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Abstract
Nowadays there is a mobile application for almost every-

thing. Adversaries can create malicious applications and

hide their intent by obfuscating them. Obfuscation makes

applications hard to analyse. In this research we focus on

deobfuscating third party libraries in Android applications.

More speci�cally, we show how o�-the-shelf library detec-

tion tools intended for identifying third party libraries, can

be used to deobfuscate those libraries. We achieve this by

modifying and extending the output of those tools such that

the result can be applied as a valid deobfuscating transfor-

mation on Android apps. We compare this method against

DeGuard, an existing deobfuscation method based on a sta-

tistical model. We create a novel data set of Android appli-

cations and third party libraries and use it to evaluate both

approaches. We �nd that our method predicts fewer iden-

ti�ers than the existing method. However, our approach is

less computationally expensive and has a higher accuracy.

This research focuses on tackling identi�er obfuscation. Fu-

ture research is needed to adapt and evaluate the developed

method on more thorough obfuscation types such as class

repackaging.

1 INTRODUCTION
In recent years there has been a surge in smartphone appli-

cations. These mobile applications have become an essen-

tial part of a business’s success; they strengthen competi-

tive advantage by increasing brand loyalty and increase cus-

tomer spending by providing convenience [18]. It is there-

fore desirable to keep information about the inner workings

of an application secret. An easy strategy to keep applica-

tion information secret is to not publish the source code of

the application. However, leaving the source code unpub-

lished might not be enough as the binary code of applications

can be reverse engineered. To make the reverse engineering

process more di�cult, it is almost standard practice to apply

some form of obfuscation before publishing an application.

Moreover, obfuscation has not only become standard prac-

tice in benign applications, adversaries increasingly use ob-

fuscation techniques in order to hide activities in their ma-

licious applications. As a result, malware analysts and law

enforcement agencies demand better methods of reversing

the obfuscation process. With the aim of assisting these par-

ties, our work focuses on creating more advanced methods

of automated deobfuscation.

The goal of binary reverse engineering is to make human

readable source code from obfuscated machine code. Ob-

fuscated machine code is made by �rst applying a compi-

lation step on the source code, and then an obfuscation step

on the compiled machine code. There are di�erent types of

obfuscation that can be used in the obfuscation step. To turn

obfuscated machine code back into human readable source

code, we �rst need to apply a deobfuscation step on the ma-

chine code, and then a decompilation step on the deobfus-

cated machine code. Decompilation tools are readily avail-

able for most programming languages and usually only one

decompiler is needed to obtain source code for a program.

Deobfuscation tools on the other hand, usually implement

deobfuscation for only one type of obfuscation as there are

too many variants to cover at once. As a consequence, to

fully deobfuscate a program obfuscated with multiple obfus-

cation techniques, multiple deobfuscators need to be used.

For Android, creating obfuscated machine code follows al-

most the same steps as for any other compiled language. Be-

cause most Android applications are written in Java, we fo-

cus on Java in this paper. First, the Java source code is com-

piled using the Java compiler, thereafter, the compiled class

�les are obfuscated by an obfuscator. Additionally, the re-

sulting class �les are translated to the dex format which is

used by the Android runtime. ProGuard has been the go-to

obfuscation tool used for the obfuscation step in the Android

build process since the beginning of Android [17]. ProGuard

is an open source tool that can be used for layout obfuscation

of Java bytecode. To this end, it renames identi�ers in the

Java bytecode to short meaningless strings. This technique

is fundamental but highly e�ective. Apart from layout ob-

fuscation, ProGuard also provides a whole range of bytecode

optimisations such as dead code removal. In 2019, ProGuard

has been replaced by R8 as the default obfuscation and opti-

misation tool but ProGuard is still widely used. R8 provides

the same functionality as ProGuard but has tighter integra-

tion into the Android build process [4]. There exist other

tools apart from the ones provided in the Android toolkit.

One of these is DexGuard, which provides more thorough

obfuscation such as control �ow and data obfuscation.

In order to properly reverse engineer Android applications,

the identi�er obfuscation applied by ProGuard needs to be

reversed. It has been shown that meaningful identi�er names
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in�uence how quick source code can be understood [5, 10].

Good layout deobfuscation is therefore of great importance

for reverse engineering. Reversing identi�er deobfuscation

is a non-trivial problem as app developers can use arbitrary

names for identi�ers. Once these identi�er names are gone,

they cannot be recovered as identi�er obfuscation is a one-

way transformation. However, it is possible to predict the

original names. The state-of-the-art for predicting identi-

�er names in Android applications is DeGuard [6]. DeGuard

is a statistical model that makes identi�er predictions using

known identi�er names from a large dataset of Android ap-

plications. It is important to note that DeGuard regards all

identi�ers in Android applications the same.

In reality, a distinction can be made between identi�ers from

third party libraries, and identi�ers from code that is specif-

ically written for one application. This distinction can be

made because identi�ers from third party libraries can often

be found in public code repositories. Therefore, identi�ers

from third party libraries can be compared to the public ones

and be identi�ed. We think this distinction can be exploited

to make better predictions for application speci�c code.

2 RELATEDWORK
2.1 Obfuscation

Collberg et al. have classi�ed obfuscation techniques into

four main categories; layout obfuscation, data obfuscation,

control obfuscation, and preventive obfuscation [7]. Lay-

out obfuscation is a fundamental form of obfuscation and is

therefore used in almost every obfuscator. It renames pro-

gram identi�ers to meaningless strings and removes infor-

mation that is unnecessary for running the program such

as comments and debug information. Data obfuscation ob-

scures the data items present in a program by changing how

they are stored, encoded, or ordered. For instance, this can

be done by choosing unusual data formats, or by reorder-

ing data in arrays using a mapping [19]. Control obfuscation

applies transformations that alter the control �ow of an ap-

plication with the goal to make the control �ow much harder

to analyse. This can be done by, for example, breaking up a

program into basic blocks and executing them indirectly via

a switch statement or by directing control �ow with excep-

tions [13, 16]. Preventive obfuscation exploits tool and plat-

form speci�c weaknesses to prevent deobfuscation. An ex-

ample of this is a trick that crashed the Mocha decompiler by

inserting extra instructions after every JVM return instruc-

tion [12].

2.2 Deobfuscation

Rule-based

Early Java deobfuscation tools such as Java Deobfusca-

tor and Enigma use rules to rename obfuscated identi�ers

[8, 11]. These rules are hand coded and can assign only

generic names to program elements. For instance, the name

target might be assigned to a method argument when

that method modi�es the argument. Because rule-based ap-

proaches can only assign generic names, they do not give

much insight in code that contains a lot of context speci�c

identi�ers.

JSNice

V. Raychev et al. developed JSNice, a model that predicts

the identi�er names of obfuscated JavaScript programs using

conditional random �elds (CRF) and Maximum a posteriori

estimation (MAP) [15]. JSNice takes all variables from an

obfuscated JavaScript program and their relations and con-

structs a dependency network. The variable names are pre-

dicted simultaneously using MAP inference. MAP inference

is used to get the most likely combinations of variable names.

The CRF model is trained using dependency networks with

known variable names and learning common combinations

of variable names. JSNice was trained on a corpus of 324,501

JavaScript �les and achieved an accuracy of 63.4% when pre-

dicting variable names.

DeGuard

Bichsel et al. developed DeGuard, a statistical model based

on conditional random �elds (CRF) that utilises MAP in-

ference to predict the original names of identi�ers in An-

droid applications [6]. DeGuard builds upon JSNice and uses

the same techniques but for Android applications instead of

JavaScript. The main contributions of their research are a

way of representing Android program code as a CRF and a

probabilistic approach to predict identi�ers using CRFs. In

the model, identi�ers and constants are represented as nodes

in a CRF, and relations between the identi�ers and constants

are represented as edges. Bichsel et al. have evaluated De-

Guard with the publicly available source code of 1784 An-

droid applications from the F-Droid app store. It was found

that DeGuard can retrieve 80.6% of the original identi�er

names when predicting unseen applications. A limitation of

the approach is that CRF’s can only predict combinations of

values from the training data. They are also computationally

expensive and do not scale well. This is especially a problem

for DeGuard when using large amounts of training data.

A shortcoming of the research of Bichsel et al. is that De-

Guard predicts all the identi�ers in the same way. However,

the identi�ers in Android applications can be split into iden-

ti�ers from third party libraries and identi�ers speci�c for

the application. There exist tools that can identify which li-

braries are used in Android applications. Our research builds

further on the research Bichsel et al. and looks at predicting

third party library identi�ers that leverages these existing

tools and in a way that is not limited by the amount of train-

ing data. This is further discusses in the Scienti�c Contribu-

tion.

Code2Vec

Alon et al. have researched a method of capturing program

context by creating an encoding that uses paths within ab-
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stract syntax trees (AST) [2]. They show how to construct

such AST paths and how they can be used as input for neu-

ral network models. An AST path is de�ned as a triple, con-

taining two AST leaf nodes and a sequence of tokens along

the path that has to be traversed to get from one leaf node

to the other. Alon et al. have examined the usefulness of

AST paths for three problems; method name prediction, vari-

able name prediction, and type prediction. For each of these

tasks they trained two models, a CRF model and a word2vec-

based model. The evaluation shows promising results that

AST paths can capture context well.

Alon et al. subsequently developed Code2Vec, a model that

assigns di�erent but close vectors to similar snippets of code,

capturing subtle di�erences between snippets [3]. These

vectors, called code embeddings, are continuous distributed

vector representations for snippets of code. The vectors are

generated by a neural network trained to combine AST paths

for a snippet of code. Alon et al. showcase Code2Vec by

training another model for suggesting function names that

inputs code program entities and is therefore not directly

applicable to deobfuscation tasks. However, this research

shows a promising technique to encode program context

which can also be useful for deobfuscation.

Allamanis

Allamanis et al. use a graph based neural network approach

for two related tasks; variable naming and variable misuse

detection [1]. They outline how to represent programs as

graphs, where nodes represent program tokens and edges

semantic and syntactic relations between those tokens. The

outlined representation is suitable for use with gated graph

neural networks (GGNN). GGNNs are an optimised version

of graph neural networks (GNN) [14]. The resulting model

does however perform relatively low on the variable naming

task with an accuracy of 44.0%. This research is also not di-

rectly applicable to deobfuscation. Nevertheless, it shows an

interesting method of representing program context, such as

data �ow, and how to learn it.

2.3 Library detection

Library detection is the detection of which third party li-

braries are included in applications. Library detection is

made di�cult by code obfuscation and shrinking. Identi�er

obfuscation makes it impossible for library detection tools to

detect libraries based on identi�er names. Therefore, library

detection tools use features from the code structure to iden-

tify libraries. This includes features such as call graphs to

standard library methods, and bytecode instructions. Opti-

misations and code shrinking make it hard to match features

from the code inside applications with the original library

code. For example, stripping unused methods and reorder-

ing instructions make it harder to make exact matches.

Library detection is commonly resilient against identi�er ob-

fuscation as this is a common obfuscation technique. Not all

library detection tools are resilient against class repackag-

ing. Class repackaging is a Java obfuscation technique that

puts classes in the same package where possible. Library de-

tection tools frequently use the package hierarchy in Java

applications to boost the con�dence in their predictions.

In this research we leverage library detection tools to deob-

fuscate third party libraries. For this research we selected

LibPecker as a library detection tool [20]. LibPecker has as

byproduct class mappings which makes using the tool suit-

able for use in deobfuscation. This tool has the additional

advantage that it is resilient against identi�er obfuscation,

and in lesser extent also to class repackaging.

2.4 Scienti�c contribution

As discussed above, current research focuses predicting

identi�er names in Android applications. Alon et al. devel-

oped Code2Vec to predict names for identi�ers, and Bichsel

et al. built DeGuard to predict the most likely combination of

identi�er names for an obfuscated application. These state-

of-the-art Android prediction tools make identi�er predic-

tions without regard to the type of code. In other words,

these tools do not make a distinction between code from

third party libraries and code that is speci�cally written for

an application.

It is di�cult to predict the names of obfuscated identi�ers for

code that is written speci�cally for an application because

the combination of those identi�ers is likely to be unique to

that application. For third party libraries this is easier. Many

third party libraries that are included in Android applications

are publicly accessible online. Obfuscated code from third

party libraries can therefore be matched with the unobfus-

cated public version in order to recover original identi�er

names.

The state-of-the-art Android prediction does not make a dis-

tinction between third party library code and application

speci�c code. Furthermore, there has not been published

research yet about the potential bene�ts of predicting third

party library code separately. However, we expect that pre-

dicting library code separately could have bene�ts. This

means that there is a scienti�c knowledge gap about the po-

tential bene�ts of predicting third party library code sepa-

rately. The goal of this research is to make a contribution to

bridge this knowledge gap.

Identi�er prediction methods often use references to the An-

droid standard libraries as features because these references

cannot be obfuscated. When third party library code is �rst

deobfuscated, references to that code can also be used as fea-

tures. This could be useful for applying prediction methods

that work only on unobfuscated code to obfuscated code.

These third party library predictions could also be very ben-

e�cial if used in combination with existing tools such as De-

Guard, especially when the library predictions have a high

accuracy. When this is the case, they can be used as a start-
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ing point to make predictions about the application speci�c

code.

This research focuses on leveraging existing tools that iden-

tify libraries, for deobfuscation and comparing this new

method with existing state-of-the-art deobfuscation tools.

This helps to �ll part of the knowledge gap about predicting

third party libraries separately from other application code

and therefore helps to achieve an overall better understand-

ing of deobfuscation.

2.5 Engineering contribution

All research on Android deobfuscation and library detec-

tion relies on a data set to validate the approach against.

The usual approach in previous research was to download

all apps from the F-Droid app store. The F-Droid app store

was chosen often, because everyone is free to download the

APK �les of the listed apps. This is not allowed for other app

stores such as Google Play and the Amazon Appstore.

A part of the applications on all app store is obfuscated.

What researchers previously did, was �ltering out the obfus-

cated applications and keeping only the unobfuscated appli-

cations. This has the disadvantage that the data set becomes

much smaller. It also introduces some questions to valid-

ity, as newer and larger apps may be obfuscated more of-

ten than older and smaller apps. Obfuscation is in newer

Android build tools enabled by default, and apps become

smaller when applying obfuscation.

Developers publish their apps in the F-Droid app store by

submitting a link to source code of the app. F-Droid will then

built the app from the source code using a custom build envi-

ronment. In this research we developed a generic build step

that disables all obfuscation options.

Library detection tools can identify which third party li-

braries are included in an application. They do not provide

an exact mapping which can be used to deobfuscate the ap-

plication, i.e. replace all obfuscated identi�ers with their

original name. Although library detection tools do not create

application mappings, they can be used to create them.

An application mapping contains for every identi�er in an

application another identi�er. There are some challenges in

creating application mappings using library detection tools.

The main challenge is the validity of the application map-

ping. There are constraints to identi�ers in Android applica-

tions. For instance, a simple constraint is that there cannot be

two classes with the same quali�ed name. The challenge is

to select the results from the library detection tools in such a

way that all naming constraints are satis�ed. In our research

we line out how this can be achieved.

Library detection tools only give an indication which classes

are used. This can be used to deobfuscate package and class

identi�ers. However, library detection tools cannot be used

as input for deobfuscating method identi�ers. Method iden-

ti�ers can be deobfuscated by matching the methods be-

tween the original library class and the library class con-

tained within the application. We show how this can be

done using a signature based approach. This approach is

further described in the Methodology section. As is the case

with package and class identi�ers, there are also naming con-

straints for methods. We identify these constraints and show

how method identi�ers can be added into a mapping without

violating the constraints.

The method developed in this research can be used to gain

a better understanding of how to improve deobfuscation

tools.

3 METHODOLOGY
The state-of-the-art Android deobfuscation tools use statis-

tical models to predict identi�er names. DeGuard is a tool

that predicts the names of obfuscated identi�ers based on

several features including their relation to known identi�ers,

namely identi�ers from the Android standard library [6].

The goal of this research is to improve the state-of-the-art

Android deobfuscation tools. More speci�cally, this research

approaches Android deobfuscation by predicting third party

libraries separate from the application speci�c code.

Third party libraries are publicly available reusable software

components, that developers can use in their applications.

Third party libraries are not easily recognisable anymore in

obfuscated applications, because identi�ers from third party

libraries can be obfuscated (opposed to identi�ers from the

standard library). However, there are specialised tools that

can identify which libraries are used in an obfuscated appli-

cation. These tools often work with matching the application

against a database of libraries using heuristics.

Although, there are tools that can detect libraries, some ad-

ditional steps are required to create a valid mapping from

obfuscated application identi�ers to the their original names.

3.1 System overview
Figure 2 gives an overview of the system. We call this sys-

tem Delibird (DEobfuscating LIBraries In anRDroid apps).

Delibird uses an o�-the-shelf library detection tool to detect

libraries. A library detection tools can be used to identify

which libraries are used in an application. For this research,

we use LibPecker as library detection tool [20], see step (2)

in Figure 2. LibPecker produces a class mapping. The class

mappings are veri�ed and merged into a single application

mapping. In addition, methods are detected in the input APK

using the class mapping. The produced application mapping

is then applied to the input application.

3.2 Library deobfuscation
To deobfuscate the library part of an application we �rst de-

tect libraries using LibPecker, an open-source library detec-

tion tool. Given an application and a library pro�le contain-
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Figure 1: Training First third party libraries are extracted from the training applications. Then Delibird is trained using the

resulting libraries. DeGuard is directly trained with the training applications. The resulting models are used in the testing

phase. Testing The test set of unobfuscated applications is �rst obfuscated with ProGuard. The same obfuscated applications

are then predicted with DeGuard and Delibird. DeGuard predicts both library identi�ers and application speci�c identi�ers.

Delibird predicts only library identi�ers. These predictions are compared with the original identi�ers from the applications

in the test set.
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Figure 2: This �gure gives an overview of the system. The �rst step (1) is a prediction step. This step takes an obfuscated

APK and a set of library templates. These library templates are generated during the training phase of LibPecker. A library

template contains feature of the library which can be used to detect that library in an APK. For each of the templates,

LibPecker (2) is invoked and the class mappings produced by LibPecker are collected. In the next step (3), the class mappings

are validated and merged into a single class mapping. Then using this class mapping, methods are detected in the matched

classes and added to the mapping (4). Finally, the mapping is applied to the input application (5).
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ing features of that library, LibPecker gives a similarity score

and a mapping from classes in the app to classes from the

detected library. Given a set of library pro�les and an appli-

cation, we get a set of class mappings per application. We

use these mappings to rename classes. To rename methods

in the classes, we use method signatures to match between

the class methods with obfuscated names and the methods

in the libraries with the original names. We will now elab-

orate on how exactly the classes and methods are matched

and renamed.

3.3 Naming constraints
We cannot simply take the class mappings produced by

LibPecker and apply them to our application because there

are restrictions on what names identi�ers are allowed to

have. There are three constraints for renaming classes and

packages; 1) there should not be subpackages with duplicate

names in a package, 2) there should not be classes with du-

plicate names in a package, and 3) classes and subpackages

should remain in the same package.

The �rst two naming constraints are needed to prevent

invalid byte code. For example if we have two quali�ed

classes “a.b.C” and “a.b.D” and their class names are both re-

named to “SomeClass”, we end up with “a.b.SomeClass” and

“a.b.SomeClass” respectively. This will confuse the Android

runtime as classes have to be uniquely identi�able. This sit-

uation happens when two classes look a lot like each other

in terms of functionality.

A similar situation arises when two subpackages are re-

named to the same name. Suppose we have the quali�ed

classes “a.b.C” and “a.d.C” and subpackages "b” and “d” are

both renamed to “somepackage”. This results in the qual-

i�ed classes “a.somepackage.C” and “a.somepackage.C” re-

spectively. These kind of situations are prevented by con-

straint 2. The third constraint is needed to keep the package

structure of the application intact.

3.4 Class deobfuscation
Because LibPecker is a library detection tool, it creates class

mappings per detected library. The class mappings that are

produced may not follow the naming constraints described

in the previous section. For example, if two classes in the

same package are predicted to be in packages from di�erent

libraries, constraint 3 is violated.

To merge the individual class mappings produced by

LibPecker into a �nal mapping, the individual class map-

pings are �rst sorted by similarity score. Then the class map-

pings are added one by one to the �nal class mapping starting

with the highest scoring ones. Before adding a class mapping

to the �nal mapping, it is checked if adding this class map-

ping would cause a naming violation in the �nal mapping. If

this is the case, the class mapping is ignored. The algorithm

to merge the class mappings is listed in Algorithm 1.

Algorithm 1 Merging class mapping

1: function Merge(mappings, classes)

2: result← ∅
3: packageMapping← ∅
4: outer:

5: for all (old, new) ∈ mappings do
6: if old already mapped ∨ new already mapped to then
7: continue
8: end if
9: oldPackages← Packages(old)

10: newPackages← Packages(new)

11: if length(oldPackages) 6= length(newPackages) then
12: continue
13: end if
14: for all (os, ns) ∈ ... do
15: if os ∈ packageMapping then
16: if packageMapping(os) 6= ns then
17: continue outer

18: end if
19: else
20: packageMapping(os)← ns
21: end if
22: end for
23: result(old)← new
24: end for
25: for all c ∈ classes do
26: if c /∈ result then
27: newClass← c

28: for all p ∈ Packages(c) do
29: if p /∈ packageMapping then
30: break
31: end if
32: newClass← packageMapping(p) ‖

c.substring(length(p), length(c))
33: end for
34: result(c)← newClass
35: end if
36: end for
37: return result

38: end function
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The �rst check that is done to see if adding the class map-

ping would cause a naming constraint violation, is check-

ing if the class is already mapped. This situation is likely

to occur when there are multiple versions of the same li-

brary. In two subsequent minor versions of a library there

are many similar identi�ers because in subsequent versions

often contain only small code changes. This can cause an

identi�er to be identi�ed in two di�erent versions of the

same library. In that case the class is already mapped, the

mapping is discarded. The second thing that is checked, is

whether the mapping would rename a subpackage that is al-

ready renamed by an earlier class mapping to another name.

In that case the mapping is also discarded.

After the class mappings produced by LibPecker have been

merged into the �nal mapping, it is possible that a subpack-

age is renamed by class mapping. If that is the case, all classes

that are contained in that subpackage, need to be mapped to

that subpackage by renaming them. These class mappings

are also added to the �nal mapping.

3.5 Method deobfuscation
We identify methods in the deobfuscated classes by matching

them against methods from the library classes using the class

mappings from LibPecker. We use a simple signature based

approach to match the methods.

There are two constraints for renaming methods; 1) two

obfuscated methods with the same parameter types should

not be assigned the same name, and 2) overridden methods

should stay overridden, and non-overriding methods should

not become overriding. In Java, an overriding method is a

public non-static method that has the same signature as a

public non-static method in its parent class. When such a

method is called, the method in the parent class is hidden,

and the method in the child class is called [9].

Algorithm 2 Method signatures

1: function GetSignature(method)

2: signature← ""

3: types← method.returnType ∪method.parameterTypes

4: for all type ∈ types do
5: baseType← BaseType(type)

6: arrayDimension← ArrayDimension(type)
7: if IsPrimitive(baseType) ∨

IsFromStandardLibrary(baseType) then
8: signature← signature ‖ baseType ‖ arrayDimension

9: else
10: signature← signature ‖ "*" ‖ arrayDimension

11: end if
12: end for
13: return signature

14: end function

The �rst step in matching the methods from a class in the ap-

plication, with the methods from a class in the library, is to

select all non-overriding methods from both classes. We do

not select overriding methods because if we would rename

such a method, we would also have to rename to original

method in the parent class. This could interfere with renam-

ing methods in the parent class. Renaming overriding meth-

ods in parent classes could potentially increase performance

in case the overridden method could not be identi�ed in the

parent class. However, this signi�cantly increases the com-

plexity of identifying methods.

For all selected methods in both classes we generate a signa-

ture that we later use to create mapping from the methods

in the app class to the methods in the library class. How this

signature is generated, is speci�ed in Algorithm 2. The sig-

nature is based on return type and the parameter types of a

method. For every type it is checked if it is a primitive type or

a type from the standard. If this is the case, the type is added

to the signature. Otherwise, a wildcard is added to the signa-

ture. The reason for adding a wildcard for the other types is

that those can be obfuscated. All of the types and wildcards

plus their possible array dimensions are concatenated as the

signature.

After generating the signatures, all signatures that have a

one-to-one mapping from the app class to a signature from

the library class methods, are selected. The other methods

cannot be uniquely mapped and are therefore discarded. If

there are two methods from the app class that map to two li-

brary functions that have the same name, constraint 1 is vio-

lated. The mappings of all such combination of methods are

therefore discarded. For example, if there is an application

method int a(int) which could map to either library

method int b(int) or int c(int), it is discarded.

All mappings that assign an app method the same name as

a public method with same signature in one of the parent

classes are discarded, because this would violate constraint

2. For example, if there is a class A with the method int
a(), the method int b() in class B that extends class

A, cannot be renamed to "a" because this would override a

method that was not overridden before.

The remaining methods are renamed according to the map-

pings. All methods that override one of the mapped meth-

ods are renamed as well to the new name of the method they

override.

4 DATASET
4.1 Apps
To train our system we needed a dataset of unobfuscated An-

droid applications and the third party libraries they contain.

To our best knowledge, no such dataset exists. Common An-

droid application datasets contain applications from sources

such as Google Play and the Amazon App store. However,

applications in these app stores are often obfuscated, besides,

it is di�cult to determine exactly which third party libraries

an application uses without looking at the application source

code.

We therefore used the F-Droid app store as a source for our

dataset. All of the applications in the F-Droid app store are
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open source as required by the F-Droid policy. Although the

apps from the F-Droid source are open source, the compiled

apps that are published in the store can still be obfuscated.

This can be resolved by compiling the apps while disabling

obfuscation in the build process. The apps from the F-Droid

app store can be built from source code using the F-Droid

build tools. To remove any obfuscation applied during the

build process, we patched the F-Droid build server. We added

code that scans for ProGuard con�gurations and adds a rule

that disables the obfuscation functionality of ProGuard. We

added support for modifying Ant, Gradle, and Maven con-

�gurations. Our modi�cation to the F-Droid build server

does not disable ProGuard entirely as this would also disable

all bytecode optimisations, which are used frequently. Dis-

abling ProGuard entirely would therefore result in a dataset

that is not representative for apps from other app stores. Our

dataset contains 1511 applications.

4.2 Obfuscated apps

To test the library deobfuscation and DeGuard modules, we

need obfuscated versions of the apps. Android applications

are compiled in two steps; �rst the Java source code is com-

piled into Java bytecode, and then the Java bytecode is con-

verted to Dex bytecode. Dex is a bytecode format for the An-

droid Runtime. Usually, the obfuscation is done on the Java

bytecode right before converting it to dex because ProGuard

only takes Java bytecode as input. How an application is ex-

actly obfuscated is speci�ed in the build con�guration of the

application. To obfuscate the apps in our dataset in the usual

way, we would have to manually modify all build con�gu-

rations. We therefore decided to separate the obfuscation of

the apps from the compilation of the apps by obfuscating the

apps after compiling them.

We achieved this by converting the dex �les inside the apps

to jar �les using dex2jar. We then ran ProGuard on the jar

�les with a custom ProGuard con�guration that enabled only

obfuscation and no bytecode optimisations. Finally, we con-

verted the obfuscated jar �les back to dex using the standard

dex tool provided by the Android toolchain.

4.3 Third party libraries

We needed a set of libraries to train the library detection

module of our system. By far the most common way of ob-

taining libraries is by downloading them from public source

code repositories. Downloading all libraries from several on-

line code repositories is not very e�cient, because not all li-

braries are used frequently or are useful for Android apps.

Instead, we use all libraries included in the apps as a rep-

resentative dataset. It is very likely that commonly used li-

braries are both in the training data as in the test data. This is

the underlying assumption of this study. To be able to test if

this assumption holds, it is important that only third party li-

braries corresponding to the apps in the training set are used

during the training phase later on. It is important to not use

the identi�ed libraries from the test set for training, as oth-

erwise this assumption cannot be veri�ed.

To get the libraries that are used in an app, we inspect the

build con�gurations in the source code of the apps, and

download the libraries listed there from online code repos-

itories. A build con�guration speci�es how an app should

be build and among others what libraries the app requires.

For the Gradle and Maven build con�gurations, we use the

Gradle and Maven dependency tools respectively to list the

libraries and also the library dependencies of those libraries.

Because Ant has no dependency management system, and

not all libraries are available in source code repositories,

there are some apps with hardcoded libraries in their source

code. So in addition, we extract all hardcoded libraries from

the source �les. We achieve this by extracting all jar �les

containing Java bytecode from the apps.

We cross reference the class names from all the libraries with

the class names present in the apps to �lter out libraries that

are not actually used in the apps such as testing frameworks.

We keep a reference of which app classes are originally from

a library to be able to make a separation in the prediction

results between library classes and non-library classes later

on in the evaluation.

4.4 Dataset validation
It is important that our dataset does not contain any obfus-

cated apps. Any obfuscated identi�ers left in the apps add

noise to the dataset which can impact the performance of

identi�er prediction systems. To verify that there were no

obfuscated identi�ers left in our created dataset, we devel-

oped a heuristic that detects obfuscated identi�ers.

The heuristic we developed exploits the naming artifacts in-

troduced by ProGuard during obfuscation. When ProGuard

obfuscates identi�ers, it replaces them by default with a short

name according to a predictable naming scheme. The default

naming scheme that ProGuard uses is alphabetic; the �rst

identi�er that is being obfuscated is renamed to ‘a’, the sec-

ond to ‘b’ and so on. Because this naming scheme generates

identi�er names that are used rarely in source code, it is easy

to distinguish them from non-obfuscated identi�ers.

The heuristics �rst checks if there is a root package in an

application called ‘a’. If there is such as package, we di-

rectly assume that the application is (partly) obfuscated. We

have found no evidence in the source code of the apps in our

dataset of root packages that have such a name. The second

thing that is checked is the presence of at least the classes

named ‘a’, ’b’, ‘c’, ‘d’, and ‘c’ in any package. If this is the

case we also assume the app is obfuscated. The last thing

the heuristic checks is if there is a class that contains either

methods or �elds named ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’. If at least

one of these checks passes, we label the application as ob-

fuscated, and unobfuscated otherwise.

We designed this heuristic to minimize the number of false
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negatives, apps that are wrongly labeled as unobfuscated,

while keeping the number of false positives relatively low.

Because this heuristic is quite strict, only apps with very little

obfuscation remain undetected. This is not really a problem

because apps with only a few obfuscated classes have little

impact on the quality of the DeGuard model. The number

of false positives this heuristic creates is low, as developers

rarely use the same names that are also part of the naming

scheme of ProGuard.

We found that this heuristic works well within our dataset,

we selected a set of 100 apps downloaded from F-droid and

labelled the apps as obfuscated or not by hand and tested the

heuristic. This resulted in only 3 false positives and no false

negatives.

5 EVALUATION
In this section we will evaluate how the research is imple-

mented. The goal of this research is to see how library detec-

tion based deobfuscation compares to DeGuard in predicting

identi�ers from third party libraries. For this research we im-

plemented both a library detection based deobfuscation sys-

tem and the DeGuard deobfuscation system which is based

on statistical learning. Figure 1 contains an overview of the

evaluation setup.

5.1 Dataset
To compare both systems, we have evaluated them on the

same dataset of obfuscated applications. This was required

to test DeGuard on a new dataset as the original paper of

DeGuard did not publish their dataset and did not release

raw results. Therefore, it was not possible to use the results

from the DeGuard paper for this research. The dataset was

split into a training and a test set using a 90/10 split. Our

training set contains 1361 samples, and our test set contains

150 samples. We did not use 10-fold cross validation, similar

to DeGuard, as the running time of DeGuard is too long to

perform within the time constraints of this research.

5.2 Training
Delibird was trained on the libraries from the apps in the

training set. Using our implementation of DeGuard we ex-

tracted the features from the apps in the training set. De-

Guard uses the Nice2Predict tool to train the model from the

features [15]. Training with Nice2Predict was done on the

University of Twente HPC cluster using 16 CPU cores and

480Gb of memory (which was the minimum requirement).

Nice2Predict was setup with default parameters, the same as

the original paper where DeGuard is described. Delibird was

trained with a single CPU core and 8Gb of memory.

5.3 Testing
DeGuard also uses Nice2Predict for prediction. Given, a

trained Nice2Predict model and an obfuscated application,

Correct Incorrect Unpredicted

method 0.362 0.231 0.408

class 0.506 0.439 0.055

package 0.359 0.444 0.197

Table 1: This table contains the exact values for the graph in

Figure 4.

Nice2Predict predicts the names of identi�ers. Delibird uses

library templates from the training step and uses those to

predict obfuscated application identi�ers.

5.4 Metrics
There are di�erent types of identi�ers in Android applica-

tions; method names, class names, and package names. We

split the evaluation on these identi�er types as they occur in

di�erent frequencies. For each of these identi�er types, we

collected whether they were correctly predicted, incorrectly

predicted, or unpredicted. DeGuard gives an unpredicted re-

sult when it has not identi�ed enough neighbouring iden-

ti�ers to make a prediction. Delibird gives an unpredicted

result when there is no match between the identi�er and an

identi�er from a library.

To see if an identi�er is correctly predicted, we �rst use the

original mapping created by ProGuard to what the obfus-

cated identi�er is. Then we use the mapping created by

DeGuard to get the prediction for the obfuscated identi�er.

The identi�er is correctly predicted when it is an exact case-

sensitive match with the original identi�er. This is quite a

strict requirement, but doing a case insensitive match would

likely not make a signi�cant impact on the results because

third party libraries are included in apps without making

changes to the identi�ers.

5.5 Results
We have evaluated the results of DeGuard for all identi�ers,

the combination of identi�ers from third party libraries and

those not from third party libraries. These results can be

compared to the original DeGuard paper to give an indica-

tion of correctness. These results can be found in Figure 4.

Because in this research we want to compare the third party

library deobfuscation capabilities of DeGuard with those of

Delibird, we created a baseline from the results of Figure 4

that contains only the results for third party library identi-

�ers. This DeGuard baseline for third party libraries can be

found in Figure 5. A substantial amount of identi�ers found

in Android applications are from third party libraries as can

be seen Figure 3.

The Delibird results can be found in Figure 6. This �g-

ure contains the results split by identi�er types. As can be

seen in Figure 6, the Delibird method results in a lot unpre-

dicted identi�ers. This is caused by the use of LibPecker.
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Figure 3: A substantial amount of identi�ers found in An-

droid applications are from third party libraries. 72% of

method identi�ers found in Android applications are from

third party libraries, compared to 67% of class identi�ers, and

64% of package identi�ers.
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Figure 4: For this research we implemented the DeGuard

model. The performance of this implementation on our data

set is shown in this �gure. This includes results on all iden-

ti�ers including both third party library identi�ers and the

application speci�c identi�ers. For each identi�er type, this

�gure shows the percentage of correct (blue), incorrect (red),

and unpredicted (beige) identi�ers. Exact numbers can be

found in Table 1.

Correct Incorrect Unpredicted

method 0.445 0.185 0.371

class 0.645 0.303 0.053

package 0.425 0.412 0.163

Table 2: This table contains the exact values for the graph in

Figure 5.

method class package

0

0.2

0.4

0.6

0.8

1

correct

incorrect

unpredicted

Figure 5: For our research we want to compare against the

library deobfuscation capabilities of DeGuard. This �gure

shows the performance of our implementation of DeGuard

only the library identi�ers from our data set. For each iden-

ti�er type, this �gure shows the percentage of correct (blue),

incorrect (red), and unpredicted (beige) identi�ers. Exact

numbers can be found in Table 2.
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Figure 6: The results of our Delibird method on our data

set are shown in this �gure. These results can be compared

against the results in Figure 5. For each identi�er type, this

�gure shows the percentage of correct (blue), incorrect (red),

and unpredicted (beige) identi�ers. Exact numbers can be

found in Table 3.

Correct Incorrect Unpredicted

method 0.051 0.002 0.947

class 0.356 0.062 0.582

package 0.170 0.000 0.830

Table 3: This table contains the exact values for the graph in

Figure 6.
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Figure 7: This �gure shows for all identi�er predictions, in-

cluding correct and incorrect predictions, if they they are

predicted by Delibird, DeGuard, or by both Delibird and De-

Guard. The largest part of all identi�ers are only predicted

by DeGuard. This is the case because DeGuard leaves fewer

identi�ers unpredicted as can be concluded from Figure 5

and Figure 6. The fraction of predictions made by both Deli-

bird and DeGuard is the largest for the class identi�ers. Deli-

bird makes a lot of method and package predictions that De-

Guard does not when compared to the total amount of Deli-

bird method and package predictions.

LibPecker predicts whether an application contains a cer-

tain third party library and is designed to have a high re-

call and accuracy. Because LibPecker is designed to have

a high accuracy, it makes library predictions on only a few

very con�dent class matches. More class matches are not

needed to have a high accuracy and recall on predicting li-

braries. A few class matches can already make a con�dent

prediction of whether a library is included in an application.

Because LibPecker only identi�es a few classes, it leaves a lot

of classes unidenti�ed. This is not a problem for LibPecker,

because it only needs a couple of identi�ed classes. How-

ever, it is a problem Delibird because the goal of Delibird is

to predict all classes. This is the reason why so many classes

are left unpredicted by Delibird.

Figure 7 shows that Delibird and DeGuard predict the same

class identi�ers. There is only a small portion of the identi-

�ers that is only predicted by Delibird.

Figure 8 shows the fraction of correct predictions for the

identi�ers that are predicted by by both Delibird and De-

Guard. The identi�ers that are predicted by both Delibird

and DeGuard correspond to the both category from Figure 7.

Delibird predicts the same methods identi�ers better than

DeGuard does. However, DeGuard does still do good job

at predicting that fraction of method identi�ers. A simi-

lar pattern can be seen for the class predictions, although,

both have fewer correct class predictions than method pre-

dictions.
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Figure 8: Fraction of correct predictions for identi�ers pre-

dicted by both Delibird and DeGuard.

6 DISCUSSION
In this section we will discuss the performance of our imple-

mentation of DeGuard and the di�erences in the results from

Delibird and DeGuard.

6.1 DeGuard

When comparing the performance of our implementation of

DeGuard, see Figure 4, and the one in the original DeGuard

paper, there are some di�erences. The most noticeable is that

our implementation has more incorrectly predicted identi-

�ers.

This can have several reasons. In the DeGuard paper the test

applications were randomly selected from the F-Droid ap-

plications that are build with the Gradle build system. We

randomly chose the applications to evaluate on from all ap-

plications, including other build systems. Gradle is the most

recent build system. Our training set contains therefore apps

with older build systems and these older build systems may

indicate that those are old applications. Older applications

could be harder to predict than newer applications.

Furthermore, the original DeGuard paper does not specify

the details of the algorithms very precisely. It could be that

some things are implemented slightly di�erent. For example

some features are implemented slightly di�erent.

Finally, a di�erence in the size and composition of the dataset

could also explain some di�erences. For example, the size of

the training set is important. The size of our training set is

smaller than the one used in the DeGuard paper. The training

set size used in the original DeGuard paper was 1684. The

test set size was 100. Our training set contains 1361 samples,

and our test set contains 150 samples. Besides, if our training

set would have been larger, we could also expect a better

performance from Delibird.
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6.2 Delibird

When comparing the results of DeGuard and Delibird, there

is a clear di�erence. Delibird has a lot more unpredicted

identi�ers than DeGuard, the recall is lower. Delibird has less

incorrect predictions than DeGuard, but has also less correct

predictions.

Although delibird is overall not better, it can still be use-

ful because the precision of Delibird is better than DeGuard.

Because the ratio of correct and incorrect prediction is bet-

ter in Delibird than in Deguard. The identi�ers that Deli-

bird predicts are predicted with high precision. Moreover,

the most important improvement of Delibird over DeGuard

is that Delibird requirements a lot less memory for training

than DeGuard.

Library detection can be use to deobfuscate libraries with

good precision. However, the recall of Delibird is low. This

can be explained by the fact that library detection is mea-

sured on library level. A few con�dent predictions of classes

are enough to identify a library. Thus, a good recall on li-

brary detection systems does not necessarily translate to a

good recall in library deobfuscation. However, because the

library that is used is already identi�ed, it should be possible

to match all other classes from the library as well because

the search is very small. This could be added as an extension

to Delibird.

The high precision can be explained by the fact that the li-

brary detection method identi�es a few very con�dent class

predictions to make a library prediction. Because these class

predictions are used by Delibird, the deobfuscation of Deli-

bird has also a high precision.

The method predictions depend on the prediction of the

classes by LibPecker. Delibird matches the methods in the

predicted classes with the methods in the predicted library

classes. This has the e�ect that only methods in predicted

classes are attempted to be predicted. The methods that

are predicted, have a high accuracy as a signature based ap-

proach is used. By de�nition, this signature based approach

to match methods is 100% accurate in correctly predicted

classes. In incorrectly predicted classes, there will not be

many predictions as only very few method signatures can

be matched between the library and application class. This

results in an overall high accuracy.

In this research we did not use K-Fold cross validation. Us-

ing cross-validation would result in a higher con�dence in-

terval of the results. However, due to time constraints K-Fold

cross validation is not used. A single evaluation run of De-

Guard and Delibird consists out of training Delibird, train-

ing DeGuard, prediction with DeGuard and prediction with

Delibird. Such a run takes three days of uninterrupted run-

ning time to complete because the Nice2Predict model that

DeGuard uses is slow for large inputs. Meaning that if we

used 10-fold cross-validation, this would take a month in the

ideal scenario. However the cluster we trained on is not al-

ways available. The original DeGuard paper also did not use

k-fold cross validation, probably for the same reasons.

The main bottleneck in the evaluation run is training De-

Guard. DeGuard uses Nice2Predict internally as its pre-

diction model Nice2Predict is a toolkit for training condi-

tional random �elds (CRFs) and making predictions. CRFs

are computationally expensive models. To speed up train-

ing, Nice2Predict loads the entire dataset into memory. This

explains the high memory usage of DeGuard. Another

speed up technique that Nice2Predict uses is parallel train-

ing. This optimisation also increases memory usage. This

means that Nice2Predict has a trade-o� between memory

and running time. Predicting with Nice2Predict is also quite

slow with large datasets as inference for CRFs is a di�cult

problem. Exact inference, meaning �nding the optimal com-

bination of predictions, is intractable general types of CRFs.

Nice2Predict uses an approximate inference method, how-

ever, this is still quite slow. Training and predicting with

Delibird is not a bottleneck as both tasks can be parallelised

easily without needing as many resources as DeGuard.

7 CONCLUSION
In this research we evaluated the possibility of deobfuscat-

ing third party Libraries in Android applications by using

existing library detection tools. In this paper we evaluated

this approach and compared it to an existing deobfuscation

approach based on statistical learning.

We found that library detection tools can be successfully

used for deobfuscating third party libraries with high accu-

racy. However, compared to existing techniques based on

statistical learning, the recall is signi�cantly lower.

A major advantage of our approach is that it does not re-

quire a large amount of computational resources as is the

case with DeGuard. This is the case because library detec-

tion tools are based on simpler matching techniques as op-

posed to the computationally expensive CRF model used in

DeGuard. Another advantage of our approach is that extra

training samples can be added easily. This is not the case

with DeGuard. DeGuard needs to be retrained for all changes

in the data set.

8 FUTUREWORK
For this research we used a basic type of obfuscation, namely

identi�er deobfuscation. This is a basic kind of obfuscation

that does not change the structure of programs. DeGuard re-

lies on the structure of a program to predict classes and pack-

ages. There are more thorough obfuscation options. One

such an option provided by ProGuard is repackaging. This

obfuscation technique puts all classes in the same root pack-

age. It is expected that this technique in�uences the pre-

diction capabilities of DeGuard and Delibird. DeGuard uses

the package hierarchy to quickly identify classes in the same

package using package structure features. Library detection

tools use package hierarchies in a similar manner to detect li-
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braries. Java classes in the same package usually have strong

interdependence and Java classes in di�erent packages are

often more loosely coupled. It might me interesting to see if

graph clustering techniques can be used to reconstruct the

original package hierarchy from repackaged classes. This

would give DeGuard and Delibird extra features to make pre-

dictions.

In future work it would be interesting to see if the amount

of unpredicted identi�ers can be reduced. This could be

achieved by improving the used library detection tool or se-

lecting another library detection tool. The library detection

tool we used (LibPecker) is not the only tool that has library

prediction capabilities. We chose this tools as it has an ad-

ditional class mapping output. Other library detection tools

with this capabilities can be evaluated as well.

For this research, we used the libraries included in apps from

the F-Droid appstore as a training set for the library detection

tool. This has the advantage that the training set contains

libraries that are likely to be used in Android applications.

There are also other sources to consider for a library data set

such as MavenCentral. These repositories contain many Java

libraries which can be used to increase the library training

set. Although, using these libraries results in a larger train-

ing set, these repositories might also contain libraries that

are not frequently used inside Android applications. It is in-

teresting to look at what the trade-o�s are in using di�erent

library data sets.

Third party libraries are a common practice in other pro-

gramming languages, such as JavaScript and Python. For

these platforms obfuscation is also a common practice. For

JavaScript uglifyjs exists as a obfuscator and for Python

pymini�er. What makes Java suitable for deobfuscation, is

the clear structure of compiled programs. Structure of pro-

grams in preserved in Java bytecode. Therefore identi�er de-

obfuscation is possible. The same holds for interpreted lan-

guages such as JavaScript and Python. Therefore, it might be

interesting to explore if this research could also be applied to

those other languages.

This research can be used a starting point for other deob-

fuscation system. First use Delibird as a pre-processing step,

this gives extra known identi�ers in addition to the known

identi�ers from the standard library.
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