
An Analysis of Programming Paradigms in High-Level
Synthesis Tools

Pieter Staal
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

p.j.staal@student.utwente.nl

ABSTRACT
The imperative, functional, and concurrent programming
paradigm are compared to determine which paradigm best
fits the task of synthesizing an algorithm to digital hard-
ware. For this comparison three tools are investigated: the
Intel HLS Compiler, Clash, and the Intel OpenCL SDK.
The performance of the synthesized product is assessed
by analyzing the maximum runnable frequency, the die
area used on the FPGA, simulations, and verification on
the FPGA. The throughput of the written code when syn-
thesized for an FPGA and when compiled for a regular
processor is compared. The tools are compared by some
metrics related to wide-spread adoption of the tool. The
experience of developing an algorithm in the languages
and with the tools is discussed.
It was found that the Intel HLS compiler usually performs
better in both area used and maximum frequency. How-
ever, it was also found running the Haskell code on an
FPGA instead of on a CPU is in both tested cases more
than one hundred times faster. It is concluded that despite
the in general worse absolute performance the functional
paradigm is the best fit, since the experience with the tools
showed that Clash has the most straight-forward transfor-
mation from source to hardware. The worse performance
is explained by the fact that the Intel HLS Compiler has
had more resources committed to it.

Keywords
Embedded Systems, High-Level Synthesis, Programming
Paradigms, OpenCL, Clash, Haskell, C++.

1. INTRODUCTION
Since the decline of Moore’s law, devices other than a con-
ventional processor are gaining popularity. One of these is
the Field Programmable Gate Array (FPGA). An FPGA
is an integrated circuit that can be reconfigured by re-
programming it. This makes it possible to rapidly pro-
totype digital logic. Applications requiring processing of
data streams or parallelizable algorithms can be greatly
accelerated using the configurable data-paths of FPGAs
[14].

FPGAs are configurable with a hardware description lan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
32nd Twente Student Conference on IT Jan. 31st, 2019, Enschede, The
Netherlands.
Copyright 2019, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

guage (HDL). Popular languages are VHDL, Verilog, and
SystemVerilog. These languages are low-level specifica-
tions of the hardware, at the so-called Register Transfer
Level (RTL). An FPGA programmer, therefore, needs ex-
pertise on the subject of hardware design to implement
their algorithms. These low-level languages do not of-
fer powerful abstraction constructs available to software
designers in higher level languages like C++ or Haskell.
These abstractions make it easier to develop and maintain
large complex systems. Being able to work with these
abstractions could help digital designers to build larger
systems and to get their product to the market sooner.

To bring these abstractions from software development to
hardware development several so-called high-level synthe-
sis (HLS) tools have been developed. Most of these tools
accept a C-like language as their input [16] and infer the
structure of the FPGA from the supplied input file. Since
C is an imperative language it is very much sequential in
nature, while the inferred FPGA structure should exploit
the parallel nature of digital hardware as much as pos-
sible. This makes the synthesis process convoluted and
inconsistent across tools.

Not all high-level synthesis tools use C however. Some
tools are based on languages following different paradigms.
Some popular paradigms are the imperative, functional,
and concurrent paradigm. In the imperative paradigm
computations are described as sequential instructions. The
functional paradigm treats computation as the evaluation
of mathematical functions. The concurrent paradigm fo-
cuses on programming for heterogeneous systems, where
a host executes the main computations and is supported
by accelerators. In this research, the paradigm which best
fits digital hardware design is investigated.

2. RELATED WORK
Almost all high-level synthesis tools that are widely used
are based on C. Nane et al. [16] presents a comparison
of 33 HLS tools used at the point of writing. It presents
an overview of the inputs and outputs of the languages,
whether they are still maintained, licensing options, and
much more. They ran benchmarks for four of the eval-
uated tools to evaluate their performance in certain al-
gorithms. Here, they found that the performance of the
same algorithm written in the same language could be very
different when synthesized by different HLS tools. This
shows that most HLS tools do not use a structured ap-
proach but instead optimize and infer what they can from
the input file.

Meeus et al. [15] shows the difference between the tra-
ditional RTL design flow and the HLS design flow in a
Gasjki-Kuhn Y-chart [11]. These diagrams show that in
the RTL flow behaviour is directly described by the low-

1



level HDL. Designers working with the RTL flow have to
work at the logic level to describe the system, but with the
HLS flow the system can be specified on the more abstract
algorithmic level.

A practical example of using HLS tools is given in Cong
et al. [10]. They show that current HLS tools are viable
solutions and they show that using an HLS tool improves
design productivity and even FPGA resource usage.

In Chapter 3 of FPGAs for software programmers [14] a
comparison of high-level synthesis solutions is presented.
They evaluate availability, target architectures, type of
computation, parallelization and abstraction support, and
their input file format and language.

3. HLS TOOLS
To analyze different programming paradigms three HLS
tools were chosen that all use a different paradigm. The
Intel HLS Compiler compiles regular C++ to a project
structure containing the HDL files necessary to synthesize
the component. The Intel OpenCL SDK provides support
for the OpenCL language, which was originally developed
for highly concurrent computing systems like GPUs. The
final tool is Clash, which can compile the functional lan-
guage Haskell to VHDL, Verilog, or SystemVerilog.

3.1 Intel HLS Compiler (i++)
The Intel HLS Compiler [3] or i++ uses untimed ANSI
C++ as the design source. The C++ language is a com-
bination of the imperative and object oriented paradigm.
In this research, the focus is on the imperative aspects of
C++.

3.2 Intel OpenCL SDK
OpenCL [17] is a language written for heterogeneous com-
puting platforms. Nowadays, it is used most commonly in
GPU programming. Like FPGAs, GPUs excel at perform-
ing the same computations in parallel. However, a GPU
consists of hundreds of processors instead of the reconfig-
urable net of logic modules that make up an FPGA. Since
some of the language constructs of OpenCL are relevant
to both GPUs and FPGAs it makes sense to use OpenCL
as an input language for an HLS tool.

The Intel OpenCL Software Development Kit [5] allows
users to develop for systems using Intel CPUs and FPGAs
with OpenCL. The SDK focuses on the hybrid use of both
a CPU and an FPGA by offering a common development
environment for both the CPU (’host’), and the FPGA
(’accelerator’).

3.3 Clash
The Clash compiler [1][8][9] is a modification of the Glas-
gow Haskell Compiler (GHC), which is the de facto stan-
dard Haskell compiler. Clash transforms high-level func-
tional descriptions of hardware to low-level synthesizable
VHDL, Verilog, or SystemVerilog. The high-level descrip-
tions are written in the functional programming language
Haskell. Since Haskell is a pure functional language it
is possible to directly map functions to hardware com-
ponents and to intuitively connect them to form a larger
system through higher order functions, which are also rep-
resentable in hardware.

Clash allows the written designs to be evaluated in a cus-
tom version of Haskell’s GHCI called clashi. With this
interactive interpreter it is easy to test designs and verify
that the system requirements are correctly implemented.

4. BENCHMARKS
To evaluate the chosen programming paradigms the bench-
marks are divided in two categories. First, the end-result
of the synthesis process is evaluated. This is investigated
by comparing the throughput of the same code on a CPU
and on an FPGA after synthesis. Secondly, the tool is
assessed on its ease of use and the general experience of
using the tool.

The synthesized HDL code generated by each tool was run
on a DE1-SoC [7]. This is a development board with an
Intel Cyclone V FPGA. This FPGA is more than power-
ful enough to run the benchmarks. The source code from
which the HDL code is synthesized is also benchmarked on
a regular desktop computer. The CPU used in this bench-
mark is an Intel Core i5-9400 CPU running at 2.90GHz.

4.1 Performance
To test the performance, two of the algorithms imple-
mented in the CHStone [12] benchmark suite are partially
implemented in C++ and Haskell and synthesized by their
respective tools. This benchmark suite is specifically de-
signed for C-based HLS tools [13]. The performance of a
synthesized program is evaluated by data gathered from
the report generated by Intel Quartus, which is the tool
used for compiling HDL files to programming files for the
FPGA. Furthermore, the performance is evaluated by data
gathered from simulations and benchmarks.

Quartus Report

• Area used: FPGAs have limited available space
to use for designs. A more efficient HLS tool will
generate designs that occupy a smaller area on the
chip.

• Maximum frequency: The final step in synthesis
to hardware is to put the design into a timing model
and analyze its maximum runnable frequency. If the
design is run at a frequency higher than that there
can be no guarantee of correct results when reading
from the output since the computation is not done
yet. A better HLS tool will generate a design that
can be run at a higher frequency, provided that this
actually speeds up the calculations.

Benchmarks

• Cycles / calculation: HLS tools can choose to split
a design in several steps. This means the overall de-
sign will be able to run at a higher frequency, but
to perform the full calculation several cycles are nec-
essary. This metric is determined by investigating
simulations of the generated designs.

• FPGA throughput: The throughput of the design
in operations per second on an FPGA in millions of
calculations per second. This number is derived from
the maximum frequency Quartus reports divided by
the amount of cycles per calculation.

• CPU throughput: The throughput of the origi-
nal source code in millions of calculations per second
when compiled and run on a regular desktop com-
puter.

The chosen test programs are a simplified implementation
of the MD5 hashing algorithm and an implementation of
positive floating point addition.

2



4.1.1 Hashing algorithm
The implemented hashing algorithm is based on the MD5
hashing algorithm. MD5 can take an arbitrary length mes-
sage and processes it to a 128-bit length hash. MD5 was
chosen because there are many reference implementations
available. The version of MD5 written for this research
can receive a message of 32 bits, encoded as a single 32 bit
unsigned integer. It then processes the message like MD5
would, but only returns the first 32 bits of the generated
hash. The algorithm was downgraded to this because this
still preserves the main processes of the algorithm while
working with it in an HLS and FPGA context becomes
easier. With only a 32-bit input and output to be con-
sidered, no RAM modules have to be used to work with
the data. This also allows us to use the readily avail-
able datatype unsigned int in C++ and the Unsigned

32 type in Clash. The removed features are not necessary
to demonstrate the difference between high-level synthesis
tools since both tools still compile the same algorithm, but
simplified.

4.1.2 Floating point arithmetic
Another test class of the CHStone suite is a floating point
division algorithm, which is why floating point arithmetic
was added as one of the tests. A simplified version of
floating point addition was implemented which ignores the
sign bit. The algorithm is still a representative algorithm
for testing since it performs a useful task, simple positive
floating point addition.

4.2 Language Experience
This benchmark is far harder to quantify objectively than
the performance. For each tool the focus is on certain fea-
tures that would either hinder or aid wide-spread adoption
of the tool. The experience of developing an algorithm in
the language and the tool is also discussed.

The following specific features are taken into considera-
tion.

• Language adoption of the supported language:
The amount of developers actually familiar with the
high-level language is considered. Adoption of an
HLS tool will be faster if new developers do not need
to learn a new language to use it.

• Availability of support: Active support forums
or support plans can prevent developers reinventing
the wheel and can make solving problems with the
tool faster.

• Operating system support: Being available on
major operating systems would aid in reaching a
more wide-spread adoption of the tool.

5. RESULTS
In this section the results are presented. They are split in
two sections, the performance of the tools and the experi-
ence of developing in them.

The Intel OpenCL SDK could not be used to generate the
necessary results for the performance comparison. This
tool focuses on the integration of an FPGA in a hybrid
system containing both an FPGA and a processor, instead
of being able to generate isolated components. This is no-
ticeable in the fact that this tool needs access to a ”Board
Support Package”, which defines not only the FPGA it
needs to compile for but also other hardware available on
the board. Clash and i++ take less than a minute for
simple designs, and not much longer for larger designs.

Furthermore, the compilation times are impractically long.
A simple demonstration program in OpenCL already takes
over 20 minutes on a powerful server and the ”getting
started” guide states that compilation can take ”several
hours” [4].

Because of these reasons and general time constraints the
examining of the exact performance of the Intel OpenCL
SDK was dropped. It is however discussed in the language
experience section.

5.1 Performance Results
Fmax (MHz) Area (%)

Clash 3.13 14.0
i++ 113.77 1.77

Table 1. Quartus report for MD5

Fmax(MHz) Area (%)
Clash 78.03 0.76
i++ 268.67 0.61

Table 2. Quartus report for floating point addition

Cycles/hash FPGA (MH/s) CPU (MH/s)
Clash 1 3.13 0.018
i++ 78 1.46 2.8

Table 3. MD5 benchmarks

Cycles/FLOP FPGA (MFLOPS) CPU (MFLOPS)
Clash 1 78.03 0.0939
i++ 1 286.67 15.0

Table 4. Floating point addition benchmarks

In Table 1 and 2 the results of compiling the synthesized
algorithms in Intel Quartus are presented. Fmax is the
maximum frequency at which the synthesized design is
able to run according to Quartus. Area is the percentage
of Adaptive Logic Modules (the basic building blocks of
Intel FPGAs) used by the design in the FPGA.

Table 3 and 4 show the results of the CPU and FPGA
benchmarks. Cycles / hash is the amount of cycles it takes
before the complete calculation of a hash is finished. Like-
wise, Cycles / FLOP is the amount of cycles one Floating
Point Operation takes. The FPGA and CPU columns de-
pict the throughput of the algorithms on the FPGA and
on the CPU in million hashes per second or million floating
point operations per second.

5.1.1 Semantics Verification
Both the Haskell and C++ implementation of the algo-
rithms in question were tested whether they produced cor-
rect results. For the algorithms written in Haskell this
was done inside the interactive interpreter that comes with
clash. The C++ programs were built as normal C++ pro-
grams, with the special HLS keywords and types omitted.

The hashing algorithm was tested against a reference im-
plementation written in C. Both the Haskell and C++
implementation gave the same results as the reference im-
plementation. The positive floating point addition was
tested by adding the values 100.0, 20.0, 0.375, and +0 to
each other in different combinations and checking whether
the result was correct, this was indeed the case. These

3



numbers were chosen because these cover most of the edge
cases in floating point addition.

An important requirement of an HLS tool is that the result
of the program is not different after synthesis. Therefore it
was verified on an FPGA whether the programs produced
the same output for the same inputs. This was the case
for programs synthesized by both Clash and i++;

5.2 Language Experience Results
This section is based on the experience of developing the
algorithms with Haskell, C++, and to some extent OpenCL.
Further results are based on the experience with setting
up and using the tools that were investigated.

5.2.1 General remarks
During development of the benchmark algorithms it stood
out how well the files Clash generated matched with the
original implementation. Some parts of the files are even
annotated with line numbers from the original Haskell
source. As is shown in Section 4 in the thesis presenting
Clash [9], the intermediate representation of the original
source produced by the front-end of GHC is transformed
such that it can be compiled to hardware.

Great contrast to this is the output of i++. Instead of
a single HDL file, this tool generates a complete Quartus
project. This also locks users of i++ into Intel’s ecosys-
tem instead of giving them the freedom to compile their
component the way they want. i++ does generate a sub-
directory with HDL files that contains the generated com-
ponent. However, even a simple component is built up
from over fifty files in three different languages (Verilog,
SystemVerilog, and VHDL). Compiling this with any other
tool than Quartus requires reverse engineering the compli-
cated project structure and is therefore impractical.

The output files of i++ show that a large supporting struc-
ture is generated around the component. This structure
supports features like stacks, RAM access, queues, and
more. These files are always included when a component
is compiled by i++, even with a simple 32-bit counter.
Whether all this extra structure is necessary is unclear.
This is different from Clash, which generates only one file
per component.

5.2.2 Language adoption
According to the StackOverflow developer survey of 2017
[6] 19.3% of professional developers use C++, and about
15.4% use C. A developer proficient in these languages will
certainly be able to find their way around the constructs
used by the Intel HLS compiler since it supports regular
C++, and the specific API calls are all in a fashion rec-
ognizable to C and C++ developers. The survey of 2017
is cited here because this is the most recent one where
Haskell appears: 1.4% of professional respondents use it.

5.2.3 Support availability
The Intel HLS compiler and the Intel OpenCL SDK are
both proprietary tools made by Intel. The Clash compiler
is an open-source project licensed under the BSD2 license.
Their different development methods gave rise to different
support structures.

For the Intel tools documentation is made available through
their website. A support forum also exists. The docu-
mentation is very extensive, but made available in such a
way that search engines have trouble searching through it,
making finding specific parts of the documentation hard.
In the context where these tools are usually used, namely
at a company, this works fine. There it is possible to

walk to a colleague who has encountered a problem before
and work the problem with them, when developing out-
side that environment solving problems becomes harder
because of the generally low amount of online open dis-
cussion regarding the tools and the hard to search through
documentation.

The documentation for Clash follows the standard format
for Haskell documentation, so anyone who is familiar with
reading Haskell documentation will have no problem with
reading the documentation for Clash. Since Clash is a
very direct modification of GHC, most problems encoun-
tered with Clash after getting it up and running are with
Haskell. Unlike the Intel tools, Haskell is discussed very
often and in-depth on online open forums. This means
that with only the internet it is often possible to solve any
encountered problems.

5.2.4 Operating system support
All tools support both Windows and Linux. The Oper-
ating system of a potential user of a high-level synthesis
tool therefore has little effect on the choice of which tool
to use, since this accounts for a large majority of users [2].

6. DISCUSSION
6.1 Performance Discussion
As shown in Table 1 and Table 2, the Fmax of the gen-
erated design by Clash is lower than that of the design
generated by i++. Furthermore, the area used by the
Clash design is larger than that used by design generated
by i++. The higher Fmax can be explained by the fact
that the i++ design takes more cycles per calculation in
the case of the MD5 benchmark. By using more, briefer,
steps the frequency can be increased. This technique also
uses less area since components calculating the same thing
can be re-used in the next cycle.

In the case of the floating point benchmarks both designs
use the same amount of cycles per calculation. Here there
are two more possible explanations for the better results
of i++. Firstly, one could suspect that the functional
paradigm is less suited for hardware synthesis and needs a
lot of boilerplate surrounding it to make it work. As seen
in Section 5.2.1 the reverse is the case, i++ is the tool that
generates a large support structure around the functions
to make them work. The other explanation is that i++
has more resources invested in it, and is therefore more
sophisticated and more tuned to the rest of the Intel envi-
ronment. This is more plausible since the entire tool-chain
that generated this data is owned and maintained by In-
tel. Clash is, however, a far smaller open source project
and presumably has not been able to implement many op-
timizations.

Looking at the ratio between the throughput on the FPGA
and the throughput on the CPU results in the following
table:

Algorithm ratio
Clash MD5 173

Float 778
i++ MD5 0.52

Float 19.1

It is clear that the performance increase gained by running
Haskell on an FPGA is far larger than that of running
C++. In the case of the MD5 benchmark it is even slower
to run the code on an FPGA instead of a CPU. Compar-
ing how data flows through a program in an imperative

4



language and in a functional language explains this differ-
ence. In an imperative language every line of code is an
instruction, and the program steps through those instruc-
tions. Data is stored and accessed in some data bank. This
is nearly exactly how modern computers are engineered,
their processors step through small instructions and all
the data is stored and accessed in cache and memory. In
a functional language the data flows through functions,
starting with some input data at the top level function
and then branching out, flowing deeper into the program,
and finally flowing back to the start to return the end re-
sult. A modern computer does not correspond well with
this model, but this does come much closer to how digital
hardware works.

So this shows that when using C++, porting it to run
on an FPGA will not always yield an increased perfor-
mance. Haskell, however, strongly under-performs on a
CPU, therefore when using Haskell greatly increased per-
formance can be attained by compiling it for an FPGA.

6.2 Language Experience Discussion
Working with OpenCL and imperative C++ is both quite
similar to C. So with the numbers from the StackOverflow
survey it is clear that an HLS tool based on a C-like lan-
guage would be far easier to adopt by most professional
developers since they are already familiar with the lan-
guage. This is probably why most HLS tools use a C-
like language. Using a language unfamiliar to developers
sounds unwise: they might as well learn VHDL or Verilog,
although this would not give them access to the strong ab-
stractions higher level languages like Haskell have to offer.

The different support structures say more about how and
by whom the tools were developed than the programming
paradigms their languages are based on. There was no con-
nection found between paradigm and support structure.
While interesting to anyone who needs to choose an HLS
tool, it does not help with determining which paradigm is
better suited for an HLS tool. The same is true for the
operating system support.

Languages like OpenCL following the concurrent paradigm
can be fitting high-level language for an HLS tool be-
cause of their origins in hybrid systems. However, as
was found the current set-up of the development environ-
ment is highly specific to the target board. This limits
the HLS tool in that it can only be used for less general
purposes. Where in other tools it would be easier to cre-
ate libraries with reusable functions, this would be harder
with OpenCL.

7. CONCLUSION
In this research, the paradigm that best fits hardware de-
sign was investigated. Of the tools whose performance was
benchmarked, i++ performed better in both the Fmax and
the occupied area. However, it was noted that the rela-
tive improvement of the algorithms written in Haskell was
much greater than those written in C++. It is concluded
that this is because the program flow in a functional pro-
gram is very unlike the operation of a modern computer
and much more like digital hardware. Furthermore, it was
shown that the synthesis process to an HDL from a func-
tional language is much more straight-forward and less
convoluted than synthesis from an imperative language.
Therefore it is concluded that the functional paradigm is
the better fit for the design of digital hardware.

However, it must also be stated that functional languages
are far less popular than imperative languages. This makes
it hard to justify investing many resources in an HLS tool

based on a functional language, since adopting the tool
will be very hard for most professional developers.

Limitations of this study are that the large differences in
optimization and how well the tools fit in the ecosystem for
both compared tools made it hard to isolate the compari-
son to the programming paradigm. Furthermore, the con-
current paradigm was not benchmarked for performance.
Future work could for example select tools that have a
roughly equal amount of resources invested in them, or
try to build prototypes for tools for all paradigms from
the ground up. Future studies could also look into whether
the FPGA model matters, since the algorithms were only
synthesized for Intel FPGAs. Furthermore, it was not in-
vestigated to which extent the programmer implement-
ing the algorithms matters. Different approaches in either
paradigm could change the results.

8. REFERENCES
[1] Clash. https://clash-lang.org/. Accessed:

2019-12-01.

[2] Desktop operating system market share worldwide.
https://gs.statcounter.com/os-market-share/

desktop/worldwide/2019. Accessed: 2020-01-14.

[3] High-level synthesis compiler - intel R©hls compiler.
https:

//www.intel.com/content/www/us/en/software/

programmable/quartus-prime/hls-compiler.html.
Accessed: 2019-11-30.

[4] Intel fpga sdk for opencl pro edition.
https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/hb/

opencl-sdk/aocl_getting_started.pdf. Accessed:
2020-01-13.

[5] Intel R©sdk for openclTMapplications.
https://software.intel.com/en-us/opencl-sdk.
Accessed: 2019-11-30.

[6] Stack overflow developer survey 2017.
https://insights.stackoverflow.com/survey/

2017#technology. Accessed: 2020-01-10.

[7] Terasic - soc platform - cyclone - de1-soc board.
https://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English\&No=836. Accessed:
2019-11-28.

[8] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and
M. Gerards. Clash: Structural descriptions of
synchronous hardware using haskell. In Proceedings -
13th Euromicro Conference on Digital System
Design: Architectures, Methods and Tools, DSD
2010, pages 714–721, 2010. Cited By :39.

[9] C. P. Baaij. Digital Circuits in ClaSH – Functional
Specificiations and Type-Directed Synthesis. PhD
thesis, University of Twente, PO Box 217, 7500AE
Enschede, The Netherlands, jan 2015.

[10] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,
K. Vissers, and Z. Zhang. High-level synthesis for
fpgas: From prototyping to deployment. IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 30(4):473–491,
2011. Cited By :379.

[11] D. Gajski and R. Kuhn. New vlsi tools. Computer,
16(12):11–14, dec 1983.

[12] Y. Hara, H. Tomiyama, S. Honda, and H. Takada.
Proposal and quantitative analysis of the chstone
benchmark program suite for practical c-based
high-level synthesis. Journal of Information
Processing, 17:242–254, 2009. Cited By :181.

5



[13] Y. Hara, H. Tomiyama, S. Honda, and H. Takada.
Proposal and quantitative analysis of the chstone
benchmark program suite for practical c-based
high-level synthesis. Journal of Information
Processing, 17:242–254, 2009. Cited By :183.

[14] D. Koch, F. Hannig, and D. Ziener. FPGAs for
software programmers, pages 1–327. FPGAs for
Software Programmers. 2016. Cited By :5.

[15] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and
D. Stroobandt. An overview of today’s high-level
synthesis tools. Design Automation for Embedded
Systems, 16(3):31–51, 2012. Cited By :79.

[16] R. Nane, V. . Sima, C. Pilato, J. Choi, B. Fort,
A. Canis, Y. T. Chen, H. Hsiao, S. Brown,
F. Ferrandi, J. Anderson, and K. Bertels. A survey
and evaluation of fpga high-level synthesis tools.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(10):1591–1604,
2016. Cited By :152.

[17] J. E. Stone, D. Gohara, and G. Shi. Opencl: A
parallel programming standard for heterogeneous
computing systems. Computing in Science and
Engineering, 12(3):66–72, 2010. Cited By :723.

6


