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Fig. 1. Trackmania, a challenging racing game

1 ABSTRACT
Virtual car racing is popular among millions of people in the world.

Some developers have created software to drive racing cars auto-

matically using artificial intelligence. Gamers can race against these

autonomous cars. I am interested in car racing and I discovered a

significant difference in the performance of two AI racing systems.

These systems are Sophy AI and Tmrl-lidar, which are made for the

racing games Gran Turismo Sport [11] and Trackmania[19] respec-

tively. Tmrl-lidar was significantly slower than an average player,

whereas Sophy was able to beat the best human racers.

In this study, the performance gap between Sophy AI and Tmrl-

lidar is analyzed by literature research and an investigation of the AI

systems. The most important difference is in the input data that the

systems are getting. Tmrl-lidar is not getting sufficient information

about the upcoming track as it is using a lidar system, which only

can measure a limited distance ahead in corners. Sophy AI gets

the borders of the track 6 seconds ahead. In this study a method is

developed that gives Tmrl-lidar similar input data as Sophy AI.

The new input data resulted in an improved Tmrl-lidar lap time

from 44.6s to 35.4s on a racing circuit made by the developers of

Tmrl. Human players were invited to compete against the newly

trained AI racing model. The new model got the 7th fastest time

from 60 participants. It was ±1.6s slower than the world record

holder, a professional player who took 33.8s to complete the track.

The result of the test showed that the new method for input data

resulted in a significant improvement of performance of Tmrl-lidar.

Artificial Intelligence is a great tool for autonomous racing. This

study showed the importance of the input data that is offered to the

AI system. The old Tmrl-lidar could not perform better since the

input data was constraining the performance. A chain is as strong

as its weakest link.

Author’s address: Laurens Neinders, l.j.neinders@student.utwente.nl, University of

Twente, P.O. Box 217, Enschede, The Netherlands, 7500AE.

2 ACKNOWLEDGEMENT
Major thanks to my supervisor: Dr. Mannes Poel, the Data Science

Track Chair, Dr. Estafanía. Talavera Martínez. Also major thanks to

Yann Boeteiller, for support with Tmrl, Mika Kuijpers and .Bux for

support with tmdojo and Max Kaye for the Archivist plug-in.

3 INTRODUCTION
Autonomous car racing refers to self-driving cars that can safely

and efficiently navigate a racetrack at high speeds without human

intervention. Development of such systems requires overcoming

numerous technical hurdles, such as real-time perception, decision-

making, and control in a dynamic and unpredictable environment.

The ability to autonomously race a car can have implications be-

yond the race track, as experiences in this field can be useful for

autonomous driving in general.

In 2021, the autonomous driving AI, "Sophy"[6] achieved a re-

markable feat by outperforming the best human players in the

racing game "Gran Turismo Sport". To achieve this performance

it used the AI technique: reinforcement learning, specifically the

Soft-Actor-Critic (SAC)[10] algorithm.

Another racing game, Trackmania, has also seen the development

of AI systems. A group of developers have created a framework

(Tmrl [3]) and multiple AI systems for Trackmania using SAC, the

same reinforcement learning algorithm used for Sophy. In a French

show, the group demonstrated their best current model, Tmrl-lidar,

setting a time of around 45 seconds on a test track, which is a

solid performance, but still a long way of the human record of ±34

seconds.

The purpose of this study is to identify key differences between

Sophy and Tmrl-lidar and improve Tmrl-lidar based on those find-

ings.
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3.1 Research questions
To test whether it is possible to improve Tmrl-lidar based on Sophy

AI, the following research questions need to be answered:

(1) What are the key distinctions between Sophy and Tmrl-

lidar?

(2) What modifications can be transferred from Sophy to Tmrl-

lidar?

(3) How do these changes affect Tmrl-lidar’s performance?

The paper is structured as follows: Section 3 is about the method-

ology. Section 4 is a literature review on AI racing algorithms and

the specific algorithm used in the two systems. In Section 5, key

differences between Sophy AI and Tmrl-lidar are identified, it also

formulates a hypothesis to explain the performance gap. Section 6

focuses on transferring these differences to Tmrl-lidar, newmethods

will be developed to accomplish this. Section 7 contains information

about training of the AI. The results will be presented in Section 8.

Section 9 is a discussion on the study and section 10 is the conclu-

sion.

4 METHODOLOGY
The methodology of this research consists of four main steps: litera-

ture review/data collection, identifying key differences, transferring

differences, and evaluation.

A literature review and data collection were conducted to gather

information on AI training and reinforcement learning. Papers on

reinforcement learning, SAC, and Sophy AI were analyzed, along

with information from the Tmrl-github and Sophy-blog.

The focus of the literature study and the comparison between

Sophy and Tmrl-lidar was to identify key differences that can ex-

plain the difference in performance. Key difference can be found

in algorithm, reward function or input data. As both systems use

the same algorithm (Soft Actor Critic) and similar reward functions

an hypothesis was developed that differences in input data are the

biggest cause of the difference in performance between the two

systems.

To test the hypothesis, the input data of Tmrl-lidar is changed in

such a way that it is comparable with input data of Sophy. Tmrl-lidar

was retrained using the new input data until lap times did not show

any more improvements.

The developed model was evaluated by comparison of the fastest

lap against the baseline Tmrl-lidar and a group of 60 human players.

5 LITERATURE REVIEW

5.1 Approaches to autonomous racing
Autonomous racing is complex and has been tackled using various

approaches. In this chapter, we will explore three different solu-

tions to the autonomous racing AI problem: classical approaches,

imitation learning, and reinforcement learning.

Classical approaches involve breaking down the problem into sub-

modules that consist of perception, trajectory planning, and control.

Model Predictive Control (MPC) is one of the most promising clas-

sical approaches for controlling high-speed autonomous vehicles.

MPC has shown impressive results in controlling vehicles in the

real world [20]. Another classical approach, Model Predictive Path

Integral Control (MPPI) [21], is a more flexible approach that can be

combined with complex cost formulations and neural network vehi-

cle models. However, both MPC and MPPI have limitations, such as

the lack of flexibility in the cost function design or the requirement

of highly parallel computations.

Imitation learning is another approach that directly learns a map-

ping from observation to control action in a supervised way. This

approach requires labeled data, which is typically provided by hu-

man experts. One of the first autonomous driving systems to use

a neural network to follow a road is the Autonomous Land Vehi-

cle in a Neural Network (ALVINN,1989) [13]). Similarly, Pan et al.

[12] used imitation learning for off-road autonomous driving. This

approach involves training a machine learning model using expert

data, either from humans or algorithms, to learn a policy. By doing

so, imitation learning has the potential to overcome the real-time

constraint of traditional methods.

Reinforcement learning (RL) optimizes parameterized policies

based on sampled trajectories, without the need to solve nonlinear

optimizations online or rely on labeled training data. Several studies

have demonstrated the success of using deep RL for end-to-end

driving and racing [8] [15]. Recently, the Soft Actor-Critic (SAC)

algorithm was used to develop a high-speed autonomous drifting

system in simulation [4]. The SAC algorithm employs off-policy

training, which plays a crucial role in reducing the high sample

complexity that has previously limited the widespread adoption of

deep RL methods in high-dimensional domains [7].

Each approach to autonomous racing has its own strengths and

weaknesses. Classical approaches offer a modular and interpretable

framework for autonomous racing, but they require highly paral-

lel computations and lack flexibility in the cost function design.

Imitation learning is a promising approach to overcome the strict

real-time constraint of classical approaches, but its performance is

limited by the quality of the training data. Reinforcement learning

provides an approach that optimizes policies based on sampled tra-

jectories and has shown impressive results in driving and racing

tasks. However, it suffers from high sample complexity and the

challenge of balancing exploration and exploitation.

5.2 Soft Actor Critic algorithm
Soft Actor-Critic (SAC) is a deep reinforcement learning algorithm

that has shown impressive performance on a range of challenging

control tasks. SAC aims to maximize the expected cumulative re-

ward over a given time by learning a stochastic policy and value

function. The policy is represented by a neural network that out-

puts the mean and standard deviation of a Gaussian distribution,

from which actions are sampled. The value function estimates the

expected cumulative reward starting from a given state, and it is

used to update the policy via a critic loss. The critic loss is a mean

squared error (MSE) between the estimated value function and the

discounted cumulative reward obtained from the next state. The pol-

icy is updated by minimizing a combination of the actor loss, which

encourages actions that maximize the expected cumulative reward,

and an entropy term that encourages exploration and prevents the

policy from being overly confident.
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One of the main advantages of SAC is that it uses a soft value

function update, which means that it uses a target entropy term to

regularize the policy towards being more stochastic. This allows

SAC to learn more robust policies that can handle uncertainty and

variations in the environment. Additionally, SAC employs off-policy

updates, which means that the policy can learn from past experi-

ences collected from a replay buffer, leading to more efficient and

stable learning.

SAC has been successfully applied to a range of challenging con-

trol tasks, such as robotic manipulation [10], quadrupedal locomo-

tion [9], and autonomous driving [4].

SAC is a powerful deep reinforcement learning algorithm that

has shown impressive performance in challenging control tasks. Its

soft value function update and off-policy learning make it suitable

for handling uncertainty and variations in the environment, and

its success in autonomous driving demonstrates its potential for

real-world applications. However, like other deep reinforcement

learning algorithms, SAC can suffer from high sample complexity

and the challenge of balancing exploration and exploitation, which

may limit its scalability to larger and more complex domains [5].

6 COMPARISON
In this section, Sophy AI and Tmrl-lidar are compared

6.1 Sophy AI
Sophy AI is a racing AI for the game "Gran Turismo Sport" created

by SONY in 2021. It was trained using reinforcement learning to

drive on a number of track and car combinations and has managed

to get performance on par or better than humans in these scenarios.

6.2 Tmrl
Tmrl (Trackmania Reinforcement learning) is a framework for rein-

forcement learning in the racing game "Trackmania". The developers

have created 2 AI models for Trackmania, both of which use rein-

forcement learning. The difference between the two is that 1 uses

images as input data and the other uses lidar distances. Since the

lidar system is more developed, has more in common with Sophy

and requires much less training time, we will just focus on that

system for this paper.

6.3 Comparison: Sophy vs Tmrl-lidar
In this section we will collect all relevant information about the two

systems: Sophy and Tmrl-lidar.

6.3.1 Lap times. The first objective is to prove that Sophy is, in

fact, much better than Tmrl-lidar. To show this, we will compare

lap times (the time it takes to drive from start to finish) between the

two.

Since the two systems are built for different games, we cannot

compare them directly. What we can do is compare each system

with human performance in their respective games. This will still

give a good indication of the strength of the AIs.

Sophy was tested in three different settings. Setting A and B

on the same track, but using different cars, setting C on a more

challenging track with the same car as setting A.

Lap times[sec]: Sophy vs humans

Sophy fastest
human

median
humans

Setting A 1:15.913 1:16.602 1:22.300

Setting B 1:39.408 1:39.445 1:47.259

Setting C 2:07.701 2:07.319 2:13.980

Table 1. Lap time comparison of Sophy AI compared to humans in Gran
Turismo in three different settings

Lap times[sec]: Tmrl-lidar vs humans

Tmrl-lidar fastest
human

median
humans

Tmrl-test

track

44.631 33.798 38.748

Table 2. Lap time comparison of Sophy AI compared to humans in Gran
Turismo in three different settings

Fig. 2. Racing lines Sophy Fig. 3. Racing lines Tmrl-lidar

Fig. 4. The out-in-out approach

Table 1 compares the best lap times of Sophy AI with those of

the best humans. Here you can see that Sophy managed to beat the

best humans by a large margin in setting A. It was slightly ahead in

setting B and was beaten in setting C.

Table 2 gives a comparison of lap times between human players

and Tmrl-lidar on the test map for which Tmrl-lidar was trained. I

shows that there is a significant gap between human performance

and that of Tmrl-lidar.

6.3.2 Driving lines. When driving, a factor that has a great impact

on lap times is: "driving lines", the way the car drives through cor-

ners. if you want to drive through a corner as fast as possible, an out
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in out approach is often the fastest way. This approach is illustrated

in figure 4.

When comparing the racing lines of the two systems, it is evident

that Sophy follows the out-in-out approach a lot better than Tmrl-

lidar. Tmrl-lidar has a more save approach to driving in general; it

does not take much risk by trying to drive close to the walls but

rather stays in the middle of the track.

6.3.3 AI Algorithms. Now that we know what both systems are

capable of, the next step is to understand how they work. Both

systems use an AI technique called Reinforcement Learning[1]. Re-

inforcement learning is a type of machine learning in which an

agent learns to make decisions by interacting with its environment.

The agent receives rewards or punishments based on its actions and

uses this feedback to update its decision-making strategy. The goal

of the agent is to maximize the total reward over time.

The specific reinforcement learning algorithm that is used is

the same for both Tmrl-lidar and Sophy. This algorithm is Soft

Actor-Critic[10] (SAC). One of the benefits of using SAC is that it

can reduce the amount of data and resources needed for training

by using a technique called off-policy training. This means it can

learn from previously recorded actions and experiences, rather than

needing to constantly collect new data. Additionally, SAC can be

effective in high-dimensional environments, where there are many

different variables that the system needs to take into account.

Since both systems use the same training algorithm, we assume

that the main difference between the two will be in a different area.

6.3.4 Input data. The reinforcement learning algorithm receives a

set of variables that represent the environment (the game). It has

to make a decision on what output to give, for example: pressing

forward, left, right, or break, which controls the car in the game.

After this a reward will be given to the algorithm, based on how

well it is driving. From this the algorithm will try to understand its

environment and how to maximize the reward it will receive. The

algorithm needs to know enough about its environment to make a

solid decision that will give it the maximum reward.

Wewill now compare the input data (observation spaces) of Sophy

and Tmrl-lidar.

Sophy uses the following observation space:

(1) Linear velocity

(2) Linear acceleration

(3) Euler angle between the car’s rotation and the direction of

the centerline of the track

(4) Distance measurements that measure the distance from the

center point of the car to objects, such as the edge of the

track.

(5) The previous steering command

(6) A binary flag indicating wall contact

(7) Curvature measurements in the forms of a series of discrete

points of the sides and middle of the course ahead. Six sec-

onds of track, based on the current speed of the car.

Tmrl-lidar uses uses the following observation space:

(1) Linear velocity forward

(2) 19 Distance measurements that measure the distance in

pixels on camera, measured from the lower middle (50 pixels

above the edge of the window) to the walls of the track,

distributed across 180°.

(3) History of last 4 distance measurements.

(4) The previous steering command

The observed difference will be further analyzed in chapter 5.4.

6.3.5 Reward function. The reward function defines how well an

AI agent is doing. For example, it will give a positive reward when

the agent is driving in the correct direction and a negative reward

when driving in the wrong direction.

A naive approach to creating a reward function would be to give

a reward based on the speed of the car. However, this approach is

not optimal, as the goal of the agent should not be to drive as fast

as possible, but rather to complete the track as fast as possible. The

AI will have to consider optimal trajectory and speed, which may

imply slowing down for corners etc.

That is why both Sophy and Tmrl-lidar use a reward function

that gives a reward based on progress on the track. The AI receives

reward based on how much of the track has been covered since the

last timestamp.

6.4 Identifying key differences
In this chapter, themain aspects of the twoAI systems are discovered.

In the AI algorithm and reward function, no notable differences were

observed; there are minor differences in the exact implementation,

but these do not seem likely to be the reason for the major difference

in performance.

That is why we should have a better look at what the differences

are between the systems in terms of input data. What we observed

is that almost all of the variables from the observation space of Tmrl-

lidar are also in the observation space of Sophy, with the exception of

the history of 4 distance-measurement observation. However, Sophy

has a few extra variables, namely: acceleration, Euler angle, binary

flag for wall contact, andmeasurements of track ahead. Of these four,

the one that catches the attention the most is "the measurements of

the track ahead". This is because this information gives insight in

what the upcoming track will look like, which could be very useful

as the AI agent would be able to anticipate how the next corner

will look and adjust its current driving to accommodate for this

upcoming corner.

Fig. 5. Sophy has information of the track, 6 seconds ahead, based on the
current speed
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Figure 5 shows the part of the track that Sophy can see ahead.

The green dot is the position of the car, the lines are the two sides

and middle of the track and the purple piece is the part of the track

that Sophy is given as input data.

Fig. 6. Distance measurements only give information about a short piece
of track ahead, whereas curvature measurements of the track ahead give
more information to make a better decision.

Figure 6 gives a visual representation of the information that

distance measurements provide (the data that Tmrl-lidar uses) com-

pared to what the measurements of the track ahead provide (what

Sophy uses). The figure shows that the distance sensors are only

able to see the first part of the corner, which means that the AI

cannot know how the track will look after this, see fig 7 as well.

Fig. 7. Tmrl-lidar doesn’t know what the next corner will look like.

The hypothesis that arises from these findings is that the key

difference between Sophy and Tmrl-lidar is the lack of information

of the track ahead as input data for Tmrl-lidar.

7 TRANSFER DIFFERENCES
To test the hypothesis of the previous chapter, a system should be

implemented that can provide information about a piece of the track

ahead of the car. The Sophy system uses a built-in feature in Gran

Turismo Sport to get this information. However, it is not available

in Trackmania. To test the hypothesis, a similar system to that of

Sophy had to be made.

To generate this upcoming track data, a recording of the track

had to be made by determining the coordinates of the walls.

7.1 Calculation of the track.
This paragraph explains the calculations for creating a representa-

tion of the track.

The goal is to create a representation of the track by driving on

it once. This is just track recording, so driving can simply be done

by a human although automation of this step could be interesting

for the future. The data of the distance sensors (see figure 8) is used

to calculate the position of the walls.

At first glance this seemed to be a simple calculation. One of

the first results is shown in figure 10 where the dots simulate the

walls. From the picture it is evident that the walls are not clear at

all. Research showed that this was due to the following causes:

(1) The distance was measured under an angle (see figure 9);

(2) Some distances could not be measured because the walls

were not on the screen. In figure 8 the wall for the horizontal

distance sensors is not visible on the screen;

(3) The camera makes small movements and rotations that add

to the playing immersion, but it also distorts the calculations.

To combat this, the rotation and angle (roll and pitch) must

be taken into account.

(4) Calculation of wall coordinates is dependent on more vari-

ables than originally taken into account.

Fig. 8. The distance sensors are measurements from a point below the center
of the image, to the walls of the track.
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Fig. 9. Side view of car, goal is to calculate BC since that can be used to
determine the coordinate of the end of a distance sensor

The problems with the map are solved solved with the following

measures:

(1) Discarding some of the distance sensors;

(2) By measuring each wall separately on a short distance;

(3) By filtering out points that are clearly wrong;

(4) By drawing a mostly likely curve through the remaining

points. This is done using a Bezier curve [2];

(5) By improving the mathematical calculation taking into ac-

count more variables (see appendix for more details calcula-

tion)

Figure 10 is one of the first attempts to create a coordinate map. The

general shape of the track is visible, but there are many outliers and

errors.

Figure 11 shows the map in a later development phase. The ac-

curacy of calculations has improved and outliers are filtered out.

There are still some inaccuracies that need to be addressed before it

can be used.

Figure 12 is the final representation of the track using all the

measures together.

Fig. 10. The first try on programming a representation of the track. The
map has a lot of noise and outliers, but the general shape is visible

Fig. 11. This how the map looks later in the process, a lot of outliers are
gone and both sides of the track are clearly distinguishable. The yellow line
is the trajectory of the car, purple and green are the left and right side of
the track respectively.

Fig. 12. This is the final version of the map, all outliers are removed and the
points that make up the track are equally spaced out

7.2 Input for the AI
The final map (figure 12) looks like a continuous curve but, in fact,

it consists of individual points. The final step before we can use the

map to train an AI, is to cut out the part which is directly in front

of the car. This is the part that the AI gets as input data at a given

time.

The length of the input track is selected at 15 points ahead of

the car. This means that the distance that the AI can see in front

is fixed. This is different from the way Sophy AI is given data, as

the input data for Sophy AI depends on the speed of the car. For

our model a fixed distance was chosen because a variable distance

would increase complexity of implementation.

The input data should be converted from absolute coordinates to

coordinates in which the position of the car is taken into account.

The second aspect that should be taken into account is the direction

in which the car is driving. This direction is visualized by the blue

line in figure 13. Figure 13 shows that the curve in the green box

should be rotated by roughly 20 degrees clockwise. This conversion

of the coordinates into relative and rotated coordinates is given as

input data for the new Tmrl-lidar model.



Improving Trackmania Reinforcement Learning Performance: A Comparison of Sophy and Trackmania AI • 7

Fig. 13. A part of the track-map is cut out, normalized, rotated and given to
the AI as input.

8 TRAINING
The old Tmrl-lidar could not copewith the new input data. Therefore

the code of the AI system is changed to ignore the lidar measure-

ments and to accept the new input data.

The total data (observation space) that the AI has access to is:

current car speed, gear, rpm, track information, acceleration, pre-

vious steering command, steering angle and whether the tires are

slipping.

The AI was trained at a frequency of 20 hz. Every timestamp

(1/20th of a second) the AI generates an output (steering command)

based on the total input data. After this, the AI will receive a reward

based on the performance of the car during that timestamp. If the

car made progress, the AI receives a positive reward. If it does not

make progress, the reward will be 0.

9 RESULTS
This section contains the results of training the AI with the upcom-

ing track as input. Here, the newly trained model is called trackmap

AI.

9.1 Comparison lap times
This section compares the lap times of trackmap AI with those of

Tmrl-lidar and human players. To obtain human lap times, the web-

site Trackmania.io[18] was used. It stores and displays all records

(the fastest lap time that a player managed to drive) for every Track-

mania map. The map that was used for trackmap AI, Tmrl-test was

played by around 20 people at the start of March 2023. To get a

higher sample size and therefore a clearer picture of human per-

formance, a request on the social media platform Reddit[14] was

posted asking people to try to beat the best time of the AI. The

number of records increased from 20 to 60.

Figure 14 shows in blue the human lap times on the track, in

yellow the Tmrl-lidar lap time, and in red the trackmap AI lap time.

It shows that trackmap AI managed to get significantly closer to the

best human players’ performance than Tmrl-lidar was able to do.

Tmrl-test track, Lap times[sec]: Tmrl-lidar vs. trackmap AI

track Tmrl-
lidar

trackmap
AI

Best
Human

Average
Human

Fastest lap 44.631 35.465 33.798 38.748

Fig. 14. Comparison of all human lap times (blue bars) and trackmap AI
(red) and Tmrl-lidar (yellow) on the Tmrl-test track

Fig. 15. Comparison of racing lines between Trackmap AI (new model)in
blue and Tmrl-lidar in red

9.2 Racing lines
The trainedmodel learned to drivemuchmore efficient and therefore

faster racing lines than the old model did. Figure 15 shows in blue

the way the newly trained model drove and in red how Tmrl-lidar

drove through this corner. It shows that the new model managed to

make much better use of the available space on the track (less sharp

turns).
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Fig. 16. The training progress of trackmap AI. The blue line shows the lap
time of the AI at a certain point in time during training.

9.3 Training
During training, two types of data are generated: game data and

training data. Game data is data such as car speed, car position and

lap times. Training data is for example the amount of reward. For

the game data, TMDojo [16] (a website and plugin that lets users

save and playback runs) and Archivist (a plugin by XertroV [22] that

saves a replay file for every run) were used. For training data, the

Tmrl framework saves and stores all training data on WandB.io [17].

The training process was characterized by trial and error mostly due

to specifics in programming and bugs in both newly implemented

as well as existing code. During the project, several bugs in the

Tmrl-framework were discovered and fixed. The final AI took 93

hours to train. Peak performance was reached after around 50 hours

(see figure 16). After 50 hours the peak did not improve, but the AI

did get more stable. The total training time during this research was

around 700 hours.

10 DISCUSSION
In this chapter, the significance of the obtained results, the limita-

tions of the study, and suggestions for future work are discussed.

10.1 Significance of obtained results
This study shows that AI (specifically SAC) is a great tool for au-

tonomous car racing, but that performance depends greatly on the

right input data. The analyzed AI, Tmrl-lidar, could not correctly

predict the upcoming walls. The performance of AI can be compared

to a chain which is as strong as its weakest link.

10.2 Limitations
While the study helped to gain insight in the importance of input

data in reinforcement learning, the use case for the specific AI that

was created is narrow. It only works in the Trackmania game, which

is to be expected, but it also works only on very specific tracks.

Tracks need to be flat with black borders all around it and with a

normal road surface. This might not sound that specific, but these

types of track are uncommon in Trackmania. Tracks in the game

consist of a wide variety of track surfaces, height-differences, loops

and boosters.

If you want to build an AI that works on all types of track, it

would have to make use of a more advanced structure for input data

that can capture all the details of Trackmania.

In the new model the lidar system in no longer used. This can

work on a racing track with no other cars. With multiple cars on

the track, a detection system (lidar) is needed to prevent collision.

10.2.1 neo-sliding. An important note explaining the difference

between the human record and the developed model’s best time,

is that Trackmania is a game containing many "tricks" that can

help a player to drive faster. One of these is called the neo-slide, a

type of drift that allows the player to make the car take sharp turns

at a higher speed than usual. Since the test track contains many

of such low-speed sharp turns, using this drifting technique can

allow the driver to set much faster times than using normal steering.

Neo-sliding is a difficult and precise technique that only very good

Trackmania players can do reliably. But since, especially on this

specific track, neo-sliding is so important, it would be interesting to

see if this technique can also be learned by AI, by for example using

more training time or a different set of input-variables. It would also

be interesting to test the newly developed model on a track that

does not involve neo-sliding curves.

10.3 Future work
The focus of this study was on input data containing the upcoming

track. The study was valid for a 2d map. Since tracks in Trackmania

are most of the times not flat, this study could be expanded upon

by researching the possibility of a 3D representation of a track.

Different track surfaces, for example a dirt road instead of a tarmac

road, could also be taken into account.

In this study lidar sensors were ignored. In future work, a combi-

nation of lidar and track information as input data could be investi-

gated. This makes it comparable to autonomous driving in the real

world.

11 CONCLUSION

11.1 RQ1: What are the key distinctions between Sophy
and Tmrl-lidar?

The key distinction that was found between Sophy and Tmrl-lidar is

a difference in input data. The most notable difference in input data

was the lack of information about upcoming track in Tmrl-lidar.

11.2 RQ2: What modifications can be transferred from
Sophy to Tmrl-lidar?

While not natively supported in Trackmania, a function was im-

plemented that generates the upcoming track in a similar way to

Sophy.

11.3 RQ3: How do these changes affect Tmrl-lidar’s
performance?

The AI that was trained using the upcoming track as input data

affected the performance of Tmrl-lidar in a positive way. The lap
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time comparison shows that this new solution managed to improve

Tmrl-lidar’s record from 44.631 to 35.465 seconds.
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13 APPENDIX

13.1 Distance calculations
In this appendix the calculation of the map is explained. The first

part we want to calculate is the vertical direction of each of these

lines, the most obvious line to start is the one in the middle, here

made orange. We want to know how long the piece of road from

the camera to the wall is. What we know about this line is that it

has a length of a certain amount of pixels, for example, 150. the line

Fig. 17. We need to calculate the vertical part of each line in order to
calculate how many meters the point is forward in 3d space.

Fig. 18. IJ is the forward distance in 3d space, JK is the horizontal distance
is 3d space.

starts 50 pixels from the bottom and the picture has a height of 500

pixels (488 in practice, but 500 for explanation sake).

In fig 9 you can see the car and camera from the side. The camera

is on the front of the car and slightly higher. What we need to

know is the length BC. To do this, we will first need to know the

total vertical angle of the camera, which is 80 degrees. Now we can

calculate the angle beta, ((150px+50px)/500px)*80 deg = 32 degrees

The total angle, alpha, will then be 50 + 32 = 82 deg AB is known

to be 1.5 meter, so BC is tan(82 deg)*1.5 = 10.7 meter

We now know how to use the vertical distance in pixels to cal-

culate the distance in the 3d space. For the distance sensor in the

middle this approach works, but the other sensors are angled with

increments of 10°. This means that we will have to calculate both

the vertical part of each line and the horizontal part to find the

coordinates of the point. The calculation of the vertical part (FG)

is illustrated in figure 17. We use the same calculation from before

to calculate how many meters this in in 3d space in the forward

direction.

The next step to finding the coordinate where the distance sensor

hits the wall, is to calculate the horizontal distance in 3d space, JK

in Figure 18. To calculate this, we need to know the angel i. We can

calculate i from figure 17 as follows. We know that the total width of

the window is 958 pixels, together with the height of the windows,
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488 pixels and the vertical total angle of the camera, the horizontal

angle of the camera is 117°. To obtain i, we have to divide GH by the

total width of the window, times 117°. In this case, 212.1/958 * 117°,

in this case i is 25.9° With this value we are now able to calculate

JK, JK = tan(i)*10.7m = 5.19 m

We now calculate the relative position of the walls from the

camera.We can use this information togetherwith the coordinates of

the camera and the angle which it is pointing, to find the coordinates

of the walls.
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