
MSc Computer Science
Final Project

Testing and Mutation Testing
for GPU Kernels

Yujie Liu

Supervisor: Marieke Huisman, Ben van Werkhoven,
Marcus Gerhold

November, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 1

2 Background 4
2.1 Testing . 5

2.1.1 Unit Testing . 5
2.1.2 Performance Testing . 5
2.1.3 Coverage Criteria . 5

2.2 Mutation testing . 6
2.2.1 Relationship between Mutation Testing and Testing 6
2.2.2 Coupling Effect and Competent Programmer Hypothesis 7
2.2.3 Equivalent Mutant . 8
2.2.4 Mutation Score . 8
2.2.5 Mutation Operators . 8

2.3 GPU Programming and Kernels . 8
2.3.1 Thread and Memory Management 9
2.3.2 Kernel Tuner . 10
2.3.3 Data Race and Barrier Divergence 10

3 Related Work 12
3.1 Testing on GPU Kernels . 12

3.1.1 Tools for Kernel Verification . 12
3.1.2 Coverage Measurement . 12

3.2 Mutation Testing on GPU Kernels . 13

4 Approach 15
4.1 Research Goals . 15
4.2 Research Questions . 15
4.3 Research Objects . 16
4.4 Tool Development . 16

5 Testing on GPU Kernels 18
5.1 Apply Testing to GPU Kernels . 18

5.1.1 Design, Execute and Verify the Test Suite 18
5.1.2 Experiment Setup . 19

5.2 Code Coverage Measurement on GPUs . 20
5.3 Testing Module Development . 21

5.3.1 Testing Module Workflow . 21
5.3.2 Coverage Measurement . 22

2

6 Mutation Testing on GPU Kernels 24
6.1 Apply Mutation Testing to GPU Kernels . 24

6.1.1 Mutation Operators, Coverage and Score 24
6.1.2 Experiment Setup . 28

6.2 Coupling Effect Hypothesis on GPUs . 30
6.2.1 2-order Mutant Generation . 30
6.2.2 Experiment Setup . 30

6.3 Competent Programmer Hypothesis on GPUs 30
6.3.1 Git Repository Analysis . 30
6.3.2 Representativeness of Bugs . 31
6.3.3 Experiment Setup . 31

6.4 Mutation Testing Module Development . 31
6.4.1 Workflow of Mutation Testing . 31
6.4.2 Mutation Analyzer . 32
6.4.3 Mutation Executor . 34

7 Results 37
7.1 Testing Results and Coverage . 37
7.2 Mutation Testing Results . 38
7.3 2-Order Mutation Testing Results for Coupling Effect Hypothesis 45
7.4 Repository analysis results for Competent Programmer Hypothesis 45

8 Discussion 47
8.1 Testing on GPU Kernels . 47

8.1.1 Discussion of RQ1-1: Test Suite Design 47
8.1.2 Discussion of RQ1-2: Test Case Executions 47
8.1.3 Discussion of RQ1-3: Effectiveness of Coverage Criteria 48

8.2 Mutation Testing on GPU Kernels . 49
8.2.1 Discussion of RQ2-1: Mutation Operator Exploration 49
8.2.2 Discussion of RQ2-2: Effectiveness of Mutation Operator and Cou-

pling Effect . 50
8.2.3 Discussion of RQ2-3: Real Faults Representative and Competent

Programmer Hypothesis . 52
8.2.4 Discussion of RQ2-4: Effectiveness of Mutation Testing 53

8.3 Threats to Validity . 54
8.3.1 External . 54
8.3.2 Internal . 54
8.3.3 Construct . 54

9 Conclusion 55
9.1 Contributions . 56
9.2 Future Work . 56

3

Abstract

The increasing GPU performance and maturing computational platform make it possible
to handle general-purpose computing jobs traditionally computed by the CPU. Also, just
like what we did in the CPU program, we use testing to verify the correctness of the GPU
program. However, the quality of the tests may remain unknown, which inspires us to use
mutation testing, a fault-based testing technique, to measure the effectiveness of a test. In
this research, we conduct a feasibility study on applying testing and mutation testing to
GPU programming, adapting existing research methodology, hypotheses, experiments, and
optimization methods to the specific use case of the GPU kernel, and exploring the GPU-
native mutation testing theories and techniques. A mutation testing tool is developed to
validate and evaluate the theoretical analysis above, as a module of a kernel-tuning tool to
offer an out-of-the-box mutation testing workflow for kernel developers. Our results reveal
that testing can benefit the quality of kernels, and more test cases will lead to a higher
possibility of detecting faults. We also discovered that mutation testing is able to quantify
the testing quality for GPU kernels.

Keywords: Testing, Mutation testing, GPU programming, CUDA

Chapter 1

Introduction

In the last decade, GPUs have gained popularity in general-purpose computing (GPGPU)
and high-performance computing (HPC) due to their significant performance increase,
taking on tasks typically handled by CPUs as Moore’s Law has stagnated. Compared to
CPUs, GPUs have thousands of small, simple cores that can all work together to process
data simultaneously. This makes GPUs particularly well-suited for tasks that involve a lot
of data parallelism, such as machine learning, artificial intelligence, and computer vision.
Some GPU computational platforms, such as CUDA [7] from NVIDIA and OpenCL [34]
from Khronos Group, support the development of highly parallel GPU programs. These
programs designed for parallel execution on GPUs are specifically called kernels.

However, new application scenarios also bring new challenges. As GPU-powered com-
puting is widely used in all kinds of high-performance computing areas, kernel developers
are aware that developing a correct and efficient kernel is still a challenging task.t This is
because GPUs have a different computing architecture and programming model compared
to CPUs.

The main differences between these two computing models are thread management and
memory model. In CPU programming, threads are scheduled by the operating system,
which assigns a time slice to each thread and switches between them as needed. However,
in GPU programming, threads are managed by the GPU itself, and programmers need to
seriously arrange the threads to operate data at the right memory address without causing
deadlock and data race. Worse still, GPUs have significantly more threads compared to
CPUs, which also makes this work much more challenging.

As for the memory model, GPU has separate device memory from the host and requires
the kernel programmer to manage it manually. For example, moving data from the host
memory to the device memory and retrieving results from the device back to the host
memory. Much like CPUs, GPUs have multiple levels of cache/memory with different
speeds and capacities. However, it requires the kernel developer to manage and optimize
them carefully to maximize the kernel performance.

Therefore, ensuring the correctness and high performance of kernel code is a crucial
aspect of kernel development. Concerning kernel performance optimization, tools such as
Kernel Tuner [38] have been developed to measure kernel performance and tune the thread
and cache arrangement.

However, testing, the most intuitive and popular way to assure the quality of a software,
is not conducted extensively and formally on the GPU kernels. This is because in CPU
programming, most of the languages have a sophisticated unit testing framework or a
built-in unit testing module. However, this is not the case in GPUs. For example, NVIDIA
provides only a very limited testing mechanism for its popular GPU computing platform,

1

CUDA, which requires kernel testers to refactor the code into a CPU-compatible one and
test under CPUs [24]. However, this refactoring is not always possible because the code
may use the exclusive features of GPUs, and the testers have to write their own code
to manually execute the test cases on GPUs and compare the result for each test cases,
handling all of the above threading and memory challenges.

This testing workflow is far from convenient for kernel testers. Therefore, we would like
to introduce testing into the kernel development workflow in an effective way to ensure the
correctness of kernel development. This goal can be achieved by solving the following two
problems:

• P1: How to apply massive test cases to test the GPU kernels in a simple way?

• P2: On top of P1, how to ensure testing quality and effectiveness?

To address the first problem P1, we conduct our study on top of a previous research
achievement called Kernel Tuner. Kernel Tuner offers a correctness verification mechanism
that allows the kernel developers to focus on designing the kernel and verify the kernel
output, regardless of thread and memory management of the kernel [38, 39]. However, this
mechanism is designed for tuning the kernel with one input and expected output at a time.
Therefore, we design a testing interface for massive test cases execution based on this. In
this research, we design a data structure for test cases, implement a testing module to
execute all the test cases with optimized kernel execution parameters in one click, and use
two coverage criteria to estimate the quality of testing.

Then, to address the problem P2, we introduce mutation testing, a popular fault-based
testing technique to measure the quality of the testing and the effectiveness of the proposed
coverage criteria. Mutation testing can inject defined faults into the original code and see
if the test suites can detect them. We conduct a series of feasibility studies on applying
mutation testing to the GPU kernel. These studies including the exploration of mutation
operators, verification of two fundamental hypotheses of mutation testing, the Coupling
Effect and the Competent Programmer Hypothesis, and examination of the correlation
between mutation testing and testing.

A mutation testing module is developed to support our research and for kernel devel-
opers and testers’ usage. We use our this tool to conduct a set of experiments regarding
design and execution of test cases, exploration and evaluation of our presented mutation
operators, and analysis of the effectiveness of mutation testing.

Our experiment results reveal that testing is useful in the correctness assurance of
GPU programming and our testing method is effective to apply massive test cases on GPU
kernels. The mutation testing can be used to assure the quality of the testing on GPUs
because our presented mutation operators can represent the real faults that a programmer
can made.

In this research, we make contributions on applying testing and mutation testing to
GPU programming and revealing the relationship between the mutation testing and testing
on GPU kernels. We also proposed two more GPU-specific mutation operators for mutation
testing, and develop an open-source testing and mutation testing tool for GPU kernel
development.

This report is structured as follows: Chapter 2 firstly introduces the background of this
research regarding testing, mutation testing, and GPU programming. Then, in Chapter 3,
we list the related studies on applying testing and mutation testing on GPU programming
and compare the differences from this research. We propose our goals and questions in
Chapter 4, along with the design of our mutation testing tool and benchmark projects.

2

We introduce the details about applying testing to GPU kernels in Chapter 5, which is
also a precondition of applying mutation testing. In Chapter 6, we explain a serious of
experiments to apply mutation testing to GPU kernels in detail. We lists our results
in Chapter 7, and discuss our proposed research questions in Chapter 8. We draw our
conclusions and explain future work in Section 9.

3

Chapter 2

Background

As this study concentrates on incorporating testing and mutation testing into GPU pro-
gramming, which includes three different research fields, this background chapter will in-
clude three sections as listed below. Each section describe a whole story of one field, with
subsection titles added for indexing and speed reading.

Figure 2.1: Research fields of this study and their relationships

• Testing and coverage (Section 2.1): We briefly recall the concepts of testing, unit
testing and performance testing in the context of GPU programming, and some code
coverage criteria and corresponding measurements in the context of multi-threaded
programming.

• Mutation testing and related techniques (Section 2.2): We first introduce the
basic of mutation testing and the relationship between mutation testing and testing.
Then, we proceed with some core concepts of mutation testing and the processes of
applying mutation testing.

• GPU programming and kernels (Section 2.3): We introduce the basic concept
of GPU programming with a running demo kernel, including the thread and memory
management. Then, the Kernel Tuner is introduced to see how it addresses the thread
and memory optimization problems. After that, we explain two typical fault models
regarding thread and memory management: the data race and barrier divergence.

4

2.1 Testing

Software testing is an essential process in software development that involves validation
and verification of the functionality and non-functionality requirements of software appli-
cations. The goal of testing is to identify and locate defects, vulnerabilities, and errors
in the application, with the aim of preventing potential problems or risks that may arise
from using it. The followings introduce some testing techniques involved, and their main
differences when applying to GPU programming compared to CPU one.

2.1.1 Unit Testing

Unit testing is the most popular software testing technique where individual code com-
ponents or units are tested in isolation to ensure that they have met the functional re-
quirements. A "unit" typically refers to the smallest testable part of the software. In the
context of GPU programming, it typically refer to a single kernel that can be launched by
the GPU, which may contains several functions calls in a chain [22, 40] (details shown in
2.3). The primary goal of unit testing is to verify that each unit of code performs its in-
tended function correctly to catch bugs and improve code quality early in the development
cycle.

2.1.2 Performance Testing

Performance testing is a type of non-functional testing techniques that focuses on evaluat-
ing the speed and responsiveness of a software under different conditions and workloads. It
is significant in the context of GPU programming because GPU programming is designed
for speeding up the general-purpose computing on GPUs. For example, NVIDIA offers a
set of best-practice metrics to measure the performance of a kernel [17], which allows the
kernel developer to inspect the performance of a kernel. However, there are few studies
concerning using these metrics to design a test suite to ensure a performance baseline of a
kernel.

2.1.3 Coverage Criteria

As software systems grow in complexity, the efficacy of testing methodologies becomes
increasingly significant. Therefore, coverage criteria come into play to measure the degree
of software testing that has been carried out. These criteria are a range of metrics to
provide a quantitative measure to qualify the comprehensiveness of the test objective [11].
Two main criteria involved in this research, statement coverage and branch coverage, are
introduced below.

• Statement Coverage: This criterion measures the proportion of executable statements
in the source code that have been executed during testing, providing a basic insight
into the testing comprehensiveness of code [11].

• Branch Coverage: This criterion evaluates the coverage of branching constructs, such
as condition statements, loop statements, and switch cases. It ensures that both true
and false branches, or all cases in switch statement, are tested [11].

However, when introducing above criteria a multi-threaded situation, things are starting
to get complicated. In the sequential computing model, the code will be executed from top
to bottom one by one, so it is intuitive to understand which statements/branches of code

5

are covered and which are not. However, most of modern computing hardware support
more than one parallel threads. In this situation, we need to consider the number of threads
that visit the statements/branches of code. This is because some threads may cover some
statements/branches while no threads visit the others, or a more complicated case, the
threads get diverged when visiting some statements. For example, some threads may visit
the then branch of a conditional statement while the other threads go to the else branch.
This is called thread divergence and may cause critical concurrency problems when it goes
wrong [3].

What’s more, since coverage is a way of measuring the level of the test effort, we do
hope that the coverage will be correlated with the possibility of revealing faults. However,
this relationship between coverage and fault revelation is naturally falsifiable [5], which
indicates that our intuition that higher test coverage will detect more errors is unreliable.
Therefore, to quantify the quality and effectiveness of testing, and to evaluate the fault
detection ability of test coverage, mutation testing comes into play.

2.2 Mutation testing

Mutation testing [19, 30] is a software testing technique that involves modifying the source
code of a software application to create variations of the code, namely mutants. The
mutants are created by changing the code in specific ways, such as changing arithmetic
operators or deleting statements, to simulate the real faults that a programmer can make.
These mutants are then tested using the target test suite to determine whether this test
suite can detect the intentionally injected faults. If a test case in the target test suite
fails when executed on a mutant, we consider the test case to have found the defect and
’killed’ the mutant. However, if a mutant passes all the test cases, which means none of
the test cases can figure out this specific problem, we consider the mutant as ’survived’.
By measuring the ability to detect mutants, we can analyze the overall quality of the test
suite.

2.2.1 Relationship between Mutation Testing and Testing

Although both mutation testing and software testing use the term ’testing’, they appear to
be distinct concepts. Software testing uses a designed test suite to evaluate the quality of
software. However, mutation testing is a "bug simulation" process to measure the quality
of software testing itself. Therefore, mutation testing is typically used in combination
with other software testing techniques, such as unit testing and code coverage analysis
mentioned above to improve the effectiveness of software testing.

Chekam et al. [5] conduct a study on the relationship between mutation testing and
coverage criteria. They find that mutation testing has higher fault revelation than state-
ment coverage and branch coverage. However, their finding also reveals that there exists
a threshold level of coverage, and the testers need to achieve it before they can actually
benefit from applying mutation testing or further increasing coverage.

This threshold is easy to understand because a fragment of uncovered code probably
implies that the mutation in this fragment will also not be covered by the same test suite.
In this case, all the mutants within this code fragment are not included in any execution
path, let alone influence the final result.

In conclusions, mutation testing is a powerful complement to testing because it forms
a bridge between faults and test effectiveness of a test suite: failing to detect certain types
of mutants implies failing to reveal certain types of faults [2, 5]. This principle of mutation

6

is grounded in an assumption that the mutant is capable of representing a real fault that
may happen in the production code. Two hypotheses [9], the Coupling Effect and the
Competent Programmer Hypothesis, ensure this capability, which are explained below.

2.2.2 Coupling Effect and Competent Programmer Hypothesis

The Coupling Effect is one of the basic hypotheses in mutation testing. It assumes that
if a test case can distinguish all programs, which differ from a correct one by only simple
errors, it is so sensitive that it also implicitly distinguishes more complex errors [9]. This is
an empirical hypothesis, and there is no hope of theoretical "proof" of it. Therefore, over
the decades, a set of empirical studies were conducted on this hypothesis.

Offutt [27] extends the definition of the hypothesis to the Mutation Coupling Effect,
which assumes that a simple error, which can be fixed by making a single change, can be
represented by a 1-order mutant. One step further, Offutt assumes that the complex error,
which can only be fixed by multiple changes, can also be represented by a higher-order
mutant. The higher-order mutant here refers to a type of mutant that has more than
one mutation in the code, which can be interpreted as a composite of multiple 1-order
mutants [27]. Based on this, Offutt made an assumption that the higher-order mutants
are coupled to 1-order mutants in such a way that a test suite that detects the 1-order
mutants in a program can still detect the corresponding composited higher-order mutants.

To validate the correctness of the extended hypothesis, Offutt conducts an experiment
on the connected 2-order mutant, which is composed of a pair of mutants on the same
execution path, using a first-order mutation-adequate test suite to verify the generated 2-
order mutants, and analyzes the alive ones. All the alive mutants after mutation testing are
classified into strong uncoupled and weakly uncoupled. A weakly coupled mutant means
it just happened to be missed by this test suite, for example, a former mutation changes
the execution flow, making the latter one uncovered. However, a strong uncoupled mutant
means there is some characteristic that makes it unable to be killed, which indicates that
the Mutation Coupling Effect is defective, and mutation testing fail to represent this type
of fault.

Mutation Coupling Effect Hypothesis assumes that faults can be represented by the
mutation operators. However, it does not explain whether these faults can be actually made
by a real programmer. That’s why the Competent Programmer Hypothesis is proposed.

The Competent Programmer Hypothesis (CPH) is proposed by DeMillo et al. [9], which
states that most programmers are competent enough to create correct or almost correct
source code. One step further, if we assume the Mutation Coupling Effect is true, we can
infer that if a test suite cannot distinguish the original program and the mutants, then it
is not able to distinguish correct and faulty code either [27].

Gopinath et al. [13] conduct a large-scale study on over 4000 open-source projects on
GitHub, trace the issues proposed on the GitHub Issues of the repository and corresponding
linked bug-fixes, and quantify the syntactic differences before and after the fix. They
conclude that the difference is so significant that "the Competent Programmer Hypothesis,
at least from a syntactical perspective, may not be applicable."

Stein et al. [33] use a reversed way to validate the CPH. They use 5 Java projects with
real bugs and bug patches and compare the buggy code and the correct one. They conduct
an experiment to find a chain of mutation operators that can transform the correct code
to the buggy version, which means that a higher-order mutant does exist to reproduce the
bug. The result reveals that the CPH seems to be true. However, the common mutation
operators are not representative enough for real-world bugs.

7

2.2.3 Equivalent Mutant

There is a situation that even though the test suite is well designed, some mutants can still
survive. These mutants which can never be killed because they always produce the same
output as the original program, no matter what the input is, are called equivalent mutants.

Equivalent mutants refer to a type of mutants that can never fail any test cases because
the program’s behavior is always preserved. Accordingly, the non-equivalent mutants refer
to the ones that can distinguish themselves from the original code as long as they receive
a suitable input.

Because of the behavior-preserving nature, equivalent mutants are valuable to be ana-
lyzed as they imply that the original code is not sensible enough to these types of change
represented by these mutants. By changing the behaviour of the original code, we may be
able to remove some equivalent mutants.

Although it’s not that easy to distinguish the equivalent mutant from the survived
mutants and it takes a lot of human labour to find them out, spending time on it seems
still worthy, especially when we are going to calculate the mutation score.

2.2.4 Mutation Score

After figuring out all the non-equivalent mutants, we can use them to quantify the result
of mutation testing, which can then be used as one of the metrics to evaluate the quality
of testing. Here the mutation score is introduced. This score is calculated on the number
of non-equivalent mutants detected by the test suite, i.e., the ratio of killed mutants to the
total number of non-equivalent mutants. The higher the mutation score, the more effective
the test suite is.

However, equivalent mutants will still take plenty of time and resource when we really
execute them. Therefore, figuring out all the non-equivalent mutants, or in other words,
eliminating all the equivalent mutants before actually executing them, becomes a critical
process in mutation testing. And one of the most important ways to reduce or prevent
equivalent mutants is by using well-defined mutation operators.

2.2.5 Mutation Operators

To guide the generation of mutants, mutation operators, or mutators are used. The mu-
tation operators are defined rules to insert specific faults into the original program. They
are significant in mutation testing since the quality of operators will highly influence the
quality of the mutants and the testing effectiveness, and a poor operator may derive a
number of equivalent and/or trivial mutants.

2.3 GPU Programming and Kernels

In this section, we are going to introduce GPU programming with a running example
written in CUDA, and explain the thread management and memory model of the GPU
device. The example kernel adds two vectors in parallel and stores the results in a third
vector.

1 __global__ void add(int n,float *x,float *y,float *z){
2 int i = blockIdx.x * block_size_x + threadIdx.x;
3 if (i < n) {
4 z[i] = x[i] + y[i];

8

5 }
6 }
7
8 int main() {
9 int N = 1<<20;
10 float *x, *y, *z;
11 float *dev_x, *dev_y, *dev_z;

... //Declear and allocate host and device memory
12 cudaMemcpy(dev_x, x, N, cudaMemcpyHostToDevice);
13 cudaMemcpy(dev_y, y, N, cudaMemcpyHostToDevice);
14 add<<<4096, 256>>>(N, dev_x, dev_y, dev_z);
15 cudaMemcpy(z, dev_z, N, cudaMemcpyDeviceToHost);

... //Release host and device memory
16 return 0;
17 }

There are two functions in this running example. The function starts with keyword
__global__ is called global function, which can be executed on GPU and called by a
CPU function. Therefore, the global function also serves as the entry point of a kernel.
There are two other kinds of functions, device function starting with __device__ and host
function starting with __host__, which can only be called and executed on the GPU or
CPU respectively. The functions without any execution space specifier, like the second
function in above example, are also recognized as the host functions [24].

2.3.1 Thread and Memory Management

As we mentioned before, threads are managed by the GPU itself in GPU programming.
These hardware threads are typically organized into groups called warps (NVIDIA) or
wavefronts (AMD). This is because GPUs use the Single Instruction, Multiple Thread
(SIMT) architecture, where a single instruction is executed by multiple hardware threads
simultaneously, with each thread in one thread group running the same code but operating
on different data. For example, in order to add up two vectors, we often use a loop
statement to iterate them in CPU programming. However, in GPU programming, the
more effective way is to unroll the loop statement by assigning different software threads
with different vector indices for addition. As shown in line 2 of the running example, we
give each thread an unique calculated id, and this id also works as the index of the two
vector to guarantee the integration.

However, a kernel may involve a large number of software threads, but the hardware
threads is always limited. That is why NVIDIA introduces thread block and grid in
CUDA to abstract the hardware threads for computing. At the abstract level, just like its
name, one thread block contains up to 1024 software threads, which at the hardware level
represents a composition of one or multiple warp(s). Multiple thread blocks are combined
into a grid, and the included blocks in one grid must have the same number of threads.
Therefore, under this computing model, the number of threads in a thread block is limited,
but grids can be used for kernels that require a large number of thread blocks.

In our running example, we call the kernel function in line 14 after some initialization
jobs. The statement add<<< 4096, 256 >>> tells the CUDA runtime that the kernel add
will be executed by 4096 thread blocks, and each thread block includes 256 threads, which
means it will start 4096 ∗ 256 = 220 = 1, 048, 576 parallel software threads in total. This is

9

the same as the size of the vectors, which indicates all the threads will be executed once
and only once for one vector index.

Now we know that one software thread will only operate one vector index. The fol-
lowing job is to make sure this one-to-one relationship is unique. In line 2, threadIdx.x
uniquely identifies each thread within its thread block, and blockIdx.x does so for the
thread block within a grid. By combining them with block_size_x, we can uniquely iden-
tify the threads in block 0 as thread (0) to thread (block_size_x− 1), and in block 1 as
thread (block_size_x) to thread (2∗block_size_x−1) ..., thus extending the uniqueness
across the entire grid.

Before and after launching the kernel, the kernel developer needs to explicitly manage
different types of memory, including the shared/local memory and global memory of the
GPU device, and the memory of the host. In the running example, the developer needs to
manually initialize the host memory for the variables x, y, z with malloc statements and the
device memory for dev_x, dev_y, dev_z with cudaMalloc statements, which are omitted
in the example due to space limitation. After initialization, the cudaMemcpy statement is
called to copy input from the host memory to the device memory in lines 12-13, and copy
the result back to the host in line 15 after kernel execution. After that, both the host and
device memory need to be explicitly released.

2.3.2 Kernel Tuner

To address the above resource management and performance optimization problems in
GPU programming, Kernel Tuner is presented [38]. Kernel Tuner is a Python library that
facilitates the optimization of compute kernels for parallel computing devices. It provides
an interface to automatically tune kernel parameters to achieve the best performance for a
specific hardware platform. It speeds up the kernel development processes in the following
three critical aspects:

• Kernel execution: Kernel Tuner supports all CUDA, OpenCL, and C kernels with a
set of Python-based backends to offer a comprehensive solution for kernel execution,
including kernel code compilation, initialization and cleanup of runtime context, bi-
directional host-device memory transformations, and launching kernels.

• Kernel tuning: The variety of thread block divisions and other code optimization
parameters, like tiling or unrolling factors, results in different kernel execution per-
formances. Instead of manually tweaking kernel parameters and testing performance,
Kernel Tuner includes a series of built-in search optimization algorithms to automati-
cally tune the GPU kernels to benchmark the best configurations for kernel execution.

• Result verification: Kernel Tuner allows the users to offer a reference answer for
kernel tuning and it offers a verification mechanism to automatically compare the
kernel output with the reference answer.

2.3.3 Data Race and Barrier Divergence

It is always up to the kernel developer to manage the thread and memory properly in
GPU programming, and insufficient understanding of this computing model will lead to
problems like data races and barrier divergence. A data race is a situation that two or
more threads try to access a global or shared memory at the same time, and at least one
thread among them tries to do the write operation. This can lead to nondeterministic
behavior of the execution and compute invalid results.

10

There are two kinds of data races in the GPU kernel, the inter-group data race and the
intra-group data race [3]. An inter-group data race represents that these threads are from
at least two blocks (CUDA terminology)/groups (OpenCL terminology), and at least two
threads from different blocks/threads try to read and write to the same location in the
global memory at the same time. An intra-group data race occurs only among the threads
in the same group/block, and the conflicted operation can happen in both global or shared
memory.

To prevent data races in the GPU kernel, the kernel developer can use fence function
and atomic operations. A fence function can make sure that all the write operation to
global or shared memory made by the caller thread are visible to other threads before
the fence. It can be used in combination with atomic operations, where within one atomic
operation, the value in address can be read, modified, and written back to the same memory
without the interference of other threads. Both the CUDA and OpenCL provide a set of
out-of-the-box fence function and atomic operations, like __threadfence(), atomicInc(_)
for CUDA and mem_fence(), atomic_inc(_) for OpenCL.

Unlike the fence function which only ensure the order of memory operation, the barrier
statement (i.e., __syncthreads() in CUDA and barrier(_) in OpenCL) is a strict synchro-
nization method between threads. The barrier is the place where all the threads in the
same block/group have to wait until every thread has reached the barrier. This mechanism
forces all the threads to synchronize the shared and/or the global memory before executing
the barrier.

However, things can become buggy if the barrier statement is misused. Barrier diver-
gence is the subtle situation that the threads in the same group/block get diverged and go
to the different branches of a conditional statement, where each branch has a barrier state-
ment, forcing all of the threads to do the impossible synchronization. This is ill-designed
and will lead to nondeterministic behavior of the kernel, which may vary with the kernel
programming languages and hardware architectures [3].

11

Chapter 3

Related Work

With some basic background information introduced above, here we would like to discuss
some related work regarding the application of testing and mutation testing to GPU kernels.
We also summarize the differences or show our improvements between their studies and
ours.

3.1 Testing on GPU Kernels

3.1.1 Tools for Kernel Verification

Although the GPU programming platforms do not offer a mechanism for applying testing
to GPUs, researchers in this area have proposed some tools to verify the correctness of the
GPU kernels.

Li et al. [22] develop a testing tool called GKLEE to analyze the correctness and
performance problems for CUDA kernels. This tool is able to identify various bugs such
as data races, barrier divergence. It also allow the tester to do a concolic analysis to figure
out some performance-related problems like low-efficient memory access and bank conflict.
Based on this tool, Sun et al. [35] develops their tool called DSGEN, which improves the
data race detection rate by supporting dynamic data structure like linked lists and trees.

However, both these tool above only support CUDA kernels. Betts et al. [3] propose a
tool called GPUVerify, which supports both CUDA and OpenCL computing platforms. It
can detect the potential data races and barrier divergence problems. Compared to CKLEE,
it does not provide performance measurement functionality, but it is more intuitive to use,
which is particularly useful for early or mid-stage kernel development [29].

3.1.2 Coverage Measurement

In the context of GPUs, measuring the code coverage is even harder because a kernel can
spawn millions of threads. This leads to complex coverage patterns which are hard to
reason about, but it is always up to the kernel developer to make sure the concurrently
executing threads do not conflict [21]. This creates the need of coverage information to
inspect the flows of threads for each test case. However, despite the increasing importance
and need for it, research on coverage metrics or measurement tools in GPU programming
is still vastly unexplored.

Firstly, there is no official support for coverage measurement from some GPU program-
ming platforms. For example, the CUDA compiler developed by NVIDIA, the NVCC, does
not offer a mechanism to measure the code coverage of the CUDA kernel [37, 20]. Tabani
et al. [37] meet the same problem when measuring the code coverage for a CUDA project.

12

They bypass this problem by using a simple tool called cuda4cpu [4], running the device
code on the CPU, although they admit that this might lead to some unforeseen problems.
Several similar tools can be found, like GPU Ocelot [15]. However, whether these tools can
be compatible with coverage measurement tools still remains unknown. Another option
is warping the device function with the global function, and removing static and inline
keywords if needed to make sure that these functions can also be accessed by the host [40].
But this option also has some drawbacks because some operations are incompatible with
the CPU, like the synchronization call, and it is not fine-grain enough to measure the
coverage.

There is also a commercial coverage measurement tool named VectorCAST/QA claim-
ing that it supports collecting the statement coverage and branch coverage of CUDA ker-
nels, but from the live demo of this tool, only the coverage on the host is displayed [12].

The most promising research is from Li et al. [22]. They partially address the coverage
problem by measuring the statement coverage in two different ways in their presented kernel
verification tool GKLEE: the statements that are covered by all threads at least once, or
by some threads at least once, which helped them to identify whether the states/paths
that are covered by test cases or not.

However, all these research mainly focuses on using the coverage to make sure that
the mutants are covered by test cases or not, without discussing whether these coverage
criteria can be a way to quantify the testing quality and comprehensiveness. Therefore, in
this research, we would like to go one step further to address this insufficient point.

Compared to CUDA, OpenCL has much more options regarding this problem. There
are some device code coverage measurement tools for OpenCL, like the clcov [31] used
by Peng et al. [32] and Li et al. [23]. The problem can also be bypassed since the CPU
manufacturers like Intel offers the CPU-only runtime for the OpenCL [18], although a study
reveals that the CPUs and GPUs may behave differently regarding the barrier divergence
problem [3].

Compared to their studies, our research focuses on a different aspect. It requires
applying testing to GPU kernels in an efficient way and further supports the following
mutation testing process. Therefore, our research is based on an existing tool called Kernel
Tuner [38]. It can tune the GPU kernels to find the optimized parameters for kernel
executions, which is best suitable for optimizing the testing process.

3.2 Mutation Testing on GPU Kernels

Although both mutation testing and GPGPU are popular topics nowadays, only a few
studies have been conducted in this cross-topic domain, i.e., the application of mutation
testing to the GPU kernel.

The most relevant research is from Zhu et al. [40]. They conduct an empirical study
on introducing mutation testing to the CUDA kernel. They propose nine GPU-specific
mutation operators and develop a Python-script mutation testing tool to perform the
mutation testing on six kernel projects from the CUDA SDK. They draw a conclusion
that mutation testing can benefit GPU programming in simple test case writing and bug
detection.

Peng et al. [32] also propose a tool that can inject faults into the OpenCL kernel and
measure the fault detection capability of the existing test suite. All the mutation operators
they used are from the CPU programming. They conclude that mutation testing is useful
in this area, and find that some arithmetic operator and relational operator mutations are
hard to kill, suggesting the tester design more specific test cases for them.

13

However, both of these studies mainly focus on developing a mutation testing tool for
corresponding GPU programming language and use a demo input-output to apply the
mutation testing to GPU kernels. This results in various shortcomings in their research:

• The test cases involved in these studies are not sufficient. Mutation testing is a way
to measure the quality of a test suite. However, they did not clearly answer how to
design the test suite and effectively apply testing and mutation testing to GPUs with
this test suite.

• They did not adequately express why mutation testing can be applied to GPU kernels
in the first place. The lack of analysis of the principles behind the application of
mutation testing makes their experiments less convincing.

To address the insufficient points of these studies, we propose our research goals and
questions.

14

Chapter 4

Approach

The purpose of this study is to rigorously investigate the application of testing and mutation
testing on GPU kernels to either provide evidence of the usefulness of mutation testing on
GPU programming, or show that mutation testing is less valuable on evaluating testing
effectiveness on GPUs.

4.1 Research Goals

As the infrastructure and precondition of applying mutation testing, it is firstly required
to demonstrate how to effectively apply testing on GPUs, including the test suite design,
the result verification and the coverage criteria measurement.

After that, we would like to examine the feasibility and effectiveness of applying mu-
tation testing to GPU kernels through the following four milestones:

1. Explore the mutation operators used for GPU computing platforms.

2. Develop a mutation testing tool for GPU kernels.

3. Do the mutation testing using the presented mutation operators and test cases.

4. Analyze the result and effectiveness of mutation testing on GPUs.

4.2 Research Questions

Based on the goals listed above, to steer our study, we propose the following three core
questions. We limit the scope of each research question by proposing sub-questions ad-
dressing the core parts of each research question, showing our working direction to the
core problem. These sub-questions need to be answered in order, and the answers to our
research questions will be concluded on the answers to each sub-question

• Research question 1 (RQ1): How to effectively apply testing to GPU kernels? We
focus on the design, execution, verification of the test suite, and the estimation of
testing quality with the following sub-questions.

– RQ1-1: How to effectively design a test suite for testing and mutation testing
on GPUs?

– RQ1-2: When having a large number of test cases, how effective are they when
executing on GPUs?

15

– RQ1-3: How effective are the statement/branch coverage criteria in estimating
the testing comprehensiveness on GPUs?

• Research question 2 (RQ2): How effective is applying mutation testing to GPUs This
question can be broke down into three sub-questions:

– RQ2-1: How to explore the mutation operators that can be applied to GPUs?
– RQ2-2: How effective are these mutation operators on CUDA computing plat-

form assumed by Coupling Effect Hypothesis?
– RQ2-3: How effective are the mutation operators representing the real faults

assumed by Competent Programmer Hypothesis?
– RQ2-4: How effective is the mutation testing evaluating the testing quality?

4.3 Research Objects

The benchmark objects for this research are drawn from several kernel benchmark projects,
includes the CUDA samples from NVIDIA [25], existing kernel examples of Kernel Tuner
project [38], tunable kernels from Sagecal [16], and some other benchmark projects are
investigated in this research. Some kernels from them are imported into our research after
modification to the tunable ones.

Project Kernel Tunable

Kernel-Tuner

VectorAddTemplate Yes
Matrix multiplication (share memory) Yes
Matrix multiplication (tiling) Yes
Diffusion (naive) Yes
Diffusion (tiling) Yes
Convolution Yes

Sagecal

ArrayBean Yes
Coherency Yes
Sincos (cub) Yes
Sincos (manual) Yes

Hetero-Mark Histogram (Hist) Yes
CUDA-Samples Increment Yes
Math Saxpy Yes

Table 4.1: Benchmark projects

4.4 Tool Development

We design and implement our mutation testing tool to apply testing and mutation testing
on GPUs. To simplify the development and workflow of our tool, we built it as a part of
Kernel Tuner and named it Mutation Kernel Tuner.

The following modules are developed to support our designed experiments shown in
Chapter 5 and Chapter 6. The corresponding details of these two modules are introduced
in Section 5.3 and 6.4 for a better reading context.

• Testing Module: This module is responsible for the compilation, kernel execution
using the test cases, coverage measurement, and the host device data transportation.

16

• Mutation Testing Module: This module includes two main components, the Mutation
Analyzer and the Mutation Executor. The mutation Analyzer is responsible for
locating the mutants in kernel code using the mutation operators. A schema is
also designed to allow the analyzer to serialize and export the mutants to a file. The
Mutation Executor is designed for receiving the mutants from the Analyzer, mutating
the kernel code, calling the Testing Module to execute the mutant for test cases, and
verify the result of execution.

17

Chapter 5

Testing on GPU Kernels

Before we can actually do mutation testing on GPUs, we need to design the test cases
for each benchmark kernel and do a dry run to make sure that the test cases are valid.
This will answer the sub-question RQ1-1 and RQ1-2, shown in Section 5.1. The coverage
data are also collected at this stage shown in Section 5.2, the data will be analyzed later
along with mutation testing results to answer RQ1-3. To apply the testing and coverage
measurement to GPUs, we develop a testing module for our tool, which is introduced in
Section 5.3

5.1 Apply Testing to GPU Kernels

We design the test suite for the testing and following mutation testing process and execute
the designed test cases for evaluation and coverage collection. The goal of this experiment
is answering the sub-question RQ1-1 and RQ1-2.

5.1.1 Design, Execute and Verify the Test Suite

To apply effectively testing to GPU kernels, we first need to design a test suite for each
kernel, find the best kernel execution parameters to launch the kernel, and verify the
output.

Test suite design

As shown in Table 4.1 above, the benchmark projects we used are from several existing
studies, which may use different result verification methods or even do not have a verifi-
cation mechanism. Our test suite design may also be different varying among benchmark
kernels. However, we conclude some general guidance for our test suite design.

For most of the benchmark projects that offer a reference function for generated inputs
and expected outputs, we will reuse these mechanisms and generate 3 test cases for each
benchmark projects. These reference functions include CPU functions written in Python
or C/C++, and GPU device functions in CUDA. If the reference function requires to
designate some functional parameters, these parameters will be selected by maximizing,
minimizing, randomizing and assigning null (if available) based on the code logic. These
parameters selecting methods will be combined to generate 3n (or 4n if null is available, n is
the number of parameters) test cases except for the illegal input combination. In particular,
if the parameter is closely related to the problem size of the kernel, which may influence the
thread-block division, it will be selected at least once among 32, 256, 1024 and 1048576 (220)
depending on the specific kernels.

18

For some benchmark projects which already contain one or more test cases, we reuse
the existing ones and make sure for each benchmark projects will have at least 3 test cases.
For the projects which contain no verification mechanism, we design our own at least 3
test cases based on the code logic.

However, since the benchmark projects involved are diverse, there must still be some
exceptions depending on the specific kernels.

Kernel execution parameters

As discussed in Section 2.3, the execution parameters for thread block division and memory
management will dramatically influence the performance of the kernel, and sometimes even
the correctness. If not otherwise specified, we will use the following parameters to tune the
kernel when available to get the best execution parameters for test case executions, shown
in Table 5.1.

Tunable parameters Default values
block_size_x [16, 32, 64, 128, 256]
block_size_y [2, 4, 8, 16, 32]
tile_size_x [1, 2, 4]
tile_size_y [1, 2, 4]

Table 5.1: Tunable parameters and their default values

Execution result verification

Most of the return results of kernels are numeric values. For these the Kernel Tuner has a
sophisticated function to verify them, as discussed in Section 2.3. It checks the consistency
of data types and data lengths of the results and expected outputs before checking whether
the numbers are equal or within a given absolute tolerance.

For other benchmark kernels that return non-numeric results, a customized verification
function should also be provided along with the test cases. This function should receive
an actual output and an expected output, and return a Boolean type indicating pass or
fail of a test case.

5.1.2 Experiment Setup

1. Design and generate test cases for each benchmark project.

2. Conduct the test executions for each test case.

3. Verify the kernel outputs with expected outputs for each test case.

4. Generate the testing report.

This experiment also works as a validation of our Mutation Kernel Tuner tool. If anything
goes wrong during these experiment steps, both the test suite and the tool are examined
to check where it goes wrong.

If a test case fails the testing, a new test case will be designed using the method shown
in the experiment design. Then this setup will be conducted again on this test cases to
make sure that all test cases are passed and the coverage data are collected. However, if

19

a bug of our tool is detected during this experiment, all the test cases for all benchmark
projects will be executed again.

After the experiment, the passed test suites will be used for the following mutation
testing experiments in Chapter 6. The coverage data will be analyzed along with the
result of mutation testing to quantify the comprehensiveness of testing on GPU kernels.

5.2 Code Coverage Measurement on GPUs

As introduced in Section 2.1 there are neither concurrency coverage criteria nor coverage
measurement tools for GPU kernels provided by CUDA or OpenCL. We also have discussed
in Section 3.1.2 that all the related studies mainly focus on using the coverage to make sure
that the mutants are covered by test cases or not, without discussing whether these coverage
criteria can be a way to quantify the testing quality and comprehensiveness. Therefore, we
use the following criteria from Li et al. [22] ’s related research to calculate the coverage,
and propose a way to measure the concurrency statement coverage and branch coverage on
the GPU side. The coverage data will be used to analyze the relationship between coverage
and testing quality.

• Least Branch Coverage: It measures the number of branches covered at least by one
thread across the whole kernel, averaged over the number of branches.
We use this metric to measure whether our test cases have covered all the possible
branches of the kernels. When a thread covers a branch, it also covers all the state-
ments on that branch. The goal of this coverage for each kernel is 100% so that we
can make sure every line of code is covered by at least one test case, assuring the
future mutation testing without uncovered code.

• Average Statement Coverage: It measures the number of branches covered by threads
across the whole kernel, averaged over the threads. We use this metric to measure
the testing comprehensiveness of the kernels. It is an intuitive metric under the
hypothesis that higher coverage means a higher possibility to detect a fault.

An example is provided below to explain how to calculate these coverage criteria.

// 128 parallel threads with an id from 0 to 127
if (id > 127) {

return; // No thread goes here
} else {

if (id < 32) {
c[id] = a[id] + b[id]; // 32 thread go here

} else {
c[id] = a[id] - b[id]; // 96 thread go here
c[id] = c[id] + 1;

}
}

The code snippet above contains 4 branches and 6 lines of code (LOC). Assume we have
128 parallel threads with corresponding IDs. It is intuitive to find that there are one
statement and one branch which are not covered by any threads. Therefore, the Least
Branch Coverage are 3/4 ∗ 100% = 75%. For the Average Statement Coverage, there are 2
LOC covered by 128 threads (2 if statement), 1 LOC by 0 thread, 1 LOC by 32 threads, and
2 LOC by 96 threads, so the coverage is (128∗2/6+0∗1/6+32∗1/6+96∗2/6)/128∗100% =
62.5%.

20

5.3 Testing Module Development

To conduct the experiments above, we implement a testing module in our tool Mutation
Kernel Tuner. This module is responsible for the compilation, kernel execution using the
test cases, coverage measurement, and the host device data transportation. Please note
that this module can only measure the coverage for tunable CUDA kernels, which can be
directly launched the global function by our Mutation Kernel Tuner. It does not support
measuring coverage for the kernels which already have a host function and require that
host function to start the kernel.

5.3.1 Testing Module Workflow

A designed workflow of the testing process is listed below. The details are shown in
Figure 5.1.

1. The user provides a tunable kernel, a test suite and some optional testing parameters.

2. The Tuning Module tunes the kernel over the problem size of the test cases to get
the optimized kernel execution parameters, and categorize the test cases based on
problem size.

3. [Optional] If the user enables the coverage measurement, the coverage measurement
code will be inserted into the kernel. The implementation details are explained below
in Section 5.3.2.

4. For each problem size with optimized kernel execution parameters, the Testing Mod-
ule executes the test cases with the same problem size using the same corresponding
parameters.

5. After execution, the Testing Module fetches and verifies the kernel output with ex-
pected output.

6. The Testing Module returns the testing results with optional coverage data.

21

Figure 5.1: Workflow of testing module

5.3.2 Coverage Measurement

We propose and use two methods to measure the coverage criteria of GPU kernels, the
Branch Bucket and Thread Counter. The Branch Bucket is used for measuring the
Least coverage and the Thread Counter is for the Average Coverage. These two coverage
metrics are explained in Section 2.1.

Branch Bucket for Least Coverage

The following code snippet reveals how we measure the Least Coverage using Branch
bucket. A Boolean array is added to the kernel parameters, whose elements are initialized
as False. For each branch of the code, a True value will be assigned to the corresponding
position of the bucket when the assignment statement is covered by at least one thread.

__global__ void add(float *c, float *a, float *b, int n, bool *bucket) {

22

bucket[0] = true;
int i = blockIdx.x * block_size_x + threadIdx.x;
if (i<n) {

bucket[1] = true;
c[i] = a[i] + b[i];

}
bucket[2] = true;

}

Thread counter for Average Coverage

We use the following code to measure the average coverage. A thread counter array is
inserted to the parameter list, whose elements are all zeros. For each branch of the code,
the counter will self-increase by 1 when it is covered by a thread. We use atomicAdd to
make sure this self-increment is synchronized, and only one thread can access the counter
memory at a time.

__global__ void add(float *c, float *a, float *b, int n, int *counter) {
atomicAdd(&counter[0], 1);
int i = blockIdx.x * block_size_x + threadIdx.x;
if (i<n) {

atomicAdd(&counter[1], 1);
c[i] = a[i] + b[i];

}
atomicAdd(&counter[2], 1);

}

23

Chapter 6

Mutation Testing on GPU Kernels

To answer the sub-question RQ2-1, we conduct a study on collecting mutation operators,
shown in Section 6.1.1. We adapt the existing operators for CPU programming to the
GPUs, and categorize them as traditional operators. We also research on the operators
specific to GPU programming, namely GPU-native operators.

After that, we validate the Coupling Effect Hypothesis to answer sub-question RQ2-2
in Section 6.2, research on the git repositories of the benchmark project for Competent
Programmer Hypothesis to answer sub-question RQ2-3 in Section 6.3, and analyze the
mutation testing result along with the collected coverage data to answering the RQ1-3
and RQ2-4.

6.1 Apply Mutation Testing to GPU Kernels

In this section, we will introduce how we explore the mutation operators and apply muta-
tion testing to the GPU kernel in this research, answering the sub-questions RQ2-1.

6.1.1 Mutation Operators, Coverage and Score

Before we can do the mutation testing, we need to explore the mutation operators guiding
the mutant generation. To quantify the results of mutation testing, we need to calculate
the mutation coverage and the mutation score.

Mutation operators

We conduct a study on adapting the mutation operators used for mutation testing on CPU
programming from previous research and industrial practice [1, 6, 8, 36]. We collect and
categorize them as traditional mutation operators.

Similarly, we categorize the operators that can only be executed on GPU computing
platforms as GPU-specific mutation operator. We conduct a review and find some GPU-
specific operators that are proved to be useful to the mutation of GPU kernel, presented
by Zhu et al. [40] in their mutation testing tool for CUDA. These operators will also be
included in this research for evaluation.

To explore and design new GPU-specific mutation operators, we go into two research
directions, 1) focusing on the special grammar/pattern/syntax that is specific to that
application, and 2) following the fault models, where each type of fault in that scenario
can be used to design the mutation operator [10]. We will analyze the trees of git commits
for some classic kernels and try to find out the fault model from their bugfix patches. Also,
we will conduct a literature review on CUDA/OpenCL documentations [14, 24] and related

24

papers, and search for common mistakes that the kernel developer are likely to make on
NVIDIA CUDA forum [26] and Stack Overflow [28].

Following the above exploration approaches, we find two kinds of new useful mutation
operator specific to CUDA.

• sync_child_removal : This operator removes the synchronization between the child
kernel from a parent block. An example can be found below.

__device__ void child(_){...}
__global__ void parent(_){

...
child<<<Grid, Block>>>(_);

}
int main() {

...
parent<<<Grid, Block>>>(_);
cudaDeviceSynchronize(); //<-- original
//cudaDeviceSynchronize(); //<-- mutant
return 0;

}

• fence_removal : This operator addresses the data race problem introduced in Sec-
tion 2.3.3. It removes the fence function in the kernel code. There are three kind of
fence function in CUDA, __threadfence(), __threadfence_block(), and __thread-
fence_system(). An example is shown below.

__device__ void readXY() {
int B = Y;
__threadfence(); //<-- original
//__threadfence(); //<-- mutant
int A = X;

}

Table 6.1 shows the traditional operators we use in this experiment. Since there are so
many operators and we cannot apply all of them at once, we tentatively prioritize them
based on their popularity in related research and estimated effectiveness, because some
operators may have functional overlap with others.

Table 6.2 lists the operators specific to the CUDA GPU kernel. In this study, we only
validate and benchmark these operators under the CUDA computing model. The grammar
for these operators may differ between CUDA and OpenCL, but the offered functionalities
are similar, so theoretically the alternatives of these operators can also be found in OpenCL.

In this experiment, we measure the number of mutants for each mutation operator to
analyze the effectiveness of these operators.

25

N
am

e
and

R
ef

O
perator(s)

D
escription

P
riority

conditional_
boundary_

replacem
ent

(C
B
R

)
[6,

40,
32]

original:
<

,<
=

,>
,>

=
m

utant:
<

=
,<

,>
=

,>
replace

the
relationaloperators

w
ith

corresponding
boundary

counterpart
H

igh

arithm
etic_

operator_
replacem

ent_
short-cut

(A
R

S)
[6,

40,
32]

original:
i+

+
;i–;

m
utant:

i–;i+
+

;
replace

increm
ents

short-cut
w

ith
decrem

ents
and

vice
versa

H
igh

conditional_
operator_

replacem
ent

(C
O

R
)

[6,
40,

32]
original:

&
&

,||
m

utant:
||,&

&
replace

conditionaloperator
A

N
D

(&
&

)
w

ith
O

R
(||)

and
vice

versa.
H

igh

m
ath_

replacem
ent

(M
R

)
[6,

40,
32]

original:
+

,-,*,/,%
,&

,|,^,<
<

,>
>

m
utant:

-,+
,/,*,*,|,&

,&
,>

>
,<

<
replace

binary
arithm

etic
operations

w
ith

corresponding
m

ath
operation

H
igh

negate_
conditional_

replacem
ent

(N
C
R

)
[6,

40,
32]

original:
<

,<
=

,>
,>

=
,=

=
,!=

m
utant:

>
=

,>
,<

=
,<

,!=
,=

=
replace

allconditionals
found

w
ith

corresponding
counterpart

H
igh

short-cut_
assignm

ent_
operator_

replacem
ent

(A
SR

)
[6,

32]
original:

+
=

,-=
,*=

,/=
,%

=
m

utant:
-=

,+
=

,/=
,*=

,*=
replace

assignm
ent

short-cut
w

ith
corresponding

m
ath

operation
M

edium

arithm
etic_

operator_
insertion

(A
IU

)
[6,

32]
original:

a;
m

utant:
-a;

inverts
negation

of
integer

and
floating

point
variables.

M
edium

conditional_
operator_

deletion
(C

O
D

)
[6]

original:
!a;

m
utant:

a;
delete

the
conditionaloperator

M
edium

arithm
etic_

operator_
deletion

(A
O

D
)

[6]
m

utant:
^a

m
utant:

a
delete

the
arithm

etic
operator

Low

conditional_
statem

ent_
deletion

(C
SD

)
[6]

original:
a=

=
b,a=

=
b;

m
utant:

true,false;
delete

the
conditionals

statem
ent

and
let

it
alw

ays
be

true
or

false
(P

artially
overlap

w
ith

N
C

R
)

Low

T
a
ble

6.1:
T
raditionalm

utation
operators

26

N
am

e
and

R
ef

O
perator(s)

D
escription

alloc_
sw

ap(A
S)

[40]
original:

add<
<

<
4096,256>

>
>

m
utant:

add<
<

<
256,4096>

>
>

R
eplace

the
num

ber
of

threads
w

ith
the

num
ber

of
blocks

in
parallelprocessor

allocations
(and

vice
versa).

alloc_
increm

ent(A
I)

[40]
original:

add<
<

<
4096,256>

>
>

m
utant:

add<
<

<
4096+

1,256>
>

>
Increase

the
num

ber
of

parallelprocessors
(in

both
threads

and
blocks)

allocated
by

one

alloc_
decrem

ent(A
D

)
[40]

original:
add<

<
<

4096,256>
>

>
m

utant:
add<

<
<

4096-1,256>
>

>
D

ecrease
the

num
ber

of
parallelprocessors

(in
both

threads
and

blocks)
allocated

by
one

share_
rem

oval(SH
R

)
[40]

original:
_

_
shared_

_
float

cache[N
];

m
utant:

float
cache[N

];
R

em
ove

the
shared

m
em

ory
space

specifier
in

variable
declarations

gpu_
index_

replacem
ent(G

IR
)

[40]
original:

int
tid

=
blockIdx.x;

m
utant:

int
tid

=
threadIdx.x;

R
eplace

the
thread

indexing
variable

w
ith

the
block

indexing
variable

(and
vice

versa)

gpu_
index_

increm
ent(G

II)
[40]

original:
int

tid
=

blockIdx.x;
m

utant:
int

tid
=

blockIdx.x+
1;

Increase
the

indexing
variables

(threadIdx
and

blockIdx)
by

one

gpu_
index_

decrem
ent(G

ID
)

[40]
original:

int
tid

=
blockIdx.x;

m
utant:

int
tid

=
blockIdx.x-1;

D
ecrease

the
indexing

variables
(threadIdx

and
blockIdx)

by
one

sync_
rem

oval(SY
R

)
[40]

original:
_

_
syncthreads();

m
utant:

//_
_

syncthreads();
R

em
ove

the
synchronization

function
call

atom
ic_

replacem
ent(A

R
)

[40]

original:
atom

icA
dd(),atom

icSub(),atom
icE

xch(),
atom

icM
in(),atom

icM
ax(),atom

icInc(),atom
icD

ec(),
atom

icC
A

S(),atom
icA

nd(),atom
icO

r(),atom
icX

or()
(m

ay
have

_
system

or
_

block
suffi

x)

R
eplace

the
atom

ic
operation

w
ith

ordinary
arithm

etic
operation

or
conditionaloperation

sync_
child_

rem
oval(SC

R
)

original:
cudaD

eviceSynchronize();
m

utant:
//cudaD

eviceSynchronize();
R

em
ove

the
parent-child

synchronization
function

call

fence_
rem

oval*(F
R

)
original:

_
_

threadfence()
m

utant:
//_

_
threadfence()

(m
ay

have
_

system
or

_
block

suffi
x)

R
em

ove
the

fence
function

call

T
a
ble

6.2:
G

P
U

-native
m

utation
operators

(C
U

D
A

)

27

Mutation Coverage

In this experiment we measure the mutation coverage over the test suite. Only the mutant
that is covered by at least one thread will be considered as a covered mutant. In other
words, a mutant must lie along at least one of the execution paths of the kernel; otherwise,
it will not impact the kernel output and becomes an equivalent mutant. Mutation coverage
is the ratio of covered mutants to the total number of mutants.

Mutation Score

As introduced in Section 2.2.4, the mutation score is measured as the ratio of the killed non-
equivalent mutant to the total number of non-equivalent mutants. We plan to manually
distinguish the equivalent mutants since there is no sophisticated tool or method to speed
up this process. The mutants with compilation errors are not included in this calculation
since the kind of errors are generated by defective mutation operators.

6.1.2 Experiment Setup

1. Explore and design the operator(s).

2. Use these operators to generate mutants for each benchmark kernels.

3. For each mutant, mutate and compile the code. If the compilation succeeds, go to
the next step; if it fails, mark the mutant as COMPILE-ERROR status and continue
to the next mutant.
Note: the details about mutant status are explained in Section 6.4.2 below.

4. Execute the mutants for all test cases of a kernel. Check if the mutant is covered by
the test case or not.

5. For each test case, if the execution goes well, go to the following step; If the kernel
throws a runtime error or timeout, mark the mutant status as RUNTIME-ERROR
or TIMEOUT respectively and continue the next mutant.

6. Verify the output of the mutated kernel with the expected output of the test case.

• If the verification fails, mark the mutant as KILLED status and continue to the
next mutant;

• If the verification passes, execute the next test case for this kernel until running
our of test cases, mark the mutant as SURVIVED status and continue to the
next mutant.

7. Collect the results for mutants and test cases.

The described process of the mutation testing (step 3-6) is shown in Figure 6.1.

28

Figure 6.1: Process of Mutation Testing

29

6.2 Coupling Effect Hypothesis on GPUs

We conduct an experiment to verify whether the Coupling Effect also holds in the domain
of the GPU kernel. This experiment is mostly following Offutt’s approach [27] with some
necessary modifications adapting to GPU programming.

6.2.1 2-order Mutant Generation

To generate the 2-order mutants, we pairwisely combine all first-order mutants from the
previous experiment shown in Section 6.1 and exclude mutants that contain compilation
error sub-mutants.

6.2.2 Experiment Setup

The whole experiment process is listed as follows.

1. Create a 1-order mutation-adequate test suite for each benchmark project.

2. Generate the 2-order mutants and execute these mutants with the same test suite
from 1-order mutation testing.

3. Analyze the execution result. Try to figure out which and why the 2-order mutants
are alive.

After the execution of 2-order mutation testing, we can get the mutation score of this
high order mutation testing and analyze the alive 2-order mutant.

If the Coupling Effect also holds in GPU programming, the expected result will be that
the 1-order mutation-adequate test suite can also kill most of the higher-order mutants. If
it is not the case, the result will be carefully analyzed to seek potential reasons.

6.3 Competent Programmer Hypothesis on GPUs

As introduced in Section 2.2.2, the studies on this topic are controversial due to the opposite
results from several related research. In this experiment, we focus on tracing the bug
fixes on the git tree of some benchmark kernels and investigate if our explored mutation
operators are capable of representing the bugs shown there.

6.3.1 Git Repository Analysis

The git repositories of all collected benchmark projects are included. This experiment
requires that the benchmark projects have clear git commit trees with explicitly marked
bug fixes. However, it is supposes to take a number of human works to find the suitable
benchmark projects and analyze the Git tree. This is because the lacking maintenance of
the projects we currently found makes them less meaningful due to the inadequate number
of bug fixes.

We measure the bug-fix commits on the merged main branch over the benchmark
project repositories, and the representative of bugs over the mutation operators. The
format of the commit may vary from benchmark projects, but the description of a typical
one should include keywords with ’fix’ or ’bugfix’, or with a hashtag to a concrete issue.

30

6.3.2 Representativeness of Bugs

The representativeness of the bugs over mutation operators is measured based on the real
bug found and the fixing solutions. The operator should have a similar functionality to
a real bug and the fixed code should preserve the behavior of the original code of the
operator. We inspect whether our mutation operators can generate the mutants that can
lead to the same faults and be fixed by these bug-fix patches. We also analyze the feasibility
of using these models to design the new mutation operators.

6.3.3 Experiment Setup

The experiment process is listed as follows.

1. For each benchmark project, search the git commit tree for the commits with key-
words ’fix’ or ’bugfix’.

2. For the qualified commits, inspect all the code changes to check if they can be
represented by one or multiple mutation operators, or if we can design new mutation
operators to represent these faults.

6.4 Mutation Testing Module Development

To conduct the experiments above, we implement a mutation testing module in our tool
Mutation Kernel Tuner. This module includes two main components, the Mutation Ana-
lyzer and the Mutation Executor. The mutation Analyzer is responsible for locating the
mutants in kernel code using the mutation operators, explained in Section 6.4.2. A schema
is also designed to allow the analyzer to serialize and export the mutants to a file. The
Mutation Executor in Section 6.4.3 is designed for receiving the mutants from the Ana-
lyzer, mutating the kernel code, calling the Testing Module to execute the mutant for test
cases, and verify the result of execution.

6.4.1 Workflow of Mutation Testing

A typical workflow of mutation testing of our tool is listed below. The details are shown
in Figure 6.2.

1. The user provides a tunable kernel, a test suite, and some optional mutation testing
parameters.

2. The Testing Module tests all the test suite to make sure all the test cases are valid
and to get optional coverage data, optimized thread block parameters, and the best
performance matrix over the problem sizes of the test cases.

3. The Mutation Analyzer generates the mutants using the designated operators.

4. The Mutation Executor executes the mutants, handle the exceptions and return the
mutation result.

5. If the result is different, the mutant will be marked as killed. Or the mutant will be
executed with other test cases. The mutant will be marked as survived if the test
cases are exhausted.

31

6. The tester manually recognizes and eliminates the equivalent mutant from the sur-
vived mutants.

7. The tester analyzes the testing results and calculates the mutation testing score.

Figure 6.2: Workflow of mutation testing module
Note: The details of Execute the mutants* is shown in Figure 6.1.

6.4.2 Mutation Analyzer

The mutation analyzer is designed to locate the mutants in kernel code, it supports three
different ways to locate the syntax or statement(s) to mutate.

• Regular expression: The regular expression analyzer will scan the kernel code line
by line and find the mutants using regular expression defined by mutation operators.

32

It is the easiest way to locate a mutant, however, it is not that precise and cannot
distinguish some mutation operators with the same or similar syntax, for example,
the pointer declaration and multiplication operation. Therefore, an optional skipping
pattern is provided to ignore specific mismatched situations. The regular expression
analyzer can be used for both user-customized and built-in mutation operators of the
Mutation Kernel Tuner, but we should avoid using this if there is a risk of confusion.

• Helper function: A helper function receives the whole kernel code and returns zero or
more mutants by analyzing the code using the programmed logic within the function.
It requires significant human work to design the helper function for each mutation
operator, so it is only recommended to be used for user-customized mutation opera-
tors.

• Parser: A parser analyzer will use the pre-defined language-specific matching patterns
to split the kernel code into snippets. Each snippet represents a different part (e.g.,
a variable declaration in the parameter list) or statement (e.g., if statement) of the
kernel, which allow an operator to easily locate a single snippet and replace it with
a mutant. Since the code structure and grammar information are preserved, these
snippets can be reconstructed to an executable kernel. It looks like it is the silver
bullet of mutation analysis, however, it requires a lot of expert knowledge to design
the matching patterns based on the syntax and grammar of the specific language.
Therefore, it is only used for the built-in mutation operators of the Mutation Kernel
Tuner.

After locating the mutant, the analyzer will pass the mutants to the mutation executor,
or export the mutant following a schema defined below into a JSON file, allowing the
mutation executor to import and execute the mutants later. In this way, we decouple the
mutation analysis and execution, which enables the ability that running the mutants in
off-peak hours when the GPUs are not that busy. A mutant example conforming to this
schema is shown in subsection below.

Mutant status enumeration

There are nine kinds of mutant status implemented in this tool, cf. Figure 6.3. Each status
is explained below:

• CREATED: The mutant is just created by the Mutation Analyzer

• PENDING: The mutant is received by the Mutation Executor, but haven’t been
applied to the kernel.

• KILLED: The mutant is killed by a test case.

• COMPILE-ERROR: The corresponding mutated kernel has compilation errors.

• RUNTIME-ERROR: The mutated kernel throws a runtime error when executing.

• TIMEOUT: The mutated kernel times out when executing

• NO-COVERAGE: The mutant is not covered by any test cases.

• SURVIVED: The mutant is not killed by any test cases.

• IGNORE: The mutant is not suitable for execution or contains unknown errors.

The mutant status transformation is shown in Figure 6.3.

33

Figure 6.3: Mutant Status Transformation

Mutant schema example

The code snippet below shows a mutant example conforming to the JSON schema we
designed to serialize the mutant.

{
"id": 0,
"operatorName": "math_replacement",
"replacement": "-",
"status": "Created",
"killedById": [],
"coveredById": [],
"location": {

"start": {
"line": 3,
"column": 41

},
"end": {

"line": 3,
"column": 42

}
}

}

6.4.3 Mutation Executor

A mutation executor is designed to execute the mutants generated by the Mutation Ana-
lyzer. For each mutant, all test cases will be executed at least once except the mutant has
compilation/runtime error(s) or has already been killed.

For each mutant, the executor will firstly mutate the code and then compile it to check
if it contains compilation error(s). After that, the execution backends of Kernel Tuner will

34

take over the initialization jobs and launch the kernel. There are three situations that may
happen at this stage:

• Everything is fine and the kernel returns the result: The actual output will be verified
with the expected output to decide if the mutant is killed or survived.

• The mutant execution cannot be normally completed and reaches a timeout thresh-
old: A timeout mechanism is designed for this situation, which is shown below in
subsection below. The mutant status will be marked as timeout.

• The mutant execution throws a runtime exception: This is the most complicated
situation. The whole kernel execution context needs to be cleaned and re-initialized
before being ready for the next mutant. The design of this recovery is explained in
subsection below. The status of erroneous mutant will be marked as runtime error.

Handling runtime exception

Since mutation testing aims at inserting designed faults into the origin code, there is always
a possibility that the mutated kernel will throw an exception during runtime. However,
handling the runtime error is not that intuitive. The CUDA context will be dead after
raising an error, but the corresponding GPU process will not be terminated automatically.
Therefore, we need to kill this GPU process before another context can be re-initialized to
continue the next mutant execution, and the only way to do so is to kill the CPU caller
process, since the GPU process shares the same PID number and has the same life-cycle as
the CPU one. That is why we have a separate runner from the executor, which is running
on a sub-process, shown in Figure 6.4. If the GPU context throws a runtime exception,
the Mutation kernel Tuner will kill the runner and initialize a new one to recover the GPU
context.

Figure 6.4: Sub-process runner for mutant

Timeout mechanism

For the mutated kernels that may be involved in an infinite loop and cause a timeout
problem, two methods are used to make sure the whole mutation testing process can be
recovered. The first method happens on the GPU side. By adding a Boolean flag to the
kernel arguments and inserting code to all loop statements constantly monitoring this flag,
we can pass an interruption signal to the kernel and force it to return during runtime when
reaching timeout threshold. This flag needs to be passed to the GPU memory by another
GPU stream as all the operations on the same stream happen serially.

A CUDA code snippet below addresses how this method works. The interrupt param-
eter is declared with keyword volatile to suppress the compiler optimization and make sure
the threads will always check the flag memory when they pass by the if statement.

35

__global__ void itrpt(volatile bool *interrupt){
while (true) {

if (*interrupt){
printf("Kernel interrupted");
return;

}
}

}

The second method is an add-on of the sub-process runner. We can simply kill the sub-
process on CPU side to force the GPU driver kill its corresponding process, also shown
in Figure 6.4. However, this method cost a lot more computing resources than the first
one, and is used as a global timeout solution when the kernel timeout mechanism does not
work.

36

Chapter 7

Results

7.1 Testing Results and Coverage

To answer the research question RQ1 about the effectiveness of applying testing on GPUs,
we followed the experiment setup in Section 5.1 to design out test suites and execute them
with measuring the coverage data for each benchmark kernels. The testing results is shown
in Table 7.1.

Kernel \Test cases Built-in
test cases

Generated
test cases

Human-designed
test cases Testing Results

Saxpy 0 5 0 All Passed
VectorAddTemplate 0 5 0 All Passed
Matris multiplication
(tiling) 0 5 0 All Passed

Matrix multiplication
(share memory) 0 5 0 All Passed

Diffusion
(naive) 0 3 2 All Passed

Diffusion
(tiling) 0 3 2 All Passed

ArrayBean 0 2 0 All Passed
Coherency 0 1 0 All Passed
Sincos (cub) 0 2 0 All Passed
Sincos (manual) 0 2 0 All Passed
Convolution 0 1 0 All Passed
Histogram 0 3 0 All Passed
Increment 0 5 0 All Passed

Table 7.1: Testing results

We also collect the coverage data to answer the question RQ1-3 regarding the effective-
ness of coverage criteria on GPUs, which is shown in Table 7.2, following the experiment
setup in Section 5.2. These data will be further used to investigate the relationship between
coverage and testing quality.

37

Kernel \Coverage Loc Least Branch Coverage
(Highest test case)

Average Statement Coverage
(Highest test case)

Saxpy 10 100% 100%
VectorAddTemplate 8 100% 100%
Matris multiplication
(tiling) 52 100% 100%

Matrix multiplication
(share memory) 30 100% 100%

Diffusion
(naive) 14 100% 99.97%

Diffusion
(tiling) 41 100% 93.75%

Convolution 127
75% (limited by macro,
depending on the
execution parameters)

87.5% (limited by macro,
depending on the
execution parameters)

Histogram 32 100% 88.90%
Increment 5 100% 100%

Table 7.2: Testing coverage results

7.2 Mutation Testing Results

Towards the questions about the effectiveness of coverage criteria and mutation testing
(RQ1-3, RQ2-1 and RQ2-2), we used the designed test suites and did a mutation testing
using our presented mutation operators under the experiment setup shown in Section 6.1.
The mutation results for each benchmark kernels are shown in Table 7.3.

Kernel \Mutants Total
mutants

Covered
mutants

Killed
mutants

Equivalent
mutants

Survived
mutants

Mutation
Score

Saxpy 14 14 12 2 0 100%
VectorAddTemplate 13 13 11 2 0 100%
Matris multiplication
(tiling) 93 93 87 4 2 96.66%

Matrix multiplication
(share memory) 36 36 36 0 0 100%

Diffusion
(naive) 54 54 51 1 2 98.07%

Diffusion
(tiling) 93 93 87 3 3 96.666%

ArrayBean 38 34 32 1 1 94.12%
Sincos(cub) 18 18 16 0 2 88.89%
Sincos(manual) 28 28 26 2 0 100%
Convolution 142 142 142 0 0 100%
Histogram 29 29 20 6 3 86.96%
Increment 11 11 10 1 0 100%
Total 569 565 530 22 13 97.61%

Table 7.3: Mutation testing results

38

For detailed analysis of the mutants, the numbers of generated mutants and corre-
sponding mutation operators for each kernels are shown in Table 7.4 for the traditional
operators and in Table 7.5 for the GPU-specific operators.

For further investigation of the equivalent mutants and survived mutants, the survived
mutants per kernels is shown in Table 7.6.

Kernel Operator(s) of
equivalent mutants

Operator(s) of
survived mutants

Saxpy 1*CBR, 1*GID -
VectorAddTemplate 1*CBR, 1*GID -
Matris multiplication
(tiling) 4*CBR 2*SR

Matrix multiplication
(share memory) - -

Diffusion
(naive) 1*GII 1*MR, 1*GID

Diffusion
(tiling) 3*CBR 3*MR

ArrayBean 1*CBR 1*CBR
Sincos(cub) - 2*SR
Sincos(manual) 1*CBR, 1*NCR -
Convolution - -
Histogram 5*CBR, 1*GID 1*CBR, 1*ARS, 1*SR
Increment 1*GID -

Table 7.6: Operator(s) of equivalant and survived mutants per benchmark kernels

For convenience, the same data per mutation operators is also provided in Table 7.7
for tradition operators and in Table 7.8 for GPU-specific operators.

39

kern
el

\O
p
erators

C
B

R
A

R
S

C
O

R
M

R
N

C
R

A
SR

A
IU

C
O

D
A

O
D

C
SD

T
otaltraditionalm

utants
Saxpy

1
4

1
0

0
0

0
0

6
V

ectorA
ddT

em
plate

1
3

1
0

0
0

0
0

5
M

atris
m

ultiplication
(tiling)

10
9

0
40

10
2

0
0

0
0

71

M
atrix

m
ultiplication

(share
m

em
ory)

2
1

0
13

2
2

0
0

0
0

20

D
iffusion

(naive)
4

0
3

31
4

0
0

0
0

0
42

D
iffusion

(tiling)
12

2
6

45
12

2
0

0
0

0
79

A
rrayB

ean
6

1
0

31
0

0
0

0
0

0
38

Sincos(cub)
1

0
0

5
2

3
0

0
0

0
11

Sincos(m
anual)

3
0

0
9

3
5

0
0

0
0

20
C

onvolution
14

8
5

76
22

3
0

0
0

0
128

H
istogram

6
3

0
4

5
1

0
0

0
0

19
Increm

ent
0

0
0

3
0

0
0

0
0

0
3

T
a
ble

7.4:
N

um
ber

of
m

utants
generated

by
corresponding

traditionaloperators

40

kernel\O
perators

A
S

A
I

A
D

SH
R

A
R

G
IR

G
II

G
ID

SY
R

SC
R

B
R

T
otalG

P
U

-specific
m

utants
Saxpy

0
0

0
0

0
4

2
2

0
0

0
8

V
ectorA

ddT
em

plate
0

0
0

0
0

4
2

2
0

0
0

8
M

atrix
m

ultiplication
(tiling)

0
0

0
2

0
12

3
3

2
0

0
22

M
atrix

m
ultiplication

(share
m

em
ory)

0
0

0
2

0
8

2
2

2
0

0
16

D
iffusion

(naive)
0

0
0

0
0

8
2

2
0

0
0

12

D
iffusion

(tiling)
0

0
0

1
0

8
2

2
1

0
0

14

A
rrayB

ean
0

0
0

0
0

0
0

0
0

0
0

0
Sincos(cub)

0
0

0
1

0
2

1
1

2
0

0
7

Sincos(m
anual)

0
0

0
2

0
2

1
1

2
0

0
8

C
onvolution

0
0

0
1

0
8

2
2

1
0

0
14

H
istogram

0
0

0
0

0
5

2
2

1
0

0
10

Increm
ent

0
0

0
0

0
4

2
2

0
0

0
8

T
a
ble

7.5:
N

um
ber

of
m

utants
generated

by
corresponding

G
P

U
-specific

operators

41

O
perators

C
overed

m
utants

K
illed

m
utants

E
quivalent

M
utants

Survived
M

utants
M

utation
Score

conditional_
boundary_

replacem
ent

(C
B
R

)
60

43
15

2
95.56%

arithm
etic_

operator_
replacem

ent_
short-cut

(A
R

S)
24

23
0

1
95.83%

conditional_
operator_

replacem
ent

(C
O

R
)

14
14

0
0

100%

m
ath_

replacem
ent

(M
R

)
264

260
0

4
98.48%

negate_
conditional_

replacem
ent

(N
C
R

)
62

61
0

0
98.39%

arithm
etic_

short-cut_
operator_

replacem
ent

(A
SR

)
18

17
0

1
94.44%

arithm
etic_

operator_
insertion

(A
IU

)
0

-
-

-
-

conditional_
operator_

deletion
(C

O
D

)
0

-
-

-
-

arithm
etic_

operator_
deletion

(A
O

D
)

0
-

-
-

-

conditional_
statem

ent_
deletion

(C
SD

)
0

-
-

-
-

T
otal

442
418

15
8

97.89%

T
a
ble

7.7:
M

utation
testing

results
per

traditionaloperators

42

O
perators

C
overed

m
utants

K
illed

m
utants

E
quivalent

M
utants

Survived
M

utants
M

utation
Score

alloc_
sw

ap
(A

S)
0

-
-

-
-

alloc_
increm

ent
(A

I)
0

-
-

-
-

alloc_
decrem

ent
(A

D
)

0
-

-
-

-
share_

rem
oval(SH

R
)

9
6

0
4

66.67%
atom

_
rem

oval(A
R

)
0

-
-

-
-

gpu_
index_

replacem
ent

(G
IR

)
65

65
0

0
100%

gpu_
index_

increm
ent

(G
II)

21
20

1
0

100%
gpu_

index_
decrem

ent
(G

ID
)

21
16

4
1

94.12%
sync_

rem
oval(SY

R
)

11
6

0
5

54.55%
atom

ic_
replacem

ent
(A

R
)

0
-

-
-

-
sync_

child_
rem

oval(SC
R

)
0

-
-

-
-

fence_
rem

oval(F
R

)
0

-
-

-
-

T
a
ble

7.8:
M

utation
testing

results
per

G
P

U
-specific

operators

43

To answer the question RQ2-4 about the correlation between testing and mutation
testing, we show the killed mutants that are either killed by test cases, by runtime error,
or by timeout in Table 7.9. Among the mutants killed by test cases, we analyzed how
many test cases are used to killed them, shown in Table 7.10.

kernel \Mutant Status KILLED RUNTIME_ERROR TIMEOUT Total killed
mutants

Saxpy 12 0 0 12
VectorAddTemplate 11 0 0 11
Matris multiplication
(tiling) 65 20 2 87

Matrix multiplication
(share memory) 28 8 0 36

Diffusion
(naive) 34 17 0 51

Diffusion
(tiling) 65 22 0 87

ArrayBean 26 6 0 32
Sincos(cub) 15 1 0 16
Sincos(manual) 19 6 1 26
Convolution 110 30 2 142
Histogram 20 0 0 20
Increment 10 0 0 10
Total 415 110 5 530

Table 7.9: Specific status of killed mutants

44

Kernel \Test cases
Kill by
all test
cases

Missed
1 case

Missed
2 case

Missed
3 case

Missed
4 case

Missed
5 case

Total
KILLED
Mutants

Saxpy 1 5 5 0 0 - 11
VectorAddTemplate 5 6 0 0 0 - 11
Matris multiplication
(tiling) 6 24 31 4 0 - 65

Matrix multiplication
(share memory) 1 7 17 3 0 - 28

Diffusion
(naive) 6 21 7 0 0 - 34

Diffusion
(tiling) 20 34 14 0 0 - 68

ArrayBean 2 24 - - - - 26
Sincos(cub) 15 - - - - - 15
Sincos(manual) 18 1 - - - - 19
Convolution 110 - - - - - 110
Histogram 10 7 0 - - - 17
Increment 0 2 7 1 0 - 10

Table 7.10: The number of mutants and the number of test cases used to kill
these mutants

7.3 2-Order Mutation Testing Results for Coupling Effect
Hypothesis

As introduced in Section 6.2, the Coupling Effect Hypothesis assume that a test suite that
detects the 1-order mutants in a program can still detect the corresponding composited
higher-order mutants. Therefore, to validate the hypothesis, we conducted the 2-order
mutation testing on the mutation-adequate test suites to validate the Coupling Effect
Hypothesis to answer the question RQ2-2. The results are shown in Table 7.11.

7.4 Repository analysis results for Competent Programmer
Hypothesis

To answer the question RQ2-3, we followed the experiment setup introduced in Section 6.3
to figure our whether the mutation operators in this research can represent the real faults.
We analyzed the git repositories of our benchmark projects to collect the bug-fix-related
commits. We collected our findings regarding bug-fix commits in Table 7.12, and the real
faults and corresponding mutation operators in Table 7.13.

45

Kernel \Mutants Total 1-order
mutants

Total 2-roder
mutants

Killed 2-order
mutants

Survived 2-order
mutants

Saxpy 14 76 74 2
VectorAddTemplate 13 63 61 2
Matris multiplication
(tiling) 93 4238 4222 16

Matrix multiplication
(share memory) 36 618 616 2

Diffusion
(naive) 54 1376 1371 5

Diffusion
(tiling) 93 4532 4521 11

Convolution 142 9981 9981 0
Histogram 29 388 351 37
Increment 11 41 40 1
Total 485 21313 21237 76

Table 7.11: 2-order mutation testing results

Repository Total commits Total bug-fix
commits

Traditional
operators related

GPU-specific
operators related

Hetero-Mark 836 109 1 2
CUDA-Samples 71 12 0 0
Kernel-tuning
-for-Sagecal 32 4 0 0

kernel_tuner 175 26 0 0
gpu-parboil 9 4 0 0
polybenchGpu 57 7 0 0
gpu-rodinia 108 18 0 0
Total 1288 180 1 2

Table 7.12: Git tree analysis results of benchmark projects

Repository Commit hash Related mutation operator

Hetero-Mark
ebc6174 sync_child_removal
d41a443 sync_child_removal
80e6412 conditional_boundary_replacement (CBR)

Table 7.13: Real faults can be represented by our presented mutation operators

46

Chapter 8

Discussion

8.1 Testing on GPU Kernels

In RQ1 we would like to know how to effectively apply testing to GPU kernels. We divided
this question into three sub-questions targeting different aspects, the test suite design
(RQ1-1), the execution (RQ1-2), and coverage measurement (RQ1-3). We discuss these
three sub-questions in separate sub-sections.

8.1.1 Discussion of RQ1-1: Test Suite Design

In RQ1-1 we would like to know how to effectively design a test suite for applying testing
and mutation testing to GPU kernels. Therefore, in Section 5.1.1 we presented a method
to design and generate the test suites for GPU programming by using reference functions.
By using this method, one can easily generated a set of test cases in one click, just like
what we did shown in the replicate package. We then used these test suites for applying
testing and mutation testing to GPUs. The testing results shown in Table 7.1 reveals that
this method can properly guide the kernel developer to design a set of legal test cases for
kernels. The coverage data in Table 7.2 show that the designed test suites can reach a
100% Least Branch Coverage for most of the kernels, which indicate that these test cases
can successfully test all the lines of code with at least one thread.

This coverage results fulfil the requirement of a threshold that the testing coverage
may have to reach before mutation testing can benefit the testing quality measurement, as
discussed in Section 2.2.1. The mutation testing results shown in Table 7.3 further confirm
our analysis, which can detect an average of 97.61% tiny faults that can be represented by
our presented mutation operators, indicating that the testing quality is relatively high.

Based on this, we can conclude that our presented test suite designing method is
effective for applying testing and mutation testing to GPU kernels, and it is also efficient
enough for a tester to easily receive a sufficient testing coverage and testing quality.

8.1.2 Discussion of RQ1-2: Test Case Executions

In RQ1-2 we focused on the execution of these test cases to figure our how efficient are them
when executing on GPUs. To answer this sub-question, we analyze the kernel execution
process of Kernel Tuner and do a simple experiment to explore the most time-consuming
jobs in this process. We select three kernels with different complexity from our benchmark
kernels. The results shown in Table 8.1 reveal that compiling the kernel takes more than
five to hundreds of times as long as the other steps combined. Therefore, our Mutation

47

Kernel Tuner compiles the kernel only once for each mutant and execute them for all the
test cases.

Kernel \Time (in ms) Compilation time Kernel execution
and framework consumption

Increment 274 1.35
Histogram 274 10.6
Matrix multiplication 341 66

Table 8.1: Time Consumption for the kernel execution process

Kernel Minimum Maximum
Increment (Simple) 0.059 0.092
Histogram (Medium) 9.62 10.88
Matrix multiplication (Complex) 65.12 282.62

Table 8.2: Kernel execution time with different execution parameters

Also, this experiment shows that how much the execution parameters can affect the
kernel runtime. The maximum and minimum time are shown in Table 8.2. As the size and
complexity of the problem rises, the performance gap becomes more and more significant.
That is why in our architecture design we categorize the test cases by problem sizes, and
tune one of the test cases for each problem size to get the best execution parameters for
all test cases with the same size.

In these two ways, we speed up the kernel execution process when having a large set
of test cases for testing and mutation testing, answering the question RQ1-2.

8.1.3 Discussion of RQ1-3: Effectiveness of Coverage Criteria

Sub-question RQ1-3 focusing on the effectiveness of coverages when using them to measure
the testing quality. To answer this sub-question, we need to combine the testing coverages
and the mutation testing results for each test cases. For better interpretation of the results
for this sub-question, we draw a figure for the Average Statement Coverage per test cases,
shown in Table 8.3.

48

Kernel \
Average Statement Coverage

Test
Case 1

Test
Case 2

Test
Case 3

Test
Case 4

Test
Case 5

Saxpy 67.71% 100% 100% 100% 100%
VectorAddTemplate 67.71% 100% 100% 100% 100%
Matrix multiplication
(tiling) 100% 100% 100% 100% 100%

Matrix multiplication
(share memory) 100% 100% 100% 100% 100%

Diffusion
(naive) 99.97% 99.97% 99.97% 99.97% 99.97%

Diffusion
(tiling) 93.75% 93.75% 93.75% 93.75% 93.75%

Convolution 87.5% - - - -
Histogram 17.59% 88.90% 51.86% - -
Increment 100% - - - -

Table 8.3: Average statement coverage per test cases

Notice that the average statement coverage for the four kernels of Matrix multiplication
and Diffusion are always the same for different test cases, which means, the these test cases
should share the same ability of revealing faults. However, the test cases used to kill the
mutants of these kernels are varies, cf. Table 7.10, which indicate that these test cases do
have different ability on detecting faults. Therefore, we can conclude that this coverage
metric is at least not suitable for estimating the testing comprehensiveness of these kernels.

We go one step deeper to use the kernel Histogram as an example to analyze the
relationship between test case coverages and killed mutants. We find that among the 19
killed mutants, Test Case 1 kills 11 mutants, Test Case 2 kills 18 mutants, and Test Case
3 kills 19 mutants, which does not conform the order shown by the coverage data.

Based on the analysis above, we can conclude that the Average Statement Coverage is
not effective in estimating the testing quality and comprehensiveness.

8.2 Mutation Testing on GPU Kernels

In RQ2 we focus on the effectiveness of applying mutation testing to GPUs. We proposed
four sub-questions targeting the mutation operators exploration (RQ2-1), validations of
the two fundamental hypotheses of mutation testing, Coupling Effect Hypothesis (RQ2-
2) and Competent Programmer Hypothesis (RQ2-3), and the effectiveness of measuring
testing quality when using these operators.

8.2.1 Discussion of RQ2-1: Mutation Operator Exploration

The sub-question RQ2-1 focuses on the methodology of exploring the mutation operators
for GPU programming. To answer this question, we designed a method to explore the
mutation operators shown in Section 6.1.1 and found 21 mutation operators that can be
applied to GPU programming, including 10 traditional operator shown in Table 6.2 and
11 GPU-specific operators shown in Table 6.2. Our mutation testing results, shown in
Table 7.3, indicate that our methodology is useful for identifying existing operators and
discovering new ones for GPU programming.

49

8.2.2 Discussion of RQ2-2: Effectiveness of Mutation Operator and Cou-
pling Effect

Sub-question RQ2-2 requires us to evaluate the effectiveness of the mutation operator from
both empirical and theoretical perspectives. Therefore, in the following sections, we will
first discuss the application of these operators to our benchmark kernels and analyze the
surviving mutants. Then, we evaluate the validity of one of the fundamental hypotheses
of mutation testing, the Coupling Effect Hypothesis under the context of GPUs.

Empirical Prospective

From the answers to RQ1-1 and RQ1-2, we have designed a set of test suites and de-
veloped a high-efficient way to execute these test suites. On top of these answers, we can
apply mutation testing to GPU kernels to evaluate the effectivity of these mutants.

From Table 7.3 we notice that the mutation coverage is 100% for all the kernels, which
means that the mutated line(s) of code are covered by at least one thread for at least one
test case, indicating that there is no excuse for a mutant that it is not killed because it is
uncovered.

With this point in mind, we analyzed the mutation results shown in Table 7.3 and the
equivalent mutants and survived mutants shown for each operators shown in Table 7.6. The
analysis for some related mutation operator is listed below, along with our recommendation
solutions to address the problems.

• gpu_index_decrement (GID): This operator generates a number of equivalent mu-
tants. As we mentioned in Section 2.3, the most typical use case of this index is
iterating an array. When applying this operator to mutate the kernel, the iteration
range will be −1 to (TOTAL_THREAD_NUM −1). However, the actual number
of threads is always equal to or larger than necessary (i.e., the size of the array)
because we always round up upward when calculating the thread block division on
problem size, and we can get the correct answer most of the time when there are
extra threads. Another reason for this is that there is no array-out-of-boundary check
during CUDA runtime, so the -1 index of a array is legal when it does not cause other
problems.
This can also answer why mutants generated by the operator gpu_index_increment
(GII) are easier to be killed because the range is 1 to (TOTAL_THREAD_NUM+
1), and the first position is uncovered in this case, which will lead a wrong answer.
To address this problem, we recommend the kernel developer to manually
limit the range of the index after index calculation.

• conditional_boundary_replacement (CBR): This operator always adds or deletes an
equal condition for a conditional statement. The most typical mutants for this op-
erators among our benchmark kernels are changing < to <= in loop statements to
limit the iteration of an array. It met the same story above that accessing an out-of-
boundary array will not directly cause an error.
To address this problem, we recommend the kernel developer to precisely
limit the valid range of the index during array iteration.

• math_replacement (MR) The cases for the survived mutant from this operator is
because of the GPU index calculation of the Diffusion Kernel. This time, there are
manual range limitations for the index, and the threads with out-of-range indexes are
discarded without influencing the final result. The mutant survived because these

50

two Diffusion kernels are launched with sufficient extra threads to cover the influence.
So the mutant results highly depend on the execution parameters for thread block
division and tiling and the test cases. We do not have any specific improvement
recommendation for this case, and we suppose these mutants will be killed
with other execution parameters or well-designed test cases.

• sync_removal (SR) As introduced in Section 2.3.3, removing barrier statement may
cause nondeterministic behaviour of the code. There is a chance that the result is
still correct depending on the thread scheduling and memory access. We do not
have any specific improvement recommendation for this case, the barrier
statement is used to assure the correctness instead of gambling whether
the kernel without it will still give a correct answer.

To sum up, both the presented traditional operators and GPU-specific operators can
represent the common used statements or syntax in GPU programming. And the survived
mutants can also indicate some defects in the kernel code.

Theoretical Perspective (Coupling Effect Hypothesis)

As introduced in Section 6.2, we conducted the 2-order mutation testing on the mutation-
adequate test suites to validate the Coupling Effect Hypothesis. The results are shown in
Table 7.11. Based on these results, we further analyze every survived higher-order mutants,
shown in Table 8.4.

Kernel \Mutants
Survived
2-order
mutants

By 2
equivalent
mutants

By 2
survived
mutants

By both
equivalent
and
survived
mutants

By 1
equivalent
or
survived
mutant

Others

Saxpy 2 2 - - - -
VectorAddTemplate 2 1 - 1 - -
Matris multiplication
(tiling) 16 6 1 9 1 -

Matrix multiplication
(share memory) 2 - - - - 2

Diffusion
(naive) 5 - 1 1 2 1

Diffusion
(tiling) 11 2 - 8 - 1

Convolution 0 - - - - -
Histogram 37 15 3 18 1 -
Increment 1 - - - 1 -
Total 76 26 4 37 5 4

Table 8.4: 2-order mutants composition

We found that most of these mutants are composed by at least one survived or equiv-
alent 1-order mutant. It is reasonable that the higher order mutants composed by two
equivalent or survived 1-order mutants, or by both equivalent and survived 1-order mutant
will survive because these 1-order mutants will not influence the final result. So we focus

51

on the higher-order mutants composed by at least one killed 1-order mutants. By analyzing
them one by one manually we found the following cases.

• The two 1-order mutants overlap with each other, and the latter mutation will over-
write the change made by the former mutant.
This happened among the GPU-specific operators gpu_index_replacement (GIR),
gpu_index_increment (GII) and gpu_index_decrement (GID). The mutant gener-
ated from GID will overwrite the change made by the previous mutant, and we
have shown that the GID will always generate a equivalent mutant in the answer
of RQ2-2. So this kind of higher-order mutants with only one changes are invalid.
This happens in kernel Histogram and VectorAddTemplate
This can also happen between the two counterpart forms of GPU-specific operator
gpu_index_replacement (GIR), where the latter mutant precisely recovers the code
mutated by the former mutant, back to the original version. This explained the 2
survived higher-order mutants for kernel Matrix multiplication (share memory).

• The former mutant coincidentally solves the error that will be caused by the latter
mutant on that execution flow. For example, the only higher-order mutant composed
with a killed 1-order mutant in kernel Matrix multiplication (tiling), which the pre-
vious mutant on the flow coincidentally initializes a out-of-boundary position of an
array where the latter mutant should have an random buggy access.

• The two surviving higher-order mutants composed of two killed 1-order mutants
happen to survive because of code logic. All the killed 1-order mutants are related
to the GPU thread index calculation, and they survived because the kernel limits
the number of the index within a legal range, and the kernel is launched with extra
threads to compensate for the kernel execution, leading to correct final outputs, and
surviving the higher-order mutants.

Based on the above case analysis, all the survived higher-order mutants are weakly
uncoupled, which means we did not find any clues that will destabilize the validity of the
Coupling Effect Hypothesis, influencing the effectiveness of mutation testing on GPUs.

8.2.3 Discussion of RQ2-3: Real Faults Representative and Competent
Programmer Hypothesis

The answer to RQ2-3 needs to ensure that the mutation operators can represent the real
faults happened in real codes, which is assumed by the Competent Programmer Hypothesis.
Therefore, we made a repository analysis specific to the fault representation ability of
these operators to validate the hypothesis under the context of GPU programming. We
followed the experiment setup introduced in Section 6.3, analyzing the git repositories of
our benchmark projects to collect the bug-fix-related commits and to find the real faults
which can be represented by our presented mutation operators. We collected our findings
regarding bug-fix commits in Table 7.12, and the real faults and corresponding mutation
operators in Table 7.13.

As shown in Table 7.12, we analyzed the git trees of 7 benchmark projects which
includes 1288 commits in total. We manually inspect 180 commits that are related to
making a bug fix. However, only one project is detected with three real faults. Two of
them are about fixing a missing cudaDeviceSyncronize() function, and another one is about
change conditional operator > to >=, as shown in Table 7.13.

52

Based on the above results, although we did find some evidence that the mutants can
represent real faults a kernel developer can make, we have to admit that this experiment
is not persuasive enough to justify whether the Competent Programmer Hypothesis holds
or not in the context of GPU programming. The reasons for the failure are discussed in
the following.

1. The git trees of some benchmark projects are incomplete The repositories
gpu-parboil, polybenchGpu and gpu-redinia are initialized only after their correspond-
ing studies are finished, and the git trees did not cover their actual development and
verification processes during their research. The CUDA-Samples was shipped to this
repository from elsewhere recently, and all previous code is aggregated into one single
initialization commit.

2. The bug-fix commit sample size is too small Although there seems to be a lot
of commits are involved in this research, only 13.9% of them are separate bug-fix
commits. Among these bug-fix commits, more than half of them are naive patches
for typos or code formatting instead of a real fault in the kernel code.

We also discovered some typical and simple fault models during this experiment, which
happened multiple times across projects. For example, some patches will limit the num-
ber of threads to prevent a array from being read out of bounds by these extra threads.
However, these faults were hard to be represented by a mutation operator, and they were
not considered in this experiment.

8.2.4 Discussion of RQ2-4: Effectiveness of Mutation Testing

The mutation score analysis shown in the answer of RQ2-2 has proved that our presented
operators are effective to GPU programming with a high mutation score. In this section,
we are going to analyze the correlation between testing and mutation testing, answering
the question RQ2-4 about why a higher mutation score indicates a higher quality test
suite.

To answer this question, we show the killed mutants that are either killed by test cases,
by runtime error, or by timeout in Table 7.9. Among the mutants killed by test cases, we
analyzed how many test cases are used to killed them, shown in Table 7.10.

Table 7.9 shows that in most of the cases, the mutated kernel will return a wrong an-
swer, causing the mutant to be killed during the result verification stage. This means that
for most of the mutants, the mutated kernel can finish the test case executions instead
of throwing runtime errors. For these completed executions, it indicates that the wrong
output is just because the mutated code makes a buggy computation instead of other un-
tracked reasons, ensures the effectiveness of mutation testing. In other words, the mutants
which will easily cause runtime errors or timeouts for a kernel are not that ideal, because
we cannot directly infer that this mutated kernel is interrupted only by this input from
the test case, or by any possible kernel inputs, or by other reasons in the kernel code.

Furthermore, for the mutants killed by test cases, we did a further analysis on how
many test cases are used to killed them, shown in Table 7.10. We discard the Convolution
kernel during this analysis because it is too fragile and all the mutants are killed by the
only one random generated test case. For other kernels, we notice that most of the mutants
will miss one or two test cases during mutation testing. This finding reveals that a test
with more test cases has a higher possibility to detect more faults, even if these test cases
are mostly random generated by reference functions.

53

Based on above two analysis, we can conclude that mutation testing is an effective way
to measure the quality of testing.

8.3 Threats to Validity

8.3.1 External

• Benchmark kernels: We collect a set of kernels from different benchmark projects
for applying testing and mutation testing. Most of the selected projects are widely
used in all kinds of research in this area. The other kernels are selected because they
are involved in the research of Kernel Tuner. In this way, we minimise the threats
related to the effectiveness of benchmark projects.

• Computing platforms: The mutation operators and benchmark kernels are col-
lected based on CUDA computing platform. To minimize this threat, we also dis-
cussed corresponding alternatives or similar functionalities in OpenCL. Theoretically,
the methodology of research is also feasible to other computing platforms.

• Nondeterministic nature of mutated kernels: We believe that the kernels we
collected are well-designed to get a repeatable output for benchmarking. However,
we cannot make sure that the results from the mutated kernels can still be repeatable
for each execution when using different execution parameters, different graphic cards,
and different (random) inputs. To minimize this threat, we did our experiments
multiple times to make sure that they always gave us the same results, or that the
differences were reasonable to explain.

8.3.2 Internal

• Correctness of Mutation Kernel Tuner: The most concerning threat regarding
internal validity is the correctness of our Mutation Kernel Tuner tool. It is possible
that there are still bugs within our code which may influence the results of mutation
testing. To minimize the influence of the final experiment results, we designed an au-
tomated script for each benchmark kernel and followed the Test Driven Development
process to do regression experiments every time we made a change in our tool.

• Inconsistent results of kernel tuning: We tune the kernels before we test them.
However, the best parameters may be different among tunings. We preferred to
use larger problem sizes to make the performance among different combinations of
parameters more distinguishable.

8.3.3 Construct

• Our method of manually detecting equivalent mutants: For example, it is
possible that we may miss the equivalent mutants or misclassify the survived mutants
into equivalent mutants. However, the benchmark kernels are relatively fragile to
resist a single change in the code in practice. The survived mutants after mutant
execution are not that much, and it’s not that time-consuming to distinguish them.

54

Chapter 9

Conclusion

This section aims to provide a summary of the study and address the research questions,
discuss our contributions, and explore the potential areas of future research.

In summary, the goal of this project is to investigate the effectiveness of testing and
mutation testing on GPUs, in the context of the complexity of memory and thread man-
agement of GPU programming compared to CPU one.

Regarding the first question RQ1 about how to effectively apply testing to GPU ker-
nels, we present a method to effectively design and generate the test suites for GPU kernels
(RQ1-1) with a relatively good testing quality, develop a framework to effectively execute
massive test cases (RQ1-2). In this way, we conclude a methodology and a tool to effec-
tively apply testing to GPU kernels.

During this process, we also discovered that the two coverage criteria involved were
NOT effective in estimating the quality and comprehensiveness of testing (RQ1-3). This
remains the question about how to measure the testing quality of GPU kernels. However,
in other words, this also emphasizes the importance of applying mutation testing as an
alternative method to measure testing quality.

To address the question RQ2 about the effectiveness of applying mutation testing to
GPUs, we firstly explore 21 mutation operators that can be applied to GPU programming
(RQ2-1). Then, we demonstrate the effectiveness of these mutation operators from both
empirical and theoretical perspectives, by analyzing the surviving mutants and validating
the one of the fundamental hypothesis of mutation testing, the Coupling Effect, on our
benchmark GPU kernels (RQ2-2).

After proving these mutation operators are effective, we still want to assure that these
operators can represent the real faults in the real world. That is why we try to prove an-
other fundamental hypothesis of mutation testing, the Competent Programmer Hypothesis
(RQ2-3). However, our experiment results are not persuasive enough to justify whether
the Competent Programmer Hypothesis holds or not because of the lack of available bench-
mark project size.

We also analyze the the correlation between testing and mutation testing to justify
the effectiveness of mutation testing (RQ2-4). Our finding reveals that a test with more
test cases has higher chances to kill more mutants, which indicates a higher possibility to
detect more faults.

With these in mind, we can concluded that testing and mutation testing can benefit
the GPU programming in the following forms.

1. Testing is useful in the correctness assurance of GPU programming, and more test
cases indicates a higher chance of detecting a fault. Coverage measurement is a way

55

to assure the quality of mutation testing in GPU programming. However, using the
coverage alone to measure the testing comprehensiveness seems a wrong approach.

2. Mutation testing can be used to measure the quality of the test on GPUs, both the
traditional and GPU-specific mutation operators involved are effective in simulating
the faults on GPUs because the Coupling Effect hypothesis holds. However, we can-
not justify that the "simulated faults" are the "real faults" that a GPU programmer
can make, which is assumed by Competent Programmer Hypothesis.

9.1 Contributions

Our research makes the following contributions:

1. A comprehensive research on applying testing and mutation testing to GPU pro-
gramming and the relationship between the mutation testing and testing on GPU
kernels.

2. High order mutation testing experiment for Coupling Effect and repository analysis
for Competent Programmer Hypothesis on GPU programming.

3. Two more GPU-specific mutation operators.

4. An open-source testing and mutation testing tool for GPU kernel development. The
tool is integrated with Kernel Tuner for kernel developer’s usage.

9.2 Future Work

1. More computing platforms can be integrated into our tools. In the architecture, our
mutant analyzer and executor are able to accept operators and kernels from different
computing platforms with corresponding language backend.

2. More mutation operators and benchmark kernels. We would like to explore more
mutation operators and kernels to test them using our tool, making our tool more
comprehensive and powerful.

56

Bibliography

[1] Hiralal Agrawal, Richard A DeMillo, Bob Hathaway, William Hsu, Wynne Hsu,
EW Krauser, RJ Martin, and Aditya P Mathur. Design of mutant operators for
the c programming language. 1989.

[2] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. Using mutation analysis
for assessing and comparing testing coverage criteria. IEEE Transactions on Software
Engineering, 32(8):608–624, 2006. doi:10.1109/TSE.2006.83.

[3] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson.
Gpuverify: A verifier for gpu kernels. SIGPLAN Not., 47(10):113–132, oct 2012.
doi:10.1145/2398857.2384625.

[4] Javier Cabezas. cuda4cpu, 2023. URL: https://github.com/javier-cabezas/
cuda4cpu.

[5] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. An
empirical study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption. In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE), pages 597–608, 2017. doi:
10.1109/ICSE.2017.61.

[6] Henry Coles. Pit, 2023. URL: https://pitest.org/quickstart/mutators/.

[7] NVIDIA Corporation. Cuda tookit, 2023. URL: https://developer.nvidia.com/
cuda-toolkit.

[8] Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Francisco Palomo-Lozano, Antonio
García-Domínguez, and Juan José Domínguez-Jiménez. Assessment of class muta-
tion operators for c++ with the mucpp mutation system. Information and Software
Technology, 81:169–184, 2017. doi:10.1016/j.infsof.2016.07.002.

[9] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help for
the practicing programmer. Computer, 11(4):34–41, 1978. doi:10.1109/C-M.1978.
218136.

[10] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. Mutation operators
for testing android apps. Information and Software Technology, 81:154–168, 2017.
doi:10.1016/j.infsof.2016.04.012.

[11] Xavier Devroey, Gilles Perrouin, Axel Legay, Maxime Cordy, Pierre-Yves Schobbens,
and Patrick Heymans. Coverage criteria for behavioural testing of software prod-
uct lines. In Leveraging Applications of Formal Methods, Verification and Valida-
tion. Technologies for Mastering Change: 6th International Symposium, ISoLA 2014,

57

https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1145/2398857.2384625
https://github.com/javier-cabezas/cuda4cpu
https://github.com/javier-cabezas/cuda4cpu
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1109/ICSE.2017.61
https://pitest.org/quickstart/mutators/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1016/j.infsof.2016.04.012

Imperial, Corfu, Greece, October 8-11, 2014, Proceedings, Part I 6, pages 336–350.
Springer, 2014.

[12] Vector Informatik GmbH. Code coverage for cuda code
using vectorcast/qa, 2023. URL: https://www.vector.
com/int/en/events/global-de-en/webinar-recordings/2021/
coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/.

[13] Rahul Gopinath, Carlos Jensen, and Alex Groce. Mutations: How close are they
to real faults? In 2014 IEEE 25th International Symposium on Software Reliability
Engineering, pages 189–200, 2014. doi:10.1109/ISSRE.2014.40.

[14] Khronos Group. Opencl-guide, 2023. URL: https://github.com/KhronosGroup/
OpenCL-Guide.

[15] gtcasl. Gpu ocelot project, 2023. URL: https://github.com/gtcasl/gpuocelot.

[16] Ben van Werkhoven Hanno Spreeuw. Kernel-tuning-for-sagecal, 2023. URL: https:
//github.com/HannoSpreeuw/Kernel-tuning-for-Sagecal.

[17] Mark Harris. How to implement performance metrics in cuda
c/c++, 2012. URL: https://developer.nvidia.com/blog/
how-implement-performance-metrics-cuda-cc/.

[18] Intel. Opencl runtimes for intel processors, 2023. URL: https://www.intel.com/
content/www/us/en/developer/articles/tool/opencl-drivers.html.

[19] Yue Jia and Mark Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 37(5):649–678, 2011. doi:
10.1109/TSE.2010.62.

[20] Lavkush. Code coverage using nvcc compiler, 2023. URL: https://forums.
developer.nvidia.com/t/code-coverage-using-nvcc-compiler/46623.

[21] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin
Lerner. Verifying gpu kernels by test amplification. SIGPLAN Not., 47(6):383–394,
jun 2012. doi:10.1145/2345156.2254110.

[22] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and
Sreeranga P. Rajan. Gklee: Concolic verification and test generation for gpus. SIG-
PLAN Not., 47(8):215–224, feb 2012. doi:10.1145/2370036.2145844.

[23] Wentao Li, Zhiwen Chen, Xin He, Guoyun Duan, Jianhua Sun, and Hao
Chen. Cvfuzz: Detecting complexity vulnerabilities in opencl kernels via au-
tomated pathological input generation. Future Generation Computer Systems,
127:384–395, 2022. URL: https://www.sciencedirect.com/science/article/pii/
S0167739X21003526, doi:10.1016/j.future.2021.09.006.

[24] NVIDIA. Cuda c programming guide, 2023. URL: https://docs.nvidia.com/cuda/
cuda-c-programming-guide/contents.html.

[25] NVIDIA. Cuda samples, 2023. URL: https://github.com/nvidia/cuda-samples.

[26] NVIDIA. Nvidia developer forums, 2023. URL: https://forums.developer.nvidia.
com.

58

https://www.vector.com/int/en/events/global-de-en/webinar-recordings/2021/coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/
https://www.vector.com/int/en/events/global-de-en/webinar-recordings/2021/coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/
https://www.vector.com/int/en/events/global-de-en/webinar-recordings/2021/coffee-with-vector-code-coverage-for-cuda-code-using-vectorcastqa/
https://doi.org/10.1109/ISSRE.2014.40
https://github.com/KhronosGroup/OpenCL-Guide
https://github.com/KhronosGroup/OpenCL-Guide
https://github.com/gtcasl/gpuocelot
https://github.com/HannoSpreeuw/Kernel-tuning-for-Sagecal
https://github.com/HannoSpreeuw/Kernel-tuning-for-Sagecal
https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/
https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/
https://www.intel.com/content/www/us/en/developer/articles/tool/opencl-drivers.html
https://www.intel.com/content/www/us/en/developer/articles/tool/opencl-drivers.html
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://forums.developer.nvidia.com/t/code-coverage-using-nvcc-compiler/46623
https://forums.developer.nvidia.com/t/code-coverage-using-nvcc-compiler/46623
https://doi.org/10.1145/2345156.2254110
https://doi.org/10.1145/2370036.2145844
https://www.sciencedirect.com/science/article/pii/S0167739X21003526
https://www.sciencedirect.com/science/article/pii/S0167739X21003526
https://doi.org/10.1016/j.future.2021.09.006
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://github.com/nvidia/cuda-samples
https://forums.developer.nvidia.com
https://forums.developer.nvidia.com

[27] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM Trans.
Softw. Eng. Methodol., 1(1):5–20, jan 1992. doi:10.1145/125489.125473.

[28] Stack Overflow. Stack overflow, 2023. URL: https://stackoverflow.com.

[29] Anmol Panda, Philipp Rummer, and Neena Goveas. A comparative study of
gpu verify and gklee. page 112 – 117, 2016. Cited by: 0. URL: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85019179747&doi=10.1109%
2fPDGC.2016.7913126&partnerID=40&md5=56edde052ed9533c7f62baa64be03637,
doi:10.1109/PDGC.2016.7913126.

[30] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Har-
man. Chapter six - mutation testing advances: An analysis and survey. volume
112 of Advances in Computers, pages 275–378. Elsevier, 2019. URL: https://www.
sciencedirect.com/science/article/pii/S0065245818300305, doi:10.1016/bs.
adcom.2018.03.015.

[31] Chao Peng. Check opencl kernel code coverages, 2023. URL: https://github.com/
chao-peng/clcov.

[32] Chao Peng and Ajitha Rajan. CLTestCheck: Measuring Test Effectiveness for GPU
Kernels, pages 315–331. 04 2019. doi:10.1007/978-3-030-16722-6_19.

[33] Eike Stein, Steffen Herbold, Fabian Trautsch, and Jens Grabowski. A new perspec-
tive on the competent programmer hypothesis through the reproduction of bugs with
repeated mutations. CoRR, abs/2104.02517, 2021. URL: https://arxiv.org/abs/
2104.02517, arXiv:2104.02517.

[34] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in Science and Engineer-
ing, 12(3):66 – 72, 2010. doi:10.1109/MCSE.2010.69.

[35] Xiaofan Sun and Rajiv Gupta. Dsgen: Concolic testing gpu implementations of
concurrent dynamic data structures. page 75 – 87, 2021. Cited by: 0; All Open
Access, Bronze Open Access. URL: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85107484321&doi=10.1145%2f3447818.3460962&partnerID=40&md5=
29e960f7d5cacdf9bd4286adaa5b9b40, doi:10.1145/3447818.3460962.

[36] Info Support. Stryker mutator, 2023. URL: https://stryker-mutator.io/docs/
stryker-net/mutations/.

[37] Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Francisco Cazorla, and Guillem
Bernat. Assessing the adherence of an industrial autonomous driving framework to
iso 26262 software guidelines. pages 1–6, 06 2019. doi:10.1145/3316781.3317779.

[38] Ben van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner. Future
Generation Computer Systems, 90:347–358, 2019. doi:10.1016/j.future.2018.08.
004.

[39] Ben van Werkhoven. Writing testable gpu code, 2023. URL: https://blog.
esciencecenter.nl/writing-testable-gpu-code-23bbda3a5d62.

[40] Qianqian Zhu and Andy Zaidman. Massively parallel, highly efficient, but what
about the test suite quality? applying mutation testing to gpu programs. page

59

https://doi.org/10.1145/125489.125473
https://stackoverflow.com
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019179747&doi=10.1109%2fPDGC.2016.7913126&partnerID=40&md5=56edde052ed9533c7f62baa64be03637
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019179747&doi=10.1109%2fPDGC.2016.7913126&partnerID=40&md5=56edde052ed9533c7f62baa64be03637
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019179747&doi=10.1109%2fPDGC.2016.7913126&partnerID=40&md5=56edde052ed9533c7f62baa64be03637
https://doi.org/10.1109/PDGC.2016.7913126
https://www.sciencedirect.com/science/article/pii/S0065245818300305
https://www.sciencedirect.com/science/article/pii/S0065245818300305
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
https://github.com/chao-peng/clcov
https://github.com/chao-peng/clcov
https://doi.org/10.1007/978-3-030-16722-6_19
https://arxiv.org/abs/2104.02517
https://arxiv.org/abs/2104.02517
https://arxiv.org/abs/2104.02517
https://doi.org/10.1109/MCSE.2010.69
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107484321&doi=10.1145%2f3447818.3460962&partnerID=40&md5=29e960f7d5cacdf9bd4286adaa5b9b40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107484321&doi=10.1145%2f3447818.3460962&partnerID=40&md5=29e960f7d5cacdf9bd4286adaa5b9b40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107484321&doi=10.1145%2f3447818.3460962&partnerID=40&md5=29e960f7d5cacdf9bd4286adaa5b9b40
https://doi.org/10.1145/3447818.3460962
https://stryker-mutator.io/docs/stryker-net/mutations/
https://stryker-mutator.io/docs/stryker-net/mutations/
https://doi.org/10.1145/3316781.3317779
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1016/j.future.2018.08.004
https://blog.esciencecenter.nl/writing-testable-gpu-code-23bbda3a5d62
https://blog.esciencecenter.nl/writing-testable-gpu-code-23bbda3a5d62

209 – 219, 2020. URL: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85091553948&doi=10.1109%2fICST46399.2020.00030&partnerID=40&md5=
1ef7d17f6ecb93617ffcea0923aae63b, doi:10.1109/ICST46399.2020.00030.

60

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091553948&doi=10.1109%2fICST46399.2020.00030&partnerID=40&md5=1ef7d17f6ecb93617ffcea0923aae63b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091553948&doi=10.1109%2fICST46399.2020.00030&partnerID=40&md5=1ef7d17f6ecb93617ffcea0923aae63b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091553948&doi=10.1109%2fICST46399.2020.00030&partnerID=40&md5=1ef7d17f6ecb93617ffcea0923aae63b
https://doi.org/10.1109/ICST46399.2020.00030

	Introduction
	Background
	Testing
	Unit Testing
	Performance Testing
	Coverage Criteria

	Mutation testing
	Relationship between Mutation Testing and Testing
	Coupling Effect and Competent Programmer Hypothesis
	Equivalent Mutant
	Mutation Score
	Mutation Operators

	GPU Programming and Kernels
	Thread and Memory Management
	Kernel Tuner
	Data Race and Barrier Divergence

	Related Work
	Testing on GPU Kernels
	Tools for Kernel Verification
	Coverage Measurement

	Mutation Testing on GPU Kernels

	Approach
	Research Goals
	Research Questions
	Research Objects
	Tool Development

	Testing on GPU Kernels
	Apply Testing to GPU Kernels
	Design, Execute and Verify the Test Suite
	Experiment Setup

	Code Coverage Measurement on GPUs
	Testing Module Development
	Testing Module Workflow
	Coverage Measurement

	Mutation Testing on GPU Kernels
	Apply Mutation Testing to GPU Kernels
	Mutation Operators, Coverage and Score
	Experiment Setup

	Coupling Effect Hypothesis on GPUs
	2-order Mutant Generation
	Experiment Setup

	Competent Programmer Hypothesis on GPUs
	Git Repository Analysis
	Representativeness of Bugs
	Experiment Setup

	Mutation Testing Module Development
	Workflow of Mutation Testing
	Mutation Analyzer
	Mutation Executor

	Results
	Testing Results and Coverage
	Mutation Testing Results
	2-Order Mutation Testing Results for Coupling Effect Hypothesis
	Repository analysis results for Competent Programmer Hypothesis

	Discussion
	Testing on GPU Kernels
	Discussion of RQ1-1: Test Suite Design
	Discussion of RQ1-2: Test Case Executions
	Discussion of RQ1-3: Effectiveness of Coverage Criteria

	Mutation Testing on GPU Kernels
	Discussion of RQ2-1: Mutation Operator Exploration
	Discussion of RQ2-2: Effectiveness of Mutation Operator and Coupling Effect
	Discussion of RQ2-3: Real Faults Representative and Competent Programmer Hypothesis
	Discussion of RQ2-4: Effectiveness of Mutation Testing

	Threats to Validity
	External
	Internal
	Construct

	Conclusion
	Contributions
	Future Work

