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Abstract

The flow of cerebrospinal fluid in the perivascular space is part of the waste clearance sys-
tem of the brain. This system is responsible for clearing waste proteins, such as amyloid-β,
produced by the brain. Accumulation of amyloid-β is linked to neurological disorders like
Alzheimer’s disease. Gaining knowledge on the flow of cerebrospinal fluid in these perivas-
cular spaces is therefore crucial. Currently all simulation studies use a concentric shape for
the perivascular space, but recent magnetic resonance imaging studies have shown that the
perivascular space is more elliptical and the artery is often off-centered. Therefore, in this
study several cross-sectional shapes have been used to investigate the effect of this change of
shape on the flow of cerebrospinal fluid in the perivascular space.

The simulations in this study are performed using a Lattice Boltzmann Method solver.
Three different cross-sectional shapes have been used for the simulations, being a concentric
annulus, a flattened annulus and a flattened annulus with an off-centered artery. The fluid
simulation showed that local velocities can increase up to 150% for the flattened PVS shape
and up to 190% for the flattened PVS shape with an off-centered artery when compared to
the concentric PVS. Also, the flow distribution around the artery is changed significantly
with the cross-sectional shape, shifting from an evenly distributed flow in the concentric
shape to a flow with two dominant regions in the flattened shape and a single dominant flow
region in the off-centered shape. The local velocity differences have been shown to reduce
around a bifurcation, where a more similar flow distribution is seen between the concentric
and the flattened shape. In the cornering regions both flows show a single dominant flow,
however the flow in the flattened geometry is forced to a different path due to the twisting
of its geometry.

Keywords: Lattice Boltzmann Method; Computational Fluid Dynamics; Cerebrospinal
Fluid; Perivascular Spaces; Musubi; Alzheimer’s Disease;

i



Nomenclature

Abbreviations

BGK Bhatnagar-Gross-Krook (operator)

BTE Boltzmann Transport Equation

CFD Computational Fluid Dynamics

CSF Cerebrospinal fluid

LBM Lattice Boltzmann Method

MRI Magnetic Resonance Imaging

PDE Partial Differential Equation

PV S Perivascular space

Physical parameters

µ Dynamic viscosity [Pa · s]
ν Kinematic viscosity [m2/s]

ω Collision frequency [−]

ρ Density [kg/m3]

τ Relaxation factor [−]

cs Lattice speed of sound [m/s]

Dh Hydraulic diameter [m]

feq Equilibrium distribution function [−]

Kb Boltzmann constant [s]

m Mass [kg]

N Number of elements [−]

P Pressure [Pa]

Rsp Specific gas constant [J/(kg ·K)]

T Temperature [K]

c Lattice velocity [m/s]

F Force [kg ·m/s2]

f Distribution function [−]

h Grid spacing [m]

Ma Mach number [−]

p Momentum [kg ·m/s]

Re Reynolds number [−]

t Time [s]

u Velocity [m/s]
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Chapter 1

Introduction

A major health issue in the current era among elderly people is dementia. Dementia is cur-
rently the seventh leading cause of death among all diseases and one of the major causes
of disability and dependency among older people worldwide [1]. Currently about 50 million
people worldwide suffer from dementia, between 60% and 70% of this group are estimated
to have Alzheimer’s disease [2]. As such Alzheimer’s disease is the most common cause of
dementia and the fifth leading cause of death in adults older than 65 year [3]. Alzheimer’s
disease is a progressive neurological disorder that causes the brain to shrink and brain cells
to die. As a result the patient has a continuous decline in thinking, behavioural and social
skills and the ability to function independently. The estimated total healthcare costs for
the treatment of Alzheimer’s disease in 2020 is estimated at 305 billion dollars, with the
costs expected to increase to more than 1 trillion dollars as the population ages [3]. These
costs are attributed to skilled nursing care, home healthcare and hospice care. Furthermore,
dementia causes a significant burden on the patients carers, families and society at large.

With such consequences and costs associated with Alzheimer’s disease it is of high im-
portance to be able to correctly assess whether a patient suffers from the disease or not.
However currently neurologists do not have the right tools at their disposal for an accurate
assessment that could lead to a definitive diagnosis of Alzheimer’s Disease. After all, having
memory problems can be a symptom of many different cognitive diseases and the current di-
agnoses based on memory tests are not made until there is significant memory impairment,
which makes effective treatment difficult. Therefore, researchers are searching for earlier
signs of Alzheimer’s disease. This research is currently focused on cerebrospinal fluid (CSF)
bio-markers. Research on brain tissue of patients showed an accumulation of toxic forms of
the protein amyloid-β, which is a waste product of the brain cells [4]. As such the clearance
of these waste products has become topic of research.

Inside the brain these proteins are transported via cerebrospinal fluid in the perivascular
spaces (PVS) around the arteries which leads to researchers looking into the behaviour of
this flow and possible obstruction of this type of flow. In vivo measurements are not an
option in human patients, therefore the focus of these studies is on simulation work. There
are results of in vivo measurement on mice and rodents, which can be scaled to the human
brain equivalent such that representative simulations can be performed. The main point of
critique on the current simulation studies however is that all these studies assume a concen-
tric shaped PVS. Recent studies have shown that the shape of the PVS is more flattened,
often two-lobed and sometimes eccentric [5]. It is therefore questionable to what extend
these simulations offer representative insight in the CSF flow.
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In this thesis fluid flow analyses will be performed on cerebrospinal fluid in the brain using
several different shapes for the perivascular space. As such an insight is given in the validity
of previous performed simulation studies and recommendations for upcoming simulations
can be given. The simulations in this thesis will be performed using the Lattice Boltzmann
Method (LBM), which is a statistical approach to solve the Boltzmann transport formula.
This method is mostly used for complex geometries and as such this method is chosen here
since follow up research will result in more complex artery geometries.

1.1 Research question

The main research question of this thesis is:

To what extend does the cross-sectional shape of the PVS influence the
fluid behaviour of CSF?

Next to this several sub questions are answered in this thesis which are:

1. What are valid cross-sectional shapes for the perivascular space?

2. What simplifications of the geometry are valid to make in this case?

3. To what extent are previously performed simulation studies using concentric PVS
shapes still valid?

1.2 Scope

This thesis focuses on the changes occurring in fluid flow characteristics when using different
cross-sectional shapes for the PVS. The results of this research are valuable as feedback to
previous performed computational studies, either verifying that using a concentric PVS shape
is sufficient, or motivating the use of a different shaped PVS to more accurately represent the
real case. Understanding the CSF flow in PVS is vital in the research to combat Alzheimer’s
disease, as understanding a problem is the first step towards solving it, therefore an accurate
representation of the real life scenario has to be a priority.
In this thesis the Lattice Boltzmann Method will be used to perform the simulation. A
general understanding of the method is necessary, however it does not have to be used to
build a code as a framework package called APES is readily available for the simulations.

1.3 Outline

This report will first present the necessary biomedical knowledge required to understand the
problem, focusing on the CSF flow, the PVS and the brain physiology in general.
After this the theory of the Lattice Boltzmann Method is explained and some insights into
the APES simulation framework are discussed.
Then a grid convergence study is performed on a simple geometry, which also serves as a
verification of the Lattice Boltzmann Method and the used simulation framework.
With this setup completed three sets of simulations are presented and discussed which com-
prise the results of this thesis.
Finally the report ends with the discussion, conclusions and the recommendations for further
studies.



Chapter 2

Biomedical background study

The application of the research conducted in this thesis is in the medical field and more
specifically the brain. To be able to conduct the research in this thesis however a thorough
understanding of the brain an its functions is not required, but a basic understanding of the
most important concepts has to be included to sufficiently understand the application. As
such a literature study is performed in order to understand the concepts of cerebrospinal
fluid and its functions, section 2.1, the perivascular space around pial arteries in the brain,
section 2.2, and the flow of cerebrospinal fluid through the brain, section 2.3.

2.1 Brain physiology and cerebrospinal fluid

The brain is a complex organ that controls every function of the body. Intelligence, creativ-
ity, emotion, and memory are a few of the many things governed by the brain. Together,
the brain and spinal cord that extends from it make up the central nervous system. The
central nervous system is made of nerve cells called neurons, which are connected to each
other via axons and dendrites. The neurons send electrochemical signals with the axons
and receives these signals through the dendrites, forming the basis of the brain’s complex
functions. These nerve cells require fuel to be able to function. The brain consumes about
20% of the energy used in the entire body [6]. The supply of fuels like glucose or ketone
bodies to the brain as well as the disposal of the waste products is regulated by a system of
fluids. The flow of these fluids is quite complex and especially the drainage of these waste
products is an ongoing topic of research [7][8]. Among other things the drainage of these
waste products is a function of the cerebrospinal fluid (CSF) in the brain.

CSF is a clear, colourless watery fluid found in the brain and spinal cord of the human
body. Within the brain CSF is contained in the brain ventricles and the cranial subarach-
noid spaces and within the spine it is found in the spinal subarachnoid spaces [9]. These
subarachnoid spaces are a space between two membranous layers enveloping the brain and
the spinal cord [10]. CSF has various functions within the brain as it provides protection,
assists nourishment, and provides a way of waste removal.
As the brain is floating in CSF it allows the brain to become buoyant, reducing the effective
weight of the brain from its normal 1500 grams to only 50 grams [11]. This reduction in
weight lessens the forces applied to the brain parenchyma and cerebral vessels during me-
chanical injury, such that is serves as a shock absorber for the brain when the cranium is
hit. Furthermore the CSF functions as a way to protect the brain from pressure fluctuations.
The skull is a rigid structure with a fixed volume containing three components: brain tissue,
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intracranial vascular volume and intracranial CSF. Only the CSF and blood can be displaced
to maintain a constant intracranial volume and pressure without causing any damage [12].
The major conduit of nutrient supply to the brain is through the CSF. Substrates needed
by the brain are transported from the blood, through the choroid plexus, into the CSF, and
then diffuse into the subarachnoid spaces for transportation to their sites of action within
the brain [11]. As the CSF flows from the third ventricle throughout the brain it is also a
transporter for hormone releasing factors, opioids and other neuroactive substances [12].
Thirdly and last CSF has a role in the excretion of the potentially toxic by-products of
cerebral metabolism. As the brain lacks a lymphatic system, substances such as proteins,
including amyloid-β which can be affiliated with several disorders like Alzheimer’s [13], leav-
ing the brain’s tissue have to do so through the perivascular spaces or by direct diffusion
into the subarachnoid spaces where it flows with the CSF to eventually be absorbed by the
arachnoidal villi into the cerebral veins [14]. This function is part of the glymphatic system,
which is a macroscopic waste clearance system of soluble proteins and metabolites from the
central nervous system [15].

Given the crucial role of CSF within the brain and in the clearance of waste products from
the brain it is important to have a global understanding of the production and flow of CSF
throughout the brain. In figure 2.1 a schematic display of the ventricular system is shown.
This is a system of four ventricles, two lateral ventricles, the third ventricle and the fourth
ventricle, which are connected by several channels. Cerebrospinal fluid is produced by a
specialised tissue called the choroid plexus. These choroid plexuses are located in the walls
of the lateral ventricles and in the roofs of the third and fourth ventricles. A total of around
150 to 250 ml of CSF is present in the body at any one time [16]. About a sixth of the
CSF is located in the ventricles, the rest is present in the subarachnoid spaces [11]. CSF is
being produced continuously resulting in a circulation of the fluid around the central nervous
system. With around 500 ml of CSF being produced daily the fluid is renewed multiple times
a day. The pathway of the CSF is as follows:

1. The CSF passes from the lateral ventricles to the third ventricle through the interven-
tricular foramen

2. From the third ventricle, the CSF flows through the cerebral aqueduct to the fourth
ventricle

3. From the fourth ventricle, some CSF flows through a narrow passage and enters the
central canal. However, the majority of CSF passes through another opening into the
cisterna magnum.

4. From there, the CSF flows through the subarachnoid space of the brain and the spinal
cord.

5. Finally, the CSF is reabsorbed through arachnoid granulations.

The characteristics and properties of CSF are identical to those of water. Research has
been done on the viscosity properties of CSF as it was questioned whether the high protein
content would change the viscosity and the newtonian fluid behaviour, however no significant
changes were observed [18]. Furthermore did the measurements result in a viscosity value in
the range of 0.7 - 1 mPa.s at 37 °C, which is in accordance with the properties of water and
thus confirming the watery fluid properties.
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Figure 2.1: Schematic display of the ventricular system [17]

2.2 Pial arteries and perivascular spaces

As mentioned in the previous section CSF flows through the subarachnoid spaces of the brain
where it functions as a sink for brain extracellular solutes, but it was not yet explained how
solutes from the brain move from the parenchyma to the CSF. Recent research using tracer
particles have shown that CSF enters the brain parenchyma along perivascular spaces that
surround penetrating arteries [19][20]. This thesis is focused on the flow of CSF in those
perivascular spaces.

Perivascular spaces (PVS) of the brain, often called Virchow-Robin spaces, are generally
considered to be expansions containing fluid around small vessels. In general PVS include
a variety of passageways around arterioles, capillaries and venules in the brain, along which
a range of substances can move [21]. Although perivascular spaces were first identified over
150 years ago, they have come to prominence recently owing to advances in knowledge of
their role in the brain waste clearance systems [22]. PVS can be visualised in vivo using
MRI, where they appear as structures following the course of the blood vessels penetrating
the cerebral parenchyma. In figure 2.2 two PVS are shown, one surrounding a pial artery
and one surrounding a penetrating artery.

Pial arteries are the larger arteries within the brain, they lie on the surface of the brain [23].
The pial arteries branch into penetrating arteries and parenchymal arterioles that lie within
and supply the brain parenchyma. Pial arteries serve a vital function within the brain and
the regulation of cerebral blood flow [24]. When there is an increased metabolic demand by
the cerebral cortex, caused by, for example, increased activity, the largest arteries known as
the internal carotids and verterbrals remain unaltered. However the pial arteries dilate in
order to remain a constant arterial pressure [25]. Pial arteries are round shaped and have
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Figure 2.2: Schematic diagram of the PVS around a pial artery and a penetrating artery in
the brain [5]

a diameter between 200 and 1200 micrometer, a general classification can be made between
small ( 200 micrometer), medium ( 600 micrometer) and large ( 1000 micrometer) sized
arteries [26]. Recent measurements of periarterial flows in the mouse brain have shown that
the size of PVS around pial arteries is comparable to the diameter of the artery itself [27],
this is in accordance with in vivo experiments using fluorescent dyes [28].

As these PVS surround the arteries it was long assumed to be shaped as a circular annulus,
however recent research shows that the profile is flattened, often two-lobed and sometimes
eccentric [5]. As such it offers less viscous resistance to the flow. Figure 2.3 shows an image of
a cross-section of the brain where a blood vessel and corresponding PVS is easily identified.
However different images of arteries with corresponding perivascular spaces show slightly
differing shapes [28][5]. In general however the shape of the perivascular spaces around a
pial artery forms an annular region, elongated in the direction along the skull which is also
clearly identifiable in figure 2.3.

Figure 2.3: Perivascular space around a human artery [29] with a circular fit around the
blood vessel, thin line, and an elliptical fit around the perivascular space, thick line.
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2.3 Cerebrospinal fluid flow in perivascular spaces

The flow behaviour of CSF in PVS is a topic of ongoing research [27][30][31][32][33]. Mea-
surements of CSF fluid are not possible in humans, due to ethical reasons, therefore the only
measured in vivo data is from rodent brains. The brains of rodents and humans are however
remarkable relatable [34][35], which allows the results of these measurements to be applicable
and scaled to the human brain.

Currently the best and most used method to measure the CSF flow in vivo is by parti-
cle tracking. In this method fluorescent polystyrene microspheres of about 1 micrometer in
diameter are injected into the cisterna magnum by a needle. Using a microscope, a high
speed camera and a power LED images are at 30 Hz. The recording of the images is done
through a cranial window a bit further down the PVS, such that static and stuck micro-
spheres are elminated. With the help of an imaging software the vessels with microspheres
in the PVS were then analysed and tracked to obtain results on the flow speed [29][27]. The
results of both research groups are in accordance with each other, concluding that CSF flow
in PVSs has two components, a constant bulk flow in the direction of the blood flow with
an average velocity of approximately 20 µm/s, and an oscillatory flow in phase with the
heartbeat induced arterial pulsations with a peak velocity of 10 µm/s.

These microsphere particle tracking measurements are widely accepted, however there have
been studies suggesting that the observed bulk flow in these measurements is driven by the
injection of the microspheres into the cisterna magnum [31]. To be able to eliminate this
variable improved measurements have been performed using a double syringe method. In
this system two syringes are inserted into the cisterna magnum, where one injects fluid with
tracer particles while the other simulataneously withdraws an equal amount of fluid. The
researchers performed measurements using the single syringe method and the dual syringe
method as shown in figure 2.4.

Figure 2.4: CSF flow measurements done by single (a) and dual (b) syringe methods [31]

As can be seen the variation between the two injection protocols does not exceed animal-
to-animal variation, therefore it can be concluded that the results obtained by the single
injection protocols are valid. The researchers also measured the heartbeat and respiration of
the mice simultaneously with the particle tracking measurements. A delay of about 0.05s is
seen between peaks in the root mean square velocity of the particle tracking measurements
and the results of the electrocardiogram, therefore it is concluded that the CSF flow in PVS
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is strongly modulated by the cardiac cycle. No such correlation is found with the respiration
cycle [31]. Next to these measurement the flow shape was determined to be consistent with
laminar, viscous-dominated flow. The parabolic-like velocity profile is the fastest in the
centre of the PVS with velocities reaching up to 50 µm/s and zero at the wall. The typical
progression of a microsphere in the PVS is shown in figure 2.5 over 2 seconds of measurement
time.

Figure 2.5: Oscillating microspheres in the PVS of a mice [29]



Chapter 3

Lattice Boltzmann theory

The lattice Boltzmann Method (LBM) is a powerful simulation technique for single and
multi-phase flows in relatively complex geometries. The LBM has its origin in the late 1980s
with the Lattice Gas Methods, however the specific development of the LBM started only
about 20 years ago. The popularity of the method is rapidly rising due to several advantages
the method has compared to the more traditional Computational Fluid Dynamics (CFD)
methods. One of those advantages is the fact that the LBM is able to easily run on parallel
processing cores, which makes the method very suitable for use with super computers. Unlike
conventional continuous-field Navier-Stokes solvers, the LBM doesn’t solve for the Navier-
Stokes equations, but describes the fluid as moving particle distributions from which it solves
the macroscopic quantities such as density and pressure. In figure 3.1 several approaches to
CFD are shown, where they are ranked based on their preferred application range of system
size and system complexity. It can be seen that the LBM resides somewhere between the
continuum solver of the Navier-Stokes equations and the molecular approach and is a good
choice for a broad range of system sizes with relatively complex geometries.

The Navier-Stokes Dynamics shown in the bottom left of figure 3.1 are a continuum solver.
A blob of fluid is considered to be continuum, where the individual particle dynamics are
not considered. Using the conservation laws on an infinitesimal small control volume sets of
ordinary differential equations or partial differential equations can be obtained. The Navier-
Stokes equations are a famous example of this approach. As such the fluid flow problem is
solved on a macroscopic scale, however due to the neglecting of individual particle dynamics
this could pose a problem in situations where inter molecular interactions play a significant
role.

The Molecular Dynamics shown in the top right of figure 3.1 solve the fluid problem from the
bottom up, thus starting at the separate particles. For each particle, the location and direc-
tional velocity is considered and the system is solved by applying momentum conservation
for the collisions between other molecules and the boundaries. Macroscopic properties like
density and pressure are however not explicitly stated, but can be derived from the kinetic
energy of the particles. These methods are very accurate and useful in complex geometries,
however the limitation is in the system size as these problems can become extremely com-
putational heavy.

Now this is where the LBM comes into play. The method is able to solve the problem
at a macroscopic scale, yet still has the advantages of including particle interactions. With
the use of statistical mechanics Ludwig Boltzmann derived the Boltzmann transport equa-

9
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Figure 3.1: Approaches to computational fluid dynamics together with their preferred range
of applicability [36]

tion which is the foundation for the LBM. In this chapter the framework of the LBM will be
presented with the required derivations and assumptions. First in chapter 3.1 the derivation
of the Boltzmann equation is given. Then the equation is improved by deriving a solution for
the collision term in section 3.2. After this the improved discretized version will be derived
in section 3.3. In section 3.4 the implementation of boundary conditions in the LBM is ex-
plained such that a solution can be obtained. Finally in section 3.5 the conversion between
physical units and lattice units is described and the selection of several parameters and their
constraints are explained.

3.1 The Boltzmann equation

The basic concept of the the Lattice Boltzmann method is, as mentioned earlier, that it is
possible to describe interacting particles that are not in equilibrium by a statistical expres-
sion that takes a huge number of these particles into account. The method is thus not able to
describe the behaviour of single particles as it does not consider the position and momentum
of a single particle, but it considers the chance that a certain particle has a certain posi-
tion and a certain momentum which is described by the probability density function. Even
though the method uses simple mechanical laws, it is proven that the Boltzmann equation
can accurately describe fluid flows [37].

The Boltzmann equations describes the system by a distribution function that resides in
a so called phase space, which is a space in which the coordinates are given by the the posi-
tion and momentum vectors at a certain time. As such the phase space is six dimensional,
containing three position components and three momentum components. Resulting in a
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description of the probability distribution function as follows:

f(x,p, t) (3.1)

This is called a single particle distribution function as it does not contain any information
about the other particles. To elaborate on this the probability density function can be given
for the probable number of molecules with position coordinates in the range of x ± dx and
momentum coordinates p± dp as follows:

f(x,p, t)d3xd3p ≡ f(x,p, t)dxdp (3.2)

An external force F that is small relative to intermolecular forces is introduced to induce
movement. If there are no collisions between particles, then at time t+dt, the new positions
of molecules starting at x are:

x+
( p

m

)
dt = x+

(
dx

dt

)
dt = x+ dx (3.3)

And the new momenta are:

p+ Fdt = p+
dp

dt
dt = p+ dp (3.4)

Thus, when the positions and momenta at a certain time t are known, the particle distribution
function at a future time t + dt follows from:

f(x+ dx,p+ dp, t+ dt)dxdp = f(x,p, t)dxdp (3.5)

This is known within the Lattice Boltzmann method as the streaming process. It should
however be noted that, due to the large number of particles, moving through the space
without collisions is an unrealistic assumptions. Therefore, collisions should be taken into
account. These collisions result in two problems, either particles starting at (x,p) and not
arriving at (x+dx, p+dp) or particles arriving at (x+dx, p+dp) that did not start at (x,p).
To be able to account for these collisions a source term Γ is added to the Boltzmann equation,
giving the total expression for the first order distribution over time as:

f(x+ dx,p+ dp, t+ dt)dxdp = f(x,p, t)dxdp+ Γdxdpdt (3.6)

Dividing both sides of the equation by dxdp and performing a first order Taylor series
expansion of the left hand side results in the following expression:

f(x+ dx,p+ dp, t+ dt) = f(x,p, t) +
∂f(x,p, t)

∂x
dx+

∂f(x,p, t)

∂p
dp+

∂f(x,p, t)

∂t
dt (3.7)

Substitution of equation 3.7 into equation 3.6 (note that both sides of the equation have
been divided by dxdp) results in the following:

∂f(x,p, t)

∂x
dx+

∂f(x,p, t)

∂p
dp+

∂f(x,p, t)

∂t
dt = Γdt (3.8)

Dividing by dt this gives the Boltzmann equation:

∂f(x,p, t)

∂t
+

dx

dt
· ∂f(x,p, t)

∂x
+

dp

dt

∂f(x,p, t)

∂p
= Γ (3.9)
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Using Newton’s second law it is known that:

dx

dt
=

p

m
and

dp

dt
=

dc

dt
·m = F (3.10)

When combining these expressions with equation 3.9 and leaving out the phase space indi-
cation from the particle distribution function for the sake of clarity one obtains:

∂f

∂t
+

p

m
· ∂f
∂x

+ F · ∂f
∂p

= Γ (3.11)

The above equation is the generally used expression for the Boltzmann equation with ex-
ternal forces. A simplification used in the remainder of this chapter includes the use of
the Boltzmann equation without external forces, as in the discretized version most cells are
not subjected to external forces. Equation 3.12 represent the Boltzmann equation without
external force, here the velocity vector is substituted in for the p

m term and the df
dx term is

rewritten by using the ∇-operator.

∂f

∂t
+ c · ∇f = Γ (3.12)

3.2 Bhatnagar Gross Krook relaxation

In the Boltzmann equation shown in equation 3.11 it is still unclear how to solve the collision
term Γ. Boltzmann’s original collision operator is of the form of a complicated and cum-
bersome double integral over the velocity space, which considers all the possible outcomes
of two-particle collisions [38]. However, the collision operators used in the LBM are gener-
ally based on the much simpler approach introduced by Bathnagar, Gross and Krook (BGK)
[39]. This method is commonly referred to in literature as the BGK single relaxation method.

The discretized version of the basic form of the Lattice Boltzmann equation as shown in
equation 3.6 can be given as:

fi (x+ ei∆t, t+∆t) = fi(x, t) + Ωij (3.13)

In which ei is the discretized velocity vector and the operator Ω is the collision term. As
such the first two terms represent the streaming process and the last term represents the
collision process. In the BGK relaxation method the collision function is replaced with a
term that suffices for single phase flows:

Ω =
1

τ
(feq − f) = ω (feq − f) (3.14)

This operator can be interpreted as the tendency of the population to approach its equi-
librium state after a certain time τ . As such this process is also called ”relaxation towards
equilibrium”, where τ is called the relaxation time and ω the collision frequency. The BGK
operator also makes sense logically, as a larger difference between the current distribution
and the equilibrium distribution will result in a larger term and thus more collisions will
occur in order to reach equilibrium. The collision frequency ω in the BGK operator can be
seen as a form of artificial viscosity, which will be explained later on in section 3.5.

Substituting the BGK operator into the collision term of equation 3.12 results in the following
term for the LBM equation using the BGK operator [40].

∂f

∂t
+ c · ∇f = ω (feq − f) (3.15)
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In which a clear distinction can be seen between the left hand side, the streaming part, and
the right hand side, the collision part. To be able to use the BGK operator the equilibrium
distribution function needs to be defined first. This distribution is known to be equal to the
Maxwell distribution as shown in equation 3.16, which describes the possibility of a particle
being in a certain velocity state. In the Maxwell-Boltzmann distribution the term 4πc2 in
front of the equation is the result of the evaluation of the particle distribution with certain

speed c =
√
c2x + c2y + c2z, which in the phase space results in all particles on the surface area

of a sphere.

feq(c) = 4πc2
(

m

2πkBT

)3/2

e
−mc2

2kBT (3.16)

In this equation, m is the mass of the molecule in [kg ], T is the temperature of the system in
[K ] an c is the particle velocity in [m/s]. In the LBM BGK model a slightly different version
of the Maxwell-Boltzmann distribution, where the individual components of the velocity are
taken into account, is used. As a result of this change the velocity vector is used instead
of a scalar and the spherical area in the phase space is eliminated such that equation 3.16
becomes [41]:

f(c) =

(
m

2πkBT

)3/2

e
−mc2

2kBT (3.17)

Note that c is now a vector of the different velocity components. Equation 3.17 is now
multiplied by the macroscopic density ρ in order to scale the normalised distribution and
make it specific for the system. Furthermore a gas will be considered which has a non-zero
macroscopic velocity such that the equation changes to:

feq =
ρ

(2πRspT )
3/2

exp

(
−(c− u)2

2RspT

)
(3.18)

In which the specific gas constant is introduced as Rsp = Kb
m which has the units of

[Jkg−1K−1]. In order to perform a Taylor series expansion the exponential term is rewritten
to eliminate the quadratic term:

feq =
ρ

(2πRspT )
3/2

exp

(
− c · c
2RspT

)
exp

(
2(c · u)− u · u

2RspT

)
(3.19)

The second term in the equation is now approximated with a Taylor series that is truncated
at the second order:

feq =
ρ

(2πRspT )
3/2

exp

(
− c · c
2RspT

)[
1 +

2(c · u)− u · u
2RspT

+
(2(c · u)− u · u)2

8 (RspT )
2 + . . .

]
(3.20)

To get rid of the exponential term in the equation the following substitution is used:

W (c) =
1

(2πRspT )
3/2

exp

(
− c · c
2RspT

)
(3.21)

The equilibrium probability density function that is most commonly used in the BGK LBM
method is obtained after some rewriting and eliminating all terms of third or higher order.

feq = ρW (c)

[
1 +

2(c · u)− u · u
2RspT

+
(c · u)2

2 (RspT )
2

]
+O

(
u2

)
(3.22)

With the equilibrium distribution function derived the last unknown in the Lattice Boltz-
mann equation, the collision term, is also known.
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3.3 Discretization

The Boltzmann equation as shown in equation 3.11 is particularly complicated as its com-
plete form with the collision operator written more explicitly results in a nonlinear integral
differential equation [37]. According to Harris [42], 50 years elapsed from the time the equa-
tion was derived before an approximate solution was found. Lattice Boltzmann methods
vastly simplify the original approach by reducing the number of possible particle spatial
positions and microscopic momenta from a continuum to a discretized grid and similarly
discretizing time into distinct steps. As such the lattice element is introduced to confine
particle positions to the nodes of a lattice.

There are a multitude of varying lattice elements that can be used in the LBM each de-
noted by DnQm, with n giving the dimensions of the lattice and m giving the number of
flow directions. Within this thesis the simulations are performed using a D3Q19 stencil.
However in this section the D2Q9 stencil, shown in figure 3.2 is used as an example due to
the more simple and clear visualisation.

Figure 3.2: D2Q9 Lattice element [37]
Figure 3.3: D2Q9 distribution fucntion exam-
ple [37]

As can be seen in figure 3.2 a total of 9 streaming directions are possible, as a particle at
rest, index 0, stays on the same node. The different streaming directions are given by the
discrete velocity vector ci:

ci =


(0, 0) i = 0

(1, 0), (0, 1), (−1, 0), (0,−1) i = 1, 2, 3, 4

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8

(3.23)

The distribution function can conveniently be seen as a typical histogram representing a
frequency of occurrence, an example of such a distribution is shown in figure 3.3. For each
streaming direction a weight factor wi is introduced, which is dependent on the lattice element
used. The weight factors for a D2Q9 element are as follows:

wi =


4/9 i = 0

1/9 i = 1, 2, 3, 4

1/36 i = 5, 6, 7, 8

(3.24)

Using these lattice elements the discrete version of the Boltzmann Transport equation that
can be used along these specific directions is as follows:

∂fi
∂t

+ ci · ∇fi = ω (feq
i − fi) (3.25)
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In this discrete form of the Boltzmann Transport equation the discretized version of the
equilibrium distribution function is used. This discrete function can be derived from equation
3.22 using the substitution below:

c2s = RspT (3.26)

In which cs is the lattice speed of sound, which depends on the chosen lattice element. As a
result the following discrete equilibrium function is obtained:

feq
i = ρwi

[
1 +

2 (ci · u)− u · u
2c2s

+
(ci · u)2

2c4s

]
+O

(
u2

)
(3.27)

In which wi are the weight factors corresponding to those shown in equation 3.24. Further-
more for both D2Q9 and D3Q19 lattice elements the speed of sound is given by c2s = 1/3,
which simplifies the equation as follows:

feq
i = ρwi

[
1 + 3 (ci · u)−

3

2
(u · u) + 9

2
(ci · u)2

]
+O

(
u2

)
(3.28)

The conversion of the microscopic velocities and particle density functions to the macroscopic
variables of the fluid is rather straightforward. The distribution function as shown in figure
3.3 can be seen as direction-specific fluid densities. As such the macroscopic density can be
determined as follows:

ρ =
8∑

a=0

fa (3.29)

Furthermore the macroscopic velocity u is an average of the microscopic velocities ea weighted
by the directional densities fa:

u =
1

ρ

8∑
a=0

faea (3.30)

These equations allow for a direct transfer from the discrete microscopic velocities and par-
ticle density functions to the macroscopic densities and velocities. As such the discrete LBM
method can be transferred to a continuum domain representing the fluid’s motion.

3.4 Boundary conditions

In the previous chapter the framework for a solver for fluid problems is described. However
no particular solutions to these flows can be calculated as they are just arbitrary problems. In
order to calculate meaningful results boundary conditions and initial conditions are required.
Even though relatively speaking the boundary nodes apply to only a small portion of the
fluid domain, their influence will be noticed everywhere in the flow solution. In the LBM
the boundary nodes are described as the sites with at least one link to a solid and one to
a fluid node, this assignment of lattice site types is graphically shown in figure 3.4. In this
section the two relevant boundary conditions for this thesis will be explained, which are the
bounce-back boundary condition and the Dirichlet boundary condition.

3.4.1 Bounce-back boundary condition

The most commonly used boundary condition is the bounce-back boundary condition. This
boundary condition is used as the no-slip velocity boundary condition at the fluid-solid in-
terface and is thus used to model walls within the LBM. The basic working principle of the
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Figure 3.4: Fluid, solid and boundary nodes in an inclined channel[38]

bounce-back boundary condition is that populations hitting a rigid wall during propagation
are reflected back to where they originally came from. It may seem counter intuitive that the
particles are reflected back rather than bounced forward (i.e. specularly reflected), however
one must understand that this implies no relative transverse motion between the fluid and
the boundary and thus a no-slip condition on the wall.

An important aspect of the bounce-back boundary condition is the definition of the boundary.
There is the fullway bounce-back and the halfway bounce-back method, this is graphically
shown in figure 3.5. Within the figure the direction of the arrow represents the particle’s
direction whereas the grey area is the solid region and the dashed line corresponds to the
boundary. It can be seen that the difference between the two methods is the use of the
boundary nodes as a storage location. In case of the fullway bounce-back method, (a) in the
figure, the particles travel the entire path from the fluid node to the boundary node, where
the particle velocity is inverted in the next collision step, after which the fluid is propagated
back into the fluid domain at the next time step. When using the halfway method, (b) in
the figure, the redirection of the flow is done halfway the time step before the flow reaches
the next solid node such that this all takes place during the streaming step.

Figure 3.5: Time evolution for a (a) fullway bounce-back and (b) halfway bounce-back
boundary condition [38]
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It should be noted that despite the naming of the methods both approaches assume that the
boundary is located midway between the solid and boundary nodes, as can be seen by the
dashed line in figure 3.5. This way the boundary condition is formally second-order accurate,
whereas having the bounce-back boundary placed on a lattice node introduces a first-order
error. As such both strategies shown in figure 3.5 achieve second-accuracy. If simplicity
is the main concern the fullway bounce-back is the preferred choice as the only check that
needs to be done is whether a solid node is reached or not, whereas for the halfway scheme
each propagation direction needs to be tracked. Yet halfway bounce-back is more accurate
for unsteady flows due to the fact that less time steps are required and thus no degradation
of the time accuracy of the solution will happen. Furthermore the halfway bounce-back can
be implemented without solid nodes.

The implementation of the bounce-back boundary condition into a LBM scheme is done
according to equation 3.31. In which the populations leaving the boundary node xb at time t
meet the wall surface at time t+ ∆t

2 , where they are reflected back with a velocity cī = −ci.
The notation of f⋆ is used to denote the pre-stream values.

fī (xb, t+∆t) = f⋆
i (xb, t) (3.31)

3.4.2 Dirichlet boundary condition

It can be concluded that the bounce-back boundary condition is a very suitable solution for
the walls in a LBMmodel and even though it can be used at inflow and outflow locations there
are other more useful methods for it [43]. Dirichlet boundary conditions allow a macroscopic
value, like a velocity or pressure, to be assigned to a point, line or plane. For example a
velocity vector is specified at a boundary line:

u0 =

[
u0
v0

]
(3.32)

Consider a D2Q9 grid shown in figure 3.2 which is placed at a top wall/inlet where an inlet
velocity is prescribed according to equation 3.32. After the streaming step there are three
unknown directional densities at this lattice node pointing from the boundary into the fluid
domain. Together with the unknown density ρ this means there are four unknowns, which
requires 4 equations to solve.

The macroscopic density for this lattice element results in the first equation:

ρ =
∑
i

fi = f0 + f1 + f2 + f3 + f5 + f6︸ ︷︷ ︸
known

+ f4 + f7 + f8︸ ︷︷ ︸
unknown

, (3.33)

The momentum equations in both x and y directions results in the second and third equation:

ρu =
∑
i

ufi = u (f2 + f5 + f6)︸ ︷︷ ︸
known

−u (f4 + f7 + f8)︸ ︷︷ ︸
unknown

(3.34)

The fourth equation is obtained by assuming that the bounce-back or symmetry condition
holds in the direction normal to the boundary [44].

f2 − feq
2 = f4 − feq

4 (3.35)

After some algebraic operations using the known equilibrium distribution functions the un-
knowns can be solved to implement the boundary condition. The same method applies for
a given pressure at the boundary, where the following equation of state can be used:

p = c2s · ρ (3.36)
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3.5 Selection of lattice parameters

As the LBM simulations have to represent a physical problem the parameters on the lattice
have to be scaled accordingly. As with all fluid problems the non dimensional-parameters
that are of influence have to be matched in the physical world and on the lattice. In this
thesis the Reynolds numbers is of importance due to the highly viscous laminar flow present
in the simulations.

The density distribution function fi and the relaxation parameter τ are already non di-
mensional and therefore do not require a conversion. The first step to implement the real
world system in the LBM simulation is the selection of the lattice velocity C. The lattice
velocity is often set to be equal to 1 lattice unit per second, such that particles always move
to one neighbouring node in one time step.

C ≡ h

∆t
≡ ∆x

∆t
(3.37)

In which ∆x and ∆t are respectively the grid spacing in meters and the time step in seconds.
Using the lattice velocity the conversion between physical fluid velocity and lattice fluid
velocity is quite straightforward:

vlat = vphy
∆t

∆x
=

vphy
C

(3.38)

The density, the kinematic viscosity and the dynamic viscosity are coupled directly, such
that only two of these have to be given for a fully defined system.

ν =
µ

ρ
(3.39)

In the LBM an equation of state exists which relates the pressure and the density to each
other using the speed of sound on the lattice:

P = c2sρ (3.40)

In which the lattice speed of sound can be related to the lattice velocity as shown in equation
3.41. This expression however is not universal for all lattice models but is valid for the
commonly used D2Q9 and D3Q19 models. Taking into account that the lattice velocity is
chosen to be equal to unity the lattice speed of sound can be defined as follows:

cs =
C√
3
≡ 1√

3
(3.41)

As mentioned before viscosity on a molecular scale doesn’t really exist, however in the LBM
the kinematic viscosity is related to the relaxation frequency, the spatial step and the time
step as shown in equation 3.42. This relation also ensures that the LBM simulations follow
the macroscopic physics described by the Navier-Stokes equation [38].

ν =

(
τ − 1

2

)
3

∆x2

∆t
=

1
ω − 1

2

3

∆x2

∆t
(3.42)

In this equation the parameter ω can be tweaked, which affects the implicitly defined time
step. If a larger value of ω is chosen, the time step becomes smaller and thus the amount of
iterations to achieve the total simulation time increases. In general the value of ω has to be
lower than 2, but higher than 0.5 to achieve a physical flow. Note that changing the value of
ω affects the apparent viscosity, however the physical viscosity does not change. The lattice
viscosity is defined as follows:

νlat = ν
∆t

∆x2
=

1
ω − 1

2

3
(3.43)



Chapter 4

Simulation environment

In this chapter the simulation environment will be explained. This is basically the conversion
from the LBM theory to a working simulation model. The used software in this thesis is
called APES (Adaptable Poly-Engineering Simulator), which is a bundle of tools for flow
simulations. First the APES suite will be explained, after which the individual components
of Seeder and Musubi are discussed and last but not least the software used in the post-
processing is mentioned.

4.1 APES software

The central environment of the simulations is called the Adaptable Poly-Engineering simu-
lator (APES). An overview of the various modules available within APES is shown in figure
4.1. In this thesis the Seeder module is used to generate the mesh after which the Musubi
module is used to perform the Lattice Boltzmann simulation on this mesh. The Harvester
module can be used to visualise the mesh prior to running fluid simulations. As has been
stated in section 3 the downside of the LBM method is the size of the problem and thus the
high computational effort, APES suite is developed for use on parallel computers and with
a high parallel efficiency [45][46]. Still a high computer power is required to perform the
simulations, this is solved by using the dutch supercomputer Snellius.

Figure 4.1: Overview of APES components[47]

19
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4.2 Seeder

The mesh generation is performed using Seeder, which is part of the APES suite as shown in
figure 4.1. As mentioned in section 4.1 the simulations are performed using parallelization,
therefore a structured grid with equally sized elements is created. The input for Seeder is
an input file in which the information of the geometry is described. This input file should
contain the boundaries of the model, the bounding cube, the refinement level, a seed loca-
tion, and in the case of complex geometries a STL file which can be created with an external
program like SolidWorks. All these aspects will be explained in more detail in this section.

In the input file first a cubical outline of the mesh has to be described which has to en-
close the complete geometry, this is called the bounding cube. The enclosed geometry is
specified by the provided STL file. As such Seeder is now able to create an octree mesh
with the root node being the bounding cube. Seeder uses recursive bisection to generate
the mesh. With recursive bisection is meant that on the zeroth level the mesh consist of a
single cube. When the mesh is refined this cube is split into eight smaller cubes, with side
lengths equal to half the size of the previous cube, hence the name octree. This process is
being repeated until the desired element size or number of elements is obtained. As such the
number of elements can be determined according to the following formula:

nelements = 23·level (4.1)

The level in this equation is related to the desired spatial step size dx and the length of the
boundary cube:

Level =
log( L

dx)

log(2)
(4.2)

In which L is the largest length in any of the spatial dimensions present in the geometry
and thus equal to the bounding cube. The resulting level is rounded up to achieve a whole
integer, therefore the spatial step size dx can be slightly smaller than requested. By defining
the size of the bounding cube as a function of the desired element size dx this problem can
be prevented.

At this point the Seeder module is able to generate the geometry, however the program
still needs information to determine what the fluid, boundary and solid nodes are. Therefore
a seed has to be placed somewhere inside of the geometry where a fluid node is located.
Everything that is between the walls and this seed is then considered to be part of the fluid
geometry and the walls are set as boundary nodes. These boundary nodes still need to be
divided into separate regions, which is done in the last part of the input file. Labelling the
different boundaries allows the user to define different boundary conditions to these regions
in the Musubi input file.

The Harvester module can be used to process the generated mesh and outputs a geome-
try file. This module allows the user to check the geometry without having to run fluid
simulation which helps in preventing errors early on.
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4.3 Musubi

With the mesh being generated the LBM simulation can be performed. The Lattice Boltz-
mann solver Musubi, which uses the theory presented in section 3, is used in this thesis.
Similar to the Seeder module an input file is made to communicate with the solver. Within
this input file the physical problem is described, the conversion to certain lattice parameters
is performed and the simulation parameters such as time control settings and the tracking
of data are set. The options offered by this module will be described in this section.

Within the Lattice Boltzmann the distinction between physical parameters and lattice pa-
rameters need to be clear as explained in section 3.5. In the input file of the Musubi module
the macroscopic physical parameters are specified as well as their lattice counterparts. Fur-
thermore the selection is made for the BGK approximation and thus the relaxation frequency
ω is also given as input. The selection of this value is rather free of choice but it should be
greater than 0 and smaller than 2 following equation 3.43. Lower values of ω introduce more
viscosity in the system, which can be seen as a dampening of the solution as it means that
the initial fluctuations are lower but the time till convergence is increased. It is often desired
to have a lower apparent viscosity in the system for the faster convergence time, therefore
within this thesis a larger value of ω is chosen. Furthermore it should be noted that the
selection of ω directly influences the time step, meaning a higher ω implies a smaller time
step.

Within the Musubi module a choice has to be made regarding the physical model, which
can be either compressible or incompressible. The choice between these two is mainly based
on the Mach number in the problem. In the simulations performed in this thesis the Mach
number stays well below the compressibility limit, as the lattice fluid speed is less than 0.3
times the lattice speed of sound.

4.4 Post-processing

To be able to view the produced results of the Musubi solver the ParaView program is
used. ParaView is an open-source, multi-platform data analysis and visualisation applica-
tion. Within the application users can quickly build visualisations to analyse their data
using qualitative and quantitative techniques. When additional analysis is required the data
is extracted from Paraview and imported in to MatLab.



Chapter 5

Preliminary flow studies

In this chapter a grid convergence study is performed on a simplified geometry case. The
main purpose of this study is to determine the correct grid size for further simulations, which
means it has to produce valid results while keeping the computational time as low as possible.
Also, these simulations allowed some testing to get familiar with the software and the input
parameters.

5.1 Geometry

This grid study is performed on a simplified straight geometry which are two concentric
tubes as shown in figure 5.1. This geometry is chosen, because for a concentric annulus the
exact solution can be derived and thus a direct comparison between the analytical and exact
solution can be made. The geometry will be sized to a pial artery and PVS in the human
brain, which will be the same size as the geometries in chapter 6 will have.

As described in section 2.2 the diameter of pial arteries range from 200 to 1200 micrometer,
but the researchers described the most occurring medium sized arteries to have a diameter
size of 600 micrometer [26]. The size of the PVS is still a subject of research, however in the
case of a concentric PVS shape it is shown that the radius of the PVS is almost equal to
the radius of the artery as shown in equation 5.1 [32]. Therefore the geometry in this study
has an inner diameter, representing a pial artery, of 0.6 millimetre and an outer diameter,
representing a PVS, of 1.2 millimetre.

2 · rartery = rPV S (5.1)

With the cross-sectional shape determined only the length of the artery is still unknown.
A commonly used parameter for determining the length is the aspect ratio as described in
equation 5.2.

AR =
Length

Dhydraulic
=

Length

Douter −Dinner
(5.2)

Aspect ratios ranging from 5 to 12 have been accepted values for a long time, however
research showed that values as high as 24 might be beneficial for turbulent flow simulations
[48]. Within this thesis only laminar flow is present and thus lower aspects ratio of around 10
are deemed to be sufficient. This length allows for a complete development of the flow profile
and is still limiting the size of the computational domain. In the simulations performed in
this chapter a length of 6 millimetre is used for the artery.

22
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5.2 Analytical solution

Laminar fluid flow through a concentric annulus is a known problem in literature from which
the analytical can be solution can be derived quite easily, as will be shown in this section.
Consider a steady laminar flow of a Newtonian fluid with constant density, which is located
in a long annulur region between two coaxial cylinders of radii R0 and Ri as shown in figure
5.1.

Figure 5.1: Fluid flow between two coaxial cylinders [49]

The governing equation for the exact solution of this described fluid problem is known to be
[49]:

−1

r

d

dr

(
µr

dU

dr

)
=

P1 − P2

L
= fo (5.3)

In which U is the velocity along the cylinder, µ is the viscosity of the fluid, L is the length
of the region along the cylinders in which the flow is fully developed, and P1 and P2 are the
pressures at locations z = 0 and z = L. After some rewriting of equation 5.3 the following
formula is obtained:

d

dr

(
r
dU

dr

)
=

r

µ
f0 (5.4)

To be able to obtain a solution for the velocity field, U(r), equation 5.4 has to be integrated
twice with respect to the radius r. After one integration the following equation is obtained:

dU

dr
=

1

µ
f0

r

2
+

C1

r
(5.5)

And integrating with respect to r once more results in the following expression for the velocity
field:

U(r) =
1

4µ
f0r

2 + C1 ln r + C2 (5.6)

The only unknowns in this equation are the pressure term, f0, which will be solved later
on and the two constants, C1 and C2, which will be solved by substitution of the boundary
conditions. At both the upper and lower wall of the fluid region a no slip boundary conditions
is present, such that the fluid velocity at both ends equals zero. This is mathematically
described as follows.

r = Ri : U(r) = 0 and r = R0 : U(r) = 0 (5.7)

Substitution of these boundary conditions results in two equations with two unknowns and
can therefore be solved. The results are the following descriptions for the constants:

C1 =
f0
4µ

R2
0 −R2

i

ln (R0/Ri)
and C2 =

f0
4µ

R2
0 − C1 lnR0 (5.8)
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Substituting the descriptions for the constants back in to equation 5.6 yields the final ex-
pression for the velocity profile.

U(r) =
f0R

2
0

4µ

[
1−

(
r

R0

)2

+
1− (Ri/R0)

2

ln (R0/Ri)
ln

(
r

R0

)]
(5.9)

The only remaining unknown in this equation is the pressure term f0, which as shown in
equation 5.3 is dependent on the pressure drop. An expression for the pressure drop of a
laminar fluid flow in a concentric annulus is shown in equation 5.10 [50].

∆P =
ρU2

z

2

(
λL

2s

)
(5.10)

Where ∆P is the pressure difference between the inlet and outlet of the channel, ρ the fluid
density, Uz the mean axial velocity, L the channel length and s the channel height. In this
case the channel height is derived from the hydraulic diameter as DH = 2s. Therefore the
only unknown in equation 5.10 is the friction coefficient λ. The friction coefficient in narrow
static annular channels for laminar flow is stated in literature as follows [51]:

λl =
96

Rez
, with Rez =

2ρUzs

µ
(5.11)

In this equation all parameters are known, therefore the friction coefficient can be solved and
substituted back in to equation 5.10 from which the coefficient f0 can be calculated. Using
this information the exact solution as described in equation 5.9 can be solved when the mean
axial velocity and geometry and fluid parameters are given.

5.3 Simulation results

The analytical solution derived in section 5.2 will be compared to several LBM simulations
using different grid sizes. In table 5.1 the geometrical and fluid parameters of the test case
are shown. The input velocity used is a constant velocity in order to be able to compare
the flow to the analytical solution derived in the previous section. The simulation time is
kept as short as possible, while still achieving a fully developed flow, to further reduce the
computational time.

Table 5.1: Simulation parameters for preliminary flow studies

Parameter Value Unit Parameter Value Unit

Length 6 [mm] Density 9.933E-7 [kg/mm3]
Inner diameter 0.6 [mm] Viscosity 6.913E-7 [kg/(mm · s)]
Outer diameter 1.2 [mm] Velocity 0.2 [mm/s]
Pressure 1 [Pa] Omega 1.6 [-]

A total of 5 LBM simulations are performed. The descriptions of the simulations are shown
in table 5.2. Each consecutive simulation the spatial step size is halved and therefore the
amount of elements in vertical direction is doubled. The time step is reduced for finer grid
sized due to the definition for the time step as a parameter that is implicitly dependent on
the spatial step size. N is the total number of elements in the domain whereas Nvert is the
amount of elements between the outer and inner radii in vertical direction.
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Table 5.2: Simulation results of preliminary flow studies

Grid dx dt N Nvert

1 0.075 3.37e-04 5356 3
2 0.0375 8.42e-05 53130 7
3 0.01875 2.1e-05 496156 15
4 0.009375 5.26e-06 3918500 31
5 0.0046875 1.32e-06 32085468 63

In figure 5.2 the fluid velocity over time is plotted for the first 0.2 seconds of simulation time
for a probe located at position [X,Y,Z] = [0.7,1.15,5]. This probe locations corresponds with
a point somewhere near the end of the channel which is located in the centre of the upper
region, however the same results should be obtained for probe locations at other depths in
the channel. Next to the simulation results the exact solution is plotted as a horizontal line.
It can be seen that the coarsest grid size is not able to reach a converged solution in the first
0.2 seconds, however all finer grid sizes are able to achieve a converged solution. Furthermore
it can be seen that for a finer grid size the converged solution approaches the exact solution
better and the flow converges faster. This more accurate solution is due to a finer grid size
being better able to represent the fluid flow and the faster convergence time is due to the
smaller time step.

In figure 5.3 the velocity profile in vertical direction is plotted for all the grid sizes after
2 seconds of simulation time. As can be seen the velocity profile approaches the analytical
solution more and more accurate as the grid size is refined. The coarsest two grid sizes show
significant differences with the exact solution, however the finer 3 grid sizes all approach
the exact solution quite accurately. The small difference between the finest grid and the
analytical solution can be explained due to numerical errors.

Figure 5.2: Fluid velocity over time for
different grid sizes at [X,Y,Z] = [0.7,1.15,5]

Figure 5.3: Vertical velocity profile for differ-
ent grid sizes
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5.4 Convergence

To be able to determine if the results on the finer grid sizes are refined enough a grid
convergence study is performed. First of all the classical method is used, in which the
error term is plotted on a log-log scale to the mesh size and compared with the assumed
discretization error based on the used numerical scheme. The euclidean norm as shown in
equation 5.12 will be used for the error term. In which N is the total number of elements,
Xh is the numerical solution and X is the analytical solution.

L2(x) =
1

N

√∑
(Xh −X)2 (5.12)

In figure 5.4 the log-log plot of the error terms is shown against the spatial step size. Fur-
thermore the analytical second order accuracy is plotted. It can be seen that the slope of the
numerical solutions is slightly less steep than the analytical expectation. This is an expected
result. In theory the Lattice Boltzmann method is second order accurate however the use of
boundary conditions and grid will reduce this order so that the observed order of accuracy
is likely to be lower [52]. However the slope of the finest grid sizes is close enough to assume
a converged solution.

Figure 5.4: L2 norm on different grid sizes

Another way to check for grid conversion is the use of the grid convergence index. In the
classical method the observed rate of convergence was determined graphically, however with
this method the rate of convergence is quantified. Another advantage to this method is that
no analytical solution is required, which is the case in most practical scenario’s. To be able to
calculate the index three grid sizes are required, therefore only the three finest grid sizes are
used here. It should be noted that the derivation and method below is only valid when the
refinement ratio r is a constant, which is the case here as r = h3/h2 = h2/h1 = 2. Using the
solutions on the different grid sizes the observed order-of-convergence is calculated according
to the following formula:

p =
log(f3−f2

f2−f1
)

log(r)
(5.13)

This results in an observed order of convergence of 1.67, which is in line with figure 5.4 and
an order of slightly lower than 2 makes sense as mentioned before.



Chapter 6

Straight artery simulations

The first set of simulations that are performed are those of CSF flow simulation in a straight
artery’s PVS. These simulations build the base of knowledge on which the rest of the simula-
tions shown in later chapters elaborate. The results of these simulations can be interpreted
quite well by basic intuition and can therefore easily be checked for mistakes in the code.

The aim of these simulations is to gain insight in the effect of cross-sectional shape changes
on the magnitude of the flow and the different cross-sectional velocity profiles resulting from
these changes. In these simulations the geometry of the artery and the PVS are heavily
simplified, however the CSF parameters and flow behaviour is matched to the real world
case. The CSF inlet flow conditions are obtained by scaling the results of measurements
done in mice to the human brain size and as such can be considered relatively accurate.

This chapter is divided in several sections, starting with the details about the CSF and
the flow of this fluid in the PVS. Then the geometries for these simulations are presented in
section 6.2. Finally in section 6.3 the results of the simulations are presented and discussed.

6.1 CSF fluid and flow

In section 2.3 a general description of the flow and characteristics of CSF is given, based on
measurements and research performed previously. However, most of these measurements are
performed on mice and rodents, whereas in these simulations the CSF flow in the human
brain is the area of interest. As such several characteristics of the CSF flow such as overall
flow speed, oscillation time and oscillation intensity still need to be determined. Furthermore
the general characteristics of the fluid are yet to be quantified. Therefore in this section first
the the fluid characteristics are quantified, then a quantified description of the CSF flow in
mice is given after which the scaling of these flow characteristics to the human brain size is
explained.

6.1.1 Cerebrospinal fluid characteristics

To be able to simulate the fluid only two parameters are required, the density and the
viscosity, as the remaining parameters required can be derived from these two. As mentioned
in section 2.1 CSF behaves like a watery fluid and as such the properties of water are valid to
simulate the fluid behaviour. These parameters of water are dependent on the temperature,
therefore the temperature within the human body is required, this can safely be assumed

27
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to be on average about 37 °C [53] and thus this temperature is used to determine the CSF
properties. The properties shown in table 6.1 are used to model CSF in the simulations.

Table 6.1: Properties of CSF at human body temperature

Property Symbol Value Unit

Temperature T 37 °C
Density ρ 993.3 kg/mm3

Viscosity µ 0.6913 mPa · s

6.1.2 CSF flow in rodents

As mentioned in section 2.3 and shown in figure 2.4 and 2.5 the flow of CSF has a pulsating
nature. It can be seen that both the bulk flow velocity and the amplitude of the back-and-
forth movement is relatively constant, which shows a lot of similarity to a sinusoidal wave.
Therefore a simplified inflow profile of CSF can be constructed using a sinusoidal waveform
with an amplitude of 20 µm/s and an oscillating intensity of 10 µm/s which is based on the
measurements [29][27] performed on mice and can therefore be assumed to be realistic. The
only remaining variable is the period of the sinusoidal. As mentioned before in section 2.3
the pulsating behaviour is synchronous with the heart rate and from figure 2.5 a heartbeat
of 360 beats per minute can be derived for that particular animal, this is within the range
of 310 to 840 beats per minutes which is the normative range for laboratory mice [54]. The
resulting simplified inflow condition for rodents is shown in figure 6.1 over a period of one
second.

6.1.3 CSF flow in humans

As the CSF fluid flow in the PVS is defined for the case of a mice brain the question now
arises how to obtain this data for the human brain case. The measurements used to determine
the flow in the mice brain have not been performed on humans, due to ethical limitations.
However, if the CSF flow in the human brain can be quantified somewhere outside of the
PVS and this same flow can be quantified in the mice brain a scaling factor can be calcu-
lated and used to relatively accurate predict the CSF flow in the PVS for the human brain.
To obtain this scaling factor the CSF flow through the cerebral aqueduct is used. Within
humans and mice the CSF volume flow through the cerebral aqueduct and its cross-sectional
size is known, such that the CSF velocity can be determined in both cases. Therefore the
ratio between CSF flow through the cerebral aqueduct and the PVS in mice is calculated
such that this conversion factor can be used to obtain the CSF flow in the human cerebral
aqueduct to the PVS.

The net CSF flow in the PVS of mice is known, therefore only the net CSF flow through
the cerebral aqueduct is still needed to obtain the conversion factor. There are no direct
measurements of this flow within mice, however by combining several other data the net flow
can be obtained. Within the mice brain the CSF production is measured to be about 350
nanolitres per minute [55][56]. Due to the anatomy of the brain as shown previously in figure
2.1 the volume flow through the cerebral aqueduct is roughly equal to the total CSF produc-
tion. The surface area of an intersection of the cerebral aqueduct in mice is determined to
be on average about 0.15 mm2 [57]. As a result the CSF flow velocity through the cerebral
aqueduct is about 0.039 mm/s. From section 6.1 we know that the CSF velocity through
the PVS is measured to be about 0.02 mm/s, therefore it can be said that the net CSF ve-
locity through the PVS is about half that of the CSF velocity through the cerebral aqueduct.
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As the conversion factor is known, the last unknown is the velocity flow of CSF through
the cerebral aqueduct within the human brain. Research has been done on the volumetric
net flow rate and direction of CSF in idiopathic normal pressure hydrocephalus within the
human brain [58], however the interesting part for this thesis is the data from the control
group of healthy subjects. The research showed a CSF volumetric net flow rate in the cere-
bral aqueduct of about 300 millilitres in 24 hours, which equates to about 0.2 millilitre per
minute and corresponds to other research on this flow [55]. The surface area of the intersec-
tion of the cerebral aqueduct in men is determined in a research using magnetic resonance
imaging (MRI) data to be about 8 mm2 [59]. Combining the volumetric flow and the surface
area, the velocity of the CSF flow through the cerebral aqueduct in humans is determined
to be about 0.4 mm/s. With the conversion factor obtained from the measurements in mice
it can then be assumed that the net flow velocity of CSF in the human PVS is about 0.2
mm/s. From the same mice data the oscillatory movement is known to have an amplitude
of half the net flow, which results in an oscillatory amplitude of the CSF flow in humans of
0.1 mm/s. The resting heart rate for humans varies between 60 to 100 beats per minute
[60], in this thesis a resting heart rate of 60 is assumed. Using the determined values the
simplified CSF velocity flow shown in figure 6.2 is obtained.

In table 6.2 a summary of the CSF flow in mice and human is presented. In the table the
bold values are the calculated values whereas the other values are obtained from literature
as explained in the previous paragraph.

Figure 6.1: Simplified CSF velocity in mice Figure 6.2: Simplified CSF velocity in humans
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Table 6.2: CSF flow comparison between mice and humans

Description Mice Unit Human Unit
quantity quantity

CSF bulk flow PVS 20 µm/s 0.2 mm/s
CSF oscillating flow PVS 10 µm/s 0.1 mm/s
Heartbeat 360 bpm 60 bpm
CSF flow cerebral aquaduct 0.039 mm/s 0.4 mm/s
CSF production 350 nanolitres/minute 300 millilitres/day
Cerebral aquaduct size 0.15 mm2 8 mm2

6.2 Geometry and simulation setup

In this section the different geometries that are used in the simulation will be discussed and
the simplifications that are made will be explained. The geometries for these simulations
have to represent the area between the inner PVS wall and the outer artery wall. In section
2.2 a description of this area is already given, however in this section the quantified geometry
will be presented.

First it should be noted that several simplifications are made to both the geometry and
the simulation approach in general. The reasoning behind those simplifications is mainly to
reduce the complexity in unnecessary parts. These simplifications are as follows:

• The walls are assumed to be static

Even though some researches suggest that a wavelike motion in the walls is the driving
force of the CSF flow [27][30] this would complicate the simulations significantly.

• No elasticity is present in the walls

In the most realistic case artery walls will have some elasticity in them. However once
again this would complicate the simulations significantly and it is isn’t expected to
make too much impact on the results.

• Gravitational forces are neglected

Gravitational forces are neglected in this case due to simplicity.

• Driving forces are reduced to an inlet flow

The driving forces of the CSF flow in the PVS are still up for debate, several researchers
claim that a wavelike motion in the artery wall or rigid arterial motions have a part
to play in the driving force. However, as this thesis is not interested in why the fluid
moves, but is focused on how the fluid moves, the resulting fluid flow is obtained by
inducing a velocity flow at the inlet of the geometry.

In this set of simulations the comparison is being made between three different geometries.
The geometries are based on the research done in section 2.2 and are selected to cover most
of the changes in cross-sectional area that have been found in the research. The geometries
can be explained as a concentric annulus, a flattened elliptical shape and the same elliptical
shape with an off-centred artery. The concentric annulus geometry serves multiple purposes,
first of all it can be used as a benchmark case as the analytical solution for this shape has
already been derived in section 5.2, but mainly it is chosen as the current computational
studies all use this shape for their PVS and thus it can directly be compared to previous
studies. The elliptical and flattened shape is based on the more recent findings that the PVS
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shape is indeed flattened and elongated along the direction of the skull. The third geometry
uses the same inner PVS wall as the elliptical and flattened shape, however in this case
the artery is not centred, this has been shown to be more realistic, however the amount off
displacement is difficult to determine, therefore an estimated value is taken in the geometries.

It is important that the results of the three different geometries are comparable. This is
first of all done by keeping the length of the geometries the same, but the question remains
what the dimensions of the flattened elliptical shape should be to keep it comparable to
the concentric shape. In order to keep the flow behaviour in the various simulation compa-
rable the Reynolds number will be matched, as shown in equation 6.1 the only parameter
dependent on the geometry is the characteristic length L. This characteristic length is in the
case of annular shaped regions the hydraulic diameter, dh, which therefore will be matched
between the different geometries. The calculation of the hydraulic diameter for the case of
a concentric annulus is well known and shown already in the denominator of equation 5.2,
but for clarity also shown in equation 6.2. The calculation for the hydraulic diameter of an
annular ellipse is slightly more complicated as shown in equation [61]. It should be noted
that in the case of an off centred artery the hydraulic diameter does not change.

Re =
uL

ν
=

ρuL

µ
(6.1)

dh,annulus = dout − din (6.2)

dhellipse = dellipse,outer − din dellipse,outer =
4wh

(
64− 16e2

)
(w + h) (64− 3e4)

with e =
w − h

w + h
(6.3)

The size of the concentric annulus is determined in section 2.2 where it was stated that the
typical radii of the artery is 0.3 mm and the size of the PVS is twice that large. Using
the sizing of the concentric annulus the dimensions of the flattened elliptical shape can be
determined using equations 6.3 and 6.2. There are however two unknowns, being the width
and height of the ellipse, therefore a chosen value of 0.5 is assigned to the width. This is an
arbitrary chosen value based on visual inspection. Keeping the width fixed at a value 0.5
mm and the hydraulic diameter at 0.6 mm, results in a height value for the ellipse of 0.77
mm. These values can be seen in table 6.3, where the values are linked to figure 6.3 for the
concentric annulus and figure 6.4 for the non concentric annulus.

Table 6.3: Geometry parameters

Geometry shape r1 [mm] r2 [mm] r3 [mm] x [mm] y [mm]

Concentric 0.3 0.6 0.6 0 0
Flattened 0.3 0.77 0.50 0 0
Flattened + off-centered 0.3 0.77 0.50 0.15 -0.1

The setup of the simulation parameters is mostly the same as in section 5, where the fluid has
the properties of CSF and the geometry of the artery itself is mimicking the PVS and is long
enough to observe a fully developed flow. Furthermore a spatial step size, dx, of 0.009375
is chosen based on the grid convergence study performed in section 5 this was deemed to
be accurate while still keeping the computational requirement manageable. In table 6.4 the
simulation and some geometry parameters for this study are shown and in figure 6.5 the
meshed geometries are shown.
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Figure 6.3: Geometry definitions for con-
centric annulus

Figure 6.4: Geometry definitions for non
concentric annulus

a) b) c)

Figure 6.5: Meshed geometries of a) the concentric b) the flattened and c) the flattened and
off-centered PVS

6.3 Analysis

The first simulation results are achieved by running fluid simulations on all three of the
geometries shown in figure 6.5 over a time of six seconds using the velocity input shown in
figure 6.1.3. In this section the results of these simulations are shown and the analysis of
these results is presented.

First of all the velocity over time is compared between the different geometries. Obviously
when taking the velocity over the entire cross-section the velocities for the different geome-
tries are the same, as the inlet condition is the same and no leakage or fluid penetration of
the walls is present in these simulations. Therefore the velocity over time is taken at the
local maximum velocity nodes at a depth of 3 millimetre into the artery. The maximum
velocity nodes are located in the centre of the largest open space in the cross-section and
their coordinates are shown in table 6.5.

In figure 6.6 the fluid velocity at these nodes is plotted against the simulation time between
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Table 6.4: Simulation parameters

Parameter Value Unit Parameter Value Unit

Length 6 [mm] Density 9.933E-7 [kg/mm3]
Hydraulic diameter 0.6 [mm] Viscosity 6.913E-7 [kg/(mm · s)]
Grid spacing 0.009375 [mm] Omega 1.6 [-]

Table 6.5: Maximum velocity nodes of the three geometries

Geometry shape X [mm] Y [mm] Z [mm]

Concentric 0.69 0.26 3
Flattened 0.45 0.95 3
Flattened + off-centered 0.48 0.80 3

one and three seconds, which shows two pulsating cycles. The sinusoidal pattern with a
period of a second is in accordance with the inflow condition equal to figure 6.1.3. The shape
of the velocity pattern doesn’t change between the geometries which is to be expected, the
difference between the geometries however is the magnitude of the velocity. The off-centered
geometry shows the highest fluid velocity whereas the concentric geometry shows the lowest
velocity. These results are to be expected, as in the concentric geometry the fluid flow will
be evenly distributed around the artery whereas in the off-centered geometry there won’t be
much flow in the small gap compared to the large gap.

To be able to confirm these assumptions several plots are made of the velocity profile of
the cross-section of the different geometries. Two sets of plots are made, one at T1 and one
T2, which are respectively the minimum and the maximum of the sinusoidal and equal to
t = 1.75s and t = 2.25s, as shown in figure 6.6 with vertical lines. At these time steps
the velocity profiles are taken over a slice at z = 3 for the different geometries. A three-
dimensional representation of the different velocity profiles at T1 are shown in figure 6.7, 6.8
and 6.9, whereas the velocity profiles obtained at T2 are shown in figure 6.10 6.11 and 6.12.

Figure 6.6: Velocity profile of maximum velocity node over time

As mentioned before the velocity profiles at time t = T1 show the flow distribution at the low-
est velocity of the pulsating flow. The average velocity flow over the cross-sectional domain



CHAPTER 6. STRAIGHT ARTERY SIMULATIONS 34

at this time step is the same for each geometry, 0.1 mm/s, which is equal to the prescribed
inflow condition.

The geometry with the concentric PVS shape is shown in figure 6.7 and shows the same
shape as was seen during the preliminary studies in section 5. This is to be expected as
the fluid velocities in this simulation once again aren’t high enough for the flow to leave the
laminar region, more specifically the local Reynolds number is approximately 0.13 in this
geometry with a maximum local velocity of 0.15 mm/s. When comparing the velocity profile
of the concentric geometry to the flattened geometry in figure 6.8 it can be seen that the
uniformly distributed flow shifts to a two stream dominated flow. The flattened geometry
shows very little flow in the small gaps and two major flows in the large gaps with velocities
reaching up to 0.22 mm/s. In the case with the off-centered artery shown in figure 6.9 it can
be seen that the flow is dominated in the large gap, whereas around the rest of the artery
the space of the PVS is very small and thus limited flow is present. The main flow in this
case reaches velocities up to 0.28 mm/s.

In table 6.6 the maximum velocities present in the different geometries at time t = T1 are
shown in the second column. When comparing the relative differences between the velocities
taking the concentric geometry as the base the local velocity in the flattened geometry is
almost 1.5 times as high and the off-centered geometry almost twice as high. This increase
in velocity is to be expected due to the fact that the effective diameter over the part of the
geometry with the largest velocity is greater for the flattened and off-centered cases.

The velocity profiles taken at time t = T2 are very similar to those taken at time t = T1. In
these simulations the inlet velocity is pulsating and not oscillating, therefore no directional
changes of the flow are seen and only magnitude differences are present between the two time
steps. As can be seen in figure 6.10, 6.11 and 6.12 once again the concentric geometry shows
a evenly distributed flow around the artery, the flattened geometry results in two flows in
the larger open bodies of the geometry and the off-centered artery results in a dominant flow
in the large open gap with very little flow around the rest of the artery.

The average magnitude of the flow velocity at this time step is for each of the geome-
tries about 0.3 mm/s which is equal to the inlet velocity. The local velocities however once
again change significantly, in the concentric geometry fluid velocities up to 0.45 mm/s are
reached, whereas in the flattened geometry the flow reaches velocities up to 0.68 mm/s and
in the off-centered geometry the highest velocity is reached at 0.85 mm/s. These velocities
are shown in table 6.6 in the third column, once again the same relative increases compared
to the concentric geometry are seen, being 1.5 times for the flattened and almost 2 times
for the off-centered geometry. Even though the local velocities are significantly higher than
those at t = T1 the local Reynolds number does not exceed a value of 1, which results in
laminar flow and thus explains the same flow profiles for both time steps.

Table 6.6: Maximum velocities and relative differences

T1 T2 Relative increase
Geometry shape Velocity [mm/s] Velocity [mm/s] Compared to concentric [%]

Concentric 0.151 0.453 100
Flattened 0.227 0.679 ∼150
Flattened + off-centered 0.287 0.856 ∼190



CHAPTER 6. STRAIGHT ARTERY SIMULATIONS 35

Figure 6.7: Velocity profile of concentric
PVS at time = T1

Figure 6.8: Velocity profile of flattened PVS
at time = T1

Figure 6.9: Velocity profile of offcentered
and flattened PVS at time = T1

Figure 6.10: Velocity profile of concentric
PVS at time = T2

Figure 6.11: Velocity profile of flattened
PVS at time = T2

Figure 6.12: Velocity profile of offcentered
and flattened PVS at time = T2



Chapter 7

Geometry change effect on previous
studies

As shown in section 6 the cross-sectional PVS shape significantly influences the shape of
the velocity profile and the local velocity magnitude in the PVS. In section 1 it was already
mentioned that most of the current computational research regarding CSF flow in the PVS
is limited to concentric PVS shapes. Therefore in this section a comparison study is done to
directly investigate the effect of the PVS shape on previous research’s output.

The paper used for this comparison analysis is the research performed by Daversin-Catty et
al. [30]. In this research the mechanisms behind perivascular fluid flow are studied using a
concentric shaped PVS around a geometry of a bifurcating artery. After studying the paper
and its conclusions the question arises whether the cross-sectional shape of the PVS is the
solution to some of the conclusions that were drawn. Therefore in this set of simulations a
simplified version of the performed simulations are done using the same simulation parame-
ters and geometry specifications to reproduce the result for the concentric case and add the
comparison with a flattened and off-centered geometry. The comparison between the three
simulations will then be used to discuss the conclusions drawn in the paper and determine
whether or not the cross-sectional shape is the solution or not.

In this chapter first more details regarding the research and the aforementioned conclu-
sions are given in section 7.1. Then the simulation parameters are given in section 7.2 with
the details regarding the parameters to reproduce the paper’s results. Finally in section 7.3
the results of the three simulations are discussed and the conclusions are drawn.

7.1 Details of the research

As mentioned the paper is a computational study to determine the mechanisms behind the
CSF flow in the PVS in mice. In the paper the measurements done by Mestre et al. [27]
and Bedussi et al. [29], which have been previously mentioned in section 2, are used refer-
ence net and oscillatory movement. The researchers generated the geometry starting from a
model representation of a cerebral artery. This model was scaled down to mice size and the
PVS was defined by creating an annular cylinder surrounding the artery with the artery wall
as its inner surface. The width of the PVS was set proportional to the arterial diameter,
which is the same assumption as has been made in section 6, which resulted in PVS widths
from 28-42 micrometer and inner arterial diameters of 32-46 micrometer. The mesh of the

36
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resulting geometry is shown in figure 7.1.

To be able to achieve the desired flow velocities seen in measurements the paper compares a
total of seven different combinations of forces. The results of these different force combina-
tions are irrelevant for the purpose of this thesis, therefore only the relevant forces and the
computational model with the best results will be discussed here. First of all there is the
oscillatory component of the flow which is in-phase with the heartbeat. This flow is driven
by pulsatile arterial wall motions, which occur due to the arterial blood flow pulsating in the
artery. However, with only this force acting on the fluid an oscillatory movement is achieved,
but no net flow. Therefore a pressure gradient is added to the model. Several sources and
thus magnitudes of the pressure gradient were tested, but a pressure gradient induced by the
cardiac cycle achieved the most accurate results. The resulting time profile of the average
velocity at the inlet can be seen in figure 7.2 by the yellow line for the relevant case, where
negative values correspond to downward flow (which is in the direction of the blood flow).

Comparison of the results of this computational study with the experimental results of Mestre
et al. [27] and Bedussi et al. [29] results in two major differences:

• First of all the average peak-to-peak velocity amplitude is higher in the computational
study compared to the experimental results.

• Secondly in order to achieve the measured net velocities in the experimental studies
the upper values of static pressure gradients have to be added to the computational
model.

Figure 7.1: PVS mesh[30] Figure 7.2: Resulting velocity profile (Yellow
for comparison case)

7.2 Simulation parameters

In this study the simulation performed by Catty et al. [30] is redone using three differ-
ent cross-sectional shapes with the purpose of investigating whether this change in setup
solves the differences found between the computational study done and the measurements
by Mestre et al. [27] and Bedussi et al. [29]. In order to perform the simulation several
simplifications are made, as those details are not of relevance in this study.

First of all a simplified version of the geometry shown in 7.1 is used. The sizing of the
geometry is kept the same, however instead of the complex shape shown a straight artery is
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used similar to those shown in chapter 6. Once again three geometries are being evaluated
with different cross-sectional shapes, being a concentric annulus, a flattened PVS and a flat-
tened PVS with an off-centered artery location. In order to match the simulations performed
in the paper the length of the PVS is set at 1 millimetre and the PVS width and inner arterial
diameter are set at the same length of 40 micrometre for the concentric case. The dimensions
of the flattened and the flattened and off-centred case are calculated with the same process
as discussed in section 6.2. The resulting specifications for the geometry are shown in table
7.1, where the numbers are once again matched with figure 6.3 and 6.4. Due to the direct
scaling down of the case used in the previous chapter the same mesh convergence study can
be used, therefore as shown in section 5 once again a total of 31 elements are used in the
vertical direction of the concentric case. The meshed geometries are shown in figure 7.3 for
a cross-sectional slice. Furthermore the fluid properties, such as viscosity and density, are
matched to the paper and shown with the rest of the simulation parameters in table 7.2.

Table 7.1: Geometry specifications for comparison case

Geometry shape r1 [mm] r2 [mm] r3 [mm] x [mm] y [mm]

Concentric 0.02 0.04 0.04 0 0
Flattened 0.02 0.05133 0.0333 0 0
Flattened + off-centered 0.02 0.05133 0.0333 0.01 -0.00667

a) b) c)

Figure 7.3: Meshed cross-sectional geometries of a) the concentric b) the flattened and c)
the flattened and off-centered PVS for the comparison simulation study

Table 7.2: simulation parameters

Parameter Value Unit Parameter Value Unit

Length 1 [mm] Density 10E-7 [kg/mm3]
Hydraulic diameter 0.02 [mm] Viscosity 6.97E-7 [kg/(mm · s)]
Grid size 0.00064 [mm] Omega 1.6 [-]

To be able to achieve the same flow in the PVS without having to implement the forces
mentioned in section 7.1 the inlet velocity in these simulation is matched to the resulting
velocity of the paper. This does mean that the arterial wall is static in these simulation,
instead of having the arterial wall pulsations which are used in the paper. Therefore the
streamlines of the simulations in this case will be straight lines, but this does not influence
the magnitude differences which are required to answer the questions in this study. The time
profile of the average velocity shown in figure 7.2 is quantified, resulting in the velocity over
time profile shown in figure 7.4.
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Figure 7.4: Quantified inlet velocity of comparison study

7.3 Analysis

To be able to answer the question stated in section 7.1 several aspects of the geometry are
analysed. First of all the velocity profile plots at two time steps are shown and compared
to be able to analyse the general flow profile. Then the fluid velocity for the main flowing
region in the geometry is analysed over time and lastly an estimated plot for the microsphere
position over time is constructed and compared.

First of all the velocity profiles at two time steps are shown, the maximum downstream
velocity and the maximum upstream velocity. These time steps are indicated in figure 7.4,
with the maximum downstream velocity shown as T1 at 0.009 seconds and the maximum
upstream velocity shown as T2 at 0.024 seconds. In figure 7.8 to 7.13 the velocity profiles are
shown for all three geometries at both time steps. As the geometry between this study and
the simulation performed in section 6 are the same the velocity profiles show identical shapes.
In this case however the flow changes direction which is clearly visible when comparing the
two time steps. In the concentric case a clear laminar parabolic poiseuille-like flow profile
is shown, which verifies the simulations as this is to be expected for simulations with such
low Reynolds numbers. As is the case in the previous study shown in chapter 6 adjusting
the geometry to a flattened PVS case increases local velocity in the two larger open regions.
Moving the artery results in a clear distinction between the main flowing region and slower
creeping flow regions in the rest of the geometry.

Secondly the average fluid velocity over time is being compared and analysed. This is done
by taking the average fluid velocity over a line through the largest open area in the geometry
as indicated in figure 7.3 by the black lines. The average velocity over the entire cross-section
is the same for each of the geometries, however the average fluid velocity over this line does
change. In the measurements performed by Mestre et al. [27] and Bedussi et al. [29] it is
mentioned that microspheres that got stuck and stopped moving weren’t taken into account.
Therefore it can be assumed that the microspheres that were taken into account during the
measurements would for the majority be flowing in the largest open area of the geometry, as
the microspheres in the small gaps would more easily get stuck. The result is shown in figure
7.5 in which all three geometries are shown in one diagram. As can be seen in the concentric
case the average velocity is identical to the velocity obtained in the paper by Catty et al. [30]



CHAPTER 7. GEOMETRY CHANGE EFFECT ON PREVIOUS STUDIES 40

as shown in figure 7.2 which is to be expected and thus verifies the simulation parameters.
It can then be seen that the average velocity over the main flowing gap of the geometry
increases for the other two geometries, both the maximum upstream velocity increases as
well as the steady downstream velocity. As such the peak-to-peak velocity in this region
increases as well.

Figure 7.5: Average fluid velocity over time

In figure 7.7 the resulting position plot of particles released at the inlet of the simulation
performed by Catty et al. [30] is shown, where the yellow line is the model which this studies
compares to. Therefore an estimated microsphere position plot is made using the average
velocity over time plot as shown in figure 7.5. By multiplying the fluid velocity with the
temporal time step size the expected movement of a microsphere which is to be released in
the PVS is obtained. In figure 7.6 the position plot is shown over 0.5 seconds of simulation
time, which can therefore be compared to the result obtained in the paper shown in figure
7.7. The result of the concentric case should be identical to the result in the paper, however
in this case it can be seen that there is a discrepancy between the two. In the paper the
microsphere reaches a downstream position of 15 micrometre after 0.5 seconds, whereas in
the performed simulation in this study the position is about 11 micrometre downstream. This
difference is caused by a slight inaccuracy in the quantification of the velocity over time data
from the paper to the input velocity of the simulation model used in this thesis. However
since the oscillation of the microsphere is almost identical and the flow is highly laminar this
discrepancy should not influence the statements made in this thesis. As is to be expected
based on the average fluid velocity over time plot it can be seen that for the flattened and
the off-centred case both the oscillation and the net downstream velocity increases.

Recalling the question stated in the introduction of this chapter in section 7.1, whether or not
changing the cross-sectional shape of the PVS is the solution to the too high peak-to-peak
velocity amplitudes and the too high required forces. First of all the peak-to-peak velocity, in
figure 7.5 the development of fluid velocity over time is shown from which the peak-to-peak
velocity can be derived. In table 7.3 the maximum downstream and upstream velocity of
all three geometries is stated with the resulting peak-to-peak velocity amplitude. As can
be seen, rather than reducing the peak-to-peak velocity amplitude it is only increased. In
figure 7.6 however it can be seen that when assuming that the majority of microspheres will
move through the largest and fastest flowing region of the geometry the net and oscillating
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Figure 7.6: Estimated microsphere
position plot over 0.5 seconds

Figure 7.7: Position plots of particles obtained
by Catty et al. [30]

movement increases significantly. In table 7.4 it is shown that the net movement of the
microspheres is about 1.5 times as high for the flattened shape compared to the concentric
shape, whereas the offset of the artery even increases the movement to twice as high as the
concentric case. Therefore it can be said that most likely lower forces can be applied to the
fluid, which are more in the reasonable range, while still achieving the movement patterns
described by Bedussi et al. [29] and Mestre et al. [27].

Table 7.3: Peak-to-peak velocity analysis of the simulations

Geometry shape Max downstream [µm/s] Max upstream [µm/s] peak-to-peak [µm/s ]

Concentric 70 190 260
Flattened 107 287 394
Flattened + off-centered 135 365 500

Table 7.4: Estimated net and oscillatory movement of microspheres

Geometry shape Net flow [µm/s] Oscillating movement [µm/cycle]

Comparison paper 30 2
Concentric 22.6 2
Flattened 34.4 3.3
Flattened + off-centered 43.6 4.3
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Figure 7.8: Velocity profile of concentric
PVS at time step T1

Figure 7.9: Velocity profile of flattened
PVS at time step T1

Figure 7.10: Velocity profile of off-
centered and flattened PVS at time step
T1

Figure 7.11: Velocity profile of concentric
PVS at time step T2

Figure 7.12: Velocity profile of flattened
PVS at time step T2

Figure 7.13: Velocity profile of off-
centered and flattened PVS at time step
T2



Chapter 8

Realistic artery study

In the previous chapters the CSF flow behaviour is simulated and analysed in straight ar-
teries with three different cross-sectional shapes. The effect of the changes in cross-sectional
shapes have been analysed and compared to previously published studies. However the ques-
tion that arises is whether these findings are also valid for more complex and realistic shapes
of the artery and PVS. Therefore a third set of simulations is performed using a realistic
artery geometry around which the PVS is constructed.

Using the realistic artery geometry will introduce several new aspects to the simulation,
being a bifurcation of the artery, several complex and tight corners of the artery as well as
an artery wall with varying diameter. The tight cornering does however also limit this study
in some extend. In the previous simulations three different cross-sectional shapes for the
PVS were used, a concentric, a flattened and an off-centered flattened shape. Due to the
tight cornering present in this artery and the size of the PVS the flattened shape with an
off-centered artery can’t be constructed as will be explained in section 8.1. Therefore only
the concentric and flattened shape are used in this study. In general the same simulation
parameters are used as in the previous studies such that the results can be compared.

In this chapter first the construction of the geometry and the simulation parameters are
discussed after which the results of the simulations are shown and analysed.

8.1 Geometry

As mentioned in the introduction the geometry of the PVS is based on the geometry of a
realistic artery which is shown in figure 8.1. It is a visualisation of an artery present in
the brain, however it contains more small arteries than is usually seen in pial arteries which
this thesis is interested in. Therefore the artery is slightly altered by removing the small
bifurcations seen at the top of the geometry, such that only the core artery is left as shown
in figure 8.2. The resulting geometry is a realistic artery shape with varying diameter over
the length, containing a bifurcation as well as several complex corners.

43
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Figure 8.1: Full artery model Figure 8.2: Reduced artery model

The vertical length of the model is about 10 millimetres and the diameter of the artery varies
between 0.4 and 0.5 millimetre. Therefore the PVS should have a diameter of somewhere
between 0.8 and 1 millimetre for the concentric case as this is double the size of the artery,
in these simulations a constant diameter of 0.85 millimetre is chosen for the concentric PVS.
The size of the flattened geometry is once again selected based on the procedure described in
section 6.2. The resulting geometry specifications are shown in table 8.1, where the numbers
are once again matched with figure 6.3 and 6.4.

Table 8.1: Geometry definitions for the realistic artery study

Geometry shape r1 [mm] r2 [mm] r3 [mm]

Concentric 0.2-0.25 0.425 0.425
Flattened 0.2-0.25 0.35 0.56

The PVS is constructed around the artery model using the 3d CAD design software Solid-
Works. First the centre line of the geometry is constructed, such that the PVS shapes can
then be drawn over this line. However, the exact centre line of the geometry can’t be used
as this would result in the PVS intersecting itself. This problem occurs due to the size of the
PVS and the tight corners. As the size of the PVS can’t be adjusted this problem is solved
by relaxing the centre line in the the corners, as increasing the radius of the corners makes
it possible for the PVS shapes to follow the line. This does however mean that the artery is
not exactly in the centre of the PVS in most of the geometry, but the location of the artery
with respect to the PVS is the same for both cross-sectional shapes and thus no significant
problem is expected as a result of this. The geometry with the artery and the PVS and the
artery is shown in figure 8.3 and 8.4 for respectively the concentric and the flattened PVS
model.

The geometries in this study are of the human brain size and therefore almost identical
to the sizes in the simulations performed in section 6. As a result the grid convergence
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study, as shown in section 5, can once again be used to determine the spatial step size and
thus dx = 0.009375 is used for the simulations. This spatial step size is sufficient for an
accurate solution, but still limiting the required computational power. In figure 8.5 and 8.6
the meshed geometries of respectively the concentric and the flattened geometry are shown
in which the inlet is located at the top and the outlet located at the bottom of the geometry.

Figure 8.3: Concentric PVS model Figure 8.4: Flattened PVS model

Figure 8.5: Meshed geometry of
the concentric PVS model

Figure 8.6: Meshed geometry of
the flattened PVS model
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8.2 Simulation parameters

In these simulations the CSF flow in the human brain is once again simulated, which is the
same setup as the simulations performed in chapter 6. Therefore most of the simulations
parameters are identical to that study as can be seen in table 8.2. In this section a new inlet
velocity will be created for this set of simulations.

Table 8.2: Simulation parameters study 3

Parameter Value Unit Parameter Value Unit

Length 10 [mm] Density 10E-7 [kg/mm3]
Hydraulic diameter 0.45 [mm] Viscosity 6.97E-7 [kg/(mm · s)]
Grid size 009375 [mm] Omega 1.6 [-]

This study uses the same inlet velocity profile as described in chapter 7. In that study
however, the CSF flow in a mice was modelled, therefore the inlet velocity profile has to be
scaled to the human brain size for this set of simulations. The main difference between CSF
flow in the human and mice brain is the oscillation frequency and the magnitude. The heart
rate of a human at rest is about 60 beat per minutes, whereas the heart rate of a mice is
between 500 and 700 beat per minute, so roughly 10 times faster than humans [62]. As the
heart rate is directly linked to the oscillation frequency this means that instead of a cycle of
0.1 seconds, which was the case in chapter 7, a cycle of 1 second is used here. Furthermore
the CSF velocity in the human brain is higher than in mice brains, which in section 6.1.3
and table 6.2 was shown to be about 10 times as large. As a result the inlet velocity profile
shown in figure 8.7 is used for the simulations.

Figure 8.7: Inlet velocity profile study 3

8.3 Analysis

The aim of this simulation is to analyse and compare the behaviour of the CSF flow in the
two different PVS shapes. To be able to get a full understanding of the behaviour of the flow
several different approaches to the analysis have been performed. First of all the velocity
profile over different slices in the geometry have been plotted and compared to be able to
get a global understanding of how the fluid flows through the PVS. Then the flow has been
visualised using streamlines and glyph plots at different time steps, such that the develop-
ment of the flow over time can be seen. Last but not least the fluid velocity of nine points
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throughout the geometry have been plotted over time to be able to analyse and compare the
exact development of the flow in these points over time.

When taking a closer look at the geometry there is a decent amount of symmetry visi-
ble through which the fluid flow will behave roughly the same. Therefore by focusing the
analysis on certain regions the analysis can be done more in depth, while still achieving the
same amount of completeness. For the analysis using the geometry slices, the streamlines
and the glyph plots the focus is on the bifurcation region and the region containing the right
cornering, the cutout of these regions can be seen in respectively figure 8.8 and 8.9.

Figure 8.8: Meshed geometry of bifurcation
section with indicated slices

Figure 8.9: Meshed geometry of right
cornering section with indicated slices

8.3.1 Velocity profile slices

First of all the velocity profile slices will be discussed. These are used to show the general
flow shape of the fluid flow in the PVS. A total of 5 slices are made, two of which are located
in the bifurcation region and the other three are located in the right cornering region of the
geometry. In figure 8.8 and 8.9 the slices are indicated by black straight lines and labelled
with a number and in table 8.3 the coordinates of the different slices are given. The slices are
taken at a time of t = 2.28 seconds, which is just after the peak in downward velocity flow
as can be seen in figure 8.7. This time step is selected due to the high fluid velocities present
in the geometry at this time step, such that the range of velocities is larger and better for
analysing purposes.

Table 8.3: Coordinates of velocity profile slices

Origin Normal to
X [mm] Y [mm] Z [mm] X [mm] Y [mm] Z [mm]

Slice 1 3.5 2.9 0.45 -0.05 0.0265 1
Slice 2 3.5 2.9 1.8 0 0 1
Slice 3 2.55 1.3 3.9 -0.4 -0.6 0.7
Slice 4 1.3 1.3 4.5 1 -0.2 -0.05
Slice 5 1.64 1.31 5.3 0.014 -0.2 1
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The bifurcation of the sole artery into two separate arteries is an interesting part of the
arteries geometry as the flow will be divided over both arteries in this region and directly
behind the bifurcation a new void region occurs. To analyse this behaviour two slices are
located in this region, one in front of the bifurcation close to the inlet of the geometry and
one right after the bifurcation. The figures of the velocity profiles of these slices for both
geometries are shown in figure 8.10. It should first be noticed that the velocity profiles of
slice 1, figures 8.10a and 8.10c, are very similar to the results of the first study performed
in chapter 6. This is to be expected as this part of the geometry still closely resembles a
straight artery. As such these velocity profile slices can be used as a good validation for
the simulation. It should however be noticed that in both geometries the velocity in the
upper half of the cross section is higher than in the bottom half, this can be explained by
the fact that the geometry is slightly angled downwards whereas the inlet velocity is injected
horizontally.

When evaluating the slices just after the bifurcation, figures 8.10b and 8.10d, a more unex-
pected results is seen. This part of the geometry is quite significantly angled downward and
it should be noticed that the slice is not taken exactly normal to the artery, as the cross-
sectional shape of the artery seen here is elongated. In this slice the shape of the PVS is also
more similar between the two geometries than expected, however also some clear differences
can be seen. First of all the similarities, in both geometries the bulk of the flow is in the top
region of the slice, which is due to the fact that the artery is angled downwards and thus
the CSF flow is also pushed downwards. It is also clear that in the void region just behind
the bifurcation, in these slices this is the region between the two arteries, almost no flow
is present in both geometries. Furthermore the maximum flow velocity is almost identical
between both the geometries, which compared to the velocities seen in slice 1 is a significant
difference. The difference can be seen in the upper region of the slice, where in the concentric
geometry a higher flow velocity is angled into the left artery compared to the flattened case.
However, in both geometries the bulk flow is directed in the right artery, which is to be
expected due to the direction of the artery as seen in figure 8.2.

In the right cornering section of the geometry three slices are taken for the velocity profile
analysis. These slices are taken after each of the corners to be able to see how the flow moves
through those corners and what the differences and similarities in this region are between
the two geometries. It should be mentioned that all slices are shown viewed from the inlet
side of the geometry towards the outlet of the geometry, in figure 8.11 the different velocity
profile slices are shown.

As can be seen the distribution of the flow around the artery is significantly influenced
by the cornering. The first slice, shown in figure 8.11a and figure 8.11d, is located in the be-
ginning of a vertical descend of the artery. This is clearly visible in the velocity profile slices
by the dominant velocity flow in the region above the artery and shows similar results for
both the concentric and flattened geometry. Even though the flow in the flattened geometry
is dominant in the region above the artery, below the artery there is still a flow present of
about 1.4 mm/s which is about 60% of the velocity seen in the region above the artery. In
the concentric geometry however velocity in the region below the artery reach only up to 0.4
mm/s which is about 30% of the velocity seen in the region above the artery.

The second slices in the cornering section, shown in figures 8.11b and 8.11e, are located
after a right bend of the artery. This is can be seen in the velocity profile slices as the flow
is most dominant in the top left side of the geometry. However contrary to the first slices a
more similar distribution of the flow is seen between the two geometries as both show only
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(a) Concentric slice 1 (b) Concentric slice 2

(c) Flattened slice 1 (d) Flattened slice 2

Figure 8.10: Bifurcation velocity profiles

very slow flow below the artery. In these slices it can also clearly be seen that the twisting
of the flattened artery results in a difference in the velocity distribution, as the flow is more
to the left side of the artery compared to the concentric case.

The last of the velocity slices, shown in figures 8.11c and 8.11f, are located after the last bend
shown in figure 8.9 which is a part of the artery which bends towards the left and upwards.
The results however show velocity profiles which are rather similar to those seen in straight
geometries, with the effect of the bend to the left still visible in the concentric case due to
the flow being dominant to the right of the artery, but an almost evenly distributed flow is
seen in the flattened geometry.

In general the velocity profiles throughout the cornering section show that in the middle
of the corners both geometries show a single dominant flow area as can be seen in figures
8.11b and 8.11e, however these effects are diminished real quick after the corners as seen in
the last set of slices. The shape of the flattened geometry does determine the distribution
of the flow, as it can be seen that due to the twisting of the flattened geometry the flow is
pushed in to regions where it is not expected based on the cornering.
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(a) Concentric slice 3 (b) Concentric slice 4 (c) Concentric slice 5

(d) Flattened slice 3 (e) Flattened slice 4 (f) Flattened slice 5

Figure 8.11: Velocity profile slices in the right cornering section

8.3.2 Streamline plots

The second part of the analysis contains the streamlines and the glyph plots of the bifurca-
tion and right cornering region. In general these two types of plots show similar results, as
they are used to visualise the flow. However, where the streamlines are a great tool to show
the general flow in the region it is less suited for directional and temporal development of
the flow. Therefore the glyph plots are used at different time steps to show the development
of the flow at several critical time steps in the simulation. First the streamline plots will be
discussed.

In figure 8.12 the results for the bifurcation part can be seen and in figure 8.13 the re-
sults for the right cornering section can be seen. These streamline plots are constructed by
placing an evenly spaced sphere at the centre of the artery at the inlet. Within this sphere
a number of points are evenly spaced and their expected path is calculated by reading the
velocity data at each passing cell. In both geometries the sphere is placed at the exact same
location and the same amount of streamlines are constructed such that comparable results
are obtained. The streamlines are furthermore coloured based on the local velocity using the
same colour bar for both geometries as is shown at the top of the figures.

First looking at the top view of the bifurcation, figure 8.12a and 8.12c, the splitting of
the flow into the two arteries is clearly visible. It should be noticed that in both geometries
a disturbance of the flow can be seen in the streamlines flowing into the left artery, this
is caused due to a sudden expansion of the inner artery diameter which is present in the
geometry and therefore expected. In general an expected result is seen where the flow in the
concentric geometry is evenly distributed compared to a more dominant flow in the centre
for the flattened geometry. It can also be seen that in both cases the highest velocity flow
enters the right artery, however this is more present in the flattened case compared to the
concentric case, which is in agreement with the velocity profiles discussed in section 8.3.1.
Directly after the bifurcation a void region is shown for both geometries where almost no
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flow is present. In figures 8.12b and 8.12d the side views are shown. In these plots the
streamlines going into the left artery have been removed from the figure to obtain a more
clear view of the flow entering the right artery. This side view shows clearly the difference
in distribution of the flow, whereas once again in the concentric case the flow is distributed
around the entire artery and in the flattened case two distinct flows can be seen.

(a) Concentric top view (b) Concentric side view

(c) Flattened top view (d) Flattened side view

Figure 8.12: Bifurcation streamlines

The streamlines of the right cornering section are shown both viewed from the back, figures
8.13a and 8.13c, and from the top, figures 8.13b and 8.13d. In the plots shown from the back
it can clearly be seen that the highest velocity flow is present above the artery, which con-
firms the observations made in section 8.3.1. Furthermore the flow follows roughly the same
path except for the end of the cornering section, where due to the twisting of the flattened
geometry the flow is directed differently than the natural flow of the concentric case. When
comparing the local velocities in the cornering section it can be seen that the flow reaches
velocities about 1.6 times as fast in the flattened case compared to the concentric case. This
is higher than observed in chapter 6, however due to the fact that the artery is not exactly
centred throughout the geometry it is expected to observe values somewhere between the
flattened and off-centered case.
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In the top view, figures 8.13b and 8.13d, the expected distinction between the concentric
and flattened case can be seen as in the latter part of the geometry the streamlines for the
concentric case are evenly distributed around the arteries whereas in the flattened case they
are clustered in the two main lobes of the geometry being left and right of the artery in this
case. Furthermore it can be seen that in the flattened case almost no flow is present in the
tight gaps of the geometry and there is almost no crossover between the two flow channels
in the cornering section.

(a) Concentric back view (b) Concentric top view

(c) Flattened back view (d) Flattened top view

Figure 8.13: Streamlines in the right cornering section

So in summary it can be said that looking at the streamlines a clear laminar flow pattern
is seen for the concentric geometry where the flow is distributed rather equally around
the artery expect for the tight corners. Whereas in the flattened geometry case a clear
separation between two flow streams can be seen with little to no crossover between the two.
Furthermore due to the geometry of the flattened case in trying to keep the elliptical cross-
section normal to the artery more twisting in the flow can be seen and thus more complex
streamlines.
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8.3.3 Glyph plots

To be able to analyse the temporal development of the flow several visualisations of the flow
have been made at different time steps. The analysis is once again focused on the bifurcation
region in the beginning of the geometry and the right cornering section after that. To be
able to see the difference between the different stages of the flow in the geometry the flow is
visualised at 4 time steps which are indicated below and shown in figure 8.14 with respect
to the inlet velocity profile. These time steps are selected as they show the most significant
flow in both upwards and downwards direction as well as the flow behaviour slightly after the
directional changes. In figure 8.15 and 8.16 the visualisations of the flows in the bifurcation
are shown for respectively the concentric and the flattened geometry and in figure 8.17 and
8.18 the visualisations of the flows in the right cornering section are shown for respectively
the concentric and the flattened geometry.

t =


T1 = 1.04 Steady upward flow

T2 = 1.16 Accelerating downward flow

T3 = 1.26 Decelerating downward flow

T4 = 1.36 Accelerating upward flow

Figure 8.14: Time steps for glyph plots

First the comparison between the bifurcation section of both geometries will be done. As
this is the first part of the geometry after the inlet this section is still heavily and directly in-
fluenced by the inlet velocity condition. It is therefore very clearly visible what the different
time steps are visualising. Looking at figure 8.15a a steady negative flow towards the inlet of
the geometry is visible, with the highest velocities being present before the bifurcation, which
is to be expected as the total flow is split over the two arteries afterwards. In figure 8.15b
the direction of the flow has just changed, showing a velocity flow going into the geometry
however not much flow is yet present in the arteries as the velocity at the inlet is low and the
time passed is little. In figure 8.15c the maximum velocity of the flow has just been passed
and the flow just started decelerating, it is clearly visible that a concentric geometry is used
here as the flow is present around the entire artery and evenly distributed. Compared to the
previous time step it shows a lot more flow into the geometry. In figure 8.15d the flow once
again just changed directions, this time going into an upward flow, once again the entire
geometry follows this direction of flow, with very little velocity being present at the end of
the bifurcation.

Comparing this bifurcation section to the flattened geometry results shown in figure 8.16
a few things should be mentioned. First of all the expected distribution of the flow into
two main channels is visible in figure 8.16a and 8.16c, where it should also be noted that
after the bifurcation the two distinct flows reduce a bit and a more evenly distributed flow is
visible. In both cases just after changing the direction of flow the distinct two flows can be
seen before the bifurcation, however after the bifurcation almost no flow is present and the
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expected distribution is not quite noticeable. Both geometries show similar results at the
chosen time steps, which can be explained as this bifurcation is closely located to the inlet.

(a) Concentric t1 (b) Concentric t2

(c) Concentric t3 (d) Concentric t4

Figure 8.15: Flow visualisation in the concentric bifurcation section

In the glyph plots of the cornering section in figures 8.17 and 8.18 it should be stated first
that the geometry inlet is located at the right and the outlet is towards the left. Therefore
downward (positive) flow is from right to left and upward (negative) flow is from left to right.

First of all evaluating the concentric case. In figure 8.17a the steady upward flow is present,
which in the cornering section shows a clear dominant flow in the inner corners and a slower
flow at the outer corners. The flow however is evenly across the entire geometry, showing
similar magnitudes of flow velocity at the beginning and end of the geometry. In figure 8.17b
the flow has just changed direction, which is clearly visible in this visualisation. At the
beginning of the geometry a downward flow is visible, still being rather low velocity. In the
middle of the cornering no flow is present due to the collision of the two directional flows, as
at the end of the geometry still an upward flow can be seen. In figure 8.18c a steady down-
ward flow is visible where the flow shows the same behaviour as seen at the first time step,
but in reverse direction. In figure 8.18d the direction of the flow has once again changed,
however in this case it is already more developed than in figure 8.18b, as at the beginning
of the geometry and in the first corner a clear upward flow is visible, but at the end of the
geometry almost no flow is yet present as this part is still changing flow directions.
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(a) Flattened t1 (b) Flattened t2

(c) Flattened t3 (d) Flattened t4

Figure 8.16: Flow visualisation in the flattened bifurcation section

Evaluating the right cornering section in the flattened geometry shows interesting results.
First of all taking a look at figure 8.18a a similar flow pattern to the concentric case can be
seen. In the concentric case the flow is a bit more on top of the artery, which is the same
observation as was made in the velocity profile analysis. However, it can clearly be seen that
both flows attempt to follow the same path, but this is limited due to the twisting of the
flattened geometry. In figure 8.18b the same collision of flow directions is visible as in the
concentric geometry. A downward flow is visible in the beginning of the geometry, almost no
flow in the cornering and then a little upward flow at the end of the geometry. In figure 8.18c
the distinction between the two geometries is once again more visible. Even though both
geometries have the bulk flow following almost the same route, the concentric geometries
shows a more evenly distributed flow in the beginning and end of the geometry, whereas the
flattened case clearly shows two distinct flow channels. In figure 8.18d a similar flow is seen
as in the concentric case at this time step, however it is less developed yet. The flow has
just changed direction and is clearly present in the beginning of the geometry, however in
the cornering and at the end of the geometry no flow has yet been established, whereas in
the concentric case the flow in the cornering had already been established. The differences
between the geometries in the development of the flow at these time steps is to be expected
as the local velocities are significantly different and in these plots, just after the changing of
flow direction at time steps T2 and T3, the bulk flow is most visible.
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(a) Concentric t1 (b) Concentric t2

(c) Concentric t3 (d) Concentric t4

Figure 8.17: Flow visualisation in the concentric right cornering section

(a) Flattened t1 (b) Flattened t2

(c) Flattened t3 (d) Flattened t4

Figure 8.18: Flow visualisation in the flattened right cornering section



CHAPTER 8. REALISTIC ARTERY STUDY 57

8.3.4 Velocity profiles over time

To evaluate the temporal development of the flow a total of 9 points have been taken within
the geometry over which the velocity is analysed over time. These 9 points are distributed
such that there is 1 shared point before the bifurcation and then another 4 points distributed
over the length of each of the bifurcated arteries. The exact node is in general selected straight
above the artery, however due to the twisting of the flattened geometry in several location
there is almost no flow straight above the artery. Therefore, the node with the maximum
velocity is selected in the flattened geometry, after which this location is transposed to the
concentric geometry for the concentric analysis node. In figure 8.19 the locations of these
points are shown in the mesh of the concentric geometry and in table 8.4 the coordinates of
the different points are stated. To be able to completely analyse the flow, both the magnitude
of the velocity is recorded as well as the individual components of the velocity.

Figure 8.19: Indicated location of analysis points

Table 8.4: Coordinates of velocity analysis points

Concentric PVS shape Flattened PVS shape
X [mm] Y [mm] Z [mm] X [mm] Y [mm] Z [mm]

Point 1 3.6 4.23 1 3.58 4.27 1
Point 2 2.63 2.32 3 2.61 2.35 3
Point 3 1.5 0.84 4.68 1.13 0.99 4.78
Point 4 1.11 1.63 6 1.15 1.63 6
Point 5 2.04 1.66 8.4 2.02 1.74 8.4
Point 6 4.35 2.17 3 4.31 2.22 3
Point 7 5.4 0.26 4.1 5.4 0.14 4.13
Point 8 5.95 1.7 6 5.9 1.76 6
Point 9 5.23 1.9 8.4 5.21 1.94 8.4
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In figure 8.20 the different velocity plots are shown for the shared point 1 and the points 2
to 5 located in the left artery. Here plots (a) till (d) are showing the results of the concentric
geometry and plots (e) till (h) show the results of the flattened geometry. It should be noted
that the y-axis in the plots do not show the same range of values, this is chosen such that
the shape of the curves can be compared more easily, whereas the difference in magnitude
of the flow is already discussed in the previous simulations and analysis.

In general it can be seen that the magnitude of the velocity is lower for points further
down in to the PVS, which is to be expected, with the exception of point 2. This is only
explainable due to this point being located right after the bifurcation, where due to the larger
shape of the joined PVS of both bifurcated arteries the CSF flowed through a larger region
which resulted in a velocity loss.

Furthermore the plots are showing very similar results, varying very little between the con-
centric and flattened case except for some small magnitude differences between the different
points. The main difference is seen in the vertical velocity (or Y-velocity) in point 4. In
the concentric case the vertical velocity achieves only small negative values in point 4, thus
implicating a downward stream which is to be expected in this part of the geometry. In
the flattened case the vertical velocity in point 4 reaches a positive value, thus indicating an
upward stream. This can be explained due to the fact that the flattened geometry in this
cornering section twists from a vertical elliptical shape to a horizontal elliptical shape, thus
pushing the fluid below the artery upwards and the fluid above the artery downwards.

(a) Concentric
magnitude

(b) Concentric
X-velocity

(c) Concentric
Y-velocity

(d) Concentric
Z-velocity

(e) Flattened
magnitude

(f) Flattened
X-velocity

(g) Flattened
Y-velocity

(h) Flattened
Z-velocity

Figure 8.20: Velocity over time data for left artery

In figure 8.21 the resulting plots of the 5 points in the right artery are shown, where point 1 is
once again the shared point before the bifurcation. The results are very similar with regards
to the left artery. This similarity is to be expected due to the locations being roughly equal,
but this also confirms the assumption made in the previous analysis where the symmetry
of the geometry is used to focus on the bifurcation and right cornering section. Once again
the differences between the concentric and flattened case are apart from the magnitude
differences minimal, however some interesting things should be noted.
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In point 6, right after the bifurcation, once more a relatively low velocity magnitude is seen
with respect to the other points, which indicates once again that right after the bifurcation
a velocity loss is present. The main differences in the shape of the velocity curves in this side
of the geometry is again seen in the vertical velocity. In both point 7 and point 8 differences
between the concentric and flattened geometries are noted. In point 7 the vertical velocity
increases in the flattened case whereas in point 8 the vertical velocity decreases relative to
the other points. This is once again the result of the twisting of the cross-section of the
geometry, which pushes the flow more upwards or downwards depending on the direction of
the corner and the twist.

(a) Concentric
magnitude

(b) Concentric
X-velocity

(c) Concentric
Y-velocity

(d) Concentric
Z-velocity

(e) Flattened
magnitude

(f) Flattened
X-velocity

(g) Flattened
Y-velocity

(h) Flattened
Z-velocity

Figure 8.21: Velocity over time data for right artery



Chapter 9

Discussion, conclusions and
recommendations

In this chapter the report will be finalised. First the obtained results and several noteworthy
choices made will be discussed. Then the research questions stated in the introduction will be
answered and the conclusions of this thesis are stated. Finally recommendations for further
research will be made, what is the next step in this line of research and how could this
research be improved upon.

9.1 Discussion

In this section first the setup of the simulations will be discussed, after which the results of
the different sets of simulations will be discussed.

All the simulations done in this thesis have used the measurement of the CSF flow in the PVS
of mice. These measurement have been performed by multiple researchers [27][29][31], such
that these results can be assumed to be valid for their specific cases. However, there are two
uncertainties regarding the use of these measurements in this thesis that need to discussed.
First of all to what extend do the microsphere measurements equal the CSF velocity flow
and secondly whether the conversion to the human brain scale is accurately enough.
The measurements of the CSF flow in PVS in mice are done by image tracking of micro-
spheres injected in the CSF flow. The movement of the microspheres is then assumed to be
equal to the CSF flow, however these microspheres do have a mass and size and might there-
fore deviate slightly from the CSF flow. In the results presented in chapter 7 this was already
briefly discussed, as it is to be expected that these microspheres will follow the bulk flow of
the CSF and are more likely to get stuck in the slower flowing and narrower regions around
the artery. The researchers mentioned in their respective papers that particles that got stuck
were eliminated from the measurements, however as long as a slight movement was present
they were accounted for. This uncertainty could result in both a faster or a slower actual
CSF flow in the PVS. It could be that the CSF velocity is higher than the measured values,
due to microspheres that are almost stuck being taken into account in the measurements, or
the average CSF flow in the PVS is slower than the measured values as all the microspheres
measured were located in the regions with the highest local velocity. This uncertainty is not
expected to influence the results significantly, as this will affect all the simulation studies
performed in this thesis for a same amount, therefore the relative comparisons are still valid.
However, when comparing this thesis with studies using new measurement in the future it
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has to be taken into account.
In the simulations performed in chapter 6 and 8 the CSF flow measurements done in the
mice brain were scaled to the human brain. To be able to scale these measurements, data of
CSF production rates, CSF flow rates and sizes of the cerebral aqueduct in the human and
mice brain were used. In the CSF flow through the cerebral aqueduct in mice it was assumed
that all the produced CSF in the brain would move through the cerebral aqueduct. This is
a very rough estimate as most likely the fluid will partially exit the ventricles through other
channels and porous walls as well. Therefore the CSF flow in PVS of humans as used in
chapter 6 and 8 should be seen as a very rough estimate. More research on the CSF flow in
the human brain should be done to be able to accurately define the CSF velocity flow in the
PVS. Also, more research of the CSF flow in mice could be done to be able to accurately
use a conversion method as suggested in this thesis. The conversion method used in this
thesis will result in CSF flow velocities in the PVS of the same order of magnitude as is to
be expected in the real brain, however it is a rough estimate. This discrepancy once again is
not expected to significantly alter the results presented in this thesis as it will merely result
in a quantitative difference, but this is off the same effect for each of the three geometries
used in this thesis. Therefore, the results with respect to the other geometries used here will
stay the same.

In the geometries used in the different simulation studies several simplification were made to
the artery and the PVS. First of all the walls were assumed to be rigid. This assumption is
very common in simulation studies and will alter the results slightly as artery walls should
have an elastic component. However, this won’t be expected to influence the results signifi-
cantly.
The walls were also assumed to be static. Most researches that have currently been performed
on the driving forces of CSF flow have mentioned arterial wall pulsations as one of the main
driving forces of either the bulk flow or the oscillatory component of the flow [30]. It was
mentioned in chapter 7 that this thesis is focused on how the fluid moves and not why the
fluid moves. However, it should be noted that arterial wall pulsations will quite significantly
affect how the fluid moves. Recently research has been performed on peristaltic pumping in
flattened geometries [63]. These wall movements induce much more three-dimensional move-
ment to the flow, which causes a lot more disturbance in the flow. This effect is increased
with increased eccentricity, therefore the effects are expected to be even more significant for
an off-centered artery. In the simulations performed in this thesis the walls were assumed
to be static and it was shown that the effect of the cross-sectional shape has to be taken
into account for further simulation studies. The results obtained by this new study therefore
amplifies the need for more research on this subject as the differences are expected to be
much more significant.

The results obtained in chapter 8 have shown that the cross-sectional shape of the PVS
influences the distribution of the flow around the artery. However, much of these changes
between the flows are related to the twisting of the flattened PVS shape. This twisting had to
be included in the geometry used in this thesis to be able to follow the tight corners without
having the PVS intersect itself. Whether this twisting of the PVS is a realistic behaviour
is unknown, currently only MRI images of cross-sectional shapes of the PVS are known in
straight arteries. It is interesting to investigate how the PVS is shaped around an artery
with a tight bend.
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9.2 Conclusions

In order to draw the conclusions of this thesis first the research question and its sub questions
are recalled:
”To what extend does the cross-sectional shape of the PVS influence the fluid
behaviour of CSF?”

1. What are valid cross-sectional shapes for the perivascular space?

2. What simplifications of the geometry are valid to make in this case?

3. To what extent are previously performed simulation studies using concentric PVS
shapes still valid?

In this thesis three different cross-sectional shapes have been used for the simulations, being
a concentric annulus, a flattened annulus and a flattened annulus with an off-centered artery.
These geometries are based on MRI images of the PVS in the brains of mice and human.

Simplifications are made to the geometry of the PVS as the walls are assumed to be rigid
and static. In a real case the the artery wall will have an elastic component and pulsatile
movement, however this would have complicated the simulation significantly.

It has been shown in the different simulation studies that previously performed research
using a concentric PVS shape still have value. It should be noted that the local velocities
and the flow distribution around the artery change significantly. However, the flow doesn’t
leave the laminar region in either geometry, the magnitude differences are smaller around bi-
furcations, and the flow distribution shows more similarities in the corner sections. Therefore,
previously performed simulations using a concentric PVS could still provide useful insights,
but for future research a more realistic PVS shape should be used.

To answer the main research question of this thesis three different simulation studies have
been performed. It has been shown that the local velocity can increase by up to 150%
when comparing the flattened to the concentric geometry and up to 190% when the artery
is off-centered. Also, the flow distribution around the artery is changed significantly with
the cross-sectional shape, shifting from an evenly distributed flow in the concentric shape to
a flow with two dominant regions in the flattened shape and a single dominant flow region
in the off-centered shape. The local velocity differences have been shown to reduce around
a bifurcation, where a more similar flow distribution is seen between the concentric and the
flattened shape. In the cornering regions both flows show a single dominant flow region,
however the flow in the flattened geometry is forced to a different path due to the twisting
of its geometry.
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9.3 Recommendations

For future research several improvements to this thesis are proposed as well as new research
with respect to this topic.

To improve on the knowledge of this topic more MRI studies should be performed on the
PVS, currently only MRI images are available of PVS shapes around slices of a straight
artery. However, it has been shown that the PVS can be a discontinued annulus, this occurs
when the PVS is flattened to such a degree that the artery is larger in diameter than the
width of the PVS, but it should be investigated how often this occurs and how this shape
develops over the length of the artery. Furthermore, the shape of the PVS around a bifur-
cating artery and a tight cornering section of an artery should be determined such that more
accurate geometries can be made.

The main improvement to this research is the addition of a pulsatile arterial wall to the
simulations. The addition of a pulsatile wall will influence the streamlines of the flow sig-
nificantly as it will induce more three-dimensional disturbance. Furthermore, the effect of
these wall displacement on the magnitude of the flow is of interest. Recently research has
been done on this perivascular wall pumping in eccentric pipes, but those geometries have
only been similar to the straight arteries used in the first two simulations in this thesis. It
would be interesting to investigate the results of this addition on a more complex geometry
like the realistic artery with PVS used in this study.

Adding the pulsatile wall movement is also a part of implementing the driving forces of
CSF in the PVS. In this thesis an inlet velocity profile has been used which was a resultant
of several driving forces, but when implementing the driving forces to the simulation the
results might differ from this study.
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