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ABSTRACT 

Nowadays, the usage of 3D models extends beyond visualization purposes, serving as a representation to 

analyze the real world. Kadaster (the Dutch Land Registry and Mapping Agency) is interested in utilizing 

3D models for different applications. This study aimed to explore the possibility to integrate two different 

point clouds to produce a unified dataset as the input data for 3D model generation that can suit many 

applications. The suitability of this dataset is tested on a use case of estimating solar photovoltaic analysis. 

This study used a mixed qualitative-quantitative method to gather and process the data. In this research, we 

used the LiDAR point cloud and point cloud derived from a dense image matching (DIM) technique. To 

gauge the perspectives of the users, we conducted semi-structured interviews and a focus group discussion. 

Our study found that the main problem when performing data integration is to correctly and accurately 

integrate the datasets when those datasets have different accuracy, density, and properties. The foundation 

to determine the quality of the 3D model is to assess the quality of the input data. Following three out of 

the six elements of data quality from ISO 19157: 2013 (ISO, 2013), we used completeness, temporal quality, 

and positional accuracy to determine the quality of the input data. These elements were used because those 

elements have a significant impact on the geometric aspect of 3D data. 

We integrated the LiDAR point cloud and the DIM point cloud using the Iterative Closest Point (ICP) 

algorithm. The major advantage of integrating these two point cloud datasets is to improve the temporal 

quality, completeness, and positional accuracy. During the semi-structured interview, these three factors 

were identified as the inadequacy of the quality of the currently used input data. We generated 3D models 

of 48 buildings semi-automatically using the integrated point cloud, building footprints and manually 

extracted rooflines using the RANSAC algorithm. The integrated point cloud and the 3D models were both 

converted into a digital surface model (DSM) as input data for solar photovoltaic potential. Several criteria 

were applied to determine the potential areas for solar photovoltaic installation that were identified during 

the semi-structured interview: roof slope, roof orientation and minimum threshold for solar irradiation. To 

assess the benefit of using the 3D model as input data for solar photovoltaic analysis, we compared the 

result from the two input data models. 

From the result of the experiment, the calculation results of the solar photovoltaic potential are different 

between the input data models. When using the converted 3D models as input data, the roof details are 

generalized and noise is removed. The details and noise remained when using the integrated point cloud 

DSM as input data for the analysis. According to the result of the group discussion, using a 3D model as 

input data for the solar photovoltaic potential analysis could avoid noise and data gaps. The discussion 

revealed a hidden benefit and perception from users when using the 3D model, that people prefer to view 

a representation of reality which 3D can provide for them. Therefore, these findings provide a new 

understanding that the solar photovoltaic analysis benefits from using the 3D model as the input data and 

as the visualization for the output. 

Keywords: point cloud, LiDAR, dense image matching, 3D model, solar photovoltaic, ICP algorithm, 

RANSAC algorithm. 
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1. INTRODUCTION 

Variations of input data can cause serious problems, which, for example, is illustrated by the differing results 

of environmental impact assessment (milieueffectrapport (MER)) from 2013 on Lelystad Airport in The 

Netherlands. Analysis has discovered that it contains errors in assessing noise pollution (“Fouten bij 

berekening geluid Lelystad,” 2017; van de Bor, 2019). The main problem was the input data, and the height 

profile used did not meet the requirements for noise calculation, which lead to the wrong results. 

 

Therefore there is a need to investigate a standard of input data to have a consistent and reliable result. With 

the increase of technical development, GIS technology and 3D dataset (height representation), are widely 

utilized for environmental analysis. However, the major challenge lies in the uncertainty of the outcome as 

a result of the quality and spatial detail of the input data. 

This study investigates the influence of different 3D input data for solar photovoltaic potential analysis and 

taking user requirements into account. This section consists of background and justification with supporting 

literature, research gap, problem, objectives and research questions. 

1.1. Background and justification 

Nowadays, the usage of 3D models is extended beyond visualization purposes. Incorporated with the 

application of GIS, it gains insights into the richer spatial analysis. Therefore, city authorities and national 

mapping agencies such as Kadaster (the Dutch Land Registry and Mapping Agency) are interested in 

utilizing 3D models for different applications. 

Several studies have assessed the utilization of 3D models (see Biljecki, Stoter, Ledoux, Zlatanova, & 

Çöltekin, (2015)). However, because of the differences in the input data, the results differ in quality even 

when they are being applied to the same area and were retrieved the same methods (Peters, Commandeur, 

Dukai, & Stoter, 2018). The differences in the input data make the results incomparable, unreliable, and 

inefficient. Kadaster, as a geodata provider in The Netherlands, acknowledges this situation, and they are 

interested to research in which way standardization of 3D input data contributes to alleviate these issues in 

estimating the solar photovoltaic potential. 

1.2. Research problem 

Taking part in the global effort to develop an energy economy that is safe, reliable, and affordable, The 

Netherlands adopted the ‘Energy Agreement for Sustainable Growth’ in 2013 (Ministry of Economic Affairs 

of the Netherlands, 2016). In that energy policy, the Dutch cabinet has defined three main targets: (1) 

prioritize CO2 reduction; (2) optimize economic opportunities of the energy transition; (3) include energy 

transition targets into spatial planning policy. In general, solar energy considered to be one of the key 

renewable energy sources to achieve these transition targets (Paardekooper, 2015). Therefore simulations or 

prediction analysis are important approaches to stimulate renewable energy transition. 

 

Extensive collections of geodata are available in the Netherlands. These can be modeled for many 

simulations and prediction analysis. However, modeling input data for that simulations and prediction 
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analysis is crucial. Such data is Basisregistratie Addressen en Gebouwen (BAG)1, Actueel Hoogtebestand Nederland 

(AHN)2, and point cloud derived from aerial imagery using dense image matching (DIM). Each input 

geodata has its own characteristics, which makes 3D modeling challenging.  

 

For instance, the quality of both point cloud datasets differs. One of the features to measure the quality of 

a point cloud expresses the number of points per square meter, which is called point density. Higher density 

represents high accuracy. The number of points is dependent on the sensor and flying height. Also, the data 

acquisition techniques are different. AHN is a high-resolution LiDAR point cloud dataset of the 

Netherlands. The most recent dataset was released in 2019 with a data acquisition period of six years (Actueel 

Hoogtebestand Nederland, n.d). The advantages of AHN are: (1) publicly available, (2) acquired from 

LiDAR, and (3) able to penetrate vegetation. The drawbacks are: (1) the data acquisition time intervals 

(temporal resolution) are large, and (2) the point density is low due to the flying height. These drawbacks of 

the LiDAR point cloud can be compensated with a DIM point cloud derived from aerial imagery (Altuntas, 

2015). 

 

In the Netherlands, aerial imagery is acquired twice a year during summer and winter with aerial 

photogrammetry (Beeldmateriaal Nederland, n.d.). The advantages of these data are (1) high temporal 

resolution and (2) higher point density. The drawbacks of these data are (1) it is not publicly available, (2) 

objects can be obstructed by vegetation. Although both data are in point clouds form, the properties of 

LiDAR point cloud and point cloud generated from dense image matching are different (Table 1). 

 

Table 1. Techniques for the point cloud generation. 

Properties LiDAR DIM 

Acquisition From a satellite, airborne, terrestrial 

and mobile. 

From satellite, airborne and terrestrial 

photogrammetry.  

Sensor Laser. Camera. 

Output Point clouds Point clouds from the result of calculation 

of depth value for each pixel of an image. 

Number of return Multiple returns N/A 

 

The integration from the above-mentioned techniques are commonly used to reconstruct precise 3D models 

(Altuntas, 2015; Mwangangi, 2019; Oude Elberink & Vosselman, 2011; Vosselman, 2012; Xiong, Oude 

Elberink, & Vosselman, 2016). However, the main challenge when performing data integration is to 

correctly and accurately integrate the datasets when those data sets are characterized by different accuracy, 

density and properties (Kaartinen et al., 2005; Kedzierski & Fryskowska, 2015; Rottensteiner et al., 2014). 

The current study aims to explore the possibility to integrate two different point clouds to produce a unified 

dataset that can suit many applications. The suitability of this dataset will be tested on a use case of estimating 

solar photovoltaic analysis. 

 

The solar photovoltaic potential is derived from solar radiation calculation. As stated by Machete (2016) and 

Esri (2007), incoming solar radiation (insolation) that arrives at a surface can be distinguished in direct, 

diffused and reflected radiation. Direct radiation is the strongest component of the total radiation (Figure 

1), described as solar radiation that is traveling from the sun to the earth surface without obstacles. Diffused 

radiation is the second strongest component, which is described as solar radiation that scatters from the 

 
1 https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1 
2 https://www.pdok.nl/introductie/-/article/actueel-hoogtebestand-nederland-ahn3- 
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direct solar beam before reaching the earth surface. Reflected radiation is the least strong radiation that 

contributes to the total radiation, described as radiation reflected from ground or any urban element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of different type of solar radiation arrived at the surface. (Source of image: (ESRI, 2007) 

For estimating the solar photovoltaic potential, there are two approaches a 2.5D approach and a 3D 

approach (Freitas, Catita, Redweik, & Brito, 2015). The differences between 2.5D and 3D are explained in 

Section 2.3.3. These approaches determine the representation of the input data. The 2.5D approach uses a 

DSM as its input data and is mostly derived from LiDAR data (Peronato, Rey, & Andersen, 2018), while 

the 3D approach uses a 3D model as its input. According to Peronato et al. (2018) and Machete (2016), the 

reflected radiation is not taken into account when using 2.5D for roof surfaces calculation. On the other 

hand, when 3D data is used in calculating the solar radiation, all three components direct, diffuse and 

reflected radiation can be calculated.  

 

Thus this research aim is to assess the shortcomings of the current input data and its impact on 3D analysis 

in the application of estimating the solar photovoltaic potential. Moreover, it assesses the influence of pixel 

resolution and the usage of the 3D model as input data for estimating solar photovoltaic potential. 

1.3. Research objectives 

1.3.1. General objectives 

To develop a standardized 3D input data model for the specific use case of a solar photovoltaic potential 

analysis. 

1.3.2. Sub-objectives 

1. To investigate the characteristics of the input data for 3D model. 

2. To prepare unified data that satisfy the user needs for 3D model. 

3. To develop a 3D model to estimate the potential of a solar photovoltaic installation. 

1.3.3. Research questions 

Sub-objective 1: 

1. What are the current problems of the input data? 

2. How to determine the quality of the input data? 

3. How to improve the quality of the input data currently used for 3D modeling? 

Sub-objective 2: 

1. What is the required information to estimate solar photovoltaic potential? 
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2. What LOD is required for 3D solar photovoltaic analysis? 

3. What is the compliance between the user requirements and the existing data? 

Sub-objective 3: 

1. Which method is suitable to develop the 3D model? 

2. Which method is suitable to estimate the potential of solar photovoltaic? 

3. Does the developed 3D model improve the accuracy of the estimation of the potential solar 

photovoltaic? 

4. How does the developed model fit the purpose of the application? 

1.3.4. Anticipated results 

1. Description of a suitable input data model for 3D model. 

2. Unified dataset for 3D modelling that is suitable for solar photovoltaic analysis. 

3. 3D model for solar photovoltaic analysis. 

1.4. Conceptual framework 

Figure 2 illustrates the relationship between concepts applied in this research. The 3D input data as the main 

core of this research is widely available and commonly used as the main input for simulation and prediction 

analysis for different types of applications. However, the 3D input data is different in the acquisition, 

temporal and spatial resolution, which makes the characteristics of the data different. We aimed to develop 

a standardized 3D input data to be used in support of a variety of applications. Each application has its own 

requirements to produce a reliable output and consistent quality. The quality in 3D data is perceived 

following the data spatial quality elements. To obtain a sufficient quality for the purpose of the application, 

we gauged the perceptions of the users and identified the shortcomings of the currently available 3D input 

data. Therefore this research combines these three concepts, i.e. 3D input data, users’ perception and 

application to achieve a unified 3D input data that is usable for any applications following the users’ needs. 

Figure 2. Conceptual framework of this study. 

 

3D input data

ApplicationUsers' 
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Data 

requirements 

3D model 
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Standardized 
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1.5. Thesis structure 

This thesis contains five chapters:  

 

Chapter 1, introduction, explains the background and justification of the study; the objectives of the study 

and its contribution to filling the gap both in academic research and in practice; also research questions. 

 

Chapter 2, the literature review, gives an overview of related previous studies and the current state of the 

study. 

 

Chapter 3, methodology, explains the used methods in this study. Also, it provides a rationale for study 

area selection, its current issue and data description. 

 

Chapter 4, results and discussions, present the results and answers to each research questions. 

 

Chapter 5, conclusions and recommendations, provide findings on the role of a standardized 3D model 

for estimation solar photovoltaic. This chapter presents findings for each answer to the research 

questions, and suggestions for further research are proposed. 

1.6. Summary 

Differences in input data for different applications often leads to inconsistent results. Kadaster, in its role 

as a geodata provider for the Netherlands, is interested in the establishment of a standard 3D data model to 

produce consistent and comparable results that can be used for different applications. In this research, we 

test the suitability of the 3D data models on a use case of estimating solar photovoltaic analysis. Major steps 

in this research are (1) the creation of a unified dataset; (2) generation of 3D model; (3) the identification of 

the perspectives of the users; and (4) the estimation of solar photovoltaic potential using the 3D model.
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2. LITERATURE REVIEW 

The objective of this chapter is to describe relevant literature, the state-of-the-art for 3D data and its usage 

in the solar photovoltaic potential analysis. The chapter starts with the elaboration of 3D data in section 2.1. 

Section 2.2 discusses data integration. The next section (section 2.3) discusses the role of a 3D model in the 

application of solar photovoltaic potential analysis and the relation between the 3D model and solar 

photovoltaic analysis. Section 2.4 provides a summary of this chapter and answer sub-objective 1. 

2.1. 3D data 

This section describes the acquisition of 3D data (section 2.1.1), the characteristics of 3D data (section 

2.1.2), the quality of 3D data (section 2.1.3), and the usage of 3D data for generating 3D models (section 

2.1.4). 

2.1.1. Acquisition of 3D data 

Real-world can be represented using 3D models. These 3D models are created using different data sources 

(see Biljecki, Ledoux, & Stoter (2016)). Direct acquisition using aerial or terrestrial surveying is the most 

common approach to collect 3D data from reality. However, direct acquisition is not the only process to 

collect 3D data from reality. They can also be obtained from digitizing process or architectural design. After 

capturing process is finished, through the augmentation process that consists of 3D reconstruction and data 

integration, the 3D model can be generated (Figure 3). This augmented process is presented in several works, 

photogrammetry (Rottensteiner et al., 2014), laser scanning (Vosselman & Dijkman, 2001; Xiong et al., 

2016), conversion from architectural models and procedural modelling (Julin et al., 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The acquisition process of 3D data and production workflow of the 3D model, adopted from Biljecki et al. 
(2016) and Stein & Tolpekin (2013). 
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The 3D data used for this research is based on LiDAR and aerial photogrammetry. LiDAR surveys for 

height data collection have grown vastly. For example, the Netherlands has produced national airborne 

LiDAR point clouds and digital surface models (DSMs) at resolutions of 0.5m and 5m. This height data is 

collected from 1997 and it takes six years to collect the data for the whole Netherlands (Actueel 

Hoogtebestand Nederland, n.d.). The main characteristics of LiDAR data in the form of point clouds are 

an accuracy between 5 to 25 cm standard deviation for planimetric and 5 – 10 cm for the vertical accuracy 

(Kedzierski & Fryskowska, 2015; Oude Elberink & Vosselman, 2011); different resolution and characteristic 

gaps in data (strip offsets). This type of laser scanning allows to capture the object on the top plane, but not 

able to capture objects that are occluded or do not have a reflection properties such as water.  

Figure 4. (a) Dense image matching process; (b) Point clouds obtained from DIM. 

On the other hand, the Netherlands collects high-resolution aerial imagery every year for the production of 

stereo images and orthophoto mosaic (Beeldmateriaal Nederland, n.d.). These aerial images can be generated 

into point cloud through a dense image matching (DIM) process (Figure 4). This matching process obtains 

a corresponding point for every pixel in the stereo images and obtains depth to produce the height 

information (Kodde, 2016). The output of the matching process is a disparity image where the intensity is a 

measure for the height. This type of point cloud allows capturing any object from the top. However, this 

dataset is not publicly available.  

2.1.3. Quality of 3D data 

According to ISO 2:2004 (ISO, 2004), a standard is a “document, established by consensus and approved by a recognized 

body, that provides, for common and repeated use, rules, guidelines or characteristics for activities or their results aimed at the 

achievement of the optimum degree of order in a given context”. This standard can be achieved with a standardization 

process. Standardization is an activity to formulate, issue and implement standards (ISO, 2004). The benefit 

of this activity is an improvement of the suitability of products, processes and services for its intended 

purposes, facilitates product exchange and eliminates technical barriers. The standard serves to determine a 

level of quality. Quality is defined as the degree to which demands are met by a set of characteristics (ISO, 

2013). In terms of geodata, those characteristics are called spatial data quality elements. Following ISO 

19517:2013 (ISO, 2013), there are six elements for spatial data quality, shown in Figure 5. The six elements 

for spatial data quality are completeness, thematic accuracy, logical consistency, temporal quality, positional 

accuracy and usability element. 

a b 
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Figure 5. Overview of ISO 19517:2013 data quality elements. The focus of this research marked with dash outline. 

The quality of 3D models can be analysed by determining the quality of input data (Oude Elberink & 

Vosselman, 2011; Ronnholm, 2011). From the six elements for spatial data quality, we selected on 

completeness, temporal quality, and positional accuracy, since they have a significant impact on the 

geometric aspect of 3D data. According to ISO 19517:2013, (1) completeness is defined as the presence and 

absence of features; (2) temporal quality is defined as the quality of the temporal attributes and temporal 

relationships of features and (3) positional accuracy is defined as the positional difference within a spatial 

reference system. 

 

In terms of the input data that we use, completeness can be measured by answering the questions “how 

complete are the point clouds compared to building footprints?” or “is there any unmatched data?”. 

Temporal quality can be measured from the metadata of each dataset and by a change detection process. In 

the metadata, we can see the information related to temporal quality; such as acquisition date. Positional 

accuracy can be measured from the density of the point cloud and by calculating the deviation between the 

dataset by comparing to the dataset which the positional accuracy is known. 

2.1.4. Usage and benefits of 3D data 

Compared to 2D, 3D data improves the communication process between users and the professionals in 

order to gain a better understanding of the presented information as stated by Kurakula & Kuffer (2008) 

and Onyimbi, Koeva, & Flacke (2018). The 3D model is an urban representation with a three-dimensional 

geometry with buildings as the main object of interest (Biljecki, Stoter, et al., 2015; Oude Elberink & 

Vosselman, 2011). The 3D models are mainly used for domain applications in environmental simulations 

and decision support (Biljecki, Stoter, et al., 2015), for instance in noise simulations (Kumar, Ledoux, 

Commandeur, & Stoter, 2017; Kurakula & Kuffer, 2008), solar irradiation (Alam, Coors, & Zlatanova, 2013; 

Biljecki, Heuvelink, Ledoux, & Stoter, 2018), real-estate(Toppen, 2016; Zhang, 2019) and sub-surface model 

(Ghodsvali, 2018) (for more applications see (Biljecki, Stoter, et al., 2015)). 

2.2. Data integration 

The fusion of LiDAR point clouds with DIM point clouds is popular (Kedzierski & Fryskowska, 2015; 

Ronnholm, 2011). This powerful method can combine the best of both, i.e. increasing the point density, 

although it might introduces noise or influence the positional accuracy. 

 

Kedzierski & Fryskowska (2015) consider the integration of point clouds as the most detailed and accurate 

systems for acquiring 3D data. Integration of aerial images and laser scanner data was performed in 

Kaartinen et al. (2005). They evaluated the quality, accuracy, feasibility and economic aspects of semi-

automatic building extraction derived from aerial imagery and laser scanning carried out by 11 experiments 

(Kaartinen et al. 2005). According to Kaartinen et al. (2005), laser scanning data is good to derive building 

heights, extraction of planar roof faces and roof ridges, while photogrammetry and aerial images are 

appropriate for the construction of outlines and lengths. 

 

Data quality element 

Thematic accuracy Temporal quality Usability element 

Completeness Logical consistency Positional accuracy 
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Another case of 3D data integration is shown in the work of Rottensteiner et al. (2014). In their research, 

the authors present two tasks, urban object detection and 3D reconstruction using the integration of two 

different point clouds, retrieved from DIM and laser scanning (Rottensteiner et al., 2014).  

 

From the previous works mentioned, the main challenge when performing data integration is to correctly 

and accurately integrate the datasets when those data sets characterise different accuracy, density and 

content. 

 

To perform the integration of point clouds, several methods have been developed, for instance, Matching 

Bounding-Box Centres Registration (Ahmad Fuad, Yusoff, Ismail, & Majid, 2018), Coherent Point Drift 

(CPD) (Myronenko & Song, 2010) and Normal-Distributions Transform (NDT) algorithm (Biber & 

Wolfgang, 2003). One of the widely used method to register two point clouds is the Iterative Closest Point 

(ICP) method (Gelfand, Ikemoto, Rusinkiewicz, & Levoy, 2003) which was first introduced by Besl & 

Mckay (1992). The principle of this relative positioning algorithm is to find corresponding points between 

two-point cloud datasets. The algorithm works by estimating a rigid transformation between points from 

the reference point cloud and points from the target point cloud. This algorithm implements nearest 

neighbours and Euclidean distance to estimate the closest point between the two points as correspondence 

points (Ahmad Fuad et al., 2018; Girardeau-Montaut, n.d.). According to Ahmad Fuad et al. (2018), this 

algorithm is the most suitable method to register point cloud dataset. Therefore in this study, we adopted 

this algorithm to register the DIM point cloud to the reference, the LiDAR point cloud. A major advantage 

of this relative positioning algorithm is, it reduces fieldwork to collect ground control features because only 

one data set, in this case, LiDAR, has to be georeferenced (Ronnholm, 2011).  

 

The application of the ICP method has been used for the integration between airborne laser scanning (ALS) 

and terrestrial laser scanning (TLS) by Kedzierski & Fryskowska (2015) to obtain a complete 3D model. 

They focused on the processing of both data sets to create a uniform spatial coordinate system. Sirmacek & 

Lindenbergh (2014) assessed accuracy, advantages and limitations of point cloud generated using multi-view 

iPhone images and a TLS point cloud with this method. 

2.3. 3D model and solar photovoltaic analysis 

This section presents the definition of solar photovoltaic potential and the required information related to 

input data for calculating solar photovoltaic potential. 

2.3.1. Definition of solar photovoltaic potential 

Solar irradiation is the amount of solar energy (solar radiation emitted by the sun) received by the sun per 

unit area by a given surface (Biljecki, Heuvelink, Ledoux, & Stoter, 2015b). Solar radiation analysis is able to 

determine areas with maximum solar radiation exposure on the rooftop. The solar tools in GIS are able to 

analyze the effects of the sun over a specific geographic location with a time interval range. Nowadays, those 

tools can be easily found in nearly every GIS software, as elaborated by S. Freitas et al. (2015). Recognized 

from the explanations of Bódis, Kougias, Jäger-Waldau, Taylor, & Szabó (2019); Freitas et al. (2015); 

Mainzer et al. (2014) there are four factors to determine the type of potential, economy factor, panel 

performance, global irradiance, and geographic factor (Table 2). 

 

Adopted from Izquierdo, Rodrigues, & Fueyo (2008), hierarchical potential methodology as follows. First 

is physical potential, which is the maximum amount of solar energy in a geographical region without 

considering any limitations (Freitas et al., 2015). However, another term is used for this level of potential, 

such as theoretical (Mainzer et al., 2014) and resource (Bódis et al., 2019), but the concept is the same. 

Second is the geographical potential, which considers the restrictions of the location (Freitas et al., 2015; Mainzer 
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et al., 2014). The third is the technical potential, that takes into account the technical characteristics of the 

equipment, including the performance and efficiency of the photovoltaic modules (Bódis et al., 2019; Freitas 

et al., 2015; Mainzer et al., 2014). Interestingly, according to Mainzer et al. (2014), the term geographical and 

technical potential has been used interchangeably and is widely employed in the assessment of photovoltaic 

potentials. However, we argue that those two potential are two different types of potential and should not 

be used interchangeably because different factors are taken into account during analysis which could lead to 

confusion. The last is the economic potential. It takes economic factors into account such as return on 

investment, payback time, and production revenue (Bódis et al., 2019; Mainzer et al., 2014; Paardekooper, 

2015).  

 

The hierarchy used in this research comprises two levels. First, the physical potential to calculate the solar 

irradiation for the whole study area. Second, we calculate the geographic potential to focus on finding 

locations where energy can be captured. The last two levels, namely technical potential and economic 

potential, are not included in this research as the main emphasis is on the evaluation of the quality of the 

input data for the analysis. 

 
Table 2. Definition of different types of solar potential. 

Factor Type of potential Elaboration Author  

Global irradiance Physical potential 

“Encompasses the maximum amount of solar energy 
that can be received in a certain area.” 

Freitas et al. (2015, 
p.916) 

“All the available irradiation in a geographical 
region without considering any geographical or 
technical limitations.” 

Mainzer et al. (2014, 
p.717) 

“for photovoltaics, the annual incident solar 
radiation and other relevant environmental 
parameters such as ambient temperature and wind 
speed.” 

Bódis et al. (2019, 
p.2) 

Geographic factor Geographical potential 

“That fraction of the theoretical potential that is 
utilizable, i.e. because the land or area is available 
and suitable.” 

Mainzer et al. (2014, 
p.717) 

“Geographic potential is calculated by gradually 
excluding the zones reserved for other uses, restricting 
the locations where solar energy can be gathered.” 

Freitas et al. (2015, 
p.916) 

Panel performance Technical potential 

“Available suitable surface area, system technical 
performance, sustainability criteria if applicable.” 

Bódis et al. (2019, 
p.2) 

“The irradiation that is technically usable taking 
also into account the efficiency of photovoltaic 
modules.” 

Mainzer et al. (2014, 
p.717) 

Economy factor Economic potential 

“deployment considering competition with other 
sources, policies, legal-permitting aspects, incentives, 
socio-cultural factors, etc.” 

Bódis et al. (2019, 
p.2) 

“technology costs avoided supply costs.” 
Bódis et al. (2019, 
p.2) 

“share of technical potential economically usable 
from an investors’ or macroeconomic point of view.” 

Mainzer et al. (2014, 
p.717) 
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2.3.2. The general approach to estimate solar photovoltaic potential 

According to Freitas et al. (2015), a sequential approach is required to estimate the solar photovoltaic 

potential, shown in Figure 6.  

 

 

 

 

 

 

 

 

 

Figure 6. The sequential process to assess solar photovoltaic potential, adapted from Freitas et al. (2015). 

In general, the approach consists of three steps. First, information regarding the features and surroundings 

of the area that can be obtained from several techniques. Second, a solar radiation model with GIS analysis 

is used. For this step, the 3D input data plays role as the main input data as urban representation. Third is 

the visualization of the output. 

2.3.3. Choosing the input data for solar photovoltaic analysis, 2.5D or 3D? 

The main component of the solar photovoltaic analysis is the geographic location, including height 

information and urban element. Geodata in 2.5D or 3D gives information such as elevation, orientation 

(slope and aspect), and shadow from surrounding features. In general, the 2D data is insufficient to provide 

that information; thus, geodata in 2.5D or 3D is needed (Freitas et al., 2015; Machete, 2016). 

 

Compared with 2D data that is embedded in a 2D space (x, y), 2.5D is embedded in a 3D space whereas 

each location (x, y) is assigned to one height (z). From the acquisition process explained in Section 2.1.1, 

instead of augmented and generated into a 3D model, the collected data is discretised into grid or raster 

form (J. P. Wilson, 2012). The outcome of this process is a Digital Terrain Model (DTM) or a Digital Surface 

Model (DSM).  

 

In contrast, 3D data provide for each location (x, y) as well as its corresponding height (z). From the result 

of the acquisition process and reconstruction process explained in Section 2.1.1, a 3D model allows 

representing an urban scene with volumetric forms. The difference between these two representations is 

illustrated in Figure 7.  
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Figure 7. (a) Difference between DTM and DSM; (b) 2.5D representation, DSM (c) 3D representation, 3D model. 

Considering the explanations above, the question arises: when are 2.5D and 3D data supposed to be used for such 

analyses?  

 

Biljecki et al. (2015) classified two types of use cases for utilizing GIS analysis and 3D model into non-

required visualization use cases and visualization required use cases. The case of solar photovoltaic analysis 

belongs to the non-required visualization use case (Biljecki, Stoter, et al., 2015). In the context of 3D building 

models, Biljecki, Ledoux, & Stoter (2017) and Peronato, Bonjour, Stoeckli, Rey, & Andersen (2016) argue 

that the use of a more detailed roof model, (i.e. a higher level of detail (LOD)) provides a better result for 

spatial analysis such as calculating the photovoltaic potential. However, using more detailed roof model are 

likely more complex and involve higher costs both in time and money for large scales (Biljecki et al., 2017; 

Peronato et al., 2016).  

 

Machete (2016) and Peronato et al. (2018) observe distinct differences in the utilization of 2.5D and 3D as 

input data for solar photovoltaic analysis. According to their studies, a 2.5D representation is sufficient for 

solar photovoltaic potential analysis on the roof while a 3D representation is useful for solar photovoltaic 

potential analysis on the façade (Machete, 2016; Peronato et al. 2018).  

 

Important theme emerges from the studies discussed is the use case of solar photovoltaic potential benefited 

from the use of a more detailed roof model. However, we argue that the choice of both representations can 

be justified with regard to the limitation of the software for solar radiation analysis, the impact on the result 

and the users’ needs. Therefore to answer the question, when are 2.5D and 3D data supposed to be used for such 

analyses? we investigated the usability of 3D model as input data for solar radiation analysis explained in 

section 3.6. 

2.4. Summary 

Physical reality can be represented using 3D models from different data sources. The most common 

approach to collect 3D data uses aerial or terrestrial surveying. Different acquisition techniques produce 

different data characteristics. Point clouds derived from LiDAR are irregular, have multiple returns, but are 

not able to capture objects that are occluded or do not have reflection properties such as water. On the 

other hand, the point cloud produced from DIM  processes are regular. These two types of 3D data are 

commonly integrated to generate a more detailed and accurate 3D model. The 3D models, are  mainly used 

to simulate environmental problems as a part of decision support. In the case of solar photovoltaic, the 

literature review revealed that the not only 3D models but also 2.5D are used as input. However, the usability 

between these two are still debatable.

b

 

c 
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3. METHODOLOGY 

This chapter introduces and elaborates on the methods applied for this research. The structure of this 

chapter consists of seven sections. The overall methodology of the study is shown in section 3.1. The 

following sections 3.2– 3.6 elaborate on the study area and on the implementation of the findings from the 

literature review to answer sub-objective 1,  to investigate the characteristics of the input data, and sub-

objective 3, to develop a 3D model to estimate the potential of a solar photovoltaic installation. At the end 

of the chapter, section 3.7 summarizes the used methods in this research. 

3.1. The overall approach of the study 

The overall approach of this study is a mixed qualitative-quantitative method (Figure 8). Per sub-objectives, 

the tasks are identified, and the approaches are chosen to address the sub-objective and related questions of 

this study. Following statements explain the choice rationale.  

Sub-objectives Tasks Data collection Data process & analysis Methods 

Investigate the 

characteristics and 

content of the input data 

 

 

Identify 3D data 

characteristics and 

utilization 

Literature review 

 

 

Pre-processing data 

 

 

Metadata examination 

Visual check data 

completeness 

Define data quality 

elements 

Literature review Point density calculation 

Point cloud classification 

Prepare unified data that 

satisfy the user needs for 

3D models 

Data integration Literature review Point density registration 

Identify user 

perspectives 

Semi-structured interview Content analysis  

Develop a 3D model to 

estimate the potential of 

solar photovoltaic 

installation 

3D model generation National geodatabase and registers 

extraction 

Construct a 3D model Semi-automatic 3D model 
construction with RANSAC 

Solar photovoltaic 
potential analysis 

National geodatabase and registers 

extraction 

Solar radiation analysis  

Model evaluation Focus group discussion Content analysis  

 

 
Figure 8. Overall research approach. 

This study requires information related to 3D modelling and solar photovoltaic and also takes the users’ 

perspective into account. Literature review, semi-structured interview and focus group discussions are 

appropriate methods for knowledge gathering and data collection. The semi-structured interviews are able 

to support information regarding user perspectives. Furthermore, focus group discussion involving experts 

is chosen to evaluate the fitness for the purpose of the output.  

 

The data process and analysis phase include both qualitative and quantitative approaches. Methods that are 

applied in this phase are based on the dimensions and technique identified from the literature review in the 

data collection phase. For the quantitative approach, data pre-processing was done to calculate point density, 

to classify point clouds and to register point clouds. Moreover, the result of pre-processing is used to 

generate the 3D model and solar radiation analysis. For the qualitative approach, the result of the semi-

structured interview and focus group discussion are analyzed with a content analysis technique by organizing 

Qualitative Mix method 

 

Quantitative 
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the information into categories.  Illustrated in Figure 10 is the workflow of this study. Further explanation 

of each process is explained in section 3.3– 3.6. 

3.2. Study area 

The study area was selected to be the inner city of Zwolle, at the province Overijssel, the Netherlands (Figure 

9. Location of the study area: (a) city of Zwolle and (b) subset of the study area in the 3D model.). The inner 

city of Zwolle is characterized by mixed residential and commercial buildings with diverse structures. 

Therefore, it is a suitable study area for experiments with 3D data. The area is protected in regards to solar 

photovoltaic installation because it has old architecture and historical buildings. Also, the municipality of 

Zwolle applies the line of sight regulation from the public area when applying solar photovoltaic installation 

(Boschman, 2017).  Line of sight regulation is a regulation that determines whether a given point is visible 

from another point. The line of sight regulation protects the view of the historical city and its characteristics, 

by disallowing any changes to buildings that are in the line of sight from the public road.  

 
Figure 9. Location of the study area: (a) city of Zwolle and (b) subset of the study area in the 3D model. 
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Figure 10. Implemented methods and techniques workflow of this study. 

3.3. Pre-processing of 3D data 

The requirements for the pre-processing of 3D data were derived from findings from the literature review. 

Obtained from the literature review, there are six elements to define spatial data quality. In this research, we 

focus on three elements, completeness, temporal quality and positional accuracy. These elements were chosen 

because they have a significant impact on the geometric aspect of 3D data. These elements were adapted 

into several processes. These processes consist of metadata examination, visual data completeness 

inspection, point density calculation, point cloud classification and point cloud registration. The output of 

these multiple processes is an integrated point cloud (Figure 11). The data used for this research is the 

LiDAR point cloud, and DIM (DIM) point cloud. These datasets are provided by Kadaster. Metadata from 
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the data were examined to check the temporal resolution, format, fields attached, positional accuracy and 

acquisition process. Besides metadata, this information is also acquired through discussion with people at 

Kadaster, from the internet and productspecificatie3. Table 3 presented the description of the datasets used for 

the whole research 

Figure 11. Workflow diagram for pre-processing the LiDAR point cloud and DIM (DIM) point cloud. This is part of 
Figure 10. 

Table 3. Data description. 

Dataset Data source Date of release Format Fields/information 

Building 

footprints 

(BAG) 

PDOK January 2020 Vector - footprints See Ministerie van Binnenlandse 

Zaken en Koninkrijkrelaties, (2018) 

LiDAR point 

clouds(AHN3) 

PDOK 2016 Point cloud Point format, Z minimum and Z 

maximum, point count, return 

number, the total number of returns. 

DIM point 

clouds 

Kadaster 2019 winter 

images 

Point cloud Derived from aerial winter imagery. 

 

The building footprints are maintained and extracted manually from aerial imagery by each 

municipality(Figure 12a). This vector data is distributed to Kadaster and made available to the public4. 

According to the metadata of Actueel Hoogtebestand Nederland (n.d.), the LiDAR point clouds (Figure 

12b) were collected from laser altimetry from aircraft. The flights took several weeks (influenced by weather 

and flight permissions). For AHN3 in total, the data was captured from 2014 – 2019 (Actueel 

 
3 https://www.geobasisregistraties.nl/documenten/publicatie/2018/03/12/catalogus-2018 
4 https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1 
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Hoogtebestand Nederland, n.d.). The vertical accuracy for AHN3 is 5cm stochastic and 5cm systematic, the 

planimetric accuracy is 8cm stochastic and 5cm systematic (Actueel Hoogtebestand Nederland, n.d.). The 

DIM point cloud (Figure 12c) was derived from aerial winter imagery. The ground pixel resolution of this 

image is between 4 – 10cm, with an overlap of 60% and 30%. The output is a 3D point cloud, which was 

used in this research. 

Figure 12. The geodata being used in this research, building footprints, LiDAR point cloud and DIM point cloud. 

3.3.1. Visual check data completeness 

Completeness can be measured by comparing datasets to true reference (see section 2.1.3). This phase is to 

check if the point cloud datasets used are complete or if there is an obvious lack of completeness in the 

study area. Therefore, for this phase, a visual inspection by comparing two datasets was done as the first 

screening. Afterward, statistic calculation with a point to point distance calculation was carried out as part 

of the point cloud registration process. Two additional datasets as visual ground truth to detect changes 

were also used: Cyclomedia5 and Google Maps6. These two are the providers for street-level imagery data. 

See section 3.3.4 for the technique of point cloud registration and section 4.1.3 for the result of the point 

cloud registration and visual check with the additional datasets. 

 
3.3.2. Point density calculation 

The point density is calculated using LAS Dataset tools from ArcGIS Pro. The output of this tool is point 

spacing. According to Esri, (n.d.), point spacing is not the same as point density. Point spacing (PS) is 

defined as linear units per point, while point density (PD) is defined as points per square unit area. To 

convert point spacing to point density, Equation 1 is applied. A higher point density means lower values for 

point spacing. The result of this calculation is presented in section 4.1.2. 

 

𝑃𝑜𝑖𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
 1

(𝑃𝑜𝑖𝑛𝑡 𝑠𝑝𝑎𝑐𝑖𝑛𝑔)2…………………………………...……(1) 

Equation 1. Formula to calculate point density from point spacing, adopted from Esri, (n.d). 

3.3.3. Point clouds classification 

Point clouds classification is a process to automatically assign points to predetermined classes. The American 

Society for Photogrammetry & Remote Sensing (ASPRS) (2011), has defined a standard classification 

scheme (Table 4). The point cloud datasets used in this research are successfully classified into four classes 

code value: unclassified (1), ground(2), building (6), water (9). The result of the classification process is 

elaborated in section 4.1.2. Afterward, a separate dataset is created by subtraction of the points classified as 

a building because the main interest of this research are buildings. 

 

 

 

 

 
5 https://www.cyclomedia.com/en 
6 https://www.google.com/maps 

(a) Building footprints (b) LiDAR point cloud (c) Dense image matching point cloud 

https://www.cyclomedia.com/en
https://www.google.com/maps


INVESTIGATING STANDARDIZED 3D INPUT DATA FOR SOLAR PHOTOVOLTAIC IN THE NETHERLANDS 

18 

Table 4. ASPRS standard LiDAR classes. 

Classification value Meaning 

0 Created, never classified 

1 Unclassified 

2 Ground 

3 Low vegetation 

4 Medium vegetation 

5 High vegetation 

6 Building 

7 Low point (“low noise”) 

8 High point (typically “high noise”) 

9 Water 

10 Rail 

11 Road surface 

12 Bridge deck 

13 Wire – guard  

14 Wire – conductor (phase) 

15 Transmission tower 

16 Wire- structure connector (e.g. insulator) 

17 Reserved 

18 – 63 Reserved 

63 – 255 User definable. 

 
3.3.4. Point clouds registration 

Adopting from previous work elaborated in Section 2.2, we used the ICP algorithm to register the two point 

clouds dataset. This process was done in CloudCompare software. In principle, the algorithm steps are as 

follows (Figure 13): 

1. For each point in the source (DIM) point cloud, find the closest point in the reference (LiDAR) 

point cloud. 

2. Estimate the combination of rotation and translation with a mean squared error function that will 

best align each source point to find its match. 

3. Transform the source points using the obtained transformation matrix. 

4. Iterate the steps. 

The output of this algorithm provides a transformation matrix and a roughness value. This transformation 

matrix is used to transform the source point into a reference point. The roughness value (mean and standard 

deviation) is equal to the distance of the point and the best fitting plane in the neighboring points (Girardeau-

Montaut, n.d.; Sirmacek & Lindenbergh, 2014). This value represents the distribution of the distances 

calculated between two-point cloud datasets. The result of this process is presented in section 4.1.3. 

Figure 13. Principle of the ICP algorithm. 

Source 

point 

Reference 

1. Find the closest point 2. Estimate orientation 

and translation 

3. Correspond point founded; 

distance between two points are 
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3.4. The 3D model generation 

The 3D model was generated semi-automatic with the integrated point cloud generated from section 3.3, 

building footprints (BAG7) and rooflines (Figure 14). Kadaster has available datasets of rooflines that are 

manually digitized. However, there are some places in the study area where the rooflines are incomplete. 

We digitized the rooflines to this missing area following the same procedure of the available rooflines 

datasets, which is manual digitizing from true orthophoto from aerial imagery. The rooflines are illustrated 

in Figure 16. The rooflines consist of two types of lines: height jump and ridgeline. Height jump is the edge 

of roof faces that have a significantly different height, while a ridge line is a line formed along the rooftop. 

Figure 14.  Workflow diagram for generating the 3D model. This is part of Figure 10.  

The sequence of the 3D model construction is illustrated in Figure 15. The 3D model construction started 

with merging and segmenting rooflines and building footprints (Figure 15a) while maintaining the building 

identifier (ID). The result of this step is planar patches (Figure 15b). After the planar patches are produced, 

the integrated point clouds are assigned to the planar patches (Figure 15c). Afterward, each planar patch 

was reconstructed following the height and the slope direction obtained from the integrated point clouds. 

The process was carried out using the RANSAC algorithm (Fischler & Bolles, 1980) to segment the point 

clouds into planes. 

Figure 15. The sequence of 3D model generation. The first image (a) is the building footprints. The rooflines consist 

of ridge lines (white), and height jumps (yellow) were merged, and the building footprints were segmented—this 

process resulting in planar patches (b). The point clouds were continuously iterated with the RANSAC algorithm to 

fit the candidate shape and the confidence parameter until reaching the consensus, shown in grey color on picture (c). 

Afterward, the building footprints were merged again with the segmented roof from the picture (c) to generate a full 

3D model shown in the picture (d). 

 
7 https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1 

a b c d 

https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1
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RANSAC algorithm is well known to detect primitive shapes in both 2D and 3D (Schnabel, Wahl, & Klein, 

2007).  This algorithm was introduced by Fischler & Bolles (1980) and consisted of three parameters: (1) 

error tolerance to determine whether a point is compatible with the fitting plane or not, (2) the number of 

subsets to try, (3) the threshold. The algorithm starts by randomly selecting a minimal subset of n points and 

estimating the corresponding fitting shape parameters. The remaining points are tested with the resulting 

candidate shape to see how many points fit the candidate shape. After a certain number of iterations, the 

shape that has the largest percentage of inliers is extracted, and the algorithm continues to process the 

remaining data. The result of this step is floating planes, which were combined with the corresponded 

extruded building footprints (Figure 15a) to produce a full 3D model (Figure 15d).  

Figure 16. Illustration of ridgeline and height jump in 3D models. Left is from the aerial imagery, and right is from 
the 3D model. 

3.5. Application for solar photovoltaic potential 

The solar photovoltaic potential was done in two steps. First, 3D models were converted into raster. Second, 

the solar potential estimation was calculated using the Area Solar Radiation tool (Figure 17. Workflow 

diagram for calculating solar radiation to estimate the solar photovoltaic potential. This is part of Figure 

10.). As explained in section 2.3.1, for geographic potential, the main criteria to determine the suitable solar 

photovoltaic are solar irradiation, slope, and orientation. The 3D models were converted into raster because 

the main input of the Area Solar Radiation tool in ArcGIS is DSM. This tool accounts for atmospheric 

effects, roof slope, roof orientation and effects of shadow cast. Afterward, a raster was taken as output with 

pixel values in units of Wh/m2. The solar radiation was calculated through a 1-year simulation of solar 

irradiation on rooftops.  

 

To investigate the influence of pixel resolution, we converted the 3D models into rasters with different pixel 

sizes, 0.2m and 0.5m. Moreover, to assess the usability of using 3D models, we created another DSM raster 

from the integrated point cloud (section 3.3.4) as another input for solar irradiation calculation. Besides 

being part of the experiment, the objective of using DSM raster from the integrated point cloud is to see 

the improvement of the new methodology, because using DSM from the LiDAR point cloud is the current 

workflow that is implemented at Kadaster. 

Ridgelines 
Height jump Height jump 

Ridgelines 
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Figure 17. Workflow diagram for calculating solar radiation to estimate the solar photovoltaic potential. This is part of 
Figure 10. 

3.6. Collecting data about the end-users’ perspective 

Besides the technical and data requirements, an important additional perspective in this study is the 

perspective of the end-users of the data. Semi-structured interviews and focus group discussion have been 

conducted to gauge their opinions. The objective of the semi-structure interview was to gather the required 

information needed related to solar photovoltaic analysis and to identify the compliance between the user 

requirements and the input data. The objective of the focus group discussion was to evaluate the model’s 

fitness to the application of solar photovoltaic potential. 

3.6.1. Semi-structured interview 

The advantages of a semi-structured interview are its usefulness in gaining attitudes and opinions while 

retaining the possibility of discovering previously unknown issues (Wilson, 2014). The flexibility to add 

follow-up questions can help the interviewer to obtain detailed insight (Bryman, 2012; Zhang, 2019). The 

common technique for a semi-structured interview is the use of open-ended questions. Such questions allow 

to adapt questions to the interviewees' level of knowledge and understanding of the issues (Bryman, 2012). 

 
There was no fixed number set of how many interviewees are needed in this research. However, the rule of 

thumb is when the given information starts to repeat itself, then the number of interviewees is enough 

(Toppen, 2016). Five experts were approached for the participation of whom four were willing to participate. 

The interviewees were experts from different backgrounds; municipality (Interviewee 1), solar analysis 

provider (Interviewee 2), land-mapping agency (Interviewee 3) and academia (Interviewee 4) (Table 5. 

Interviewees' background). These experts represent different knowledge areas related to solar photovoltaic 

analysis. The objective of these interviews was to obtain the professionals’ personal opinions, knowledge 

and experiences with the use case. The interview was recorded and transcribed after the interview. The 

questions are shown in the Appendix. 

 
Table 5. Interviewees' background 

Interviewee Background 

Interviewee 1 Municipality from smart community department 

Interviewee 2 Solar analysis provider 
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Interviewee 3 Land-mapping agency 

Interviewee 4 Academia 

 

3.6.2. Content analysis for the semi-structured interview 

The interviews were held in different moments, depending on the schedule of each interviewee. These 

interviews were done at the start of this research. The transcription result is coded into seven dimensions, 

as shown in Table 6. Dimensions applied for content analysis for the semi-structured interview.These 

dimensions are defined to extract relevant information from the interview. According to Bryman (2012), 

content analysis helps to obtain a transparent result. The method supports that the results are replicable and 

support follow-up studies. 

 
Table 6. Dimensions applied for content analysis for the semi-structured interview. 

Dimension Rationale 

Background of work To understand the background knowledge of the interviewee, which 
could influence his/her answers towards the interview questions. 

Users To identify the type of users from each interviewee. 

Information needed for estimating solar 
photovoltaic 

To identify the interviewee’s considerations and influential factors that 
should be used in the calculation for estimating solar photovoltaic 
potential. 

Additional data that they collect 
themselves 

To identify additional data used in the interviewee’s calculation of 
estimating solar photovoltaic potential, besides publicly available data. 

Data used by the interviewee for solar 
photovoltaic potential estimation 

To identify data type, format and suitability criteria used in their 
calculation for estimating solar photovoltaic potential.  

Comments on standardization model To understand the demand for establishing a standard model for 
estimating solar photovoltaic potential. 

Comments on quality of currently 
publicly available data (BAG and AHN) 

To understand the shortcomings of publicly available data that 
influence the estimation of solar photovoltaic potential. 

3.6.3. Focus group discussion 

Focus group discussion is an approach to observe the discussion and response of people on a particular, 

fairly tightly defined topic with several participants (Bryman, 2012). In the research, the participants were 

six experts in 3D modeling, point cloud and familiar with the solar photovoltaic application. The participants 

were selected with purposive sampling. The motivation for doing this focus group discussion is to evaluate 

the fitness of the model to the application of solar photovoltaic potential. This focus group aims to assess 

if the result of the 3D model obtained with the presented method is fit for the purpose. The perceived 

quality of the 3D model of the six participants was measured using qualitative indicators that include fit-for-

purpose, general validation statements, and data integration. The session was started with an introduction 

about the research with presentation and video, followed by filling the questionnaire8 (see Appendix for the 

questions and link to the video). The perception was measured on a scale of 1 (strongly agree) to  5 (strongly 

disagree), or no response, followed by several open questions. At the end of the session, we presented the 

outcome of the questionnaire to facilitate discussion between participants. The session was recorded, 

transcribed and analyzed with content analysis (Table 7. Dimensions applied for content analysis for focus 

group discussion.. The questions are attached in the Appendix and the results presented in section 4.5. 

 

 
8 We planned to have the focus group discussion offline. But due to the measures of the Dutch government in 
response of COVID-19 outbreak, we held the focus group discussion online. 
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Table 7. Dimensions applied for content analysis for focus group discussion. 

Dimension Rationale 

The converted 3D model provides clear 

visualization for solar photovoltaic analysis. 

To evaluate the presented method, ease the 

communication process for presenting the result of the 

solar photovoltaic analysis. 

The converted 3D model provides the required 

information for solar photovoltaic analysis. 

To evaluate the presented converted 3D model 

fulfilled the required information following the criteria 

obtained from the semi-structured interview 

The 3D model could be adapted for other 

applications. 

To evaluate the presented converted 3D model suits 

for other application than solar photovoltaic analysis. 

The integration of the point clouds improves 

the data completeness element. 

To assess the integration of LiDAR point clouds and 

DIM point clouds, compensate the omitted object in 

the dataset due to the properties of the LiDAR point 

clouds. 

The integration of the point clouds improves 

the temporal quality element. 

To assess the integration of LiDAR point clouds and 

DIM point clouds, compensate the changed and not 

acquired object due to the acquisition time of the 

LiDAR point clouds. 

The integration of the point clouds improves 

the positional accuracy element. 

To assess the integration of LiDAR point clouds and 

DIM point clouds positional accuracy close to the 

respective relative position of LiDAR point clouds. 

List of improvements for the 3D model. To evaluate the visualization of the presented 3D 

model closes to the perceived as reality. 

 

3.7. Summary 

This research carried out a mixed approach to gather and process the data. In overview, the methodologies 

applied were data collection, data processing and data analysis. Data collection consists of a literature review, 

data retrieval from national geodatabase and registration, semi-structured interviews, and a focus group 

discussion. Data processing and analysis consist of pre-processing of the 3D input data, 3D model 

generation, solar photovoltaic potential analysis, and content analysis for the semi-structured interviews and 

focus group discussion. The insights obtained from the literature review were applied to the pre-processing 

steps that consist of a visual check for data completeness, point density calculation and classification for 

LiDAR point cloud and DIM point cloud. In the end, both point cloud datasets were registered with the 

ICP algorithm resulting in the integrated point cloud. The 3D model was generated using the RANSAC 

algorithm with the integrated point cloud, building footprints and rooflines as our input data. The insights 

obtained from the semi-structured interview were applied to the solar photovoltaic potential analysis. The 

results of the solar radiation analysis were evaluated by means of a focus group discussion. The objective of 

the focus group discussion was to evaluate the fitness to the purpose of the model.
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4. RESULT AND DISCUSSION 

The methodology and its implementation are presented in this thesis allow to investigate the standardized 

3D input data for solar photovoltaic potential. This chapter discusses the results found from the 

implemented methodologies in Section 4.1-4.5. 

4.1. Result of the pre-processing of the 3D data 

This section elaborates the result of pre-processing 3D data. The 3D data used in this research is the DIM 

point cloud and LiDAR point cloud. The process consists of metadata examination, visual check for data 

completeness, point density calculation, point cloud classification and point cloud registration resulting in 

the integrated point cloud. 

4.1.1. Point density calculation 

For the showcase point cloud, the DIM point cloud contains 19,036,479 points before classification and 

removing outliers. In the LiDAR point cloud, before classification and removing outliers, it contains 

1,078,247 points, for the same area. The results of the calculated point spacing following Equation 1 are 

shown in Table 8. The result indicates that the LiDAR point cloud has less point density than the DIM 

point cloud. 

 
Table 8. LAS file properties. 

LAS File Point count Point spacing Point density Z min Z max 

LiDAR point cloud 15,078,247 pts 0.24 m/point 17 points/m2 -1.014 m 78.522 m 

DIM point cloud 19,036,479 pts 0.216 m/point 21 points/m2 -20.119 m 75.305 m 

 

4.1.2. Point cloud classification 

The classification process started with ground classification and followed with classifying building rooftop 

points. Because the main interest in this research is the buildings, this process also removes noise from the 

point cloud. Class code values of 0 (never classified), 1 (unclassified), and 6 (building) are evaluated to 

determine if those fit the characteristics of a building rooftop. If they do not meet the criteria, then point 

clouds will be assigned to a class code value of 1 (Esri, n.d.). Both point clouds were classified into four 

classes code values: (1) unclassified; (2) ground; (6) building; (9) water. 

 

Next, each point cloud was thinned to extract code class value 6 (building) and to derive a consistent density. 

However, after visual inspection, both point clouds contain false negative (Figure 18). The method 

recognizes boats as buildings; this false negative caused by the definition of the smallest area size of the 

building during the classification process. Therefore, the false-negative objects were selected manually and 

reclassified to code class 1 (unclassified). 
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Figure 18. False-negative from LAS thinning result from DIM (left) and LiDAR (right) point cloud. Boat detected as 
building. 

4.1.3. Point cloud registration  

Point cloud registration is done based on the ICP algorithm, as explained in Section 3.3.4. After both point 

clouds were registered, the differences were analyzed and detected by calculating the point to point distances 

for x, y, z component. The  LiDAR point cloud has irregular points, and the DIM point cloud has regular 

points, so it is incomparable in the x and y component. Therefore to detect the changes in urban objects, 

we focused on the z value. In Figure 19 and Table 9. Result point to point distance calculation of two 

dataset., we presented the mean distance (µ) and the standard deviation (σ) from point to point distance 

with color codes using meters as the unit. The source point is the DIM point cloud, and the reference point 

is the LiDAR point cloud. The red and blue color represents source points that have a higher distance to 

the reference point. White color represents the source point that closes to 0 or overlap.  

 

In Figure 19 c, there is a clear difference between the two datasets, also confirmed by the standard deviation 

in Table 9. This difference might be due to the different acquisition time. These unmatched areas 

furthermore, were checked visually using Cyclomedia and Google Maps (Table 10). From those resources, 

we noticed there are four unmatched areas because the building shapes have been changed. To check the 

positional accuracy of the registration process of the two datasets, those unmatched areas were removed, 

and the rest of the point clouds were re-registered and recalculated. From the data represents in Table 9, we 

show that the standard deviation is reduced drastically. 

 

In the end, to create the most current point cloud dataset and to achieve the aim of the temporal quality, we 

used the DIM point clouds in those unmatched areas. 

 
Table 9. Result point to point distance calculation of two dataset. 

Component 

With unmatched area Unmatched area removed 

Mean distance (µ) Standard deviation (σ) Mean distance (µ) Standard deviation (σ) 

x 0.059m 2.800m -0.017m 1.137m 

y 0.047m 2.430m -0.079m 1.041m 

z 0.082m 1.914m -0.046m 0.788m 
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Figure 19. Point to point distance calculation in x (top), y (middle) and z (bottom) component. 

 

 

 

 

 

 

 

 

 

 

 

(a) X component 

(b) Y component 

(c) Z component 
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Table 10. Unmatched areas from two-point cloud datasets compared with Cyclomedia and Google Maps. 

DIM LiDAR Cyclomedia Google Maps 

1. Area: Papenstraat 9 

(2019) (2016) (2019) (2018) 

2. Area: Friesewal 49-53 

(2019)  
(2016) 

(2018)  

 

 

 

 

 

 

 

(2020) 

(2020) 

3. Area: Spoelstraat 18 

(2019) (2016) (2018) (2020) 

4. Area: Voorstraat (lower boundary) and Melkmarkt (upper boundary) 
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(2019)  (2016) (2016) 

(2019) 

N/A 

 

4.2. Result of the 3D models 

The final result of the generated 3D models is shown in Figure 20. From the process elaborated in section 

3.4, we generated 48 buildings from the study area. The semi-automatic method successfully generated 

different primitive roof types, such as cross hipped, mansard and hip valley (Figure 21). 

Figure 20. The result of the generated 3D models, 48 buildings are generated from the study area. 
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Figure 21. Different types of roofs are generated, cross hipped, mansard and hip valley. 

In the case of solar photovoltaic potential analysis, modeling the roof type is important because roof types 

determine areas available, which also determine the amount of solar panel can be installed and the energy 

can be harvested. Challenges that need to be better addressed are related to the deviation position between 

the building footprints and the rooflines. Due to deviations between the input data, it is challenging to 

implement a fully automatic method. In this case, we set the building footprints obtained by BAG as a 

benchmark. 

4.3. Result of solar photovoltaic potential calculations 

We converted the 3D models of 48 buildings to DSM because the main input of the Area Solar Radiation 

tool in ArcGIS is DSM. As part of the experiment, we converted the 3D model with different pixel sizes, 

0.2m and 0.5m pixel resolution. (Figure 22a and Figure 22b). As explained in Section 3.5, we also generated 

another DSM with the same pixel size directly from the integrated point cloud (Figure 22c and Figure 22d). 

These DSMs were used as input for solar radiation analysis and the results are presented in Appendix 3. 

Figure 22 presents the result from one building.  

 

Following the explanation in section 2.3.1, we ran the solar radiation analysis in two steps: calculate the 

physical potential and calculate the geographic potential with Area Solar Radiation tool from ArcGIS. The 

tool produced a raster layer where each pixel value is the amount of solar radiation in units of Wh/m2. The 

physical potential calculated the solar irradiation on all roofs for the whole year of 2019 with 0.5 as hour 

interval. The hour interval determines the tool to compute the amount of solar radiation once every half 

hour for each day; otherwise, the tool will calculate an aggregated solar radiation for each day. The criteria 

applied in the geographic potential were derived from the findings from the semi-structured interviews. We 

noticed differences in determining the criteria, as explained in section 4.4.1. Therefore we adopted one of 

the criteria that took a similar geographic area as our study area. Table 11 described the criteria. 

 

Cross hipped Mansard Hip valley 
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Table 11. Criteria applied to estimate the solar potential. 

Criteria 

Feasible slope 38 degrees 

The minimum threshold for irradiation per year 600 kWh/m2 

Feasible roof orientation South facing 
 

Figure 22. Comparison between DSM. Picture (a) and (b) are generated from the conversion of a 3D model. Picture 
(c) and (d) were generated directly from registered point clouds. 

Figure 23 represents the result of physical potential from one building (see Appendix 4 for the result from 

all buildings in the study area). It can be seen from the experiment, that the result of solar radiation analysis 

carried with our methodology (Figure 23a and Figure 23b) produces a much smoother result compare with 

the result carried with DSM (Figure 23c and Figure 23d). With the presented 3D model technique,  roof 

details such as dormers to quantify available surface areas were hard to be obtained. By using the converted 

3D model as input data for solar radiation, the analysis could avoid data gaps and noise that likely happened 

if using DSM. The result of the integrated point cloud demonstrated that it is sufficient to produce a 0.2m 

pixel resolution DSM.  

 

 

 

 

a b 

c d 

Pixel size 0,2m 

Pixel size 0,2m 

Pixel size 0,5m 

Pixel size 0,5m 
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Figure 23. The comparison between the result of solar radiation analysis. The input data for (a) and (b) are the converted 
3D model. The input data for the picture (c) and (d) are DSM generated from the integrated point cloud. 

From this result, we applied the criteria from Table 11 to calculate the geographic potential. Firstly, the roof 

slope is calculated to determine the incline of the roof—the slope calculation resulting in value ranging from 

0-90 degrees per pixel. The lighter colors represent lower slopes, and darker colors represent steeper slopes 

(Figure 24, see Appendix 5 for the result from all buildings in the study area). Afterward, we created the 

aspect layer to determine the roof orientation (Figure 25). Each pixel contains value represent orientation 

in degrees, 0 represents absolute north, and 180 represents absolute south. The Netherlands located in the 

northern hemisphere, therefore roof surfaces facing the north are likely to receive less solar radiation than 

roof surfaces facing other directions. Thus roof surfaces that facing other directions will receive more solar 

irradiation. 

 

We started by applying the feasible roof slope criteria. Thus we removed roof surfaces less than or equal to 

38 degrees. Next, we applied the minimum threshold criteria; thus, roof surfaces with low solar radiation 

below 600kWh/m2 were removed. From the result of this step, most roof surfaces facing other orientations 

except the south were likely removed. However, there are still some roof surfaces facing north remain, so 

we removed these roof surfaces. After the criteria are applied, we obtained the potential areas for solar 

photovoltaic installation shown in Figure 26.  
 

 

a b 

c d 

Pixel size 0,2m 

Pixel size 0,2m 

Pixel size 0,5m 

Pixel size 0,5m 
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Figure 24. The comparison result of roof slope calculation from one building. The input data for (a) and (b) is the 
converted 3D model and the input data for (c) and (d) is DSM from the integrated point cloud. To see the result 
from all buildings, see Appendix 5.  
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c d 

Pixel size 0,2m 

Pixel size 0,2m 

Pixel size 0,5m 

Pixel size 0,5m 



INVESTIGATING STANDARDIZED 3D INPUT DATA FOR SOLAR PHOTOVOLTAIC POTENTIALS IN THE NETHERLANDS 

33 

 

Figure 25. The comparison result of roof orientation calculation from one building. The input data for (a) and (b) is 
the converted 3D model and the input data for (c) and (d) is DSM from the integrated point cloud. To see the result 
from all buildings, see Appendix 6. 

The output of the calculation is still meaningless because it shows solar radiation values in each pixel. 
Therefore, we aggregated the pixels to know how much radiation each building could harvest. To calculate 
the total amount of solar radiation received per year by each building’s usable area, we multiplied the suitable 
areas by the average solar radiation; the result is presented in unit MWh for the year 2019. From the 48 
buildings used as input data, only 45 buildings meet the criteria. The amount of energy to harvest differs 
among the four input datasets (Table 12). The differences for each building are relatively small, shown in 
Figure 26.  

Table 12. Energy to harvest for one building in a year corresponds to Figure 25. 

Input data Area (m2) Average solar 

radiation (kWh/m2) 

Energy to 

harvest (MWh) 

Converted 3D model 0.2m pixel 

resolution 

46.72 817.351 38.19 

Converted 3D model 0.5m pixel 

resolution  

38 810.884 30.81 

DSM from the integrated point cloud 

0.2m pixel resolution 

42.96 793.315 34.08 

Pixel size 0,2m 

Pixel size 0,2m 

Pixel size 0,5m 

Pixel size 0,5m 
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DSM from the integrated point cloud 

0.5m pixel resolution 

37 802.191 29.68 

 

 

Figure 26. Comparison result from one building after the criteria are applied, resulting in the potential roof surfaces. 

The input data for (a) and (b) is the converted 3D model and the input data for (c) and (d) is DSM from the integrated 

point cloud. To see the result from all buildings, see Appendix 7. 

 

Figure 27. The difference in the amount of energy to harvest for each building in a year. 

a b 

c d 

Pixel size 0,2m 

Pixel size 0,2m 

Pixel size 0,5m 

Pixel size 0,5m 
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Table 13. Energy to harvest for the total 45 buildings dataset in a year. 

Input data Energy to harvest (MWh) 

Converted 3D model 0.2m pixel resolution 907.121 

Converted 3D model 0.5m pixel resolution  939.138 

DSM from the integrated point cloud 0.2m pixel 

resolution 

693.938 

DSM from the integrated point cloud 0.5m pixel 

resolution 

918.304 

 

On the converted 3D model, details are generalized and noises are removed as opposed to a DSM from the 

integrated point cloud, where these are shown. Figure 26 demonstrates the difference, the roof details on 

the roof segment were mostly removed when using the converted 3D model (Figure 26a) while it remains 

when using DSM from the integrated point cloud (Figure 26c) and is extracted as potential areas. These 

reasons could explain the difference when estimating solar radiation potential. Integrating more datasets and 

generalization in generating 3D models could introduce unidentified errors, which might add to the 

differences found. 

 

Figure 27 shows the difference in the amount of energy to harvest for each building in a year. Two outliers 

are referring to a big difference in the calculation when using a converted 3D model and DSM from the 

integrated point cloud as input data, noticed from these charts. When these two outliers are checked closely 

and compared with aerial imagery and the point cloud used, we recognized that the top surface of the 

building contains objects that are generalized in the converted 3D model (Table 14). From the aerial imagery, 

we noticed that the roof structure of building number 10 is complicated and hard to define the height jump 

and roof edge from this building. While for building number 40, the roof surface is planar with an object 

resemblance to a wall in between. From these two cases, manual digitization for rooflines might be confusing 

because the objects are vague to consider as height jump and roof edge. These findings might help us to 

understand that the semi-automatic method used in this study is needed an improvement to avoid variation 

in the result of the solar photovoltaic analysis. 

 

However, the ground truth needed to assess the outcome of this calculation process is not available, limiting 

the options to prove the result, whether it is close to reality or not. 
 

Table 14. Outliers detected between input datasets. Comparison between aerial imagery, input data models, and 
potential roof surfaces. 

 Aerial imagery of the building number 10. Aerial imagery of the building number 40. 

Converted 3D model with 0.2m pixel resolution. 
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Converted 3D model with 0.5m pixel resolution 

  
  

DSM with 0.2m pixel resolution 

    

DSM with 0.5m pixel resolution  
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4.4. Result and implications of semi-structured interview 

This section analyses the results of the interviews conducted among representatives of four different 

backgrounds (section 3.6.1). The interviewees are experts from diverse backgrounds, municipality 

(Interviewee 1), solar analysis provider (Interviewee 2), land-mapping agency (Interviewee 3) and academia 

(Interviewee 4). These professionals represent different knowledge areas involved in the solar photovoltaic 

analysis. The results are described in section Fout! Verwijzingsbron niet gevonden.– 4.4.3. Section Fout! 

Verwijzingsbron niet gevonden. elaborates the required information related to input data to estimate solar 

photovoltaic potential. Section 4.4.2 analyses the compliance and shortcomings of the current 3D data. 

Section 4.4.3 explains the topics that aimed at identifying the need for standard 3D input data for solar 

photovoltaic analyses. 

4.4.1. Required information for solar photovoltaic potential estimation 

The four experts were asked to give their point of view about the general factors required to estimate 

the solar photovoltaic potential. The four interviewees explicitly stated the general factors used to 

calculate the estimation of solar photovoltaic potential are (Figure 28): 

a. Information about roof: slope, type, and orientation; 

b. Shadow casting from surrounded buildings and trees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. The general factors used to calculate the estimation of solar photovoltaic potential. 

Interviewee 1, stressed that in the municipality of Zwolle, there are two extra regulations applied. First, 

solar photovoltaic panels are not allowed to be installed on historical buildings' roofs and special roof shapes. 

Second is the line of sight regulation for the city center of Zwolle; it is not allowed to install solar 

photovoltaic panels if: 

a. the solar photovoltaic panel is visible from Zwolle four points of interest (Peperbus, Museum de 

Fundatie, the Town Hall, and the Sassenpoort; 

b. the solar photovoltaic panel is visible from publicly accessible areas. 

 

However, all four interviewees underlined that the solar photovoltaic potential areas are reduced when 

factors such as mentioned above restrict the suitability analysis. Other factors are added by Interview 2 

about minimal roof surface area also by Interviewee 3 about the minimum threshold for production of solar 

energy for each building per year and the optimal roof slope. According to both interviews, these two factors 

are related to the payback period, which founded important for citizens and municipalities. The importance 

of these factors is also acknowledged by the research from Paardekooper (2015) and Peronato et al. (2016). 

However, Paardekooper (2015) and Peronato et al. (2016). Yet, inconsistencies were found for determining 

the optimal roof slope and threshold for the production of solar energy for each building per year (Table 

summer 

winter 

slope 

orientation radiation 
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15. The threshold applied for suitability analysis of solar photovoltaic.. We assumed that this finding might 

be the cause of the variation of the result of the solar photovoltaic potential. 

 

Table 15. The threshold applied for suitability analysis of solar photovoltaic. 

Source Study area Slope Orientation The minimum threshold for 
production of solar energy for 
each building per year 
(kWh/m2/year) 

Broersen et al. (2018) The Netherlands - South 690 

Prieto, Izkara, & Usobiaga (2019) Vitoria-Gasteiz, Spain 38 South 800 

Biljecki, Heuvelink, Ledoux, & 
Stoter (2015) 

Delft, the Netherlands 40 - 850 

Peronato et al. (2016) Neuchâtel, Switzerland - South Tested in various threshold: 
400 - 1200 

Peronato et al. (2018) City of Geneva - South 1000 

van Sark (2014) The Netherlands 40 South 875 

Paardekooper (2015) Amsterdam, the 
Netherlands 

33 South 969 

Kausika et al. (2015) Apeldoorn, the 
Netherlands 

38 South 600 

Zonatlas The Netherlands 40 South - 

 

4.4.2. Compliance and shortcomings from the current 3D data 

Each expert was asked at the beginning of the interview to indicate their knowledge on the main topics of 

the interview: 

1. Knowledge of 3D data and GIS analysis; 

2. Quality in the current 3D data available (definition of quality explained in section (section 2.1.3); 

The results showed that all interviewees are familiar with 3D data and GIS analysis, although two out of 

four interviewees are not using it on a daily basis. Their knowledge regarding the quality of the current 3D 

data available, i.e., AHN, is valuable because it gives insight about the perspectives of the users and to 

identify the needs from the users on the 3D data.  To be specific, 3D data available that being discussed 

were AHN. 

 

The interviewees mainly mentioned temporality and spatial accuracy as the two important features of 

3D data quality.  Interviewee 2 said that the current height information available does not satisfy them in 

terms of temporal acquisition time, which was confirmed by Interviewee 3 and Interviewee 4. Interviewee 

2 expects from the data providers to have more recent height information and higher resolution dataset. A 

higher resolution data will be useful to allow for more detailed calculations of the solar photovoltaic potential 

per roof for assessing the economic feasibility, stressed by Interview 2. However, Interview 2 did not take 

the initiative to acquire extra data, i.e. point clouds, themselves because such data is too expensive and costs 

extra work. Interviewee 3 explained that with the help of aerial imagery that is yearly collected, they 

could derive a point cloud from aerial imagery; such a dataset could compensate the temporal 

quality, completeness and spatial resolution. However, Interviewee 3 said that adding an additional 

dataset might introduce a new error. 
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Interviewee 4 specifically mention to detect objects on top of the roof image recognition techniques, 

for example, deep learning. For instance, by adopting the technique to detect damage on the road 

(Angulo, Vega-Fernández, Aguilar-Lobo, Natraj, & Ochoa-Ruiz, 2019) and combined with rooftop 

segmentation (Collier et al., 2019).  

4.4.3. Purpose of a standardized model for solar photovoltaic analysis 

Interviewees were asked their opinion about a standardized model for solar photovoltaic and what the 

general requirements would be of use in the case in terms of (1) the most important quality in datasets and 

(2) data dimensionality. The opinions of the four experts about requirements for a standardized model for 

estimate the solar photovoltaic potential are:  

1. There is no consensus among the interviewees concerning a standardized model for solar 

photovoltaic potential. Interviewee 3 stressed the importance of a good temporal resolution that 

allows having an up-to-date dataset. 

 

2. The most important quality in datasets is temporal and spatial accuracy, which repeatedly 

mentioned by the four interviewees, as elaborated in section 4.4.2. In terms of an object that could 

be detected, both interviewees 1 and 2 mentioned particularly “information about roof” and “windows, 

chimneys, and dormer” respectively. 

 

According to Wong & Ellul (2012), current desktop assessment is considered crude and mainly for 

preliminary investigation, whereas on-site assessment is still placed as a compulsory step. Nouvel, 

Schulte, Eicker, Pietruschka, & Coors (2013) also acknowledged that having information about roof 

windows is important. Although nowadays highly-detailed data is adequate to detect roof and 

windows, the on-site survey is also used to check roof material, because it is not detectable from 

LiDAR nor DIM point clouds, as stressed to Interviewee 3. Interviewee 2 stated that providing a 

detailed assessment for preliminary calculation would make the prospective consumer uncertain, 

“adding too much detail could start a discussion in the mind of the consumer”. Therefore mentioned by 

Interviewee 2, a detailed calculation is only used if the customer asks. 

 
3. The literature review (section 2.3.3) showed that the input data for calculating solar photovoltaic 

potential are based on 2.5D or 3D data because it contains information about elevation, orientation, 

the slope of rooftops and shadows from surrounding features. Stated by interviewee 3 and 4, that 

“to calculate solar photovoltaic potential on the roof, the 2.5D model is enough and a 3D 

model is required to calculate solar photovoltaic potential of the façade”. This statement is 

in line with the literature findings from Machete (2016) and Peronato et al., (2018). However, 

mentioned by Interviewee 3 there is a demand from the Netherlands to invest in a high-quality 3D 

model. 

4.5. Result from the focus group discussion 

The focus group discussion was held through an online session. The perceived quality of the 3D model of 

the six participants was measured using qualitative indicators that include fit-for-purpose, general validation 

statements, and data integration. The session was started with an introduction about the research with 

presentation and video, followed by filling the questionnaire because of the online situation (see Appendix 

for the questions and link to the video). The perception was measured on a scale of 1 (strongly agree) to  5 

(strongly disagree), or no response, followed by several open questions. At the end of the session, we 

presented the outcome of the questionnaire to facilitate discussion between participants. The participants 

are six experts in 3D modeling, point cloud and are familiar with the solar photovoltaic application. The 

results of the focus group discussion are described in section 4.5.1-4.5.4. Section 4.5.1 presents the 

discussion relate to fit-for-purpose. Section 4.5.2 elaborates the findings of general statements, followed by 

section  4.5.3 elaborates the discussion about data integration. In the end, section 4.5.4 summarized the main 

findings from the focus group discussion. 
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4.5.1. Fit-for-purpose 

To evaluate the fit-for-purpose of the 3D model for solar photovoltaic potential analysis, six participants 

were asked to give their perception of the 3D model quality. We obtained various responses regarding the 

need to use a 3D model as an input for solar photovoltaic analysis instead of using a DSM raster (2.5D). 

The response from Participant 3 implies uncertainty by saying, “I think I'm not sure which one is better and maybe 

there is no really a distinction between them in [terms] which one is the best. But it takes a lot of time to create a 3D model 

and there is always generalization (from the reality)”, while Participant 4 disagreed to the statement “it is not necessary 

to have the 3D buildings, it can also be done with a DSM however it [using 3D model] can be useful and the result looks 

clearer and less confusion”.  

 

During the discussion, participants were asked to perceive the effectiveness of the 3D models in providing 

the required information and the sufficiency for solar photovoltaic analysis. The participants were also asked 

to assess the effect of pixel resolution for solar photovoltaic analysis on the result. Participant 1 observed 

that the effect of using 0.2m pixel resolution able to detect roof details than using 0.5m pixel resolution, 

which is useful for solar photovoltaic analysis. According to most participants, the presented 3D models 

effectively and sufficiently provides the required information. During the discussion, Participant 2 explained 

that the 3D models lose some information about the roof details because of the generalization process 

compare with DSM, “On the one hand I said that the 3D is so much cleaner that it gives you [a] quicker insight. On the 

other hand, it got so many things it might missed. I'm not sure whether you should use that approach as a source for solar 

photovoltaic analysis”. Although, according to another participant, the presented converted 3D models can 

reduce mistakes caused by data gaps and noise that is likely to happen in a DSMParticipant 3 answered that 

it is difficult to assess which dataset is better using a survey and discussion the way this session is conducted. 

As Participant 3 said, “I think it is very difficult to answer that question because the results are just a visualization of the 

data”.  

4.5.2. General validation statements 

The second section asked the participants to give their suggestions about the possibility of using the 3D 

models for other applications. All participants agreed that the 3D models could be adapted for other 

applications, i.e., sound analysis, change detection, and visualization. The participants were asked to list the 

improvement needed and the major benefits of the 3D models. Two out of six participants listed 

improvements regarding roof details, i.e., chimney, dormers and windows. Participant 4 suggested having a 

combination of the 3D models and image processing to recognize dormers, roof windows and chimney for 

solar photovoltaic analysis. It is interesting to note that this method was also mentioned during the semi-

structured by Interviewee 4. Regarding the major benefits of the 3D models, Participant 2 said, “it looks a lot 

nicer and people like that, they don't understand a chaotic image. Next to that, there are many other fields where this data could be used 

instead of solar radiation, there is a big wish for LoD 2.0 in the Netherlands for different reasons, sound calculations is an example”. 

4.5.3. Data integration 

Emerged from the semi-structured interview, the four experts from the semi-structured interview found the 

important features of 3D data quality is the temporality and density. By integrating the LiDAR point cloud 

and DIM point cloud, temporal quality and the point density of the existing LiDAR point cloud could be 

improved. To evaluate the result of the integrated point cloud (refer to section 3.3 and section 4.1), we 

posed four questions regarding the improvement in temporal quality, data completeness and spatial 

accuracy. Due to the internet connection problem, Participant 6 was unable to participate and answered the 

questions from this section. Therefore instead of having six answers, we had five answers. 

 

All participants agree that the presented method to integrate both point cloud datasets improves the data 

completeness. Participant 5 said that this method is suitable to take ‘the best of both worlds’. Regarding the 

statement “The presented method improves the temporal quality”, a variety of perspectives were expressed. 

Three out of five participants answered with ‘agree’ and two participants answered with ‘neither agree nor 
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disagree’ and ‘disagree’. During the discussion, the uncertainties found in answers were explained, the two 

participants think that although there might be an improvement by adding a new dataset (DIM point cloud) 

to substitute the changing area, it could introduce another error as well. Therefore, it makes the two 

participants doubting to give the proper answer. This view was echoed by the three participants who are 

answered ‘agree’ as well. This explains the fourth question related to an improvement in spatial accuracy; 

most of the participants answered no response. 

4.5.4. Findings from the focus group discussion 

In summary, these results show that the participants of the group discussion found that the generated 3D 

models are effective and sufficiently provides the required information for solar photovoltaic potential 

analysis. Some felt that the generated 3D models lose detailed information. However, when the results of 

solar radiation analyses are being compared, they noticed that using the converted 3D models could avoid 

data gaps and noise caused by DSM. Within the focus group discussion, most participants agree that using 

0.2m is more useful than using 0.5m as pixel resolution for solar photovoltaic potential analysis. However, 

uncertainties are shown from the answers of the participants regarding data improvement in temporal quality 

and spatial accuracy. Figure 29 illustrates the findings from focus group discussion following the dimensions 

for content analysis; green color represents the dimensions achieved, yellow color represents the dimensions 

that are uncertain and red color represents the dimensions that are not achieved. 

Figure 29. Findings from focus group discussion. 

 
During the discussion, one participant says, ‘I always noticed that [using 3D model] does really has to do with people 

just think it's nicer and they understand the data better. We often have a discussion, like, why do people want LOD 2 buildings, 

you know, or even more. And often the answer is that people, they like the reality and so they don't want blocks, they want 

[the building] as, as it is in reality, they don't like, they don't understand data that look chaotic. They like to [see] 3D 

data’. This statement reveals a hidden benefit and perception from users of using 3D model that is in line 

with the literature review (see section 2.1.4). Therefore two conclusions were made, the proposed method 

is fit for the purpose with several improvements and we conclude the solar photovoltaic analysis can benefit 

from using a 3D model as the input data and as the visualization for the output. 

The 3D models could be adapted for other applications. 

The implementation of integrating the point clouds improves data 

completeness element. 

The 3D models sufficiently provide the required information. 

The implementation of integrating the point clouds improves the 

temporal quality element. 

The implementation of integrating the point clouds improves the 

spatial quality element. 

The 3D models need improvement for the roof details. 

The 3D models provide clear visualization for solar photovoltaic 

analysis. 

Achieved 

Uncertain 

Not achieved 
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4.6. Summary 

This chapter presented and described the results for pre-processing 3D data, 3D model generation process, 

solar photovoltaic potential, semi-structured interviews and focus group discussion. The LiDAR point cloud 

and DIM point cloud were integrated and used as input for the 3D models. The methodology applied 

generated 48 buildings as input data for calculating the solar photovoltaic potential. Next to that, we 

generated DSM from the integrated point cloud to compare the usability of the 3D model and effect from 

using finer pixel resolution to the solar photovoltaic analysis. From the 48 buildings used as input data, only 

45 buildings meet the criteria. 

 

From the result of the experiment, the calculation results of the solar photovoltaic potential are different 

when using 3D model as input data. The generalization of the roof details and the removed noises when 

using 3D model could explain the difference when estimating solar radiation potential. 

 

Findings emerging from the semi-structured interview show that the temporal quality of the currently 

available 3D data does not satisfy the users. Revealed from the focus group discussion, the method to 

integrate the LiDAR point cloud and DIM point cloud improve the data completeness and temporal quality 

element. Two conclusions from the results of the focus group discussion, the proposed method is fit for 

the purpose with several improvements for the roof details by including i.e. chimney and dormers.; second, 

the solar photovoltaic analysis can benefit from the 3D model as the input data and as the visualization for 

the output
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5. CONCLUSION AND RECOMMENDATION 

This chapter provides reflections on the research objectives of the study. Conclusions and recommendations 

for future research are also presented. 

5.1. Reflection on the research objectives 

This study aimed to explore the possibility of integrating two different point cloud to produce a unified 

dataset that can suit many applications. The suitability of this dataset is tested through simulation on a use 

case of estimating solar photovoltaic analysis. A discrepancy has been found between the quality of the 

current datasets and the needs of the users. We found that the temporal quality of the available LiDAR point 

clouds does not comply with the needs of the users. The integration of LiDAR point clouds and point 

clouds derived from the dense image matching technique were proved to produce a unified dataset that 

complies to the temporal quality. 

 

Sub objective 1: To investigate the characteristics of the input data. 
In this research, we used the LiDAR point cloud and a DIM point cloud. The integration from these two 

datasets is a powerful method to generate 3D models. Our study found that the main problem when 

performing data integration is to correctly and accurately integrate the datasets when those data sets have 

different accuracy, density and properties. 

 

The foundation to determine the quality of the 3D model is to assess the quality of the input data. Following 

the six elements of data quality from ISO 19157: 2013 (ISO, 2013), we used completeness, temporal quality, 

and positional accuracy to determine the quality of the input data. These elements were used because those 

elements have a significant impact on the geometric aspect of 3D data. The fusion of LiDAR point clouds 

with DIM point cloud is a popular combination because it could combine the best of both to increase 

completeness, temporal quality, and positional accuracy, which determines the quality of the input data that 

covered in this research. 

 

In this study, we used the Iterative Closest Point (ICP) algorithm to register the DIM point cloud to the 

reference point, the LiDAR point cloud. The principle of this relative positioning algorithm is to find 

corresponding points between two-point cloud datasets. A major advantage of this relative positioning 

algorithm is that, it reduces fieldwork to collect ground control features because only one data set, in this 

case, LiDAR, has to be georeferenced. 

 

Sub objective 2: To prepare unified data that satisfy the user needs for 3D models. 

As identified from the result of the semi-structured interview, the majority of participants explicitly stated 

the similar general information required to calculate the estimation of solar photovoltaic potential. The 

required information is roof slope, roof type and roof orientation, next to shadow casting from surrounded 

buildings and trees. Therefore this information is implemented in the 3D model generation. 

 

The interviewees acknowledge during the semi-structured interviews that the currently available height 

information (LiDAR point cloud-AHN) does not comply with the needs of the users in terms of temporal 
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acquisition time. According to the interviewees, temporality and spatial resolution are the two important 

elements to determine the quality of 3D data. One interviewee mentioned that adding an additional datasets 

such as aerial imagery, it could compensate the temporal quality, completeness and spatial resolution. To 

solve this issue, adopting the DIM point cloud as another source of height information was seen as a possible 

solution that was explored in this research. The need of the users regarding the quality elements can be 

compensated by integrating the LiDAR point cloud (current height information) and DIM point cloud to 

produce a recent height information data (yearly), reduce the data gap due to the acquisition process, and 

improve positional accuracy.  

 

Sub-objective 3: To develop a 3D model to estimate the potential of a solar photovoltaic 

installation. 

This research used the RANSAC algorithm to develop a 3D model for the study area. The method was 

chosen based on the existing methodology used at Kadaster. During the trajectory of this research, we 

explored several methods to generate the 3D model with procedural modeling and footprint partitioning 

with Douglas-Peucker and region growing algorithm. However, after comparing these methods, the 

RANSAC algorithm turned out to be more accessible and straightforward to be used in this research than 

the previously mentioned methods. In this research, the method used to estimate the potential of solar 

photovoltaic is the Area Solar Radiation tool from ArcGIS. This tool is straightforward and requires a raster 

as its input data.  

 

From the result of the experiment, the calculation results of the solar photovoltaic potential are different 

when using converted 3D models as input data. The roof details on the roof segment were generalized and 

noises were removed, while it remains when using DSM from the integrated point cloud. This could explain 

the difference when estimating solar radiation potential. From the experiment of comparing different pixel 

resolution and different models of input data, using 0.2m for pixel resolution is able to detect roof details 

than using 0.5m.  

 

According to the result of the focus group discussion, the developed 3D model is effective in providing the 

required information and sufficient for solar photovoltaic analysis. Also, using the 3D model instead of 

DSM could avoid noise and data gaps. During the focus group discussion, the participants mentioned that 

the generated 3D model could be adopted in other applications. However, the generated 3D model, 

according to the result of focus group discussion, needs further improvements for the roof details. 

5.2. Conclusions 

This study contributes to the investigation of standard 3D input data for solar photovoltaic in the 

Netherlands. Furthermore, this study successfully explored the opportunity to produce a complete, recent, 

and positionally accurate point cloud dataset by integrating DIM point cloud and LiDAR. We revealed a 

hidden benefit and perception from users when using the 3D model, that people prefer to view a 

representation of reality which 3D can provide for them. Therefore, these findings provide a new 

understanding that the solar photovoltaic analysis benefits from using the 3D model as the input data and 

as the visualization for the output. 

 

The presented method allows constructing semi-automatic 3D models from the integrated point clouds, 

building footprints and rooflines. The 3D model supports the assessment of the solar photovoltaic potential. 

Further investigation to fully automized the 3D model generation will be valuable to scale up the method 

and the study area.  
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From the experiment conducted in Zwolle, the Netherlands, comparing two datasets with two different 

pixel sizes to see the effect of the finer resolution, the results showed that the finer pixel resolution influences 

the solar photovoltaic potential analysis. This study provides insights to support the Kadaster in 3D model 

and solar photovoltaic potential analysis. 

5.3. Recommendation 

Based on current research, recommendations for future works are listed as follow: 

1. Advanced techniques to generate a fully automatic 3D model need to be explored to scale up the 

method. 

2. Automatic rooflines extraction to generate rooflines dataset. 

3. Image recognition technology could be utilized to detect objects on top of the roofs as part of the 

analysis of solar photovoltaic potential. 

4. During the trajectory of this research, it is interesting to explore the possibility of detecting urban 

changes with LiDAR point cloud and DIM point cloud. 

5.4. Limitations 

While this research tried to provide an integrated view of all aspects, due to a fixed timescale we had to 

narrow down the scope of this research. In the limited time at Kadaster, we were not able to fully automate 

the process of generating 3D models. Also, the focus has been on the area of Zwolle. Other areas, like rural, 

urban or high-rise buildings, could provide a new perspective to this problem. However, we are convinced 

that a future research into these fields has a firm foundation with this research. 

 

Due to the COVID-19 outbreak in the Netherlands, several adjustments to the procedure have been made. 

The last interview and the focus group discussion were held online as a result of this. One of the participants 

in the focus group discussion encountered internet problems. We think this did not affect the outcomes of 

our research, and might prove to be a more efficient way of working going forward.  

 

Lastly, the lack of a ground truth prevented us to confirm the outcome with reality and make any statements 

about over- or underestimation. The data we gathered could be compared to a dataset with historical data, 

once it becomes available, to assess the estimation. If necessary, adjustments can be made to account for 

these errors. 
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APPENDIX. 1 

Questions for the semi-structured interview. 

Questions 

1. Could you tell me about your work? 

2. How is your experience with 3D building models for work? 

3. In case you are working with 3D building models, for which applications are you using them? 

4. How familiar are you with 3D building models for solar photovoltaic analysis? 

5. Who is the user for this application? 

6. According to your opinion, what are the most important geodata requirement to reconstruct 3D 

building models for solar photovoltaic analysis? 

7. Which geodata that can be used to reconstruct 3D building models for solar photovoltaic analysis? 

8. Who is the data provider? Are the data publicly available? 

9. Are you satisfied with the quality of the data that you mentioned for solar photovoltaic analysis? 

a. If yes, explain your answer? 

b. If not, what are the major shortcomings for the data? 

10. Think about data integration, in terms of quality and data types or format, do you face challenges 

in the data that you use? 

11. In your opinion, how to deal with the challenge to derive reliable and consistent conclusions? 

12. What information and data do you think is needed to derive reliable conclusions for solar 

photovoltaic analysis? 

13. What suggestions from your practice would you provide to improve the 3D geodata for solar 

photovoltaic analysis? 

 

14. (Show demo) From the demo, in terms of completeness, temporal and positional accuracy what 

quality elements of input data do you think is sufficient to obtain reliable results for assessing the 

solar photovoltaic potential? 

15. For a precise solar potential assessment do you think additional input data is needed? 

a. If yes, could you tell me where such data exists? And who could provide the data? 

b. If no, why? 

16. Based on the demo, do you think 3D visualization and analysis is beneficial for your clients/users? 

17. If a national standard for 3D input geodata is provided, will it be beneficial for your work? 

a. If yes, what type of information would you recommend to include in this standard? 

b. How do you think it should be delivered and why? (choose): (a) guideline specifications; (b) 

ready-to-use 3D building model; (c) ready-to-use 3D input data. 
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APPENDIX 2 

Questions for focus group discussion. The questionnaire was presented in Google form. 

 

3D model evaluation 

As a part of the last phase of the research we’re conducting, we would like to know your perceptions of the 

model's fitness to the application. 

 

You are invited because you are familiar with this topic. Some of you even involved in the projects of the 

same topic, some of you even helped me throughout the trajectory of this research. Therefore, I appreciate 

a lot your presence and feedback on this final stage of my research. 

 

There are no wrong answers but rather different points of view. So feel free to share your thoughts even if 

it differs from what others have said. We appreciate constructive criticism as well:) 

 

It is compulsory for you to watch the video from this link to see the process of how the 3D building model 

was generated: https://youtu.be/hDo2g5ti6p4 

 

Fit-for-purpose 

This part contains statements regarding the usability of the 3D model, also the model's fitness for the 

application of solar photovoltaic analysis. 

 

1. Read this statement:  For solar photovoltaic potential analysis facade calculation, the 3D model 

used as an input data and 2.5D model used as an input data for solar photovoltaic potential analysis 

for rooftop calculation. Do you agree or disagree with that statement? Please provide your explanation next to 

your answer. 

2. This part contains statements regarding usability and fitness of the 3D model for the solar 

photovoltaic potential analysis. 

a. The presented 3D model created for this research effectively provides the required information 

for solar photovoltaic potential analysis. 

 

 

b. The presented level of detail of the 3D model is sufficient for solar photovoltaic potential 

analysis.  

 

 

 

General validation statements 

This part contains statements regarding the usability and further possibilities of the 3D model. 

1. The presented 3D model can be adapted for other applications? (Yes/No) Please specify the application. 

2. Please list and explain what according to you can be further modified and improved? 

 

 

3. Please list and explain the major benefits you think the presented 3D model has? 

 

 

 

 

 

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree No response 

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree No response 

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree No response 

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree No response 

https://youtu.be/hDo2g5ti6p4
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Data Integration 

This part contains statements regarding usability and effectiveness regarding the integration of point clouds. 

If you need further elaboration for your answer, please fill "Other". 

 

Point cloud integration is the main process in this research besides the 3D building model generation. The 

objective of this process is to compensate for each drawback point cloud datasets. Moreover, to obtain a 

point cloud dataset with higher quality determined by higher density, improve the temporal quality and 

maintain the spatial accuracy. 

 

In this research, we used point cloud obtain from LiDAR and DIM. To process this point cloud dataset as 

a pre-processing phase, the data quality elements from ISO 19517:2013 (ISO, 2013) were used. Three out 

of six elements were applied. The techniques applied for pre-processing were derived from these three 

elements as well. Those are completeness, temporal quality and positional accuracy. 

 

Derived from the explanations of completeness from (ISO, 2013), completeness can be measured by “is 

there any unmatched data?” or “how complete the point clouds compare with the ground truth?”. 

Therefore, for this element visual inspection by comparing two datasets was done as a first screening. 

Afterwards, the point density calculation was done to determine the quality of the point cloud and 

classification process to classify the building as the main interest. To integrate both point clouds we used 

relative positioning algorithm, Iterative Closest Point (Besl & Mckay (1992)). 

 

1. The presented method regarding integrating point cloud obtained from LiDAR and DIM is useful 

in another application. (Yes/No) Please specify the application. 

2. Integrating point cloud, obtained from LiDAR and DIM, appears to improve data completeness. 

 

 

3. Integrating point cloud, obtained from LiDAR and DIM, appears to improve data 

actuality/temporal quality. 

 

 

4. Integrating point cloud, obtained from LiDAR and DIM, appears to improve the spatial accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree No response Other 

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree No response Other 

Strongly agree Agree Neither agree nor disagree Disagree Strongly disagree No response Other 
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