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Summary
This thesis describes an API for a general purpose graph transformation tool
set that uses Graph Rewriting, a technique where simple labeled graphs are
transformed using transformation rules. The aim of the study is to make the
Graph Rewriter interoperable with other system, so these other system can ben-
efit from the complex logic the tool set provides. This study finds requirements
for the API and creates an API design that meets those requirements. Mul-
tiple designs and approaches for APIs are discussed, after which one design is
developed.

In order to verify the newly created API, three use cases are worked out to
check out the usefulness of the API. The use cases are different in nature, to
test the usefulness in different scenarios. The first use case is a chess engine, the
second is a processor simulator and the third and last one is LEGO Mindstorms.

On the basis of the findings from these use cases conclusions are drawn.
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1 Introduction

1.1 Motivation

Technology has entered our lives. We cannot imagine life without it. Com-
puters are in our homes and our workplaces, and powerful mobile phones are
in our pockets. These products are modern pieces of engineering. They have
improved over the years due to the progress that has been made on two aspects
of technology:

• The hardware side of the product, the physical electronic parts

• The software, like applications and operating systems, which run on the
hardware

The development of software uses techniques to improve the speed of pro-
ducing software and increase the complexity of software. New techniques are
discovered regularly and they are used to improve the development process of
software.

One of the techniques for improving the software development process is code
reuse. When writing software, some of the code does not have to be rewritten
if it is already publicly available. This saves time because one does not need
to write this code themselves. This improves both development speed and code
simplicity. When code is reused on a running system, the code only has to be
loaded once, and can be used by multiple process instances at the same time. On
most computer systems some kind of code reuse is utilized. There are multiple
ways to reuse code.

1.2 Interoperability

One of those ways of code reuse is the simplest: copy all files that contain the
needed code to your project and use that code. This will work, but this has
disadvantages. Any bug that the original developer resolves in the code or any
extension they make, after you copied it, will not be applied to your software
project. You would have to keep track of the upstream code for changes, or find
and solve found bugs yourself. Moreover, if more software projects make use of
the same copied code, this would mean you have to copy the same code over
many projects, and update the copied code on each project that uses it. This
increases the amount of work that has to be done, and increases the chance of
a human error.

A more modern way of reusing code is by making use of an Application
Programming Interface (API). The API is a description for software that de-
scribes how the software can be used by external code, so how a program can
be interoperable with another program. This description tells the programmer
how they can use the functionality the software behind the API provides.
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There are multiple kinds of APIs, which will be discussed in Chapter 2, but
what they have in common is that code is deferred to a new project into projects
with different purposes, increasing the separation of concerns, and projects can
be reused by making use of the API. The API and the code it uses, become
its own software project, which releases new versions when improvements have
been made. This can be added as a dependency in projects which use the API,
without code copying.

In Figure 1 a sequence diagram is shown where an application makes use of
an API that handles all mathematics the application needs to calculate. The
API defines how an answer to a mathematical problem should be asked from
the library. In this case, we can see that sqrt is a known keyword for this API,
and it takes the square root of the expression between the parentheses.

Mathematics serverApplication

10-2

8

sqrt(9)

3

Figure 1: Making use of an API.

There are several ways of using an API. This fictional Mathematics service
is used by sending request messages to it and receiving a response message for
each request. This is how web-based APIs work. A real-world example for this
is the API for Wikipedia, the online encyclopedia. We can open the following
URL in a browser: https://en.wikipedia.org/w/api.php?action=query&
format=json&generator=search&gsrlimit=3&gsrsearch=’Netherlands’. It
would give us the following result:

{
" batchcomplete " : "" ,
" cont inue " : {

" g s r o f f s e t " : 3 ,
" cont inue " : " g s r o f f s e t | | "

} ,
"query " : {

"pages " : {
"21148": {

" pageid " : 21148 ,
"ns " : 0 ,
" t i t l e " : "Nether lands " ,

6

https://en.wikipedia.org/w/api.php?action=query&format=json&generator=search&gsrlimit=3&gsrsearch='Netherlands'
https://en.wikipedia.org/w/api.php?action=query&format=json&generator=search&gsrlimit=3&gsrsearch='Netherlands'


" index " : 1
} ,
"80482": {

" pageid " : 80482 ,
"ns " : 0 ,
" t i t l e " : " Beatr ix o f the Nether lands " ,
" index " : 3

} ,
"18949613": {

" pageid " : 18949613 ,
"ns " : 0 ,
" t i t l e " : "Kingdom of the Nether lands " ,
" index " : 2

}
}

}
}

The URL consists of a part that defines where and how to connect
(https://en.wikipedia.org/w/api.php), and a part after a question mark
that contains the message for the request.

• ‘action=query’ makes the call a query

• ‘format=json’ defines the format to response should be in

• ’generator=search’ defines that we want to search

• ‘gsrlimit=3’ limits our search to three results

• ‘gsrsearch=’Netherlands” defines the search term to use

https://en.wikipedia.org/Web browser

action=query&format=json&generator=search&gsrlimit=3&gsrsearch=’Netherlands’

{ "batchcomplete": "", "continue": { "gsroffset": 3, ...

Figure 2: Making use of the Wikipedia API.

This example shows a lot of parameters and the response message is quite
complex, but the exact meaning of all elements is not important here. It is
important to notice that this is a method for programs to exchange information
with each other. The explanation of what parameters are possible and what
the result should be is all part of the API. An application that wants to couple
itself to Wikipedia, can use this API to execute its Wikipedia searches with.

Now we take a look at a real-world use case for using an API that does
not use messages, but method calls. A method is a code block that contains a
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series of statements. A program causes the statements to be executed by calling
the method and specifying any required method arguments. The API describes
which method calls are possible, and what result the user can expect from each
call.

Say we want to write a program to play music and we want the program
to be able to play MP3 files. MP3 is a file encoding which compresses audio
files. Because the technical details of the MP3 encoding are quite complex,
it is hard and error prone to rewrite the algorithms for the encoding ourselves.
Fortunately, the LAME project[8] provides MP3 logic. This software library can
be installed on most operating systems, and when we write our music program
using the LAME API, we can use the logic LAME provides, which is tested to
correctly implement the MP3 encoding.

Additionally, if LAME releases a new version of the library, and the API has
not changed, we can benefit from this by just updating LAME. The code for our
MP3 player program does not have to change to use all the improvements made
to the LAME library. The improvements can vary from bug fixes to performance
improvements.

Figure 3 shows a sequence diagram of how the API would work in an MP3
player application.

LAME libraryMusic application

hip_decode_init()

gfp

hip_decode(gfp, mp3buf, len, pcm_l, pcm_r)

1000

hip_decode_exit(gfp)

0

Figure 3: Using the LAME library.

In this example the LAME library is used to decode an MP3 stream, which
means translating the MP3 to something an audio device can understand. In
the first call, hip_decode_init, the library is started, and gfp (a data structure
to configure the decoder) is the result of the call. In the next call, the library is
called to do the actual decode work. It requires arguments:

• gfp, the config we got from the last call

• A pointer mp3buf to where the MP3 can be found

• The len(gth) of the MP3 buffer
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• Two buffers (pcm_l and pcm_r) where the audio result for the left and
right audio device can be stored

The result of the value of the call is a number, expressing the samples worth
of data the call was able to decode. In the last call the decoder is closed. It uses
gfp, the result we got from the first call. The API in this case describes each
method we used here. The description for hip_decode is illustrated in Figure 4.
Note that for this example not all text here is important. For a developer it is.
It describes how the API behaves.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ input 1 mp3 frame , output (maybe) pcm data .
∗
∗ nout = hip_decode ( hip , mp3buf , len , pcm_l ,pcm_r) ;
∗
∗ input :
∗ l en : number of by tes of mp3 data in mp3buf
∗ mp3buf [ len ] : mp3 data to be decoded
∗
∗ output :
∗ nout : −1 : decoding error
∗ 0 : need more data be fore we can complete the decode
∗ >0 : returned ’ nout ’ samples worth of data in pcm_l ,pcm_r
∗ pcm_l [ nout ] : l e f t channel data
∗ pcm_r[ nout ] : r i g h t channel data
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

int CDECL hip_decode ( hip_t gfp
, unsigned char ∗ mp3buf
, s i ze_t l en
, short pcm_l [ ]
, short pcm_r [ ]
) ;

Figure 4: Method description for hip_decode.

1.3 Graph transformation

GROOVE[6] is a tool developed at the University of Twente. It uses Graph
Grammars to generate a transition system consisting of graphs as states and
partial graph morphisms as graph transformations. Before we can take a look
at what the software does, to give an intuition we need to take a look at graphs
and graph transformation.
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Figure 5: Screenshot of GROOVE.

A graph is a mathematical model that is used to model objects and relations
between them. A graph consists of a set of nodes and a set of edges. Nodes are
often represented using circles or rectangles, and edges are represented using
lines, connecting two nodes with each other. Nodes and edges both can have
labels. In Figure 6 a graph is shown with four nodes and five edges.

Stone Stone Stone

Frog

on

nextTo

nextTo

nextTo

nextTo

Figure 6: A graph modeling a frog and stones.

This graph models a frog and three stones. The frog and stones are repre-
sented as nodes in this graph. The frog has an edge to a stone, with the label
on, describing for this example that the frog is located on a stone. The pairs of
stones have a directed edge with the label nextTo, describing that these stones
are adjacent.

Graphs are often used to describe real-world situations/problems. In the
example in Figure 6 for example describes a frog in a pond with some stones.
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The graph in Figure 5 shows a train, some stations and some persons willing
to go from one station to another. So-called graph transformations rules are
used to describe changes to these situations by changing the original graph to
a new one. The transformation rule consists of a graph L and a graph R. If a
morphism exists of graph L to graph G, this transformation can be applied to
graph G. In that case the image of L in G will be replaced by R, and graph
G will be transformed. In the case of the graph in Figure 5 for example, graph
transformations cam be used to move the train from station to station.

The tool GROOVE is a computer program that can simulate graph trans-
formations on labeled graphs. It has a GUI (Graphical user interface) where
graphs and graph transformations can be constructed and the result of transfor-
mations can be viewed. In GROOVE one or more starting graphs and a set of
graph transformation are combined in a Grammar. Figure 5 shows GROOVE
with a Grammar loaded.

GROOVE currently does not have a well-defined API, so other programs
cannot make use of the functionality GROOVE provides. If this would be
available, programs can interoperate with GROOVE, and by doing this use
the logic GROOVE provides. This has as prerequisite that the program that
wants to use GROOVE benefits from this interoperability. This requires that
these programs do something similar that can be replaces by logic provided by
GROOVE. If this is the case, those programs can replace there own logic with
a connection to GROOVE which will do this logic for them. This can simplify
the code for the program that makes use of the GROOVE API.

In this project an API for GROOVE is created to make it interoperable
with other programs. If GROOVE has an API, programs that make use or
could make use of graph transformations, would be able to reuse the logic of
GROOVE. A choice has to be made between different API types and it has to
be decided which components the API exposes. After the API is created, it will
be validated with use cases that confirm its usefulness.

1.4 Objective/Validation

To validate the usage of the API, the GROOVE API is connected with already
existing software projects. In those projects, pieces of code that can be described
using graphs and graph transformation are removed, and replaced with a con-
nection to GROOVE. The use cases show whether GROOVE can be effectively
used in the code.

This makes two benefits for every use case:

1. With code reuse in mind, it would be an improvement if this simplifies or
decreases the amount the code. Grammars will now contain the logic that
was previously written in code.

2. The GROOVE connection can now be loaded with slightly different gram-
mars and this will result in different behavior in the overall system without
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changing any programming code.

1.5 Report structure

The rest of the report has the following structure:

• Chapter 2 contains background information about graphs, graph transfor-
mations and APIs

• Chapter 3 describes the design of the API for GROOVE

• Chapter 4 describes multiple use cases which will validate the usefulness
of the GROOVE API and lists the results of the use cases

• Chapter 5 summarizes the findings and draws conclusions
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2 Background

This section contains information about GROOVE, web technology and APIs.
All information has been researched by other people, and is publicly available
for anybody to use and base their own work on.

2.1 GROOVE

GROOVE[6] is a program that uses graph grammars to generate a transition
system consisting of graphs as states and partial graph morphisms as graph
transformations. Before we can take a look at GROOVE, we need to understand
what graphs and graph transformations are.

Graphs

In Figure 7, a graph is shown which models two frogs and three stones. The
graph is a little different from the graph in Figure 6. A fly has appeared on the
right most stone. The frog and the fly both have an edge to a stone with the
label on, describing that they are located on that stone.

Stone Stone Stone

Frog Fly

on onon

nextTo

nextTo

nextTo

nextTo

Figure 7: Graph G modeling a frog on a stone.

Note that in this graph the edges have a direction, expressed using an arrow.
This is opposed to graphs where graphs are expressed as lines, meaning that
the edges do not have a direction (undirected graphs). This research only uses
directed graphs.

Graph transformations

The graph in Figure 7 is modeling a problem. The frog wants to eat the fly,
but first it has to get to the same stone as the fly first. The frog can jump one
stone if the stone is adjacent. Stones are adjacent if there is a nextTo edge to the
next stone it. We can describe the frogs jumping using a graph transformation
rule. This would make the frog able to move.
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With this rule we can apply graph transformations[19], which takes a graph
as input, and outputs a new graph after performing this rule. To capture the
transformation, we need 2 graphs. One that models the state before the rule is
performed and one which models the state after the rule is applied.

s1:Stone s2:Stone

Frog

on

nextTo

Figure 8: Graph L for the first graph transformation rule.

s1:Stone s2:Stone

Frog

on

nextTo

Figure 9: Graph R for the first graph transformation rule.

Graph L in Figure 8 shows a graph that describes a start situation where
our frog can jump from one stone to the next, the pre-condition. The frog is
on a stone and there is a stone adjacent to the stone where the frog is on. The
extra labels s1 and s2 are used to identify the two stones in Graph R. s1 and
s2 represent the same stones in both L and R. In Figure 10 the image of L is
highlighted to visualize the morphism.

Stone Stone Stone

Frog Fly

on onon

nextTo

nextTo

nextTo

nextTo

Figure 10: A graph G with L highlighted

Graph R in Figure 9 shows the situation after a frog has jumped a stone, the
post-condition. The frog has jumped from one stone s1, followed the directional
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nextTo edge, and is now on the stone the edge is pointing to. The s1 and s2
indicate that these are the same nodes in L.

A transformation can take place if an injective morphism exists between
Graph L and the Graph G we want to transform. A morphism exist between
Graph L and Graph G if a function exists for the set of nodes of L to the
set of nodes of G that respects the structures of the graphs. In our example
a morphism exists for graph L in graph G. There is one occurrence of this
morphism in G, so we can do the transformation.

Performing the transformation intuitively takes the following steps:

1. Find an occurrence of L in the given graph G.

2. Delete from G all vertices and edges matched by L\R in the occurrence.

3. Paste to the result a copy of R\L, yielding the derived graph G′.

Stone Stone Stone

Frog Fly

on

nextTo

on

nextTo

nextTo

nextTo

Figure 11: A graph G′, the transformed graph.

Figure 11 shows G′, after the transformation. The frog moved from the left
most stone to the middle stone. In this figure the post-condition R is highlighted.

Note that in G′ L occurs twice, so if we want to apply the rule again there
we can apply the rule in two ways. One where the frog jumps to the left, which
when performed would result in graph G again. The other occurrence is where
the frog will jump to the right. Both possibilities are shown in Figure 12. We
want to get to the fly, so we apply the transformation that will take us to the
right:

Stone Stone Stone

Frog Fly

on

nextTo

on

nextTo
nextTo

nextTo
Stone Stone Stone

Frog Fly

on

nextTo

on

nextTo
nextTo

nextTo

Figure 12: Graph G′ has two possible transformations.

15



Stone Stone Stone

Frog Fly

on

nextTo

on

nextTo

nextTo

nextTo

Figure 13: The frog and fly on the same stone.

Now that the frog has reached the fly, it can eat it. A second rule is needed
that can delete the fly if the frog is on the same stone. This rule again consists
of two graphs: a graph L, the pre-condition, as shown in Figure 14, and a graph
R, the post-condition, as shown in Figure 15. Graph L shows that the frog and
the fly should be on the same stone. This ensures this rule cannot be applied in
the starting graph from Figure 7. The post-condition does not contain the fly.
The fly node will be deleted if this rule is applied.

Stone

Frog Fly

on on

Figure 14: Graph L for the second graph transformation rule.

Stone

Frog

on

Figure 15: Graph R for the second graph transformation rule.

Applying the second rule will result in the final state for our problem, as
seen in Figure 16. The fly has disappeared from the graph. The frog was able
to eat the fly:
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Stone Stone Stone

Frog

on

nextTo

nextTo

nextTo

nextTo

Figure 16: The frog has eaten the fly.

GROOVE

GROOVE is a tool developed at the University of Twente that is able to
model graphs and simulate graph transformations. The Simulator program of
GROOVE provides the user with a graphical user interface.

All components that are needed for graph transformations are bundled in a
Graph Grammar. A grammar consists of:

• A Start graph is the begin situation on which further transformations can
be performed on. The start graph consists of nodes and edges. Nodes and
edges optionally have labels to describe additional data.

• A Type graph defines the type structure the start graph should comply
with. A type graph defines what types are possible, which edges are
possible between types, and it supports a subtyping system which can
define type hierarchies. The type graph is optional in a grammar, but it
can prevent the grammar creator from making mistakes in start graphs
and rules. Figure 17 shows a Type graph for the Frog example.

• Rules are graphs that show a possible graph transformation. In GROOVE
specific, rules consist of only one graph instead of two, but by using key-
words the user can create context over what the transformation changes
about a graph. For example, the keyword ‘new’ will create new ele-
ments, and the keyword ‘del’ will delete elements after a transformation.
GROOVE supports keywords that change the behavior of the transforma-
tion. Figure 18 shows the ‘jump’ rule, which makes the frog move from
one stone to a second. All nodes and edges except for the green edge need
to exist in a graph for a transformation to be possible. Is a transformation
is performed, the blue edge is removed, and the green edge is added to the
new graph.

• Control scripts give more control over the flow of the possible transfor-
mations. The scripts are text files that will run from top to bottom, and
declares the possible next transformations for the current graph.
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Frog

Stone

Fly

nextTo

on on

Figure 17: Type graph for the Frog example.

Frog

Stone StonenextTo

on on

Figure 18: The ‘jump’ rule for the Frog example.

GROOVE uses these grammars to store information to simulate graph trans-
formations. GROOVE can use a start graph, and select a possible transforma-
tion, and apply it. GROOVE will generate a Labeled Transition System (LTS),
which is a graph that depicts for each node a graph state, and for each edge
a transformation. The starting node of the LTS is representing the starting
graph(s), and for each possible transformation a new edge points to a new node,
that depicts the new graph after the transformation, unless the same graph has
already been found. Then the edge will point to the node for that graph. With
the example of the frogs this means that the first node of the LTS would rep-
resent graph G. This node would have an edge describing the rule of the frog
moving to the target node that represents graph G′.

Figure 19 shows the LTS that is generated for the example where the Frog
eat the Fly. The start graph is represented by ‘s0’. After two jumps we can get
to ‘s2’. There we can do an ‘eat’ transformation. After that we cannot get back
to ‘s0’. We can only ‘jump’ back and forth.
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s0 : start
main.0

s1 : closed
main.0

s2 : closed
main.0

s3 : closed
main.0

s4 : closed
main.0

jumpjump

jump

jump

eat

jump

jump jump

Figure 19: The LTS of the Frog example.

2.2 JSON

Data interchange formats are designed and used when data has to be sent over
a network; although, they are also used to store data on a storage device. The
formats are designed to be readable by machines and by humans. All general
interchange formats are able to contain the same data, only in a different struc-
ture. The differences are mainly syntactical. The choice for one of these formats
is mostly a matter of taste and preference of the developer. The most common
formats are XML[2] and JSON[15]. To explain data interchange formats, we
will take a look at JSON. An example of a state representation of a car is given
in Figure 20.

{
"make " :"VW" ,
"model " : " Polo " ,
"wheels " : 4 ,
" r im s i z e s " : [ 1 5 , 1 5 , 1 7 , 1 7 ]

}

Figure 20: A car, represented in JSON.

JSON is a syntax for a data structure that supports multiple data types.
The root of the structure is called a JSON Object, which is a data type in
itself. The JSON Object consists of key-value pairs, separated by commas, and
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surrounded by curly brackets. The keys are always of data type string. The
values can be of any type.

Besides this JSON Object data type, there are more types. The raw data
types in JSON are:

• String

• Number

• Boolean

• null

Additionally, there are types that allow embedding and summing of types.
These are Sets, which are comma-separated elements surrounded by curly brack-
ets, Lists, which are comma-separated elements surrounded by square brackets,
and the JSON Object again, which can be used in other places as the root of
the structure.

These are the basic features of JSON. Extensions exist that give more possi-
bilities to express data. However, in most applications this default set of features
is used.

2.3 TCP

Applications can sent their data over a network channel. A channel is a tool to
send messages to and receive messages from other users. It is used to connect two
programs, so that data can be interchanged. It is used to connect two computers
via a network connection. In that case, both computers run a program that use
the channel to communicate. Although the name network channel suggests that
connection should be between two computers, it is also possible to connect two
programs that are running on the same machine.

TCP (Transmission Control Protocol)[12] is a protocol for the Transport
Layer of the OSI model, and takes care of reliable transportation of data through
a network. Often TCP is used when using a network channel that needs reli-
ability. TCP has features that makes the connection more reliable than other
alternatives such as UDP[11] (User Datagram Protocol), which is an alternative
protocol where packets of data can be lost during transit. All messages that
are sent are guaranteed to be delivered in TCP, and are received in order, as
long as the connection persists. This is resending packets that are not delivered
correctly. Moreover, the TCP protocol has mechanisms to let the program know
that the other side of the connection is not reachable anymore, in other words,
when the connection has been lost.

We can send any message over a TCP connection as long as it is expressed
in bytes. APIs can be written by writing a custom application layer protocol on
top of TCP to complete the OSI model. It is also possible to use an application
level that has been predefined by others, like for example HTTP.
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2.4 HTTP

When the features of TCP are not enough, one could decide to use Hyper-
text Transfer Protocol (HTTP)[18] on top of TCP. Additional elements of this
protocol are, the identification of web resources using URIs (uniform resource
identifiers), separation of request methods, and the requirement of a response
message.

HTTP is a network protocol between a client and a server that opens a new
connection for each new request, and closes the connection after a response.
Each HTTP request consists of at least a request method and a URL.

The request method is one of the possible requests from the set of possibilities
described in [18]. The request method describes the purpose of the request.
Some examples of request methods are GET, PUT, DELETE and POST, which
are used to respectively receive a resource, edit a resource, delete a resource, or
create a new resource. All request methods have properties they need to cohere
to, like the GET request method is Safe, which means it will never change data
on the server. A PUT is Idempotent, which means it can be repeated, but the
result after one call is the same as after two calls. In other words, if these two
are the only requests incoming, the second request will do nothing.

In addition to this, a URL is added, which is a concatenation of:

• A scheme, like “http://”

• A domain (sometimes called ‘authority’), like “www.example.com”

• A path, like “/car/1”

The complete URL would be “http://www.example.com/car/1”. The pro-
tocol string describes how to connect, the domain which server to connect to,
and the URI the resource we are interested in. The URL can be extended to
add more context, but this is the simplest form. URI is the way for web tech-
nologies to identify different resources on a server. A resource can be an object,
such as people and places, a concept, or an information resource such as a web
page or a book. The URI is represented as a multiple strings, concatenated with
slashes (“/”). In our example we are looking for a car resource with identification
number 1.

When trying to send data regarding a resource, a URL and a request method
are not enough. In this case a request body has to be added. It is the agreed
way to attach data to a HTTP request. Often a machine and human readable
form is used, like JSON or XML. When expecting data from the response, it
can be found in the response body.

After a request from a client to a server, the server will sent a response to
the client. The response will contain a response code. It is a three-digit number
describing the attempt to understand and satisfy the request. For example, 200
means the result has been found and is contained in the response. 404 means the

21



result could not be found, and that the response will not contain the requested
data. After each request follows a response. A TCP connection between the
client and the server is opened before sending a request, and is closed after
sending a response.

Sessions are tools in HTTP to store properties for a specific client. This is
mainly used to authenticate a client, but it also enable other uses, like storing
additional context about the connection. Often cookies are used to maintain
sessions. Cookies are pieces of data that are unique for a client, and contain
information about the client. The cookie is stored by the client, and is sent
along with each request. Sometimes the cookie only contains a unique hash that
identifies the client. In this case the server can store client information based
on this identifier. It is also possible to store information about the connection
client-side in the cookie, so the server does not have to store this.

2.5 API

There are multiple ways to separate the logic of a program, and contain it in
a distinct project. One of the prominent ways to do that is by exposing the
important logic as an application programming interface (API).

The two types of APIs that are important to us are Software libraries and
Web APIs. The first imports logic together with the program using it. The
second exposes itself as a program which an open network channel, and any
actor can connect and make use of this library. In the next two subsections we
are going to take a look at how both techniques work, and look at the advantages
and disadvantages of both techniques.

2.5.1 Software library (API)

Let’s take a look in the case where the API is exposed as a software library.
The precise execution of this concept differs for different programming languages
and different platforms, but some things are in common. The software library is
exposed as a package containing (often precompiled) code. During runtime, the
precompiled code gets embedded in the main program when the main program
runs. This is an automatic process, which makes a software library easier to set
up than the alternative Web API, which requires additional actions at runtime.
Loading the library in memory also has the consequence that the library code
runs on the same machine as the main program code.

During the development of a program that uses a software library, we need to
know how to use it. A software library has a set of components, of which a subset
are exposed. Often these components are method declarations or abstractions
of method declarations with classes or namespaces. A method is a block of code
which only runs when it is called and it results in a return value. We can pass
data, known as parameters, into a method, which will provide context to the
method. An API would describe for each method call what the methods and
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its parameters are representing, how data would be changed afterwards, and
what the return value of the method call would be. This API can be used by
software developers that want to make use of the software library. The exposed
components can be accessed by an external program.

A common disadvantage of software libraries is that they put limits on the
choices of software developers. Most software libraries require the program using
them to be written in the same (or a similar) programming language. As an
example, when a software library is written in Java it should be loaded into
the Java Virtual Machine (JVM) for it to be usable. The program using the
software library therefore also has to make use of JVM and thus it should be
written in a language that can compile to an object language that the JVM
understands. For our example, this would mean that the program using the
software library should be written in languages such as Java, Scala or Kotlin.
Languages such as Python or C# are not viable options as they do not produce
object code for the JVM.

Workarounds exist to connect software libraries from different languages.
For Java libraries it is possible to connect it to the C programming language by
using JNI[3]. However, this will give C programs that use a Java library a lot
of overhead because it has to load and configure and start the JVM to be able
to use the library.

Advantages

• Easy to startup at runtime

Disadvantages

• Requires library running on same machine as main program

• The number of programming languages that can use the library is limited

2.5.2 Network API

Network APIs can be divided in stateless and stateful APIs. The differences are
mainly about whether the state of the program are stored. This subsection will
explain the distinctions between them.

Stateless API
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Stateless protocols have become popular these days. Many APIs are REST-
based. REST[17] (REpresentational State Transfer) is an example for explaining
what statelessness means.

REST is a software architecture style which defines how requests should be
using a uniform and predefined set of stateless operations. The name “Represen-
tational State Transfer” is intended to evoke an image of how a well-designed
Web application behaves. A service that is compliant with the principles of
REST is called RESTful.

In REST, if a request or response contains data for a resource, it will be
the complete state. Each request from client to server must contain all of the
information necessary to understand the request, and cannot take advantage of
any context stored on the server. This is the core of what stateless means for a
REST service. The service could be stopped and started again without clients
experiencing any difference.

REST is language- and protocol-independent, but always requires an under-
lying application layer protocol to process requests. HTTP is often the under-
lying protocol used.

Using HTTP, the representation of the car from Figure 20 could be sent
to a fictional car server using a POST request on the “/car” URI, after which
the server adds this new car to its data storage, and sends a response with a
new car ID to the client. Requesting this new ID from “/car/{id}”, where {id}
is replaced with the new car ID, should return the VW Polo from the server.
The car would be available to any client who requests it, because the server is
not aware of any sessions, because that would involve extra context stored in a
state, so it ca not distinguish between clients.

Web serverWeb client
GET /car

200 {carIds:[1,3,4 ...]}

GET /car/2

404

POST /car {car:{color:"blue", ...}}

200 {carId:123}

Figure 21: Using a RESTful server for cars.

In Figure 21 a possible interaction with the car server is shown. The calls
are hypothetical calls of how the server could be designed.

• The first call is a GET call and the response consists of the IDs of all
stored cars. The response status code is 200 (OK).

• The second call tries to GET one specific car with the ID 2. The server
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responses with 404 (Not found). The car with ID 2 does not exist.

• The third call stores a new car with a POST call. The call includes JSON
data with data about the car, like for example that it is a blue car. The
response has a 200 status code (OK), and a JSON response is included
with the new ID for the new car.

Stateful API

Some protocols have a more stateful design. Examples of these protocols are
FTP[10], SSH[22] and Telnet[13]. Note that the names ‘protocol’ and ‘API’ are
used here. These two terms are closely related. APIs are used for programming
purposes, and protocols are a set of rules to communicate are protocols APIs
allow two applications, sub-systems, etc, to communicate and possibly control
each other. Sometimes protocols are used for that. An example would be to
establish a GIT connection using the SSH protocol. The SSH protocol explains
the language SSH communicates with. The API is still a GIT API, and SSH is
the protocol. When SSH is used as an interface to program against, it is used as
an API. We can show what a stateful design is on the basis of what FTP offers.

FTP is a file sharing protocol allowing a client to connect to a server, traverse
through the directory structure and retrieve files from or send files to the current
directory. It is important to note that FTP is directly built on top of TCP and
thus does not use an application layer protocol as opposed to REST. TCP is
used because the reliable connection it provides. Moreover, the connection will
be kept alive for as long as the connection is required. Also a disruption of the
connection will destroy the state. FTP, Telnet and SSH all make use of TCP
for these reasons.

The FTP protocol consists of a list of known commands terminated by the
ASCII character sequence CRLF which are sent by the client through the TCP
channel, and the server will respond to each command with the data requested,
or some error code.

Some of the commands FTP supports are:

• LIST to list the files in a directory

• RETR to retrieve a file from the server

• STOR to store a file on the server

The FTP program is able to store session-specific information about the user
in memory. When the connection is ended or disrupted for some reason, the
program can dispose this session data.

Stateful protocols are extendable in the way that commands that are defined,
should be supported in newer versions to enable backwards compatibility, but
new commands can be added when new functionality is required.

25



Another interpretation of a stateful protocol is the RPC[24] (Remote Pro-
cedure Call) protocol. It is a protocol used to connect a client to a server, but
abstraction makes sure that for the client, there is not much difference compared
to doing the procedure calls locally. These types of protocols use frameworks
to make sure both the client and the server communicate correctly and without
errors.

RPC has more than one implementation, some are language specific, some
not. For Java, the language specific JRMI[4] exists, which is included in the
default Java Runtime. Using JRMI starts with constructing a Java Interface,
which defines which methods will be exposed using the connections. An example
can be seen in in Figure 22, which exposes the method ‘power’.

public interface RmiServerInt extends Remote {
Big Intege r power ( int a , int b)

throws RemoteException ;
}

Figure 22: JRMI interface

Using this interface a server can be constructed that exposes an instance of
class to the network. This can be seen in Figure 23. The Server class implements
the interface RmiServerInt from Figure 22 extends a class to make it suitable
for the usage of JRMI. The main method exposes this specific implementation
of the interface to “//localhost/Server”.
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public class Server extends UnicastRemoteObject
implements RmiServerInt {

public Server ( ) throws RemoteException {
super ( 0 ) ;

}

@Override
public Big Intege r power ( int a , int b) {

return Big Intege r . valueOf ( a ) . pow(b ) ;
}

public stat ic void main ( St r ing [ ] a rgs ) throws Exception {
try {

LocateReg i s t ry . c r e a t eReg i s t r y ( 1099 ) ;
} catch ( RemoteException e ) {

System . e x i t ( −1);
}
Server s e r v e r = new Server ( ) ;
Naming . reb ind ( "// l o c a l h o s t / Server " , s e r v e r ) ;

}
}

Figure 23: JRMI server

When the server is running, a client can connect to the server and make
procedure calls there. The client does need to have access to the same JRMI
Interface the server is using (the one from Figure 22). In Figure 24 a main
method connects to the same name the server exposes to.

public class Cl i en t {
public stat ic void main ( St r ing args [ ] ) throws Exception {

Remote lookup = Naming . lookup ( "// l o c a l h o s t / Server " ) ;
RmiServerInt serverProxy = ( RmiServerInt ) lookup ;
System . out . p r i n t l n ( serverProxy . power (2 , 3 2 ) ) ;

}
}

Figure 24: JRMI client

When the Client runs this main method, the object ’serverProxy’ will func-
tion like a proxy. Every call that is done on it, will be redirected to the server
with the implementation that is exposed there. For the developer there is no
difference in programming after the object has been created by connecting to
the server. The object is in reality living in the memory of the server, and will
stay there as long as the server is exposing this object.
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Using this structure of calling this remote object, the server is able to hold the
state for the object, and will even keep the state after the client disconnects. The
object is not user or connection private, but rather shared with all connections.
Multiple clients can connect to the same object and change the state together.
This can be solved by making the proxy object have a ‘login’ design pattern, a
method which creates a new (remote) object. This structure ensures that every
client uses its own unique object.

This sample with the Java JRMI implementation is an example of how
RPC works, and is also an example that has a big flaw: the implementation
is language specific. Protocols exist that are language independent. Two ex-
amples of a protocols that are actively used are SOAP[16] and gRPC (https:
//www.grpc.io).

Summary

Now that we understand how a program can communicate with a Network
API, we can summarize the advantages and disadvantages.

Because the library and main program are running as separate programs,
and the connection is network-based, the programs are able to run on two dif-
ferent machines, which makes the structure of the program more dynamic. The
Network API program would support more than one user to run on it, and
data could be shared by multiple actors. Also the computing power of multiple
computers is utilized, which is a plus.

The structure of having separate programs has the disadvantage that the
user needs to know how to use both programs. They both have to be started,
and they have to be configured to connect to each other.

Advantages

• API can be running on a different machines

• Every programming language that supports network connections can be
used

Disadvantages

• Takes more preparation to run compared to a software library

28

https://www.grpc.io
https://www.grpc.io


3 API Design

This section covers the decisions that were made for connecting to the new
GROOVE API. This section contains the scope of what features of GROOVE
the API supports, and shows the technical details of the API, and the require-
ments that resulted in this design.

3.1 Scope of API functionality

GROOVE has multiple features that could be supported by the API, but for
this project the simulating of existing Grammars will be supported. Creating,
editing and exporting of Grammars is not in scope for this project. The use cases
care about simulating existing grammars only. Creating and editing Grammars
using an API whould be a whole project on itself.

3.1.1 Requirements for the API

The API is should cover the following requirements:

1. The API should be language independent

2. The API must be able to load a Grammar

3. The API must be able to get possible transitions for a state

4. The API must be able to traverse states in the LTS

5. The API must be able to return to earlier visited states

6. The API must be able to get node and edge information of a state

7. The API should be able to get all existing rules in a Grammar

8. The API should be able to get all existing types in a Grammar

3.2 Choice for GROOVE API

For the GROOVE API a Network API is chosen, and not a software library
solution. The reason for this is to satisfy the first requirement, to make the
API language independent. Software libraries have the disadvantage that only
comparable languages can make use of the library. By creating a Network API
all languages that support network protocols can use the API. Moreover, the
API will not be stateless because of some complications with such a design.

29



3.2.1 Problems with Stateless

In this project we build a Network-based API, because of the advantages this
type of API brings. An advantage of using a Network API is that the user
can use any programming language. It covers the first requirement: “The API
should be programming language independent”. A software library is language
dependent, so this is not an option. For the second requirement: “GROOVE is
a computation heavy program, so the API should not lead to performance loss”,
a stateful design is easier to configure without wasting resources.

Although a stateless Network API would meet our requirement, trying to
design an API will uncover problems that will make making use of such an API
problematic. We will illustrate these problems using examples.

A characteristic of REST is that the requests that are available to a client
do not depend on the requests the client has done in the past, because that
would involve session context. The response of a request can however change
over time, because the data storage of the server can be changed by clients.

Let’s say we have a stateless GROOVE server. In order for a GROOVE
server to be stateless, the API should be defined. A grammar with its rules
can be represented as a (JSON) state, and can be saved as such in the server,
at the URI “/grammar” for example. We would now be able to lookup the
starting graph of the LTS on “/grammar/{id}/lts/0”, which would return the
possible state IDs which are reachable using the applicable rules. We need to
keep in mind that states in the LTS can be heavy to calculate. There are some
questions to be answered beforehand. Are these resources available for all clients
on the server? If so, how long are these resources available? If this grammar is
only available for one user, then we need to record a session for this client, and
everything this client sees is hidden for other clients, which makes the stateless
property of the server redundant.

The architectural model of REST does not match with the usage of cookies[17].
The cookie adds additional context to each request, while the purpose of REST
is to not have context, just a state. So the usage of sessions in a RESTful service
is ruled out. REST luckily is not a doctrine that we need to follow by the line,
so we could accept a session structure in our application, and focus on other
concepts of REST.

Independent of the choice of using sessions, we get to a caching problem.
Because connections to the server are ad-hoc on a request basis, and a clear
exit message of a client to the server does not exist in stateless protocols, we do
not know for how long the server should store its data. A choice would be to
not dispose data without a user requesting a deletion, but this would put much
responsibility on a user that is using the API in an ad-hoc way, and data would
be stored indefinitely. To fix this, a cache approach is possible, where after an
amount of time, the data is disposed, which would be unfortunate if the user
accesses a disposed resource, and the process of calculating graph transitions
has to start over, which is processor intensive. This would violate the second
requirement.
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3.2.2 Stateful

We can work around the problems we have with stateless API designs by us-
ing a stateful API. For a mature API a protocol can be beneficial because of
better code maintainability, more compact code, and a smaller change on mak-
ing mistakes as the framework’s boilerplate will push the developer in the right
direction. For now we are creating a prototype, so we define our own custom
protocol that suits our requirements.

The connections starts with creating a TCP connection. Because we do
not want the problems with performance and the burden of caching, we do not
want the underlying TCP connection to close (like HTTP would do after each
response), so we will keep it alive for as long as required. For the duration of
the connection, we keep all data we need in memory, and when the connection
closes we can drop the data. Both requirements for the GROOVE API can be
satisfied with a stateful design.

Instead of exposed objects or methods like in RPC, we expose a set of ‘com-
mands’ to users of the API to use. The commands respond with data about
running simulations, like graph information or state information.

3.3 Commands for GROOVE

The main way the stateful API communicates is by sending commands, which
can have zero or more parameters. A command is as a string representation
over the TCP connection, and is ended with a newline character (‘\n’). After a
command is received by the API server, a response is sent as a string, mostly in
the JSON format, depending on the command type. A response is also ended
with a newline character. Because all commands will be custom, we need to
create a list of commands that would be required to reach our goals for this
project.

The commands that are implemented are:

1. LOAD, the command to load a grammar

2. RULES, the command to receive the rules in the loaded grammar

3. TYPES, the command to receive the types defined in the loaded grammar

4. STATE, the command to receive the structure of the graph in a given
state

5. INFO, the command to receive the possible transformations for a given
state

6. MATCH, the command to feed a state with ask parameters

7. EXIT, the command to close the connection
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The LOAD command will be accompanied with a model for a grammar as an
parameter for GROOVE to load. The model is a zipped GROOVE Grammar,
encoded in base64[20]. Base64 is used because the set of possible characters it
uses is limited, and the endline character ‘\n’ is not used. After this command
is used and a grammar is loaded, the other commands are available to get
information about the grammar from the API. The response of the command
is “DONE” if the grammar is successfully loaded.

The RULES command returns a list of all rules that are described in the
grammar. This command does not have any parameters. The response for the
command is a JSON Object. A grammar should be loaded for this command
to work.

The TYPES command returns a list of types described in the Type graph of
the grammar. This command does not have any parameters. The response for
the command is a JSON Object. A grammar should be loaded for this command
to work.

When a grammar is loaded, we need commands to start the simulations. A
command to get information about the states in the LTS (Labeled Transition
System). In the LTS all nodes have an identifier (e.g. s1, s2, s3, etc.), which
can be used to identify a specific graph.

The STATE command is implemented to get the graph information about a
specific node in the LTS and a single parameter, the state number of the node.
The API responds with a graph representation in a JSON Object. This is a
representation for all nodes and edges in that state.

Of a state in the LTS an INFO command with a state number as parameter
would give us the possible transformations that are possible in this state. A
possible transformation would consist of at least a rule name and a target state.

GROOVE has a mechanism called an Oracle. This means that when a
parameter is unknown at the time of running the simulation, the Oracle will
determine the value of the parameter. For example the Default Oracle will
give it a default value (0 for a integer), and a Random Oracle will generate a
random value. A special oracle is the Dialog Oracle, which in the GROOVE
GUI interface program will present the user with an input field, where the user
can provide the program with an input for the unknown parameter.

The MATCH command is available when the Dialog Oracle is used, and un-
completed transformations exist, to complete missing parameters for the trans-
formations. The missing parameter is added to the request, where-after it is
sent via the network connections. This commands needs two arguments: a
state number, and a list of values for incomplete parameters.

The INFO command will, besides normal transformations, also show trans-
formations where parameters are incomplete. Using the MATCH command the
Dialog Oracle could be provided with information about the missing parameter.

The EXIT command does not need a parameter and is simple, it just closes
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the connection and discards all data.

The API is backwards compatible, because adding new functionality by in-
troducing new commands will not change existing commands. As long as the
changes to the API consist of adding new commands, current commands will
function as intended. Figure 25 shows a summary of all commands.

command arguments description when available?
load [.gps.zip file in

base64 encoding]
Before anything can be done, a gram-
mar has to be loaded.
The grammar is a GROOVE grammar
(.gps folder), which is zipped and en-
coded in base64. If the grammar is
loaded, this command will respond with
“DONE\n”, or “ERROR\n” when some-
thing goes wrong.
If a grammar is already loaded, this
command overwrites that grammar.

Anytime

rules - This returns the a JSON list of all rules
in the loaded grammar

When a gram-
mar is loaded

types - This returns the a JSON list of all
types that exist in the type graph of
the loaded grammar and the primitive
types that GROOVE supports.

When a gram-
mar is loaded

state [statenumber] When a grammar is loaded, this com-
mand returns the graph for a given
state number.
The starting state has number 0. Any
other numbers become available when
the info command has discovered them.

When a gram-
mar is loaded

info [statenumber] When a grammar is loaded, this com-
mand returns a list of possible transi-
tions in the given state.
The stating state has number 0. Any
other numbers become available when
the info command has discovered them.

When a gram-
mar is loaded

match [statenumber] [list
of parameters]

When a grammar is loaded, and the
state has an incomplete transformation
because of an Oracle value to be pro-
vided by the Dialog Oracle, this com-
mand completes that transformation.

When a gram-
mar is loaded

exit - Just exits Anytime

Figure 25: Table of possible commands in GROOVE API
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4 Validation

In this chapter, we report on three use cases intended to show the benefits and
drawbacks of using GROOVE for the part of a program that can be expressed
by graphs and graph transformations. This means that parts of the program’s
will be deferred to GROOVE, and hopefully simplify the program. An addi-
tional benefit is that the grammar loaded in GROOVE can be exchanged with
a grammar that will give the program different behavior, without any code to
be changed.

These three use cases are selected because they are different in nature and
show different aspects of usefulness of the API.

These use cases will provide the validation whether the GROOVE API is
useful, and can be used in different projects. The use cases will be checked
against the points made in section 1.4. The requirements listed in section 3.1.1
will be checked for completeness.

4.1 Giraffe (Chess engine)

This subsection covers the use case where a Chess engine gets coupled with the
GROOVE API. Moreover, the chess engine will be changed in such a way it can
also play connect four, nim and tic tac toe due to the interchanging of grammars
for these games.

4.1.1 The project

Giraffe[21] is an open source chess engine which is developed by Matthew Lai at
Imperial College London. It uses deep learning in combination with self play to
train a neural network in playing chess with minimal hand-crafted knowledge.
It keeps track of a tree with possible states for its minimax algorithm.

Because it originally is a project for chess, some chess specific pieces need to
be changed to be more generic. These things are:

• The notation for encoding piece positions.

• The Feature set for training the neural network.

FEN

The original Giraffe implementation uses FEN[9] (Forsyth-Edwards Nota-
tion) to encode piece positions on a board. An example of a FEN is:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq − 0 1
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The notation consists of all rows, top till bottom, separated by slashes (’/’).
The number ’8’ means the row is empty. In addition to the rows, some additional
information is stored. These are:

1. The color who is next to do a move. (w)

2. The available castling rights. (KQkq)

3. The (optional) position where en passante is possible. Can be no position.
(-)

4. The number of half turn since the last capture, also called a ply. (0)

5. The number of full turn, so a turn for both players, so two plies. (1)

This FEN example represents the starting state of a chess game. There are
two problems with this notation.

1. The notation is chess specific, and is not suited to encode boards from
other games.

2. Because every board has to be constructed using transformations, addi-
tional code has to be written to convert a board to transformations, which
will construct the intended board configuration.

Both problems can are solved by replacing this chess specific notation with
a GROOVE specific one.

Feature set

Giraffe uses a feature set to encode the entire board into a single represen-
tation. It is a set of features of the pieces and other properties of the current
board that can be fed to the neural network as representation of the board. As
stated in [21]: the features should be of low enough level and be general enough
that most of the chess knowledge is still discovered through learning. The main
issue is that we need to remove chess specifics from the feature set, which might
be essential for the neural network to perform optimally.

If one would really want to add game specific features to the neural network,
it would be possible to extend Giraffe with the possibility to read these values
from the Grammar. Specific nodes in the graph could function as input for the
training set. For this prototype this has not been implemented.

4.1.2 Connection with GROOVE

The use case is to replace the chess logic by a GROOVE Grammar. At this
moment Giraffe has its own code to calculate all possible moves in chess. This
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part of the code has not anything to do with the machine learning logic. Because
the powerful part of the software is the machine learning, and the logic for the
generation of possible moves is just necessary for it to function with chess, we
can replace this logic with a GROOVE API connection. In the new situation,
the minimax algorithm gets information about possible moves from a Grammar
that is running in GROOVE.

The starting graph for chess is the starting board, and each possible move,
corresponding to a certain chess piece type, can be modeled as a graph transfor-
mation. This way all rules of chess can be modeled. In the GROOVE Grammar,
each node in the LTS would represent a chess board configuration, and each edge
leaving the node is a possible move by a piece on the board. We will store the
state space of the games of chess that are played on the Giraffe client.

Giraffe will be stripped of all of its chess logic. Instead, this will be re-
placed with a GROOVE API connection and a GROOVE Grammar. Using this
connection, Giraffe can ask for possible moves given the current state. Giraffe
needs to keep track of some state information, but state numbers are sufficient.
It needs the numbers to identify the states when Giraffe is building a search
tree to find the best move.

When Giraffe uses the GROOVE API connection, we can do something that
would not be possible with chess logic written in Giraffe’s codebase. We could
try to feed GROOVE with a GROOVE Grammar for another but similar game.
If we made a grammar for, for example, connect four, we would expect Giraffe
to perform its usual tree search. With the new grammar loaded the connection
returns connect four board states, and the possible moves on the connect four
board. This would require no changes to the programming of Giraffe whatsoever.
With different grammars, Giraffe would be able to learn itself to play any board
game.

4.1.3 Use case expectations

We consider this use case to be a success if:

1. Giraffe can be adapted to make use of a connection to GROOVE to find
possible chess moves.

2. The chess grammar can be changed to a grammar for another board game,
and Giraffe would be able to learn itself that game.

For the following games GROOVE Grammars were made and tested:

• Chess

• Connect Four

• Nim

• Tic-tac-toe
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4.1.4 Implementation

Giraffe is a chess engine written in C++. The logic for chess is an integral
part of the program. This part of the code is replaced with a connection to
the GROOVE API. Because Giraffe needs to be able to undo moves, a stack of
traversed state numbers is stored, and undoing a move is as easy as popping the
top element of the stack.

The FEN notation is replaced with a more abstract one. The notation is
the list of transformations needed to construct the board. This can currently
be done in two ways.

The first way is by using a list of ‘set’ transformations. This ‘set’ rule has
two parameters. The first is the piece type and color, represented as an integer,
and the second parameter is a position from 0 to 63 for the places on the board.
‘set’ transitions are always applied on an empty board because of the flow of
the control script.

The second way is by performing a list of ‘move’ transformations on a normal
starting board for chess. Sometimes this is easier to store than generating ‘set’
transformations from a board. To distinguish this notation from the list of ‘set’
transformations in an early stage of parsing, this notation starts with the ‘#’
symbol.

The feature set for a GROOVE powered Giraffe is way simpler than the
original Giraffe, but nevertheless, a neural network can be created by running
the learning steps provided in the README of Giraffe. Because the feature
set is more abstract, the network should need more iterations to learn specific
about games.

Giraffe has a default Feature set with the castling rights for both players, and
attack and defend maps, which contain the lowest-valued attacker and defender
of each square. These are too specific for chess, and are removed. What remains
are the color who’s turn it is, the number of pieces for each type for both colors
and the piece lists. These features are generic enough to work for any board
game that meets a number of requirements:

1. The board’s maximal size is a eight-by-eight rectangular grid

2. The game is turn-based

3. The game has two players

4. No random factors (like dice rolls)

5. The control script is the same script as shown in Figure 29

The maximum board size is more a requirement for the internal method
that prints the board to the standard output, so this requirement is not really
necessary for the program to function, but printing the board would not work

37



as expected. The TUI could in theory be altered to contain easily accessible
information about the dimensions of the board, but for this use case that would
create unnecessary complexity. The game should be turn-based and a two player
game, for the minimax algorithm to still function. Also, a random factor is not
implemented in Giraffe, the outcome of a move is always the same if repeated.

Figure 26: Starting graph for chess.
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Figure 28: The ‘moveKing’ rule for chess.

The GROOVE Grammar contains a start state of a chess board with all
pieces at their starting positions (Figure 26). Every rule represents a move
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that a piece type can make. The GROOVE Control script has a structure that
should be compatible with board games of a similar design. When the Grammar
is replaced by a different one, with the same rule names and Control script, the
Grammar should work with Giraffe. This also means that in the case of chess,
every piece type specific moves, and all special moves like castling, are reduced to
a simple move rule. The type graph can be found in Figure 27. Figure 28 shows
what a move of a king piece looks like. A king can move according to the regular
expression ‘(right.up)|(right.down)|(left.up)|(left.down)|right|up|down|left’, and
the new spot should not have an own piece on it. The pieces of the opponent
are removed from the new spot if they exist.

Figure 29 shows a snippet of the GROOVE control code that is used for the
chess grammar. The script starts with a rule called “start”. This sets a global
variable which is used by “notReady”. When “start(false)” is called, “notReady”
will be true. The block in the if statements clears the board, and gives the user
the possibility to place pieces on the board to create a custom board with the
“set” rule. This can be useful for when the learn algorithm of Giraffe needs a
specific board. When the board is ready, custom or not, “refreshSquares” is used
for some initialization of the board. In the chess grammar this sets flags on all
squares that do not contain a piece, which are necessary for the move rules to
work.
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bool d ;
s t a r t ( out d ) ;

i f ( notReady ) {
empty ( ) ;
whi l e ( notReady ) {

i n t a ;
i n t b ;
s e t ( out a , out b ) ;
bool c ;
s t a r t ( out c ) ;

}
}
r e f r e shSqua r e s ( ) ;
whi l e (notEndGame) {

i n t a ;
i n t b ;
move( out a , out b ) ;
nextPlayer ( ) ;

}

r e c i p e move( out i n t a , out i n t b) {
cho i c e moveRook( out a , out b ) ;

or movePawn1( out a , out b ) ;
or movePawn2( out a , out b ) ;
or movePawn3( out a , out b ) ;
or movePawn4( out a , out b ) ;
or movePawn5( out a , out b ) ;
or movePawn6( out a , out b ) ;
or movePawn7( out a , out b ) ;
or movePawn8( out a , out b ) ;
or moveKnight ( out a , out b ) ;
or moveKing ( out a , out b ) ;
or moveQueen ( out a , out b ) ;
or moveBishop ( out a , out b ) ;
or c a s t l e 1 ( out a , out b ) ;
or c a s t l e 2 ( out a , out b ) ;

r e f r e shSqua r e s ( ) ;
}

Figure 29: Snippet of the control script for the Chess Grammar

Using this structure makes the control script usable for a variety of board
games. The “move” makes it possible to do an abstract move without context
about the game or existing piece types.
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With the chess grammar created, it is time to make it work with Giraffe.
There are two move evaluator types in Giraffe: static and neural network based.
The current implementation for the neural network move evaluator is too chess
specific, so some changes have been made here to support more types of games.
Changing the static move evaluator to be move generic and still expecting it
to function well, is somewhat impossible, because the main part about a static
evaluator is that there are programmable best moves for a game, because the
game has been analyzed by the programmer. However, changing the neural
network evaluator to be more general/generic might work, although the loss
of some chess specifics will probably increase the number of learning iterations
needed to learn a game, because all removed game specifics have to be learned
by the neural network instead.

The speed of iterations is way slower, and GROOVE is using a lot of memory
to process all move possibilities. The neural network that is produced, is able
to play a game of chess, but has not learned a lot. The moves are basically
random. Giving Giraffe more time to do more iterations of learning results in
GROOVE going out of memory, because the state space that is explored is too
big. This means Giraffe has become unable to learn enough to qualify this part
of the use case a success when considering the game of chess.

Giraffe’s code uses caches to mitigate memory problems, but the caches of
GROOVE seem to be insufficient for this scale of different states. Because chess
is a game that has shown to have a state space that is too big, a smaller game
will be tried. Connect four is a game that meets all requirements listed above.
Moreover, the state space is more compact compared to chess.
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Game
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Figure 30: The Type graph for connect four.
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The starting graph of connect four is the same as that of chess (Figure 26),
except it only contains Squares, Players, Game and Bools. The type graph is
similar but simpler, as it only has coins, and no other types that can exist on
the board (Figure 30)

Even though connect four seems to be a simpler game with a smaller state
space, it is still too big for GROOVE to handle. The state space for a board with
a seven-by-six grid is 4531985219092 as shown on https://oeis.org/A212693.
The equation to solve this is basically 77×6, but it takes into account that nearing
the end of the game some slots are not available anymore, because they have
been filled up till the top. Trying a Grammar that simulates connect four will
result in GROOVE going out-of-memory very soon.

To circumvent this, a game with an even smaller state space should be tried.
We take the game called Nim, where two players can take one, two or three
matches from a pile of matches, but one should not take the last match to win
the game. This can be simulated on a 8x8 grid by filling every spot with one
match. The state space of the game is 8x8, one state for each number of matches
in the game. There is a winning strategy for this game. Always make sure that
after your turn ends, there are 4k+1 matches on the playing field.
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Figure 31: The starting graph for nim.

Figure 31 shows the starting board of nim. It basically is a string of Squares
where matches are placed during the ‘refreshSquares’ transformation. Matches
can be removed in order during the game.

Even though with only 64 matches the state space is not too big, Giraffe
does not check whether states are the same. Giraffe creates a tree structure for
exploring game states, and children are not checked whether they represent the
same state. For example, at the start of a game player 1 taking one match,
and player 2 then taking two matches, is the same state as player 1 taking two
matches and player 2 taking one match from the pile. In GROOVE these states
are the same, but in Giraffe they are not. This makes reaching a game ending
state a challenge, as the same states and all its children are evaluated multiple
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times. Usually, when a game is played against a CPU player, the CPU player
will initially not find the winning strategy, as the search tree of game states is
not deep enough to find a ending game. But, eventually the game will find these
states, and the winning strategy will be found and followed.

Another game that has been implemented to work with Giraffe and GROOVE
is Tic Tac Toe. This game too has a small state space. There is no winning
strategy for this game, but it’s always possible to fend off a loss from the start
of a new game. When running Giraffe with GROOVE with this game, this is
exactly what happens. The CPU player will not find a win, but will find a way
to draw the game, as that is the best way to play the game.

4.1.5 Summary

Performance is still a factor in this use case, which makes evaluating chess
moves impossible. For other games that have a smaller state space, the lower
performance is manageable. The use case shows that Grammars can be inter-
changed, and without recompilation of Giraffe, the game it learns and plays can
be changed.

4.2 ArmSimulator (CPU assembly simulator)

This subsection the covers use case where ArmSimulator gets coupled with the
GROOVE API.

4.2.1 The project

ArmSimulator[23] is a project for educational purposes that simulates a CPU
of the ARM instruction set. CPUs are components in a computer that process
instructions that do computation on values, which are stored in memory and
registers. CPUs are also called processors.

An instruction is a code which does a specific computation on a CPU. The
ARM instruction set has the ADD instruction, which takes the contents of two
registers, or a register and an arbitrary number, adds them together and puts
the result in a third register parameter. Different CPUs have different sets of
instructions they support. In PCs, x86 is the most prominent instruction set
used at the moment, in mobile phones it is ARM.

In the GUI of ArmSimulator, instructions can be typed, where after they can
be simulated. The GUI shows the content of registers and memory during the
simulation. In other words, the program can be used to run ARM instructions
and check what the effect of those instructions are.
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4.2.2 ARM

ARM[1] is an instruction set mainly used in embedded devices, like for example
smartphones.

ARM instructions work in processors designed for that instruction set. It is
register-based, which means it has an number of storage slots where results of
computations can be stored. ARM processors have 16 of these slots, or registers
as they are called in processors. All registers are accessible for every instruction.

4.2.3 JVM bytecode

JVM bytecode[7] is another instruction set. This one can be run in the Java
Virtual Machine (JVM), which is a software package that can be installed on
many different platforms.

JVM bytecode is fundamentally different in design from ARM, because it
is a stack-based instruction set instead of a register-based one. Stack-based
instruction sets, in contrast to register-based ones, do not have a fixed size of
how much it can store. The trade-off is that a stack can only increase in size at
the top, and also can be observed and decreased from the top.

4.2.4 Connection with GROOVE

The use case we defined is that we can replace the simulator part with a
GROOVE Grammar. GROOVE should be able to simulate processors itself.
A starting state is created for a CPU with empty memory and registers, and
each supported instruction is modeled as a graph transformation that changes
those values. ArmSimulator will use its usual GUI, but all logic for the simulated
CPU is transferred to GROOVE.

A drawback for this project is that ArmSimulator needs a parser, which is
ARM-specific. It enriches the editor with code highlighting, but most impor-
tantly, it converts the instructions from a text form to a data structure a machine
would understand. It cannot easily be replaced with the features GROOVE has
to offer.

4.2.5 Use case expectations

We consider this use case to be a success if:

1. ArmSimulator uses an ARM GROOVE Grammar, and a connection to
GROOVE, for simulating an ARM processor.

2. The GROOVE Grammar can be replaced with one representing the JVM
bytecode instruction set and ArmSimulator can work with that.
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An important shortcoming will be that the ArmSimulater for JVM will have
a different codebase because of the change in parser. This means not only the
Grammar is interchanged, but a whole different binary for ArmSimulator is
used.

4.2.6 Implementation

ArmSimulator with ARM Grammar

The first step for combining ArmSimulator with GROOVE is removing all
ARM logic and replacing this with GROOVE logic. An ARM Grammar was cre-
ated in GROOVE, so that simple assembly programs are able to run on the new
ArmSimulator. The Greatest common divisor algorithm has been implemented
for this for the ARM instruction set.

main :
mov r1 , #6
mov r0 , #8
whi le :
cmp r0 , r1
beq end
cmp r1 , r0
bgt i f
b e l s e
i f :
sub r1 , r1 , r0
b whi l e
e l s e :
sub r0 , r0 , r1
b whi l e
end :
bx l r

Figure 32: Greatest common divisor of 6 and 8, written in ARM assembly.

Some instructions in ARM have a parameter for an arbitrary integer. The
instruction set has been implemented in a GROOVE Grammar in two ways.

1. Use extra nodes with possible numbers.

2. Use the MATCH command (Dialog Oracle) to choose a number.

For both solutions we look at the ADD instruction where the content of a
register and an arbitrary number (immediate number) are added and stored in
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a third register parameter. The two registers are simulated using nodes which
contain a register number and a value that is stored in the register. Simulating
the immediate value is a problem that can be solved in different ways.

The first solution creates for a node for every possible integer, which is in
the range of 0 till 4096 for this instruction. The nodes have its number stored
as an integer connected to the node. Now the transformation rules are made
to match with a register node, a possible integer node, and another register
node, as its parameters This means that the total number of possibilities for
this instruction is 16*16*4096=1048576. This is very hard for GROOVE to
calculate, and makes the performance of evaluating instructions slow. Moreover,
having 4096 extra nodes overhead makes exploring the graph for transformation
expensive for every rule. The Grammar can perform when only a few integer
nodes are created, lets say 20. This however makes it impossible to do sums
with immediate values bigger than 20.

In the second implementation of the Grammar, we use the MATCH com-
mand to provide the transformation with an immediate value. So if ’ADD r1 r2 30’
is required, the 30 can be provided with the MATCH command and the instruc-
tion can be applied. When the processor for some reason would return to the
same state as before (for instance by reverting the contents of the registers and
memory), ’ADD r1 r2 40’ would not be possible, because the 30 from the last
ADD is preserved.

In order to make the Dialog Oracle work for the times the simulation returns
to an already visited state, we introduce a dedicated counter that increases every
time an ask parameter is evaluated. This way the state will always be different.
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Figure 33 shows the starting graph for an ARM processor. This is the
Grammar which makes use of the Dialog Oracle to implement immediate values.
The processor supports 16 general purpose registers and 4 condition registers.
‘Mem’ contains the top addressable position of the memory. Before a simulation
is started, a rule called ‘init’ is used to expand this memory to be 4096 bytes
long. AskCounter is used to increase its value every time a Dialog Oracle is
used. Figure 34 shows the Type graph the ARM Grammar uses.
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Figure 35: ‘ask’ rule of the ARM Grammar.
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Figure 36: ‘add’ rule of the ARM Grammar.

Applying a graph transformation to do an ‘add’ instruction requires two
rules. The first is the ‘ask’ rule (Figure 35), which makes use of the Dialog
Oracle to request a immediate value and puts is in a new PosInts node, and
coincidentally increases the AskCounter. After this is done, the ‘add’ rule (Fig-
ure36) is used to consume this PosInts value and add this to the requested
register. It also increases the the program counter by four (register 15).
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ArmSimulator with JVM Grammar

In order to find the true benefit of using GROOVE for offloading the the
simulation logic, we need to take a look at replacing the instruction set with
another one.

Supporting another instruction set requires writing a new parser for that
instruction set, in order for ArmSimulator to recognize the text of instructions.
The parser is the only instruction set specific component in the code for Arm-
Simulator using the GROOVE API. Other instruction-specific code is contained
in a GROOVE Grammar. This new parser for a different instruction set and
loading another GROOVE Grammar enables ArmSimulator to run simulations
for another instruction set. ArmSimulator is very dependent on an instruc-
tion set parser to interpret the input text where the user of ArmSimulator can
write instructions. Unfortunately this requires changes in the ArmSimulator
code, and therefore a recompilation of its code. For this project a GROOVE
Grammar which supports JVM is created.

Nevertheless a version of ArmSimulator has been built that uses a Grammar
for JVM to perform instructions, but to achieve this a parser for the JVM
instruction set was written, and minor changes to the GUI were made. This
has the unfortunate effect that changing the loaded grammar for one with a
different instruction set is not enough to change the behavior. However, in case
for one instruction set an instruction is implemented incorrectly, fixing the bug
in the Grammar and reloading it will solve the problem without recompiling
ArmSimulator.
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main :
bipush 6
i s t o r e 00
bipush 8
i s t o r e 01
s t a r t :
i l o ad 00
i l o ad 01
if_icmpeq end
i l o ad 00
i l o ad 01
if_icmpgt e l s e
i l o ad 01
i l o ad 00
i sub
i s t o r e 00
goto s t a r t
e l s e :
i l o ad 00
i l o ad 01
i sub
i s t o r e 01
goto s t a r t
end :
i l o ad 01
i r e t u r n

Figure 37: Greatest common divisor of 6 and 8, written in JVM bytecode.
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Figure 39: The Type graph for the JVM instruction set.

Figure 38 shows the starting graph for the JVM. This is the Grammar which
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makes use of the nodes with the possible integer values to implement immediate
values. JVM uses 4 general purpose register (localVar) and a stack to store
values. Figure 39 shows all types used in the implementation of this Grammar.

Stack
StackPointer

IntVar

PosIntsint
0

PC

π0 = 1

int int

on π1

on

down

value

value

value

add

value

Figure 40: The ‘bipush’ instruction of the JVM instruction set.
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Figure 41: The ‘add’ instruction of the JVM instruction set.

Adding two number on the JVM takes two different instruction. Numbers
can be stored on the stack with the ‘bipush’ instruction (Figure 40). It creates
a new IntVar to store the new value and moves the StackPointer to the top of
the stack. It also increases the program counter. When the top two values on
the stack are of type IntVar, the ‘add’ instruction can be performed (Figure 41.
It takes the two numbers, adds them together and puts that back on the stack.
It also adds one to the program counter.
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4.2.7 Summary

In this case is shown that GROOVE can work in combination with ArmSim-
ulator, in both the situation where the ARM is simulated in a Grammar, and
the situation where JVM is simulated, although both instruction sets run on
different binaries of ArmSimulator.

For the ARM version of ArmSimulator the two Grammars can be used. One
which uses integer nodes for selecting immediate values, and one which uses
the Dialog Oracle to select immediate values. The first one has the problem of
having a small set of possible integers. With this shortcoming, the performance
is way worse than the original C++ version. Small programs take seconds to
finish, where the original code could do this in an instant. The second Grammar
can at any moment use any immediate value, but still, simple programs take
multiple seconds to finish. This part of the use case shows that the ARM logic
can be replaced with a GROOVE Grammar. Moreover, two versions of the
Grammar are created which are inter-changeable without any recompilation.

The JVM version has a single Grammar implemented. It shows that existing
instruction logic can be replaced with a GROOVE Grammar. It also has the
flaw that the speed of performing instructions is not that high.

This use case shows that parts of the business logic can be deferred to the
GROOVE API, however the speed is worse compared with the original project.

The main advantage of using the GROOVE API is that bugs in instructions
can be solved in the grammar, and do not require any recompilation. A side
effect of using GROOVE is that the speed of performing instructions is lower
then that of the original C++ code.

The main conclusions of this use case are:

1. The performance is not good enough for assembly execution

2. The changes in user interface are not easily captured in a GROOVE Gram-
mar

4.3 Lego Mindstorms EV3

This subsection covers the use case where the hardware of Lego Mindstorms is
used in combination with the GROOVE API.

4.3.1 The project

Lego Mindstorms EV3 is a modular hardware structure. The hardware con-
sists of components which can be combined to produce a driving robot. The
components include sensors, like a touch sensor, which can detect whether the
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robot is touching a wall or something similar, or a gyrosensor, which detects
the orientation. Additionally, there are actuator components, which make the
hardware able to interact with the environment, like motors, or linear actuators,
which can be used to build all kinds of contraptions.

4.3.2 Connection with GROOVE

The default firmware of the EV3 is limited in its capabilities. It is configured
using the provided proprietary LEGO MINDSTORMS Education EV3 software,
and is not customizable. We need to be able to run custom code to respond to
specific instructions from the PC it is connected to. We need that connection
to run GROOVE on a external system, because the EV3 cannot run it itself.

In the past the Formal Methods and Tools department of the University of
Twente has done research on testing programs running on an NXT, the precursor
of the EV3[14]. In this research the NXT is running leJOS[5], which is a firmware
that replaces the default firmware on the hardware, and enables a programmer
to write Java programs that run on the hardware. It is also possible to use a
USB connection to an external computer. This software can also run on the
newer EV3. We write a program for leJOS that can connect to a program on
the PC that has a GROOVE backend. The EV3 program is able to gather all
information it knows from its sensors and sends it over this USB connection.
Additionally, it is able to receive messages which contain the instructions for
the actuators. The PC program with the GROOVE backend will function as a
message bridge between GROOVE and the EV3’s USB connection.

We developed a program with a GROOVE backend that runs on the ex-
ternal computer. Using the GUI of GROOVE, a GROOVE Grammar can be
constructed which can be used in the use case. The Grammar will contain
information about actuators and sensors that are on the EV3.

So, two custom programs are needed for the setup. The first custom program
runs on the external computer, and will load the Grammar and connect to
the EV3. The first custom program functions as a bridge between GROOVE
and the program running on the EV3 hardware. This bridge makes sure the
Grammar is loaded, and is responsible for the process of receiving sensor data
and determining new actions for the actuators.

The second program is running on the EV3. The EV3 sends its sensor data
and the GROOVE Grammar determines, based on that data, what the next
state of the actuators should be. The EV3 then receives new actuator actions,
which it will perform.

4.3.3 Use case expectations

This use case is used to show that GROOVE is capable of describing sensors and
actuators of an EV3, and that loading different grammar models will result in
different behavior of the hardware. No programming is needed to get different
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behavior, only loading a new grammar. For this use case, basic grammars will
be constructed that simulates a few sensors and actuators, and defines a basic
relations between the components.

We consider this use case to be a success if:

1. The Lego Mindstorms hardware can be controlled by a GROOVE Gram-
mar using a GROOVE connection

2. Different behavior can be given to a LEGO setup, by interchanging the
underlying GROOVE Grammar

4.3.4 Implementation

For the grammar construction, the graph contains every sensor and actuator as
a node. Additional information like port numbers and sensor/actuator specific
values like motor speed are properties of those nodes.

There is no detection of the sensors and actuators that are connected to the
EV3, which means that every GROOVE Grammar needs its attachments and
port numbers changed every time something changes. This is the same case
when programming the EV3 without GROOVE. It is a shortcoming of the EV3
hardware.

The program that is running on the EV3 (EV3Groove) waits for a connection
to be established by a PC. If a connection is made, it waits for it to be instructed
which sensors and actuators are connected to it. After that it will wait for
instructions for actions for the actuators. Simultaneously, it will keep sending
the current detected values from the sensors to the PC.

The second program (EV3GrooveBridge) is a bridge between the EV3 and
Groove. The program will begin with connecting to GROOVE and loading
a predetermined Grammar. After that is done, this program will connect to
the EV3. The Grammar contains the sensors and actuators that should be
connected to the EV3. The bridge program will send this information to the
EV3. When this setup is done, it will start receiving the sensor data from the
EV3, and using the ‘set’ rule to change the Graph in GROOVE to set the sensor
data. Next, the ‘next’ rule updates the actuator properties based on the rule
implementation and the current graph state. These actuator properties will be
extracted from the new state of the graph, and sent to the EV3.

The LEGO setup tested consists of one color sensor and one motor actuator.
The color sensor determines the color of a ball, after which the motor with
spokes attached sorts the ball to the left or right, based on the color. The
grammar can be changed to support different colors, or to switch what goes
right and left.
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NXTRegulatedMotor
angle = 360

location = "A"

EV3ColorSensor
location = "1"

value = 0

Counter
count = 0

Figure 42: The starting graph for the LEGO Mindstorms setup.

Figure 42 shows the starting graph for the LEGO Mindstorms setup. This
one only consists of three nodes, which are the two components that are part
of the LEGO setup (NXTRegulatedMotor and EV3ColorSensor), and a counter
to always create an undiscovered state whenever the Dialog Oracle is used. The
two components have a location value. This is the port where the component
is connected to on the EV3 brick. ‘value’ is where the sensor data is stored.
EV3GrooveBridge makes sure this is set to the current observation. ‘angle’ is
the angle should be. This is what EV3GrooveBridge extracts and sends to the
EV3 brick.

Sensor

string
0

int
*1

int

Counter
count := count + 1

location

valuevalue

Figure 43: The ‘set’ rule for the LEGO Mindstorms setup.
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Figure 44: The ‘next’ rule for the LEGO Mindstorms setup.

The Grammar has two rules, ‘set’ and ‘next’. The set rule is used by
EV3GrooveBridge to communicate the observations of the sensors to the current
state of the graph simulation. The ‘set’ rule (Figure 43) uses the Dialog Oracle
to replace the current value with a new value. This rule should not change for
different setups. The ‘next’ rule (Figure 44) will be different for different setup.
This contains the business logic for what the creator wants to achieve with the
Grammar. In this example, the observation of the color sensor is checked, and
if it is 2, which is blue, or 5, which is red, it will move the motor 90 degrees
clockwise or anticlockwise, thereby sorting the balls by color. The implementa-
tion of this ‘next’ rule can be changed to support different colors, but it is also
possible to attach different sensors and actuators, as long as they are present in
the starting graph. EV3GrooveBridge will detect based on the starting graph
what components it should expect.
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Figure 45: The top view for the ball sorter.

For the ball sorter, the setup looks as in Figure 45. From this top view the
ball is dropped where it is in the diagram. There the color sensor will detect
it, and act as the ‘next’ rule. In this case, move the motor by 90 degrees, and
move the ball with the extensions that are attached to the motor.

4.3.5 Summary

This use case shows that GROOVE is able to dynamically simulate different
LEGO constructions. The GROOVE Grammars can contain enough informa-
tion for describing simple scenarios.

The main conclusion of this use case are:

1. Performance is not really essential in this use case, so GROOVE is fast
enough

2. Different grammars can run different LEGO setups without recompiling
any code.
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5 Conclusion

This thesis describes how the program GROOVE, which was mainly interactable
using a GUI, gained an API, and how this was verified by connecting the API
to existing programs. During this progress conclusions have been drawn.

One of the conclusion it that the performance of GROOVE, but proba-
bly graph rewriting over all, is not high enough to solve general logical prob-
lems. The process of evaluating rules does not use optimal algorithms. Rules
in GROOVE very easily get algebraic complexity. The original programs of the
use cases implement a better complexity. This was the case for the use cases
Giraffe and ArmSimulator.

The way of designing Grammars for general problems is intuitive for most
programmable logic. However, the implementation of the ask parameter is rea-
sonable in the context of a state machine, where every transitions is predictable.
In the context of general logical problems is has shown to be an obstacle. This
was the case for the use cases ArmSimulator and LEGO MindStorms.

The final conclusion is that GUIs, and TUIs for that matter, are not easily
automatically altered when a GROOVE Grammar is interchanged in an appli-
cation that is using the GROOVE API. The details of parts of the GUI could be
contained in the Grammar, so the program can construct the GUI with those
details. However, this structure was not used in these use cases because of the
increase in complexity it gives. This was the case for the use case ArmSimulator.

The goal was to implement an API for GROOVE, and requirements (section
3.1.1) were set for implementing this API. The requirements suffice the func-
tionality for the tested use cases in making use of GROOVE, and extrapolating
from that, similar programs that want to use GROOVE will too.

5.1 Reflection

This thesis outlines how we extracted a subset of the components of GROOVE
and package it as an API for other programs to use. Besides that we showed
use cases which validate and reflect the usage of the API against.

The deliverables of the project are:

1. A program in the GROOVE project, which provides an API. This is writ-
ten in Java.

2. A change in the Giraffe program, which enables it to use GROOVE as a
backend. Giraffe is written in C++.

3. GROOVE Grammars for chess, connect four, nim and tic-tac-toe.

4. A change in the ArmSimulator program which enables it to use GROOVE
as a backend. ArmSimulator is written in C++.
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5. GROOVE Grammars for the ARM instruction set and the JVM bytecode
instruction set.

6. A new program that runs on the Lego Mindstorms hardware (EV3Groove),
which will connect to a PC via USB. This is written in Java.

7. A new program that runs on a PC (EV3GrooveBridge), bridging a con-
nection to GROOVE and a connection to Lego Mindstorms hardware.
Written in Java.

8. GROOVE Grammars for deciding Lego Mindstorms movements.

5.2 Future work

One of the shortcomings of the design of GROOVE when used for the appli-
cations in the previous use cases is the implementation of the ‘ask’ parameter.
The logic for the current design is defensible, but the design does not fit in a
environment where GROOVE rules can be called with a arbitrary integer for
example. For simulating where parameters can be arbitrary, this design does
not fit.

About the choices made for the API: the protocol is pretty custom right now,
and for showing the purposes and possible interactions of a stateful GROOVE
API this did the job. If this API was to become more widely used, using a
framework to create a stateful connection can be beneficial for developers of
client applications in order to connect to the GROOVE server. This should add
more boilerplating to the implementation of the API and decrease the chances
on programming mistakes.

If the Giraffe use case would be explored further, it would be an addition to
create a way to add game specifics to the neural network feature set, by adding
those specifics in the Grammars of those games and implement a way in Giraffe
to extract those specifics.

The GROOVE API is mainly designed to be useful for simulating Grammars,
but it cannot create new Grammars. The API could be extended, to also be
able to create Grammars.
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