

MASTER THESIS

THE STATE OF STATECHAINS
EXPLORING STATECHAIN IMPROVEMENTS

K. M. Wijburg

Faculty of Electrical Engineering, Mathematics And Computer Science (EEMCS)
Services and Cybersecurity Group (SCS)

Examination Committee:
Dr. M. H. Everts
Dr. A. Fehnker
Dr. A. Peter

February 28, 2020

The State of Statechains
Exploring Statechain Improvements

Kasper Wijburg
University of Twente.

k.m.wijburg@student.utwente.nl

Abstract—Statechains are a second-layer solution for
blockchains using a UTXO model. This paper poses a criti-
cal review of the Statechain protocol. It then explores State-
accumulators as a possible solution to the scaling problems that
Statechains suffer from, concluding that State-accumulators are
a viable solution for the user side only. Additionally, the more
recent blinded Statechain protocol is detailed and the Blinded
Singular State Verification protocol is proposed as an alternative
version that requires no unblinding operations.

Index Terms—Blockchain, Statechains, State-accumulators,
BSSV, Bitcoin, Second layer solution, UTXO

I. INTRODUCTION

Over the last few years an increasing portion of purchases
have been made over the internet [37]. These purchases are al-
most exclusively paid for using methods which are dependent
on financial institutions to process the transactions. This results
in a system which has the inherent weaknesses of requiring
trust, having entities as single points of failure, and a complete
lack of privacy.

In an attempt to solve the issue of privacy in digital
payments, in 1982 David Chaum introduced eCash [12], [13]:
a digital payment method which used cryptography to provide
a high degree of privacy. However, this system was still reliant
on a centralized institution, and failed to gain widespread
adoption. Years later in 1998, Wei Dai created a concept for
an “anonymous, distributed electronic cash system” called b-
money [14]. This concept contained two proposals. The first
proposal introduced proof-of-work [21] as a means for creating
money. However, this proposal was seen as unimplementable
due to its requirement of an unjammable, synchronous broad-
cast channel. In the second proposal, only a subset of the
participants were required to keep accounts of the network,
which would then be checked by all participants. However
b-money was never implemented.

Then in 2008, Satoshi Nakamoto published a paper in which
he proposed a new peer-to-peer electronic cash system: Bitcoin
[26]. The protocol solved the issues of trust and having a single
point of failure, however it only provided privacy in the form
of pseudonymity. Additionally Bitcoin suffers from scalability
issues, as well as requiring the passage of time before a
transaction could be considered final with an acceptable degree
of certainty.

Several solutions to the problems plaguing Bitcoin have
been suggested. A prominent approach used in these solutions

is to move as many transactions as possible off of the Bitcoin
blockchain, while maintaining the advantages that Bitcoin
provides. This type of solution is commonly referred to as
a second layer solution.

Statechains [34] are a second layer solution that reduce the
load on a blockchain by performing transactions through the
off-chain transfer of an on-chain unspent transaction output
(UTXO) [3]. They were first introduced by Ruben Somsen [34]
and presented at Scaling Bitcoin 2018 ”Kaizen” [35], where
he highlights their functionality, some of their use cases, and
several points of improvement for Statechains. Subsequently
a blog post was written detailing a blinded Statechain which
improves the privacy of the protocol [33]. However, both the
original paper and the later blog post fail to critically assess
the exact advantages and disadvantages of Statechains, both in
a vacuum and when compared to other second layer solutions.
This paper aims to provide such an assessment, as well as an
exploration into several alternative versions of the Statechain
protocol.

The paper is structured in the following manner. First,
substantial background information is provided to ensure that
Statechains, as well as the assessment and exploration, can be
fully understood with only limited pre-existing knowledge in
the field. We then provide a formal explanation of Statechains,
including a detailed assessment of their use cases in the current
blockchain environment. Emphasis is placed on a comparison
with Lightning, the most prominent second layer solution
at the time of writing this paper. Next, we present State-
accumulators, a possible solution to the scalability problem
of Statechains, where a onetime increase in storage space for
the facilitating entity results in a constant size in storage space
for the users. Then, the existing blinded Statechain protocol
where the Statechain entity functions as a signing server is
detailed. As an alternative, we present the Blinded Singular
State Verification protocol (BSSV), a secure blinded Statechain
where only the most current recent state is verified. Lastly, we
conclude with several suggestions for future research to further
improve the Statechain protocol.

II. BACKGROUND

A. Blockchain

Blockchain technology is the driving force behind Bitcoin
and other modern cryptocurrencies. In essence, a blockchain

1

is a distributed ledger which permanently records transactions
between participants in a verifiable manner.

Blockchains can be public or permissioned. The former
allows anyone to join the network of participants and partake
in the blockchain, whereas the latter can only be accessed by
authorized participants. Therefore, permissioned blockchains
are not necessarily trustless. Since the focus of this paper is
on improving Statechains in a trustless manner, all further
mention of blockchain implicitly refers to public blockchains,
though Statechains are not inherently incompatible with
permissioned blockchains.

As the name suggests, a blockchain consists of blocks which
are cryptographically chained together by having each block
contain a hash of the previous block. In addition to this
hash, a block also contains a timestamp and transaction data.
The hash of the previous block causes the data to become
permanent, since any change within a block would require
all the subsequent blocks to be altered. Additionally, since
a known hashing algorithm is used, all participants in the
network can verify that the current state of the blockchain
could only be reached with the provided set of transactions.

By itself, this construction only results in a permanent
and verifiable system, as each participant in the network can
provide their own transaction history and the corresponding
blockchain. Therefore, a consensus mechanism is needed for
the participants to agree on the current state of the blockchain,
thereby enabling trustless and distributed storage. At the
time of writing, the most popular consensus mechanisms for
blockchain are proof-of-work (PoW) and proof-of-stake (PoS).

Within a PoW consensus protocol, participants aim to solve
a puzzle. The first participant to successfully do so is allowed
to create the next block. A requirement for such a puzzle is
that it must be easy to verify compared to how difficult it is
to solve. This allows other participants within the network to
quickly validate the provided solution by the first solver.

On the other hand, within a PoS consensus protocol, the
next participant allowed to create a block is randomly elected.
The chance for a certain participant to be elected is based
on their stake within the blockchain, for example the amount
of cryptocurrency they hold. The theory behind this concept
is that a participant with a high stake in the blockchain
will act honestly, since if any cheating was detected the
value of the stake would plummet. This construction enables
the possibility to split transaction types that will never be
dependent on one another into separate ledgers, thereby
improving scalability without weakening the security [17].
This is not possible with PoW, as it would require the splitting
of the computational rate of the network, resulting in multiple
ledgers with weaker security. However, it can be argued
that PoS is overall less secure than PoW, as it is considered
more expensive to acquire 51% of the computational power
within a network than it is to acquire 51% of the currency [20].

Through the addition of the consensus mechanism, a
blockchain can function as a distributed ledger that does

Transaction 1

Input 1
1 bitcoin

Output 1
0.3 bitcoin

Output 2
0.7 bitcoin

Transaction 2

Input 1
0.3 bitcoin

Output 1
0.1 bitcoin

Output 2
0.2 bitcoin

Transaction 3

Input 1
0.7 bitcoin

Output 1
0.4 bitcoin

Output 2
0.3 bitcoin

Transaction 4

Input 1
0.1 bitcoin

Output 1
0.1 bitcoin

Transaction 5

Input 1
0.4 bitcoin

Output 1
0.3 bitcoin

Output 2
0.1 bitcoin

Transaction 6

Input 1
0.3 bitcoin

Output 1
0.2 bitcoin

Output 2
0.1 bitcoin

Transaction 7

Input 1
0.3 bitcoin

Output 1
0.4 bitcoin

Input 2
0.1 bitcoin

Fig. 1. A visualization of the UTXO model. The grey blocks are outputs
which have no yet been spent and can be used as inputs for new transactions.

not suffer from the requirement of trust. However, for a
blockchain to function as a monetary system, an additional
feature is necessary: the ability to record ownership of values
within the blockchain. There are two common approaches to
implementing this feature within cryptocurrencies: the unspent
transaction output (UTXO) model [3], and the account based
model [4].

In a UTXO model, each transaction results in one or
more outputs. Each of these outputs can be used once as
an input for a later transaction by providing the private key
that corresponds to the public key with which the output was
locked. Each output that has not yet been used as an input is
considered unspent (Figure 1). The value a person owns on a
blockchain can be calculated by summing up all the unspent
outputs for which they hold the private key.

The account based model on the other hand, simply stores
a list of accounts and their corresponding values. When a
transaction occurs from account A to account B, the amount
transferred is subtracted from account A’s value and added to
account B’s value. Similarly to the UTXO model, a private
key that corresponds to the public key with which the account
is locked, must be provided in order to spend from the account.

By combining the chain of blocks with the consensus
mechanism and the ability to determine ownership of funds,
blockchain technology appears to solve all the problems plagu-
ing traditional digital currency systems. However, if naively
implemented, blockchain technology suffers from several is-
sues.

Firstly, the requirement to be able to validate all previ-
ous transactions requires the sharing of all transactions that
have occurred in the history of the blockchain. This enables

2

any participant to trace the flow of cryptocurrency through
pseudonymous addresses, thereby greatly increasing the risk
of privacy leaks. Additionally, since the blockchain is ever
growing, so is the amount of storage space required to store
the entire transaction history, as well as the time required for a
new participant to verify the blockchain, resulting in scalability
problems.

Another issue is that transactions within a blockchain cannot
be considered final immediately. Once a block is added to
the chain it is quickly propagated through the network. Other
participants validate the block and then add it to their own
version of the blockchain. The older a block in the chain is,
the more references it has by subsequent blocks, and therefore
the less likely it is to be altered. Since recent blocks have fewer
references by subsequent blocks, they can be overwritten more
easily, either by malicious entities or honest participants that
are out of sync. This creates the requirement for the passage
of time before a block, and therefore the transactions within it,
can be considered final with an acceptable degree of certainty.

Lastly, to facilitate features such as second layer solutions,
the ability to program on the blockchain is necessary. Many
blockchains include this feature, though it is not inherent to
the concept of a blockchain. Within Bitcoin, this is limited to
scripting which enables the specification of requirements for a
transaction to be considered valid. Other blockchains, such as
Ethereum [7], have opted to include a Turing complete pro-
gramming language, enabling the creation of smart contracts
on the blockchain.

B. Atomic Swap

An atomic swap is a protocol in which two or more parties
perform an exchange atomically. A transaction is considered
atomic if it either occurs completely or not at all. In a
blockchain environment a transaction is considered atomic
if the partial occurrence of a transaction only results in a
loss for the party whose negligence resulted in the halt of
the transaction, thereby enabling a trustless exchange between
different blockchains. This can be achieved through hashed
timelock contracts (HTLC). As the name suggests, an HTLC
contains a timelock and a hash. When cryptocurrency is locked
with an HTLC, it can be spent in one of two ways. Either the
preimage of the hash is provided, or the time on the lock
expires. The following steps detail an atomic swap where
Alice is exchanging her bitcoin1 with Bob’s dogecoin [27].
All communication between Alice and Bob occurs off-chain
through a secured channel, a visual representation can be
found in Figure 2:

1) Alice and Bob agree on the amounts they are going to
exchange. Alice provides Bob with her Dogecoin address,
and Bob provides Alice with his Bitcoin address.

2) Alice uses secret value ‘x’ to generate H(x) = X , where
H is a hash function. Bob does not know x.

1Many cryptocurrencies use the same name for their blockchain and a single
unit of value, or coin, on this blockchain. Throughout this document, coins
will be written with in all lower case letters, whereas the cryptocurrency and
its blockchain will start with an upper case letter.

Alice Bitcoin

Broadcast
HTLC

Dogecoin Bob

Confirm HTLC
is finalized

Agree on exchange.
Exchange Addresses.

Create
HTLC

Notify Bob

Create
HTLC

Broadcast
HTLC

Take dogecoin,
revealing preimage

Confirm HTLC
is finalized

Learn preimage

Use preimage
to take bitcoin

Fig. 2. Atomic swap protocol.

3) Alice creates an HTLC, using X for the hash, and a
timelock which accounts for the finality time of the
blockchains. She stores the bitcoin which is meant for
Bob within the HTLC. If the preimage x is provided,
the bitcoin can be sent to Bob’s Bitcoin address. If the
timelock expires the bitcoin can be sent back to Alice’s
Bitcoin address.

4) Alice broadcasts the HTLC to the Bitcoin blockchain and
sends the transaction id (txid) to Bob.

5) Bob confirms that the HTLC is on the Bitcoin blockchain
and is locked with X . He waits until the HTLC is
finalized within the blockchain.

6) Bob creates an HTLC, using X for the hash despite
not knowing x, and a timelock which is significantly
shorter than that of Alice’s HTLC. If the timelock is not
significantly shorter, Alice can simply wait for the last
second to take Bob’s dogecoin and then reclaim her own
bitcoins through the timelock in her HTLC. He stores
the dogecoin which is meant for Alice within the HTLC.
If the preimage x is provided, the dogecoin can be sent
to Alice’s Dogecoin address. If the timelock expires the
dogecoin can be sent back to Bob’s Dogecoin address.

7) Bob broadcasts the HTLC to the Dogecoin blockchain
and notifies Alice he has done so. This completes the
setup stage.

8) Alice waits for the HTLC on the Dogecoin blockchain
to be finalized. She then uses her secret x to take the
dogecoin, and in doing so puts x on the Dogecoin
blockchain.

9) Bob reads x from the Dogecoin blockchain and uses it
to take the bitcoin.

C. Scriptless Scripts

In 2016 a paper was dead-dropped on the #bitcoin-wizards
IRC channel, detailing Mimblewimble [5], [22], a novel
blockchain concept providing significantly better scaling than
Bitcoin. However, in order to achieve this scalability, Mim-
blewimble made the trade-off of not supporting scripting of
any kind, thereby severely limiting its practical use. To solve
this issue, the concept of scriptless scripts was introduced [28].

3

Scriptless scripts are a method of embedding scripts within
signatures. They ensure that signatures for transactions can
only be created if the script is executed faithfully. Although
scriptless scripts were originally developed for Mimblewimble,
they can be used by any blockchain that uses a signature
scheme that allows for linear operations. This includes the
ECDSA signatures used by Bitcoin [25]. Using scriptless
scripts in a blockchain such as Bitcoin, which already supports
scripting, provides advantages with regards to privacy and
scalability.

Scripts can be quite large. Since nodes on a blockchain
network are required to validate all transactions, all nodes are
required to download these scripts and validate them. With
scriptless scripts, the script is part of the signature, therefore
only the signature needs to be downloaded and verified. For
example in a multi-party setting where the signatures of n
participants are required for funds to be spent, using normal
scripts n signatures would need to be validated. In a scriptless
script setting, a single signature, that can only be created
through the cooperation of n participants, would need to be
validated. Due to the reduction in transaction size this results
in improved scalability.

When normal scripts are executed on the blockchain, they
are recorded there permanently. The details of the script can be
analyzed by anyone and possibly be used to link transactions
and break privacy. With scriptless scripts, the script is hidden
within the signature, and only this signature gets recorded on
the blockchain. This makes a scriptless transaction indistin-
guishable from an ordinary transaction.

Scriptless scripts are enabled by adaptor signatures, which
are essentially partial signatures which prove that the receiver
will learn certain information upon receiving the full signature
[29]. The following is an example of adaptor signatures within
the Schnorr encryption scheme which has linear properties by
default.

C.1 Adaptor Signatures: Schnorr signatures are a form of el-
liptic curve cryptography. In the following formulas, lowercase
letters represent numeric values and uppercase letters represent
points on the curve, with the exception of H which is used
for a hash function.

For a message m, with secret key x, random nonce r, and
base point G on the elliptic curve, a Schnorr signature is
created in the following manner:

P = x ·G
R = r ·G
e = H(P ||R||m)

s = r + e · x

In this construction, P is the public key and R is the public
representation of the nonce used for the transaction, note that
x and r are difficult to calculate from P and R respectively,
under the discrete log problem. The final signature (s,R),
consists of both the signature and the public randomness,

enabling verification that a specific message was signed by
the owner of a specific public key.

In a situation where Alice wants to send value t to Bob
by publishing a Schnorr signature, the signature scheme can
be altered by adding the second, meaningful value t to r.
Since this simply results in another random value it does
not compromise the security of the signature or alter the
construction.

(t+ r) ·G = t ·G+ r ·G
T = t ·G
e = H(P ||R+ T ||m)

s = r + t+ e · x

Alice now calculates the adaptor signature s′, by leaving out
t:

s′ = r + e · x

Note that T is still used in the calculation of e, and that s′ is
not a fully valid signature as t has been left out. Alice now
sends (s′, R, T) to Bob. Using this information Bob can first
calculate e, and then use the information to validate that s′ is
a valid adaptor signature, which will reveal t to him once he
learns the valid signature:

s′ ·G ?
= (r + e · x) ·G
= r ·G+ e · x ·G
= R+ e · P

Now when Alice reveals valid signature s, Bob can simply
subtract s′ from s to learn t:

s− s′ = (r + t+ e · x)− (r + e · x) = t

To an observer monitoring the blockchain, this is indistinguish-
able from a normal transaction, as all that is posted onto the
chain is the final signature (s, (R+ T)).

C.2 Scriptless Contingency Payment: In order to extend the
functionality, this section explains adaptor signatures in a 2-of-
2 setting. The following is the construction of a signature over
a transaction that transfers funds from Bob to Alice. Through
the use of an adaptor signature, Alice uses this transaction to
atomically sell secret t to Bob. First Alice and Bob exchange
public keys PA and PB , and the public nonces RA and RB

to be used for the transaction. Additionally, Alice sends T
to Bob, where T = t · G. Then hash commitments to Alice
and Bob’s public keys are made in order to avoid related-key
attacks [38]. These commitments are then used to create a
joint key J(A,B) for the transaction:

P ′A = H(H(PA||PB)||PA) · PA

P ′B = H(H(PA||PB)||PB) · PB

J(A,B) = P ′A + P ′B

4

Note that Alice holds the private key for P ′A and Bob for P ′B :

x′A = H(H(PA||PB)||PA) · xA
x′B = H(H(PA||PB)||PB) · xB

Alice then creates the adaptor signature for the transaction:

e = H(J(A,B)||RA +RB + T ||m)

s′A = rA + e · x′A
Bob now validates that the adaptor signature was created
honestly. If this is the case, he knows that he will learn t
once the aggregated signature is released. Upon validating he
therefore creates his own signature and sends this to Alice.

s′A ·G
?
= RA + e · P ′A

sB = rB + e · x′B
Alice can now combine Bob’s signature with her own, creating
the aggregated signature sA,B needed to sign the transaction:

sA = rA + t+ e · x′A
sA,B = sA + sB

= rA + t+ e · x′A + rB + e · x′B
= rA + rB + t+ e · (x′A + x′B)

sA,B ·G = (rA + rB + t+ e · (x′A + x′B)) ·G
= rA ·G+ rB ·G+ t ·G+ e · (x′A ·G+ x′B ·G)

= RA +RB + T + e · J(A,B)

Alice can now claim Bob’s funds by broadcasting the aggre-
gated signature to the blockchain. Once it has been included
in a block, Bob can read the aggregated signature and use the
adaptor signature to gain knowledge of t:

sA = sA,B − sB
sA − s′A = (rA + t+ e · x′A)− (rA + e · x′A)

= t

Despite this being a 2-of-2 transaction, all that is posted to
the blockchain is a single signature. Therefore to an observer
monitoring only the blockchain it looks identical to a basic
transaction.

C.3 Scriptless Atomic Swap: The concept in the previous
subsection can easily be extended to perform a scriptless
atomic swap. Here, two transactions are created, both of which
are 2-of-2 and require a signature from Alice and Bob. Each
transaction contains the funds that are being swapped, one
sending its funds to Alice, and the other one sending its funds
to Bob. Once again Alice knows secret t and shares T with
Bob. The steps described in the previous section, up to and
including the verification of the adaptor signature by Bob, are
performed for both transactions.

Bob then sends Alice the signature which is required for
her to complete the transaction which grants her funds. Upon

adding her own signature, Alice obtains the funds by broad-
casting the signature to the blockchain. Bob can now determine
t from the completed signature and the corresponding adaptor
signature.

Bob can then complete the transaction which grants him
funds without requiring help from Alice, since he knows the
adaptor signature corresponding to Alice’s signature for the
transaction, and t.

sA = s′A + t

sA,B = sA + sB

Since the transaction addresses have different public keys,
and different nonces, the signatures for both transactions are
completely different. This makes the transactions completely
unlinkable, since all that is posted to the blockchain is the
single aggregated signature confirming the transaction.

D. Accumulators

This section details the concept of cryptographic accu-
mulators, which are one-way membership functions [10].
Accumulators have been suggested as a replacement for the
Merkle trees currently used within Bitcoin and several other
blockchains, with the goal of improving scalability [11]. Using
accumulators, membership of a set can be proven without
revealing the individual members of the set. As an example,
the following is a description of the functioning of an RSA
accumulator.

In order to create an RSA accumulator, the following
building blocks are required:
• RSA modulus N , where N = p ·q for two unique primes
p and q.

• Hash function H , which maps an arbitrary value to a
prime.

• Group G = {QRn \ {1}}, where QRn is the group of
quadratic residues modulo N

• Accumulator initializer A0 ∈ ZN

Now a value x can be added to accumulator Ai, by raising
the accumulator to the hash of that value:

Ai+1 = A
H(x)
i mod N

Similarly a value x can be removed from the accumulator
Ai, by raising the accumulator to 1 divided by the hash of
that value. Efficient computation of this removal requires a
trapdoor or knowledge of the full set.

Ai+1 = A
1

H(x)

i mod N

Membership of value x within A can now be proven by
providing inclusion proof Π ∈ G, where Π = A

1
H(x) mod N ,

and showing that ΠH(x) = A. If H(x) was not in A this
construction is impossible unless the prover has access to the
RSA trapdoor information [11]. Therefore, RSA accumulators
require a trusted setup, complicating their use in a trustless
system.

An accumulator such as this can be used in a blockchain
setting to record the full set of UTXOs instead of a Merkle

5

tree. Currently full nodes in a blockchain using Merkle trees
are required to store the entire set of UTXOs. This is due to
both the membership verification of a UTXO and the updating
of the Merkle tree requiring knowledge of all values in the set.
Accumulators on the other hand, only require the UTXO, the
proof, and the accumulator itself to prove membership, and
can be updated without knowledge of the other members of
the set. This offers major scaling advantages as full blockchain
nodes are now only required to store the accumulator instead
of the entire set of UTXOs.

Another advantage of accumulators is the constant size of
their inclusion proof. Since the other values within the set are
not required to prove membership, the size of the proof does
not scale with the size of the set. Whereas in a Merkle tree,
the size of the proof depends on the depth of the tree. When a
Merkle tree has more than 4000 members, the inclusion proof
for accumulators becomes faster than one for the Merkle tree.
Additionally it is possible to aggregate accumulator inclusion
proofs using Shamir’s Trick, making it possible to create a
single proof for every transaction within a block [11].

E. Lightning Network

One of the first solutions to solving the blockchain scala-
bility problem is the concept of performing transactions that
are not recorded on the blockchain; this is referred to as
an off-chain solution. One of the first off-chain solutions
is the Lightning Network [31]. This network consists of
payment channels between participants. At the time of writing,
Lightning has a functioning beta implementation available for
use with the Bitcoin blockchain [6].

E.1 Lightning Channels:
To create a Lightning payment channel, two participants

create a contract on the blockchain within which they lock
some cryptocurrency. This contract requires the signature of
both participants to be spent from. Before this contract is
actually uploaded on the blockchain, a participant that provides
funds for the channel creates a refund transaction and demands
that the counterparty signs this transaction. It can then be
used to reclaim the funds, which are now locked on the
blockchain, in the case where the counterparty vanishes before
any transactions over the channel have occurred.

Once the channel has been successfully set up, funds can
be exchanged across it by shifting the balance on the chan-
nel. This balance shift is done by creating valid blockchain
transactions which spend from the channel contract, but not
broadcasting these transactions to the blockchain. For example,
if Alice provided 1 bitcoin for the channel and Bob provided
nothing, the refund transaction would spend 1 bitcoin from the
contract to Alice and nothing to Bob. Now if Alice wants to
send 0.5 bitcoin to Bob, they create a new transaction which
spends 0.5 bitcoin from the channel to Alice and 0.5 to Bob.
If Bob now wants to send 0.1 bitcoin to Alice, they create yet
another new transaction which spends 0.6 bitcoin from the
channel to Alice and 0.4 to Bob (Figure 3.).

Block X-1 Block X

sig Alice
&

sig Bob
to spend 1

bitcoin

Block X+1

1.0 bitcoin to Alice
0.0 bitcoin to Bob

0.5 bitcoin to Alice
0.5 bitcoin to Bob

0.6 bitcoin to Alice
0.4 bitcoin to Bob

Fig. 3. Only the creation of the Lightning channel is recorded on the
blockchain.

Channel
funds

Transaction 1a
-0.5 bitcoin to RSMC Alice & Bob
-0.5 bitcoin to Bob

Bob creates, signs,
and sends to Alice

Transaction 1b
-0.5 bitcoin to Alice
-0.5 bitcoin to RSMC Alice & Bob

Alice creates, signs,
and sends to Bob

Output 1a.1
0.5 bitcoin that Alice can

spend after timelock expires

Output 1a.2
0.5 bitcoin that Bob can

spend immediately

Alice signs
transaction 1a,
and broadcasts it
to the blockchain.

Output 1b.1
0.5 bitcoin that Alice can

spend immediately

Output 1b.2
0.5 bitcoin that Bob can

spend after timelock expires

Bob signs
transaction 1b,
and broadcasts it
to the blockchain.

Fig. 4. Both participants have a transaction representing the current state,
which they can upload without the cooperation of their counterparty.

These transactions need to be constructed in a way that
either party can upload them to the blockchain, and dishonest
behavior by broadcasting an older transaction is disincen-
tivized.

The former can easily be achieved in the following manner:
When the participants decide they want to alter the balance
of the channel, both create the transaction and sign it, they
then send their signed transaction to one another. In order
to validate the transaction a participant can now simply sign
the transaction already signed by their counterparty, and then
upload it to the blockchain (Figure 4).

The latter requires a more complex construction which
allows dishonest behavior to be punished. A participant needs
a method to prove to the blockchain that their counterparty has
behaved dishonestly by broadcasting an older transaction. This
proof needs to occur before the cryptocurrency is spent from
the contract, since the spending is irreversible. Therefore if
the unilateral closing of a channel occurs, the party closing
the channel must experience a waiting period before their
cryptocurrency can be spent. This is accomplished by using
the following construction: When a participant in the channel
creates a new transaction, they ensure that the transaction
output intended for their counterparty is a Revocable Sequence
Maturity Contract (RSMC) [31]. This RSMC specifies that
the cryptocurrency the output contains can be spent by the
counterparty after a certain amount of time, or instantly by the
participant if a Breach Rememdy Transaction (BRT) is pro-

6

vided. Such a BRT requires the signatures of both participants,
and is provided to the counterparty for the previous transaction
after a new transaction is created. The RSMC creates the
waiting period for the counterparty to provide proof, and a
valid BRT proves a previous transaction was uploaded. This
construction is depicted in Figure 5.

When Alice and Bob decide to close the channel coop-
eratively they create a transaction which instantly pays both
parties and sign it; this is then broadcast to the blockchain.

Using this protocol, Alice and Bob can rebalance the funds
on the channel an infinite amount of times, in a trustless
manner. Since only the creation and closure of the channel
are required to be recorded on the blockchain, this provides
great scaling benefits. Due to the fact that the transactions
are fully valid blockchain transactions, the participants are
guaranteed their bitcoin when they upload the transaction since
no other source can spend from the contract. This means
that the transactions can be considered final even before they
are broadcast to the blockchain, allowing for instantaneous
transfer of cryptocurrency.

Additionally, Lightning channels can be used to speed up
atomic swaps, thereby improving blockchain interoperabil-
ity. By creating two channels between them, one on each
blockchain they wish to perform the exchange on, Alice
and Bob can swap coins without having to wait for the
finality of the transactions on the blockchain. Though they are
still required to wait for the finality of the channel creation
contracts to ensure that the on-chain funds are locked for use
in the channel.

E.2 Watchtowers:
One downside of the construction described in the previous

subsection, is that both participants of the channel need to con-
tinuously monitor the blockchain to ensure their counterparty
is behaving honestly. In the situation where their counterparty
broadcasts an old transaction, the participant needs to broad-
cast the BRT before the waiting period expires. This means
the participant needs to constantly monitor the blockchain for
old transactions and needs to be able to broadcast the BRT
upon detecting the malicious behavior. Going offline for a
period of time equal to or longer than the waiting period means
risking your money being stolen. In order to solve this issue,
the concept of channel watchtowers was introduced [8].

Watchtowers are third parties that are introduced to payment
channels. They do not take part in the exchanging of funds but
simply monitor the transactions that have occurred within the
channel and check that no old transactions are uploaded onto
the blockchain. If they are given the BRT they can broadcast
it to the blockchain when they detect fraud.

Watchtowers do not necessarily infringe on privacy. The
only data they need to receive from the channel in order
to function, are the old transaction IDs, and optionally the
BRT which corresponds to a specific transaction ID. The
watchtower does not learn anything about the contents of the
channel unless an old transaction is uploaded.

Continually monitoring the blockchain as well as storing
transaction IDs cannot be done without incurring costs. There-
fore incentives are required to motivate watchtowers to partake
in a channel.

One possible business model is for watchtowers to charge
a fee from the channel holders. However determining this
fee can be very tricky. Since a channel can remain open
indefinitely, and supports infinite transactions, the watchtower
can end up indefinitely monitoring the blockchain and requires
infinite storage space for transaction IDs. Therefore it would
be required to continuously pay watchtowers while the channel
persists as a form of subscription. However there is no way
to ensure that the watchtower is actually performing the
duties it promises, other than closing the channel with an old
transaction.

Another possible solution is for BRTs to send a portion
of the punishment funds to the watchtower that broadcast the
BRT. This method ensures that watchtowers are only paid if
they do their job properly. However, if watchtowers do their
jobs properly, no rational channel participants would behave
dishonestly, and therefore the watchtowers are not getting paid.

In order to solve these problems the concept of subscriptions
and providing funding in the BRT can be combined. Instead
of paying a watchtower a subscription fee directly, a channel
participant creates a new fake channel with themselves on
the blockchain. They then intentionally behave dishonestly
by uploading an old transaction. Through this method, only
watchtowers that are performing their functions properly are
paid fees regularly. However, this method introduces numerous
problems. Firstly, it increases the transaction count on the
blockchain. Additionally, if watchtowers can keep track of
which channel submits which transaction IDs they may decide
to stop monitoring channels which have been open for a long
duration of time. These channels are likely legitimate channels
instead of ones used to pay watchtower fees, as creating a
channel to pay a watchtower in the distant future is impractical
as it requires the locking of funds. Lastly, there is no obligation
for Lightning channel participants to pay watchtowers. It
cannot be checked whether each participant that is using a
watchtower’s functionality is actually performing payments
to the watchtower. This may cause participants to attempt to
make free use of the watchtowers, possibly resulting in an
unprofitable situation for the watchtowers, causing them to
halt their services.

Furthermore, in a construction where a watchtower is paid
for doing its job, the watchtower may be susceptible to
bribery. A channel participant could offer the watchtower
more money than the watchtower would get for submitting the
BRT. To combat this possibility, the concept of a free market
for watchtowers was proposed [8]. In this construction, old
transaction IDs and their corresponding BRTs are broadcast
onto a network of watchtowers instead of being given to a
specific watchtower. This would require the dishonest party
to offer each watchtower on the network a bribe greater
than the reward for posting the BRT, quickly making bribery
economically unfeasible. To combat watchtowers being part of

7

Channel
funds

Transaction 1a
-0.5 bitcoin to RSMC Alice & Bob
-0.5 bitcoin to Bob

Bob creates, signs,
and sends to Alice

Transaction 1b
-0.5 bitcoin to Alice
-0.5 bitcoin to RSMC Alice & Bob

Alice creates, signs,
and sends to Bob

BRT Output 1a
0.5 bitcoin that Bob can

spend immediately

Output 1a.2
0.5 bitcoin that Bob can

spend immediately

Alice signs
transaction 1a,
and broadcasts it
to the blockchain,
despite the existence
of transaction 2.

Output 1b.1
0.5 bitcoin that Alice can

spend immediately

Output 1b.2
0.5 bitcoin that Bob can

spend after timelock expires

Bob signs
transaction 1b,
and broadcasts it
to the blockchain,
despite the existence
of transaction 2.

BRT Output 1b
0.5 bitcoin that Alice can

spend immediately

Alice broadcasts
BRT 1b to the
blockchain

Alice does not
broadcast BRT 1b
to the blockchain

Bob broadcasts
BRT 1a to the
blockchain

Output 1a.1
0.5 bitcoin that Alice can

spend after timelock expires

Bob does not
broadcast BRT 1a
to the blockchain

Transaction 2b
-0.6 bitcoin to Alice
-0.4 bitcoin to RSMC Alice & Bob

BRT 1a

Transaction 2a
-0.6 bitcoin to RSMC Alice & Bob
-0.4 bitcoin to Bob

BRT 1b

Fig. 5. A Lightning channel where two transactions have occurred. If a participant broadcasts the old state to the blockchain, the other participant can claim
all the funds within the channel by broadcasting the BRT before the timelock expires.

the network but letting others do the actual work, the concept
of BRTs granting payment to the watchtower that posts it is
required. However the fastest watchtower is the only one that
receives payment; in a situation where one watchtower vastly
out performs the others it could quickly become unfeasible for
others to perform their duties as watchtowers, resulting in a
monopoly and reintroducing the issue of bribes.

E.3 eltoo:
eltoo is a drop-in replacement for the original state update

mechanism used by Lightning, which maintains backward
compatibility with the other parts of the stack of Lightning
protocols [16].

In eltoo, every state of the channel is represented by a set of
two transactions: an update transaction and a settlement trans-
action. The update transaction spends the contract’s current
output and creates a new output. The settlement transaction
spends the newly created output and divides the funds ac-
cording to the agreed-upon distribution. The outputs in eltoo
have a script that allows a transaction to be directly attached
to them, update transactions can be attached immediately,
settlement transactions require a waiting period to have expired
first. If an outdated settlement transaction is broadcast to the
blockchain, before the waiting period has expired a newer

settlement transaction can be broadcast. This new settlement
transaction attaches to the output that the old transaction is
attempting to spend. Since attempting to spend an output that
has a transaction attached to it results in a double spend, the
old settlement transaction is automatically invalidated.

By repeatedly invalidating the previous state, a long chain
of transactions is created off-chain. However, this has the
downside that broadcasting the final state to the blockchain
requires the entire chain to be broadcast, effectively nullifying
the scaling advantages provided by Lightning. To solve this
issue, the eltoo protocol allows for the final update trans-
action to be directly linked to the channel creation con-
tract. However, to enable this functionality the addition of
a SIGHASH_NOINPUT flag to Bitcoin is necessary, as this
allows transaction inputs to be bound to any transaction output
with a matching script. In order to ensure that an update
transaction cannot be replaced by an older update or spend
transaction, the script checks that the state number of the new
transaction is higher than the current one. Figure 6 details the
format of an eltoo update script.

This construction provides fundamentally different tradeoffs
compared to the classic Lightning channel construction. In
eltoo there is no penalty for attempting to broadcast an older

8

Fig. 6. The output script used for an eltoo update transaction.
Source: Adapted from [16].

channel state to the blockchain. Therefore there is no risk for
malicious parties other than reputation loss. This may play
an important role in the security of protocols that are built
upon Lightning transactions. However, eltoo offers several
functionality improvements over classic Lightning channels.

Firstly, eltoo allows for more advanced transaction construc-
tions to be attached to the state of the channel. Instead of the
channel contract being settled with two outputs, one for each
participant, eltoo allows the channel to be settled with any
number of outputs and more advanced constructions such as
HTLCs.

Secondly, in the classic Lightning channel, a participant
is required to keep an evergrowing list of BRTs, since they
are required to prove the invalidity of an older transaction.
Within eltoo a participant is only required to maintain the most
recent version of channel state, since a more recent transaction
automatically invalidates an older one.

Lastly, in a classical construction the fee to pay the miners
upon broadcasting to the blockchain is determined upon the
creation of the state. As the required fee for a transaction to be
processed in a timely manner can shift vastly, it is undesirable
for the fee to be set far ahead of broadcast time. By signing
the update transaction outputs with SIGHASH_SINGLE2, a
participant that wants to broadcast the settlement transaction
to the blockchain can dynamically add an extra input to the
transaction, which can be used to provide a miner fee. This
allows the participant to set the fee at the time of broadcasting,
thereby being able to set a fee which is appropriate for
the current state of the blockchain. This provides additional
security benefits, as a current state with a too low fee may not
be verified by the blockchain before the waiting period of a
broadcasted outdated state has expired, allowing a dishonest
participant to steal funds.

At the time of writing, a proposal to include
SIGHASH_NOINPUT in Bitcoin has been submitted,
but not yet accepted [15]. Therefore current implementations
of Lightning use the construction as described in II-E.1,
as eltoo can not yet be implemented. However, due to the
benefits SIGHASH_NOINPUT offers, such as eltoo, it is
likely it will be accepted in the near future.

F. Lightning Channel Networks

As described in the previous subsections, performing a
Lightning transaction between Alice and Bob requires them

2https://en.bitcoin.it/wiki/OP CHECKSIG#Procedure for Hashtype
SIGHASH SINGLE

Alice Bob Charlie

X

HTLC
H(x) ?= X
1.1 bitcoin

HTLC
H(x) ?= X
1.0 bitcoin

Fig. 7. Transferring 1 bitcoin from Alice to Charlie, through Bob.

to set up a channel on the blockchain first. This has the
downside of needing to wait for the channel contract to be final
on the blockchain, defeating the purpose of using Lightning
for a transaction with a one-time counterparty. It may even
make it unfeasible to use Lightning with every counterparty
a participant regularly trades with, as it would require the
participant to lock funds in contracts with each counterparty.
A solution to this problem is using participants in Lightning
channels as routing nodes [31].

In the situation where both Alice and Charlie have a
Lightning channel open with Bob, but do not have a Lightning
channel open with one another, they can still perform a
Lightning transaction by routing funds through Bob. However,
this in itself poses a problem. If Alice sends her money to
Bob, there is no guarantee he will then forward it to Charlie.
Likewise if Bob were to send funds to Charlie first, there is no
guarantee he will be able to claim the funds back from Alice.
Therefore a method is required which enforces the atomicity
of the transaction. Once again HTLCs can be used to create
this setup. Lets say Alice wants to send 1 bitcoin to Charlie.
Charlie starts by generating a secret value x, he then hashes
this value and sends the result X to Alice. Alice then uses this
to create an HTLC using X as the hash, and locking 1 bitcoin
plus 0.1 bitcoin fee for Bob’s services as a routing node inside
the HTLC. She then sends this HTLC to Bob and tells him
Charlie knows the key to unlocking X . Bob then creates an
HTLC using X as hash, and locking in 1 bitcoin of his own.
He then sends this to Charlie. Charlie can take the bitcoin from
Bob, since he knows x. In doing so, Charlie reveals x to Bob,
which allows Bob to take the 1.1 bitcoin from Alice (Figure
7). Note that in order to ensure that Bob can claim the coins
from Alice after giving his coins to Charlie, the timelock used
by Alice must be longer than the timelock used by Bob.

This increases the on-chain privacy of the transaction, as the
funds that are redeemed by Charlie on-chain could have been
sent by any participant in the Lightning network. However, it
naturally introduces privacy concerns off-chain, as Bob learns
all the details of the transaction between Alice and Charlie.
Therefore a routing protocol is implemented which makes use
of onion routing [1], [32]. This ensures that each node that is
routed through is only aware of the direct neighbors. However
due to the HTLC construction, a global adversary or colluding
nodes can correlate traffic through the use of the same hash
X .

A multi-hop transfer can also be constructed using scriptless
scripts, by combining the concepts described in II-C.2 with
the concept described in this section. The HTLC transactions

9

 https://en.bitcoin.it/wiki/OP_CHECKSIG#Procedure_for_Hashtype_SIGHASH_SINGLE
 https://en.bitcoin.it/wiki/OP_CHECKSIG#Procedure_for_Hashtype_SIGHASH_SINGLE

Alice Bob Charlie

X

HTLC
H(x) ?= X
1.3 bitcoin

HTLC
H(x) ?= X
1.2 bitcoin

Dave Eve

HTLC
H(x) ?= X
1.1 bitcoin

HTLC
H(x) ?= X
1.0 bitcoin

H(x) = X

Fig. 8. A wormhole attack where Bob and Dave collude to steal the fee
meant for Charlie.

used in the Lightning transfer are replaced by scriptless 2-of-
2 transactions. The preimage x with hash X are replaced by
secret t and curve point T . Upon setup, Charlie generates t and
sends T to Alice. Alice then creates a scriptless contingency
payment with Bob, requesting that Bob uses T as part of his
signature. Bob now creates his adaptor signature and sends it
to Alice. Once she has verified that it is valid, she sends her
signature for the transaction to Bob. However since neither
Alice nor Bob knows t, they cannot complete this transaction.
Therefore Bob creates another scriptless contingency payment
with Charlie, once again using T as part of the aggregated
signature, he then requests that Charlie sends his adaptor
signature. Bob verifies that the adaptor signature is valid
and sends Charlie his signature. Since Charlie knows t he
can construct the aggregated signature, thereby releasing the
information Bob needs to determine t. This knowledge can
then be used by Bob to complete the transaction between him
and Alice.

Using basic scriptless scripts instead of standard script
HTLCs allows us to mask the lock value X from a global
adversary, but not from colluding nodes. By introducing new
aspects to the protocol using scriptless scripts, the connection
can be masked even from colluding nodes [24].

Knowledge that they are both part of the same transaction
allows colluding nodes in the route to perform a wormhole
attack [24] to steal the fees of intermediary nodes. Let’s
say Alice is sending 1.0 bitcoin to Eve, and routing this
transaction through Bob, Charlie, and Dave, paying each of
them 0.1 bitcoin for their services. However, Bob and Dave
are colluding to steal Charlie’s fee. When Eve takes her 1.0
bitcoin from Dave, Dave passes the secret x on to Bob, and
simply lets his HTLC with Charlie expire, claiming his HTLC
with Eve also expired; this makes it impossible for Charlie to
claim the 1.2 bitcoin from Bob. Bob can now claim the 1.3
bitcoin from Alice using secret x, resulting in a net loss of
1.0 bitcoin for Dave and a gain of 1.3 bitcoin for Bob (Figure
8). Overall the colluding nodes are up 0.3 bitcoin, compared
to the 0.2 bitcoin they would have gained from fees had they
behaved honestly.

III. STATECHAINS

Statechains [34] are an off-chain solution for blockchains
that use UTXOs to determine cryptocurrency ownership. In-
stead of performing a transaction to transfer funds on the
blockchain, Statechains perform off-chain transfers of UTXO
ownership. In order for a Statechain to be usable on a
blockchain, the blockchain must support eltoo [16] style
channels, and must have a method for adaptor signatures to be

Input Output

Input Output

xentity
+

xtransitory

SigBob

Xentity
+

Xtransitory

Xentity+Xtransitory
or

Bob + (time > timelock)

Input Output
xentity

+
xtransitory

Xentity+Xtransitory
or

Charlie + (time > timelock)

On-chain state

Off-chain state

Bob

Charlie

Statechain for
Xentity+Xtransitory

Fig. 9. Transferring ownership of the UTXO from Bob to Charlie, and
updating the Statechain.

constructed. The examples in this section make use of Schnorr
signatures, as they can easily be used to construct adaptor
signatures.

A Statechain is maintained by a Statechain entity, that uses
the Statechain as a public ledger to record the history of all
the UTXOs under its management, and may receive fees for
the services it provides. The role of a Statechain entity can be
fulfilled by a single actor. However in order to provide better
decentralization, the entity should be a federation which uses
a consensus mechanism to determine what course of action to
take. Any dishonest behavior by the Statechain entity can be
proven using the Statechain. Therefore the current owner of
the UTXO should store a copy of the Statechain, to prevent the
Statechain entity from replacing the public ledger and feigning
ignorance.

In order to deposit funds on a Statechain, participant Bob
creates a channel with Statechain entity Alice, in the same
manner as an eltoo channel would be constructed. Bob cre-
ates a transitory secret key xtransitory and Alice creates a
secret key xentity. The funds are then locked, requiring both
xtransitory and xentity to be spent, or defaulting back to
Bob after a timelock expires. The timelock ensures that in
the situation where the Statechain entity disappears or refuses
cooperation, the current owner can still withdraw their coins
on-chain. The eltoo construction ensures that an outdated state
that is broadcast to the blockchain can be replaced by a newer
state that is broadcast before the funds have been spent.

In order for Bob to send the funds to Charlie, the following
three steps must occur:

• Alice and Bob update the state of the channel so that upon
expiration of the timelock, the funds are sent to Charlie.

• Charlie obtains knowledge of xtransitory .
• The Statechain is updated to reflect the transfer.

After the transfer, both Bob and Charlie know the value
of secret key xtransitory and both can update the state or
spend from the Statechain with the cooperation of Alice, since
she knows secret key xentity. However, Alice promises she
will only cooperate with the current owner as listed in the
Statechain. In the situation that Alice behaves dishonestly by
colluding with a previous owner, this can be proven using the
data within the Statechain. Likewise, the Statechain entity can
disprove false accusations using the data within the Statechain.

10

In order for this transfer of ownership to be properly veri-
fiable, Alice requires the signatures of both Bob and Charlie.
Bob’s signature to prove that he requested the transfer, and
Charlie’s signature to prove that he acknowledged receiving
the updated state. In order to ensure that neither party can
falsely claim their counterparty, or the Statechain entity, is
cheating, these signatures need to be provided atomically.
This can be achieved through adaptor signatures, using the
following steps [34]:

1) Alice, Bob, and Charlie, each generate a secret, t, u, v
respectively. They then exchange the public curve points
t ·G = T , u ·G = U , and v ·G = V . From these values
the shared adaptor value T + U + V = N is calculated.

2) Bob and Charlie construct adaptor signature s′B,C , which
is missing N . This signature is sent to Alice.

3) Alice and Bob create adaptor signature s′A,X , which is
missing N , where A is the public key for xentity , and X
is the public key for xtransitory . This signature is sent to
Charlie.

4) Bob reveals the nonce rx which he used in s′A,X to
Charlie through a secured channel.

5) Charlie reveals v to Bob through a secured channel.
6) Bob reveals (v + u) to Alice though a secured channel.
7) Alice uses (v + u), the adaptor signature s′B,C and t to

construct a valid signature sB,C indicating the transfer of
ownership was acknowledged by both Bob and Charlie.
She then publishes this secret onto the statechain, thereby
revealing (t+u+v) to Charlie. Allowing him to complete
sA,X and claim ownership of the UTXO.

8) Alice helps Charlie learn xtransitory by providing him
with her adaptor signature for sA,X . Charlie can now
calculate xtransitory =

s′A,X−s
′
A−rx

e

After step 7 Charlie can claim the funds in the UTXO by
publishing the transaction to the blockchain and waiting
for the timelock to expire. However, he does not yet have
xtransitory , which is required for him to transfer ownership
of the UTXO to a new party, or to claim the funds directly
with Alice’s cooperation. At this point, Bob has no further
incentive to participate in the transaction, as sB,C has been
published on the Statechain, proving he has performed the
transaction. Therefore Bob cannot be relied upon to transfer
xtransitory to Charlie after this step. Alice on the other hand,
has an incentive to assist Charlie in learning xtransitory , as
she benefits from the continued existence of the Statechain.

A. Security
Within a Statechain, the user’s funds can only be guaranteed

as long as the Statechain entity or all previous owners are
honest. However, from a game theory perspective, previous
users have no incentive to remain honest. Therefore previous
owners are assumed to be willing to cooperate with a malicious
Statechain entity. On the other hand, a Statechain entity
receives fees for maintaining a Statechain, and has an incentive
to ensure the continued existence of its flow of income. There-
fore, the Statechain entity is assumed to be honest. Despite the

assumption that previous owners are malicious, the existence
of xtransitory is necessary to improve the security while
the Statechain entity is honest. As not having knowledge of
xtransitory makes the Statechain entity incapable of seizing the
funds within the channel, for example if it is commanded to do
so by a government. Additionally, in the current legal system
it may result in more lax regulations for Statechain entities,
as they do not have direct ownership of the cryptocurrency,
which they would have without xtransitory .

To ensure that the Statechain entity is incentivized to behave
honestly, all malicious behavior by the Statechain entity must
result in a loss of reputation. Therefore all malicious behavior
must be provable. Consequently, it must not be possible to
falsely accuse the Statechain entity of behaving dishonestly.
Malicious behavior by the Statechain entity is specified as
transferring ownership of the funds without the consent of the
current owner. This can be done either by spending the UTXO
on-chain, or by transferring ownership of the UTXO within the
Statechain. This results in the following requirements:

1) It must be provable by the current owner that the State-
chain entity has stolen the funds by spending the UTXO
on chain.

2) It must be provable by the current owner that the
Statechain entity has stolen the funds by transferring
ownership of the UTXO within the Statechain.

3) It must be impossible for an uninvolved party to prove
an honest Statechain entity is behaving maliciously.

4) It must be impossible for a previous owner to prove an
honest Statechain entity is behaving maliciously.

5) It must be impossible for the current owner to prove an
honest Statechain entity is behaving maliciously.

It can be shown that Statechains meet all these security
requirements, under the assumption that the signature scheme
that is used is existentially unforgeable for chosen-message
attacks. The Schnorr signatures used within the example
have been proven to be existentially unforgeable for chosen-
message attacks in the random oracle model, under the as-
sumption that the discrete logarithm problem is hard [30].

1-2) Every action taken by the Statechain entity is required
to be signed off on by the owner at the time of that
action. These signed confirmations are recorded within
the Statechain. If the Statechain entity operates in a
different manner than listed in the Statechain, malicious
behavior can easily be proven. However, it is possible for
the Statechain entity to cooperate with a previous owner
to create a valid fork of the Statechain. This enables
the Statechain entity to list the forked Statechain which
matches its malicious behavior. Nevertheless this mali-
cious behavior can be proven by the legitimate current
owner by providing a valid spend transaction for the
Statechain channel. Such a spend transaction can only be
created with the cooperation of the Statechain entity, and
the forked Statechain cannot encompass this transaction,
as this requires a transfer request to have been signed
by the legitimate current owner. Therefore, proving the

11

existence of a transaction which has not been recorded
within the Statechain that is listed by the Statechain entity
is a clear indication of fraud.

However, it should be noted that if the current owner
does not monitor the Statechain, it is possible for a
malicious Statechain entity to use this fork to scam mul-
tiple parties with a single UTXO. The forked Statechain
appears valid to a new participant, enabling the Statechain
entity and the cooperating previous owner to steal both
the funds and the service or product offered by the new
participant and paid for with the UTXO. From a game
theory perspective this can be considered a serious flaw
within the system. The loss for the legitimate current
owner remains the same independent of the number of
people that are scammed by the Statechain entity using
the UTXO. Therefore, there is no direct incentive for the
legitimate current owner to use resources to monitor the
Statechain listed by the Statechain entity. The possibility
of scamming a large number of participants using a single
UTXO may cause a Statechain entity to risk its reputation
more willingly.

3) For an honest Statechain entity, the Statechain will always
correspond with the actions it is taking. Therefore, to
accuse an honest Statechain entity of malicious behavior,
the accuser must be able to produce a valid spend trans-
action for the Statechain channel. This is not possible for
an uninvolved party without obtaining both the Statechain
entity’s secret key and xtransitory , as Schnorr signatures
are existentially unforgeable.

4) Similarly to the previous point, the accuser is required
to provide a valid spend transaction for the Statechain
channel. In this case the accuser has such a transaction,
as they were the owner of the UTXO within the channel
at some previous point in time. However, since the Stat-
echain entity is behaving honestly, a transfer requested
signed by the accuser must be part of the Statechain that
the Statechain entity is listing. By proving the existence
of this signed transfer request within the Statechain, the
accusation can easily be debunked: the Statechain entity
being capable to forging such a signature is in conflict
with the assumption that the discrete logarithm problem
is hard.

5) An honest Statechain entity will always list the current
owner as the current owner in its Statechain, and will not
sign an on-chain spend transaction without a request to
do so that is signed by the current owner. Therefore, it is
impossible for the current owner to accuse the Statechain
entity of performing malicious behavior.

B. Use cases

By moving transactions off-chain, the transaction speed
and transaction throughput of a blockchain can greatly be
increased. Additionally, since not all transactions have to be
recorded on the blockchain, a significant amount of storage
space within the blockchain can be saved. Therefore, second
layer solutions are a much needed addition to the blockchain

environment, and there are multiple use cases for Statechains.
However, Statechains are not the only second layer solution
and may not be the best suited for each application. In this
subsection, Statechains are compared with Lightning [31] to
identify use cases to which Statechains are more suited than
Lightning.

At the time of writing, Lightning is the most popular off-
chain solution for Bitcoin. However, Lightning suffers from
several limitations that do not plague Statechains. On the
other hand, Lightning enables several features which cannot
be achieved with Statechains. Therefore, Statechains are not
intended as competition to Lightning, but rather as comple-
mentary.

Firstly, funds on the Statechain are locked between the
participant and the Statechain entity. This allows the funds
to be directly transferred to any willing participant on the
blockchain, whereas in Lightning, both participants required
to be part of the same Lightning network. Therefore, it is
likely that each participant has to create multiple channels on-
chain to make proper use of Lightning. On the other hand, for
Statechains the number of channels is determined not by the
number of users, but by the value stored within each individual
channel. In the short term, it is therefore likely that Statechains
require fewer on-chain channels to be created to facilitate the
transfer of an adequate amount of funds to the entire network
of users.

Secondly, Statechains can instantly transfer any value that
can be stored within a single UTXO, whereas Lightning
is limited by the channel capacity between the transacting
participants. Due to the Lightning’s coverage currently being
limited, it is unlikely a participant will find a path to another
participant that can facilitate large sums. However, if the value
being transferred is small, the costs of opening or closing the
channel on-chain may outweigh the value being transferred. In
this situation it is not desirable to create a Statechain channel,
as the value within cannot reasonably be reclaimed on-chain.
Therefore, Statechains can be employed to transfer values too
large for the Lightning network to process, and Lightning can
be used for smaller values that are unsuitable for Statechains.

Thirdly, Statechains can be used for the off-chain transfer
of security tokens on the blockchain. Within the Lightning
network, the transfer of funds depends on the fungibility of the
funds. This prevents the transfer of unique security tokens as
these are not fungible. On the other hand, Statechains directly
transfer the ownership of the UTXO, and therefore the real
world asset which the funds within this UTXO represent.

Fourthly, by transferring ownership of the UTXO to a
channel contract (Figure 10), it is possible to open a channel
within a Statechain. This allows the creation of a Lightning
channel without being required to wait for the contract to
be final on the blockchain. Additionally, a single Statechain
could be used to create and close multiple Lightning channels
over the course of its lifetime. This reduces the amount of
transactions required on the blockchain even further, as it is
no longer necessary to broadcast the unilateral closing and
opening of Lightning channels to the blockchain.

12

Input Output

Input Output

xentity
+

xtransitory

SigBob

Xentity
+

Xtransitory

Xentity+Xtransitory
or

Bob + (time > timelock)

Input Output

xentity
+

xtransitory

Xentity+Xtransitory
or

Bob + Charlie
+ (time > timelock)

On-chain state

Off-chain state

0.5 bitcoin to Bob
0.5 bitcoin to Charlie

Lightning Channel state

Fig. 10. Transferring ownership of the UTXO from Bob to a contract between
Bob and Charlie, enabling Lightning transactions between them.

Lastly, Statechains have a few more general advantages over
Lightning that do not result in a specific use case. Within
Lightning, watchtowers are required to keep the channel
secure if the user goes offline. Due to the existence of the
Statechain entity this is not required within Statechains, as the
Statechain entity has an incentive to monitor the blockchain
itself as failure to do so could result in a loss of reputation.
Another advantage that Statechains hold is that there is no
need to rebalance channels3. Though channel rebalancing may
be solved through wide spread adoption of the Lightning
Network, this problem currently requires other methods of
transferring value. This therefore often results in additional
on-chain transactions that would not be required when using
Statechains.

C. Criticism and Improvements

As described in the previous section, there are already
several use cases for which Statechains are suitable. However,
Statechains still have several flaws which may be improved,
in this section several of these flaws are scrutinized and some
possible areas of improvement are identified.

Statechains require a certain level of trust. The user
trusts that the Statechain entity will behave honestly. This is
enforced through the fees that a Statechain entity collects from
its users, resulting in a loss of income should it be caught
behaving maliciously. However, several factors must be taken
into account when considering whether this assumption holds
merit. It should be assumed that a malicious Statechain entity
may collect several, if not all, of the transitory keys for the
Statechains it controls. It cannot be proven that the Statechain
entity has obtained these keys until it decides to use them for
malicious behavior. As such, a patient Statechain entity could
wait until it has complete control of all its Statechains before
stealing the funds within. If the Statechain entity determines
the future fees it may receive are less than the funds it may
steal right now, it will naturally do so according to game
theory. Therefore, the fees a Statechain entity should receive

3While the Lightning Network is in its infancy, it is likely that a user will
not be spending an equal amount of funds through a channel as they receive
through that channel. For example, a user may pay their groceries through
one channel, yet receive their salary through a different channel or outside of
the network. This will result in a lopsided Lightning channel, which can now
only be used to transfer funds back to the user.

should be proportionate to the amount of funds within the
channels it is facilitating. Naturally, this would result in
high fees for the transfer of large funds, something that was
identified as one of the main strong points of Statechains
in subsection B. Therefore, this may harm the adoption of
Statechains for this use case. Furthermore, fees based on the
amount of funds within a channel may create a discrepancy
in the importance the Statechain entity places on maintaining
certain channels. The situation may occur where a significant
portion of a Statechain entity’s income results from a single
channel. If at some point in time the owner of this channel
desires to close it, the Statechain entity may be prompted to
steal the funds it controls, as it is about to lose a significant
portion of its income. This problem can be mitigated through
a blind variant of the Statechain protocol. However, such
a variant fails to completely solve the problems, as the
Statechain entity can still learn the values it controls from
previous owners who have nothing to lose by revealing this
information to the Statechain entity. Blinded Statechains and
their benefits and flaws are further discussed in section V.

Fees are integral to the security of Statechains. However,
unlike Lightning, it is impossible to provide fees for the
Statechain entity through the channel itself [34]. Within the
Statechain protocol it is impossible to split UTXOs into
smaller amounts. Mathematically it is possible to split the
funds within the channel off-chain. However, this would
create a massive overhead for the Statechain entity, requiring
that it only cooperates in the signing of a new transaction if a
partial owner only spends their partial amount and leaves all
other values unchanged. Therefore, a separate construction is
needed through which a Statechain entity receives fees.

Being unable to split the UTXO within the Statechain also
severely limits the capabilities of Lightning channels on top
of Statechains. Since the funds within a Lightning channel
are divided between the two participants, it is necessary
for the channel balance to be completely one-sided before
the channel on top of the Statechain can be closed without
closing the Statechain channel. In the situation where the
Statechain channel is closed when the Lightning channel is
closed, the on-chain gain of using Lightning on top of a
Statechain is lost. Additionally, the security of this Lightning
channel is equal to that of a Statechain, rather than that
of Lightning, as a malicious Statechain entity and owner
can steal the funds. The recipient of the Lightning channel
must therefore be willing to participate in an environment
that requires more trust than the blockchain or Lightning itself.

According to the Statechain protocol, Charlie is required
to verify all the previous states within the Statechain before
accepting the transfer. This way Charlie detects any irregular-
ities within the Statechain before considering Bob’s payment
complete. However, it is possible for a malicious Statechain
entity to cooperate with a malicious previous owner and create
a fork of the Statechain as detailed in subsection A. It is

13

impossible for Charlie to identify which Statechain is the
legitimate one between the fork and the actual Statechain.
Every scam a Statechain entity might pull has the same
requirements, and carries the same risks for the entity as
creating a fork. Therefore, it is sufficient for Charlie to simply
verify that the most current state within the Statechain is a
valid spend transaction for a corresponding on-chain channel,
as verifying every state costs additional computation and does
in actuality not increase the security of the protocol.

The ability to fork the Statechain is inherent to the State-
chain protocol, as an owner cooperating with the Statechain
should be able to create a new state to add to the end of the
chain. However, there are possible improvements which can
increase the chance of a forked Statechain being detected and
reported, thereby further disincentivizing the Statechain entity
to behave maliciously in this manner.

A forked Statechain is detected when the current legitimate
owner realises that the Statechain listed by the entity has
changed and that they are no longer listed as current owner.
However, it is possible that instead of replacing the Statechain,
the Statechain entity has listed the fork at a different location.
Through this method it is possible for the Statechain entity
to scam multiple parties, where none notice the malicious
behavior until one of them attempts to close the on-chain
channel.

Therefore, it is necessary to devise a method through which
it can be assured that the Statechain entity can only list the
Statechain for a specific on-chain channel in a single location.
The simplest solution would be for the on-chain channel to
reference the location where the corresponding Statechain
is stored. If the ability to attach an arbitrary message to a
transaction is not supported by the blockchain, this could also
be achieved by transferring dust in the same transaction that is
used to create the on-chain channel. This dust should be sent
to an address that is the hash of the location the Statechain is
stored. A potential owner can then simply trace the on-chain
channel back to the transaction that created it and verify that
the dust was sent to the correct address. However, this method
has the downside that it creates additional transactions on the
blockchain.

In the situation where a fork is made, this is only detected
when a wronged owner realises the existence of a second
Statechain for their UTXO. However an incentive is necessary
for a scammed owner to report the malicious behavior. As
from a game theory perspective they have nothing to gain
by reporting a malicious Statechain entity and would be
best off attempting to recuperate their losses by getting in
on the scam. The owner cannot regain their funds since it
is clear that the Statechain entity is being maliciously and
therefore has no incentive to let them claim their funds on
the blockchain. Reporting the Statechain entity will not result
in the recuperation of funds for the owner. The only way
they can recuperate their losses is by knowingly selling their
compromised Statechain to an unsuspecting buyer.

Such a system can be constructed on a blockchain that
supports smart contracts. Upon the creation of the Statechain,

the Statechain entity is required to add the public key of the
channel to the smart contract and to deposit some currency
into the contract. If the contract is then provided with two
states with the same state number that are signed with a key
corresponding to the public key of the channel, the uploader
is rewarded the deposited currency. Alternatively, if the smart
contract confirms that the on-chain channel has been closed
and a certain amount of time has expired, the Statechain
entity can reclaim the funds.

Another flaw within the Statechain protocol is that
Statechains themselves suffer from scaling problems similarly
to the blockchain. Each time ownership of a Statechain is
transferred, the Statechain increases in length. This results
in an increase in storage space required, as well as the time
required to verify the entire Statechain. However, the latter
is only of consequence in the event that malicious behavior
must be proven, as under normal circumstances only verifying
the most recent state is sufficient. In an attempt to solve the
former, section IV details State-accumulators.

A further improvement, suggested by Somsen [35], is to
create a non-interactive version of Statechains. In its current
form, the transferring of a UTXO over a Statechain requires
all parties to be online. As on-chain transactions can be
completed without the recipient being online, this can be
considered a flaw within Statechains when compared to the
blockchain itself. However, it cannot simply be left out, as
without the recipients signature the Statechain entity could
be wrongfully accused of malicious behavior. If a protocol
were devised where the recipients signature can be safely
excluded, a method would still need to be devised for the
recipient to learn the transitory key at a later date, without
the cooperation of the previous owner.

Lastly, Somsen has also suggested [35] the development
is the usage of a hardware security module (HSM) to store
the transitory key. Through this method it would become
impossible for the Statechain entity to learn the transitory
key as only the current owner has access to this key. Upon
transferring ownership from Bob to Charlie, the key would be
deleted from Bob’s HSM. Such a construction would remove
all requirement of trust in the Statechain entity. However, it
would introduce the requirement to trust the HSM, which is
far from ideal as Somsen admits in his presentation.

IV. STATE-ACCUMULATORS

Each transfer of UTXO ownership within a Statechain
increases the length of the chain. As the entire history of a
Statechain is necessary to ensure malicious behavior can be
proven, it is not possible to simply drop old states. Therefore,
a possible solution is to use an alternative data structure to
store the states. The following is an exploration into the
possibility of State-accumulators, a conceptual replacement for
the Statechain protocol, where the signatures are stored within
an accumulator rather than a public ledger. Accumulators

14

were chosen as they are well known for their ability to
remain constant in size despite containing a large assortment
of values. Specifically, the explanations and examples in this
section assume the use of a 2048-bit RSA accumulator [23]
and Schnorr signatures. Through the advantages offered by
cryptographic-accumulators, State-accumulators can have a
constant size independent of the number of transfers that
are made within the lifetime of the channel. The current
legitimate owner only needs to store the State-accumulator,
the transitory key, and their private invalidation key, all of
which are constant in size. This invalidation key is necessary
to ensure malicious behavior by the State-accumulator entity
is provable, they are described in detail in subsection A.
However, the State-accumulator entity is still required to store
all previous states in addition to the State-accumulator, as
inclusion and exclusion proofs for an accumulator cannot be
securely created without this knowledge, or knowledge of the
trapdoor information. Therefore this solution only improves
the storage requirements for the participants of the State-
accumulator, and not for the entities providing the service.
Lastly, it should be noted that State-accumulators have the
same requirements of a blockchain as Statechains: support for
eltoo style channels and adaptor signatures.

A. Invalidation Keys

In addition to using an accumulator instead of a
ledger, an obvious difference between Statechains and State-
accumulators is that State-accumulators only list the current
owner, rather than the entire transaction history of the channel.
Due to the possibility of forking the Statechain, listing the
history does not provide additional legitimacy to the current
owner listed by the Statechain entity. However, the listing of
this history is necessary for the legitimate current owner to
prove a malicious Statechain entity has forked the Statechain.
As shown in section III-A, this proof is achieved by having
the legitimate current owner prove that the Statechain entity
acknowledged them as the owner of the channel at some point
in time, and by proving that the Statechain is missing a transfer
request signed with his private key. In other words, the accuser
must prove that they were the channel owner at some point in
time, and that they have not relinquished this ownership.

Within a State-accumulator, proving ownership of the chan-
nel at some point in time can be achieved by the same method
as used in Statechains: providing a valid on-chain spend
transaction for the channel. However, proving that ownership
has not been relinquished is difficult, as signed requests cannot
simply be extracted from the accumulator. Therefore, it cannot
simply be checked that none of the signed transfer requests
within the accumulator are signed using the same private
key as the proof of ownership. Thus, a participant claiming
current ownership would be required to create an exclusion
proof for every possible signed transfer request which would
relinquish his ownership. This is computationally infeasible,
as the number of possible receivers in the transfer request is
equal to the public key space, minus the participant’s own
public key. Additionally, due to the nonce used in Schnorr

signatures, there are many possible valid signatures for the
same message and private keys.

A different method must therefore be devised to prove that
ownership has not yet been relinquished. Simply removing
values corresponding to previous owners from the accumulator
is not a secure option, as the State-accumulator entity has
knowledge of the legitimate current owner and can therefore
remove them from the accumulator. Instead, a value is needed
that can be added to the accumulator to invalidate an own-
ership proof belonging to a previous owner. If an exclusion
proof can be created for this invalidation value, it is proof that
the corresponding proof of ownership is the current one.

To ensure that a single exclusion proof is sufficient, the
invalidation value must be predictable from the proof of
ownership. However, if anyone can predict the invalidation
value from the signed proof of ownership, a malicious State-
accumulator entity can simply add the invalidation value to
the accumulator without the cooperation of the current owner.
Therefore, a proof of ownership must contain a computation-
ally hiding commitment to the invalidation value, for which the
committed value is revealed upon signing a request to transfer
ownership of the channel. The commitment is referred to as
the public invalidation key, and the value that is committed is
referred to as the private invalidation key.

Lastly, in Statechains a valid on-chain spend transaction can
be used as the proof of ownership. It may be difficult to insert
the public invalidation key to such a transaction, as it must
remain valid on-chain. Additionally, the participant receiving
ownership of the channel is not directly involved in the cre-
ation of their on-chain spend transaction, further complicating
the addition of the public invalidation key. Therefore, within
State-accumulators the proof of ownership is shifted from a
valid on-chain spend transaction, to the signed transfer request
indicating the participant as the receiver. However, to enable
the usage of the signed transfer requests as such, they must
be signed by the State-accumulator entity in addition to the
parties performing the transaction.

B. Protocol

A State-accumulator is specified where Bob is the original
owner and Alice is the State-accumulator entity. As with a
Statechain, the State-accumulator is created when Bob creates
an eltoo style channel with Alice. A transaction which enables
Bob to claim initial ownership of the UTXO is created.
Additionally, Alice and Bob perform a multi-signature over
a message containing both the UTXO on-chain txid and
public invalidation key u · G = U , for which Bob knows
private invalidation key u. Alice adds this signature to the
accumulator, and publicly lists the signature and invalidation
value U , as she would for a Statechain.

In order for Bob to transfer ownership of this UTXO to
Charlie, the following protocol is specified.

1) Charlie verifies sA,B listed by Alice, and verifies the
existence of the channel on chain.

2) Alice generates adaptor secret t, and Charlie generates
adaptor secret v, and private invalidation key w. They

15

then communicate their public curve points, t · G = T ,
v ·G = V , w ·G = W , to each other and Bob. All three
of them then compute T + U + V = N .

3) Bob and Charlie construct adaptor signature s′B,C , which
is missing N , over a message which contains the txid of
the UTXO, as well as public invalidation key W . This
signature is then sent to Alice.

4) Alice adds her own signature, creating adaptor signature
s′A,B,C , and sends this to Charlie.

5) Alice and the transitory key holder (in this case Bob)
create adaptor signature s′A,X , which is missing N . The
full version of this signature enables spending from the
on-chain channel. This signature is then sent to Charlie.

6) Bob reveals the secret nonce rx which he used in s′A,X

to Charlie through a secured channel.
7) Charlie verifies s′A,B,C , s′A,X , and rx. Once all three

values are verified, he reveals v to Bob through a secured
channel.

8) Bob reveals (u+ v) to Alice through a secured channel.
9) Alice uses (u+ v), her adaptor secret t, and the adaptor

signature s′A,B,C , to construct a valid signature sA,B,C .
She then adds this signature to the accumulator and lists
the signature publicly, replacing sA,B . Additionally she
replaces Bob’s public invalidation key U with Charlie’s
public invalidation key W .

10) Charlie now reads sA,B,C and subtracts s′A,B,C from it,
thereby learning (t+ u+ v). He uses this knowledge to
construct sA,X from s′A,X .

11) Charlie now reveals v to Alice through a secured channel.
Alice calculates u by subtracting v from (u + v) which
she received from Bob earlier. She then adds u to the
accumulator.

12) Alice helps Charlie learn transitory key x by providing
him with her adaptor signature s′A which was used in
sA,X . Charlie calculates transitory key x from s′A,X , s′A,
and rx.

C. Security

The State-accumulator protocol is designed to meet the
same security requirements as the Statechain protocol. Sim-
ilarly to Statechains, it is assumed that previous owners
are willing to cooperate with a malicious State-accumulator
entity, that State-accumulator entities are disincentivized to
behave maliciously, and that the discrete logarithm problem
is hard. Additionally, the strong RSA assumption [9] is made
to ensure the security of the protocol. This assumption is
required to prove the security of RSA accumulators against
computationally bound adversaries [23]. However, the security
of RSA accumulators does not hold if the adversary is able
to factorize the modulus used for the accumulator. Within
the State-accumulator protocol, it is assumed that the State-
accumulator entity has access to the factors of the modulus.

Additionally, the strong RSA assumption enables the hash-
ing of arbitrary strings to prime numbers. This feature is
necessary due to RSA accumulators only accepting prime
numbers as inputs. However, the signatures which are to be

added to the State-accumulator cannot be guaranteed to be
primes. It has been shown [18] that there are secure methods
to hash the prime numbers, under the strong RSA assumption.

The following requirements, similar to those for the State-
chain protocol, are specified:

1) It must be provable by the current owner that the State-
accumulator entity has stolen the funds by spending the
UTXO on chain.

2) It must be provable by the current owner that the State-
accumulator entity has stolen the funds by transferring
ownership of the UTXO within the State-accumulator.

3) It must be impossible for an uninvolved party to prove an
honest State-accumulator entity is behaving maliciously.

4) It must be impossible for a previous owner to prove an
honest State-accumulator entity is behaving maliciously.

5) It must be impossible for the current owner to prove an
honest State-accumulator entity is behaving maliciously.

It can be shown that the State-accumulator protocol meets
these requirements under the specified security assumptions:

1-2) Every action the State-accumulator entity takes, must
have a corresponding request signed by the owner at the
time of that action. Similarly to Statechains, it is easy to
prove malicious behavior of the State-accumulator entity
if its current action does not match the currently publicly
listed signed request. However, due to previous actions no
longer being publicly listed, the State-accumulator entity
can list a request signed with a random key it claims
belongs to the current owner. This effectively results in
the same situation as a forked Statechain, where the State-
accumulator entity’s actions appear to correspond with
the publicly listed signed requests. Note that the State-
accumulator entity does not need the cooperation of a
previous owner to achieve the “fork” within the State-
accumulator protocol. However, this does not diminish
the security compared to Statechains, as the assumption is
made that a previous owner is always willing to cooperate
with a malicious Statechain entity.

A participant can prove current ownership of the chan-
nel by providing the signed transfer request in which the
participant is the receiver, and by providing an exclusion
proof of their private invalidation key for the State-
accumulator. If the participant can provide this proof, and
is not listed by the State-accumulator entity as the current
owner, then the State-accumulator entity is behaving
maliciously.

Determining the current owner’s private invalidation
key, from his public invalidation key, is equivalent to
the elliptic curve discrete logarithm problem. Therefore
it is considered impossible for the State-accumulator to
correctly guess the private invalidation key and add it to
the accumulator, under the assumption that the discrete
logarithm problem is hard.

Note that to ensure that when creating the exclusion
proof for the secret invalidation key, the accuser should do
so using a zero knowledge proof, or after receiving a com-

16

mitment to the State-accumulator, signed by the State-
accumulator entity. This is necessary to ensure that the
State-accumulator entity cannot simply learn the private
invalidation key once the proof has been posted, add it
to the State-accumulator, and then claim that the accuser
used an out-dated version of the State-accumulator for a
false accusation.

3) For an honest State-accumulator entity, the listed most re-
cent signed transfer request, will always correspond with
the the most recent action taken by the State-accumulator
entity. Therefore, to accuse an honest State-accumulator
entity of malicious behavior, the uninvolved party must
be capable of proving that it is in fact the legitimate
current owner, as opposed to the current owner listed
by the State-accumulator entity. To do so, the accuser
must have a transfer request which has been signed by
the State-accumulator entity. This is not possible for an
uninvolved party without obtaining the State-accumulator
entity’s secret key, as Schnorr signatures are existentially
unforgeable [30].

4) Similarly to the previous point, the accuser is required
to prove that they are the current owner, as opposed to
the owner listed by the State-accumulator entity. In this
case the accuser has access to a transfer request signed by
the State-accumulator entity, which indicates him as the
receiver of the channel ownership. For this accusation to
be valid, it must be shown that the State-accumulator does
not contain the private invalidation key corresponding to
the public invalidation key contained within the signed
transfer request.

The accuser must request the State-accumulator to
provide a signed commitment to the current State-
accumulator. An attempt can then be made to create an
exclusion proof for the private invalidation key. However,
succeeding in creating an exclusion proof for a value
within the accumulator has been proven to be compu-
tationally infeasible if the strong RSA assumption holds
[23].

5) An honest State-accumulator entity will always list the
current owner as the the owner, and will not sign an on-
chain spend transaction without a request to do so that is
signed by the current owner. Therefore, it is impossible
for the current owner to accuse the State-accumulator
entity of performing malicious behavior.

Execution of the protocol may be aborted at any point in
time, either due to a loss in connectivity with one or more of
the participants, or due to malicious behavior by one or more
parties involved. The following analyzes the consequences of
aborting the protocol at each step of the State-accumulator
protocols:

1-6) These steps can be considered the setup of the transfer.
During any of these steps any party can decide to cancel
the transfer by simply refusing to continue the next step.
None of the adaptor signatures that have been exchanged
can be completed without computing another parties

secret. This is impossible under the assumption that the
elliptic curve discrete logarithm problem is hard.

7) Upon revealing v to Bob, Charlie can no longer abort the
process. Bob can continue the transaction at a later point
in time.

8) Upon revealing (u + v) to Alice, Bob can no longer
abort the process without the cooperation of Alice. If Bob
desires to abort the transfer after this step he must inform
Alice of his intentions before she publishes the completed
signature approving the transfer.

9) Charlie is now officially the owner of the UTXO and
the process cannot be stopped. Bob no longer has an
incentive to participate in the transfer process. Note that at
this time, Bob’s private invalidation key u is not yet part
of the accumulator. Therefore Bob could use his proof
of ownership to claim Alice is behaving maliciously.
However, Alice still has signature sA,B,C , which proves
Bob requested the transfer.

10) Charlie can now redeem the UTXO on chain. However
he cannot yet spend it off-chain as he does not yet have
knowledge of the transitory key.

11) Alice now has knowledge of Bob’s private invalidation
key, thereby making it possible for her to safely discard
sB,C , when she no longer needs the signature to indicate
Charlie as the current owner. However, Charlie still
cannot spend the UTXO off-chain.

12) Charlie can now transfer ownership of the UTXO off-
chain.

D. Results & Discussion

Using a State-accumulator, the current owner is required to
store the State-accumulator, the transitory key, and their private
invalidation key. Using 2048-bit RSA, the State-accumulator
itself is 256 bytes in size. The private key within a Schnorr
signature scheme is 32 bytes. Therefore, both the transitory
key and the private invalidation key are 32 bytes long, resulting
in a total of 320 bytes required storage space for the owner of
the State-accumulator. A Schnorr signature is 64 bytes long,
meaning that a State-accumulator is a more efficient method
of storage as soon as the UTXO within a Statechain has been
transferred 5 times.

The State-accumulator entity is required to store the State-
accumulator, all of the signatures within the State-accumulator,
the current public invalidation key, and the current state which
is a Schnorr signature. This brings the total storage space
required by the State-accumulator entity to 256 + (n · 64) +
32 + 32, where n is the number of time the UTXO has been
transferred. Effectively this means that a State-accumulator
entity must store 320 bytes more per channel than a Statechain
entity.

State-accumulators require a one-time constant size increase
in storage space by the facilitating entity, and greatly improve
the amount of storage space required by the users. As the users
are already required to provide a fee to the entity to ensure
security this can be considered a valid trade-off. If adoption of
Statechains spreads widely and they become used similarly to

17

how we use paper money, they may transfer ownership very
often and it will quickly become cumbersome for an owner to
keep the history of each of these bills stored.

Lastly, a downside of State-accumulators, is that through
the use of RSA they suffer the requirement of a trusted setup.
This forms a major problem as neither the State-accumulator
entity, nor anyone else, should be allowed knowledge the
RSA trapdoor information, as this knowledge would enable the
party to create arbitrary proofs for the State-accumulator. Such
an arbitrary proof could then be used to perform malicious
behavior which cannot be proven. However, this can be
mitigated through using RSA moduli for which noone knows
the trapdoor values. Such RSA moduli can be found elsewhere,
such as the RSA puzzles created by Ron Rivest [11].

V. BLIND STATECHAINS

Blind Statechains are Statechains where the signatures have
been blinded from the Statechain entity, hiding the messages
it is signing from the entity. Through blinded Statechains
the privacy of Statechains can be greatly increased. Within
an ordinary, not-blinded Statechain, the on-chain channel can
easily be linked to the publicly listed Statechain, as well as
every address that has had off-chain ownership of the UTXO.
On the other hand, a blinded Statechain entity will only list
the blinded signatures and is not even aware itself which
channels it controls or for whom it is signing transactions.
Neither the Statechain entity nor an observer can learn which
on-chain addresses had off-chain control of the UTXO without
unblinding the states. Additionally, since the Statechain entity
is no longer aware of what it is signing, it is not aware whether
it is signing a transaction or the closing of the channel, or the
amount within the channel.

Intuitively it may seem that this property also increases the
security of a Statechain. After all, it should be more difficult
for a Statechain entity to accurately estimate its loss in income
compared to its gain from stealing channel funds, when it
has no knowledge of values contained within these channels.
However, this property provides no extra security if a method
exists for the Statechain entity to contact the previous owners
of the channels it maintains. From a game theory perspective,
a previous owner has nothing to lose in a situation where the
Statechain entity behaves maliciously, and thus will be willing
to unblind the Statechain for the Statechain entity if offered
even a marginal incentive. The Statechain entity itself does not
risk anything by reaching out to these previous owners, even if
a previous owner decides not to cooperate there is no incentive
for this previous owner to report the Statechain entity and they
do not have any indisputable evidence. Admittedly, within a
real world application the risk for this behavior by a Statechain
entity will be much greater, as an accusation even without
indisputable evidence could lead to a big loss in reputation.

In his blog post [33] and his messages to the bitcoin-dev
mailing list [36] Somsen details a blind variant of Statechains
where the Statechain entity functions as a signing server.
In contrast to the original non-blind Statechain protocol this
construction mandates that a new potential owner validates

every previous state, otherwise security cannot be guaranteed.
This raises the question whether it is feasible to create a
blind variant of the Statechain protocol where validating only
the most recent state provides the same amount of security
as validating every previous state. The following subsection
details Somsen’s blinded Statechain where the Statechain
entity functions as a signing server, subsection B explores the
possibility of a blinded Statechain where only the most recent
state needs to be verified.

A. Signing servers

A straightforward implementation of Blind Statechains can
be achieved by using the Statechain entity as a blind signing
server [36]. Within this setup the entity has minimal interaction
with the users. It only provides two functions which users can
call, as well as a public listing of each Statechain.

The first function which is provided is the request to form
a new Statechain. The user submits their public key to the
Statechain entity. The entity then generates a new private key
and corresponding public key for itself for this Statechain.
The entity then lists the submitted public key along with
the its newly generated public key as a new Statechain. The
generation of a new public key for the Statechain entity is
necessary to ensure security, as using the same private key
for the entity for each Statechain would make it possible for
malicious users to attempt to hijack another users UTXO.

The second function enables users to transfer ownership of
the Statechain. The function requires the caller to submit a
blinded transaction and the new owners public key, signed
with the callers public key. The entity first verifies that the
signature is valid and corresponds with the public key of the
current owner of the Statechain. If this is the case the entity
then signs the blinded transaction with its public key belonging
to this Statechain. The signed blinded transaction and the new
owners public key are then appended to the publicly listed
Statechain.

This setup offers a versatile functionality, as the entity can
be used to sign a plethora of messages, not only Bitcoin
transactions. However, due to the Statechain entity being
unable to see the contents of the transactions, it is necessary
for the receiving user to unblind and verify every previous
transaction on the Statechain to ensure that he is not being
cheated by a previous owner, whereas in non-blind Statechains
it can be considered sufficient to validate only the most recent
transaction. If setup properly, this unblinding can be performed
by anyone who holds the transitory key [33]. This removes
the necessity for each subsequent owner to store a chain of
unblinding factors to enable verification of each state.

B. Blinded Singular State Verification

A major difference between ordinary, unblinded Statechains,
and Blind Statechains as signing servers is the amount of steps
required to verify the integrity of the Statechain. As described
in section III, for an ordinary Statechain only verifying the
most current transaction provides the same amount of security
as verifying the entire chain. However, this is insufficient

18

when Blind Statechains are used as a signing server. This
is due to the new possibility of a previous owner having
behaved maliciously without the cooperation of the Statechain
entity. Since the Statechain entity can no longer verify what
it is signing, it cannot be held responsible for malicious
behavior in previous states created by previous owners. This
raises the question whether it is possible to design a blind
Statechain where it is sufficient to only validate the most
recent transaction in a timely manner, thereby possibly saving
on computation time in a situation where a blind Statechain
grows very large.

Firstly, it must be identified exactly which parts of the
blinded transaction could be abused by a previous owner to
perform a scam, assuming that a potential new owner only
verifies the most recent state with the on-chain channel. In
essence, a state is an eltoo style spend transaction for the on-
chain state. Therefore, a state contains the following variables:

• The address to transfer to. The addresses used in previous
states have no influence on the current or future states,
therefore this variable can be kept hidden.

• The amount of currency to be transferred. An invalid
transaction could be created by altering the amount of
currency so it no longer matches the funds contained
within the on-chain channel. However, this can easily
be verified by comparing the state with the on-chain
channel. Therefore, this value can be kept hidden from
the Statechain entity.

• The state number of this transaction. A previous owner
could have created a transaction,“txmalicious” with itself,
wherein the state number is set to the maximum. This ma-
licious owner then creates another transaction with itself,
this time with an ordinary state number. If a new potential
owner only unblinds and verifies the most recent state,
they are unaware that txmalicious exists and can be used
to overwrite their on-chain transaction, due to its higher
state number. The current owner could still reclaim the
transaction by creating a new close transaction together
with the Statechain entity. However, this reintroduces the
issue of being required to be online for the funds to
be secure, as the Statechain entity cannot create a new
transaction without the cooperation of the owner.

To maintain accountability it is therefore necessary that
the Statechain entity can verify the state number used within
the transaction. Additionally, it is necessary for the entity to
check that the transaction is indeed an eltoo style transaction,
as a different type of transaction cannot be overwritten by
newer states. However, for the sake of on-chain privacy, it
is now necessary to reveal to the Statechain entity that the
current owner is attempting to close the channel. Since a close
transaction is a direct spend transaction, thereby hiding the fact
that an off-chain channel was used.

Blind signatures are designed to both hide the message
being signed and to provide unlinkability, that is to say that the
signer cannot recognize who it signed the message for even
if it ever verifies the unblinded message. However, the latter

property is not necessary in this use case, as the Statechain
entity is never required to verify the unblinded message.
Therefore the same level of privacy can be achieved, by only
hiding the message it is signing from the Statechain entity. A
construction where only the message is hidden can be created
using normal Schnorr signatures rather than blinded Schnorr.
Within Schnorr signatures the challenge e is what is signed
by the signer. As shown in section II-C.1, e is a hash whose
preimage contains the message. Therefore, as long as the hash
function is considered secure, the message can be hidden from
the Statechain entity by computing e and sending it to the
entity for signing. Note that while the possible values for the
preimage are limited, as the transaction must still be valid on
the blockchain, the possible input set is still sufficiently large
as it encompasses all possible blockchain addresses.

However, the Statechain entity must still be able to verify
that the correct state number was used within the message it
is requested to sign, and that this message is an eltoo style
transaction. Since the Statechain entity now only receives a
hash, it cannot simply verify that the correct state number was
used without knowing the rest of the contents of the preimage.
However, knowing the message in its entirety would negate
the desired blinding property. Therefore, a protocol where the
owner provides the Statechain entity with a zero knowledge
proof (ZKP) is necessary. Within this ZKP the owner must
prove the following three statements:

1) e = H(i)
2) Message m in i is an eltoo style script
3) m contains the correct sequence number

Note that i is constructed in the same manner as an ordinary
Schnorr 2-of-2 multisignature, i.e. the preimage of e shown in
II-C.2 without the public adaptor value. Therefore, in addition
to m, i must contain the public randomness, and a commitment
to the public keys. If these values do not correspond to the
keys and nonces used to sign e, the resulting signature will
not be a valid transaction.

The following specifies the Blinded Singular State Verifi-
cation protocol (BSSV) for Statechains, where Bob wants to
transfer ownership of the Statechain to Charlie. Alice is the
Statechain entity and currently has Bob’s public key PB listed
as the current owner. Additionally, Alice has constructed a
boolean circuit Φ, which takes the i, and a state number as
input. Φ verifies that the second and third statements listed
above are satisfied and then outputs the hash of i.

1) Charlie generates nonce rx and sends his public random-
ness Rx = rx ·G and public key PC to Bob.

2) Bob takes PC and signs it with his private key corre-
sponding to PB . He then sends the signed PC to Alice,
requesting to transfer ownership of the Statechain to PC .

3) Alice verifies that the message is signed by PB , the
current owner of the Statechain, and generates nonce rA.
She calculates RA = rA · G and sends RA, the desired
state number n, and boolean circuit Φ to Bob.

4) Bob uses n in his construction of the eltoo style transac-
tion m. He then calculates challenge e = H(i), where i

19

Input Output

Input Output

xentity
+

xtransitory

SigBob

Xentity
+

Xtransitory

Xentity+Xtransitory
or

Bob + (time > timelock)

Input Output
xentity
+

xtransitory

Xentity+Xtransitory
or

Charlie + (time > timelock)

On-chain state

Off-chain state

(sentity1,Rentity1), e1,
PubKeyBob

Statechain for
Xentity

(sentity2,Rentity2), e2,
PubKeyCharlie

Fig. 11. Transferring ownership of the UTXO from Bob to Charlie, and
updating the BSSV Statechain. The signatures listed within the Statechain are
over the corresponding e. Note that PubKeyBob and PubKeyCharlie do not
correspond with Bob and Charlie in the off-chain states, therefore neither the
Statechain entity nor an observer of the Statechain can link these public keys
to Bob or Charlie’s on-chain addresses.

in constructed in the same manner as an ordinary Schnorr
2-of-2 multisignature, using both RA and Charlie’s Rx as
public randomness values.

5) Bob constructs a ZKP Π that shows that Φ with inputs
i and n, outputs e. Bob sends both e and π to Alice,
as well as a signature over e signed with his private key
corresponding to PB . Note that this signature is not a
partially signed spend transaction as it is signed with
Bob’s private key and not xtransitory .

6) Alice verifies Π and Bob’s signature over e and creates
her half of the signature sA = rA + e · xentity. She then
adds sA and both the signed e and PC to the Statechain.

7) Bob takes sA and constructs incomplete signature s′A,X ,
which is missing rx. He then sends s′A,X to Charlie.

8) Charlie completes s′A,X using rx to create a valid signa-
ture sA,X . He then takes sA as listed by Alice, and uses
it to calculate xtransitory =

sA,X−sA−rx
e .

Note that BSSV is based on the protocol where the
Statechain entity functions as a signing server. Unlike
non-blind Statechains, both blind variants rely on the current
owner (Bob) transferring additional information to the new
owner (Charlie). For the blind signing server protocol, this
additional information is xtransitory , for BSSV this is the
incomplete signature s′A,X . In both cases Charlie cannot
transfer ownership of the Statechain to a new owner or claim
the UTXO on-chain without receiving this information from
Bob, but is already considered to be the new owner by the
Statechain entity. In the blind signing server protocol, this is
due to the transaction listed by the Statechain entity being
blinded, requiring knowledge of xtransitory to unblind into a
spendable transaction. On the other hand, BSSV does not list
a blinded transaction, but rather a partially signed transaction
which can only be verified with knowledge of e. This
difference in design originates from the relative inefficiency
of ZKPs. Using blinded Schnorr within BSSV would require
Φ to prove an additional statement: e is the non-blinded
version of e′ which the Statechain entity is expected to sign.

It can be shown that BSSV meets all the security require-
ments set for original Statechain protocol:

1) It must be provable by the current owner that the State-
chain entity has stolen the funds by spending the UTXO
on chain.

2) It must be provable by the current owner that the
Statechain entity has stolen the funds by transferring
ownership of the UTXO within the Statechain.

3) It must be impossible for an uninvolved party to prove
an honest Statechain entity is behaving maliciously.

4) It must be impossible for a previous owner to prove an
honest Statechain entity is behaving maliciously.

5) It must be impossible for the current owner to prove an
honest Statechain entity is behaving maliciously.

It can be shown that BSSV meets all of these requirements
in identical fashion as shown in section III-A. This is enabled
by steps 5 and 6 where the current owner signs e and sends
this signature to the Statechain entity. This signed challenge
functions as proof that the owner requested the Statechain
entity to sign this challenge.

Lastly, it can be shown that the additional time required to
compute a ZKP in BSSV is feasible for the transfer of funds.
ZKBoo [19] is used as an example, as it can be used to create
a ZKP for any boolean circuit and can provide a ZKP for the
preimage of a SHA-256 hash within milliseconds. The runtime
of ZKBoo is dictated by the number of AND gates within the
boolean circuit.

Therefore, the amount of AND gates within the circuit
required for BSSV must be determined. This circuit is required
to prove the three statements listed earlier:

1) e = H(i)
2) Message m in i is an eltoo style script
3) m contains the correct sequence number

ZKBoo already provides an optimized implementation of a
SHA-256 circuit [19]. This circuit contains 25344 AND gates.
Therefore, it is only necessary to determine the number of
AND gates required to prove statements 2 and 3. Both of
these statements can be considered to be simple comparison
operators. Their validity in a boolean circuit can therefore
easily be represented by comparing each input bit with each
bit of the desired value. Every such comparison is performed
by an XOR gate combined with an INV gate. The output of
every such comparison is then combined through AND gates.

Therefore, it is necessary to determine the exact bit-length
of an eltoo style script as shown in figure 6. Since the state
number is already included within the script, this does not
provide any additional length. The following bit-lengths were
determined from the Bitcoin Core source code [2]. Bitcoin
opcodes are 1 byte in length. The input for OP CSV is 5 bytes
in length, and the input for OP CHECKMULTISIGVERIFY
and OP CHECKLOCKTIMEVERIFY are 4 bytes in length.
Therefore, an entire eltoo style script consists of 256 bits. This
results in a total of 255 AND gates. This number is negligible
compared to the number of AND gates already contained
within the circuit for SHA-256. Additionally, the preimage
also contains the the public keys, and public randomness

20

values, further increasing the size of the input of the hash
function. This results in the SHA-256 circuit needing to
be executed multiple times, as multiple rounds are required
to compute the hash, thereby further reducing the effect of
statements 2 and 3 on the total runtime required.

Consequently, the runtime can be considered to be de-
termined by the time required to prove statement 1. As
shown in the ZKBoo paper [19] this can be achieved within
milliseconds. Thus, the ZKP used within BSSV will only result
in a marginal increase in transaction time.

C. Results & Discussion

Blinded Statechains, where the Statechain entity operates as
a signing server, and BSSV use different methods to enforce
privacy. The former relies on blinded Schnorr signatures,
whereas the latter depends on the security of a hash func-
tion. This difference leads to an interesting trade-off in what
information can be obtained by different adversaries.

The blind signing server protocol is secure against passive
onlookers. Even when closing the Statechain by spending the
channel on-chain, an onlooker will not be able to differentiate
this close transaction from an ordinary on-chain transaction.
Therefore, it is impossible for such an onlooker to identify
addresses that had ownership of this UTXO while it was
transferred using the Statechain. It cannot even be determined
that a Statechain was used at all. However, this protocol is
susceptible to active adversaries who actively attempt to obtain
this private information. It is necessary for a new owner to
be able to unblind each previous State within the Statechain.
As xtransitory is used for this unblinding, any party with
knowledge of xtransitory can view each unblinded State and
identify every on-chain address that had ownership at some
point in time. An adversary with sufficient funds could actively
pursue ownership of a large number of Statechains and learn
their respective transitory keys. Other than the possible fees
paid to the Statechain entity of each Statechain, this adversary
can simply reclaim the funds it spent to obtain the Statechains
by either closing the channel or transferring ownership of the
Statechain in exchange for funds or a service. Therefore, the
privacy provided by the blind signing server protocol cannot
be considered adequate against an active adversary.

On the other hand, BSSV ensures that the Statechain
entity and onlookers cannot identify who is participating in
the Statechain without being provided the preimage for the
signed transaction. Therefore, an active adversary who obtains
ownership of the Statechain at a specific point in time will
only be able to identify the participant whom they obtained
ownership from, and the participant to whom they transfer
ownership of the Statechain. However, BSSV cannot hide
that a Statechain was used. As the final hash that is signed
must be submitted to the blockchain to close the channel, the
Statechain entity as well as passive onlookers can recognize
this hash to be identical to the one listed by the Statechain.
Therefore, the initial owner of the Statechain and the final
owner of the Statechain can be identified, as well as the amount
of transactions that were performed with this UTXO off-chain,

but the on-chain addresses of the intermediary owners remain
hidden.

Lastly, a downside of BSSV compared to the blind signing
server protocol is the time required to perform a single trans-
action. While it has been shown that a BSSV transaction can
be performed within an acceptable amount of time, the ZKP
still takes a significantly larger amount of time than blinding
and unblinding within blind Schnorr signatures. However, with
each additional transaction, the blind signing server protocol
requires another unblinding step. Therefore, the time required
to perform a transaction will increase with the size of the
Statechain. On the other hand, BSSV has a constant time
requirement to perform a transaction.

VI. CONCLUSION & FUTURE WORK

Statechains are a second-layer solution for blockchains.
Their security trade-off results in a higher amount of trust
required than an on-chain transaction, or other second-layer
solutions such as Lightning. Despite their flaws, the need
to move transactions off the blockchain, and the benefits
Statechains offer over Lightning creates valid use cases
for Statechains, and therefore their improvement merits
exploration. This paper has provided two such improvements:
(1) State-accumulators, an alternative implementation of
Statechains with improved scalability, and (2) BSSV, a
protocol that enhances the privacy of Statechains.

Statechains would greatly benefit from a scheme that
incentivizes a scammed owner to report a malicious
Statechain entity. Such a construction is concisely described
for blockchains that employ smart contracts. However,
no such construction currently exists for blockchains that
are more limited in their scripting capabilities, such as
Bitcoin. Future research could greatly increase the security of
Statechains from a game theory perspective by determining
the possibility of such a construction.

Statechains themselves suffer from a scalability problem as
they grow in size with each transfer until the channel is closed.
In an attempt to solve this issue, the possibility of using
accumulators rather than lists to store the states was explored.
This solution solved the scalability issue for users but not
for the State-accumulator entity, as it was still required to
store all the previous states. This is considered an acceptable
trade-off, as the State-accumulator entity collects fees from
the users. Nonetheless, future research is recommended to
explore the possibility of aggregating the data or the proofs
stored by the State-accumulator entity, thereby reducing the
storage space required by the State-accumulator entity.

Blinded Statchains can greatly improve the privacy of Stat-
echains. A protocol where the Statechain entity functions as a
signing server has been previously suggested. As opposed to
nonblinded Statechains, this protocol requires every previous
state to be verified before it can be considered secure. This
raised the question whether it was possible to construct a

21

blinded Statechain variant where it is sufficient to only verify
the most recent state. This paper presented BSSV, a protocol
for blinded Statechains where a ZKP is used to provide the
Statechain entity with the information necessary to ensure
security despite only the most recent state being verified.
However, BSSV and the the blind signing server protocol
provide different levels of privacy against different types of ad-
versaries. Future work is recommended to determine whether
an efficient blinded Statechain variant can be constructed,
where only verifying the most recent state provides sufficient
security, while still providing the same level of privacy as the
blinded signing server protocol.

ACKNOWLEDGEMENTS

In addition to the members of the examination committee,
we extend our thanks to Tim Menapace for his guidance and
supervision during this research.

REFERENCES

[1] Basis of Lightning Technology #4: Onion Routing Protocol.
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-
onion-routing.md. Accessed: 2018-11-03.

[2] Bitcoin Core source code. https://github.com/bitcoin/bitcoin. Accessed:
2020-01-13.

[3] Bitcoin Developer Guide. https://bitcoin.org/en/developer-guide#block-
chain-overview. Accessed: 2019-01-15.

[4] Ethereum Design Rationale - Accounts and not UTXOs.
https://github.com/ethereum/wiki/wiki/Design-Rationale#accounts-
and-not-utxos. Accessed: 2019-01-15.

[5] Grin, a MimbleWimble implementation. https://github.com/
mimblewimble/grin. Accessed: 2018-11-13.

[6] Lightning Releases; lnd v0.5.1-beta. https://github.com/
lightningnetwork/lnd/releases/tag/v0.5.1-beta. Accessed: 2018-12-
06.

[7] A Next-Generation Smart Contract and Decentralized Application Plat-
form. https://github.com/ethereum/wiki/wiki/White-Paper. Accessed:
2018-11-19.

[8] Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski, Yuyi Wang,
Roger Wattenhofer, and Zeta Avarikioti. Incentivizing Payment Channel
Watchtowers. Scaling Bitcoin Tokyo 2018, https://www.youtube.com/
watch?time continue=3880&v=nwSuctrzV7Y. Accessed: 2018-10-09.

[9] Niko Baric and Birgit Pfitzmann. Collision-free accumulators and fail-
stop signature schemes without trees. In EUROCRYPT, 1997.

[10] Josh Benaloh and Michael de Mare. One-Way Accumulators: A
Decentralized Alternative to Digital Signatures. In Tor Helleseth, editor,
Advances in Cryptology — EUROCRYPT ’93, pages 274–285, Berlin,
Heidelberg, 1994. Springer Berlin Heidelberg.

[11] Benedikt Bünz, Benjamin Fisch, and Dan Boneh. A Scalable Drop in
Replacement for Merkle Trees. Scaling Bitcoin Tokyo 2018, https://
www.youtube.com/watch?time continue=3520&v=IMzLa9B1 3E, Oc-
tober 2018. Accessed: 2018-10-09.

[12] David Chaum. Blind Signatures for Untraceable Payments. In David
Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in
Cryptology, pages 199–203, Boston, MA, 1983. Springer US.

[13] David Chaum, Amos Fiat, and Moni Naor. Untraceable Electronic Cash.
In Conference on the Theory and Application of Cryptography, pages
319–327. Springer, 1988.

[14] Wei Dai. b-money, an anonymous, distributed electronic cash system.
http://www.weidai.com/bmoney.txt, 1998.

[15] Christian Decker. SIGHASH NOINPUT. BIP118 https://github.com/
bitcoin/bips/blob/master/bip-0118.mediawiki, February 2017.

[16] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A
Simple Layer2 Protocol for Bitcoin. https://blockstream.com/eltoo.pdf.
Accessed: 2018-11-15.

[17] A. Frederick Dudley. What are the scaling benefits of PoS vs
PoW? Ethereum Stackexchange, https://ethereum.stackexchange.com/
questions/1346/what-are-the-scalability-benefits-of-pos-vs-pow. Ac-
cessed: 2019-01-16.

[18] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign
signatures without the random oracle. In IACR Cryptology ePrint
Archive, 1999.

[19] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster
zero-knowledge for boolean circuits. In 25th {usenix} security sympo-
sium ({usenix} security 16), pages 1069–1083, 2016.

[20] Robert Greenfield. Vulnerability: Proof of Work vs. proof of
Stake. https://medium.com/@robertgreenfieldiv/vulnerability-proof-of-
work-vs-proof-of-stake-f0c44807d18c. Accessed: 2019-01-16.

[21] Markus Jakobsson and Ari Juels. Proofs of Work and Bread Pudding
Protocols(Extended Abstract), pages 258–272. Springer US, Boston,
MA, 1999.

[22] Tom Elvis Jedusor. Mimblewimble. #bitcoin-wizards IRC channel, https:
//scalingbitcoin.org/papers/mimblewimble.txt, July 2016.

[23] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with
efficient nonmembership proofs. In Applied Cryptography and Network
Security, pages 253–269. Springer, 2007.

[24] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket
Kate, and Matteo Maffei. Privacy-preserving Multi-hop Locks for
Blockchain Scalability and Interoperability. Cryptology ePrint Archive,
Report 2018/472, 2018. https://eprint.iacr.org/2018/472.

[25] Pedro Moreno-Sanchez and Aniket Kate. Scriptless Scripts
with ECDSA. https://lists.linuxfoundation.org/pipermail/lightning-dev/
attachments/20180426/fe978423/attachment-0001.pdf, April 2018.

[26] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, October 2008.

[27] Shibetoshi Nakamoto and Jackson Palmer. Dogecoin. https://dogecoin.
com/. Accessed: 2018-11-23.

[28] Andrew Poelstra. Scriptless Scripts. MIT Bitcoin Expo 2017 Day
1, https://www.youtube.com/watch?v=0mVOq1jaR1U&t=39m8s, March
2017. Accessed: 2018-10-03.

[29] Andrew Poelstra. Mimblewimble and Scriptless Scripts. L2 Summit,
https://www.youtube.com/watch?v=jzoS0tPUAiQ&t=3h36m, March
2018.

[30] David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 387–398. Springer, 1996.

[31] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network: Scal-
able Off-Chain Instant Payments. https://lightning.network/lightning-
network-paper.pdf, January 2016. DRAFT Version 0.5.9.2.

[32] M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Anonymous con-
nections and onion routing. IEEE Journal on Selected areas in
Communications, 16(4):482–494, 1998.

[33] Ruben Somsen. Statechains: Non-custodial Off-chain Bitcoin Trans-
fer. https://medium.com/@RubenSomsen/statechains-non-custodial-off-
chain-bitcoin-transfer-1ae4845a4a39. Accessed: 2019-08-04.

[34] Ruben Somsen. Statechains: Off-chain Transfer of UTXO Ownership.
https://seoulbitcoin.kr/img/statechains.pdf, October 2018.

[35] Ruben Somsen. Statechains: Off-chain Transfer of UTXO Owner-
ship. Scaling Bitcoin Tokyo 2018, https://www.youtube.com/watch?
time continue=2857&v=FI9cwksTrQs, October 2018. Accessed: 2018-
10-09.

[36] Ruben Somsen. Formalizing Blind Statechains as a minimalistic blind
signing server. bitcoin-dev mailing list, https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2019-June/017005.html, June 2019. Accessed:
2019-07-28.

[37] Statista. E-commerce share of total global retail sales from 2015 to
2021. https://www.statista.com/statistics/534123/e-commerce-share-of-
retail-sales-worldwide/, 2018. Accessed: 2018-10-25.

[38] Pieter Wuille. Schnorr signature in Bitcoin. Scaling Bitcoin Mi-
lan 2016, https://www.youtube.com/watch?v= Z0ID-0DOnc&feature=
youtu.be&t=2297, October 2016. Accessed: 2018-11-23.

22

https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/bitcoin/bitcoin
https://bitcoin.org/en/developer-guide#block-chain-overview
https://bitcoin.org/en/developer-guide#block-chain-overview
https://github.com/ethereum/wiki/wiki/Design-Rationale#accounts-and-not-utxos
https://github.com/ethereum/wiki/wiki/Design-Rationale#accounts-and-not-utxos
https://github.com/mimblewimble/grin
https://github.com/mimblewimble/grin
https://github.com/lightningnetwork/lnd/releases/tag/v0.5.1-beta
https://github.com/lightningnetwork/lnd/releases/tag/v0.5.1-beta
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.youtube.com/watch?time_continue=3880&v=nwSuctrzV7Y
https://www.youtube.com/watch?time_continue=3880&v=nwSuctrzV7Y
https://www.youtube.com/watch?time_continue=3520&v=IMzLa9B1_3E
https://www.youtube.com/watch?time_continue=3520&v=IMzLa9B1_3E
http://www.weidai.com/bmoney.txt
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://blockstream.com/eltoo.pdf
https://ethereum.stackexchange.com/questions/1346/what-are-the-scalability-benefits-of-pos-vs-pow
https://ethereum.stackexchange.com/questions/1346/what-are-the-scalability-benefits-of-pos-vs-pow
https://medium.com/@robertgreenfieldiv/vulnerability-proof-of-work-vs-proof-of-stake-f0c44807d18c
https://medium.com/@robertgreenfieldiv/vulnerability-proof-of-work-vs-proof-of-stake-f0c44807d18c
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://eprint.iacr.org/2018/472
https://lists.linuxfoundation.org/pipermail/lightning-dev/attachments/20180426/fe978423/attachment-0001.pdf
https://lists.linuxfoundation.org/pipermail/lightning-dev/attachments/20180426/fe978423/attachment-0001.pdf
https://bitcoin.org/bitcoin.pdf
https://dogecoin.com/
https://dogecoin.com/
https://www.youtube.com/watch?v=0mVOq1jaR1U&t=39m8s
https://www.youtube.com/watch?v=jzoS0tPUAiQ&t=3h36m
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://medium.com/@RubenSomsen/statechains-non-custodial-off-chain-bitcoin-transfer-1ae4845a4a39
https://medium.com/@RubenSomsen/statechains-non-custodial-off-chain-bitcoin-transfer-1ae4845a4a39
https://seoulbitcoin.kr/img/statechains.pdf
https://www.youtube.com/watch?time_continue=2857&v=FI9cwksTrQs
https://www.youtube.com/watch?time_continue=2857&v=FI9cwksTrQs
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-June/017005.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-June/017005.html
https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/
https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide/
https://www.youtube.com/watch?v=_Z0ID-0DOnc&feature=youtu.be&t=2297
https://www.youtube.com/watch?v=_Z0ID-0DOnc&feature=youtu.be&t=2297

	Introduction
	Background
	Blockchain
	Atomic Swap
	Scriptless Scripts
	Adaptor Signatures
	Scriptless Contingency Payment
	Scriptless Atomic Swap

	Accumulators
	Lightning Network
	Lightning Channels
	Watchtowers
	eltoo

	Lightning Channel Networks

	Statechains
	Security
	Use cases
	Criticism and Improvements

	State-accumulators
	Invalidation Keys
	Protocol
	Security
	Results & Discussion

	Blind Statechains
	Signing servers
	Blinded Singular State Verification
	Results & Discussion

	Conclusion & Future Work
	References

