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Abstract—Morphing attacks pose a substantial threat to
Automated Border Control (ABC) systems by enabling the
creation of identity documents used by multiple individuals,
thereby compromising border security. Face demorphing has
emerged as a crucial technique to counteract these attacks,
aiming to disentangle and reconstruct the concealed identities
within a morph. This paper introduces a novel face demorphing
framework leveraging StyleGANZ2’s latent space. The framework
includes an advanced encoder, ReStyle-ID, designed to embed
identities into StyleGANZ2’s latent space with high accuracy, and
StyleDemorpher, a specialized face demorphing network trained
on the newly created DemorphDB dataset. DemorphDB features
high-quality morph images, providing a challenging and realistic
training environment for the StyleDemorpher.

The ReStyle-ID encoder and StyleDemorpher frameworks
collectively enhance the accuracy and quality of face demorphing,
addressing the limitations of previous approaches such as low
resolution and poor generalizability. The ReStyle-ID encoder
utilizes improved loss functions and training data, achieving
improvements in identity reconstruction when compared to other
encoding methods. StyleDemorpher excels in reconstructing high-
quality demorphed images, demonstrating high generalizability
across various morphing methods and unseen identities. This
work introduces a robust solution for face demorphing and sets
the stage for future advancements by developing a comprehensive
dataset and a scalable framework for continued research and
development in biometric security.

Index Terms—Face Demorphing, GAN, Deep Learning, Face
Recognition

I. INTRODUCTION

Morphing attacks present a significant threat to Automated
Border Control (ABC) systems [1], as they enable the creation
of identity documents that can be used by multiple individuals
whose features are blended in the morph. This vulnerability
can potentially allow two identities to share a single document,
undermining the integrity of border security measures [2], [3].
First introduced by [4], face demorphing has emerged as a
prominent research topic in biometrics due to its potential to
counteract morphing attacks. The primary objective of face
demorphing is to disentangle the two identities embedded
within a morph. This often involves reconstructing the second
identity, which is not physically present at the ABC gate but
is concealed within the morph.

Face demorphing faces several significant challenges, pri-
marily due to the lack of prior information about the morphing
method and the blending factor used to combine the two
identities. Additionally, the live image capture at the ABC
gate often differs from the one used to generate the morph
in terms of illumination, pose, and expression. These factors
make the exact reconstruction of the second identity through
facial landmarks complex and prone to noticeable artifacts [4].

To overcome these challenges, researchers have increasingly
explored deep learning-based approaches for face demorphing.
Techniques utilizing Convolutional Neural Networks (CNNs)
and Generative Adversarial Networks (GANs) have shown
promise [5], [6], [7], [8]. However, these networks often re-
construct low-resolution images with artifacts and distortions.
Moreover, their training on limited datasets can lead to poor
generalizability when applied to previously unseen morphing
methods and identities.

This paper addresses the limitations of current deep
learning-based methods for face demorphing by introducing a
novel approach leveraging the StyleGAN2’s [9] latent space.
To overcome the challenge of low-resolution reconstructions,
StyleGAN?2 is utilized, which is capable of generating images
at a resolution of 1024x1024 pixels. A newly developed
encoder framework, ReStyle-ID, is designed to accurately
embed existing identities into the latent space of StyleGAN2.

The ReStyle-ID encoder network is trained on over 100,000
different identities to ensure its generalizability. Using transfer
learning [10], a specialized StyleDemorpher network is further
trained specifically for the demorphing task. This training is
conducted on a newly created dataset, DemorphDB, introduced
in this paper. The morph images in DemorphDB are of high
quality, providing a complex and realistic challenge for the
StyleDemorpher to learn from.

Overall, the proposed framework simulates realistic mor-
phing attack scenarios and aims to reconstruct accurate and
high-quality demorphed images. This method demonstrates
high generalizability across unseen identities and morphing
methods, effectively addressing the shortcomings of previous
approaches.

Thus, the contributions of this paper are threefold:

e A Novel Demorphing Database: Introducing Demor-
phDB, a new demorphing database featuring high-quality,
passport-like images of 1653 identities from five public
datasets, including 643 identities with multiple images.
For each identity, both traditional and deep learning-
based high-quality morphs, chosen from the ten closest
identities, are provided. The database is designed for
extensibility, allowing for additional morphing methods.

o Improved StyleGAN2 Encoder: Presenting ReStyle-ID,
an enhanced StyleGAN2 [9] encoder network that better
retains identity information in input face images. Using an
iterative encoder based on the ReStyle [11] architecture,
with improved loss functions and training data, this en-
coder surpasses the original ReStyle in preserving identity
information and places encodings more favorably within
the latent space. It is also three orders of magnitude
faster than optimization-based methods [9], making it
significantly more efficient.

o High-Quality Demorphing Network: Introducing
StyleDemorpher, a demorphing network that produces
high-quality and accurate demorphs without needing
prior knowledge of the morphing method, relying solely
on training examples. The network generalizes well to
unseen datasets and morphing techniques, trained on
high-quality morphs with minimal artifacts. It utilizes the
ReStyle-ID encoder, retrained to use a morph image and
a live capture to reconstruct the second identity within
the morph, offering a practical solution without requiring
access to the original images used for morphing.



II. RELATED WORK
A. Face Demorphing

Face morphing combines features from two distinct iden-
tities into a single image that shares attributes of both. This
process is defined as follows for images /4 and Ip of two
different identities:

Tap=M(la,Ip), (D

where M (.) denotes the face morphing technique.

There are primarily two approaches to generating morphs:
landmark-based and deep learning-based. Landmark-based
methods often involve using facial landmarks to create tri-
angular meshes. These meshes are then warped to produce
a morph [12]. These methods often lead to ghosting artifacts
that typically require manual retouching to achieve convincing
results. Various landmark-based morphing techniques have
been proposed in literature [13], [14], [15], with most au-
tomatic methods employing a splicing technique to integrate
the morphed facial region seamlessly into one of the original
identity images [16].

Deep learning-based methods [17], [18], [19], in contrast,
eliminate the need for landmarks by leveraging neural network
architectures for end-to-end morph generation. While these
methods generally reduce the need for manual adjustments,
they can sometimes yield lower quality results [20].

Face demorphing, first introduced in [4] and building on
prior research [2], [21], aims to reconstruct the image of an
accomplice, I, from a forged document featuring a morphed
image I 4p. This task becomes challenging when the criminal
identity A attempts to use the document, particularly because
the exact method of morph generation is often unknown.
Complications are further amplified since the image of identity
A captured at the ABC gate differs from the image used to
generate the morph, introducing potential artifacts during the
demorphing process as highlighted in [4]. To address one of
these challenges, [22] explores using a deep learning network
to first estimate the morphing factor before performing face
demorphing. However, both of these methods apply only to
conventional landmark-based morphs and rely on the minimal
error of landmark detection algorithms.

For this reason, deep learning-based face demorphing meth-
ods could address this challenge by training on morphs gen-
erated by various morphing methods. Several deep learning-
based face demorphing methods have been proposed in lit-
erature. For instance, [5] describes a Convolutional Neural
Network (CNN) that processes both the document and live
capture images to output the demorphed image. Another
approach, FD-GAN [7], employs a Generative Adversarial
Network (GAN) framework consisting of an encoder network,
an identity separation network for disentangling the encoded
images to recover features of the accomplice, and a restoration
network to reconstruct the image based on these features. The
discriminator network then evaluates the authenticity of the
generated image compared to the target image. MorphGAN-
Former [8] utilizes the GANformer [23] architecture, embed-

ding real images into the latent space using an optimization
method driven by identity-related loss functions. Following the
embedding, a simple linear interpolation of the latent codes is
used to generate the accomplice’s identity.

While landmark-based demorphing methods are effective
only under specific conditions, when a landmark-based morph-
ing method is used and landmarks are precisely extracted, they
often generate artifacts and are ill-suited for handling attacks
using deep learning-based morphing techniques. Conversely,
while deep learning-based demorphing methods could be
trained to handle various morph types, they often suffer from
limitations such as training on a limited number of identities,
using low-resolution images, and producing distorted images
due to insufficient training data. An exception is MorphGAN-
Former [8], which uses a pre-trained GANformer [23] capa-
ble of generating high-quality, high-resolution facial images.
However, its effectiveness is limited and currently only proven
on GANformer-based morphs, suggesting that its simple in-
terpolation method may not be effective with other morphing
techniques due to potential lack of disentanglement of features
in the latent space with respect to the morphing method.

B. Latent Space of StyleGAN2

Introduced in [9], StyleGAN2 is an advanced iteration of
the StyleGAN network [24]. StyleGAN employs a novel GAN
generator architecture capable of producing high-resolution
images. Unlike traditional generator networks that start from a
latent code [25], [26], StyleGAN initiates from a constant input
and incorporates one or multiple different latent codes (also
referred to as “styles”) at the input of each convolutional layer.
Furthermore, each layer is enhanced with independently scaled
noise inputs to introduce fine-grained stochastic details. This
architecture facilitates the generation of high-resolution, realis-
tic images that can be finely controlled via the styles. Overall,
the StyleGAN architecture consists of 18 convolutional blocks,
each receiving latent codes corresponding to individual styles.
Moreover, StyleGAN features a mapping network that trans-
forms the latent codes, sampled from a multivariate standard
normal distribution Z, into an intermediate latent space W.
This transformation achieves a higher disentanglement of
the latent variables associated with various image attributes.
StyleGAN?2 [9] refines this generator architecture to eliminate
artifacts observed in some generated images and to enhance
training stability.

Given the high quality and disentanglement of the Style-
GAN?2 latent space, numerous studies have explored mapping
real images into this space for editing purposes. For instance,
starting with a neutral facial expression, StyleGAN2 can be
used to identify and modify the corresponding latent code
to reflect a smiling expression in the resulting image. This
process begins with the embedding of the real image into
the StyleGAN2 latent space, a technique known as GAN
inversion [27]. Two primary methods are often employed for
this embedding: optimization-based and encoder-based.

Optimization-based methods, as discussed in [9], [28], [29],
iteratively refine the latent codes to minimize the disparity be-



tween the target and generated images, using gradient descent
combined with various loss functions. Although this method
yields high resemblance, it is computationally intensive, often
requiring several minutes to embed a single image. Conversely,
encoder-based methods, such as those found in [30], [31],
and [11], utilize trained encoder networks to map images into
the latent space more quickly, typically within a single or a
few forward passes, despite generally achieving lower fidelity
compared to optimization-based methods.

Following embedding, the attributes of the image can be
altered using the StyleGAN?2 latent space. For facial images,
several studies [32], [33], [34] have demonstrated the ability
to modify features such as expression, pose, or illumination
by editing the latent codes. However, these methods are not
directly applicable to the face demorphing task, which requires
identifying a novel facial identity within the latent space
that corresponds to an identity hidden in a morphed image.
Therefore, although embedding is still necessary for face
demorphing to project real faces into the StyleGAN2 latent
space, this paper introduces a novel approach tailored to the
face demorphing task.

III. METHODOLOGY

In this section, the methodology behind the proposed
frameworks is detailed. The core component, the ReStyle-
ID encoder framework, is first introduced, highlighting its
role in identity-preserving inversion necessary for the face
demorphing task in the StyleGAN2 [9] latent space. Next,
the StyleDemorpher face demorphing framework is presented,
demonstrating how it modifies the pre-trained ReStyle-ID en-
coder to achieve high-quality face demorphing results. Finally,
the formulation of the loss functions for both frameworks is
discussed.

A. ReStyle-ID: Identity-Preserving Inversion Framework

The architecture and operation of the proposed ReStyle-ID
framework are largely similar to ReStyle [11]. Unlike con-
ventional StyleGAN2 encoders such as ede [31] or pSp [30],
which encode the input image in a single pass, ReStyle uses
several iterative forward passes, each improving the encoding.
The proposed ReStyle-ID framework enhances the ReStyle
encoder specifically for identity information preservation, cru-
cial for face demorphing where the morphed image is highly
similar to the identity to be recovered. These improvements
were achieved through the following modifications:

« Utilization of a larger dataset and the inclusion of syn-
thetic images of passport-like quality, further described
in Section V-Al.

o Enhancement of the identity loss by using the MTCNN
[35] model for face detection and cropping instead of
a fixed center crop, and adding the MS-SSIM [36] loss
function, further described in Section III-C3.

o Complete removal of background information in the im-
ages to be encoded, ignoring out-of-domain background
information that can lead encodings outside the well-
defined regions of the StyleGAN?2 latent space.

The operation of the ReStyle-ID framework is illustrated
in Figure 1. Given an input image I, the objective of the
ReStyle-ID framework is to find a latent code w that best
represents the input. The expanded latent space of StyleGAN2,
denoted as W+, is utilized for this task. Unlike the conven-
tional latent space W of StyleGAN2, which uses a single
512-dimensional latent code (style) w for all 18 layers, the
W+ space allows for 18 different w vectors, significantly
improving the inversion quality [28].

Initially, the latent code w, is set to the average latent code
of StyleGAN2, w, with its corresponding image I4,. At each
iteration ¢, where 0 < t < N and N is the total number of
iteration steps, the target image I, and the current prediction
I, are concatenated and passed to the encoder network £. The
architecture of the encoder network is visualized in Figure 2.
This network generates a residual code Af :

A7 =E(I, || I,). )

The residual code is then combined with the current latent
code prediction wy,, resulting in an improved latent code:

Wi = AL +wy,. 3)

The StyleGAN2 generator G' then generates the image I
corresponding to the improved latent code:

t+1

I

Yt+1

= G (Wﬂt+1) . (4)

This process continues iteratively, updating current latent
code and corresponding image until the final iteration N.

During training, an additional step is performed using a
pre-trained face segmentation network [37] to identify and
remove background pixels in both I, and Iy, ,, setting their
values to zero. This effectively eliminates the background from
the images, allowing the encoder network to focus solely on
the identity within the image. After this operation, the loss
function described in Section III-C6 is calculated, and the
back-propagation algorithm is applied. It is important to note
that the StyleGAN2 generator GG remains frozen, and only the
weights of the encoder network E are updated.

B. StyleDemorpher: Face Demorphing Framework

The StyleDemorpher framework excels in face demorphing
by leveraging the latent space capabilities of StyleGAN2 [9].
It adopts the ReStyle-ID encoder architecture, as shown in
Figure 2. The pre-trained weights of the ReStyle-ID encoder
are used as the starting point for training StyleDemorpher. This
strategic use of pre-trained weights equips StyleDemorpher
with a robust initial understanding of the correlation between
image representations and the latent space of StyleGAN2, built
from a substantial dataset used with the ReStyle-ID encoder.

The ReStyle-ID encoder’s ability to train with single images
of varying expressions and poses enables the use of extensive
image datasets such as FFHQ [9] and CelebA-HQ [40]. How-
ever, modeling face morphing attacks requires high-quality,
passport-like images. Additionally, authorities typically only
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Figure 1: ReStyle-ID inversion framework. This framework builds upon ReStyle [11] with enhancements to better encode
identity information during the training process. The input image, I, begins with wy, and I, initialized to the mean StyleGAN2
latent code and its corresponding image, respectively. At each iteration step ¢, I, and I, are concatenated along the channel
dimension and fed into the encoder network E. The encoder’s task is to find the residual code Af , which is added to the
current latent code wy,. This adjustment aims to produce a new latent code wy,, , that more closely resembles [, when
forwarded through StyleGAN?2. These updates are iteratively refined at each step. Note that all latent codes w € W+. During

training, a segmentation model removes the backgrounds of I, and the generated Iy

.1 to compute the similarity-based loss

functions, ensuring the inversion process focuses on the subject rather than the background.
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Figure 2: Simplified architecture of the ReStyle-ID encoder
and StyleDemorpher network, following [11]. The two input
images are concatenated along the channel dimension, and fea-
ture maps are extracted using the feature pyramid network [38]
based on the ResNet-IR [39] backbone. The feature maps are
passed through 18 map2style networks [30], transforming them
into 18 512-dimensional vectors corresponding to w € W+

have access to the morphed images in documents and live
captures of individuals using these documents, not the original
images used to create the morphs. To simulate this scenario
for training StyleDemorpher, a dataset must include at least
two distinct images of the same individual - one to generate
the morph and another representing the person’s live capture
at the ABC gate. This requirement limits the data available

for training the face demorphing network. By initializing
StyleDemorpher with weights from the encoder network,
which already establishes a connection between image and
latent space, overfitting on the smaller dataset can be mitigated.
This strategy enhances the generalizability to unseen identities
and various morphing methods.

Before detailing the StyleDemorpher framework’s design,
it is essential to define several terms related to the dataset
used in training. This dataset comprises quadruplets of im-
ages, denoted as (I4,14/,1p,I4p) and further described in
Section IV. The definitions of these images are as follows:

e I, - Animage of a criminal, A, used to create the morph.

e I4 - A different image of the same criminal, A, modeled
as the live capture at the ABC gate.

e Ip - An image of an accomplice, B, assisting criminal A
in the morph creation. This image is targeted for recovery
by the face demorphing algorithm.

e I4op - The morph image, used in the identity document
that criminal A attempts to utilize.

Although all four images can be employed during the
StyleDemorpher’s training phase, only I4p and I4/ are avail-
able during inference, as the images used to create the morph
are not accessible.

The operation of the StyleDemorpher framework is depicted
in Figure 3. The framework processes an input morph image,
I4p, and a live capture image, I 4-. While Figure 3 visualizes
the morph image generated using StyleGAN2, any morphing
method can be used for generating morph images. /45 and
1 4+ are concatenated along the channel dimension and fed into
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Figure 3: StyleDemorpher face demorphing framework. This framework utilizes the transfer learning mechanism [10] by
initializing the weights of the StyleDemorpher network, which has the same architecture as the ReStyle-ID encoder, with the
weights of ReStyle-ID. The ReStyle-ID encoder framework is also used with frozen weights to encode the input image I4p
into the latent code w 4, corresponding to the latent code generated in the final iteration of ReStyle-ID. In the forward pass
procedure, the morph image /4p and the live capture image 4. are concatenated and used as input for the StyleDemorpher
network, SD. The network calculates the residual code ASP , which, when added to w 4, generates the latent code w 5 that
aims to recover the identity of B present within the morph AB. StyleGAN2 is then used to generate the image /5 from w 5.

During the training, the target image I is first inverted into the StyleGAN2 latent space using ReStyle-ID framework ie.,

I B =G(E(Ip)). Followmg this, the backgrounds of Ig, I p and [ 4 are removed, and the similarity-based loss functions are

computed between Iz and I3, while inverse identity loss is computed between I and I4/.

the StyleDemorpher network, denoted as SD. This network
outputs a residual code, AP

=SD(Iap || 1a'). (5)

Concurrently, the morph image I4p is input to the frozen,
pre-trained ReStyle-ID framework. Although simplified in the
figure, the “Frozen Encoder Framework™ block represents
the complete encoding framework shown in Figure 1. The
encoding is iteratively refined over N steps, and the final
latent code wap at t = N is saved. This latent code is
then combined with AP to estimate the latent code for
reconstructing identity B, w 5:

wp = AP +wyp. (6)

This approach leverages the morph’s latent code to navigate
to the latent space location of identity B. Using this latent
code, the frozen StyleGAN2 generator, (G, reconstructs the
image of identity B:

Iz=G(wg). (7)

During training, the target image of identity B guides
the StyleDemorpher’s learning process. Instead of using Ip

directly, ReStyle-ID encodes it into the latent space, and
StyleGAN2 reconstructs it as Ip = G(E(Ip)), promot-
ing demorphing within StyleGAN2’s latent space. Following
this, the backgrounds of I, I B, and 14/ are removed, and
similarity-based loss functions are computed between I and
1. Additionally, inverse identity loss, aimed at removing
the presence of identity I,/ in Ip, is computed. The loss
computation is further discussed in Section III-C7.

During the initial development stages, the demorphing pro-
cess fully conducted within the latent space of StyleGAN2 was
explored. In this approach, the inputs for StyleDemorpher net-
work were latent codes instead of images. While this method
proved effective for editing attributes in StyleGAN2, such as
changing a neutral expression to a smile, as demonstrated in
previous work [33], it resulted in only minimal changes when
applied to face demorphing. A detailed explanation of this
behavior is provided in Appendix A.

C. Loss Function Formulation

This section introduces the individual loss functions used
in training the ReStyle-ID and StyleDemorpher frameworks.
Since most of the individual loss functions are utilized by both
frameworks, a simpler notation is adopted using variables x



and y, representing two different images used in the compu-
tation of a specific loss. The final training objectives for both
frameworks are then presented, utilizing framework-specific
notations.

1) L2 loss: Pixel-wise L2 Loss, also known as Mean
Squared Error (MSE) loss, is a fundamental and widely-used
loss function when it comes to training deep learning models.
It is defined as follows:

Lia (z,y) = [z = yll,- (3)

2) Perceptual loss: Perceptual loss is widely used in train-
ing Convolutional Neural Networks (CNNs) and Generative
Adversarial Networks (GANs) [41], [42], [43] as it helps
these networks learn perceptual similarities between images.
In this work, LPIPS [44] loss, based on the AlexNet [45]
backbone, is utilized over the standard perceptual loss [46].
Early experiments and previous research [47] have shown that
LPIPS loss better preserves image quality and sharpness. The
LPIPS loss is defined as:

Lypwps (,y) = [|F (x) — F (y)ly 9)

where F' represents the AlexNet perceptual feature extraction
network.

3) Identity loss: lIdentity loss is crucial during the training
of both ReStyle-ID and StyleDemorpher frameworks. This
loss helps preserve identity-related features within the image,
which is essential for the face demorphing procedure. The
identity loss is defined as:

L (z,y) =1-S. (R(M(x)),R(M(y))), (10)

where S, represents the cosine similarity metric, R is the pre-
trained ArcFace [39] network specialized in facial recognition
and verification, and M 1is the pre-trained MTCNN [35]
network used for automatic face detection and cropping.

An improvement introduced in this work, compared to [30]
and [11], is the use of automatic face detection. Instead of
performing a simple center crop of the face image before
passing it to the ArcFace network, the MTCNN network
detects the bounding box around the face. The cropping and
resizing are then performed, and the resulting image is passed
to the ArcFace network. This makes the loss implementation
more robust, allowing it to handle images with varying poses
or facial structures more accurately.

4) Inverse identity loss: Inverse identity loss is introduced
to achieve the opposite effect compared to identity loss, as it
attempts to maximize the dissimilarity between two identities.
It is defined as follows:

Liwip (z,y) = max (O, Se (R(M(m)),R(M(y)))) , (1D

5) MS-SSIM loss: MS-SSIM evaluates the structural simi-
larity between images at multiple scales, incorporating vari-
ations in image content at different resolutions [36]. This
multi-scale approach enables MS-SSIM to capture structural

information associated with facial images more robustly and
accurately. It has a positive impact on identity reconstruction
results for both ReStyle-ID and StyleDemorpher frameworks.
The MS-SSIM loss is defined as follows:

EMS-SSIM (JC, y) =1 — MS-SSIM (1‘, y) . (12)

6) ReStyle-ID Training Objective: The combined ReStyle-
ID training objective consists of four individual loss terms
aimed at maximizing the identity similarity between input
images and reconstructions. L2, LPIPS, and identity losses
are utilized, following the design choices of the ReStyle [11]
framework, with an improvement in identity loss through
automatic face detection. An additional MS-SSIM loss term
is included to further improve identity similarity scores by
considering the structural similarity of facial images. The
training objective for ReStyle-ID is defined as follows:

EReSlyle—ID (va Iﬂt+1) = A2Lio (Iﬂﬂv Iﬂt+1>
+ Acews Lopies (In, Iy, )

(13)
+ AL (I:m Ig;t+1)
+ Ams-ssivLvs-ssiv (Le g, ) 5
where, I, is the target image being encoded, Iy, , is the

reconstructed image at iteration ¢, and A\;, = 1.0, ALpps = 0.8,
Ap = 0.1, Aysssim = 0.4 are the weights scaling the
contributions of individual loss functions. These weights have
been selected empirically based on identity similarity scores
obtained from validation data.

7) StyleDemorpher Training Objective: The training ob-
jective of StyleDemorpher is similar to ReStyle-ID with the
addition of a new term corresponding to the inverse iden-
tity loss. While the L2, LPIPS, identity, and MS-SSIM loss
functions aim to maximize the similarity between the target
identity B and the predicted reconstruction [, the inverse
identity loss is computed between I and 4/ to maximize the
identity dissimilarity between these images, thereby removing
the presence of identity A from the prediction. The training
objective for StyleDemorpher is defined as follows:

LstyleDemorpher (137 Iz, IA') = A2 L1 (fB, Ig)
+ ALpips LLpips (1: B, 1 g)
+ AL (1:3, IB)

+ Amis-sstMLMs-ssm (jB, I B)

+ Atvip L1nvip (I a1 3) )
(14

where, Iz = G(E(Ig)) corresponds to the image of the target
identity B, I/ is the live capture image of the criminal, Iy
is the predicted reconstruction of identity B, and A, = 1.0,
>\LPIPS = 08, >\ID = 10, AMS—SSIM = 04, )\lnle = (.25 are the
weights scaling the contributions of individual loss functions.
These weights have been selected empirically based on identity



similarity and dissimilarity scores obtained from validation
data. Compared to ReStyle-ID, the weight of the identity loss,
A, 18 increased from 0.1 to 1.0 to better emphasize identity
similarity when reconstructing the identity B.

IV. DEMORPHDB DATASET

This paper introduces the novel DemorphDB dataset, cre-
ated for training deep learning models to perform face de-
morphing. DemorphDB is constructed from five datasets com-
prised of full frontal facial images: FRGC [48], Eurecom-IST
Face Dataset [49], Utrecht ECVP Dataset [50], Chicago Face
Database [51], [52], [53], and Face Research Lab London
Dataset [54]. Images from these datasets have been manually
analyzed, retaining only high-quality, passport-like images,
excluding those with non-neutral expressions, closed eyes,
blurriness, or poor illumination. This resulted in DemorphDB
containing images of 1653 unique identities, 643 of which
have two or more images.

Apart from bona fide identity images, DemorphDB contains
morphs generated automatically for training the StyleDemor-
pher framework. The images for the morphs are generated
following the procedure in Algorithm 1, which uses the
notations introduced in Section III-B. This results in a dataset
structured into quadruplets of images: (Ip, T4, T4/, IaB).

Algorithm 1 DemorphDB Dataset Construction Procedure

Require: DemorphDB bona fide identity images, dlib [55]
face feature extractor
1: for each identity B in DemorpDB do
2:  Find 10 closest identities A1, Ao, ..., Ajo with at least
2 available images using dlib face feature extractor

3:  for each closest identity A; do

4 Randomly select one image as 14,

5: Randomly select another image as I Al a, #1 A7)

6: end for '

7 Select up to 5 images of B (Ip,, Ip,, ..., Ip,, where
k = min(5, # of existing images of B))

8:  for each image Ip, of B do

9: for each closest identity A; do

10: Create morph image I4,p, using I4, and Ip,

11: end for '

12:  end for

13: end for

14: Construct dataset quadruplets (Ip;,Ia;,la;,1a,5;) for
each B; and A;

Three types of morphs are available within DemorphDB:
UTW [14], UTW-NS, and StyleGAN2. UTW morphs, as
described in [14], introduce an automatic method for generat-
ing high-quality morphs using splicing [16] technique. This
method effectively crops the facial region of the morphed
image and pastes it into the image of one of the original
identities, removing ghosting artifacts outside the face region.
In this work, the cropped face region is pasted into the image
of accomplice B, as the accomplice aims to obtain the passport
with the morphed image. Additionally, this method warps

the geometry of facial parts and then swaps them, such as
including the eyes and nose of the criminal while having the
mouth of the accomplice.

Due to the swapping of facial parts, UTW morphs remove
information about the eyes and nose of the accomplice, which
needs to be reconstructed by face demorphing, leaving only
their geometry. Therefore, UTW-NS (UTW - No Swapping)
morphs are introduced, performed without swapping facial
regions, effectively preserving the identity information of both
individuals within the morphs.

Finally, StyleGAN2 morphs are also introduced and gener-
ated using the ReStyle-ID framework to obtain latent codes of
the two identities and then morphing them by averaging:

15)
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Overall, DemorphDB contains 36,983 morph images for
each of the three discussed morphing methods. Appendix B
provides an evaluation of the quality of the morphs, with
some examples shown in Figure 7. Notably, all images within
this database (bona fide and morphs) have been automatically
white balance corrected by a pre-trained network described
in [56]. Additionally, all images have been aligned and cropped
using the FFHQ method [9].

V. EXPERIMENTS
A. Datasets

1) ReStyle-ID  Framework Datasets: The original
ReStyle [11] framework was trained on the FFHQ [9] dataset,
which contains 70,000 images. For training ReStyle-ID, the
following datasets are used:

« FFHQ [9] - 70,000 images
o CelebA-HQ [40] train set - 24,000 images
o Synthetic passport-like dataset - 6,652 images

The CelebA-HQ dataset is added to increase the number
of unique identities, while the synthetic dataset, generated
using StyleGAN2, provides passport-like images for training
ReStyle-ID to handle similar images during the demorphing
process. To ensure the synthetic StyleGAN2 images have
frontal poses and neutral expressions, a pre-trained pSp [30]
network is used. This network receives input segmentation
masks and creates encodings of random identities in Style-
GAN2’s latent space. First, segmentation masks are automat-
ically generated using the pre-trained face parsing network
from [37] on passport-like images from the DemorphDB
dataset. Next, the pSp network generates encodings of ran-
dom identities with matching segmentation masks. Finally,
StyleGAN2 processes these encodings to generate the corre-
sponding images. Figure 8 illustrates some examples of these
synthetic images.

Evaluation of the ReStyle-ID framework is performed using
images from the DemorphDB dataset. One random image from
each of the 1,653 bona fide identities is selected, forming the
DemorphDB-Single evaluation dataset.



2) StyleDemorpher Framework Datasets: Training the
StyleDemorpher framework utilizes quadruplets of images
from the DemorphDB dataset. Only UTW-NS and StyleGAN2
morphs are used in training because UTW [14] morphs result
in information loss due to swapping of the face parts. However,
UTW morphs are included in the evaluation as an unseen
morphing method during training.

The subset of target images B from the Face Research Lab
London (FRLL) Dataset [54] is reserved for evaluation. Con-
sequently, all morphs with the target demorphing identity B
from the FRLL dataset are excluded from training. This results
in an evaluation dataset containing 102 unseen target identities.
Since the FRLL dataset includes only one neutral expression
image per individual, the images for the corresponding identity
A (Ia, I4/) are still selected based on Algorithm 1.

Additionally, the FRLL-Morphs [57] dataset, based on
identities from the FRLL [54] dataset, is used for evalua-
tion to test StyleDemorpher on unseen morphing methods.
This dataset includes morphs generated using five different
morphing methods: OpenCV [58], FaceMorpher [59], Web-
Morph [60], AMSL [15], and StyleGAN2 [9], [61]. Since
the FRLL dataset lacks multiple images for each identity, I 4/
images are unavailable. Instead, it is assumed that 14 = I4,
meaning the same image used to generate the morph is also
used as the live capture image fed to StyleDemorpher.

B. Experimental Setup

The ReStyle-ID framework is trained and evaluated by
setting the number of iterations to 5 (N = 5), consistent with
the methodology described by [11]. Detailed training proce-
dures are provided in Appendix C. The evaluation primarily
focuses on the identity similarity between the input images
and their encoded reconstructions. Additionally, computational
times and the quality of embedding locations within the
StyleGAN?2 latent space [9] are assessed. Comparative analysis
is performed against other state-of-the-art (SOTA) StyleGAN2
embedding methods, including pSp [30], ReStyle [11], and
optimization-based approach [9].

For the StyleDemorpher framework, two different versions
of the StyleDemorpher networks are trained: one with UTW-
NS morphs and the other with StyleGAN2 morphs as de-
scribed in Section IV. This approach is chosen because tra-
ditional and StyleGAN2 morphs differ significantly, with the
former using splicing techniques [16] and the latter creating
full morphs, including the outside face regions. Training
details for this framework are provided in Appendix C.

The primary evaluation of StyleDemorpher focuses on its
ability to reconstruct the image of identity B, as this is the
main objective of face demorphing. Additional experiments are
introduced to assess StyleDemorpher for Differential Morph
Attack Detection (DMAD) as illustrated in Figure 10. The
generalizability of the approach is also evaluated on previously
unseen morph types and various image corruptions that might
occur in deployment scenarios. Comparisons are made with
the use of no face demorphing and with the Face Demorphing
method introduced in [4]. To avoid confusion, the capitalized

“Face Demorphing” refers to the approach outlined in [4],
while “face demorphing” refers to the general procedure
of demorphing where the identity of the accomplice within
the morph is reconstructed. For all experiments with Face
Demorphing method, a demorphing factor of 0.3 is utilized,
following the recommendations in [4]. Additionally, the same
dlib [55] automatic face landmark detection model is used for
creating UTW [14] and UTW-NS morphs as well as for the
Face Demorphing method. This gives Face Demorphing an
additional advantage since, in a realistic scenario, it is likely
that a different landmark detection mechanism would be used
when creating morphs.

Finally, three state-of-the-art face recognition systems (FRS)
are used to evaluate the identity similarity scores of both
frameworks. These systems are MobileFaceNet [62], Arc-
Face [39], and CurricularFace [63], offering a range of accu-
racy levels. The decision thresholds for the similarity scores
extracted by the FRS models are set according to Frontex
guidelines [64]. Specifically, the thresholds are set at values
where the False Acceptance Rate (FAR) is 0.1%, based on
the identities of the DemorphDB dataset. These thresholds are
specified in Table I.

FRS Decision Threshold
MobileFaceNet [62] 0.6396
ArcFace [39] 0.4894
CurricularFace [63] 0.2929

Table I: Cosine similarity decision thresholds of FRS models
for FAR@0.1% based on identities of the DemorphDB dataset.

C. Evaluation: ReStyle-ID Framework

1) Identity Reconstruction: To evaluate the identity re-
construction quality of the ReStyle-ID framework, Table II
displays the cosine similarity scores between input identities
from the DemorphDB-Single dataset and their reconstructions
based on three different FRS models. Across all FRS models,
ReStyle-ID similarity scores are higher compared to pSp [30],
the original ReStyle framework [11], and optimization-based
encoding [9], except for CurricularFace, where optimization-
based encoding scores the highest. This indicates that the
improvements in ReStyle-ID lead to better identity information
preservation, essential for the demorphing task. Figure 4
visualizes these results by plotting iteration-based similarity
scores against the average inference time for a single image.
While the ReStyle-ID framework takes slightly more time
to encode a facial image compared to pSp, it significantly
improves the results. In contrast, optimization-based encoding
takes about three orders of magnitude longer while resulting
in similar or worse identity similarity scores.

2) Quality of Encodings: To evaluate the quality of the
encodings within the latent space, often referred to as “ed-
itability,” a separate experiment is conducted. Unlike the
typical editability of latent codes for changing attributes such
as facial expressions [33], this work requires a different kind
of editability. The encodings used by StyleDemorpher need
to find a different identity within the latent space rather than



FSR Encoding method | o 13 ReStyle [11] | ReStyle-ID | Optimization [9]
MobileFaceNet [62] 0.817 £ 0.073 | 0.855 £ 0.073 | 0.876 & 0.071 | 0.845 £ 0.071
ArcFace [39] 0.820 4 0.048 | 0.868 + 0.049 | 0.889 = 0.043 | 0.846 =+ 0.048
CurricularFace [63] 0.684 £ 0.058 | 0.753 + 0.051 | 0.783 & 0.047 | 0.789 & 0.049

Table II: Identity similarity scores between input identities and their StyleGAN2-encoded reconstructions. The results are
presented as mean + standard deviation. Values in bold signify the best results.
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Figure 4: Identity similarity scores plotted against average inference times for StyleGAN?2 identity encoding.

editing the same identity. Therefore, the embeddings must be
located in well-defined regions of the StyleGAN?2 latent space.

To measure this, the DemorphDB-Single dataset is used to
create pairs of the most similar identities. Both images are
then encoded into the latent space of StyleGAN2, and morphs
are created by averaging (see Equation (15)). The quality
of these morphs is evaluated by computing Mated Morph
Presentation Match Rate (MMPMR) [65] values between
the created morphs and the two original identities. Higher
MMPMR values indicate better placement of encodings within
the latent space, as the interpolated morphs effectively contain
information from both individuals.

Table III displays these MMPMR values. The ReStyle-ID
framework scores the highest due to its higher quality of en-
codings. Interestingly, optimization-based encodings perform
the worst, signifying that optimization-based embeddings do
not place the embeddings in well-defined regions within the
latent space compared to encoder-based methods. Therefore,
for the task of face demorphing, encoder architectures provide
a faster and more accurate method of finding a well-defined
embedding within the StyleGAN2 latent space.

3) Morphing Artifact Removal: When creating landmark-
based morphs, the ghosting artifacts can often occur in result-
ing morphs due to inaccuracies of landmark detection methods,
as well as the availability of only a limited number of land-
marks. It has been observed that when encoding morph images
with ghosting artifacts, these artifacts are largely suppressed,
as shown in Figure 9. This is advantageous for the demorphing
procedure because StyleDemorpher will not encounter these
artifacts, ensuring they do not have major impact on training.

D. Evaluation: StyleDemorpher Framework

1) Visual Comparison: The visual results of face demor-
phing are shown in Figure 13, which presents the demorphing

results of StyleDemorpher and Face Demorphing [4] based on
UTW, UTW-NS, and StyleGAN2 morphs. Due to licensing
restrictions on other datasets used in DemorphDB, only images
from the FRLL [54] dataset, which permits publication, are
displayed. As can be seen, StyleDemorpher generates accurate
reconstructions that closely resemble the accomplice B, while
having minimal traces of identity A. In contrast, the Face
Demorphing [4] method introduces image artifacts within the
facial region. StyleDemorpher, however, generates artifact-free
inner face regions, with some artifacts present in the hair,
which have minimal impact on identity similarity scores.

2) Demorphing Accuracy: In this paper, the restoration
accuracy from [7], referred to as demorphing accuracy, is used
to evaluate the performance of StyleDemorpher. Demorphing
accuracy is the percentage of successfully demorphed facial
images out of the total number of demorphing attempts.
Successful demorphing occurs when the demorphed image I 4
matches Ip but does not match 4, using an FRS decision
threshold at FAR@0.1%. Since the decision threshold can vary
based on the dataset used for the computation of FAR@0.1%,
Figures 5, 14, and 15 plot the demorphing accuracy against
different threshold values.

Based on these results, it is evident that compared to the
baseline case with no demorphing, where images [4p are
used instead of Iz, StyleDemorpher significantly improves
results by having higher demorphing accuracy at FAR@0.1%
and across a wider range of threshold values. When compared
to the results of the Face Demorphing method, a clear im-
provement is observed with StyleGAN2 morphs. For UTW and
UTW-NS morphs, the improvements are less pronounced but
still present, as the demorphing accuracy at the FAR@0.1%
threshold and its surroundings is higher. The higher demor-
phing accuracy of StyleDemorpher at lower FRS thresholds
indicates that it can be effectively utilized with FRS decision



FSR Encoding method | o 1301 | ReStyle [11] | ReStyle-ID | Optimization [9]
MobileFaceNet [62] 39.68% | 54.20% 58.56% 1339%
ArcFace [39] 91.53% | 94.25% 95.09% 68.54%
CurricularFace [63] 96.13% 97.76% 99.21% 90.74%

Table III: MMPMR [65] values of the StyleGAN2 morphs generated by encoding two identities and averaging their latent
codes. Higher values correspond to higher quality morphs, effectively capturing both identities within a morph image. Values

in bold signify the best results.

thresholds calibrated solely on bona fide images. In contrast
to the Face Demorphing method, which achieves improved
demorphing accuracy at higher decision thresholds, StyleDe-
morpher performs well even at the FAR@O0.1% threshold,
which is determined on bona fide images across all three
FRS models utilized in this study. This eliminates the need
for finding a different decision threshold to achieve better
demorphing accuracy for a specific morphing method.

3) Histograms: Demorphing accuracy does not directly
show the relationship between the demorphed images and
the two identities within the morphs. For this purpose, the
histograms displayed in Figures 6, 16, and 17 are utilized.
The histograms plot the identity similarity scores of four image
pairs.

o Pair (A, A’) corresponds to the case when face demorph-
ing is applied to a bona fide image pair, i.e., the document
image and the live capture contain the same identity
A. Therefore, for this scenario, the demorphed image is
labelled as A.

o Pairs (B,A’ ) and (B,B) represent the case when face
demorphing is applied to a morphed document image.
The resulting demorphed image B should have a low
identity similarity score with A’ while having a high
identity similarity with B.

e Pair (B, A’) represents an impostor pair (no face demor-
phing) and is added for reference.

It should be noted that when no face demorphing is used,

A and B are replaced by A and AB, respectively.

In cases where no demorphing is used, a large percentage
of pairs (AB,A’) (purple histograms) are located to the
right of the decision threshold, indicating that the criminal
could successfully use the morphed document. Conversely,
both Face Demorphing and StyleDemorpher methods shift
this histogram to the left, preventing the criminal from using
the morphed document. Notably, StyleDemorpher shifts this
histogram significantly more, regardless of the FRS model.

At the same time, the pairs (1B, B) (blue histograms) are
often slightly shifted to the right by both demorphing methods,
indicating that the reconstructions increasingly represent iden-
tity B. However, in the case of UTW and UTW-NS morphs
with CurricularFace (Figures 6a and 6b), a slight leftward shift
can be observed with StyleDemorpher.

While StyleDemorpher effectively removes the presence of
identity A from reconstructions of morphed images, it tends
to shift the histogram of bona fide image pairs (A7 A’) (green
histograms) to the left compared to the no-demorphing case.
Although this shift is also present with the Face Demorphing

method, it is more pronounced with StyleDemorpher. This
indicates that StyleDemorpher negatively impacts bona fide
document images. This occurs because StyleDemorpher is
trained only with morphed images as inputs and learns to
remove the presence of the live capture identity.

Therefore, when operating under the assumption that the
input image is a morph, StyleDemorpher can accurately re-
construct the accomplice’s identity with minimal traces of the
criminal’s identity, effectively performing face demorphing.
However, if it is unknown whether the input image is a morph,
StyleDemorpher can cause false rejections of identities using
bona fide document images. A potential solution is to use
a different method for morph detection. If morph detection
is positive, StyleDemorpher can then provide accurate face
demorphing results.

4) DMAD Performance: To evaluate the Differential
Morph Attack Detection (DMAD) performance of StyleDe-
morpher, the setup described in Appendix F is utilized. Addi-
tionally, the following metrics are used:

o Attack Presentation Classification Error Rate (APCER):
reports the proportion of incorrectly classified morphing
attacks as bona fide representations.

o« Bona Fide Presentation Classification Error Rate
(BPCER): reports the proportion of incorrectly classified
bona fide samples as morphing attacks.

o Detection Equal Error Rate (D-EER): reports the error
rate when APCER is equal to BPCER.

o Detection Error Tradeoff (DET) curves: plot APCER
values against BPCER values.

Table IV presents the D-EER values along with BPCER
values at fixed APCER values of 1%, 5%, and 10%. This table
compares the performance of StyleDemorpher with the case
of no demorphing and the use of the Face Demorphing [4]
method across three FRS models. Figures 18, 19, and 20 plot
the DET curves for further visualization.

Based on the results, StyleDemorpher offers the lowest D-
EER values when evaluated using MobileFaceNet [62] and
ArcFace [39] FRS models. However, the Face Demorphing
method performs best with the CurricularFace [63] FRS. This
can be explained by the fact that StyleDemorpher, as shown in
Section V-D3, has a negative impact when working with bona
fide document images. The shift of the bona fide histograms to
the left (green histograms in Figures 6, 16, and 17), which is
especially pronounced with CurricularFace, negatively impacts
the DMAD performance of StyleDemorpher.

Nevertheless, while not specifically designed for DMAD,
StyleDemorpher offers an improvement over the baseline when
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Figure 5: Demorphing accuracy plotted against different FRS threshold values of CurricularFace [63]. The dotted red
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results are presented for the cases of no demorphing, Face

Demorphing [4], and StyleDemorpher face demorphing methods. The values in the brackets correspond to the demorphing

accuracy at the FAR@0.1% decision threshold.
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Figure 6: Histograms visualizing the distributions of the identity similarity scores for different image pairs. The identity scores

are computed based on the CurricularFace [63] FRS. The dotted

red line corresponds to the FAR@0.1% decision threshold. The

results are presented for the cases of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.

no demorphing is used and provides comparable or better
results compared to the Face Demorphing method.

5) Generalizability: To evaluate how well StyleDemorpher
performs on unseen morphing methods, the FRLL-morphs
dataset [57], described in Section V-A2, is utilized. Since
images [4 corresponding to live capture images are not
present in this dataset, images I4, which were used to gen-
erate the morphs, are used instead as one of the inputs for
StyleDemorpher (see Figure 3). Due to this reason, the Face
Demorphing [4] method has an advantage, as it attempts to
invert the morphing process using facial landmarks that were
directly employed during the morphing process. Additionally,
performance on StyleGAN2 [9], [61] morphs of the FRLL-
Morphs dataset is not reported, as these morphs result in low
identity similarity scores and are almost always rejected by
the three FRS models without any demorphing needed.

Table V reports the demorphing accuracy values at

FAR@0.1% for four unseen morphing methods, while Fig-
ure 21 visualizes some examples of demorphed images. Based
on the results, it can be seen that StyleDemorpher achieves
similar or marginally worse demorphing accuracy results com-
pared to the previously seen during training UTW-NS morphs
(see Figures 5a, 14a, and 15a). Therefore, it can be concluded
that StyleDemorpher generalizes well to previously unseen
morphing methods. Moreover, StyleDemorpher outperforms
the Face Demorphing [4] method despite the latter’s advantage
of using images that were directly involved in the morph
creation process, and this is especially true for more robust
facial recognition systems such as ArcFace [39] and Curricu-
larFace [63].

Finally, Appendix G describes how robust StyleDemorpher
is when input images are subjected to different image corrup-
tions. StyleDemorpher displays its ability to generalize well to
unseen image corruptions, making it suitable for deployment



. . BPCER @ APCER (%)
Morphing method FRS Demorphing method | D-EER (%) 1% 5% 10%
No Demorphing 8.73 22.55 | 11.08 8.43
MobileFaceNet Face Demorphing 6.18 19.31 6.86 4.51
StyleDemorpher 4.90 13.33 4.90 2.16
No Demorphing 2.45 3.14 1.77 1.18
UTW-NS ArcFace Face Demorphing 1.57 2.16 0.29 0.29
StyleDemorpher 1.08 1.67 0.29 0.00
No Demorphing 0.29 0.20 0.00 0.00
CurricularFace Face Demorphing 0.10 0.00 0.00 0.00
StyleDemorpher 0.29 0.20 0.00 0.00
No Demorphing 9.51 23.14 | 13.04 9.12
MobileFaceNet Face Demorphing 6.57 18.33 6.86 4.71
StyleDemorpher 5.88 19.31 6.96 3.33
No Demorphing 2.45 4.51 2.16 1.37
UTW ArcFace Face Demorphing 1.86 2.75 0.69 0.29
StyleDemorpher 1.67 3.04 0.39 0.20
No Demorphing 0.39 0.20 0.00 0.00
CurricularFace Face Demorphing 0.29 0.00 0.00 0.00
StyleDemorpher 0.69 0.69 0.10 0.10
No Demorphing 15.78 4098 | 27.35 20.59
MobileFaceNet Face Demorphing 11.67 34.51 | 20.20 14.80
StyleDemorpher 8.33 16.96 | 11.28 6.57
No Demorphing 7.26 17.94 9.12 5.00
StyleGAN2 ArcFace Face Demorphing 4.22 9.41 3.92 2.45
StyleDemorpher 2.26 6.18 0.78 0.39
No Demorphing 0.39 0.39 0.00 0.00
CurricularFace Face Demorphing 0.30 0.00 0.00 0.00
StyleDemorpher 0.69 0.69 0.20 0.20

Table IV: Detection performance of the DMAD methods on UTW-NS, UTW [14], and StyleGAN2 [9] morphs based on the
FRLL [54] evaluation subset of the DemorphDB dataset. The results are presented for the cases of no demorphing (using the
morphed images directly), Face Demorphing [4], and StyleDemorpher face demorphing methods across three FRS models:
MobileFaceNet [62], ArcFace [39], and CurricularFace [63]. Values in bold signify the best results.

. . FRS
Morphing method | Demorphing method MobileFaceNet | ArcFace | CurricularFace

No Demorphing 59.07% 22.79% 2.26%
AMSL Face Demorphing 97.28% 89.83% 68.19%
StyleDemorpher 95.95% 99.49 % 96.78 %

No Demorphing 23.16% 3.60% 0.49%
FaceMorpher Face Demorphing 85.76% 65.55% 42.80%
StyleDemorpher 88.95% 95.42% 93.13%

No Demorphing 24.16% 3.77% 0.66%
OpenCV Face Demorphing 86.16% 61.75% 40.95%
StyleDemorpher 88.12% 94.68 % 91.81%

No Demorphing 21.54% 3.52% 0.33%
‘WebMorph Face Demorphing 82.23% 57.66% 37.76%
StyleDemorpher 85.42% 95.66 % 90.91%

Table V: Demorphing accuracy [7] on unseen landmark-based morphing methods from the FRLL-Morphs dataset [57], including
AMSL [15], FaceMorpher [59], OpenCV [58], and WebMorph [60]. The results are presented for the cases of no demorphing
(using the morphed images directly), Face Demorphing [4], and StyleDemorpher face demorphing methods across three FRS
models: MobileFaceNet [62], ArcFace [39], and CurricularFace [63]. Note: images I4 are used instead of I,/ due to their
unavailability in the FRLL-Morphs dataset. Values in bold signify the best results.

in realistic scenarios where image corruptions could occur.

VI. CONCLUSION AND FUTURE WORK

This work introduces a novel deep learning-based face
demorphing framework to address limitations observed in
current landmark-based and deep learning-based solutions,
such as artifacts, low resolution, limited training identities,
and poor generalizability [4], [22], [5], [6], [7], [8]. Two
interconnected frameworks are presented, collectively aimed
at achieving accurate and high-quality face demorphing.

The first framework, ReStyle-ID, builds upon the concepts
in [11]. It encodes real facial images into the latent space
of StyleGAN2 [9] with minimal loss of identity information.
Innovations in the ReStyle-ID framework include removing
background distractions to focus the encoder model on identity
encoding, employing an automatic face cropping mechanism
using a pre-trained MTCNN [35] during identity loss com-
putation, and utilizing the MS-SSIM [36] loss function. The
dataset has also been expanded with a mix of real and
synthetic images. ReStyle-ID significantly improves identity



preservation, placing encodings in well-defined regions of the
StyleGAN2 latent space, achieving speeds three orders of
magnitude faster than optimization-based approach [9]. This
framework acts as the foundational step for face demorphing
using StyleGAN2’s latent space.

The second framework, StyleDemorpher, is tailored for
accurately recovering the identity of accomplices involved in
creating morphed document images. A novel dataset, Demor-
phDB, containing 1653 unique identities, was developed to
train this framework. To mitigate overfitting on this relatively
small dataset, transfer learning techniques [10] are employed,
initializing StyleDemorpher with weights from the pre-trained
ReStyle-ID encoder. By processing both the morph image and
a trusted live capture image, StyleDemorpher is trained to
maximize the resemblance to the target accomplice’s identity
while minimizing similarity to the criminal identity captured in
the live image. It accurately isolates the accomplice’s identity
from the morph, validating its efficacy in face demorphing.
This framework demonstrates high generalizability, perform-
ing effectively with novel morphing methods and under vari-
ous image corruptions.

However, it has been noted that StyleDemorpher adversely
affects the analysis of genuine, non-morphed document im-
ages. This issue stems from the framework being solely
trained on morphed images, presupposing that all processed
documents contain morphs. Hence, it is advisable to use
StyleDemorpher only after confirming the morphed nature of a
document using existing Differential Morph Attack Detection
(DMAD) techniques [66], [67], [68]. Future enhancements
could include integrating a new subset of genuine paired
images into the training process, which would enable StyleDe-
morpher to minimize its impact on authentic documents,
thereby improving overall DMAD performance.
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APPENDIX A
FACE DEMORPHING VIA STYLEGAN?2 LATENT CODES

The initial design of the StyleDemorpher network aimed to
perform face demorphing solely using latent code information,
rather than image information. Therefore, in Figure 3, the
inputs to the StyleDemorpher network were not the images
Isp and 14/, but rather their latent encodings wp and
w 4. Thus, the StyleDemorpher network was a multilayer
perceptron (MLP) network rather than a convolutional neural
network (CNN). This approach was similar to [33], where
the authors used an MLP to edit the latent codes and change
identity attributes such as adding facial hair, changing pose,
or altering expression.

However, the results of this approach were poor for two
reasons. The first and key reason was that the MLP network
had to be trained from scratch, resulting in overfitting due
to the limited number of unique identities within the Demor-
phDB dataset. Instead, the current StyleDemorpher framework
utilizes the pre-trained ReStyle-ID network’s weights as an
initial starting point, meaning there is already an established
relationship between image and latent spaces based on over
100,000 identities used to train ReStyle-ID.

Secondly, while in [33], the authors performed small edits
and largely kept the identity of the person the same, StyleDe-
morpher requires obtaining a completely different identity.
This requires the spatial awareness of CNNs for accurate
identity recovery, as the MLP struggles to learn the numerous
minute changes within the image space necessary for accurate
latent space transformations. Therefore, the MLP-based archi-
tecture for facial demorphing based on latent codes proved to
be unsuccessful.

APPENDIX B
DEMORPHDB MORPHS

To evaluate the quality of the morphs in the DemorphDB
dataset (see Figure 7 for examples of the morphing methods),
the Mated Morph Presentation Match Rate (MMPMR) [65]
metric is utilized with the decision threshold of facial recog-
nition systems (FRS) set to a False Acceptance Rate (FAR)
of 0.1%. Table VI shows the MMPMR values for the three
morphing methods used in the DemorphDB dataset across
three different facial recognition systems FRS models. Higher
percentage scores indicate higher quality morphs, as they more
effectively deceive facial recognition systems into accepting
both identities present within a morphed image. As shown,
the StyleGAN2 [9] morphs result in the highest scores. This
can be explained by StyleGAN2 creating morphs where the
region outside the face is also morphed, while UTW [14] and
UTW-NS morphs crop the morph and paste it into the image
of one of the identities. Thus, UTW and UTW-NS morphs
scored higher when accepting the identity whose outer face
region matches the morph, while the identity only captured
within the inner face part scored lower.

Additionally, different FRS models show varying effec-
tiveness. The simpler and less accurate MobileFaceNet [62]
rejects a larger proportion of the morphs, while the more

Person A Person B UTW [14] UTW-NS StyleGAN2
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S
-

Figure 7: Examples of the morphing methods utilized in the
DemorphDB dataset. Person A and B model the identities
of the criminal and the accomplice, respectively. UTW [14]
and UTW-NS morphs use the splicing technique, while Style-
GAN2 [9] morphs also attempt to morph identities outside
the face region. Ghosting artifacts are more present in UTW-
NS morphs, as they do not swap different face parts between
identities like UTW morphs.

complex and accurate CurricularFace [63] model is often
deceived by the morphs. This occurs because, being a better
FRS, CurricularFace can detect the traces of both identities
used to generate the morph more effectively, making it more
susceptible to morphing attacks.

APPENDIX C
TRAINING DETAILS

Both the ReStyle-ID and StyleDemorpher frameworks are
trained on input images with 256 x 256 resolution, while the
generated images at the output have 1024 x 1024 resolution.
During the computation of losses, the output images are
resized down to 256 x 256, with the exception of identity
(Aip) and inverse identity (Apyp) losses, which require an
input resolution of 112 x 112 and further cropping around
the face region. The training is performed using the Ranger
optimizer, which integrates the Lookahead technique [69] with
the Rectified Adam [70] optimizer. A batch size of 6 is utilized,
and all experiments are executed on an NVIDIA RTX 4090
GPU.

The ReStyle-ID framework is trained for 18 epochs with
a learning rate of 0.0001, while the StyleDemorpher frame-
work (both UTW-NS and StyleGAN2 morph variants) is
trained for 20 epochs with a learning rate of 0.00001. Since
StyleDemorpher is trained on the DemorphDB dataset with a
limited number of target identities, regularization techniques
are utilized to prevent overfitting. Weight decay of 0.0001
is applied, and the map2style [30] networks (see Figure 2)
are modified to include dropout layers. Specifically, 4 dropout
layers with a dropout rate of 0.2 are added to each of the 18
map2style networks after each Convolution-LeakyReLU block.
Finally, it should be noted that only during the training of
StyleDemorpher, the input image of identity A is empirically



FRS Morphing method | y;yyy 1147 | UTW-NS | StyleGAN2 [9]
MobileFaceNet [62] 3189% | 2125% 3959%
ArcFace [39] 6338% | 59.02% 95.41%
CurricularFace [63] 94.37% 90.06% 99.47%

Table VI: MMPMR [65] values for different morphing methods and facial recognition systems. Higher values correspond to
higher quality morphs, effectively capturing both identities within a morph image.

set to have a 20% chance to be I4 rather than I4.. This
is done so that the demorphing network can have an easier
understanding of the direct impact of /4 on I4p as well as
the indirect relationship between /4 and I4/.

APPENDIX D
SYNTHETIC PASSPORT-LIKE STYLEGAN?2 IMAGES

2L

Figure 8: Examples of synthetic StyleGAN2 [9] images used
for training ReStyle-ID framework.

APPENDIX E
MORPHING ARTIFACT REMOVAL THROUGH STYLEGAN?2
INVERSION

Ghosting artifacts often generated when creating landmark-
based morphs can pose a problem when performing face
demorphing within the latent space of StyleGAN2 [9]. How-
ever, since both the StyleGAN2 and ReStyle-ID networks are
trained to capture the underlying distribution of typical artifact-
free facial images, the encodings are optimized to generate
artifact-free images. Therefore, when mapping an image with
artifacts into this latent space, the projection is made onto the
closest point within the typical learned distribution, resulting
in an output without the artifacts.

Morph Image StyleGAN2 Reconstruction

Figure 9: Example of the removal of morphing artifacts when
encoding the image into the StyleGAN2 [9] latent space.

APPENDIX F
DIFFERENTIAL MORPH ATTACK DETECTION WITH
STYLEDEMORPHER

Document
Image
Demorphed Image

StyleDemorpher
Framework

Trusted
Live
Capture

Figure 10: Illustration of the use of StyleDemorpher for
Differential Morph Attack Detection.
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While the main goal of StyleDemorpher is to accurately
reconstruct the identity of the accomplice in the morphed doc-
ument image, it can also determine if the provided document
image is a morph. This capability allows StyleDemorpher to be
used for Differential Morph Attack Detection (DMAD). The
StyleDemorpher DMAD setup is shown in Figure 10, where
given the document image and a trusted live capture, face
demorphing is performed using the StyleDemorpher. To decide
whether the document image is a morph, the demorphed
image is compared to the live capture using a face verification
system. If the similarity score is above a certain threshold, the
document image is deemed genuine; if the score is low, the
document image is considered to be a morph.
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Figure 11: Examples of image corruptions applied to the images before passing them through the StyleDemorpher framework.
The brightness change, Gaussian noise, and JPEG compression image corruptions are generated at severity level 3 based on
the work of [71]. The resizing image corruption resizes the images from 256 x 256 down to 128 x 128, and then back to

256 x 256, effectively blurring/pixelating the resulting image.

APPENDIX G
ROBUSTNESS OF STYLEDEMORPHER AGAINST UNSEEN
IMAGE CORRUPTIONS.

To assess the robustness of the StyleDemorpher against
various image distortions, four different types of corruptions
are artificially introduced to the input images:

o Brightness change
o Gaussian Noise

« JPEG Compression
o Resizing

The first three corruption types align with the benchmark
established by [71], which categorizes multiple artificial image
distortions, each with five levels of severity. For this study, a
severity level of 3 is selected to mirror more realistic con-
ditions. The remaining resizing corruption involved altering
the resolution of the StyleDemorpher’s input images from
256 x 256 to 128 x 128, and then reverting them back to
256 x 256. Figure 11 presents visual examples of these image
corruptions.

When the corrupted images are generated, the demorphing
accuracy curve shown in Figure 12 is plotted to evaluate
how each individual image corruption type affects the face
demorphing results. It should be noted that to prevent the
impacts of FRS models on the evaluation of image corruption
robustness, only the input images of the StyleDemorpher
Framework were corrupted. This is because the demorphing
accuracy metric computes identity similarity scores between
the demorphed image I and Ig as well as I4.. Therefore,
when computing identity similarity scores, non-corrupted ver-
sions of Ip and 14/ are used, effectively evaluating the quality
of the demorphed image I; generated from corrupted input
images.

Based on the results shown in Figure 12, it can be seen
that the majority of image corruptions have minimal effects
on the demorphing accuracy, with only brightness change
and Gaussian noise image corruptions having any noticeable
impact. While the results are only shown for DemorphDB’s
StyleGAN2 [9] morphs with CurricularFace [63] FRS, similar
performance was observed across other morphing methods
and FRS models. Therefore, these results show that the

==+ FAR@0.1% Threshold
—— No Demorphing (2.84%)
—— StyleDemorpher - No Corruption (98.73%)
—— StyleDemorpher - Brightness Change (96.27%)
—— StyleDemorpher - Resizing (98.63%)
StyleDemorpher - Gaussian Noise (98.14%)
—— StyleDemorpher - JPEG Compression (99.12%)

Demorphing Accuracy (%)

-0.4 -0.2 0.0 0.6 0.8 1.0

0.2 0.4
FRS Threshold

Figure 12: Demorphing accuracy plotted against different FRS
threshold values of CirrucularFace [63]. The dotted red line
corresponds to the FAR@0.1% decision threshold. The results
are presented for the cases of no demorphing, and the use
of StyleDemorpher on clean and corrupted by various image
corruption methods images. StyleGAN2 [9] morphs of the
DemorphDB dataset are utilized. The values in the brackets
correspond to the demorphing accuracy at the FAR@0.1%
decision threshold.

StyleDemorpher network is highly resilient to unknown image
corruption types.



APPENDIX H
ADDITIONAL FIGURES FOR STYLEDEMORPHER FRAMEWORK

BFace Demorphing BStyleDemorpher

UTW-NS Morphs

UTW [14] Morphs

StyleGAN2 [9] Morphs

Figure 13: Visual results of face demorphing using the FRLL [54] dataset. Due to licensing restrictions, DemorphDB images
are not visualized. Since the FRLL dataset lacks trusted live capture images (A’), images directly used to create the morphs (A)
are visualized and utilized instead. The goal is to reconstruct image B, representing the accomplice’s identity in the morphed
image AB. Results from both the StyleDemorpher and Face Demorphing [4] methods are shown.
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Figure 14: Demorphing accuracy plotted against different FRS threshold values of MobileFaceNet [62]. The dotted red
line corresponds to the FAR@0.1% decision threshold. The results are presented for the cases of no demorphing, Face
Demorphing [4], and StyleDemorpher face demorphing methods. The values in the brackets correspond to the demorphing
accuracy at the FAR@0.1% decision threshold.
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Figure 15: Demorphing accuracy plotted against different FRS threshold values of ArcFace [39]. The dotted red line corresponds
to the FAR@0.1% decision threshold. The results are presented for the cases of no demorphing, Face Demorphing [4], and
StyleDemorpher face demorphing methods. The values in the brackets correspond to the demorphing accuracy at the FAR@0.1%
decision threshold.
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Figure 16: Histograms visualizing the distributions of the identity similarity scores for different image pairs. The identity scores
are computed based on the MobileFaceNet [62] FRS. The dotted red line corresponds to the FAR@0.1% decision threshold.
The results are presented for the cases of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.
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Figure 17: Histograms visualizing the distributions of the identity similarity scores for different image pairs. The identity scores
are computed based on the ArcFace [39] FRS. The dotted red line corresponds to the FAR@0.1% decision threshold. The
results are presented for the cases of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.
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Figure 18: Detection Error Tradeoff (DET) curves based on MobileFaceNet [62] FRS. The results are presented for the cases
of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.

10° —— No Demorphing (D-EER: 2.451%)
—— Face Demorphing (D-EER: 1.569%)
—— StyleDemorpher (D-EER: 1.078%)
107t
o«
w
o
o
o
1072
1672
1073 1073 107t 10°

APCER

(a) UTW-NS morphs

BPCER

1072

—— No Demorphing (D-EER: 2.451%)
—— Face Demorphing (D-EER: 1.863%)
—— StyleDemorpher (D-EER: 1.667%)

1072 107t 10°

APCER

(b) UTW [14] morphs

10° —— No Demorphing (D-EER: 7.255%)
—— Face Demorphing (D-EER: 4.216%)
—— StyleDemorpher (D-EER: 2.255%)
1071
o
i
O
o
o
1072
1672
1072 1072 107t 10°

APCER

(c) StyleGAN2 [9] morphs

Figure 19: Detection Error Tradeoff (DET) curves based on ArcFace [39] FRS. The results are presented for the cases of no

demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.
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Figure 20: Detection Error Tradeoff (DET) curves based on CurricularFace [63] FRS. The results are presented for the cases
of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.

BFace Demorphing BStyleDemorpher

AMSL [15]

OpenCV [58] FaceMorpher [59]

WebMorph [60]

Figure 21: Visual face demorphing results on the FRLL-Morphs [57] dataset. Due to the lack of I4 images within this
dataset, images I4, which were used in the morph creation, are utilized directly. Results from both StyleDemorpher and the
Face Demorphing [4] method are presented. The four presented landmark-based morphing methods were not seen during the
training of StyleDemorpher. Note: some of the morph images contain image reflection artifacts introduced during alignment
with the FFHQ method [9]. These artifacts, which occur due to the original morphs being excessively zoomed in, are present
on the borders of the images as the outer regions of the faces are not captured.
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