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Management Summary

Problem definition

In this research we focus on the scan-relevant items stored at the OR department of Isala. Scan-
relevant items are surgical supplies that remain in the body after the procedure, and thus need
to be scanned and linked to the patient. Analysis of the current situation at Isala identified the
following issues the OR department faces:

• A lack of mathematically substantiated inventory levels, causing high stock levels.

• SKUs not meeting minimal service level requirements, where 12 out of 837 do not reach
99.9% availability.

• Not keeping to predetermined order sizes.

• A lack in storage space due to high stock levels.

• Unnecessary emergency ordering by the OR department.

Following, the objective of this research is:

"To design and assess an inventory model for the scan-relevant items stored in the operating
room department that reduces inventory level and decreases emergency orders, whilst

maintaining, or improving, the current material availability."

Solution design

This research creates an (s,S) inventory system that is optimally solved using a stochastic program.
The constructed stochastic program is a scenario-based program that incorporates uncertainty
in future demand and lead times in the current decision making, and determines optimal order
points (s), order-up-to levels (S), and emergency-order-points. The objective function min-
imises both costs and total inventory, as the OR departments storage space is limited. Two
models are constructed. One that optimises the order-up-to level and the emergency-order-
point with a calculated s, and a second model that uses a joint optimisation of the levels s, S,
and the emergency-order-point.

It is found that it is hard to determine optimal stock levels for products with low intermittent
demand, a characteristic of the scan-relevant items with average daily demand ranging from
0.0006 to 0.55 units. The issue is demand generation. In order to include enough demand such
that all scan-relevant items need to be ordered causes the scenario tree and time frame to be
increased to sizes that are not solvable anymore. A heuristic is constructed that determines
good inventory levels for items with these demand characteristics.

A variety of experiments are performed on the stochastic program and the heuristic. To test the
performance of the stochastic program for other departments with larger demand sizes a case
with large demand is created, with daily demand ranging between 1 and 500 units. The exper-
iment compares performance with a calculated value for s and an optimal one. The heuristic
experiments on a variety of emergency-order-points, where the emergency-order-point is the
order point s times a decimal ranging from 0 to 0.5. Lastly, a heuristic experiment is conducted
that determines the benefits of decreasing lead time variability.
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Results

The evaluation simulation of the optimally solved large demand case looks promising and
achieves a CSL of 94.09% using the joint optimisation including the level s. When larger com-
puting power is used to run the stochastic program, using a bigger scenario set and time span,
an increase in performance is expected. The experiments show that using an optimised value
for the order point is preferable over a calculated value yielding an expected inventory decrease
of 35.49% with similar costs.

The heuristic experiment ensures that all SKUs achieve their desired CSL. Since 12 out of 837
SKUs currently fail to meet their minimal CSL of 99.9% the costs increase slightly. The results
show that an expected cost increase of 3.24% to 9.91% yields an inventory decrease of 11.17% to
56.62%, dependent on the emergency-order-point, and achieves the minimal CSL requirement
for all SKUs. The best experiment according to us increases costs with 4.52%, and decreases
inventory with 37.61%, using an emergency order factor of 0.3. The increase in costs is in part
countered by an expected decrease in obsoletes, with obsoletes being €92, 462 (3.12% of costs)
annually.

When decreasing the lead time variability of the scan-relevant items the heuristic determines
than an additional decrease of 2.76% in stock level can be obtained. However, close cooperation
and contact with suppliers is necessary to obtain more accurate lead times.

Practical contribution

The heuristic provides Isala with good inventory levels for the scan-relevant items of their OR
department, significantly decreasing stock levels and increasing availability. Stocks decrease
with 37.61%, with a costs increase of 4.52% using the proposed emergency-order-point factor
of 0.3. Furthermore. the heuristic shows that it is beneficial to decrease lead time variability,
should Isala think that the effort is worth the expected stock decrease of 2.76%.

The stochastic program shows potential to be applied to large demand cases. Isala can run the
stochastic program using more computational power on data of a department or product type
that is similar to the large demand characteristics of the test case.

Lastly, the research at Isala shows that there are improvement possibilities in the inventory
management of hospitals. The results can help convince healthcare professionals that there
is room for improvement, hopefully increasing their willingness to accept alterations to their
current method of working. This research is a stepping stone to implementing more advanced
inventory management methods, such as incorporating surgery schedules, or a multi-echelon
inventory optimisation.

Scientific contribution

This research introduces a new problem where a joint optimisation is performed on the levels s,
S, and an emergency-order-point, by means of the optimal solving of a stochastic program un-
der variable lead time and demand. The stochastic program combines point-of-use inventory
systems with the introduction of an emergency-order-point that to the best of our knowledge
has not been regarded in literature before.

The use of a heuristic is proposed to be better suited to SKUs with low intermittent demand, as
their demand characteristics make it hard to calculate optimal values. The proposed heuristic
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achieves a significant decrease in stock level, and ensures that all SKUs achieve their minimal
CSL requirements.

Lastly, this research adds to the sparse publications focused on material logistics in the health-
care sector.
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Chapter 1

Introduction

This thesis aims to improve the inventory management of the operating room department of
the Isala clinics. The following chapter is an introduction and considers the context of the
research setting. Background is provided on the relevance of the research in Section 1.1, the
context is discussed in Section 1.2, the problem identification is given in Section 1.3, the research
objective is stated in Section 1.4, Section 1.5 describes the research questions that will be answered
in this research.

1.1 Background

The healthcare sector is and has always been a sector that continues to increase in costs due to
technological innovation [1]. When focusing on Dutch healthcare expenditure, the largest part
of the budget is spent on hospital care, with costs expected to increase to 96 billion a year by
2060 (with an annual growth of 2.8% per year). The percentage of the Gross Domestic Product
(GDP) going towards the healthcare sector is projected to grow from 12.7% in 2015 to 19.6% by
2060 (with an annual growth of 1.7%) [1]. This shows that healthcare expenditure is expected
to have a higher cost increase compared to economic growth. These numbers indicate the need
for cost reduction within the healthcare sector.

From these increasing costs, approximately 30-40% of total hospital costs are spent on inven-
tory, this being the second highest expense after personnel costs [2]. This indicates that proper
inventory management has the potential to substantially decrease costs. While in industry
inventory management is a widely studied topic, the healthcare sector remains behind. For ex-
ample, when looking at research that focuses on inventory management within hospitals, only
66 relevant sources up to 2014 are found according to Jonas Volland et al., and an increase in
publications is observed between 2012 and 2014, compared to the years before [3]. Compared
to the vast amount of research conducted on inventory management for manufacturing com-
panies, it is apparent that there is still a lot unknown about inventory management within the
healthcare sector, although the attention given to material logistics in the healthcare sector is in-
creasing [3]. Next to research, it can also be seen that little of the already conducted research is
implemented at the moment. This shows the need, in addition to increased research initiatives,
to implement appropriate inventory management approaches.

1.2 Context

This section describes the context in which this research is conducted. The research is carried
out at Isala Clinics located in Zwolle, the Netherlands for their purchasing department. Further-
more, the research focuses on one specific care unit, the Operating Rooms (ORs).
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FIGURE 1: Top levels of Isala’s strategy pyramid (2019-2022). Adapted from [5].

1.2.1 Isala

The research is carried out at the Isala Clinics located in the region of Zwolle, the hospital
group includes the hospital located in Meppel. The hospital has 6,797 (5,081 Full Time Equiv-
alent (fte)) employees, including 427 (394 fte) medical specialists, and holds 1,250 beds. At
location Zwolle there are 14 clinical Operating Rooms (ORs), where eight are dedicated to the
OR department. Furthermore, Isala has six day treatment ORs; in comparison, location Meppel
has five ORs in total [4]. A hospital of this size is relatively large for the Netherlands, and Isala
is considered one of the largest hospitals in the country, with a significant catchment area.

The policy of Isala is based upon their strategy, which they envision in blocks of three years.
Figure 1 shows a translation of the six highest levels of their strategy pyramid. Costs and waste
are one of the main focus points of Isala, but less important than patient care itself denoted in
the upper levels of the pyramid. In trying to reduce costs, Isala looks at waste, and not only
in the form of materials. They also consider whether the offered care will actually benefit the
patient. The main question is whether the cost of care outweighs the expected health benefit.
Here the cost of care refer to the actual costs made, together with the treatment side effects for
the patients. Furthermore, Isala is increasingly moving care to the patients’ homes, instead of
treating them at the hospital, aiming to offer 10% of all care at the patients’ homes by the end
of 2022 [6].

In conclusion, Isala wants to focus on the costs they have incurred and the waste associated
with it. However, in their strategies, there is no mention of improving the efficiency of existing
processes, such as their inventory management system, and whether there is still improvement
to be made in this aspect. This research investigates the manner in which Isala manages their
inventory in greater depth to determine whether they can improve.
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FIGURE 2: The supply chain of Isala’s logistics per item type

1.2.2 Hospital Logistics

When Isala moved into their new building in 2013 the building was built with the goal of
having a Just-In-Time (JIT) inventory management system. The aim is to optimally use the
building for patient care and to reduce the space needed for stock and other ancillary practices.
Due to the JIT management strategy a logistical partner, Hospital Logistics, is contracted to
handle most of the material deliveries. Hospital Logistics can supply materials with a variable
lot size, ranging from one unit to many, based on Isala’s needs. Figure 2 shows an overview
of Isala’s current material delivery system. Isala distinguishes between three different types of
materials, further explained upon in Section 1.2.3.

Inventory management is highly dependent on the delivery of materials. It is thus important
to have a proper view on delivery quantities and lead times. For Isala there is improvement
to be made in the delivery process of their supplies. Currently, their logistic partner, Hospital
Logistics (HL), sends deliveries to Isala four times a day. The HL warehouse for the Isala Zwolle
location is based in Apeldoorn. Four deliveries a day are more transportation movements
between Isala and HL than deemed necessary by HL, increasing emissions and costs. When
meeting employees of HL they indicated that they would like to reduce these deliveries to at
most two times a day, as it is deemed to be sufficient to deliver all materials.

1.2.3 Operating Rooms

This research focusses on the inventory management of the Operating Room (OR) department.
Hospital ORs can be seen as cost centres, as they are responsible for about 60% of total hospital
cost [7]. In the OR, a variety of surgeries are carried out. Multiple medical specialties use the
operating rooms, which requires the availability of a wide variety of materials. The OR depart-
ment of Isala consist of 8 ORs. Materials that may be required during surgery are stored near
the ORs in various storage rooms. Initially the allocated storage space, with the JIT manage-
ment style, proved to be too small. To create more space, some break rooms and other rooms
are additionally turned into storage spaces. This causes the OR department to have 32 smaller
storage spaces that differ in shape. The large number of smaller storage spaces makes it hard
to keep overview of all the materials. The OR department is located on two floors that are im-
mediately above each other. The OR department tries to divide the storage in such a way that
there is little transportation between the first and second floors. However, sometimes materials
need to be transported between the two floors by stairs. In addition, all materials must be col-
lected prior to surgery by the logistic staff working for the OR department. These employees
often need to visit multiple rooms to retrieve all materials, which is time-consuming.
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The OR is resupplied three times a day, with one supply time of HL being for another depart-
ment. The logistical department of Isala receives the goods and transports them to the OR. Here
the logistics department of Isala put all goods in the designated on-site cabinets for the other
departments, the OR does this themselves, as they have their own logistical staff and method
of working. Therefore, the Isala logistics department transports the materials to the OR airlock
in wheeled containers, and from there the goods are transported and unpacked by the logistic
staff of the OR itself. The OR department does not have any Key Performance Indicators (KPIs)
that measure their performance with respect to their material logistics. For the scan-relevant
items waste records are kept, but this information is not used in planning and control.

Isala distinguishes between three different "types" of materials.

Scan-relevant items are mostly materials that remain in the patient after surgery is complete
or very expensive products that are frequently used and Isala wants to keep track of. All
scan-relevant materials that are implants and remain in the patient after surgery need to
be linked to their respective patient. So, when a scan-relevant item is used, it is scanned
during the procedure before being used. The OR department, however, concluded from
the data that about 3% of all scan-relevant items is not scanned during the procedures.
This is caused by complications that occur during surgery, which causes a quick need for
materials, or by employees slacking off. It is possible to scan the items after the surgery
is concluded, but this is also not always done correctly or at all. It is thus approximately
known what scan-relevant items are used per surgery.

In total, there are 4, 457 scan-relevant Stock Keeping Units (SKUs) at the OR department.
The average usage for the period 2017-2022 is 20, 375.27 products per year. These statistics
do need the side note that many of the articles are used only zero to five times per year,
and that there are on average 74.2 articles that are used 50+ times a year. Meaning that
74 of 4, 457 SKUs constitute 18% of total usage.

For all scan-relevant items an automated ordering process is in place. Each scan-relevant
item has a min and max stock; when the min stock is reached in the system, an automated
order is placed that replenishes stock up to the max level. Often the min and max are the
same level, meaning that a replenishment order is placed immediately after one item is
used. This inventory system resembles an (s,Q) inventory system with a reorder point s
and an order quantity Q, under continuous review. This can also be modelled as an (s,S)
system, where S is the order-up-to level. Since products are ordered unit by unit, both
models are identical [8]. Scan-relevant items are delivered within 24 hours if Hospital Lo-
gistics has them in stock, and otherwise within 48 hours if the product is ordered directly
at the supplier. However, often the OR department does not keep to the predetermined
order points and quantities, and mostly orders based on experience. Furthermore, the
min and max levels are determined arbitrarily.

Grab stock includes basic articles that are often needed during surgeries, but do not remain
in the body after completion. The grab stock is indicated by yellow card labels on their
bins. Since grab stock is used often and in high quantities Hospital Logistics keeps a suf-
ficient stock level of these materials, and they are delivered within a day of ordering (or
sooner when an emergency order is placed). The grab stock has a variable assortment,
ranging from rubber gloves to syringes to bandages. This type of stock is kept using a
two-bin system. Each basket is separated into two compartments similarly to two differ-
ent bins. Once the first compartment is empty it is refilled from the second compartment,
and a new order is placed to restock the product. For all items a minimum amount is
determined that when reached should be replenished up to double this amount. The
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inventory level of the grab stock is checked every morning when the OR logistics depart-
ment checks all stock locations. Thus, for the grab stock an (R, s, S) inventory system is in
place, with a review period of 1 day, a reorder point s, and an order up to level S that is
double the amount of s [8].

The ordering of these items is done by scanning the barcodes associated with the product.
For each item, a barcode is added to the bin where the product is stored. Next to this bar-
code a number is written, this is the minimum amount that should always be in stock s.
When the barcode is scanned, this minimum amount is ordered. The stock should never
exceed double this minimum amount S. However, occasionally more than the maximum
amount S is in stock. This happens as physicians sometimes request more materials, or
the cards are scanned too often. In theory, the logistical employee needs to count all the
materials already on-stock, and only order if level s is reached. However, employees
sometimes do not really count the materials in stock, but just place a replenishment order
to ensure that enough material is in stock. This causes materials to not fit into their desig-
nated storage spot, or materials to go to waste as they cannot be used before they expire.
Lastly, the lack of overview in storage spaces previously mentioned can cause employees
to occasionally not scan grab stock cards that need to be replenished, causing emergency
orders to increase.

Purchase items are products that are used irregularly and in low quantities. Due to the charac-
teristics of these items Hospital Logistics does not keep them in stock, as this would take
up too much space for the profit that they bring. The purchase items are recognisable
by the blue cards placed on their bins. These items are ordered directly by Isala at the
retailer. Most purchase items are still delivered to HL, who acts as a cross-dock for Isala
and ships the products together with the next order. There are, however, products that
are delivered to Isala directly from the retailer, mainly products that need specific types
of transportation (e.g. cooling). The flow of material between the supplier, HL, and Isala
is shown in Figure 2. Due to the JIT inventory system of Isala the quantities of the blue
cards are often 2 units. It is mentioned that the lead time for these types of products is
typically 48 hours. The inventory model for purchase items is an (s,Q) or (s,S) inventory
system with unit-by-unit ordering, the same as for grab stock. Although the lead time is
longer.

The research focuses on improving the material logistics of scan-relevant items. When all scan-
relevant materials are stocked up to their maximum level, the total monetary value of stock is
€5,654,586.54 for the OR department. The various types of items require different inventory
management approaches. Max (2023) focused on the grab stock and purchase items, thus the
combination of the two researches considers the inventory of the entire OR department [9].

1.3 Problem Identification

In the past years, no, or only a few, surgeries were delayed or cancelled due to stock shortages
caused by incorrect inventory management. Recently, some procedures got delayed due to the
unavailability of products caused by the current global shortage of materials, this is, however,
out of scope for this research. In a normal situation it is the case that when stock runs out, an
emergency order is placed in order to refill this stock and ensure no cancellations. Facilitating
emergency ordering causes the OR to place many (unnecessary) emergency orders, which are
quite expensive.

Other factors that increase the number of emergency orders are the behaviour of employees,
and a lack of understanding the ordering process. Hospital employees are very risk-avoiding;
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should there even be the slightest possibility of a stockout, an emergency order is placed. Fur-
thermore, employees do not properly understand what counts as an emergency order. Due
to their contract with HL, an order already counts as an "emergency" when it is placed at the
wrong time. When placing an order within 1.5 hours of delivery it already counts as this first
level of emergency order, as it takes HL additional time, and thus costs, to add this order to
the next shipment. With HL delivering 4 times a day, these time windows take up a large part
of the day. Employees do not realise that when they order products at the wrong time, this
triggers an emergency order cost. Most products that are scanned within these time intervals
do not need to be used immediately, thus increasing the number of unnecessary emergency
orders.

An emergency order costs €21.66 in employee costs for HL orders and €34.50 for orders from
other suppliers, and costs increase if the emergency order cannot be delivered immediately
[10]. Next to the emergency order costs there are the expiration costs, if too many products
are on-stock they might expire and need to be discarded. Hospital logistics does not charge
any additional costs for an emergency order of scan-relevant products as the emergency order
comes from an external supplier and they crossdock it [10]. The external supplier does charge
an additional emergency order cost.

Appendix A shows the problem cluster and the associated core problem that is selected. The
problem is stated as follows: "There is no optimised inventory management system". There are
min / max levels for the scan-relevant products, however, these boundaries are set arbitrarily
based on experience and not updated. When products are consistently unavailable it is noticed
and the min and max margins will be increased. However, it is expected that when there is
too much stock of certain products, these parameters are not lowered, as the employees do not
experience problems with these products. This shows the lack of an inventory management
system, and shows that most of the ordering is based on experience. Furthermore, there is no
calculated amount of safety stock.

Over the period of 2019-2021 an average of €92,462.73 a year is thrown away due to products
being expired. These costs can be reduced when unnecessarily high inventory levels are low-
ered for certain products.

Another problem that increases the stock and emergency orders is the "risk-avoiding behaviour
of employees", hospital employees rather order products too soon to decrease the risk of run-
ning out. However, the hospital has very little storage space, so the products do not fit in their
designated cabinets. In general there is more than enough products in stock, especially since
the OR department gets restocked multiple times a day. With the frequent restocking there is
often no need to place emergency orders on products that have short lead times and low de-
mand. However, these emergency orders are frequently placed. This behaviour causes waste,
storage space problems, and emergency order costs to increase.

The behaviour of employees, and the inefficient inventory management system of the OR de-
partment, can be linked to the theory on the operations management (OM) triangle shown in
Figure 3. Hospitals can be seen as capacity oriented, as everything else in the organisation
should support the highest throughput of patients. Isala focuses on capacity, but they do not
regard inventory and information as something that can support decision making in this as-
pect. Making a trade off between the different components of the OM triangle, and actively
consider the influence of the components on each other, will improve performance and prof-
itability [11]. Especially since Isala aims to have a lean inventory management the coordination
of the OM triangle factors is required.
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FIGURE 3: The operations management triangle. Adapted from [11]

1.4 Research Objective

The objective of this research is to formulate an inventory model that minimises the total costs
of the scan-relevant items of the OR department in such a way that emergency ordering and
expiration decrease, while maintaining the current level or increasing the material availability.
In this way, the main Isala strategy shown in Figure 1 is maintained, as costs and waste are
minimised while maintaining patient value with its associated quality at the level. From the
core problem identified in Section 1.3 the following main research objective is stated:

To design and assess an inventory model for the scan-relevant items stored in the operating
room department that reduces inventory level and decreases emergency orders, whilst

maintaining, or improving, the current material availability.

The research objective addresses the lack of mathematically substantiated inventory manage-
ment, and creates an advanced inventory model for the OR department. Since the OR depart-
ment is currently lacking any form of numerically substantiated inventory management the
created model will probably be too advanced to be properly implemented in the current situa-
tion. Another aim of this research is thus to set up some rules-of-thumb for inventory manage-
ment that can immediately be implemented, with the suggestion to implement the advanced
inventory model once this proves to be possible and beneficial.

1.5 Research questions

This section discusses the structure of this thesis with accompanying sub-research-questions
that are answered. Figure 4 shows the outline of the report. Following the objective and core
problem of this research the following question needs to be answered: How can we design and
implement an inventory management system for the scan-relevant items of the OR department of Isala?
To answer this question we formulate the following sub-questions:

Chapter 1 discusses the background of this research, the problem identification, and research
questions are constructed that will be answered in this research.

1. What inventory models with a continuous review period are known in literature and apply to the
case of Isala?
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FIGURE 4: Research outline

2. What type of modelling can be used to assess the performance of different inventory policies?

Chapter 2 discusses research questions one and two, where a semi-structured literature review
on the state of the art on hospital material management is conducted that identifies what type
of inventory model suits this research best.

3. What is the mathematical model formulation, and what are the associated parameters?

Chapter 3 formulates the mathematical model and determines the objective value based upon
the literature review.

4. What is the current situation at Isala with regards to their inventory policy, performance on KPIs,
and minimal stock levels?

Chapter 4 discusses the data available at Isala, and introduces the hospital as a case study to
assess the performance of the mathematical model constructed in Chapter 3.

5. How should the experiments be designed to reflect the expected real-world performance of the model
as accurately as necessary?

6. What are the different scenarios that need to be modelled?

Chapter 5 discusses the different experiments to be run on the model to assess the performance.

7. What is the performance of the different experiments and what are the advantages and disadvan-
tages?

Chapter 6 discusses the results from the experiments and assesses the performance of the
model.

8. Which recommendations can be given to the OR department of Isala to improve their inventory
management?

Chapter 7 gives conclusions and recommendations based on all previous chapters. The final
conclusions will cover the proposed inventory model, as well as easy to implement rules that
can immediately be used.



9

Chapter 2

Literature review

This chapter discusses the current application and theory on hospital material logistics in Sec-
tion 2.1. Section 2.2 describes solutions and models from other industries. Section 2.3 describes
a variety of modelling approaches that have applications to solve this problem. Lastly, Section
2.4 concludes this chapter providing a solution approach and the literature gap. Appendix B
shows the search and exclusion criteria used in the selection of relevant sources.

2.1 Material logistics in healthcare

Inventory costs in hospitals amount to approximately 30-40% of total costs, the second highest
expense after personnel costs [2]. Furthermore, hospital material management is identified as
a key cost containment lever and is considered one of the costs that can be reduced to combat
the steady increase in healthcare spending that developed countries are currently faced with
[3]. Chapter 1 showed the lack of research focused on material logistics in the healthcare sector.
This lack of focus is explained by the fact that material logistics is not an independent research
stream and that in many cases material logistics within hospitals is a cross-departmental issue
that makes it harder to address [12]. In the period 2014-2017, it is observed that the number
of publications on optimisation techniques for material logistics in the healthcare sector has
reached levels that have not been seen before, with up to 27 publications per year [3, 12]. Over
the last decade, a new planning level is identified for healthcare planning, the tactical planning
level, which aims to execute a strategic goal over the middle to long term [13]. The goal of
the tactical planning level is to give direction to organisations on how to actually achieve their
strategic goals and to be a bridge to link the strategic goals to their daily operations. Approx-
imately half of hospital logistic costs are eliminated by efficient logistics management [3]. To
determine which products to focus on, an ABC or VET classification can be used, where VET
classifications require a detailed knowledge of product characteristics and are thus harder to
implement [3].

We consider the supply chain for material delivery in hospitals a multi-echelon system, with
a central warehouse that receives goods from suppliers. This central warehouse regularly de-
livers to point-of-use inventories that are close to patient care locations. This being the "tradi-
tional" system. Next to this system, there are two other distribution systems that are applied to
practise, a "semi-direct delivery", where there is no central warehouse and all suppliers deliver
directly to the point-of-use locations, and a "direct delivery", which is closest to a Just-In-Time
(JIT) system, where materials get delivered based upon daily demand, with the goal being to
minimise stock levels. This means that the supplier is responsible for reacting to changes in de-
mand and stocking the point-of-use storage accordingly [3]. Furthermore, it is mentioned that
a warehouse that supplies multiple hospitals can create significant cost savings for the entire
supply chain [14].

Currently, many hospitals work with a two-bin system where two baskets of stock are kept, and
should one become empty, an order is placed to replenish the empty basket [12, 15, 16]. These
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two-bin systems have been an innovation over the past decade for inventory management
within hospitals. It is proven that two-bin systems work best under continuous review, with
cost reductions of up to 50% [15]. Only when the cost per stock-out occurrence is very low, the
periodic review system may be able to outperform the continuous model in terms of costs [15].

A JIT inventory strategy can reduce costs for hospitals. However, it is necessary for the hos-
pital environment to adapt to such an inventory strategy. The important pillars for the correct
implementation of a JIT inventory system are Supplier selection, where suppliers must deliver a
high quality product within short lead times. Additionally, the number of suppliers needs to
be kept as low as possible. Secondly, Strategic partnerships long-lasting, good, relationship with
your suppliers is necessary. And lastly, Adequate information sharing and communication, where
suppliers and buyers communicate with one another about their needs and inventory wishes
[17]. Furthermore, for the implementation of a JIT inventory system to be successful, it requires
an integrated network that shares information with each other. The development and applica-
tion of information systems that share data on stock levels, and the real-time monitoring and
tracking of the purchase, storage and delivery of hospital materials have been stated to be key
to achieving JIT mode [17]. The numerical analysis of Bhosekar et al. [16] indicates that, in
general, coordination of surgical instruments and material handling decisions can potentially
improve the service levels provided by operating rooms. Furthermore, a JIT delivery of sur-
gical supplies in short-duration surgeries leads to lower inventory levels without jeopardising
the service level provided [16].

The focus on pharmaceutical products is outside the scope of this research as the pharmacy
often does its own inventory management independent of other hospital processes [18, 19, 20].

2.2 Methods from other industries

Since the healthcare sector has only recently seen an increase in attention to improving its mate-
rial logistics, methods from other industries can possibly be applied [3]. A stochastic demand,
single item, continuous review inventory model with short lead times and the objective of hav-
ing a high service level whilst maintaining an as low as possible stock is constructed [21]. An
optimal solution proves to be obtainable in polynomial time, furthermore the model shows that
slight deviations from this solution can lead to a big decrease in performance, and an increase
in reorder point is less disadvantageous than decreasing it [21].

In addition to conventional (s, Q)models, Chiang [22] proposes the addition of a parameter R.
R is regarded as the "expedite-up-to-level" and is the order point where an emergency order
is placed. The addition of the variable R has been shown to yield significant cost savings,
especially for organisations with high service levels, large demand variability, low emergency
order costs, and long manufacturing lead times. The proposed model implements this only
for a single item and has not yet been applied to operation-wide inventory management [22].
Since hospitals often have the option of emergency ordering, and this occurs with regularity, the
introduction of a new parameter can help determine whether it is really necessary to emergency
order.

Ouyang et al. [23] propose a model with fuzzy lost sales with partial information about lead
time demand. The case of fuzzy lost sales is not applicable in a hospital context, as all post-
poned surgeries need to be rescheduled and are thus not lost. The uncertainty in lead time
demand is a factor that is relevant to hospitals, as the requirements for materials are patient,
procedure, and physician specific. Furthermore, they show that a reduction in lead time can
lead to significant cost reductions [23, 24].
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Due to supply disruptions in recent years many corporations are struggling with material un-
availability and backorders. Poormoaied et al. [25] propose to introduce the possibility of
placing an emergency order just before a supply disruption occurs. Their model uses different
ordering and order-up-to levels for periods with and without supply disruption. This requires
close cooperation and good communication with all suppliers [25]. Furthermore, models are
developed that consider the inventory control system of perishable goods with relatively short
lifespans. These models are often applied to pharmaceutical or food products [19, 20].

2.3 Modelling approaches

In this section different modelling approaches are discussed that have applications to continu-
ous review inventory models in hospitals. Most models regard a (s, Q) inventory model where
the reorder point s is the safety stock ss plus the demand under lead time DL. The safety stock
is the safety factor z, which depends on the desired service level, times the standard deviation
σ times the square root of the lead time

√
L. This combined formula gives the following for

determining the reorder point: s = DL + zσ
√

L [26]. Furthermore, an (s, Q) model is stated
to be faster in run-time compared to (s, S) models due to the lower complexity. The proposed
model has a linear complexity and, thus, a fast runtime. The model uses unit-by-unit ordering,
similar to the case of Isala [27].

When including uncertain demand and lead time in (s, S) systems a different calculation of
the level s is needed that incorporates this uncertainty. The addition of demand uncertainty
increases the level of s compared to models without demand uncertainty, as an increase in
safety stock is needed to cope with the increased uncertainty. The expression including these
uncertainties is shown in Equation (1).

s = E(DL) + z
√

E(L) · var(D) + [E(D)]2 · var(L) (1)

The expected demand over the lead time E(DL) is added with a safety factor z times the square
root of the expected lead time E(L) times the variance in demand, var(D), plus the expected de-
mand squared, [E(D)]2 times the variance in lead time var(L) [8]. Furthermore, the Economic
Order Quantity (EOQ) is often used to determine the level of S in (s, S) systems. The EOQ
determines the optimal quantity to order based on the expected demand, E(D), the ordering
costs, CO, the SKU cost CM, and the cost of holding inventory h [8]. The EOQ is expressed in
the Equation (2).

EOQ =

√
2 · E(D) · CO

CM · h
(2)

In theory there are two types of service levels, a level α also known as the cycle service level,
and a level β known as the fill rate [28]. α measures the number of cycles in which a stockout
does not occur, and its calculation shown in Equation 3.

α =
# o f cycles without stockout

total # o f cycles
(3)

The cycle service level measures the times that there is a stockout, not the total inventory quan-
tity of the stockout. It does not differentiate between 1 unit, or 100 units short. The fill rate β
does take into account the number of units, as this is a measure of the fraction of demand that
is satisfied from inventory [28]. The calculation for β is shown in Equation (4)
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β =
Total volume o f orders supplied

Total demand ordered
(4)

In general using β achieves a higher service level compared to α. In some cases with high
demand and variability in lead time, the service level of α can exceed β due to large stockout
volumes [28]. For hospitals, it seems that the cycle service level is a more appropriate measure,
as a stockout is unfavourable for patient safety and the number of cancellations.

A Poisson distribution is often used to model (hospital) demand [21, 22, 27, 29, 30]. Akcan
et al. [29] states that stochastic demand is widely regarded in literature, and mentions that
there is still a lack of models considering lead time variability. There is no widely accepted
standard distribution for modelling lead time variability. Various distributions are used to
make lead times stochastic, such as, exponential, normal, erlang, and other general distributions
[29]. Appendix C shows a table with some sources and whether they used a stochastic demand
or lead time accompanied by their respective distributions.

A simple simulation can be used in a continuous review inventory policy for healthcare sys-
tems. The model varies the values of s and S in an (s, S) inventory system and determines the
optimal values for a single item [30]. The entire model is simulation-based and takes a long
time to run due to the many iterations for the values of s and S, since these values only need
to be calculated periodically; a simulation with a longer run time is possible. Other simulation
models also incorporate the surgical schedule to determine an optimal order policy [16]. Re-
search on inventory simulations for healthcare applications is still sparse compared to the vast
literature that covers simulation for ordering systems in other industries [30].

Another approach to hospital inventory management is the dynamic drum-buffer-rope (DDBR)
replenishment model, which tries to overcome the drawbacks of existing reorder approaches
by using a demand-pull replenishment approach [2]. The model is implemented using a system
dynamics approach and adopts Powell’s conjugate gradient search algorithm [31] to determine
optimal buffer sizes and replenishment quantities with fast runtimes. The DDBR model aims
to have no stock-out occurrences. The proposed model incorporates the logistics of single care
units, together with the deliveries to and from a central warehouse. It does, however, require
very accurate demand predictions and is modelled as a periodic review system.

Other models regard a periodic review period, but do give some useful insights into hospi-
tal material management. Bijvank et al. [32] compare models that maximise a service level
under limited storage capacity and models that minimise capacity under a hard service level
constraint. Easy to understand rules-of-thumb are given to hospital staff. The reorder point for
each SKU is set based upon some specific SKU characteristics regarding the demand over the
lead time or review period, and the available capacity. Furthermore, most of the literature on
inventory theory cannot be used in a hospital context, because other industries typically focus
on backorder models, opposed to lost-sales models [32].

Zhang et al. [12] mention that the healthcare sector often lacks the training for non-technical
personnel on healthcare logistics. There are four different types of simulation modelling iden-
tified that can be used to train this personnel. The aim of these models is to identify rules-of-
thumb, or efficient methods of working, that non-technical personnel can implement. There
is a lack of complex modelling and simulation in the healthcare industry. For the future,
agent-based and participatory simulations are promising approaches to increase performance
in healthcare logistics given current societal trends [12].



Chapter 2. Literature review 13

2.4 Conclusion

In this section, the literature review performed is related to Isala. The two sub-questions ad-
dressed in this chapter are "What inventory models with a continuous review period are known in
literature and apply to the case of Isala?" and "What type of modelling can be used to assess the per-
formance of different inventory policies?". These questions have been answered throughout the
chapter, and the final conclusions and a choice of model are given in this section.

First of all, Isala strives to operate under a JIT system with HL as the main supplier. To achieve
an effective JIT strategy, much collaboration with suppliers and information sharing systems is
needed. Together with real-time information on inventory levels, adequate data sharing, and
adaptation to fluctuation in demand [17]. Isala is lacking in these aspects as there is no insight
in stock levels, in house or at HL, and there is no demand forecasting. Furthermore, there is
a lack of data sharing between HL and Isala about their stock levels, possible stock outs, and
their needs and wishes. There is a lot of improvement potential, and in this research we will
focus on improving the insights into the material usage of Isala and design an inventory model
for managing the inventory for scan-relevant items.

A continuous review inventory policy is preferred, as the literature shows that these mod-
els consistently outperform periodic review inventory models. Since every scan-relevant item
needs to be scanned during the procedure, the stock levels are already automatically tracked.
This enables Isala to implement a continuous review policy, if they want to make some adap-
tions to their Enterprise Resource Planning (ERP) system. When an automated ordering system
proves to be beneficial in terms of costs and inventory levels, there is the possibility to include
more products in the continuous review inventory system. These products then do need to be
scanned before usage. Furthermore, an exact solution approach is preferred over simulation
based solutions. A better solution is obtained by optimally solving a mathematical program,
and performing a small simulation to show performance, then by only simulation study. Multi-
ple models include a central warehouse that is optimised together with point-of-use locations.
For our case at Isala, we will implement the proposed model without optimising the central
warehouse, which can be HL.

Currently many unnecessary emergency orders occur to ensure product availability at Isala.
The introduction of an expedite-up-to, or emergency order level, that determines when it is
necessary to place an emergency order can decrease these numbers. The introduction of this
parameter seems contradictory to the aim of constructing an inventory model, as the goal is to
prevent stock outs and emergency orders; however, the addition of the emergency order level
can help educate employees that these orders are not always necessary.

Following the above reasoning the aim of this research is to construct an inventory model that
is optimally solved by a mathematical program. A continuous review (s, S) inventory model
is preferred, due to it outperforming other types of models. The level of s will be initialised
using the previously described formula with lead time and demand uncertainty in Section 2.3.
Furthermore, the order-up-to level S and the emergency order point are the variables to be
optimally solved by the constructed mathematical program.

The gap in literature that is addressed is the lack of a point-of-use inventory model incorpo-
rating lead time and demand uncertainty with the addition of an emergency order level. The
goal is to develop a model that decreases unnecessary emergency ordering and that copes with
lead time uncertainty, which is currently common due to global material shortages. Since the
distribution of lead time uncertainty has no golden standard in literature it is determined by
means of data analysis.
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As a service-level measure, the Cycle Service Level (CSL) is used. It measures the number of
cycles without stockout. The CSL is suited to a hospital context due to the risk avoiding be-
haviour of physicians, and the need for surgical products to always be available. Furthermore,
for the demand a Poisson distribution is used, as it is determined to be best practice.
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Chapter 3

Modelling

In this chapter the mathematical model is constructed. The model can be adjusted to have
two objectives with varying weight. The objectives of the model is for one, to minimise costs,
and second to minimise the total required storage space. Section 3.1 introduces the stochastic
program that is constructed by means of Mixed Integer Programming (MIP), the mathematical
notation is denoted in Section 3.2, the assumptions are denoted in Section 3.4. Lastly, Section
3.5 concludes this chapter and reflects on the constructed mathematical model.

3.1 Introduction

From Chapter 2 it becomes apparent that the best suited inventory management system for
the given context is an (s, S) inventory system where a replenishment order is placed that re-
plenishes the inventory up to level S, should the inventory position drop below the level s. In
order to determine the levels S and s a stochastic programming approach is used that provides
optimal levels for these parameters. The constructed model is a scenario-based stochastic pro-
gram that incorporates uncertainty in future demand and lead times in the current decision
making. Furthermore, the model proposes an emergency-order-level that determines when
one should place an emergency order for a product, to counter unnecessary emergency or-
dering that is currently common practice at Isala. The proposed model adds to the currently
available literature as there is sparse research into the optimisation of restocking point-of-use
locations, especially for consumable goods in the healthcare sector. Furthermore, incorporating
an emergency-order-point and lead time variability has to the best of our knowledge, not been
considered in the literature before. In this research two variants of the model are constructed.
One model uses a stationary s and an upper bound for the level S that consist of the level s
plus the EOQ. The second model includes the value of s in the optimisation, and sets an upper
bound for S high enough.

The objective of the stochastic program model is twofold. First, the model aims to minimise the
costs. Second, the model minimises the total space usage as the hospital often copes with a lack
of available storage space. There is also the possibility to assign weights to the two objectives
such that they are both accounted for, this is however further elaborated on in Chapter 5 where
experiments are conducted.

The first model uses a set value for s based on the expected lead time demand, the desired
service level, and the lead time and demand variability [8]. This according to the following
formula, previously mentioned in Chapter 2:

s = E(DL) + z
√

E(L) · var(D) + [E(D)]2 · var(L)

The level s serves as a lower bound for the order-up-to level S, which is optimised by solving
the stochastic program. Furthermore, to set a bound for the maximum value of S the level s
plus the Economic Order Quantity (EOQ), previously mentioned in Chapter 2, of the respective
SKUs is used. As the EOQ gives high restocking values because it does not take into account
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FIGURE 5: An example of possible s, S, emergency-order-point and inventory
position level changes by the model over time periods t

the SKU lead time. Since the hospital desires JIT inventory management with low lead times
the level of S is expected to achieve better performance if the value is lower than s plus the
EOQ, causing s + EOQ to be a good maximum value for S. Next to the order-up-to level the
model also calculates an optimal value for the emergency order point. The emergency order
point is bounded between 0 and the level s, as it could be possible that emergency orders are
never needed, or for products of which the demand is low it can be optimal to immediately
emergency order and keep less stock. The amount that is emergency ordered is the expected
demand over the lead time. This is a logical value as emergency orders only occur if a normal
order is placed simultaneously, or in a previous time period, as the emergency order level is
lower than the level s. It is thus not needed to order a larger amount to replenish stock.

An example on possible model performance for a random SKU is shown in Figure 5. The
figure shows that when the current on-hand inventory drops below the emergency order point,
an emergency order is placed. Furthermore, when the inventory position (IP) drops below the
reorder point s an order is placed to replenish the stock up to the order-up-to level S. The levels
of the emergency order point and S vary over time, as the model adjust these levels based on
various demand scenarios. In case of the second model the reorder point s is also optimized,
and can thus differ over time. Do note that for illustration purposes the inventory position and
on-hand inventory are viewed as the same. It is possible for an emergency order to be placed
should the on-hand inventory drop below the emergency order level, whilst there is already
inventory in the pipeline.

Furthermore, the model draws for every time period t a number of k different demand scenar-
ios, as illustrated in Figure 6, where two time steps are denoted with their demands d1 and d2
respectively. Furthermore, the figure is expanded to include the entire range t ∈ T and k ∈ κ.
The model takes into account these multiple demand scenarios and optimises based on all the
possible demand realisations. The demand in the scenarios is drawn using a Poisson distribu-
tion [8], as previously mentioned in Chapter 2. Since the demand for the next time period is
independent of the demand realisation of the current period the same set of possible demand
realisations k is used for every branch of the scenario tree at time t. For every time period t a
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new set of possible demand realisations is drawn.

FIGURE 6: Scenario tree with possible demand realisations k ∈ κ per time step
t ∈ T for a single SKU

In order to increase running times the scenario set depicted in Figure 6 will decrease with time,
as expected demand in a later time period is less important than possible demand realisations
in the next time step, and since most SKU lead times are short. The scenario set will decrease
with one for every time period, until the scenario set has a length of one. Meaning that when
the number of time periods is larger than the initial length of the scenario set that for these last
time steps every node has one demand realisation.

3.2 Mathematical formulation models

In this section the two different inventory models are mathematically denoted. For the second
model just the changes are denoted, as most of the constraints are similar.

3.2.1 Model 1: stationary s and EOQ

In this section the mathematical model formulation in given. First the different indices, pa-
rameters, constant, and decision variables are described. Hereafter the objective function is
explained and the levels s, EOQ, and the scenario set determined. Following, the constraints
are denotes, ending with the model parameters.
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Indices

t Index for the time period (t = 1, 2, .. , T)

m Index of SKU (m = 1, 2, ..., M)

k Index of scenario (k = 1, 2, ..., K)

Parameters

sm Reorder point of SKU m

EOQm Economic Order Quantity of SKU m

E(Dm) Expected demand for SKU m during period t

E(DL
m) Expected demand for SKU m during its lead time L

E(Lm) Expected replenishment lead time from external suppliers to hospital per SKU m
denoted in the unit of time periods t before arrival

σL
m Standard deviation of the lead time of SKU m

σD
m Standard deviation of demand D of SKU m

I Init
m Initial inventory of SKU m

CM
m at Cost of one unit of SKU m

CU
mO Emergency ordering cost of SKU m

UOL
m Emergency order lead time of SKU m

κmtn Scenario set containing the demand scenarios k dependent on the previous node
n in time period t for SKU m

Constants

CO Ordering cost of the external supplier (€/ batch)

CD Delivery cost of logistic partner (€/ delivery)

h Fraction of SKU cost Cm as holding cost per time period t

CSLmin Required minimum cycle service level

z Safety factor associated with the CSL

PF High penalty value for stockout (€/ stockout)

BigM Large value used to set binary variables

K Initial size of the scenario set

pt Probability of scenario k for every SKU m in time period t

Decision variables

Rmtk Replenishment quantity of SKU m in time period t and scenario k

Rord
mtk Replenishment quantity ordered, but yet to arrive of SKU m in time period t and
scenario k
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Sm Order-up-to level of SKU m in time period t and scenario k

UOPm Emergency / urgent order point of SKU m in time period t for scenario k

Omtk Binary variable indicating an order for SKU m in time period t and scenario k

Oquan
mtk Order quantity for SKU m in time period t and scenario k

UOmtk Binary variable indicating an emergency, or urgent, orders for SKU m in time
period t and scenario k

UOquan
mtk Emergency order quantity for SKU m in time period t and scenario k

Imtk Inventory of SKU m at the end of time period t and scenario k

SOmtk Binary variable indicating a stockout for SKU m in time period t and scenario k

MC
mtk Total material cost of all SKUs m in time period t and scenario k

OC
mtk Total ordering cost of all SKUs m in time period t and scenario k

IC
mtk Total inventory holding cost for SKUs m in time period t and scenario k

UOC
mtk Total emergency order cost of all SKUs m in time period t and scenario k

SOC
mtk Total stockout cost for all SKUs m in time period t and scenario k

Objective function

The objective Z to be minimised is the total costs incurred by the material handling of the
hospital and is shown in Equation (5). The total cost incurred by the hospital is the sum with
respect to SKU m, time t, and scenario k, of the various cost components MC

mtk, OC
mtk, IC

mtk,
UOC

mtk, SOC
mtk multiplied with the scenario probability pk. The value is weighed by a factor α.

The second part of the objective function regards the lack of available space for material storage
at the hospital. This part of the function minimises the total maximum inventory of the hospital
by summing with respect to SKU m, time t, and scenario k, over the order-up-to level Sm times
the scenario probability pk, and is weighted with value β.

Minimize Z = α
M

∑
m=1

T

∑
t=1

K

∑
k=1

pk︸ ︷︷ ︸
Weight factors

and summation

Different cost components︷ ︸︸ ︷
(MC

mtk + OC
mtk + IC

mtk + UOC
mtk + SOC

mtk) + β
M

∑
m=1

Sm︸ ︷︷ ︸
Minimisation of storage

space usage

(5)

Decision variables

Constraint (6) bounds the level of S to be above s, as the order-up-to level should always exceed
or equal the reorder point. To clarify, an order is placed when the inventory drops below the
level s, therefore the possibility for s and S to take the same value.

Sm ≥ sm ∀ m (6)

To reduce the solution space we also set an upper boundary for the level S. Since the EOQ
provides relatively high values for the level S we take the level s plus the EOQ of its respective
SKU m, EOQm, as an upper bound. This constraint is shown in Equation (7).

Sm ≤ sm + EOQm ∀ m (7)
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The Emergency Order Point (UOP) is determined by the stochastic program. The variable is
bounded to be less than or equal to the reorder point s in Constraint (8).

UOPm ≤ sm ∀ m (8)

Non-negativity constraint

Furthermore the UOPm, Imtk, and Rord
mtk must be a non-negative integer. Constraints (9), (10),

(11) bounds these variables.
UOPm ≥ 0 ∀ m (9)

Imtk ≥ 0 ∀ m, t, k (10)

Rord
mtk ≥ 0 ∀ m, t, k (11)

Nonanticipativity constraints

We must ensure that no knowledge of future events is taken into account when solving the
stochastic program. This is incorporated by ensuring that the taken decision is the same for all
scenarios stemming from the same nodes of the previous time steps. Since the levels Sm and
UOPm are determined by the stochastic program the following nonanticipativity constraints
are incorporated in the model. Constraint (12) denotes that for every SKU m in time period
t with previous scenario tree node n the same decision must be made for all scenarios k and
previous tree nodes in κmtn.

SCurNode
m = SNode(n)

m ∀ m, t, k ∈ κmtn (12)

Furthermore, constraint (13) determines that the emergency-order-point needs to be equal for
every SKU m in time period t with previous tree node n for every scenario k in κmtn.

UOPCurNode
m = UOPNode(n)

m ∀ m, t, k ∈ κmtn (13)

For each scenario the demand of future periods cannot be known by the model, and thus not
used in determining the levels for Sm and UOPm in the current time period. Since every demand
scenario is independent of previous demand scenarios for every time period the same samples
are used for every branch of the scenario tree. Furthermore, since predicting the far future
becomes less important due to the in general fast delivery times the number of scenarios taken
into account decreases over time. This gives the following set of demand scenarios κmt, that
consist of K − t values with demand scenarios for SKU m in time t with previous node n, with
a minimum of one demand scenario in later time steps if t is larger than K. K is the initial size
of the scenario set as mentioned in the constants. Each demand scenario is denoted by ξmtk, the
set of demand scenarios is denoted mathematically in Equation (14).

κmtn ∈ [ξmtn k=1; ξmtn k=2; ..; ξmtn K−t] ∀ m, t, n (14)
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Variables

The number of units emergency ordered for SKU m in time period t is determined in Equation
(15). The equation consists of the binary variable UOmtk on whether an emergency order is
placed, times the expected demand over the order lead time.

UOquan
mtk ≥ E(DL

m) · UOmtk ∀ m, t, k (15)

Equation (16) and (17) denote the inventory Imtk for SKU m at the end of time period t for
scenario k. The first time step the inventory is initialised to I Init

m . The inventory at the end of
a time period t is the inventory from the previous time period Im,t−1,k, plus the replenishment
quantity Rmtk, minus the demand of the current period ξmtk, plus the quantity emergency
ordered with emergency lead time E(UOL) periods ago UOquan

m,t−E(UOL),k. Lastly, in case of a
stockout the demand for that scenario is replenished. When t = 0 the initial inventory for each
SKU m is I Init

m .

Im0nk = Iinit
m (16)

Imtk = Im,t−1,k + Rmtk − ξmtnk + UOquan
m,t−E(UOL),k + SOmtk · ξmtk (17)

Whether SKU m is ordered in time period t in scenario k is denoted in Equations (18) and (19).
Should the current inventory Imtk, plus the amount already ordered Rord

mtk drop below the level
s, then another order is placed.

sm ≥ Imtk + Rord
m,(t−1),k − BigM · (1 − Omtk) (18)

sm ≤ Imtk + Rord
m,(t−1),k + BigM · Omtk) (19)

Equation (20) denotes the quantity ordered of SKU m in time period t. The amount that is
ordered is the difference between the order-up-to level S and the current inventory on hand,
minus the amount already ordered in previous time periods, minus the amount emergency
ordered. This ensures that SKU m gets restocked up to le vel S. An order is only placed if the
current inventory position drops below the reorder point s.

Oquan
mtk ≥ Omtk · (Sm − Imtk − Rord

m,t−1,k − UOquan
mtk − UOquan

m,t−1,k) ∀ m, t, k (20)

Equation (21) and (22) sets the emergency orders binary in time period t to 0 or 1 dependent
on whether the on-hand inventory Imtk plus the amount emergency ordered drops below the
emergency order point UOPm. The maximum number of emergency orders to occur is one per
time period.

UOPm ≥ (Imtk +
t

∑
i=t−E(UOL)

UOmik)− BigM · (1 − UOmtk) (21)

UOPm ≤ (Imtk +
t

∑
i=t−E(UOL)

UOmik) + BigM · UOmtk (22)
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Equation (23) is a variable that determines the replenishment quantity for SKU m in time plus
expected lead time t + N1(E(Lm), σL

m). Where a normal distribution is used to draw a lead
time based on the mean and standard deviation. The replenishment quantity is applied to all
scenarios k in that time step for all nodes originating from the initial node.

Rm, t+N1(E(Lm),σL
m), k ≥ Oquan

mtk ∀ m, t, k (23)

Equation (24) determines the number of units of SKU m already ordered in time period t, but
not yet received. This number is based on the number of units already ordered in the pre-
vious time period Rord

m,t−1,k, minus the received replenishment order Rmtk and the emergency
order that arrives UOquan

m,t−L(UO),k, plus the amount ordered Oquan
mtk and the amount emergency

ordered UOquan
mtk . Furthermore, since this parameter can become negative, we need to add a

non-negativity constraint shown in Equation 25.

Rord
mtk ≥ Rord

m,t−1,k − Rmtk + Oquan
mtk + UOquan

mtk − UOquan
m,t−UOL

m,k ∀ m, t, k (24)

Rord
mtk ≥ 0 ∀ m, t, k (25)

Equations (26) and (27) set the stockout binary SOmtk 1 if a stockout occurs for SKU m in time
period t for scenario k. Otherwise this value is set to 0. A large penalty factor is associated with
a stockout, as this is a health risk for the patients in the hospital. This cost factor is applied in
Equation (35).

0 ≥ (Imtk − 1)− BigM · (1 − SOmtk) (26)

0 ≤ (Imtk − 1) + BigM · SOmtk (27)

Lastly, Equation (28) denotes the probability of each scenario in time step t. Since every scenario
is equally likely to occur, and are distributed i.i.d., the value of pt is one divided by the number
of nodes in the current time step denoted by Nodest. The number of nodes in time step t,
denoted in Equations (29) and (30), is the number of scenarios in the initial set, minus t, plus
one, times the nodes in the previous time step, as the size of the scenario set decreases with one
every time step. Once t becomes larger than the length of the initial scenario set the scenario set
will be size one for all following time periods, and keep the same node probability. The while
and else statements are possible, as the node probability table is calculated before running the
model and used as static input, thus having no influence on linearity.

pt =
1

Nodest
(28)

Nodest =

{
Nodest−1 · (K − t + 1) while t <= K and t > 0
Nodest−1 else

(29)

Nodes0 = 1 (30)

Cost parameters
The material cost for every SKU m in time period t and scenario k is considered in Equation
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(31). The SKU material costs is the SKU price CM
m at times the ordered quantity, Oquan

mtk .

MC
mtk ≥ CMat

m · (Oquan
mtk + UOquan

mtk ) ∀ m, t, k (31)

Equation (32) determines the ordering cost per time unit t for SKU m in scenario k. The ordering
cost is incurred if an order is placed at the hospital during time period t. The ordering cost
include the transportation and transaction cost of as well the external supplier and hospital
logistics. The ordering cost in period, OC

mtk, is the ordering cost CO
m plus the delivery cost CD

m ,
times whether SKU m is ordered Omtk.

OC
mtk ≥ Omtk · (CO

m + CD
m ) ∀ m, t, k (32)

The cost of inventory per time period t for SKU m and scenario k are determined in Equation
(33) and denoted by IC

mtk. The inventory costs amount to the fraction of SKU cost as holding
cost h times the SKU cost Cm times the inventory at the end of time period t, Imtk.

IC
mtk ≥ h · Cm · Imtk ∀ m, t, k (33)

The emergency ordering costs per time period t for SKU m in scenario k, UOC
mtk, is denoted in

Equation (34). These costs amount to the emergency order cost for SKU m, CE
m, times the binary

UOmtk that denotes whether an emergency order is placed for SKU m in time period t.

UOC
mtk ≥ CU

mO · UOmtk ∀ m, t, k (34)

The stockout cost per time period t for SKU m in scenario k is denoted in Equation (35) as SOC
mtk.

The stockout cost is the the binary variable SOmtk that denotes whether there was a stockout in
period t for SKU m and scenario k, times the stockout penalty factor PF.

SOC
mtk ≥ SOmtk · PF ∀ m, t, k (35)

3.2.2 Model 2: Optimised s and order quantity

This section denotes the changed made to the initial model in order to make s a variable that
is optimised by the MIP. The inclusion of s is necessary when SKUs with low erratic demand
and variation in demand and leadtime provide unrealistically high values for a stationary s.
The need for application of the second model is further elaborated on in Chater 5 where the
conducted experiments are denoted. The changes to model 1 needed to make s a decision
variable that can be optimised are the following.

• Parameter sm becomes a decisions variable of the model. The non-anticipativity is applied
to sm in the same manner as to Sm and UOPm.

• The decision variable sm is bounded to be one or higher, as an order is placed when the
inventory level drops below the level s. The level s is bounded in Constraint (36).

sm ≥ 1 ∀ m, t, k (36)

• The EOQ is removed from the model. Constraint (7) that bounds the level S based on
the EOQ is altered. S is now bounded large enough to expect to incorporates all optimal
values. A check is performed after the optimisation if values of S reach the upper limit.
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FIGURE 7: Flowchart depicting the heuristic solution approach, separated in a
first and second step.

3.3 Heuristic

Since the stochastic programs proved to be unable to solve for data sets with small intermit-
tent demand within reasonable time frames a heuristic is constructed to provide solutions for
inventory systems with these characteristics.

Figure 7 shows the constructed heuristic and the steps it takes to calculate inventory levels. Ini-
tially the levels of s and S are set to two, as this is the lowest acceptable value due to stock outs
occurring should there be demand and one unit of inventory. Performance is calculated over
10,000 time steps for the current levels for s and S. When a CSL of 99.9% is reached the level is
deemed adequate and the solution is saved, otherwise the algorithm increases both levels with
one. The algorithm is bounded on a maximum level for S and s of 102, to prevent infinite run
time should a 99.9% CSL be impossible to obtain. The second step of the heuristic decreases the
order point s by one if the order point is larger than two, and calculates performance. Should
the achieved CSL still be above 99.9% the solution is saved and s is decreased further. If the
CSL drops below the threshold the algorithm stops, and the last levels for s and S that achieved
a CSL of above 99.9% is chosen as final solution.

3.4 Assumptions

All relevant assumptions with accommodating explanations are listed below.

1. Only one (emergency) order can be placed per time interval

Since lead times are short, with even faster emergency deliveries, a maximum of only one
(emergency) order per time period is placed.

2. Larger SKUs are more expensive
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Due to the limited storage space larger SKUs need to be penalised more than smaller SKUs.
The holding cost is a penalty cost for having stock, it penalises more expensive SKUs as the
holding cost is a percentage of SKU value. We assume that larger products cost more, as they
are more extensively packaged, or generally bigger.

3. The ordered quantity is also the delivered quantity

The model assumes that all ordered SKU quantities are also delivered. From the experience of
Isala it is proven that in reality it sometimes is the case that this does not happen. So, should
the model be implemented, there also needs to be an additional check whether the ordered
quantities are actually the delivered quantities.

4. All scan-relevant items are scanned during the procedure, and thus subtracted from the
inventory position

Occasionally it is the case that items are not scanned during procedures, whilst it is obligatory
by law. The model assumes that all products get scanned, so periodic checks are necessary to
ensure that inventory levels do not decrease.

3.5 Conclusion

In this chapter the sub-question "What is the mathematical model formulation, and what are the asso-
ciated parameters?" is answered. Two different mathematical models are constructed in Section
3.2. One that optimises the order-up-to level S and the emergency order point UOP with a
stationary order point s. The second model includes s in the optimisation, and can be used if
SKUs with low erratic demand give unrealistically high values for s, and values of 0 and 1 for
the EOQ. The chapter describes the constructed heuristic that is applied to the small intermit-
tent demand of the scan-relevant items. Lastly, the relevant assumptions are listed in Section
3.4.
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Chapter 4

Case study: OR department Isala

In this section, the case of the OR department of Isala is discussed and analysed using available
data. First, the data is validated and exclusions for this research are made in Section 4.1. Section
4.2 discusses the current performance of Isala, and illustrates problems previously identified.
Section 4.3 discusses the available data on demand and illustrates the characteristics of the
sporadic demand for scan-relevant items. Section 4.5 discusses the conclusions that can be
drawn from the case study.

4.1 Data validation, preparation, cleaning

The data contained some missing or incorrect values. Furthermore, some assumptions are
made and data is excluded.

Items not in stock anymore, the data between 2017 and 2022 contains many SKUs that are not
in stock anymore because they became unavailable or are replaced with other SKUs. Of
the total of 4,788 SKUs in the dataset, 3,634 SKUs are no longer used. This leaves us with
1,154 SKUs that are currently being used at the OR department.

1-1 level product are products that have a minimum and maximum stock level of 1. These
products have an average demand of 0.0688 units over their respective lead times and
amount to a total of 316 SKUs. Since only one of each of these products is in stock, it is
always the case that an emergency order is placed should demand occur. The sporadic
use of these products and the risk-avoiding behaviour of physicians causes the need to
emergency order every one of these products. It is chosen to exclude these SKUs from the
dataset as this research focuses on the inventory management itself, and not the change
management required to implement it. 317 out of the remaining 1,154 SKUs had an 1-1
inventory level, and are thus removed. This leaves 837 SKUs in the dataset.

Negative average lead time, or an average lead time of 0 days, is present in the dataset for
some SKUs. For both cases, the values are modified to the average lead time in the
dataset. The number of orders that had incorrect data was low, so these values are as-
sumed to be small data discrepancies. These values are not possible, and thus deemed
faulty data.

SKUs ordered once in the dataset do not have a standard deviation in lead time. The standard
deviation in lead time of these SKUs is set to the average standard deviation of all SKUs.

Wrong order data is present in the data sheets. A total of 3 order sizes have been altered since
they were abnormally large. Three orders in the database consisted of 1000+ units. Upon
further investigation, the average order size for these SKUs was 1, and abnormally large
values are altered to this number. The next largest order size was about 30 units, and
not inconsistent with other orders of this SKU type. So we can assume that all order size
outliers are now removed.
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Data analysis from this point in the report forward is conducted with the dataset after the
previously mentioned exclusions, which amounts to a total of 837 SKUs.

4.2 Current performance

Chapter 1 identified the problems that arise at Isala and determines the scope of the research.
In this section the posed problem is substantiated with numerical examples, and it shows that
the identified problem is supported by findings from the data.

4.2.1 Usage vs stock levels

Figure 8 plots the maximum stock level determined for ten SKUs compared to their average
yearly orders. The figure shows the five SKUs that have the least usage, and the five SKUs with
the largest ordering quantity. The SKUs with the least usage have significantly higher maxi-
mum stock levels than yearly order quantity. Furthermore, the five products that have the high-
est deviation in ordering and maximum stock level have vastly lower stock levels compared to
their ordering. On average 30% of all SKUs deviate more that 5 units with their maximum stock
level. The figure confirms our suspected flaws with the current inventory management system
described in Chapter 1. Data shows that 94.7% of orders arrive within 11 days. Furthermore,
it becomes apparent that 803 of the 837 SKUs have a higher maximum stock level than their
demand over a two-month period. This confirms the expectation that stock levels are relatively
high and can be lowered.

FIGURE 8: The maximum stock levels versus the average yearly orders for the 5
most deviating SKUs in the least and most usage. Including the fraction of SKUs

on average deviating more than 5 units per order.

4.2.2 Order sizes

Figure 9 shows the five most deviating SKUs in terms of order size in deviation per order. From
the min and max levels a predetermined order size is calculated. However, from the figure it
becomes apparent that the current ordering policy does not follow these predetermined lev-
els. Figure 9 shows an average order size for the five most deviating products to be about 1
to 4, whilst a vastly larger order size should be used according to the data. This illustrates
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FIGURE 9: Predetermined order sized versus the actual order sizes from data for
the five most deviating SKUs, including the average over all SKUs.

the risk-avoiding behaviour and the distrust in the inventory system of employees. Once a
mathematically substantiated system is constructed, it is important that employees follow this
system. Furthermore, the average deviation between the expected and actual order sizes is
1.25. The value seems low, however, as most orders sizes consist of single product orders an
average deviation of 1.25 units is substantial.

The OR department does not work with set Key Performance Indicators (KPIs) to measure their
performance. The general consensus is that when there are units in stock, it is going well, with-
out digitally monitoring the stock levels. The OR department does keep some safety stock in
order to accommodate emergency surgeries. However, this number is not a determined value,
but based on experience. The absence of KPIs and mathematically substantiated inventory sys-
tems or safety stocks emphasises the need for an optimised inventory management system.
Furthermore, of the included SKUs, 12 do not reach the required CSL of 99.9%.

4.3 Demand

The demand for scan-relevant products is for many SKUs sporadic. There are 228 products of
837 that have orders of equal to or less than 2 per year for the period of 2017 to 2022. Only 23
our of the 837 products are ordered weekly, with the most popular product having an average
of 179.17 units ordered per year. The other SKUs have orders between 2 and 52 units per year.
Although the demand for scan-relevant products is low, the total value of these products is
high because most SKUs are highly patient-specific and of high quality. The total value based
on the current maximum stock levels of all included SKUs amounts to €2, 062, 322.34, with the
total amount of stock being 4, 675 units. Over the years 2019-2022, waste is known. The average
waste over this period amounts to €92,462 annually and is caused by products that go past their
due date.
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TABLE 1: Performance of the current method of inventory management averaged
over the years 2017-2022.

Cost /Factor Avg per year
S 4,603
E(CSL) 99.97%
nr. SKUs CSL < 99.9% 12
Inventory € € 545,000
Ordering € 100,000
Material € 2,114,000
Emergency € 201,000
Stockout € 916,000
Total costs € 3,877,000
Total costs wo Stockout € 2,960,000

4.4 Costs current inventory policy

In order to compare the model performance to reality the average annual costs of the current
inventory management method are calculated and the findings are reported in Table 1. The
values are the average costs over the period of 2017-2022. The level S is determined by taking
the maximum stock levels of all SKUs currently stored at the OR department. Furthermore, the
current cycle service level is estimated by drawing a Poisson distribution with the average on
stock inventory and the expected demand over the lead time.

Table 1 shows that the current inventory policy of Isala achieves high values for the cycle ser-
vice level and on average keeps to their stated wish to have a Cycle Service Level (CSL) of
99.9% to ensure product availability. The stock level S is high, since the average demand per
year for all products amounts to 5,839.17 units annually, averaged over the years 2017-2022.
This means that the maximum stock level is 78.83% of the annual demand, or 4,099% of the
weekly demand. With the majority of lead times ranging from 1 to 10 days it is unnecessary
to keep stocks of this quantity, which leads to increasing inventory costs, and being the main
cause of the problems the OR department experiences with limited storage space. Note that
the maximum stock level is not the stock that is on average in the inventory. However, with
the frequent ordering of Isala, the average stock level will be near this maximum. The stockout
costs are calculated using the achieved average cycle service level of 99.97%, where 3 out of
every 10,000 days each SKU has a stockout. Since stockout costs are an artificial cost based on a
penalty factor determined in this research the total not including these costs is included in the
table.

4.5 Conclusions

In this chapter we have answered the sub-question "What is the current situation at Isala with
regards to their inventory policy, performance on KPIs, and minimal stock levels?" The current in-
ventory management system most resembles an (s, Q) system with automatic orders should
an SKU drop below level s, if the employees do not intervene with the ordering. However,
this is done frequently, as becomes apparent from the expected order sizes and the actual order
sizes displayed in Figure 9. Furthermore, the levels s and Q are arbitrarily determined and
are not calculated or checked for revision. It can thus be concluded that the OR department of
Isala does not use any kind of mathematically substantiated inventory model for their SKUs.
Furthermore, the hospital does not use any KPIs, which means that they are not measuring
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their performance in any way. Lastly, there are minimal stock levels per SKU to accommodate
emergency surgeries, but these stocks are not a calculated value.

The current performance of Isala in terms of costs, maximum inventory levels, and CSL is cal-
culated. The average annual costs for the OR department amounts to €3, 709, 714.91, with a
CSL of 99.97% and the maximum amount of inventory in stock being 4, 603 units. The unnec-
essarily high maximum stock levels are identified to be the main cause for the issues the OR
department experiences with limited storage space. Furthermore, the OR department has 12
SKUs that do not meet their CSL requirements.
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Chapter 5

Model Experiments

In this chapter the various inputs to the stochastic program are determined in Section 5.1. After
the input the experiments on the first stochastic model are discussed in Section 5.2. The first
stochastic model included the stationary levels for s and the EOQ. Following this, the experi-
ments of model two are discussed in Chapter 5.3, where the level s is determined by the model,
and there is no upper bound for the order-up-to level S. The heuristic experiments are denoted
in Section 5.4. The chapter is concluded in Section 5.5.

5.1 Model input

5.1.1 Time period and scenario set

In this subsection the sampling approach is discussed. The levels for the time steps t and
the maximum size of the scenario set κ are determined. Since we encounter memory issues
when running the different models the time step and scenario size is chosen such that it still
fits within the memory of the computer, whilst having the largest possible amount of demand
realisations. The results of these experiments can be seen in Table 2. It can be observed that all
experiments with a scenario set that is larger than four caused a memory error. An increase in
scenario set size drastically increases the number of nodes that needs to be calculated. When
the scenario set would be increased from four to five this would mean five times as many nodes
for the model to calculate. When the size of the scenario set is determined, experiments are run
on the largest possible value of t that the model can run. The model started to increase in
run-time when using twenty time steps. Since (t = 20) incorporates more than 95% of lead
times, as determined in Section 5.1.3, this number of time steps is determined to be adequate.
The model ideally needs to be able to place orders that arrive within the time steps, and this is
achieved with a time horizon of twenty days.

5.1.2 Demand

The demand distribution implemented into the model uses a simple exponential smoothing
over the years of 2017-2022 to be used as expected yearly demand. The choice of simple

TABLE 2: Experiments time step and scenario size.

Experiment Scenarios Time steps Runtime
1 10 20 N/A
2 6 10 N/A
3 5 10 N/A
4 4 10 3:28
5 4 15 3:34
6 4 20 40:32
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smoothing is based on the fact that most SKUs do not have a clear upwards or downwards
trend, and average yearly order sizes also vary. Since the demand seems random, the choice
for simple exponential smoothing is made, as this smooths the fluctuation in demand, without
needing a trend. Reasonable values for the smoothing factor α range between 0.1 and 0.3 [8].
Since on visual inspection the demand fluctuation seems quite random, an α level of 0.3 is cho-
sen. This gives more weight on demand of recent years, as these are deemed more significant
with erratic demand patterns. The formula used for exponential smoothing is denoted below.
xt denotes the realised demand from the previous period, and x̂t is the expected demand for
the next time period, in our case the year 2023.

x̂t = α ∗ xt + (1 − α) ˆxt−1

With the expected demand for the year 2023 a daily demand is calculated. The model draws de-
mand realisations based on a Poisson distribution as described in Chapter 2. Since the variance
of all demand realisations are above one a Poisson distribution is deemed a good fit [8].

The demand for many SKUs is low. When running the model at memory limits there is still
a significant part of SKUs without demand. When the SKUs in the model have little to no
demand the model is unable to determine optimal stock levels for these SKUs. 100 runs of
demand generation are performed, and in these runs an average of 560.82 SKUs do not have
any initial demand. SKUs in the model that do not have any initial demand according to
the Poisson distribution will get assigned a demand realisation of one in a random time step
for a random scenario. This ensures that all SKUs in the model have demand, and thus the
possibility to be ordered. Next to the demand generation, it is chosen to exclude all SKUs
below 0.15 units of expected demand over their lead time, as the model will not yield results
for these SKUs due to no demand occurring within the models time steps. This leaves 241 out
of the initial 837 SKUs that are optimised by the mathematical model. Since the demand over
the lead time for the excluded SKUs is low the maximum and minimum stock levels are set to
two, such that when there is demand for these SKUs, there is still one unit in stock to prevent
emergency orders and stock outs. Should demand for one unit occur, a replenishment order of
size one is placed.

5.1.3 Lead time variability

The lead time for most SKUs is not the expected lead time. The lead time ranges from 1 to 15
days for 95% of the orders. The data shows that from the period of 2017 to 2022 12, 946 out of
24, 217 orders had a different delivery date than expected. This amounts to 53.45% of orders
having a deviation in delivery date. A factor influencing this deviation is that the scan-relevant
SKUs are not in stock at HL. These products are cross-docked and have longer lead times. This
since the products move from supplier, to HL, to Isala.

When an order is placed the mathematical model draws a lead time. This lead time is assumed
to be normally distributed, and is based on the SKUs average and standard deviation. The
lower bound for the lead time is at least two days, as this is the number of days it takes before
an emergency order arrives. Demand over the lead time is calculated by taking the average
demand per day over the years that the product has been ordered, and multiplying the value
with the average SKU lead time.

Figure 10 shows the absolute days of deviation in lead time from the expected delivery date
for all orders from 2017 to 2022. In order to determine outliers, the interquartile range (IQR) is
calculated, and all values above 1.5 ∗ IQR are excluded. In this manner, all values above 49 days
and below -28 days of deviation are not considered in the determination of SKU lead time. The
figure shows a steady decrease in the number of orders when the days of lead time deviation
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FIGURE 10: The days deviation of planned delivery date and actual delivery date.

increases or decreases. Thus, it can be concluded that the largest part of SKUs deviated at most
1 to 7 days from their expected delivery date.

5.1.4 Ordering and stockout costs

The costs need to be estimated, as the HL cost are not known exactly. For ordinary orders the
average ordering costs amount to €23.89 per order. We assume the costs incurred by HL as a
cross dock to be €1 per order.

The costs for emergency ordering are zero for HL as they cross dock the scan-relevant SKUs.
Furthermore, the emergency ordering of scan-relevant items is done automatically by the sys-
tem, and thus no personnel costs are incurred for these emergency orders [10]. We assume the
emergency order costs to be double that of the order costs for a regular order. This amounts to
€49.78 per emergency order.

For the stock out costs a high value of €9999 is taken. This value is substantially higher than
the emergency ordering costs, as stockouts are highly undesirable. The high stockout cost
discourages the model to use stockouts as policy to reduce inventory levels.

5.1.5 Number of replications

For the number of replications an adequately large number of runs is performed for every
dataset that is experimented on. The number of replications is deemed adequate if the relative
error is smaller than gamma prime (γ′). Where gamma prime is γ/(1 + γ). The mathematical
formulation is denoted in Equation 37. S2 denotes the sample variation and X̄ the sample
average. We take an α of 0.001, as the required CSL is 99.9%. Furthermore, a γ of 0.025 is used,
giving γ′ = 0.02439. Should the value of the left hand side of the equation be lower than the
right the number of replications is deemed adequately large.

t0.9995,n−1 ·
√

S2/n
X̄

≤ γ′ (37)
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5.1.6 Model 1 specific inputs

Level s

The reorder point s is derived to be used as input value for every SKU in the optimisation
algorithm for model 1. Equation (38) determines the initial levels of s for every SKU m. This
level is based on the expected demand over the lead time E(DL

m), plus the safety factor z times
an expression that incorporates the demand and lead time variability [8].

sm = E(DL
m) + z ·

√
E(Lm) · (σD

m )2 + (E(Dm))2 · (σL
m)

2 ∀ m (38)

EOQ

To set a bound on the order-up-to level S, the Economic Order Quantity (EOQ) is used. Equa-
tion (39) shows how the EOQ is calculated. The EOQ denotes the optimal order size based on
the expected demand per time period t, E(Dm), the cost of ordering CO, the cost of SKU mate-
rial CM

m and the fraction (h · 365) of SKU value as the holding cost fraction per day. The EOQ
sets a maximum bound for the level Smt. The MIP will thus consider all values of Smt between
sm and EOQm. Since the EOQ can be a decimal number, all values will be rounded up before
being loaded into the model.

EOQm =

√
2 · E(Dm) · CO

CM
m · (h · 365)

∀ m (39)

5.1.7 Constants

Below the constants of the mathematical model are listed. All experiments are run with these
constant values. The values are obtained through data analysis, and in collaboration with em-
ployees of the OR department.

CO = €23.89 Ordering cost of the external supplier

CD = €1 Delivery cost of Hospital Logistics

CUO
m = €49.78 Emergency order cost

h = 0.3/365 Fraction of SKU cost Cm as holding cost per time period t

z = 3.01 Safety factor associated with the CSL

PF = 9999 High penalty factor for stockout

UOL
m = 2 Emergency order lead time

SB
moundSmall = 50 Upped bound for S for the the scan-relevant data

SB
moundLarge = 2000 Upped bound for S for the large demand case

5.2 Experiments model 1

In this section, experiments performed with model 1, using calculated stationary values for s
and EOQ, are discussed. Data analysis shows that for SKUs with low intermittent demand,
the calculations for the value of s and EOQ are not representative, as high values are obtained
due to demand and lead time variability. Since all scan-relevant SKUs have this low demand
a second mathematical model is constructed, with its experiments denoted in Section 5.3. The
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number of replications needed for the large demand case are determined to be three following
the method described in Section 5.1.5.

5.2.1 Large demand case

To test the performance of model 1 a larger demand case is constructed. The daily demand for
the scan-relevant items is multiplied by a factor 1,000 and run for 20 time steps and an initial
scenario set of 4. Since the scan-relevant items have longer lead times and larger standard
deviations than in general items that are more frequently ordered the average lead time of the
SKUs is set to two, with a standard deviation of one, similar to deliveries items in stock at
Hospital Logistics. Emergency orders are set to be delivered in one day.

With this increase in demand, a stationary reorder point s is calculated. Furthermore, the EOQ
is calculated to set a maximum bound for the order-up-to level S. The performance on scenarios
with larger demand probability determine whether the constructed model has applications
in other departments, or for other product types, with higher demand characteristics. If the
model yields good results on a large demand case it opens opportunities for implementation
in different departments.

When running experiments, the large demand case model could not be solved to optimality
within ten hours. To obtain optimal solutions, another experiment is performed described in
Section 5.2.2.

5.2.2 Optimally solved large demand case

Since the large demand case generates enough demand to provide all SKUs with initial de-
mand, it is possible to reduce the initial size of the scenario set κ from 4 to 2. This enables the
stochastic program to be solved optimally within reasonable time frames. The experiment uses
the same input settings as in the large demand case described in Section 5.2.1.

5.3 Experiments model 2

This section described the experiments performed on model 2. To recall, model 2 is the stochas-
tic program that determines the order point s itself. Furthermore, the model still determines
levels for S and the UOP.

5.3.1 Scan-relevant dataset experiments

α and β experiments

To assess the influence of the levels of α and β on the objective function denoted in Equation 5 in
terms of costs and maximum inventory a variety of different levels are input to the model. The
variety of weight factors is used to make a trade-off between the lowest costs and the lowest
stock for the scan-relevant items. Based on the results, Isala can select the weight factors of
their preference and set their inventory levels accordingly. The different experiments are listed
in Table 3.
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TABLE 3: Values for α and β experiments.

Experiment α β

1 0 1
2 0.2 0.8
3 0.4 0.6
4 0.6 0.4
5 0.8 0.2
6 1 0

The initial inventory levels from the data set are quite high, and would not enable the model
to order units as the majority of demand can be satisfied from stock. Thus, the initial inventory
for all SKUs is set to max(2, 3 ∗ E(DL)). A minimal inventory of two is chosen as an inventory
level of one would mean that every demand occurrence in the first time steps would cause a
stockout.

Initial inventory

An experiment is conducted on a variety of initial inventory levels. The stochastic program
runs for three different initial inventory scenarios. The initial inventory is determined by mul-
tiplying the initial inventory of the experiment α, β by factors [0.5, 1.5, 2]. The settings that are
run with these initial inventories is the settings with the best performance from the α, β exper-
iment. Best performance is measured in terms of costs, CSL, and total maximum inventory. A
choice is made based on these findings.

5.3.2 Large demand case

In order to compare the performance of model 1 to model 2, the large demand case is optimised
by model 2. The expectation is that, when able to be optimally solved, the performance of
model 2 will be better, as model 2 gives more freedom to the stochastic program in determining
optimal stock levels. Three replications are run as mentioned to be adequate in Section 5.2.

5.3.3 Validation simulation large demand case

In order to test expected real-life performance a validation simulation is performed on the
optimally solved large demand case. The values for S, s, and emergency order point UOP
determined by the model are used as stationary inputs. The model is run for 10,000 time steps
and three replications, indicating performance should the model be implemented for a large
demand scenario. Three replications are deemed sufficient for this experiment.

5.3.4 Toy instance emergency-order-point

Since the experiments with model 1 and model 2 showed that the stochastic program solves op-
timally without using an emergency order point an experiment is performed on a toy instance
to show that the mathematical model does emergency order when needed. For this instance
the input parameters are set such that emergency ordering in the first time steps will always
benefit the program. The toy instance uses the following inputs:

• M = 20 (20 SKUs optimised)

• I Init
M = 4

• E(DM) = Random(3, 5)
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• E(Lm) = 4

• σL
m = 0

With these input settings, and an emergency order lead time of one day, it is always beneficial
to emergency order in the first time steps, as otherwise stockouts will occur.

5.4 Heuristic experiments

Since the stochastic programs are unable to determine optimal inventory levels for the scan-
relevant items the heuristic algorithm is constructed. The experiments with this heuristic use
the dataset of the scan-relevant items of the hospital and includes all 837 SKUs.

5.4.1 Emergency order point

As an experiment the heuristic uses a variety of factors to determine the emergency order point.
The emergency order point is the rounded multiplication of the factor s in the heuristic algo-
rithm. The factors that are used as experiment are [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. In total six exper-
iments. The required number of replications for this experiment is six, following the method
described in Section 5.1.5.

It is possible that the six experiments have different values for s and S due to the randomness
of demand and lead time. The rounded average level of s and S is taken as the optimised value
of the heuristic.

5.4.2 Lead time variability

SKUs are ordered a few times or only once a year, causing some SKU lead time variances
to be large. This experiment determines whether a decrease in lead time variability would
improve performance. Should it be the case that a lower lead time variability yields significant
improvement Isala can choose to approach their suppliers and try to set more accurate lead
times.

This experiment uses the stochastic program with an emergency ordering level of 0.3. Further-
more, the standard deviation in lead time is set to one for all SKUs.

5.4.3 Validation simulation

Since there is the possibility that the different replications produce different levels for s and S a
validation simulation is performed to assess heuristic performance using the average values for
s and S rounded up. The validation simulation is run for 10,000 time steps with six replications.

The model that is run with these initial inventories is the model with the best performance from
the urgent-order-point experiment. Best performance is measured in terms of costs, CSL, and
total maximum inventory.

5.5 Conclusion

In this chapter the subquestion "How should the experiments be designed to reflect the expected
real-world performance of the model as accurately as necessary?" is answered. The experiments for
the two stochastic programs are determined, together with their relevance. To estimate the
expected real-world performance a validation simulation is constructed that determines the
performance of the model over a long time period using values for S, s, and UOP determined
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by the model. Furthermore, experiments for the heuristic approach are described. The heuristic
uses the dataset of the scan-relevant items exclusively.

The next subquestion that is answered,"What are the different scenarios that need to be modelled?",
the chapter discusses the various experiments that need to be performed in order to determine
model robustness should input factors change. The model is tested to a variety of scenarios
with adequate replications. A large demand scenario is run for model 1 to see whether the
model yields good results, and if the model might be applicable to departments with larger
demand. For model two the robustness of the model is measured by experimentation on the
different weight factors α and β, and the initial inventory. Model two also incorporated the
large demand case, to determine whether a stationary or optimised value of s is preferable.
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Chapter 6

Results

In this chapter the experiments described in Chapter 5 are discussed. First the results of model
1 are discussed in Sections 6.1. Next the results of model 2 are discussed in Section 6.2. Section
6.4 denotes the conclusions drawn from the analysis of the results. All experiments are run on
an AMD Ryzen 5 2600H (6 cores, 12 processors) with 16 GB of DDR4 RAM, with solver Gurobi.

6.1 Model 1 results

The model used for all model 1 experiments uses a cost factor α of 0.8, and a total inventory
factor β of 0.2, this to balance between reducing costs, and inventory. The main priority is de-
creasing the total costs, and a small factor for inventory level minimisation is used to restrict
the model in using unrealistically high inventory levels to prevent stockouts. The initial inven-
tory for all experiments is the level s plus the EOQ. To recall, in model 1 a stationary calculated
value for s and the EOQ is used.

6.1.1 Model 1: Results large demand case

The experiment ran five replications with a maximum runtime of two hours per run. This
yielded an average optimality gap of 77.26%, with an average CSL of 60.18%.

6.1.2 Model 1: Results optimally solved large demand case

Figure 11 shows the results of the experiment, with average runtime being around 30 minutes.
The average cycle service level of the experiment does not achieve the goal of 99.9%. The cause
of this is that the calculated values for s and EOQ for some SKUs cause stockouts. Stockout
costs are not displayed in the graph as these costs are an artificial cost penalising a lower CSL,
since the CSL is included the stockout costs are not.

For 113-121 SKUs the emergency order point is set to a value of one. However, the model
does not need to emergency order due to optimised levels for S. Furthermore, an emergency
order point of one is not expected to increase performance, as most SKUs, except eight, have
an expected daily demand that is vastly larger than one.

6.2 Model 2 results

As discussed in Section 5.1.2 241 of the initial 837 SKUs are optimised by the mathematical
model for the experiments in Section 6.2.1, for all other experiment all SKUs are included.

6.2.1 Model 2: Results (α, β) and initial inventory experiment

The results for the two experiments can be seen in Table 4. Note that for all experiments, except
the experiment with (α = 0, β = 1), yield no optimal solutions after running the model for two
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FIGURE 11: Three replications and average level S of the optimally solved model
1 with the large demand case, including achieved CSL

hours. An 10 hour run is performed where the model was still not able to to solve optimality
with similar performance to the two hour run. On average, 100.8 of the 241 SKUs did not
receive an initial demand in the model. This is unexpected, as most SKUs with lower demand
have already been removed from the dataset. The fact that there are still many SKUs without
initial demand shows that the demand probability for the included SKUs is still too low to
generate enough demand for the model to place orders within its time frame. This causes the
cycle service levels to be unrealistically high values as most SKUs can satisfy all demand from
their initial inventory. The initial inventory experiment confirms this as a cycle service level
of 100% is achieved for the experiments with larger initial inventory. The initial inventory
experiment shows that with lower initial inventory more SKUs need to be ordered, causing the
stochastic program to set larger values for s and S.

Since the stochastic model is unable to optimally solve within reasonable runtime for the data
set of scan-relevant items a heuristic approach is used to determine stock levels, with result
denoted in Section 6.3.

TABLE 4: Results for the α, β and initial inventory experiment, which cannot be
solved optimally for the scan-relevant items.

Experiment run Total costs Max stock CSL Optimality gap
α and β (α = 1, β = 0) € 132,000 717 99.99% 50.05%

(α = 0.8, β = 0.2) € 96,000 632 100.00% 75.36%
(α = 0.6, β = 0.4) € 176,000 552 99.90% 82.37%
(α = 0.4, β = 0.6) € 192,000 697 99.99% 15.77%
(α = 0.2, β = 0.8) € 108,000 619 99.99% 15.04%
(α = 0, β = 1) € 976,000 242 97.77% 0.00%

Initial inv Inv. Factor 0.5 € 858,000 1845 99.92% 22.72%
(α = 0.8, β = 0.2) Inv. Factor 1.5 € 58,000 440 100.00% 53.95%

Inv. Factor 2 € 35,000 382 100.00% 32.99%

6.2.2 Model 2: Large demand case

Figure 12 shows the results of optimally solved large demand case. When comparing the per-
formance of the large demand case with an optimised value for s and S to the performance of
model 1 (Section 6.1.2), model 2 that uses a joint optimisation of important decision variables
performs significantly better. The average cycle service level in model 1 is 99.86% for the op-
timally solved model, whilst model 2 achieves 99.99%. The costs are increase slightly, with an
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FIGURE 12: Three replications and average level S of the optimally solved model
2 with the large demand case, including achieved CSL.

average inventory decrease of 35.49%. This shows the stochastic program solving all decision
variables outperforms the program with a static reorder point.

The optimally solved large demand case identifies 16 SKUs where the emergency order point
is increased. The stochastic program, however, prevents emergency ordering by optimising the
levels s and S.

6.2.3 Model 2: Evaluation simulation large demand case

Figure 13 shows the performance of the evaluation simulation for model 2 with the large de-
mand case, including confidence intervals in Table 6.2.3. The evaluation simulation shows a
drop in cycle service level when evaluating the policy over a long time period. The drop in
cycle service level indicates that the time frame of the stochastic program is not large enough
to ensure good long term performance. The stochastic program fails to identify peak demand
outliers, which cause stockouts.

The stockouts caused by occasional peak demand can possibly be prevented by an emergency
order point. However, since the time frame of the model failed to include these peak demand
levels no emergency order point was set for most SKUs. Figure 12 shows some emergency
ordering, as the stochastic program did set an emergency order point for some SKUs. The
stochastic program is promising, the expectation is that when model 2 is run for more scenarios
and time steps, that include occasional peak demand, the performance increases.
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FIGURE 13: Average costs
and CSL of the large de-
mand evaluation simula-
tion solved with model 2
for the large demand case.

Costs (in 1000€) UOP
99.9% CI [€1,172,454; €1,215,755] -
Avg € 1,194,104 94.09%
CIHW € 21,650,456 0.00058244

TABLE 5: The 99.9% confi-
dence interval of the large
demand case evaluation,
including averages and the
confidence interval half-

width (CIHW)

6.2.4 Model 2: Toy instance emergency-order-point

Figure 14 shows the results of the toy instance experiment. In this experiment an instance is
created where emergency ordering is in general beneficial due to low initial inventory. we
conclude that the proposed mathematical model does set an emergency order point should the
SKU characteristics be such that it is necessary.

FIGURE 14: Three replications and average costs of the toy emergency order point
experiment.

6.3 Heuristic scan-relevant items

In this section the results of the heuristic performance is described. Two experiments and a val-
idation simulation are performed. One experiment shows heuristic performance under various
different emergency order levels, and the second experiment shows performance should lead
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FIGURE 15: Heuristic results emergency order point experiment normalised on
365 days including the current performance in €1, 000.

time variability decrease. Furthermore, the most promising emergency-order-point experiment
is validated.

6.3.1 Emergency order point

Figure 15 shows the average heuristic performance of six replications of six experiments using
various levels of emergency-order-point factors. The current performance and the experiment
without emergency order point still have SKUs with an CSL lower than 99.9%. For all other
experiments the desired service level is achieved. As the SKUs that currently do not meet these
requirement need to be ordered more frequently there is no expected decrease in costs. How-
ever, the inventory level of the OR department can be reduced significantly. for an expected
cost increase of 3.24% to 9.93% the total inventory is decreased by 11.17% to 56.62% dependent
on the desired UOP, whilst achieving the desired CSL of 99.9% for all SKUs.

6.3.2 Lead time variability

This experiment is performed with an UOP factor of 0.3, as the results from the experiment
with this level are the most promising. An UOP of 0.3 reduces inventory levels significantly,
for a relatively low cost.

Figure 16 shows the results of the lead time experiment, showing the average values over six
runs. With Table 6.3.2 showing the 99.9% CI for the costs and maximum stock level S. The
costs can be observed to be similar to the costs from the emergency-order-point experiment,
whilst the inventory level is reduced. The reduction in lead time variance leads to an expected
decrease of 76 units, or 2.76%. Should Isala want to reduce their inventory levels further they
can decide to convene with suppliers and try to reduce this variance.
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FIGURE 16: Heuristic re-
sults lead time variability
experiment normalised on

365 days in €1, 000.

Costs (in 1000€) S
99.9% CI [€3,112 ; €3,088] [2667 ; 2699]
Avg € 3,100 2683
CIHW € 12.16 16

TABLE 6: The 99.9%
confidence interval of the
heuristic lead time exper-
iment, including averages
and the confidence inter-

val half-width (CIHW)

6.3.3 Evaluation simulation

The evaluation simulation is performed for the experiment using an emergency-order-point
factor of 0.3, as these results achieve significantly lower stock levels and the required CSL for
all SKUs, with a slight cost increase.

The first replications of the evaluation simulation showed that 43 out of the 837 SKUs fell just
below the required CSL. These SKUs were SKUs with reduced levels for s by the heuristic. For
these SKUs the level s is set equal to the level S, and the evaluation simulation is repeated. This
gives the results shown in Figure 17 and Table 6.3.3, with accompanying proposed inventory
levels in Appendix D. With these settings all SKUs are validated by the simulation to have a
CSL larger than 99.9%. With yearly costs expecting to increase to €3, 100, 000 and maximum
stock levels dropping from 4603 to 2872. Compared to the current situation this is a cost in-
crease of 4.52%, to ensure that all SKUs are sufficiently available, and a maximum inventory
reduction of 37.61%, whilst achieving an average CSL of 99.99%.
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FIGURE 17: Heuristic re-
sults evaluation simulation
normalised on 365 days in

€1, 000.

Costs (in 1000€)
99.9% CI [€3,138 ; €3,170]
Avg cost € 3,154
CIHW € 15.955

TABLE 7: The 99.9% con-
fidence intervals of the
heuristic evaluation simu-
lation, including average
costs and the confidence
interval half-width (CIHW)

6.4 Conclusions

In this chapter we answered the sub-questions "What is the performance of the different experiments
and what are the advantages and disadvantages?". The large demand case is solved optimally by
both models. The results show that model 2 outperforms model 1 when solved optimally,
increasing the average CSL, and significantly decreasing total inventory. The validation simu-
lation showed that the time frame for the stochastic program is too small to include demand
outliers in the optimisation, causing stockouts. Should the model be able to run for a larger
scenario set and time period the performance is expected to increase. A toy instance was able
to set emergency order points, validating that the model does emergency order should it be
beneficial.

The constructed heuristic provides stock levels that Isala can implement at their OR depart-
ment. The costs for the OR department do increase slightly, this is however necessary as cur-
rently not all SKUs achieve their required CSL. The proposed stock levels achieve the required
CSL for every SKU, and furthermore decrease inventory significantly. The proposed levels
use an emergency-order-point factor of 0.3, and is expected to increase costs by 4.52% whilst
reducing inventory by 37.61% and ensuring that all SKUs achieve their required CSL of 99.9%.

The increase in costs is in part countered by the decrease in products going past their due date.
As mentioned, currently €92,462 worth of product is thrown away each year. When imple-
menting mathematically substantiated, lower, stock levels this value is expected to decrease.
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Chapter 7

Conclusions and Recommendations

This chapter concludes our research in Section 7.1. Recommendations to Isala are given in Sec-
tion 7.2. Discussion about the limitation of the research are discussed in Section 7.3. Possibilities
for future research are denoted in Section 7.4.

7.1 Conclusions

In Chapter 1 we formulated the following research objective: "To design and assess an inventory
model for the scan-relevant items stored in the operating room department that reduces inventory level
and decreases emergency orders, whilst maintaining, or improving, the current material availability.".
Analysis of the current situation at Isala identified the following issues the OR department
faces:

• A lack of calculated inventory levels, causing high stock levels for scan-relevant items.

• SKUs not meeting minimal service level requirements, where 12 out of 837 do not reach
99.9% availability.

• Not keeping to predetermined order sizes.

• A perceived lack in storage space.

• Unnecessary emergency ordering by the OR department.

Due to a lack of mathematically substantiated inventory levels at the OR department they
maintain high stock levels to counter the anxiousness of stockout. This increases costs and
causes a lack of storage space at Isala. The optimisation of inventory levels will ensure that all
SKUs reach their required availability, and reduce stock levels.

In this research a stochastic program is constructed for (s,S) inventory systems that to the best of
out knowledge is not previously regarded in literature. The constructed stochastic program
is a scenario-based program that incorporates uncertainty in future demand and lead times
in the current decision making, and determines optimal emergency-order-points. The innova-
tion to literature is the combination of point-of-use inventory systems with the introduction
of an emergency-order-point for healthcare institutions. The program optimises based on two
weights in the objective function. One being the total costs that need to be minimised, and the
second the total inventory, as the OR departments storage space is limited. The provided model
aims to reduce inventory levels. Having unnecessarily high inventory is common practise at
the OR department and other hospitals, as hospitals are in the capacity point of the Operations
Management triangle [11]. The optimisation of inventory levels aims to reduce emergency or-
dering, and achieve the high cycle service levels (CSL) desired. Two models are constructed
with the stochastic program, model 1 that has a calculated value for the order point s and
model 2 that uses an optimised value for s.
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The research shows that for many of the low intermittent demand SKUs the constructed math-
ematical model is not able to solve to optimality. To test the model a large demand case is
constructed that does yield optimal inventory levels. The evaluation simulation of the opti-
mally solved large demand case looks promising and achieves a CSL of 94.09% for model 2.
When larger computing power is used to run the stochastic program, using a bigger scenario
set and time span, an increase in performance is expected. The experiments show that using
an optimised value for the order point (model 2) is highly preferable over a calculated value
(model 1). This yields an expected inventory decrease of 35.49% with similar costs. Both mod-
els did not need an emergency-order-point to minimise their objective function. A toy instance
is created that proves that the stochastic program does emergency order should it be beneficial.

For the scan-relevant items with low intermittent demand a more simplistic methods of set-
ting the inventory parameters is better suited. A heuristic is constructed to calculate the or-
der points and order-up-to levels for these items. The heuristic experiments on a variety of
emergency-order-points, where the emergency-order-point is the order point times a decimal
ranging from 0 to 0.5. Since 12 out of 837 SKUs fail to meet their minimal CSL of 99.9% the
costs increase slightly. The heuristic shows that an expected cost increase of 3.24% to 9.91%
yields an inventory decrease of 11.17% to 56.62%, dependent on the emergency-order-point,
and achieves the minimal CSL requirement for all SKUs. The best experiment according to
us increases costs with 4.52%, and decreases inventory with 37.61%, using an emergency or-
der factor of 0.3. The scan-relevant items have large lead time variances, this research show
that when variance is reduced, stocks can decrease an additional 2.76%. The heuristic provides
mathematically substantiated inventory levels that can immediately be implemented at the OR
department decreasing their inventory and increasing availability. The heuristic results denote
the practical contribution of this research, and proposed inventory levels per SKU are denoted
in Appendix D.

The heuristic experiments show that the introduction of an emergency order point reduces
inventory and increases cycle service levels. The optimisation of emergency order points has
little mention in literature. This research shows that mathematically substantiated emergency
order points improve performance significantly, and that additional research into this topic is
necessary. The other addition to literature is the creation of a heuristic calculating inventory
levels for (s, S) point-of-use inventory systems under variable demand and lead time, using a
calculated emergency order point. This type of inventory system is to the best of our knowledge
not yet discussed in literature before.

Concluding, the formulated stochastic program shows promising results for large demand
cases, but is not able to achieve the desired CSL when running for the current time frame.
Performance is expected to increase when running the model with more computing power for
a larger set of scenarios and time steps. To provide mathematically substantiated inventory
levels to Isala a heuristic is constructed and evaluated for the scan-relevant items. The result-
ing inventory levels ensure that all SKUs fulfil their minimal CSL requirement, and decrease
total inventory with 37.61%.

7.2 Recommendations

We recommend that the OR department implements the inventory levels provided by the
heuristic, using an emergency-order-point factor of 0.3. Furthermore, the OR department is
advised to run the heuristic (half) yearly to see whether stock levels change based on recent
demand realisations. In the ideal situation, Isala should implement an inventory management
system in their ERP system that updates the inventory levels real-time.
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Since the results of the large demand case are promising Isala can run the stochastic program
using more computing power, and use a bigger scenario set and time span. If the performance
of the stochastic program is adequate, they can implement it at departments that suit the char-
acteristics of the large demand case, where daily demand ranges between 1 and 500 units. The
stochastic program cannot be altered by the employees of the OR department itself, as this re-
quires programming and mathematical skills, but the integral capacity management team, or
other skilled employees, can be requested to apply the model.

Isala strives to have a Just-In-Time (JIT) management of their material logistics. To achieve
this they should focus on improving contact and information sharing with their suppliers, as
mentioned to be essential in Chapter 2. More accurate agreements on delivery dates and delays
are necessary to implement an effective JIT management strategy, decreasing safety stocks, and
thus inventory.

Lastly, the OR department is recommended to start collecting data on demand realisation as
opposed to recording order data. With more accurate historical demand data it is possible
to more accurately forecast future demand, which will increase the accuracy of mathematical
models calculating stock levels.

7.3 Discussion

As mentioned in Chapter 4 the scan-relevant items have obsoletes amounting to a value of
€92, 462 annually. Since the model does not incorporate the best-before date of SKUs, savings
in reducing the waste are not included in the results. Obsoletes, however, are expected to
decrease significantly, should maximum stock levels be reduced. This counters the necessary
cost increase.

When experimenting with the stochastic program on the scan-relevant, intermittent demand,
items a random demand of one was generated if the SKU did not receive any demand from the
model. The goal being to force the model to have demand for every SKU, and thus optimise
the stock values. However, the assigning of a random demand of one unit does not have the
desired effect, as low demand realisations still not force the model to order, and thus not to
optimise model parameters. In the future an exact solution approach is not advisable for items
with very low intermittent demand as it is computationally intensive to optimally solve, and
more simple solution methods are sufficient.

7.4 Possibilities for future research

Determine a policy for SKUs with a maximum stock level of one. These SKUs are always
emergency ordered when demand occurs. The SKUs with this characteristic are excluded from
the model experiments, but since the demand for the SKUs is very low the emergency ordering
may not be necessary.

This research focused solely on improving the inventory system of Isala as a single echelon sys-
tem. When Isala uses an inventory management model for their stock levels it can be beneficial
to incorporate Hospital Logistics and model them as a central warehouse. A multi-echelon op-
timisation is expected to yield lower overall inventory levels and costs, and is beneficial to both
involved parties.

Connecting the surgery schedule of Isala to their inventory management systems. If for medical
procedures it is known or estimated what supplies are needed, then the ordering and stock
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levels can be dependent on the procedures scheduled the coming weeks. This does require
data analysis and the integration of multiple IT systems Isala is currently working with.
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Appendix A

Problem Cluster

In Figure A.1 the problem cluster is displayed. It shows the initial problems of Isala, and the
core problem that stems from these initial problems.

FIGURE A.1: Problem cluster
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Appendix B

Semi-systematic literature search on
inventory management (models)
within, and outside of, the healthcare
sector

We used a semi-systematic search construction for the literature search. We used a variety of
search strings to obtain relevant results. Since we wanted results from within the healthcare
sector, as well as applications from other industries, this required a variety of search strings.
Table B.1 shows the search process and exclusion criteria, with as a result a set of of sources
reviewed for this research.

TABLE B.1: Overview of search results with regards to material logistics

Search keywords # of sources
WebOfScience
(Inventory AND model) AND (continuous AND review) AND ((healthcare) 18
OR (health AND care))
(inventory AND model) AND (continuous AND review) AND (low AND lead-time) 20
(inventory AND model) AND (continuous AND review) 0
AND (operating AND room)
(material) AND (hospital AND logistics) 40
Additional results (snowballing / sporadically found) 6
Backward search 7
Exclusions
Not relevant for this research -65
Total remaining sources 25

The initial search results in 90 sources. However, since many sources regarded medical ap-
plications, or the inventory policies of pharmaceutical or blood products many were excluded
after initial scanning. The 25 sources that remain regard periodic and continuous inventory
policies with appliances in healthcare and within different sectors. Furthermore, some litera-
ture reviews, and research specifically focused on low-lead-time and JIT inventory models are
included in the selection of papers.
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Appendix C

Stochastic distributions table

Table C.1 shows some sources on whether they used a deterministic or stochastic demand and
leadtime. It can be seen that a Poisson distribution is common practice for demand variability,
and that for lead-time there is no distribution that is commonly used.

TABLE C.1: Table taken from [29] showing distributions for stochasticity in de-
mand and lead-time.
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Appendix D

Proposed inventory levels

The SKU numbers included in this report do not correspond with the article numbers of Isala,
this in order to ensure animosity.

SKU old_s new_s old_S new_S
0 1 2 2 2
1 2 2 2 2
2 2 2 2 2
3 2 2 2 2
4 2 2 2 2
5 2 2 2 2
6 2 3 2 3
7 2 3 2 3
8 2 2 2 2
9 2 2 2 2
10 2 3 2 3
11 2 4 2 5
12 2 4 2 4
13 2 2 2 2
14 2 2 2 2
15 2 3 2 3
16 2 2 2 2
17 2 3 2 3
18 2 5 2 5
19 2 2 2 2
20 2 2 2 2
21 2 4 2 4
22 2 2 2 2
23 2 2 2 2
24 2 4 2 4
25 2 2 2 2
26 2 4 2 4
27 2 2 2 2
28 2 4 2 4
29 2 2 2 2
30 2 2 2 2
31 2 2 2 2
32 2 2 2 2
33 2 4 2 4
34 2 2 2 2
35 2 4 2 4
36 2 2 2 2
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37 2 2 2 2
38 2 2 2 2
39 2 2 2 2
40 2 2 2 2
41 2 2 2 2
42 2 2 2 2
43 2 2 2 2
44 2 2 2 2
45 2 2 2 2
46 2 2 2 2
47 2 3 2 3
48 2 3 2 3
49 2 2 2 2
50 2 2 2 2
51 2 4 2 4
52 2 2 2 2
53 2 2 2 2
54 2 2 2 2
55 2 2 2 2
56 2 2 2 2
57 2 3 2 3
58 2 2 2 2
59 2 2 2 2
60 2 2 2 2
61 2 2 2 2
62 2 2 2 2
63 2 4 2 4
64 2 3 2 3
65 2 3 2 3
66 2 2 2 2
67 2 2 2 2
68 2 4 2 4
69 2 2 2 2
70 2 2 2 2
71 2 2 2 2
72 2 3 2 3
73 2 2 2 2
74 2 2 2 2
75 2 2 2 2
76 2 6 2 6
77 2 2 2 2
78 2 3 2 3
79 2 2 2 2
80 2 3 2 3
81 2 2 2 2
82 2 2 2 2
83 2 4 2 4
84 2 2 2 2
85 2 2 2 2
86 2 3 2 3
87 2 2 2 2
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88 2 3 2 3
89 2 2 2 2
90 2 2 2 2
91 2 2 2 2
92 2 2 2 2
93 2 4 2 4
94 2 2 2 2
95 2 2 2 2
96 2 2 2 2
97 2 3 2 3
98 2 2 2 2
99 2 2 2 2
100 2 2 2 2
101 2 2 2 2
102 2 2 2 2
103 2 2 2 2
104 2 2 2 2
105 2 2 2 2
106 2 4 2 4
107 2 2 2 2
108 2 2 2 2
109 2 2 2 2
110 2 2 2 2
111 2 2 2 2
112 2 4 2 4
113 2 1 2 2
114 2 2 2 2
115 2 2 2 2
116 2 2 2 2
117 2 2 2 2
118 2 2 2 2
119 2 2 2 2
120 2 2 2 2
121 2 2 2 2
122 2 2 2 2
123 2 1 2 2
124 2 2 2 2
125 2 2 2 2
126 2 2 2 2
127 2 3 2 3
128 2 3 2 3
129 2 3 2 3
130 2 2 2 2
131 2 2 2 2
132 2 2 2 2
133 2 2 2 2
134 2 2 2 2
135 2 2 2 2
136 2 2 2 2
137 2 2 2 2
138 2 2 2 2
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139 2 2 2 2
140 2 3 2 3
141 2 2 2 2
142 2 3 2 3
143 2 2 2 2
144 2 2 2 2
145 2 2 2 2
146 2 4 2 4
147 2 3 2 3
148 2 2 2 2
149 2 2 2 2
150 2 2 2 2
151 2 2 2 2
152 2 2 2 2
153 2 2 2 2
154 2 2 2 2
155 2 2 2 2
156 2 2 2 2
157 2 3 2 3
158 2 4 2 4
159 2 3 2 3
160 2 2 2 2
161 2 3 2 3
162 2 2 2 2
163 2 3 2 3
164 2 2 2 2
165 2 2 2 2
166 2 2 2 2
167 2 2 2 2
168 2 2 2 2
169 2 2 2 2
170 2 2 2 2
171 2 2 2 2
172 2 2 2 2
173 2 2 2 2
174 2 2 2 2
175 2 2 2 2
176 2 3 2 3
177 2 4 2 4
178 2 2 2 2
179 2 2 2 2
180 2 3 2 3
181 2 2 2 2
182 2 2 2 2
183 2 2 2 2
184 2 2 2 2
185 2 4 2 4
186 2 1 2 2
187 2 2 2 2
188 2 2 2 2
189 2 2 2 2
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190 2 2 2 2
191 2 2 2 2
192 2 4 2 4
193 2 3 2 3
194 2 2 2 2
195 2 2 2 2
196 2 2 2 2
197 2 2 2 2
198 2 2 2 2
199 2 2 2 2
200 2 2 2 2
201 2 2 2 2
202 2 2 2 2
203 2 3 2 3
204 2 2 2 2
205 2 2 2 2
206 2 2 2 2
207 2 2 2 2
208 2 2 2 2
209 2 3 2 3
210 2 2 2 2
211 2 3 2 3
212 2 2 2 2
213 2 2 2 2
214 2 2 2 2
215 2 2 2 2
216 2 2 2 2
217 2 2 2 2
218 2 2 2 2
219 2 2 2 2
220 2 3 2 3
221 2 2 2 2
222 2 2 2 2
223 2 2 2 2
224 2 2 2 2
225 2 2 2 2
226 2 4 2 4
227 2 2 2 2
228 2 2 2 2
229 2 2 2 2
230 2 2 2 2
231 2 3 2 3
232 2 2 2 2
233 2 2 2 2
234 2 2 2 2
235 2 2 2 2
236 2 3 2 3
237 2 2 2 2
238 2 2 2 2
239 2 2 2 2
240 2 2 2 2
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241 2 2 2 2
242 2 2 2 2
243 2 2 2 2
244 2 2 2 2
245 2 4 2 4
246 2 4 2 4
247 2 2 2 2
248 2 2 2 2
249 2 2 2 2
250 2 2 2 2
251 2 2 2 2
252 2 2 2 2
253 2 2 2 2
254 2 2 2 2
255 2 2 2 2
256 2 2 2 2
257 2 2 2 2
258 2 2 2 2
259 2 2 2 2
260 2 2 2 2
261 2 2 2 2
262 2 2 2 2
263 2 2 2 2
264 2 2 2 2
265 2 2 2 2
266 2 4 2 4
267 2 2 2 2
268 2 3 2 3
269 2 3 2 3
270 2 2 2 2
271 2 2 2 2
272 2 2 2 2
273 2 2 2 2
274 2 3 2 3
275 2 4 2 4
276 2 4 2 4
277 2 4 2 4
278 2 2 2 2
279 2 3 2 3
280 2 2 2 2
281 2 2 2 2
282 2 2 2 2
283 2 3 2 3
284 2 2 2 2
285 2 2 2 2
286 2 3 2 3
287 2 2 2 2
288 2 2 2 2
289 2 2 2 2
290 2 2 2 2
291 2 2 2 2
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292 2 2 2 2
293 2 3 2 3
294 2 4 2 4
295 2 2 2 2
296 2 2 2 2
297 2 4 2 4
298 2 3 2 3
299 2 2 3 2
300 2 4 3 4
301 2 2 3 2
302 3 2 3 2
303 3 3 3 3
304 3 5 3 5
305 3 2 3 2
306 3 4 3 4
307 3 7 3 7
308 3 2 3 2
309 3 2 3 2
310 3 2 3 2
311 3 2 3 2
312 3 4 3 4
313 3 2 3 2
314 3 2 3 2
315 3 2 3 2
316 3 2 3 2
317 3 2 3 2
318 3 2 3 2
319 3 3 3 3
320 3 3 3 3
321 3 2 3 2
322 3 2 3 2
323 3 2 3 2
324 3 3 3 3
325 3 7 3 7
326 3 5 3 5
327 3 2 3 2
328 3 2 3 2
329 3 4 3 4
330 3 2 3 2
331 3 4 3 4
332 3 4 3 4
333 3 2 3 2
334 3 4 3 4
335 3 4 3 5
336 3 4 3 4
337 3 7 3 7
338 3 7 3 7
339 3 7 3 7
340 3 7 3 7
341 3 3 3 3
342 3 3 3 3
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343 3 3 3 3
344 3 4 3 4
345 3 2 3 2
346 3 4 3 4
347 3 4 3 4
348 3 2 3 2
349 3 3 3 3
350 3 3 3 3
351 3 2 3 2
352 3 3 3 3
353 3 3 3 3
354 3 2 3 2
355 3 4 3 4
356 3 2 3 2
357 3 2 3 2
358 3 2 3 2
359 3 3 3 3
360 3 4 3 4
361 3 2 3 2
362 3 4 3 4
363 3 4 3 4
364 3 4 3 4
365 3 2 3 2
366 3 2 3 2
367 3 7 3 7
368 3 3 3 3
369 3 3 3 3
370 3 4 3 4
371 3 4 3 4
372 3 5 3 5
373 3 2 3 2
374 3 4 3 4
375 3 2 3 2
376 3 3 3 3
377 3 2 3 2
378 3 2 3 2
379 3 2 3 2
380 3 2 3 2
381 3 6 3 6
382 2 3 4 3
383 2 2 4 2
384 3 2 4 2
385 3 2 4 2
386 3 2 4 2
387 3 2 4 2
388 3 2 4 2
389 3 2 4 2
390 3 2 4 2
391 3 3 4 3
392 4 2 4 2
393 4 2 4 2
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394 4 5 4 5
395 4 3 4 3
396 4 2 4 2
397 4 7 4 7
398 4 4 4 4
399 4 4 4 4
400 4 4 4 4
401 4 3 4 3
402 4 7 4 7
403 4 7 4 7
404 4 2 4 2
405 4 8 4 8
406 4 3 4 3
407 4 2 4 2
408 4 7 4 7
409 4 2 4 2
410 4 2 4 2
411 4 7 4 7
412 4 4 4 4
413 4 4 4 4
414 4 2 4 2
415 4 7 4 7
416 4 5 4 7
417 4 4 4 4
418 4 4 4 4
419 4 5 4 5
420 4 5 4 7
421 4 3 4 3
422 4 3 4 3
423 4 2 4 2
424 4 4 4 5
425 4 2 4 2
426 4 4 4 5
427 4 3 4 3
428 4 2 4 2
429 4 4 4 5
430 4 4 4 4
431 4 2 4 2
432 4 2 4 2
433 4 3 4 3
434 4 2 4 2
435 4 3 4 3
436 4 4 4 4
437 4 4 4 4
438 4 2 4 2
439 4 2 4 2
440 4 2 4 2
441 4 7 4 7
442 4 4 4 4
443 4 4 4 4
444 4 4 4 4
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445 4 4 4 4
446 4 4 4 4
447 4 2 4 2
448 4 5 4 5
449 4 3 4 3
450 4 3 4 3
451 4 3 4 3
452 4 3 4 3
453 4 3 4 3
454 4 4 4 7
455 4 2 4 2
456 4 2 4 2
457 4 4 4 4
458 4 3 4 3
459 4 2 4 2
460 4 2 4 2
461 4 2 4 2
462 4 4 4 4
463 4 2 4 2
464 4 2 4 2
465 4 2 4 2
466 4 2 4 2
467 4 2 4 2
468 4 3 4 3
469 4 2 4 2
470 4 3 4 3
471 4 3 4 3
472 4 3 4 3
473 4 3 4 3
474 4 3 4 3
475 4 3 4 3
476 4 3 4 3
477 4 3 4 3
478 4 3 4 3
479 4 3 4 3
480 4 3 4 3
481 4 3 4 3
482 4 3 4 3
483 4 3 4 3
484 4 3 4 3
485 4 3 4 3
486 4 3 4 3
487 4 3 4 3
488 4 3 4 3
489 4 3 4 3
490 4 3 4 3
491 4 3 4 3
492 4 3 4 3
493 4 3 4 3
494 4 3 4 3
495 4 3 4 3



Appendix D. Proposed inventory levels N

496 4 3 4 3
497 4 4 4 4
498 4 4 4 4
499 4 2 4 2
500 4 4 4 4
501 4 5 4 6
502 4 3 4 3
503 4 3 4 3
504 4 2 4 2
505 4 3 4 3
506 4 3 4 3
507 4 4 4 4
508 4 2 4 2
509 4 2 4 2
510 1 2 5 2
511 2 2 5 2
512 2 2 5 2
513 2 2 5 2
514 3 2 5 2
515 3 4 5 4
516 3 2 5 2
517 3 2 5 2
518 3 2 5 2
519 3 2 5 2
520 3 2 5 2
521 3 2 5 2
522 3 3 5 3
523 3 2 5 2
524 3 2 5 2
525 3 4 5 4
526 4 3 5 3
527 4 3 5 3
528 4 4 5 4
529 4 4 5 4
530 4 2 5 2
531 4 2 5 2
532 4 2 5 2
533 4 2 5 2
534 4 2 5 2
535 5 6 5 6
536 5 2 5 2
537 5 6 5 7
538 5 7 5 7
539 5 7 5 8
540 5 2 5 2
541 5 9 5 9
542 5 5 5 5
543 5 3 5 3
544 5 7 5 7
545 5 3 5 3
546 5 4 5 4



Appendix D. Proposed inventory levels O

547 5 4 5 5
548 5 7 5 7
549 5 4 5 4
550 5 7 5 7
551 5 7 5 7
552 5 5 5 5
553 5 4 5 4
554 5 5 5 5
555 5 2 5 2
556 5 3 5 3
557 5 4 5 4
558 5 2 5 2
559 5 4 5 4
560 5 4 5 4
561 5 2 5 2
562 5 4 5 4
563 5 2 5 2
564 5 6 5 7
565 5 4 5 4
566 5 4 5 4
567 5 4 5 4
568 5 4 5 4
569 5 2 5 2
570 5 4 5 4
571 5 4 5 4
572 5 5 5 7
573 5 2 5 2
574 2 2 6 2
575 2 2 6 2
576 3 7 6 7
577 3 2 6 2
578 3 2 6 2
579 3 2 6 2
580 3 2 6 2
581 4 2 6 2
582 4 6 6 6
583 4 2 6 2
584 4 2 6 2
585 4 2 6 2
586 4 4 6 4
587 4 3 6 3
588 4 2 6 2
589 4 2 6 2
590 4 2 6 2
591 5 4 6 4
592 6 3 6 3
593 6 2 6 2
594 6 2 6 2
595 6 4 6 4
596 6 2 6 2
597 6 7 6 7



Appendix D. Proposed inventory levels P

598 6 6 6 6
599 6 2 6 2
600 6 6 6 6
601 6 4 6 4
602 6 2 6 2
603 6 7 6 8
604 6 3 6 3
605 6 4 6 4
606 6 7 6 7
607 6 7 6 7
608 6 7 6 7
609 6 7 6 7
610 6 5 6 7
611 6 5 6 5
612 6 4 6 4
613 6 5 6 5
614 6 7 6 7
615 6 6 6 7
616 6 5 6 7
617 6 4 6 4
618 6 2 6 2
619 6 5 6 5
620 6 7 6 7
621 6 7 6 7
622 6 3 6 3
623 6 4 6 4
624 6 5 6 7
625 6 2 6 2
626 6 3 6 3
627 6 4 6 4
628 6 3 6 3
629 6 2 6 2
630 6 4 6 4
631 6 2 6 2
632 6 4 6 4
633 6 4 6 4
634 6 4 6 4
635 6 2 6 2
636 6 2 6 2
637 6 3 6 3
638 6 7 6 7
639 6 2 6 2
640 6 3 6 3
641 4 2 7 2
642 4 2 7 2
643 5 7 7 7
644 5 7 7 7
645 7 4 7 5
646 7 4 7 4
647 7 7 7 7
648 7 2 7 2



Appendix D. Proposed inventory levels Q

649 3 2 8 2
650 3 2 8 2
651 3 2 8 2
652 3 2 8 2
653 3 2 8 2
654 3 4 8 4
655 3 2 8 2
656 4 2 8 2
657 4 2 8 2
658 4 2 8 2
659 5 2 8 2
660 5 3 8 3
661 5 2 8 2
662 6 2 8 2
663 6 3 8 3
664 6 2 8 2
665 7 7 8 7
666 7 4 8 4
667 7 7 8 7
668 8 5 8 7
669 8 2 8 2
670 8 7 8 7
671 8 7 8 7
672 8 5 8 7
673 8 10 8 10
674 8 5 8 5
675 8 9 8 10
676 8 5 8 7
677 8 4 8 4
678 8 6 8 7
679 8 4 8 4
680 8 4 8 4
681 8 7 8 7
682 8 7 8 7
683 8 7 8 7
684 8 7 8 7
685 8 4 8 4
686 8 5 8 5
687 8 7 8 7
688 8 7 8 7
689 8 4 8 4
690 8 4 8 5
691 8 6 8 7
692 8 5 8 7
693 8 5 8 5
694 8 7 8 7
695 4 2 9 2
696 4 2 9 2
697 4 2 9 2
698 4 2 9 2
699 4 4 9 5



Appendix D. Proposed inventory levels R

700 5 2 9 2
701 5 2 9 2
702 9 7 9 7
703 9 7 9 7
704 9 3 9 3
705 1 1 10 2
706 2 2 10 2
707 5 2 10 2
708 5 3 10 3
709 5 2 10 2
710 5 4 10 4
711 5 4 10 4
712 6 2 10 2
713 6 2 10 2
714 6 2 10 2
715 6 2 10 2
716 6 3 10 3
717 6 3 10 3
718 7 2 10 2
719 7 7 10 7
720 8 2 10 2
721 8 4 10 4
722 8 5 10 5
723 8 2 10 2
724 8 4 10 4
725 8 7 10 7
726 9 5 10 5
727 10 4 10 4
728 10 9 10 9
729 10 4 10 4
730 10 5 10 5
731 10 4 10 4
732 10 9 10 9
733 10 10 10 11
734 10 7 10 7
735 10 4 10 4
736 10 7 10 8
737 10 10 10 10
738 10 10 10 10
739 10 2 10 2
740 10 7 10 7
741 10 7 10 7
742 10 7 10 7
743 10 4 10 4
744 10 7 10 7
745 10 7 10 7
746 10 2 10 2
747 10 4 10 4
748 10 7 10 7
749 10 7 10 7
750 10 3 10 3



Appendix D. Proposed inventory levels S

751 10 7 10 7
752 10 4 10 4
753 8 7 11 7
754 8 5 11 7
755 11 7 11 7
756 3 2 12 2
757 5 2 12 2
758 5 2 12 2
759 5 2 12 2
760 6 2 12 2
761 6 2 12 2
762 6 2 12 2
763 6 2 12 2
764 7 3 12 3
765 7 3 12 3
766 8 10 12 10
767 8 2 12 2
768 12 7 12 9
769 12 10 12 10
770 12 7 12 7
771 12 10 12 10
772 12 7 12 7
773 12 7 12 7
774 12 3 12 3
775 12 4 12 4
776 12 3 12 3
777 12 4 12 4
778 12 7 12 7
779 12 4 12 4
780 3 2 13 2
781 4 2 13 2
782 8 10 13 10
783 9 3 13 3
784 10 9 13 10
785 7 2 14 2
786 12 2 14 2
787 14 10 14 10
788 14 7 14 8
789 14 7 14 7
790 6 2 15 2
791 11 4 15 4
792 12 4 15 4
793 15 7 15 9
794 15 10 15 12
795 15 12 15 14
796 15 4 15 5
797 15 3 15 3
798 15 4 15 4
799 15 10 16 10
800 15 10 16 10
801 16 5 16 5



Appendix D. Proposed inventory levels T

802 16 3 16 3
803 16 2 16 2
804 16 2 16 2
805 16 2 16 2
806 15 14 17 14
807 12 3 18 3
808 18 7 18 7
809 8 2 20 2
810 10 3 20 3
811 10 2 20 2
812 10 5 20 7
813 10 3 20 3
814 15 7 20 7
815 16 2 20 2
816 16 2 20 2
817 17 7 20 7
818 20 2 20 2
819 12 2 24 2
820 13 2 24 2
821 24 7 24 7
822 16 10 25 14
823 25 7 25 10
824 4 2 27 2
825 20 2 30 2
826 20 2 30 2
827 20 4 30 4
828 30 10 30 10
829 30 7 30 7
830 35 7 35 7
831 35 7 35 7
832 35 10 35 10
833 27 6 38 9
834 30 5 40 5
835 15 7 45 7
836 25 2 45 2
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