of the \forall expression whereas the
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second expression indicates a set range and calculates the
required offset as part of the indexing expression.

requires (\forall int i; i >= (partitionSize * tid)
&& i < (partitionSize * (tid + 1)); input[i] >=0
&& input[i] < radix);

requires (\forall int i; i >= 0 && i < partitionSize;
input[(tid * partitionSize) + i] >= 0 && input](
tid * partitionSize) + i] < radix);

Listing 3: Two logically equivalent VerCors specifications

However, VerCors will only be able to verify the first ex-
pression and give a permission error for the second expres-
sion. While the solution to solving these kind of indexing
issues is trivial by moving the index expression to the range
indication of the \forall expression, it is important to be
aware of this issue when using the tool.

7. FUTURE WORK

Although this paper answers all the sub-questions in Sec-
tion |3} there is still work to be done to answer the central
research question. This section outlines the next logical
steps that can be taken towards answering the central re-
search question.

Firstly, data race freedom of the entire parallel radix sort
algorithm needs to be verified. The PVL source code pre-
sented in this paper verifies the algorithm until and in-
cluding the prefix sum step of the algorithm. The current
problem is that the algorithm has become too large for
VerCors to handle. However, a new tool has been added
to the VerCors toolset called SplitVerify which should alle-
viate this problem. SplitVerify splits up every function in
a PVL source file to separate files and verifies every func-
tion separately. Using SplitVerify may enable the parallel
radix sort algorithm to be verified on data race freedom.
Secondly, functional correctness of both the parallel count
and reorder step need to be verified before the functional
correctness of the entire parallel radix sort algorithm can
be verified. Section 2] provides an approach on how this
can be done in VerCors for the parallel count step and
Section [5.2| outlines possible specifications to use to prove
functional correctness of the parallel reorder step.

8. RELATED WORK

Radix sort is an actively researched topic. There are sev-
eral publications of implementations of parallel radix sort
implemented on GPUs. However, these publications often
only seem to involve performance analysis without a focus
on their correctness [11]. Publications concerning verifica-
tion and correctness only seem to concern sequential CPU
implementations of the algorithm. For example, de Gouw
et al. verified a sequential Java implementation of radix
sort by annotating the code with JML and providing the
code to a semi automated theorem solver called KeY [4].
It seems the verification of parallel radix sort, especially
GPU implementations, is a novel topic. Further research
into this topic as suggested in Section m seems therefore
relevant.

9. CONCLUSION

This paper shows how VerCors can be used to verify data
race freedom of both the parallel count algorithm and the
parallel reorder algorithm. Both of these algorithms are
used in parallel radix sort and are therefore important
steps towards verifying data race freedom of parallel radix
sort. Additionally, this paper presents a possible approach
on how to verify functional correctness of the parallel count

algorithm with VerCors. Although the central research
question remains unanswered in this paper, it does present
a road map on the next logical steps to take to answer
this question. Lastly, this paper presents some practical
issues that are currently present in the VerCors verification
toolset.
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