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ABSTRACT 

Saffron (Crocus sativus L.) is the most expensive spice worldwide and has high medicinal value, which 

increases the demand of the global saffron market. However, saffron yield reduced in recent years due to 

climate shifts and the gradual lowering of groundwater tables. Identifying and monitoring the saffron field 

changes is of exceptional importance for effective agronomic management for local agricultural sectors and 

farmers. Frequently acquired satellite images with 10m spatial resolution, such as Sentinel-2 (S2) with five 

days revisit interval, are able to provide more available cloud-free observations and capture more distinct 

temporal characteristics for effective classification and monitoring.  The objectives of this study are to 

evaluate the utility of S2 time series in accurately mapping saffron field distribution, classifying different age 

of saffron crops, and detecting saffron phenological behaviour. The study area, Torbat-e Heydariyeh, is a 

county famous for its saffron cultivation in Khorasan Province, Iran. In-situ data were collected during a 

two-week field survey in December 2019. To separate saffron from other land covers, first, 252 spectral-

temporal features were derived from the S2 images, and Random Forest (RF) was used to select a subset of 

variables with high importance value to achieve optimal accuracies of saffron field identification.  To 

evaluate the feasibility of discriminating different age saffron, the separability between saffron fields with 

different age were analysed. RF was then conducted to evaluate the classification accuracy of grouped age 

classes. Apart from the vegetation period, peak flowering is also a critical phenological stage of saffron that 

can directly reflect the yield level of saffron fields. The customized Enhanced Blooming Index (𝐸𝐵𝐼𝑐) aimed 

to enhance the purpleness of saffron flowers and reduce background noise from soil and green vegetation. 

Selected spectral features were mostly vegetation indices that incorporate spectral information from red, 

NIR, and SWIR bands. Two phenological phases were identified important in separating saffron from other 

crops, which are the rapid green-up stage (January to March) and dormant period (August to September). 

Pixel-based RF achieved good classification accuracy (overall accuracy of 95.3%, kappa coefficient of 0.93) 

in discriminating saffron with other crops using multi-temporal S2 imagery. Based on an independent in-

situ dataset on saffron fields, 87.4% of the existing fields were correctly classified as being saffron.  Five 

saffron field age groups could be well discriminated based on their spectra-temporal characteristics, i.e. 1st 

year, 2nd year, 3rd year, 4th-6th year, and 7th-8th year groups showed high separability. The age-based 

classification result presented an overall accuracy of 86.8% using NDVI time series from December to May. 

Merged two age groups outperformed individual age classes.  The S2 derived peak flowering date agreed 

well (R2 = 0.69, RMSE = four days) with surveyed crop calendar data of 46 fields. Overall, this study 

demonstrated the potential utility of S2 time series data for accurately mapping saffron field distribution, 

age classification, and flowering phenology detection. These findings provide a basis for further investigation 

in upscaling the study area in a larger extent, and monitoring changes of saffron distribution and phenology 

in the spatial and temporal patterns. 

Keywords: Sentinel-2 time series, Random Forest, spectral-temporal features, age-based classification, EBI, 

peak flowering 
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1. INTRODUCTION 

1.1. Background 

Saffron (Crocus sativus L.) is an autumnal-flowering perennial geophyte whose dried scarlet stigmas are known 

as the costliest spice and have been dubbed “the red gold” (Basker & Negbi, 1983; Negbi, 1999; Winterhalter 

& Steaubinger, 2000; Fernandez, 2004). The main reason for its high price is the low productivity and the 

need for intensive labour for cultivation, harvesting, and processing (Kumar et al., 2009; Ghorbani & 

Koocheki, 2017). Since time immemorial, saffron has been highly valued for its flavouring, colouring, 

aromatic capacity, as well as medicinal function for analgesia and sedation (Winterhalter & Steaubinger, 2000; 

Gresta et al., 2016; Kumar et al., 2009; Lichtfouse, 2013). Recent studies are boosting interests in its latent 

medicinal value, especially in cytotoxic, antitumor, and anticarcinogenic properties (Abdullaev & Frenkel, 

1999; Fernandez, 2004; Gresta et al., 2016). Due to its edible and medicinal value, saffron has attracted 

considerable new generation consumers, which increases its global market demand (Gresta et al., 2008; 

Kumar et al., 2009). 

Iran is the major producer of saffron products worldwide. It accounts for more than 90% of the world 

saffron production, and 60% of the total saffron cultivation area (Ghorbani, 2007), most of which is found 

in its north-eastern Khorasan region (GIAHS, 2018). This is not only due to its high commercial value, but 

also because of the suitability of local climate conditions for saffron growth. The cultivation of saffron has 

very low fertilizer and water requirements. The daughter corms can survive inside the soil during the hot 

summer due to its heat-tolerant characteristics. The low input requirements of saffron also makes it an 

alternative viable crop for organic and low-input cropping systems, which is able to provide promising 

production for sustainable agriculture. In the last 30 years, an enormous increase in saffron cultivation area 

has been registered in Iran. As a result, saffron cultivation has greatly stimulated the development of the 

local economy and created vast job opportunities for about 400,000 people in the region. These jobs 

effectively reduce the general depopulation trend of rural Iran by providing sustainable livelihoods 

(Esmaeilpour & Kardavani, 2011).  

Saffron yields show large spatial and interannual variability, which is influenced by field age, agronomic 

management, and environmental factors. The dried stigma yield can vary from 1.5 to 15 kg/ha; they are 

relatively low in the first year and increase to the maximum level in the third or fourth year. After that, 

production declines because of reduced size and reproduction capability of corms, as well as increasing 

competition between overcrowded corms for water and nutrients (Kumar et al., 2009). Besides, the corm 

dimension and sowing time also influence flower production. Research showed that larger corm size and 

earlier sowing time generally have a positive effect on stigma production (De Mastro & Ruta, 1993; Negbi 

et al., 1989; Gresta et al., 2008). In addition, appropriate crop management (e.g. irrigation, weeding, etc.) is 

also important for improving saffron production. Irrigation before saffron flowering directly influences the 

anthesis duration, flower amount, and stigma quality. Due to the short height and narrow leaves of saffron 

vegetation, weeds are important competitors for contesting nourishment, sunlight, and water (Esmaeilpour 

& Kardavani, 2011; Ghorbani & Koocheki, 2017). Moreover, the production of saffron is sensitive to 

climate change. Hosseini et al. (2008) found that saffron yield variation in Iran is associated with temperature 

and precipitation, and given the expected climatic shifts a further yield decrease is expected. Zahmati et al. 

(2018) and Molina et al. (2005) stated the appropriate temperature for daughter corm producing and flower 

initiation is 23 to 27°C during late spring, while flower emergence needs a temperature below 16°C during 

autumn. Winter chilling with ten days below 8°C is also required for daughter corm development. Predicted 
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drought (Daneshvar et al., 2019; IPCC, 2014) requires more intensive irrigation using groundwater, which 

will cause gradual lowering of the groundwater table (Motagh et al., 2008). These stresses from 

environmental changes threaten the sustainable production of saffron and may eventually demand 

geographic shifts or reduction in cultivation area to locations where the (new) climate condition will be more 

suitable for saffron growth.  

To better understand the impacts of environmental change on saffron cultivation and productivity, 

identifying and monitoring the saffron field changes is of exceptional importance for effective agronomic 

management for local agricultural sectors and farmers. However, detailed spatial and temporal saffron 

cultivation assessments at the landscape scale hardly exist. The first step should devote to improving 

knowledge on accurate location and area information of saffron cultivation.  

In Iran, the documentation of crop types, location, and area, is traditionally performed using ground-based 

agricultural surveys under the responsibility of two major organizations, i.e. the Ministry of Jihad-e-

Agricultural (MOJA) and the Statistical Centre of Iran (SCI) (Mehrdad, 2014). Given the impossibility to 

cover all farms and fields during these surveys, and the lack of georeferenced field level information, time-

efficient accurate methods are needed to better understand crop distribution. 

Satellite imagery has become a promising alternative data source for mapping and monitoring cropland at 

large scales (Wardlow et al., 2007; Xie et al., 2019). Since the last decades, optical satellite images have been 

widely used for mapping croplands using different classification algorithms. Recent research used image 

time series to monitor crop growth by providing precise and timely information on the phenological 

performance and growth status of vegetation. Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellite has proven to be useful for large-area cropland classification by providing near-daily global coverage 

of free intermediate resolution (250m) data (Lobell & Asner, 2004; Wardlow et al., 2007; Pittman et al., 2010; 

Dheeravath et al., 2010). However, it is not suitable for saffron field detection because a large number of 

saffron fields in Iran cover small areas (0.05-1.0 ha) (Behdani et al., 2009).  

The new generation of Landsat and Sentinel-2 (S2) satellites with a fine spatial resolution (10-30m) provide 

a better option for this purpose. Landsat 8 imagery has a spatial resolution of 30 meters and a revisiting time 

of 16 days. Its utility for cropland classification has been reported by literatures (Badhwar et al., 1987; Zhong 

et al., 2014; Turker & Arikan, 2005). The S2 constellation provides satellite images with higher spatial-

temporal resolution. Taking advantage of fine-spatial resolution (10-60m) Multi Spectral Instrument (MSI) 

with 5-day revisit interval, S2 has been increasingly used in cropland mapping and phenology detection 

studies in recent years (Gómez et al., 2016; Belgiu & Csillik, 2018; Vrieling et al. 2018; Stendardi et al., 2019). 

Despite advances that have been made with crop mapping at fine spatial detail using 10-30 m optical 

satellites, at present no precise spatial information is available on saffron cultivation areas and its changes.  

Until present, only three saffron studies have been conducted using remote sensing technology 

(Rahimzadegan & Pourgholam, 2017; Dehghani Bidgoli et al., 2018; Farzadmehr & Bajestani, 2018). They 

all devoted to mapping saffron distribution with single-date or two dates Landsat 8 imagery at the county 

level. The classification result showed an overall accuracy ranging between 82% to 95%. However, these 

studies are reported in Persian and only English abstract is available. Nonetheless, they have suggested the 

potential of satellite imagery for saffron mapping, but there seems scope for improvement. Firstly, even 

though Landsat imagery has a relatively high spatial resolution (30m), the classification accuracy still not 

satisfactory for small fields (overall accuracy of 62% for fields under 0.2 ha, 72% for fields between 0.2 and 

0.5 ha) (Dehghani Bidgoli et al., 2018). Secondly, because the selected images (acquired in January and May) 

correspond to the start and end of the vegetation period of saffron, it is easy to confuse saffron and winter 

wheat, which have a similar fractional cover of green vegetation for this two dates  (Rahimzadegan & 

Pourgholam, 2017). Besides, the long revisit interval (16 days) of the Landsat 8 satellite lead to an insufficient 

number of cloud-free observations to capture detailed phenological behaviour, especially during seasons 
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(January to April) with persistent cloud cover in Iran. However, as this period is exactly the vegetation stage 

of saffron, more temporal data during this period would help detect distinct spectral-temporal behaviours 

of saffron. It can be beneficial for improving mapping accuracy and analysing the intra-class spectral 

variability of saffron.  

Taking advantage of the short revisit interval (5 days) of S2 imagery, more temporal data would be available 

to produce a dense time series. Saffron’s particular phenology in combination with the high temporal density 

of S2 should allow for effective classification and monitoring purposes. To improve the mapping accuracy, 

enhancing the understanding of the temporal behaviour of saffron phenology and cultivation practices is 

the first step. It also has great implications for monitoring phenological dynamics as a response to 

environmental changes. Since saffron crop age and its yield are interdependent, it is necessary to know the 

distribution and area under different age groups. Meanwhile, monitoring saffron phenological performance, 

such as the flowering period also provides important information for effective crop management and yield 

assessment. 

1.2. Research objectives  

The aim of this study is to evaluate if S2 time series allow for accurate mapping of saffron fields, classification 

of saffron crop age, and monitoring its phenological behaviour in Torbat-e Heydariyeh county in northeast 

Iran. Extending from the main research aim, the following objectives [O] and hypotheses [H] are defined: 

[O1] To develop and assess a spectral-temporal feature selection method for identifying saffron fields from 

S2 time series. 

 [H1-1] Saffron fields display specific temporal variability in spectral reflectance, which relates to its 

phenology and is significantly distinct from other land covers. 

[O2] To map saffron fields for the study area based on selected spectral-temporal features and assess the 

map accuracy. 

[H2-1] A Random Forest (RF) classification model that incorporates key spectral-temporal features of 

saffron can provide maps with at least 90% overall accuracy. 

[O3] To analyse if time series of vegetation indices (VIs) allow differentiating different ages of saffron 

cultivation. 

 [H3-1] Similar temporal behaviour but with increasing magnitude of the VI peak values during the 

vegetation stage is expected to be observed with the increase of saffron field age (1-4 years old) on 

multi-year time series. 

 [H3-2] Old saffron fields (6-8 years old) are hard to be distinguished between each other due to a 

similar vegetation cover. 

[O4] To demonstrate the possibility of detecting the peak of saffron flowering from S2 time series and 

characterize temporal variation of reflectance in relation to management. 

[H4-1] The retrieved peak of saffron flowering from S2 time series shows on average no more than 5 

days difference compared with the peak flowering date obtained from in-situ survey data. 
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2. MATERIALS AND METHODS 
This part consists of seven sections. The study area, field data collection, and satellite data preprocessing are 

described in Section 2.1, 2.2, and 2.3, respectively. In Section 2.4, spectral-temporal features of known 

saffron fields were identified from S2 time series. Subsequently, these features were used as input to a RF 

classifier in order to map saffron fields in the study area (Section 2.5). Then, it was analysed if S2-derived 

spectral-temporal information allows to differentiate different ages of saffron fields (Section 2.6). Finally, 

saffron peak flowering phenology was retrieved from S2 time series and compared with in-situ survey data 

(Section 2.7). 

Image processing, data analysis, result assessment, and visualization were realized in Jupyter notebooks with 

Python 3.7. Other platforms and tools were also used as auxiliary means, such as QGIS for data preview 

and mapping, and MATLAB for statistical analysis. 

2.1. Study area  

The study area is located in the eastern region of Torbat-e Heydariyeh county, Razavi Khorasan Province 

in northeast Iran (Figure 1). It covers an area of 506 km2. The area has a cold semi-arid steppe climate (BSk) 

according to the Köppen-Geiger classification (Peel et al., 2007). The annual mean temperature and 

precipitation are 26 °C and 236 mm respectively. Figure 2 shows the average monthly weather data which is 

characterized by a mild winter, rainy spring, and hot dry summer. 

The county is famous for its saffron production and is first in Iran in terms of saffron production area. 

Saffron covers more than 30% of the total planted area of the county due to its characteristics of high 

returns and low water requirement compared with other crops. Saffron corms are usually lifted from the 

soil and planted in new fields during real dormancy (in May to the end of June) or pseudo-dormancy (from 

early July up to August) stages. After planting, corms stay in the same field for five to eight years during 

which saffron remains productive. The timing of the first irrigation in autumn (i.e. pre-flowering irrigation) 

is a critical determinant of flowering time and saffron yield (Sepaskhah & Yarami, 2009). This first irrigation 

should take place at the moment when air temperatures are declining (below 16 °C) in order to optimally 

replenish soil moisture and reduce evaporation losses.  About one week after the pre-flowering irrigation 

soil ploughing is performed in order to loosen the soil, i.e. to assist the emergence of the flowers (Koocheki 

& Khajeh-Hosseini, 2019). Flowering starts between two and three weeks after irrigation when air 

temperatures are around 12 °C, which normally is between mid-October and early November (Alizadeh et 

al., 2009). When most flowers bloom and have red stigmas, farmers start to harvest the flowers manually, 

and the most precious part (the stigmas) are subsequently separated and dried. The vegetative stage starts 

immediately after flowering from the end of November and lasts until late May (Koocheki & Khajeh-

Hosseini, 2019). During this stage, the leaves reach maturity and provide necessary supplies for corm 

development through photosynthesis. Irrigation is performed four to five times during this phase to improve 

the corm number, yield, and nutrient uptake (KHAZAEI et al., 2013). -In June, the leaves start to senesce, 

and the daughter corms become dormant to prepare for the new growing season. During the dormant phase 

when temperatures are high and soils are dry, irrigation is not recommended to reduce mite population and 

avoid corm infection (Behdani & Fallahi, 2015). Saffron is cultivated in the same fields for five to eight 

growth seasons. However, one well-known problem of the perennial crop is the reduction of soil fertility 

and saturated density of corms in long term cultivation, which can ultimately lead to soil overexploitation 

and dramatic yield reduction (Gresta et al., 2016). To solve this problem, farmers usually leave the field 

fallow or grow other crops for multiple years. Apart from saffron, other main crops in the county include 

barley, winter wheat, spring wheat, pistachio, and alfalfa. 
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Figure 1. Overview of the study area and the sampled fields (coloured dots). The background shows a Sentinel-2A image acquired on 26th 
Sep 2018 with a RGB composite of NIR, Red, and Green band. 

 

Figure 2. Average monthly temperature and precipitation in Torbat-e Heydariyeh as derived from weather data of the past 30 years (January 
1982 -December 2012) 

2.2. Field data collection   

In-situ data were collected during a two-week field survey that took place between 9 and 23 December 2019, 

i.e. when saffron was at the vegetative stage). Considering that the study area is located between two 

mountain chains that run in east-west direction, the survey route was designed along the main road that runs 

in the same direction and spans a total length of 42 km. The in-situ survey data include parcel location 

information for fields with saffron and with other crops, saffron field age information, and phenological 
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stages related farming calendar information such as irrigation date, flowering and harvesting period. More 

details about the survey data are explained below. 

2.2.1. Crop field location data  

The field location data (a total of 119 fields, named Dataset A) collected through field surveys were used as 

training and test samples for feature selection and classification (Spectral-temporal feature selection for saffron 

identification). Geographic coordinates were recorded for the corners that delimit the boundaries of each field 

using a Garmin ETrex 30x GPS device. The EPSG: 32640 (WGS 84/ UTM 40N) coordinate system was 

used throughout the survey. The dataset includes 30 saffron fields, 19 winter wheat fields, seven spring 

wheat fields, 11 pistachio fields, four barley fields, four alfalfa fields, and 44 bare soil areas. The area of these 

field samples varied between 0.7 and 22 ha.  

In addition, a field survey conducted by the student Halimeh Eslahi from the University of Torbat Heydarieh 

between June 2018 and February 2019 provided additional locational information for 213 saffron fields. 

This dataset (named Dataset B) was used to assess the accuracy of the constructed saffron map (Saffron field 

mapping and accuracy assessment). The distribution of these sample fields is shown in Figure 1. 

2.2.2. Saffron crop calendar 

To better understand the timing of farming practices related to saffron cultivation, a number of farmers 

were interviewed during the fieldwork. Since few farmers were working in the fields during the survey period, 

most farmers were contacted prior to the field visit with the help of staff (Dr. Hamed Kaveh and Dr. Ali 

Salariyan) from the Saffron Institute. In total, 30 farmers were interviewed directly at their saffron fields, 

resulting in field-specific survey information on crop calendars and practices was collected. The dataset 

includes information about the 2016 to 2019 saffron growing seasons, and includes irrigation frequency and 

dates, ploughing date, and peak flowering period (which directly corresponds to harvesting period). It has 

to be mentioned that during the interview, some farmers cannot remember the exact date of these operations 

for years prior to 2018. To avoid incorporation of recall error and guarantee data quality, only information 

for the last two growing seasons (2018-2019) was used in subsequent analyses. 

2.2.3. Saffron field photography and age information 

Saffron is a perennial plant that is generally cultivated in the same field for five to eight years in the study 

area (Gresta et al., 2008). To perform age-based classification, planting year information for the 30 saffron 

fields in Dataset A were also recorded during the farmer interviews. Besides, during the field survey, nadir 

photos were taken from a fixed height (around 1.3 meters) at multiple positions within each saffron field. 

These photos are able to reflect the vegetation density of different age saffron fields during late December. 

Figure 3 shows some examples of the photos; it shows that the older the saffron field, the higher the 

vegetation density. This performance was confirmed by farmers during the interviews. Besides, this 

information also contributes to better understanding the spectral differences between different age saffron 

fields at a certain time on VI time series.  

2.3. Sentinel-2 data acquisition and preprocessing   

The S2 mission comprises two polar-orbiting satellites, S2A and S2B, which share the same orbit but phase 

at 180° (ESA, 2015). They were launched by the European Space Agency (ESA) Copernicus programme on 

23 June 2015 and 7 March 2017, respectively. The combination of the two satellites provides a five-day 

revisit interval for the same location on the earth surface. Areas covered by overlapping orbits have an even 

shorter revisit time, but this is not the case of Torbat-e Heydariyeh. Each S2 satellite carries the multi spectral 

instrument (MSI) with 13 spectral bands at 10-60 m spatial resolution.  
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Figure 3. Nadir pictures of saffron fields with different age crops taken from 9th to 15th December 2019. (a)-(h) refers to 1 to 8 years age 
saffron crop respectively 

A set of 259 Level-1C S2 images for tile 40SGE between 20 August 2015 and 20 February 2020 were 

downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu) and USGS Earth Explorer 

website (https://earthexplorer.usgs.gov). This study did not directly download and use the Level-2A 

Bottom-Of-Atmosphere (BOA) product processed by ESA because it is only available from 15 December 

2018 for the test region, and consequently does not match the full-time frame of this study. The Sen2Cor 

processor (version 2.8) was used for atmospheric correction of each single date Level-1C Top-Of-

Atmosphere (TOA) product. One of the outputs of Sen2Cor is the 20m resolution Scene Classification 

(SCL) layer, which was used to mask out clouds, cloud shadows, snow, and other noises by aggregating 

seven classes, i.e. no data (0), saturated or defective (1), dark area (2), cloud shadow (3), cloud medium 

probability (8), cloud high probability (9), and snow (11) with a 20 m buffer. The masked images of 20 m 

resolution bands (Table 1) were resampled to 10 m, and then all these masked images were clipped to the 

study area extent. Besides, image stacks were made for each band image and prepared to extract spectral 

time series.  

Table 1. A summary of the ten spectral bands in S2 satellite data used in this study 

Band name Central wavelength 

(nm) 

Resolution 

(m) 

Band name Central wavelength (nm) Resolution 

(m) 

Band 2 490 (Blue) 10 Band 7 783 (Red Edge) 20 

Band 3 560 (Green) 10 Band 8 842 (NIR) 10 

Band 4 665 (Red) 10 Band 8A 865 (Red Edge) 20 

Band 5 705 (Red Edge) 20 Band 11 1610 (SWIR) 20 

Band 6 740 (Red Edge) 20 Band 12 2190 (SWIR) 20 

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
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2.4. Spectral-temporal feature selection for saffron identification 

To select which spectral-temporal features are typical for saffron fields, a feature selection framework was 

applied for accurately identifying saffron fields using satellite time series. Firstly, possible spectral-temporal 

features were extracted from S2 time series. Secondly, the RF feature importance score was used as the basis 

for selecting a subset of features that achieved optimal accuracies in separating saffron fields from other 

crops or land cover. 

2.4.1. Feature extraction 

Feature extraction is the fundamental step of image-based classification to transform satellite images into 

useful information for a specific purpose, such as crop classification. Previous research has demonstrated 

that multi spectral time series data allowed for more accurate crop classification as compared with the use 

of single-date imagery (Chang et al., 2007; Zhong et al., 2014; Arvor et al., 2011). Multitemporal information 

can capture the seasonal dynamics and phenological stages, which often differ between crop types (Foerster 

et al., 2012; Pan et al., 2012). Such dynamics can be expressed differently depending on the spectral domain 

considered (Gitelson et al., 2002; Jiang et al., 2006). S2 MSI provides information in spectral regions that 

are sensitive to crop characteristics, such as the visible and near-infrared (VNIR) bands, which are related 

to leaf pigments, and short-wave infrared (SWIR), which is influenced by water content and non-

photosynthetic components (Peña-Barragán et al., 2011). Moreover, vegetation indices (VIs) combine 

information from spectral bands to enhance the vegetation signal and as such are useful in crop classification. 

They are capable to characterize the crop behaviour during different phenological phases in relation to 

vegetation status, residue cover, and canopy structures (Bégué et al., 2011; Huete et al., 2002).  

In this study, to reduce the feature dataset volume, multiple satellite acquisitions in a single month were 

summarized to average monthly spectra or VI per pixel (i.e. 12 temporal features per year). The spectral 

features consist of spectral reflectance of 10 individual bands (Table 1) and 11 VIs (Table 2), which have been 

previously used in crop mapping studies to detect the different biochemical and physical properties of 

specific crops. The 11 VIs were divided into six groups according to their differences in spectral regions 

used. Group A to F are the combination of spectral regions in visible and NIR, RedEdge and NIR, NIR 

and SWIR, SWIR and SWIR, visible and visible bands, respectively. 

2.4.2. Feature selection 

The combination of 21 spectral features for each of the 12 months results per year in a high dimensional 

dataset of 252 spectral-temporal features, which may increase the computation time with little improvement 

in classification accuracy (Xie et al., 2019; Hao et al., 2015; Löw et al., 2013; Hu et al., 2019). To remove 

redundant and irrelevant variables prior to image classification, various feature selection (variable elimination) 

methods have been developed and applied to remote sensing data (Hao et al., 2015; Hu et al., 2019; Howard 

& Wylie, 2014; Löw et al., 2013; Loosvelt et al., 2012). In this study, the RF feature importance score was 

used as the basis for selecting a subset of variables to achieve optimal accuracies of saffron field identification. 

Pal & Foody (2010) showed that RF feature importance score ranking has competitive performance for 

feature selection compared with other algorithms. The main advantages of RF compared with other 

algorithms are its ability in handling high dimensional input variables and its robustness to over-fitting. The 

final importance of each variable is determined by the permutation importance, which is calculated based 

on the increase of misclassification rate after permuting a certain feature (Goldstein et al., 2011).  

Sample data was generated from the pixels in the 119 surveyed fields (Dataset A). To reduce the influence 

of heterogeneous pixels around the field edge, a 10 m negative buffer was created for each field parcel. Each 

sample is a combination of 1) the spectral-temporal information (i.e. 252 features) in the pixel, and b) the 

known crop type or land cover corresponding to that information. Two free parameters in RF were 

optimized: the number of trees was set at 500 to allow the convergence of out-of-bag error (OOB error) 
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statistics; the number of features to split the nodes was set as the square root of a total number of input 

features as commonly recommended to decorrelate the trees (Gislason et al., 2006; Belgiu & Drăgu, 2016). 

The classifier was repeated for 50 times. Each time 70% of the 3797 pixels in 119 samples were randomly 

selected as training data for each class, and the remaining 30% (1139 pixels) were used as test data for 

validation. Eventually, the feature importance was calculated as an average of the 50 runs. The feature 

importance was assessed using the Scikit-Learn package in Python 3.7. Following the ranking of importance 

scores, the most important features were selected as the optimal subset of features for saffron mapping. 

Table 2. A summary of the vegetation indices explored in this study 

Group Spectral 

region 

Vegetation 

index 

VI derived from S2 Commonly related to Reference 

A Visible-NIR NDVI (B8-B4)/(B8+B4) Vegetation status, 

canopy structures 

(Rouse et al., 1974) 

(Tucker, 1979) 

 EVI-2 2.5*(B8-

B4)/(B8+2.4*B4+1) 

(Jiang et al., 2008) 

B RedEdge-

NIR 

RERVI B8/B6 Biophysical characters 

of  vegetation 

(Jasper et al., 2009) 

 RENDVI (B8-B6)/(B8+B6) (Gitelson & 

Merzlyak, 1994) 

 REVI-2 2.5*(B8-

B6)/(B8+2.4*B6+1) 

Modification of  

(Jiang et al., 2008) 

C NIR-SWIR NDII (B8-B12)/(B8+B12) Water content, residue 

cover 

(Hardisky et al., 

1983) 

 NDWI (B8-B11)/(B8+B11) (McFeeters, 1996) 

D Visible-

SWIR 

NDSVI (B11-B4)/(B11+B4) Vegetation status, water 

content, residue cover 

(Qi et al., 2002) 

 NDRI (B4-B12)/(B4+B12) (Gelder et al. , 

2009) 

E SWIR-SWIR NDTI (B11-

B12)/(B11+B12) 

Non-photosynthetic 

components, residue 

cover 

(Van Deventer et 

al.,  1997) 

F Visible-

Visible 

VIgreen (B3-B4)/(B3+B4) Leaf  pigments, 

vegetation status 

(Gitelson et al., 

2002) 

2.5. Saffron field mapping and accuracy assessment 

RF is one of the commonly used classification algorithms that has shown good performance for cropland 

classification (Tatsumi et al., 2015; Sonobe et al., 2014; Ok et al., 2012; Pal, 2005). RF classifier is an ensemble 

of decision trees where each tree is constructed on a random subset from the total set of input variables. 

The final classification results are obtained by taking the majority voted class in the forest. In this study, the 

selected spectral-temporal features under section 2.4 were used as input variables for the RF classifier. The 

setting of the RF parameters was kept the same as for the training model setting described in Section 2.4.2. 
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A k-fold cross-validation was performed as a first assessment of the classification accuracy. It is a resampling 

procedure that is able to make predictions on all data and result in a less biased estimate of the model skill 

than a simple sample split method (Kohavi, 1995). The value of k refers to the group number that the 

samples will be split out, it was set as ten as recommended which generally results in a model skill estimate 

with low bias and modest variance. Samples for training and testing the RF classifier were similar to the 

dataset for feature importance calculation in Section 2.4.2 (i.e. Dataset A). The difference is that only the 

selected features were used as input variables. Among this dataset, 90% of the samples (nine groups) were 

retained as the training dataset, and the left 10% (remaining one group) were used as validation data for 

testing the model. The 10-fold cross-validation then consisted of repeating this procedure ten times, each 

time using a different 10% of the dataset as the test data (and the remaining 90% for training). Finally, the 

accuracy of this model is the mean value of all evaluation scores. The performance of the RF classification 

model was evaluated in terms of common statistical measures derived from the confusion matrix, which 

include the overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and kappa coefficient 

(Foody, 2002). 

To analyse the accuracy of the obtained saffron map, a set of new samples were extracted from Dataset B. 

The Dataset B consists of 213 saffron field parcels and is independent to Dataset A. Pixels which are located 

in these 213 polygons were used as sample data. This resulted in a total of 3019 pixels which have a label 

“saffron”. The accuracy of saffron map was assessed using Sensitivity (i.e. true positive rate) index which 

refers to the ratio of truly predicted saffron pixels number to actual saffron pixels number (Altman & Bland, 

1994). Specificity (i.e. true negative rate) cannot be calculated since no additional non-saffron fields are 

available in the study area (Altman & Bland, 1994).  

2.6. Assessing the feasibility of classifying saffron fields by age 

2.6.1. Spectral separability analysis 

The attempt on classifying saffron crop age can be beneficial to analyse the reason for spectral-temporal 

variability of saffron which may cause disturbance on discriminating saffron with other crops. Moreover, 

saffron field age information is also important for farmers and decision-makers in crop management and 

rough yield estimation due to the strong link between crop age and saffron production (Kumar et al., 2009). 

Saffron age discrimination has not yet been attempted using remote sensing. For a very different tree crop 

(arecanut), crop age discrimination was attempted with hyperspectral imagery based on the age-dependent 

distinct spectral behaviour (Bhojaraja et al., 2016). According to the information collected from the field 

survey in December 2019 (nadir pictures shown in Figure 3) and interviews with local saffron experts, saffron 

fields with different ages usually presents various vegetation density during the vegetation stage (December 

to May), which is related to the number of daughter corms. In principle, the older the saffron field, the 

higher the density of green vegetation, although also external factors such as weeding practices and irrigation 

play a role. Figure 4 demonstrates this using a 4-year time series of field-level NDVI observations from S2. 

On the first field (Figure 4a) saffron was planted in 2005, and on the second field (Figure 4b) in 2011. Despite 

the smaller number of observations before 2018, the figure clearly shows that in the first four years of 
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cultivation, there is a gradual increase of green vegetation cover, whereas after this it remains more stable.

 

Figure 4. Two examples of NDVI time series extracted from saffron fields which are cultivated by saffron (a) age from 1 to 4 

years (b) age from 5 to 8 years from August 2015 to July 2019 

Among the VIs used for feature selection (Table 2), NDVI is the most commonly used vegetation index, 

which is associated with vegetation canopy greenness (Myneni et al., 1995). It was applied for analysing the 

differences in spectral performance of different age saffron crops during the vegetative stage. To analyse if 

saffron field age can be classified based on NDVI time series, the spectral variability of NDVI within same 

age fields (intra-class) and separability between different age fields (inter-class) during the vegetation stage 

(December to May) were quantified by the Jeffries-Matusita (JM) distance. JM distance is a parametric 

criterion with a value range from 0 to 2, where a large value indicates that two compared classes are more 

distinct, i.e. that their interclass variability is larger than their within-class variability. Therefore, it is able to 

verify the distinctness of the NDVI time series between saffron fields with different planting age. 

As input to assessing the JM separability between different age groups, for each of the 120 sample fields (30 

fields with age information in four growth seasons), we considered the average monthly NDVI between 
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December and May (i.e. six bands). The overall separability 𝑆 between each group pairs for the combination 

of six bands was calculated by Eq.1.  

𝑆 = √∑ 𝐽𝑀𝑖
2                     (Eq.1) 

2.6.2. Age-based classification and accuracy evaluation 

Supervised classification method RF classifier (as mentioned in Section 2.5) with 500 trees was executed in 

this study. The number of age classes was determined based on the previous analysis. The average monthly 

NDVI between December and May in four growth seasons (2015-2019) for each of the 30 sample fields 

were combined and used as input dataset for the training classification model. Cross-validation and accuracy 

assessment follow the same methods used in Section 2.5.  

2.7. Retrieval of peak flowering times from Sentinel-2 

Flowering is an essential phenological period for saffron growth that directly reflects its yield. Saffron 

anthesis generally lasts for four to six weeks, but harvesting is only performed two weeks of this period due 

to the high labour cost. Usually, the harvesting practice starts when most of the flowers in the field bloom 

which is so-called peak flowering. Consequently, detecting the peak flowering date can be thought of equal 

to detect the start of the harvesting period. The method used in this study for detecting the peak flowering 

date consists of three steps. Firstly, a customized Enhanced Bloom Index (EBIc) was developed to capture 

the unique spectral dynamics of saffron fields during the flowering period. Secondly, the EBI time series 

were smoothed and peaks were detected for saffron field samples with crop calendar data. Thirdly, the 

consistency and accuracy between detected peak flowering date and surveyed harvest date were analysed at 

the field level. 

2.7.1. Enhanced blooming index customization 

To capture the signals of saffron anthesis with optical satellite data, the Enhanced Bloom Index (EBI) was 

selected and customized as it is able to reflect the unique spectral performance of saffron flower during the 

flowering period. The EBI was first proposed by Chen et al. (2019) to characterize the blooming timing and 

intensity of almond flowers. Chen et al. (2019) demonstrated that the EBI can enhance the signals of flowers 

and reduce the background noise from soil and green vegetation. It was calculated using 

equation: 𝐸𝐵𝐼 =  𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 (𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠 ∗ 𝑆𝑜𝑖𝑙 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒)⁄ =  𝑅 + 𝐺 + 𝐵 (𝐺 𝐵⁄ ∗ (𝑅 − 𝐵 + 𝜀)).⁄  The 

equation is built on the differences between in-situ spectral measurements of almond flower, green 

vegetation, and soil in the field. Since the almond flowers are normally white or pink, i.e. different from the 

purple colour of saffron flowers. The equation for calculating EBI needs to be customized based on saffron 

field spectral profiles to make it suitable for this study. 

Since there are no available in-situ spectral measurements for saffron fields, the averaged spectral reflectance 

of saffron fields at different crop stages (bare soil, flowering, and green vegetation) were extracted from S2 

data. First, the time windows that can reflect the three growing stages were selected. According to saffron 

phenological stages defined by the extended international Biologische Bundesanstalt, Bundessortenamt und 

Chemische Industrie (BBCH) scale (Lopez Corcoles et al., 2015; Yasmin & Nehvi, 2018) and interview 

information from local farmers about saffron growth stages and time, saffron fields are bare from July to 

September (BBCH 01 to 09), peak flowering period usually happens from mid-October to late November 

(BBCH 63 to 67), and vegetation has maximum greenness from February to April (BBCH 17 to 19).  

For all saffron field samples, their average spectral value was calculated in different wavelength bands (visible 

R, G, B, and NIR) for these three stages (i.e. soil, flower, green vegetation) within the selected time windows 
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(Figure 5). Green leaves (green colour) have a high reflectance in NIR as compared to the visible bands where 

it shows a small peak in the green band. During the saffron flowering period, a similar spectral pattern can 

be observed as for bare soil, but with overall a lower reflectance. This is likely because the soil signal remains 

dominant given the low density of saffron flowers. Moreover, since irrigation and ploughing practices are 

usually operated around half a month and one week before flowering respectively, the soil becomes wetter, 

darker and rougher and consequently displays a lower reflectance. Considering the principle of EBI which 

aims to enhance the spectral signature of bloom while weakening background spectral signals from the soil 

and green leaves, above analysis on the performance of saffron field reflectance during bare soil and 

vegetation stage can be used to define the soil and greenness signature. However, the S-2 reflectance on a 

single band during flowering period cannot be linked to the spectral signature of saffron flower due to the 

disturbance of soil background.  

To explore the spectral signature of saffron flower, its purple colour can be considered as a unique 

characteristic of saffron flower which performs differently on visible bands compared with green leaves and 

black soil. Chittka & Waser (1997) studied the spectral reflectance curves of coloured flowers and indicated 

that purple flowers typically have a relatively higher reflectance in blue and red bands compared with the 

green band (Figure 6). Therefore, the equation of customized EBI (𝐸𝐵𝐼𝑐 ) can be formulated as Eq.2. 

(0.5(𝑅 + 𝐵) − 𝐺)/(0.5(𝑅 + 𝐵) + 𝐺) in the numerator is used as the purpleness index to represent the 

overall higher reflectivity of saffron flowers. (𝐺 − 𝑅)/(𝐺 + 𝑅) which is the equation for VIgreen (i.e., 

greenness), it is added to the denominator to reduce the impact of green leaves. 𝑁𝐼𝑅 is introduced as another 

multiplicative term in the denominator to reduce the background signature influences from both soil and 

vegetation. The 𝜀 was set to 1 if the reflectance data ranging from 0 to 1, and set to 256 when applied to 

data between 0 and 255 (Chen et al., 2019). 

𝐸𝐵𝐼𝑐 =
𝑃𝑢𝑟𝑝𝑙𝑒𝑛𝑒𝑠𝑠

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠∗𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒
=

(0.5(𝑅+𝐵)−𝐺)/(0.5(𝑅+𝐵)+𝐺)

((𝐺−𝑅)/(𝐺+𝑅)+𝜀)∗𝑁𝐼𝑅
                     (Eq.2) 

 

Figure 5. S2 reflectance in red, green, blue, and near-infrared bands during the expected time periods of bare soil presence, flowering, and 

vegetative stages. Each broken line refers to the average reflectance of saffron fields for one S-2 image. 
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Figure 6. Spectral reflectance for flowers of different colour in the visible part of the electromagnetic spectrum (Chittka & Waser, 1997) 

2.7.2. Peak flowering date detection from smoothed EBI time series 

EBI time series were extracted based on Eq.3 from preprocessed cloud-free S2 band stacks of the 2018 and 

2019 growing seasons, and were spatially averaged for each saffron field with a 10 m negative buffer. Since 

the time-series data are spatial-temporally discontinuous, it is hard to observe a clear pattern (e.g. peak) from 

the time series. A number of mathematical filters have been developed in recent years to smoothen time 

series. The most commonly used methods can be divided into two groups: 1) smoothing in the frequency 

domain such as Fourier-based fitting methods (Sellers et al., 1994; Geerken, 2009); 2) smoothing in the time 

domain such as asymmetric Gaussian function fitting methods (Jönsson & Eklundh, 2002), Savitzky-Golay 

filtering (Chen et al., 2004), double logistic models (Beck et al., 2006), and the Whittaker smoother (Eilers, 

2003). Studies compared the capability and reliability of different smoothing algorithms and indicated that 

their application resulted in small temporal differences (less than one week) when retrieving phenology 

(Atkinson et al., 2012; Beck et al., 2006; Hird & McDermid, 2009). In this study, the Savitzky-Golay filter 

was used to smooth EBI time series and executed using the SciPy package in Python 3.7. It is a convolution 

process which fits sub-sets of adjacent data with a low-degree (two-degree was used in this study) polynomial 

by the method of linear least squares. The smoothing window size was set to 11 and a three times iteration 

was used to make data approach the upper EBI envelope to best fit the EBI variations during the flowering 

period. 

2.7.3. Comparison with phenology survey data 

To assess the relationship between satellite derived peak EBIc and surveyed start dates of harvesting, the 

coefficient of determination (𝑟2) and root mean squared error (RMSE) between both were calculated. For 

the surveyed 30 saffron fields, 46 crop calendar data are available in total, consisting of 16 fields with reliable 

in-situ data in 2018 and 30 fields with reliable data in 2019. 
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3. RESULTS 

3.1. Spectral-temporal features for discriminating saffron from other crops 

Figure 7 presents the temporal profiles of different VIs and spectral bands for saffron (black curves) and 

other crops (coloured curves) from July 2018 to June 2019. These temporal profiles were calculated by per-

class averaging of the corresponding VI or spectral values of pixels within the 119 sample field parcels. Figure 

7 shows that the spectral differences between saffron and other classes vary over time. For example, NDVI 

from July to October presents low value for most crops apart from alfalfa. The NDVI value of saffron 

increases in November, which indicates the start of vegetative stage, and reaches the highest value (above 

0.6) around March, while the NDVI of other crops such as barley and winter wheat remain low until 

February. During summer (from July to early-September), several spectral bands such as visible (band 2, 3, 

4) and SWIR (band 11, 12) perform relatively higher reflectance for saffron as compared with other crops. 

This is because saffron fields were dry and bare soil during summer while other crop fields such as alfalfa 

and pistachio were covered by vegetation. After that, these band reflectance of saffron fields decline along 

with the first irrigation in September, which increases the water content of soil and promotes the 

development of plants. These different behaviours indicate the importance of selecting unique spectral-

temporal features for distinguishing saffron fields from other crops. 

 

Figure 7. Temporal profile of 21 spectral features between July 2018 and June 2019 for different crops averaged from 119 sample fields 

Figure 8 displays the average importance score of each spectral-temporal feature for separating saffron from 

the other classes. The horizontal axis of the chart represents the VIs and spectral band reflectance, the 

vertical axis refers to the time scale in month. The colour bar presents the importance value of each feature, 

with the yellower colours referring to a higher importance score, which means that the feature contributes 

more to discriminating saffron from other classes. The result shows the highest importance scores are in 

February for NDVI, EVI2, and NDII. The relative average importance rank and its corresponding value of 

each feature in each run can be found from Figure A1 in the Appendix. With the average ranking result of 

each feature, the influence of the number of features on classification accuracy was assessed and shown in 

Figure 9. The OA of classification increased with the number of input features until a saturation point reached 

at 19 features (95.5%).  
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Figure 8. Importance value of spectral-temporal features. The horizontal and vertical axes of the chart represent the VIs or spectral band 

and time scale, respectively. The value in each grid cell represents the importance value of the corresponding feature. 

 

Figure 9. Overall accuracy (OA) of identifying saffron from other classes using different input features suggested by the importance score. 

The black curve shows the average OA, shadow area represents 95% confidence interval of OA. Red line shows the saturation point and 

its corresponding feature number. 

Among the first 19 important features (panel (a) in Figure 10), VIs account for 13, while the remaining six 

features are spectral bands. Moreover, the result shows all these 19 most important features are related to 

spectral regions in Red, NIR, and SWIR bands. Among the 6 VIs groups, group A (i.e. the combination of 

Visible and NIR) and C (i.e. the combination of NIR and SWIR) dominate a large portion of the 13 VIs 

features, which accounts for six and four features, respectively. Most temporal features are concentrated in 

spring (from January to March), and a few features have a high importance value in August and September.  

The Pearson correlation coefficient between the first 19 important features were calculated and displayed in 

panel (b) Figure 10. It shows that NDVI, EVI2, NDII, NDWI, and NDTI from January to March were 

significantly correlated. The correlation among the same VIs groups were stronger than others since they 

are calculated from the same combination of spectral regions and present similar time series behaviours. 
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Band4_Feb, band12_Feb, and band12_Mar were negatively correlated with VIs in the same time periods. 

For both VIs and spectral bands, their behaviours in the same month show a higher correlation than features 

in different months. 

Considering the high correlation of features within the same groups and same time windows, finally, 

NDVI_Jan, NDVI_Feb, NDVI_Mar, Band12_Feb, Band12_Mar, Band11_Aug, Band11_Sep were selected 

as the optimal set of input features for saffron classification. Figure 11 displays the time series of selected 

spectral features and their time windows (i.e., temporal features).  

 

Figure 10. Importance value of the first 19 most important features and their Pearson correlation coefficient between each other. Panel (a) 

presents the average importance value of these 19 features in 50 runs of RF-based classification. Panel (b) shows the correlation matrix with 

p-value < 0.001. Positive correlations are displayed in blue and negative correlations in red colour. Colour intensity and the size of the circle 

are proportional to the correlation coefficients. 

 

Figure 11. Time series of selected spectral features. Red shadows refer to the spectral reflectance within time windows (i.e. temporal features) 

which has relatively high importance value for saffron identification. 
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3.2. Accuracy assessment of saffron cultivation map 

The application of RF to the selected spectral-temporal features results in a good classification of saffron 

fields (Table 3). The classification model has an OA of 95.3% and a kappa coefficient of 0.93. UA and PA 

achieve 95.6% and 92.9% for saffron and 97.7% and 98.6% for non-saffron classes, respectively. It suggests 

that the saffron class has relatively high errors of omission (i.e. 20 saffron pixels classified as non-saffron). 

The misclassification of saffron was mostly caused by the first-year age saffron field (not shown). It is hard 

to be distinguished from winter crops such as barley and winter wheat. This is due to the low density of 

greenness for young saffron vegetation, and the emergence of weeds in March, which is also the moment 

when winter crops start to grow.  

Figure 12 shows the map of classified saffron cultivation area in the whole study area. The saffron map has 

an accuracy of 87.4% when calculate using sensitivity index and an independent dataset (i.e., 2637 pixels 

were correctly classified as saffron among the 3019 saffron pixel samples derived from dataset B) (not 

shown). The green polygons in Figure 12 displays highlight the incorrect classified saffron fields. The 

underestimation of saffron was mostly caused by pixels near to parcel edge (Figure 13 a), which typically have 

an integrated spectral response from multiple crops or land cover types. Consequently, some small saffron 

fields (< 0.2 ha) were omitted due to the heterogeneity of pixels with 10m resolution. The results present 

saffron fields larger than one ha has an accuracy (sensitivity) of 92.3%, while the accuracy is only 73.1% for 

small fields (< 0.2 ha). 

Table 3. Confusion matrix of  the crop classification result 

        Reference Saffron Non-saffron UA (%) 

 

Commission  

error (%) Classified Saffron Alfalfa Bare Barley Pistachio Spring 
wheat 

Winter 
wheat 

Saffron Saffron 263 0 5 2 0 0 5 95.6 95.6  4.4 

 

 

Non-
saffron 

Alfalfa 0 37 0 0 0 0 0 100.0  

 

 

97.7  

 

Bare 3 0 425 0 2 1 2 98.2  

Barley 5 0 0 32 0 0 1 84.2  

Pistachio 0 0 1 0 102 1 1 97.1 2.3 

Spring wheat 0 0 0 0 4 65 1 92.9  

Winter wheat 12 0 7 1 1 0 161 88.5  

 

PA (%) 

Omission error (%) 

92.9 100.0 96.6 91.4 93.6 97.0 94.2  

 

 

92.9 

7.1 

98.6 

1.4 

 

OA: 95.3%     

Kappa coefficient: 0.93 
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Figure 12. Saffron cultivation map in the study area. The background shows a S2A image acquired on 26th Sep 2018 with an RGB 

composite of NIR, Red, and Green band.Feasibility evaluation for age-based saffron field classification 

3.3. Feasibility evaluation for age-based saffron field classification 

The average NDVI time series for different age of saffron fields and their associated standard deviation are 

shown in Figure 13. As illustrated in Section 2.6.1, the NDVI value of the first four years of saffron plants 

mainly increases with age, while for the older fields (4th to 6th year), it remains more stable. The 7th and 8th 

year saffron fields have the highest NDVI during the vegetative stage compared with other age fields. These 

results are consistent with the performance of green vegetation density investigated during the fieldwork 

(Figure 3).  

 
Figure 13. Average NDVI time series for different age of saffron fields. Error bars indicate the standard deviation of NDVI value in 

each month for the same age of field samples 
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Figure 14 presents the pairwise separability metrics (i.e., JM distances) of NDVI time series between each age 

saffron field and the seven other age fields. These charts map the separability between different age saffron 

fields across the six months from December to May using the 30 saffron field samples which have age 

information in four growth seasons (2015-2019). The yellow colours indicate a high separability between 

two classes in the corresponding month. The global separability (SG) between each pair of classes (ages) are 

shown in Figure 15. It suggests that, in general, the SG between saffron fields with smaller age differences are 

lower than those with larger age differences. But some strange results also exist in the figure, for example, 

1st versus 3rd year has better separability as compared to 1st versus 4th year, 6th versus 8th year performs higher 

separability than 4th or 5th versus 8th year. Between the 4th to 6th year saffron, the SG is relatively lower, 

indicating the difficulty of distinguishing these classes from NDVI time series. Therefore, saffron fields ages 

from the 4th to 6th year were merged as one group for later classification. Besides, due to the fewer samples 

(only 1 field) for 8th year saffron field, the 7th and 8th year fields were also combined as the same group.  

The age-based classification was implemented using the RF algorithm, the six-monthly values of NDVI 

from December to May were used as input variables. Table 4 shows the accuracy of the classification result. 

The OA and kappa coefficient reach 86.8% and 0.81, respectively. Among these age groups, the 1st year 

saffron fields had the best performance (UA of 93.1% and PA of 90.0%) for its discrimination from other 

classes. The 3rd year saffron fields had considerably higher errors of commission, i.e. 21 pixels of 4th to 6th 

year saffron were incorrectly classified as 3rd year plants. Age group 4th to 6th year and 7th to 8th year 

performed better classification accuracy (UA of 88.7% and PA of 85.9% for 4th to 6th year class, UA of 88.7% 

and PA of 87.9% for 7th to 8th year class) as compared with classification result for individual age crop (Table 

4). 

 
Figure 14. Separability metrics (JM distance values) for all saffron age pair comparisons in each month between December and May. 
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Figure 15. Global separability of NDVI time series during December and May for each pair of saffron age comparison. 

Table 4. Age-based classification results for five grouped classes and eight individual classes. 

 8 classes (before merged)  5 classes (after merged) 

Age PA (%) UA (%) OA 

(%) 

Kappa Age PA 

(%) 

UA (%) OA (%) Kappa 

1st year 89.9 93.1 75.4 0.72 1st year 90.0 93.1  86.8 0.81 

2nd year 83.3 83.2 2nd year 83.1 83.3  

3rd year 81.5 78.1 3rd year 82.6 77.9  

4th year 61.3 62.5 4th-6th year 85.9 88.7  

5th year 66.7 68.4 

6th year 72.1 70.4 

7th year 81.2 78.8 7th-8th year 87.9 83.7  

8th year 85.3 84.9 

3.4. Detection of peak flowering and comparison with crop calendar data 

The smoothed 𝐸𝐵𝐼𝑐 time series are illustrated in Figure 16. The black curve presents averaged 𝐸𝐵𝐼𝑐 time 

series extracted from all 30 saffron field samples in 2018-2020 growth season. It shows a clear peak during 

the expected flowering period (i.e. late October to late November). Figure 17 displays 𝐸𝐵𝐼𝑐 profiles for eight 

saffron fields for which surveyed crop calendar information was collected. This included the date of 

flowering irrigation, ploughing, and harvesting, which is corresponded to the duration of peak flowering. It 

shows a strong agreement between the start date of harvesting and the time of maximum EBI, which both 

are found between October to late November.  

The peak of flowering date was extracted from 𝐸𝐵𝐼𝑐 time series in 2018-2020 growth seasons for each of 

the 30 saffron field parcels from 𝐸𝐵𝐼𝑐  time series and compared to in-situ observations (Figure 18). The 

determination of correlation (R2) between S2-derived peak flowering date, and the surveyed start date of 

harvesting is 0.69, the difference (RMSE) is around four days. 
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Figure 16. Smoothed  𝐸𝐵𝐼𝑐 time series of  30 saffron sample fields. Black curve refers to the average  𝐸𝐵𝐼𝑐 time series, gray shadow 

presents the 95% confidence interval of  all extracted time series. 

 
Figure 17. Examples of  smoothed  𝐸𝐵𝐼𝑐 time series in relation to surveyed crop calendar for eight saffron fields 
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Figure 18. The coefficient of determination (R2) and difference (RMSE) between estimated peak flowering date and surveyed start date of 

harvesting from 46 samples (consist of 16 field data in 2018-2019 and 30 field data in 2019-2020) 
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4. DISCUSSION  

This study evaluated the performance of S2 time series in improving saffron mapping accuracy, conducting 

age-based classification, and detecting saffron phenological behaviours. The use of multi-temporal S2 

imagery resulted in a high classification accuracy for identifying and mapping saffron fields in Torbat-e 

Heydariyeh. Input variables of the RF classifier are spectral-temporal features that were selected based on 

RF importance ranks and displayed distinct phenological behaviours for saffron as compared with other 

crops. The study also showed that NDVI during the vegetation stage allows for discriminating different ages 

of fields, given that age affects the density of the green cover. 𝐸𝐵𝐼𝑐  was designed to capture the unique 

spectral performance of saffron anthesis stage. The S2-derived 𝐸𝐵𝐼𝑐 time series show great potential to 

detect the peak flowering date of saffron and agreed well with the surveyed crop calendar data. The main 

findings of saffron classification, age discrimination, and flowering phenology detection were discussed in 

Section 4.1, 4.2, 4.3, respectively. Section 4.4 analysed the limitation of this study and provided 

recommendations for improvement. The application of the outputs in agricultural management for different 

stakeholders was explained in Section 4.5. 

4.1. Sentinel-2 time series for saffron classification 

The RF importance rank was used to infer which spectral properties of the saffron crop in different seasons 

contribute more to identify saffron fields. The top important spectral features mainly across VNIR and 

SWIR spectral regions, which reflect the biochemical and biophysical properties of vegetation, such as 

photosynthetic pigment absorption, structural photon scattering, and water content. These spectral features 

(NDVI, NDWI, NDRI) has proven to be efficient in crop classification (Peña-Barragán et al., 2011; Hao et 

al., 2015). Moreover, two phenological phases were identified important in separating saffron from other 

crop classes, which are the rapid green-up stage (January to March) and dormant period (August to 

September). The first phase is the rapid green-up stage of saffron from January to March when winter crops 

are just beginning to growth and summer crops were harvested and fallow. The second importance stage 

for identifying saffron cultivation is the dry summer in August and September when saffron corms are 

dormant underground. During this period, saffron fields are bare with very low soil moisture and have a 

high spectral reflectance in SWIR bands until the first irrigation is carried out in late September. This 

contrasts with spring crops that are harvested and covered by residues in summer. 

The classification result demonstrated the utility of multi-temporal S2 imagery in distinguishing saffron from 

other crops. Compared with previous research that used single date Landsat 8 imagery to map saffron fields 

(Dehghani Bidgoli et al., 2018), the OA of classification improved by 13.3% (from 82.0% to 95.3%). This 

mainly benefits from the high temporal resolution of S2 satellite imagery. Multi-temporal images are 

effective in reflecting the phenological changes and differences of crops (Wardlow et al., 2007; Zhong et al., 

2014; Arvor et al., 2011). The higher temporal resolution provides more cloud-free data as compared to 

Landsat-8 imagery and allows to select suitable time windows for capturing distinct temporal behaviours of 

target crops. Besides, the mapping results showed the classification accuracy for small saffron fields 

improved as compared to the study by Dehghani Bidgoli et al. (2018). The accuracy for saffron fields 

increased from 62.0% to 73.1% for fields smaller than 0.2 ha, and from 72.0% to 78.3% for fields between 

0.2 ha to 0.5 ha. This improvement probably benefits from the higher spatial resolution of S2 imegery (10m) 

in comparison with Landsat 8 (30m). 
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4.2. Feasibility of age-based classification  

The work on age-based classification is the first attempt to classify the age of perennial crops using multi 

spectral time series data. This study indicated the feasibility of NDVI time series for saffron age classification. 

With increasing age of saffron fields, NDVI levels during the vegetation stage (December to June) increased. 

NDVI temporal patterns of different age saffron crops have revealed that five age groups can be separated. 

Particularly, young saffron fields (i.e., the first-year crop), showed a high separability and classification 

accuracy compared with older fields. This finding provided a new insight for further improving the accuracy 

of saffron identification by treating the first-year saffron as a separate class, which was shown to be easily 

confused with other winter crops in Section 3.2. The difficulties in distinguishing saffron fields with ages 

from four to six years are likely due to their similar vegetation cover, which is consistent with the 

performance of green vegetation density investigated during the fieldwork (Figure 3). This performance could 

be explained as the increasing competition between overcrowded corms for water and nutrients reduced the 

reproduction capability of corms (Kumar et al., 2009). 

4.3. Estimation of peak flowering time 

The customized EBI (𝐸𝐵𝐼𝑐) time series indicate the potential to detect peak flowering of saffron at the 

parcel level. The peak flowering date is identified as the time of the main peak (local maximum) in 𝐸𝐵𝐼𝑐 

time series. The flowering phenology retrieval mechanism and spectral time series performance of index are 

similar to the study by d’Andrimont et al. (2020). Comparing the S2-derived peak flowering date with 46 

surveyed crop calendar data, the result (Figure 18) shows a four-day difference (RMSE) which is below the 

nominal revisit interval of S2 sensors (5 days).  

In the 𝐸𝐵𝐼𝑐 time series, after peak flowering (first peak), the signal becomes more fluctuated. This is likely 

related to irrigation practices. According to the knowledge I got from interviews with local farmers, after 

the flowering irrigation, farmers usually conducted four- or five- more times irrigation in late November, 

late January, late February, and mid-May. These practices increase the soil moisture, which usually results in 

lower spectral reflectance. This signal will mainly influence the element of "background signature" in the 

𝐸𝐵𝐼𝑐 equation, which introduces "NIR" as a multiplicative term in the denominator. Therefore, 𝐸𝐵𝐼𝑐 may 

present a small increase after each irrigation.  

Similarly, the rapid increase of 𝐸𝐵𝐼𝑐  before the first main peak could be explained not only by the growing 

purpleness of saffron flowers, but also the darker and wetter soil as a consequence of flowering irrigation 

and ploughing practices. Then, the first (main) peak appears at the moment when the index start to decrease, 

this behaviour is related to the harvesting practices which decrease the saffron purpleness. 

Besides, it is observed that, for some saffron fields, a second small peak followed the first (maximum) 

extreme in the 𝐸𝐵𝐼𝑐 time series. Comparing with surveyed crop calendar data, it usually happened after the 

end of harvesting period. This is because the harvesting period refers to the peak blooming period instead 

of the whole flowering stage. Saffron anthesis generally lasts for four to six weeks, but harvesting is only 

performed two weeks of this period due to the high labour cost. Usually, the same fields could be harvested 

several times due to the newly bloomed flowers every day. Even after the end of harvest, new saffron flowers 

could also bloom if the temperature is good (12-18°C by day and 4-8°C at night) (Molina et al., 2005). 

4.4. Potential limitations and further improvements 

RF was used in this study for classification purposes because previous studies demonstrated its effectiveness 

in cropland classification (Tatsumi et al., 2015; Sonobe et al., 2014; Ok et al., 2012; Pal, 2005). Nevertheless, 

the RF classifier requires a large training dataset, particularly if high inter-class variability exists (Rodriguez-

Galiano et al., 2012). The saffron classification result shows that saffron has high spectral variability due to 
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age influences (especially the first year saffron), which causes a disturbance in discriminating with winter 

crops. One of the solutions could be separating the first year saffron as a single class (as mentioned in 

Section 4.2) to improve the identification accuracy of other age saffron fields. This indicates the needs of 

more training samples for the first year saffron. However, the field survey cannot always provide enough 

data to represent all the variability in a class. To improve the classification accuracy, other classifiers, such 

as time-weighted dynamic time warping (TWDTW), can be considered as an alternative method in the case 

of class with high spectral variability and few training samples. TWDTW proved as an efficient solution in 

handling these challenges due to its advantages of balancing between time series shape matching and 

temporal alignment (Maus et al., 2016), and low sensitivity to the intra-class variability and size of the training 

dataset (Belgiu & Csillik, 2018). 

The high accuracy of the saffron classification suggests the possibility to scale this method to a larger region. 

Iran accounts for more than 90% of the global saffron production (Ghorbani, 2007), mapping saffron fields, 

especially the key cultivation region (i.e., the north-eastern Khorasan region in Iran), can provide 

geographically explicit information and contribute to the sustainable management of saffron cultivation. For 

a larger area, the exists of other crops that may have similar phenological behaviours and saffron cultivated 

under different management practices could influence the transferability of the classification model (Jin et 

al., 2018; Juel et al., 2015). Therefore, apart from the study area (Torbat-e Heydariyeh county), more tests 

could be conducted by transferring this classification model in other counties which have different crop 

composition and climate conditions in the Khorasan region. Considering the high memory requirements 

and time cost for processing a large amount of S2 images, this process can be executed on Google Earth 

Engine (GEE, Gorelick, et al., 2017), which is a cloud-based platform that allows for access and processing 

of large earth observation datasets. GEE has shown to be effective for large-scale crop mapping and 

monitoring applications by reported researches (Lemoine & Leo, 2015; Tian et al., 2019). 

To increase the size of saffron field age samples, this study combined age data in four growth seasons (from 

July 2015 to June 2019) to expand the dataset and improve the reliability of age classification results. But 

this approach ignores the annual spectral variation, which could be influenced by different weather 

conditions and (timing of) agricultural practices between years. If more reference data available, the age-

based classification could be conducted for each year's data. It provides a more operational type of 

monitoring to analyse the sensitivity of classification results in inter-annual changes. By comparing the 

classification result of the same patch in different years, we can better understand the impact of spatial-

temporal variation on classification accuracy. Moreover, mapping saffron age in each year based on the 

trained classification model also provides an opportunity to deliver accurate age maps for any particular year. 

For example, if a field was classified as saffron in the 4th to 6th year according to its spectral signature in 

2020, then we can go back to previous years to check the classification results and calculate the exact age of 

this patch in 2020. 

This study demonstrated the utility of S2 time series in saffron classification and phenology detection. 

However, optical imagery is susceptible to clouds, which causes missing and irregular data especially 

during the rainy season (from January to April), which is a crucial period of saffron vegetation growth in 

northeast Iran. The absence and irregularity of images in a long period could influence the quality of 

generated monthly data and reduce the classification accuracy. Compared with optical imagery, microwave 

radiation is capable of penetrating clouds with negligible attenuation (Richards, 2005), which can ensure 

continuous measurements over the growing stage of saffron. To minimize the cloud occlusion problem of 

optical images, the synergistic use of radar and optical information has become a research hotspot. Earlier 

studies have successfully improved crop classification accuracy (Skakun et al., 2016; Dong et al., 2013; Van 

Tricht et al., 2018) and phenology monitoring (De Bernardis et al., 2016) using a combination of optical 

and Synthetic aperture radar (SAR) images. Different from optical imagery which reflects vegetation 
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biophysical characteristics, SAR imagery provides new insights into vegetation structure, surface 

roughness, and soil moisture (Veloso et al., 2017). Therefore, analysing the spectral-temporal performance 

of saffron fields in backscatter coefficients and their ratio time series may detect more phenological 

features and agricultural activities in combined with the biomass and soil changes. Further study could 

investigate the performance of data fusion of radar and optical time series in saffron mapping, age-based 

classification, and phenological monitoring. 

4.5. Application in future agricultural management 

The saffron cultivation map generated in this study offers geographically explicit information on saffron 

distribution. It is typically useful for transparent and effective management of saffron fields. Traditionally, 

the cultivation area information of saffron relied on field surveys by agricultural sectors, which is laborious 

and time-consuming.  The Satellite-derived saffron maps significantly improved the efficiency of data 

collection and provide timely updated information in a large scale. Moreover, having maps can also 

contribute to regional land use planning. For example, the distribution of water reservoirs influences the 

accessibility of water for saffron irrigation. The spatial information of saffron fields can be used for local 

government to properly allocate and manage the use of groundwater to maximize water efficiency. Besides, 

considering that counterfeit saffron stigma has become a serious problem in global saffron markets, 

identifying the authenticity of saffron farms stated by businesses is of importance for consumers. Satellite-

based saffron field identification provides an opportunity for better supervising and management of the 

saffron market.  

The age information is one of the most important internal factors which is correlated with saffron field 

productivity (Kumar et al., 2009). It could be useful for agricultural sectors to estimate and predict the 

approximate regional yield level in the next years. Flowering phenology is able to reveal the saffron 

production which mainly refers to the harvested flower (or stigma) weights at a parcel level. Detecting the 

changes of peak flowering in spatial and temporal extent is of importance to understand the influence of 

environmental factors (e.g. drought) on the field production. This information help decision-makers to 

select suitable cultivation area which is more preferred for sustainable growth of saffron. It is important to 

note that the further implementation of the proposed recommendations requires the corporation between 

farmers and agricultural sectors. The in-situ data provided by farmers could be used as complementary data 

and to validate satellite-derived information.  



SAFFRON FIELD CLASSIFICATION AND FLOWERING PHENOLOGY DETECTION USING SENTINEL-2 TIME SERIES IN TORBAT-E HEYDARIYEH, IRAN 

29 

5. CONCLUSIONS 

This study demonstrated the potential of S2 time series in accurately mapping saffron cultivation area, 

classifying different age of saffron fields, and estimating peak flowering time.  

RF importance ranks were used to select an optimal set of spectral-temporal features for discriminating 

saffron and other crops. The feature selection result showed most important spectral features are VIs across 

spectral regions in Red, NIR, or SWIR bands. The temporal features are mainly concentrated in the rapid 

green-up period of saffron (from January to March), while other crops are in fallow or the start of vegetation 

stage during that period. Besides, early autumn (August and September) metrics are also important and 

display distinct phenological behaviours as compared with other crops. Considering the high correlation 

between features, finally, NDVI from January to March, SWIR from August to September (band 11) and 

February to March (band 12) were selected as the optimal set of input features for the RF classifier. RF 

resulted in good classification results in discriminating saffron with other crops using multi-temporal S2 

imagery. The classification model had an OA of 95.3% (kappa coefficient of 0.93). Based on an independent 

in-situ dataset on saffron fields, 87.4% of the existing fields were correctly classified as being saffron. 

Global separability analysis of different age saffron fields revealed that five age groups can be distinguished 

with clear spectral separability on NDVI time series, which are 1st, 2nd, 3rd, 4th-6th, and 7th-8th year saffron. 

The classification result presented an OA of 86.8% (Kappa coefficient of 0.81) for the five age groups using 

NDVI time series from December to May. Young saffron fields especially the first-year crop showed a high 

classification accuracy (PA of 90.0%, UA of 93.1%) compared with older fields. Merged two class groups 

showed significantly better classification result (UA of 88.7% and PA of 85.9% for 4th to 6th year class, UA 

of 88.7% and PA of 87.9% for 7th to 8th year class) than classifying each age individually (UA varied 

between 62.5% and 70.4% for 4th to 6th year class). 

The customized EBI (𝐸𝐵𝐼𝑐) time series indicated the potential of detecting peak flowering of saffron at the 

parcel level. The S2-derived peak flowering date showed a close correlation (R2 = 0.69) with surveyed crop 

calendar data based on 46 fields, and reached four days difference (RMSE), which is shorter than the 

nominal revisit time interval of S2 sensors. 

The findings of this study provided insights for accurately mapping and monitoring saffron fields 

distribution, age, and phenology changes using S2 time series data. These outputs provide a basis for future 

research on production forecast and estimation and can further contributed to better agronomic 

management for decision-makers.  
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APPENDIX 

 

Figure A1. The importance values and ranks of 252 spectral-temporal features in the 50 runs of RF-based saffron field classification. The blue bar shows 

the average importance score which scaled from 0 to 1, and the error bar presents its corresponding standard deviation in the 50 runs. The box plot reflects 

the 50 times ranks for each feature. 

 

 


