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Abstract—In 2021 alone, Bitcoin transactions added up to
a total volume of $15.8 * 10'2 USD, according to the Wall
Street Journal. This was an increase of 567% with respect to
2020. However, smaller transactions can sometimes take several
days before being confirmed and are subject to a significant
fee. Bitcoin’s standard implementation therefore leaves much
room for improvement before it would be a viable option for
micro-payments. In 2015, Lightning Network was introduced
with the goal of solving Bitcoin’s shortcomings. Enabling fast
transactions and minimizing transaction fees, Lightning Network
offers a peer-to-peer payment protocol layer on top of Bitcoin’s
blockchain. Using this implementation, peers can create transac-
tions off the blockchain, resulting in a higher level of anonymity.
Though various papers have been published suggesting the
network is centralized, most research was conducted when the
network was significantly smaller. In this paper, we answer the
question of how centralized Lightning Network is in 2022. The
contribution in this paper is unique in that nodes are indexed
by size, and their properties analyzed to find specific trends. We
identify how the usage of address protocols differs for nodes,
including an analysis of the percentage of nodes that are cloud-
hosted. Furthermore, we conduct a channel funding experiment
to discover the usage patterns and characteristics, such as the
minimum channel size, of nodes of different sizes. Our results
suggest that Lightning Network is still fairly centralized, with
large nodes having a substantial share in the connectivity and
effectiveness of the network.
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I. INTRODUCTION

To understand the usage and characteristics of Lightning
Network, one must first understand why it was invented and
what it’s disadvantages are. To describe the trade-offs that
are faced by developers incorporating blockchain technology,
Vitalik Buterin, the co-founder of cryptocurrency Ethereum,
coined the term Blockchain Trilemma. This concept states
that a cryptocurrency must either make a compromise on
decentralization, security or scalability of the blockchain. [1]

With Bitcoin being designed to be a decentralized and
secure cryptocurrency due to the incorporation of Proof of
Work, it only has a throughput of approximately 7 transac-
tions per second, compromising the scalability aspect of the
blockchain and hindering Bitcoin’s adoption and possibility
of becoming a global micro-payment provider. To solve this
problem, Payment Channel Networks are often considered as
a solution to Bitcoin’s scalability issues.

Lightning Network is one such protocol in that it aims to
solve scalability issues in Bitcoin’s implementation by moving
transactions off-chain. This means there is a reduction in
the need for computation-heavy mining required for a large

number of transactions, lowering the transaction fees and
increasing throughput and transaction propagation.

With the white paper of Lightning Network introduced in
2015, the first Lightning transaction on top of the Bitcoin
network was only made in 2019. Furthermore, most research
on Lightning Network was done in 2019 and 2020, resulting
in the need for new research into how the network has grown
since then and what effect this had on the decentralization of
the network.

In this paper, we will research the decentralization and
effectiveness of Lightning Network as a payment-provider in
2022. This will be done by two experiments, one of which
aims at finding out where nodes are located and how many of
them are cloud-hosted. The second stage of this research will
involve an experiment to determine node properties such as the
minimum channel size, what client implementations nodes use
and their responsiveness to connections.

II. BACKGROUND

Bitcoin’s blockchain is made up of blocks containing trans-
actions. These blocks are included in the blockchain by solving
a complex computational problem, which is called mining.
As a result, the creation of blocks requires much energy and
miners are compensated for each block they mine with a block
reward. In addition, the miner gets a fee for every transaction
it includes in the block it mines. This fee can be decided by the
one publishing the transaction, and since many of the miners
exist mainly with the goal of making profit, those miners will
be more incentivized to include transactions with a higher fee
in the block they are mining. A lower fee therefore results in
the transaction on average taking longer to be included in the
blockchain than transactions with a higher fee. [2]

Furthermore, each transaction has an input and an output.
To create a valid transaction, one must unlock the unspent
transaction outputs (UTXO’s) of another transaction by pro-
viding a correct digital signature in the input. After that, the
funds in the unlocked outputs can be transferred again as
part of the new transaction, which in it’s turn must include
in it’s output a script that could be unlocked by another
digital signature. This creates a chain of transactions, where
every Bitcoin transaction, with exception of the coinbase
transaction that includes the miner’s block reward, should
include a valid signature that unlocks Bitcoin’s from another
transaction. Besides having only the option to unlock funds
using a signature, Bitcoin also allows for the creation of
custom scripts that can specify certain conditions that need



to be met before the outputs of a transaction are allowed to
be spent. It is the option of including such custom scripts that
allow for the existence of layer 2 protocols that are built on
top of Bitcoin’s blockchain.

As mentioned previously, Lightning Network is one such
layer 2 payment protocol with the aim of solving Bitcoin’s
throughput issue. With Lightning Network being a layer 2
protocol, this means it relies on Bitcoin’s network for the
opening and closing of channels. Most of Lightning Network’s
operation, however, happens outside of Bitcoin’s network
using a Lightning client that hooks into the Bitcoin Core client.

A. Bi-direction payment channels

Within Lightning Network, all funds are moved through
payment channels. These bi-directional payment channels are
created between two peers by either or both of them mov-
ing funds into a 2-of-2 multi-signature address on Bitcoin’s
blockchain, meaning a signature of both peers is required in
order to unlock the funds in the channel [3]. Any further
payments happen off-chain, where the channel serves as a
kind of ledger or abacus that keeps track of how the funds
are distributed between the two nodes, as shown in Figure 1.
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Fig. 1: Abacus analogy for moving funds through a Lightning
Network payment channel [4]

For each off-chain transactions, the two nodes share a com-
mitment transaction combined with a revocation key that can
invalidate the previous commitment transaction if published.
In case the closure of a channel is uncooperative, meaning
a commitment transaction is published to the blockchain
instead of a closing transaction containing the signature of
both peers, there is a time delay for the peer publishing
the commitment transaction before the outputs can be spent
again. This time delay allows the other unresponsive peer to
have some time to verify the transaction and make sure the
published commitment transaction is the latest one. In case it
is not the latest one and a peer tries to cheat by publishing
an older commitment transaction, the other peer can use the
revocation key to claim all funds in the channel. [3]

In practice, the majority of channel closures are undisputed
with both parties signing and agreeing to the closing transac-
tion. [5] This means the funds in the Bitcoin address can be
spent again on the blockchain without any delay penalty for
either party.

B. Payment routing and fees

Since opening a channel with another peer requires a fund,
it is very costly to open a channel with every node one wants
to transact with. Therefore, Lightning Network also offers the
option to route payments through other nodes. This is done

using Hashed TimeLocked Contracts (HTLC’s). HTLC’s use
random numbers and their hash to ensure intermediate nodes
follow through with properly routing the payment.

Figure 2 shows how Alice would be able to transfer 1
Bitcoin to Bob through an intermediate node using HTLC.
First, Bob generates a random number and sends it’s hashed
version to Alice. After that, Alice sends a pending payment
that is ’locked’ to it’s neighbouring intermediate node, in our
case Carol. In the case of multiple intermediate nodes, these
would do the exact same, creating a list of pending payments
from one node to the other. Once the pending payment has
arrived to Bob, he unlocks it using the random number he
generated. Once he has done that, he hands over the key to
his neighbour. This causes a kind of chain reaction, where
each node in the chain can unlock the payment that was still
locked, ultimately resulting in 1 Bitcoin being transferred from
Alice to Bob. [3]
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Fig. 2: Payment routing using HTLC [6]

Moreover, every node in the network may specify a fee that
it collects when it routes a payment. When someone wants to
send a payment to a specific node, it is the Lightning client’s
job to find an optimal path from source to destination with
a minimal fee. As the routing of transactions using Lightning
Network does not require any significant computational effort,
the routing fees are on average very small as compared
to Bitcoin’s fees. The main expense for nodes that route
Lightning payments, on the other hand, is the opening and
closing of channels as these are included in the blockchain,
therefore needing a relatively large fee to incentivise miners
to include the transaction in a block. Even though the fees that
a node can collect from routing payments are small, they can
therefore still make money by gaining a favourable position in
the network, where there is an equal amount of transactions in
both directions. This reduces the risk of all funds being located
at one side of the channel, resulting in the need for costly
channel rebalancings that involve the opening and closing
of new channels. However, this competition over gaining a
large share in the network does come at the cost of increased
centralization.

C. Protocol implementations

The Lightning Network protocol is described in a set of
RFC documents called the Basics of Lightning Technology
(BOLTs) [7]. Currently, there exist 3 major implementations
of Lightning Network clients: Lightning Network Daemon
(LND) [8], Core Lightning [9] and Eclair [10]. Furthermore,
besides using standard IP, Lightning Network has the option
to route packets using Tor. By using Tor, nodes prevent their
IP address and thus their location from becoming public



knowledge. Consequently, the nodes that are solely using Tor
require a proxy to connect to them, lowering their availability
for nodes that don’t use Tor.

III. RESEARCH OBJECTIVES

By moving the transactions off-chain, Lightning Network
compromises the decentralization of the network while in-
creasing the scalability by offering a higher transaction prop-
agation speed and allowing for more transactions per second.
This would make Lightning Network ideal for future micro-
payments solutions, though further research in needed into
how much the decentralization and effectiveness aspect are
affected as a result of a better scalability. One of the disad-
vantages of Lightning Network that may make people decide
to not use it is the initial barrier of entry to the network.
In order to properly contribute to the network, one must not
only operate a running Bitcoin instance (which at the time of
writing takes up approximately 420GB of storage), but also
have a Lightning client up and running 24/7 to prevent other
nodes from abusing security features. Furthermore, since the
opening and closing of a channel is costly, many nodes want
to prevent this by requiring an initial deposit that is quite
substantial, decreasing the need for channel closures and new
openings.

In practice, this means one would usually need to dedicate a
significant amount of money to get started contributing to the
network. Furthermore, the existence of big hubs may result in
a network that is heavily centralized. In this paper, we will
answer the following questions:

1) How centralized is Lightning Network?: Lightning Net-
work was made with the intention of having a network
that allows for fast transactions, while compromising on the
decentralization of the network. In this section we aim to
find how centralized the network is and in what ways said
centralization can be observed. We will show some common
characteristics of the bigger nodes in the network, and estimate
what percentage of nodes can only be reached through the
largest nodes in the network. Furthermore, we will have a
look at the reliance of nodes on specific cloud-providers.

2) How effective is Lightning Network as a payment pro-
cessor?: As previously mentioned, the barrier to entry of the
Lightning Network is quite substantial, with new users having
to dedicate a significant amount of money to get started with
participating in the network. As a part of this question we aim
to see how favorable the network is to new nodes joining the
network. More specifically, we will find the minimum channel
size that nodes require and see how this differs for big nodes
as compared to smaller ones. Moreover, we will identify the
address protocols that are announced by nodes. This indicates,
for instance, what part of the network can be reached without
a proxy by nodes that have not setup Tor.

IV. RELATED WORK

In 2019, D. Satcs showed in their paper [11] that the
majority of the nodes in the network supported an IP protocol,
making them publicly available. They also determined the
address protocol usage of nodes in three categories: nodes

with 1 channel, nodes with 5-10 channels and nodes with the
highest number of channels. What they did not do, however,
is to find how exactly the usage of address protocols differed
for nodes of arbitrary sizes.

Among other things, F. Waugh and R. Holz [12] also re-
searched the usage of address protocols in Lightning Network.
Their contribution, however, only includes an analysis of the
number of addresses that they could find for each protocol,
including how these numbers changed over time.

Instead of grouping nodes into categories, we will sort nodes
by their size and identify how the presence of different address
protocols changes depending on node size. Furthermore, we
will show that there are clear usage patterns for nodes of
different sizes.

In paper [5], P. Zabka et al. classified the client imple-
mentation that nodes used based on a few properties they
announce. However, for their analysis they use parameters that
can be manually configured. In our contribution we identify
the implementation that nodes use based on the error message
that they return, something that cannot readily be altered.
Moreover, in their paper they researched the geographical
location of nodes by continent, plotting scattered data to
identify the presence of Lightning nodes in metropolitan areas.
They did not, however, identify whether the high densities
could be the result of nodes that are cloud-hosted. In our
contribution we feature a more thorough analysis of what
countries nodes are located in, including what countries have
a high number of cloud-hosted nodes.

Furthermore, as far as we are aware no research has been
done to identify the minimum channel sizes that nodes of
different sizes require. Our contribution is also unique in that
we identify particular usage patterns for nodes of different
sizes. Lastly, most of the above research was conducted around
late 2019 or 2020. With Lightning Network having grown from
approximately 2000 to more than 17.000 nodes since 2019
[13], among other things due to the growth and interest in
Bitcoin in recent years, these results are likely to be out of
date.

V. METHODOLOGY

For the conducted experiments, the client Core Lightning
was used. This client includes a Python library, allowing
access to Remote Procedure Calls (RPC’s) and creation of
plugins that alter it’s capabilities. To grow the list of discovered
nodes and increase the list of channels, a script was used that
connected to the largest nodes in the network.

A. Address protocols

The goal of the first experiment was to determine what
address protocols nodes in the network advertise and to
compare this to previous research. Furthermore, we will
identify the geographical locations of nodes and the number
of nodes that are cloud-hosted.

All node information was found using the listnodes RPC
call. To obtain the geographical location and usage types of
nodes having an IP address, we used a database provided by



ip2location.com. Since the database came in the form of a
CSV file, all data was first imported to a SQLite database that
could be queried with an IP address.

B. Channel funding experiment

In order to route payments to other peers, one must first
open a channel with another node. Since opening a channel
requires a fund, the minimum channel size that nodes require
has a big influence on the number of nodes that can be reached
with a limited investment. To determine the minimum fund that
nodes require, an experiment was done where we connected
to nodes and then tried to fund a channel using a fund that
was too small. As a result, either a connection error message
was returned or the node sent back an error announcing it’s
minimum channel size.

The experiment was performed on a Virtual Machine run-
ning Ubuntu. Furthermore, we captured a snapshot of the
network by saving the channel data of all known channels
in a JSON file using the listchannels command. The script
was left running until all nodes that were found in the list of
channels had been sent a channel funding message.

Lastly, the amount that was used for the experiment was
approximately 2000 satoshis. This is well under the default
minimum channel size of the two most popular Lightning
clients LND and Core Lightning, respectively 20.000 and
10.000 satoshis.

C. Visualisation

All graphs from the experiments were made using Python.
The data that was collected was plotted by node index, based
on the size of the node in the network.

To find a correlation between the size of nodes and the
parameter being measured, graphs were plotted using a con-
volution with a uniform kernel. As a result, the convolution
yields the walking average of the data, which makes it easier
to interpret and spot trends for nodes of different sizes. In
practice, however, there can exist a difference between the
number of nodes that can be found using the listchannels
command (used for indexing the nodes according to size),
and nodes found using the listnodes call (usually containing
the parameter that is being measured). This leaves gaps of
unknown values in the data that need to be accounted for.
Therefore, we used a convolution function that was able to
handle unknown values by interpolating the values that are
around it [14]. Hence, all data could be reconstructed even in
the presence of unknown values.

Lastly, increasing the window size of the convolution logi-
cally results in the spikes being smoothened. In this way, the
window size acts as a low pass filter for the data. The window
size that was used is given in the title of the figures.

VI. RESULTS

After having run the script for a day, the number of nodes
that could be found using the listchannels RPC call was 15616,
having in total 75777 number of channels. Of these 75777
channels, 65052 were announced by both nodes while the

remaining were announced by only one node. On the other
hand, 15641 nodes were found using the listnodes command.

The number of nodes found using the list of nodes is
therefore around 89% of the nodes as discovered by Lightning
Network search engine 1ml.com [15] (17.668 at the time of
writing), meaning the results are sufficiently representative of
the entire public network. The following experiments were
conducted on the 15th of June 2022, and the results are
therefore representative of the network around that time.

Node indexing: To find a correlation between the data,
nodes were either indexed by their total node capacity or
number of channels, where the node with index O is the
largest node and the subsequent nodes are increasingly smaller.
Furthermore, the total node capacity is defined as the total
capacity in all channels it has, whether that fund came from
the node itself or from it’s peer. If a window is specified, the
y-value at any point is equal to the average of the next number
of nodes as specified by the window size.

A. Channel analysis

To get an idea of how centralized the network is, this section
will analyze results that were obtained using properties of
the network derived from the the list of nodes and channels.
Figure 3 shows the amount of nodes that can only be reached
through the largest nodes in the network. As you can see,
approximately 30.5% of the network can only be transacted
to by routing through one of the top 250 nodes (by total node
capacity). If we order the nodes by the number of channels that
they have, this number is even higher at 40.5%. This means
that those nodes do not have a channel to any node outside of
the 250 largest ones. In practice, transactions to a substantial
amount of nodes will therefore rely on the connection to one
of the big hubs in the network.

Furthermore, Figure 4 shows that the largest 250 nodes in
the network (by total node capacity) are together responsible
for approximately 65.5% of the capacity of all channels in the
network (independent of which of the two nodes funded the
channel). When the nodes are order by the number of channels,
this number is slightly lower at 60%. This, however, intuitively
makes sense since one would expect the largest nodes ordered
by capacity to collectively have a higher capacity than the
same number of nodes order by the number of channels that
they have. Furthermore, the above results suggest that the
larger hubs in the network are of significant importance when
it comes to routing transactions to a significant number of
nodes in the network.

B. Address protocols

Of the 15641 nodes that were announced to our node, 3307
(21.1%) had an IPv4 address. The majority of the nodes turned
out to solely support Torv3, approximately 11246 (71.9%).
Furthermore, only 82 nodes were found using Torv2. This
value is very low as is to be expected since the Tor project
started the deprecation of version 2 in September of 2020,
with support for that version having stopped July of 2021 [16].
Moreover, the usage of IPv6 also turned out to be relatively
low, with only 121 nodes (0.8%) having an IPv6 address. This
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Fig. 3: A majority of nodes in the network can only be reached
through one of the larger nodes
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Fig. 4: Most of the capacity in the network belongs to channels
with the largest nodes

is a substantial difference from the results in paper [11], where
the author found that IP-usage was at worst 51% (for nodes
with 5 to 10 channels). This suggests that a larger percentage
of the network has started using only Tor, e.g. for the increase
in anonymity.

Figure 5 shows the combinations of address protocols used
by the nodes found using the listnodes RPC command. As you
can see, bigger nodes in the network had a higher tendency
to support a wider range of address protocols. This is likely
due to the fact these nodes are used as hubs that want to
make money from fees by routing as many transactions as
possible, meaning it is advantageous to have different ways for
nodes to connect to it. Approximately 73.3% of the largest 250
nodes had at least an IPv4 or IPv6 address. Furthermore, the
chance that no address could be found was found to increase
for smaller nodes. A relatively low percentage of nodes had a
miscellaneous set of address protocols, for instance two IPv4
addresses, as indicated by Other in Figure 5.

Of the 3307 nodes that had announced their IP address,
2071 (62.7%) belonged to a data-center or web-hosting service
(DCH). Furthermore, 1111 (33.6%) were found to belong
to a mobile/fixed line internet service provider (ISP). The
remaining 3.7% was either hosted at a content delivery net-
work, commercial or educational facility. Figure 6 shows that
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Fig. 5: Combinations of address protocols used by nodes in
the network

the percentage of nodes that were cloud-hosted went from
approximately 75% for the largest 1000 nodes to around 40%
for smaller nodes. However, there is an increase of nodes that
are cloud-hosted at around node index 12.000 to 14.000. Why
the nodes in this region had a higher tendency to be cloud-
hosted will be explained in the next section.

When it comes to what hosting providers are used for
Lightning Network nodes, Amazon turned out to be particu-
larly popular, with 627 nodes being hosted there. The second
biggest cloud-provider was LunaNode Hosting Inc. with 244
nodes. LunaNode provides cloud-hosting for Lightning nodes
[17], including the ability to host a BTCPay server [18],
which is an open-source cryptocurrency payment processor.
Most of the solutions that LunaNode offers require little to
no setup. This could explain why LunaNode is particularly
popular among small to medium nodes as shown in Figure 7,
with usage slightly decreasing for larger nodes. Next on the list
of used cloud-providers were SHRD Sarl (227), DigitalOcean
(137), Hetzner (121), Three Fourteen Sasu (104), Google (73)
and Contabo GmbH (64). Figure 8 shows that the majority
of nodes that announced an IP address were located in the
United States, Germany and Canada. Furthermore, we found
that most nodes were located in North America (44.8%) and
Europe (45.6%), with Asia (6.0%), South America (1.2%),
Oceania (1.6%) and Africa (0.8%) only contributing little to
the amount of nodes in the network. This data corresponds
surprisingly well to the results found in a paper published in
January of 2021 [5], with the percentage of nodes located in
North America not having changed at all and that of Europe
being 2.5% higher. Lastly, the percentage of nodes that are
cloud-hosted being particularly high for Canada is caused by
the fact that LunaNode is based there. [17]

C. Channel funding

In order to determine the minimum channel size of nodes,
each node was sent a fund channel message. Of all 15616
nodes that we connected to, 6082 nodes returned an error.
The chance that an error was returned after connecting to a
node was therefore approximately 38.9%. Figure 9 shows if
and what connection errors were returned upon funding of a



Usage types of nodes' IP-addresses (w = 1000)

100 +

80

60

404

Percentage of nodes

209 — pcH

—=SE
Other

2000 4000 6000 8000
Node index (by total node channel capacity)

10000 12000 14000

Fig. 6: Usage types of IP addresses of nodes using IPv4 or
IPv6

Hosting provider of nodes that have an IP and
are cloud-hosted (w = 1000)

100 4 — Amazon
SHRD Sarl

Three Fourteen Sasu
—— LunaNode
—— Digitalocean
80 | — Hetzner
— Google
Other

60

404

Percentage of nodes

204

2000 4000 6000 8000 10000 12000 14000

Node index (by total node channel capacity)
Fig. 7: Hosting providers used by Lightning nodes that an-
nounced an IP address and are cloud-hosted

channel. As you can see, the chance that a node refused the
connection went from around 5% for the largest 1000 nodes
to approximately 40% for the smallest nodes in the network.
Furthermore, smaller nodes had a higher chance of not having
their address announced to our node, meaning no connection
could be made to them. One might also observe that at around
node index 14.000 there exist a large number of nodes of
which the address was unknown, and that the 'No address
known for peer’ line matches well with the peers that did not
have any address as shown in Figure 5. Lastly, the results show
that smaller nodes tend to be less responsive to a connection
attempt, i.e. have a higher percentage of connection attempts
that timed out.

Figure 10 shows the resulting minimum channel sizes that
the nodes returned, indexed by both the capacity of the
nodes and the total number of channels the nodes had (and
thus approximately the number of nodes that it can route
transactions to). Where the minimum channel size of small
to medium nodes (index 4.000 to 14.000) was approximately
41.000 satoshis, the top 250 nodes required on average at
least 0.018 BTC ($361, 18 USD as of June 2022), which is
approximately 44 times as much. As you can see, our results
suggest that bigger nodes tend to require on average a higher
minimum channel size. Seeing as 35% of nodes only have
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Fig. 8: Geographical location of nodes combined with number
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Fig. 9: Errors that were returned if the connection with a node
failed

a channel to one of the top 250 nodes as shown previously,
nodes with a limited investment that only have a channel to one
of the smaller nodes may therefore require more intermediate
nodes to route a transaction to another node in the network.
Consequently, the chance that no route can be found to those
nodes, e.g. due to any channel along the route not being
properly balanced, increases.
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Fig. 10: Minimum channel sizes that nodes announced

Since the message that is returned when the channel fund



capacity is too low is specific to the used client, it can be
used to identify the share of each client in the network. Of
all 9534 nodes that had responded to our message with an
error indicating the fund was too low, 95.2% used LND,
while 4.6 used Core Lightning and 0.2% Eclair. The usage
of these clients differed slightly for larger nodes compared
to smaller nodes as can be seen in figure 11. This is likely
due to the fact Core Lightning is very customizable and has
better performance than the other implementations due to
being implemented in the low-level programming language
C. LND, on the other hand, is more widely supported and
has a wider variety of user interfaces one can use with it,
making it a better alternative for beginners [19]. Furthermore,
the popularity of Core Lightning was higher in previous years
(approximately 11% of clients, as shown in [5]) and has
therefore declined, meaning newer nodes likely have a higher
chance of using LND while older nodes that have dedicated
more funds towards Lightning Network and have been in
the network for longer have a relatively higher use of Core
Lightning.

Client implementation used by nodes (w = 1000)
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D. Layer 3 protocols

One feature that is persistent among many the above figures
and has not yet been accounted for is the anomaly at around
node index 12.000 to 14.000. The nodes in this region were
found to be characterized by on average a lower response
time, a minimum channel capacity of approximately 100.000
satoshis and high usage of IPv4, almost all of which were
cloud-hosted as shown in Figure 6. After further investigation
these nodes seemed to be hosted primarily at three different
hosting-providers: SHRD Sarl, Three Fourteen Sasu and Ama-
zon. Furthermore, we found that most of the nodes that were
hosted at SHRD Sarl and Three Fourteen Sasu had an alias
name with 'nodl’ in it. Nodl is a company that provides cloud-
hosting solutions for Lightning nodes [20], and after having
contacted the owner of these nodes, they all seemed to belong
to a layer 3 protocol called Sphinx Chat that uses Lightning
Network for sending encrypted messages. [21]

The presence of the nodes that belong to Sphinx Chat can
explain a few of our observations. Firstly, most nodl nodes

turned out to only have one channel with 100.000 satoshis
in it, while for the ones hosted at Amazon this amount was
anywhere between 70.000 and 100.000, hence the Amazon
peak occurring at a slightly lower node index in Figure 7.
Moreover, when looking at the error percentages for nodes in
Figure 9, we can see a dip at node index 12.000 followed by
a peak at approximately 14.000. This feature can be attributed
to the fact that the nodl Sphinx Chat nodes all accepted our
connection, while the ones hosted at Amazon all refused any
connection attempt. Another artifact of these Sphinx Chat
nodes can be seen in Figure 11, again at around node index
12.000. Almost all nodes in this region were found to use
LND, which can be explained by the fact that LND is the
default client implementation used by nodl [20].

Lastly, using an analysis of the increase in IP-usage and
cloud-hosting, we managed to identify at least 739 nodes that
belong to Sphinx Chat’s infrastructure.

VII. DISCUSSION

In our results, we found that Lightning Network is very
prone to centralization, with 35% of nodes in the network
only having a channel to the largest 250 nodes. This increases
the reliance of the network on those nodes for routing trans-
actions, decreasing the decentralization. We have also shown
that the largest nodes in the network shared many common
characteristics. Not only were the largest nodes found to have
a higher chance of supporting multiple address protocols, they
also had an increased chance of being cloud-hosted. Moreover,
our results suggest that larger nodes are more responsive to
connections and that they require a minimum channel size
that is on average significantly higher as compared to smaller
nodes.

Consequently, new nodes joining the network are met with
the decision whether or not the aforementioned advantages
are worth the increase in initial investment required to open a
channel to the larger nodes in the network. Also taking into
account the little maintenance that having only one channel
has, we consider these large hubs to be a compelling option
for nodes that want to start using the network. However, in the
case of many nodes opting to go this route, this does come
at the price of even more reliance on the larger nodes, further
increasing centralization within the network.

For our experiment, we showed that we were able to find
15641 nodes using the RPC call listnodes, which was 89% of
the nodes as reported by Lightning search engine /ml [15]. We
therefore consider the results to be sufficiently representative
of the entire public network. Furthermore, two figures were
shown that indicate a significant amount of nodes in the
network are cloud-hosted. Important to note, however, is that
this data is only representative of a minority (21.1%) of
the network that announced an IP address. This means that
in some cases only 15 to 20% of nodes could be used to
determine the percentage of nodes that was cloud-hosted in a
specific range. To invalidate our claim of the network being
very reliant on hosting provided by commercial companies,
one could therefore argue that people using Tor may have a
higher chance of having hosted their nodes at home, since do-
ing so would prevent their IP, and thus geographical location,



from becoming public knowledge. However, given the high IP-
usage of the largest nodes in the network (around 73.3% for
the largest 250 nodes) and their share in the effectiveness of
the network, we do consider our results to be accurate enough
to support the claim that the network is very dependent on
services provided by commercial companies. Consequently,
this negatively impacts the decentralization of the network.

Moreover, we managed to identify nodes belonging to a
layer 3 application built on top of Lightning Network called
Sphinx Chat, using some common characteristics that the
nodes shared. The presence of an application like Sphinx Chat
raises the question what other layer 3 implementations might
have been built on top of Lightning Network and what part
of the network is used with a purpose other than transacting
with peers. Additionally, with one of Lightning Network’s
aims being to increase scalability, it is likely also prone to
companies that offer non-custodial wallet services. How many
of these non-custodial wallets are already present in Lightning
Network and what effect this has on the centralization in the
network is something that we suggest be further researched.

Furthermore, most research into Lightning Network was
done around 2019. In the years since it’s inception, the network
has grown substantially. This calls for new research into how,
for instance, the maximum payment amount that can be routed
through Lightning Network has changed over time.

Lastly, we want to mention that the results obtained in
this paper do not necessarily indicate Lightning Network is
failing it’s goal of becoming a suitable option as a large-scale
micro-payment processor [3]. On the contrary, the opportunity
that Lightning Network presents does not only come from the
fact that it offers fast propagation of transactions, but also
from the freedom that users can choose themselves whether
to compromise on decentralization or on scalability. In this
way, Lightning Network does not decrease the need for Bitcoin
transactions, but instead complements Bitcoin’s main network
in becoming a network suitable for micro-payments, where
users can decide on what to use depending on their needs. The
results are, however, indicative of a network that is prone to
centralization with a significant barrier of entry for new nodes
joining the network, though further research should point out
what implications centralization has on the security of the
network.

VIII. CONCLUSION

In conclusion, the results in this paper suggest that Light-
ning Network is fairly centralized with a large part of the
network’s total capacity existing in channels that are con-
trolled by the biggest nodes in the network. More specifically,
approximately 35% of the network was found to only have
a channel to one of the largest 250 nodes. Additionally, the
minimum channel size that the largest 250 nodes required was
on average 44 times higher compared to smaller nodes in the
network. This means that new nodes joining the network often
times need a significant fund in order to reach a large part
of the network. As for the address protocols that nodes use,
the majority of nodes were found to only allow connections
using Tor. This is a substantial difference from previous

research conducted in 2019 that pointed out that a significant
portion of nodes were available with an IP address [11] [12].
Of the nodes that announced an IP address, we found that
approximately 62.7% was hosted at a data-center or web-
hosting provider. The majority of these nodes were hosted
at Amazon (30.2%) and LunaNode (11.8%). This shows that
a large part of the network is reliant on large companies that
offer cloud-hosting solutions, lowering the decentralization of
the network. Furthermore, we showed that there exist a big
difference in responsiveness to connections between nodes of
different sizes. Compared to the largest nodes in the network,
the smallest nodes were approximately 8 times more likely
to refuse the connection. Moreover, using an analysis of
nodes’ minimum channel capacities, IP-usage and channel
information, we managed to identify an implementation built
on top of Lightning Network called Sphinx chat.

The results we obtained in this work are therefore indicative
of a network that is prone to centralization, with a large part
of the network relying on a relatively small percentage of
nodes. Furthermore, we found that there exist a significant
barrier of entry for new nodes joining the network, lowering
the effectiveness of Lightning Network as a large-scale micro-
payment solution. Lastly, further research should point out
what exact implications centralization has on the security of
the network.
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