
A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in
Virtualization Subsystems
ALEXANDRU DAN CULDA, University of Twente, The Netherlands

Virtualization is a cornerstone technology in modern computing, underpin-

ning everything from cloud services to enterprise IT infrastructure. Despite

proprietary architectures or vendor-specific implementations, certain cate-

gories of vulnerabilities might be present across multiple hypervisors, under-

lying a possible systemic flaw. This study does a quantitative meta-analysis

of 1,536 vulnerabilities through means of secondary research, spanning over

four major hypervisors - VMware, Xen, Hyper-V, and KVM. It uses the Na-

tional Vulnerability Dataset (NVD) as the sole resource for dataset creation,

gathering vulnerabilities, also referred to as Common Vulnerabilities and

Exposures (CVE), from 2009 up to 2024. Moreover, this paper proposes a

6-category taxonomy based on hypervisor functionalities - CPU, Device I/O,

Control & Execution, Interrupts, and Timer Mechanisms (ITM), Soft Memory

Management Unit (Soft MMU), and Add-ons & Management - paired with

the industry-standard Common Weakness Enumeration (CWE) classifica-

tion in order to outline possible conceptual or systemic flaws present across

the four hypervisors. The 1,536 vulnerabilities were classified into the six

aforementioned categories using an implementation of the Self-Attention

Deep Neural Network (SA-DNN) presented by Vishnu et al. [6] because it

demonstrates superior performance in vulnerability classifications. Addi-

tionally, further analysis is performed on the vulnerability distribution by

category (Fig. 1), temporal trends across the 16 years (Fig. 2), and distribution

of the 6-category taxonomy across hypervisors (Fig. 3). The contribution of

the study to the state of the art is that it introduces a novel dual-stratified

classification meant to bridge the gap between granular and vendor-specific

vulnerabilities and high-level systemic insights across the four major players

in the virtualization market. The intended audience of the present paper is

fellow students and researchers that present interests in the field of cyberse-

curity, while having prior, Bachelor-level knowledge of Natural Language

Processing models, virtualization technologies, and vulnerability reporting

and documenting.

CCS Concepts: • Security and privacy → Virtualization and security.

Additional Key Words and Phrases: Virtual Machine; virtual security; cloud

security; cross-Hypervisor, meta-bug

1 INTRODUCTION

1.1 Context and Motivation
Virtual Machines are virtual systems that imitate physical ones,

with the exception of the hardware being virtualized. This virtu-

alization of the underlying infrastructure is managed by a Virtual

Machine Monitor (VMM), also known as a hypervisor. A VMM is

a virtualization technology that runs either alongside (Type 2) or

under (Type 1) an operating system [2]. Given the highly sensitive

environment in which processes related to the VMM are running,

Author’s address: Alexandru Dan Culda, a.culda@student.utwente.nl, University of

Twente, P.O. Box 217, Enschede, The Netherlands, 7500AE.

TScIT 42, January 29, 2025, Enschede, The Netherlands
© 2024 ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Proceedings of 42𝑛𝑑

Twente Student Conference on IT (TScIT 42), https://doi.org/10.1145/nnnnnnn.nnnnnnn.

the hypervisors represent a technology with potentially high re-

wards, albeit difficult to exploit due to the inherent technological

knowledge required about computer architecture, organization, and

proprietary, closed-source software. There are two types of VMMs:

type 1, which refers to hypervisors that are directly running onto the
hardware, also known as bare-metal hypervisors, and type 2, which
runs alongside the existing operating system (OS), also known as

hosted. The present study is motivated by the importance of vir-

tualization in modern computing services and the high stakes of

possibly discovering hidden cross-hypervisor patterns. Although fu-

ture work is needed for a statistically proven correlation of identical

vulnerability exploitations between hypervisors, this study serves

as an excellent starting point for subsequent research.

1.2 Specific Problem
The specific problem stems from the assumption that vulnerabil-

ities present in hypervisor implementations are unique, isolated,

and vendor-specific, despite the shared technological features and

concepts between virtualization solutions. This study challenges

that assumption, measuring and answering if systemic flaws re-

cur across the four hypervisors, despite the varied proprietary and

technological capabilities. If flaws categorized based on hypervisor

functionalities are deemed to be easy to pivot from one hypervisor

to another, the security implications could be considerable for all

stakeholders. The four hypervisors were selected due to a survey

showing that 93% of the market share is represented by four main

hypervisors - two closed-source (VMware and Microsoft Hyper-V)

and two open-source (Xen and KVM) [4]. As such, others would

represent too small of a market portion, deeming them unimportant

for the analysis.

1.3 ResearchQuestions
The aim of this study is to identify systemic and conceptual vul-

nerabilities within VMware, Xen, KVM, and Hyper-V, aiming to

assess the ease with which attackers can pivot from one hypervisor

to another by exploiting identical flaws. As a guide, the following

research questions are formulated, each of which is addressed in

section 6:

(1) Which hypervisor functionalities account for the largest share

in virtualized environments?

(2) How are vulnerabilities distributed across Hyper-V, KVM,

VMware and Xen when categorized based on hypervisor func-

tionalities?

(3) Do conceptually similar vulnerabilities recur across Hyper-V,

KVM, VMware and Xen?

1.4 Approach
This study employs a quantitative meta-analysis of 1,536 vulnerabil-

ities from 2009 to 2024, acquired from NVD. The approach begins

TScIT 42, January 29, 2025, Enschede, The Netherlands.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 • Alexandru Dan Culda

with collecting, organizing, preparing, and providing vulnerabili-

ties to the SA-DNN model, which labels the vulnerabilities into six

distinct functionality-based categories. Vulnerabilities are participat-

ing in a pre-processing stage of Tokenization, Case Normalization,

Curation, and Lemmatization, forming a Vocabulary Matrix with

padded vectors. The vectors are mapped to pre-trained, 6 billion

parameters, 100-dimensional GloVe embeddings and given to the

SA-DNN model. The model is comprised of an Embedding layer,

aforementioned in this paragraph, a Bi-directional Long Short-Term

Memory (Bi-LSTM) layer, an Attention Layer, one Flatten, and two

Dense rounds [6]. A standard 80/20 train-test split is performed

on the labelled data, with Precision, Recall, and F1-scores being

provided for each category. The process, coupled with a standard-

ized CWE categorization, depicts that, whilst attackers can pivot

some attacks from one hypervisor to another, the degree to which

it is possible vastly depends on the category and involved hyper-

visors. Certain categories lead to no evidence of cross-hypervisor

meta-bugs, whereas others do.

1.5 Structure
The study commences with explanations in regards to Section 3.1

and Section 3.2, whilst explaining the source from which the pro-

posed 6-category taxonomy stems. Afterwards, the SA-DNN model

is detailed. Accuracy metrics are provided for the text-mining model.

Section 4 regarding vulnerability trends and patterns follows. Fi-

nally, Section 6 rounds the study, offering potential explanations for

the results and answering the 3 Research Questions.

2 RELATED WORK
Perez-Botero et al. [4] conducted an early analysis on hypervisor

vulnerabilities in 2013, albeit the study focused solely on Xen and

KVM, prioritizing the characteristic of being open-source. Their re-

search introduced, among classification systems based on the attack

source and target, 11 functionalities of traditional hypervisors as

attack vectors. Whilst the work provided a solid knowledge base

and taxonomy for subsequent research, their analysis was limited

to just two of the four major players in the market. Moreover, their

vulnerability dataset was significantly smaller, spanning over 97

vulnerabilities, limiting the generalization aspect that my paper

considers. Hence, this research takes upon the research and does an

exhaustive research based on all four hypervisors, while abstracti-

fying the 11 categories into 6 due to the necessities of NLP models,

all while enhancing the existing taxonomy with a doubled-layer

classification that embeds CWE IDs.

Russo et al. [5] addressed the challenge of processing vulnera-

bility descriptions through means of natural language processing.

The study proposes CVErizer, a method to automatically extract

summaries of vulnerabilities and categorize them based on a clearly

defined taxonomy system [5]. Whilst proving itself to be of much

use, especially due to the comparison between multiple ML algo-

rithms, the model was trained on 3,369 vulnerabilities. Moreover, no

emphasis was paid to a cross-hypervisor analysis, incapacitating the

formulation of conclusions in regards to meta-bug patterns. As such,

my work builds upon their classification, employing deep neural

networks for a better semantic understanding. By combining the

Hypervisor Products
Microsoft Hyper-V Hyper-V on Windows

Xen -

KVM -

VMware VMware vSphere Foundations

Workstation Suite

Fusion Suite

Cloud Foundation

View/Horizon Suite

VMware Cloud

Other

Table 1. List of Covered Hypervisors and Their Products

aforementioned improvement with the novel 6-category taxonomy,

the current research underlines how vulnerabilities manifest across

multiple virtualized environments, rather than solely improving the

readability of CVEs.

Vishnu et al. [6] presented a novel model for categorizing vul-

nerabilities— a Self-Attention Deep Neural Network. The results,

which depict better metrics than existing state-of-the-art models,

are sufficiently convincing for subsequent research that involves vul-

nerability classification based on text-mining techniques. The paper

built upon the results of Russo et al. [5] by employing deep neural

techniques and expanding the dataset with the work of Vishnu et

al. [6]. The research undertaken in the work of Vishnu et al. [6]

did not emphasize a cross-hypervisor analysis, but rather a generic

approach to all existing vulnerabilities in the dataset. Further on, a

generic taxonomy has been deployed, which, whilst proving itself

the right approach for the given problem, would not have brought

novel conclusions into this analysis. My study builds upon the pre-

sented SA-DNNmodel by, firstly, suggesting lemmatization methods

instead of word stemming, and, secondly, by applying a taxonomy

better suited to the requirements of the present dataset.

3 METHODOLOGY

3.1 Data Collection
The preliminary dataset used for the research was acquired from the

National Standardized Vulnerability (NVD) database of the United

States of America [1]. The NVD offers downloadable data feeds from

2002 to 2025.

The research is based upon data from 2009 to 2024. Data from

earlier years are not included in the present research, as some hyper-

visors could accumulate more documented vulnerabilities simply

due to being on the market for a longer time. As Microsoft Hyper-V

was released in 2008, KVM in 2007, Xen in 2003, and VMware in

1998, the bias that stems from uneven release dates is reduced by

ensuring the initial year is 2009.

Moreover, the dataset doesn’t contain CVEs that are rejected or

disputed. It is considered that the dataset must be concise, up-to-date,

and, last but not least, a valid list of vulnerabilities.

TScIT 42, January 29, 2025, Enschede, The Netherlands.



A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in Virtualization Subsystems • 3

Attribute Description

CVE ID Uniquely identifies each dataset entry. Exam-

ple: CVE-2014-1776.

Year Used for further research based on dataset

trends. This attribute supports longitudinal

analysis

CWE ID Classification of software vulnerabilities into

granular categories. IDs are standardized and

maintained by NVD

Target High-level overview of affected hypervisors.

Each item is represented by a vendor and its

product(s)

Description Used for classification via Natural Language

Processing. Provides contextual understand-

ing of vulnerabilities

Category Broad classification of vulnerabilities for cross-

hypervisor analysis

Table 2. List of Attributes and Their Meaning

3.2 Data Organization
In total, 1536 vulnerabilities were gathered. 561 (36,52%) targeted

VMware products, 383 (24,93%) targeted Xen, 235 (15,29%) targeted

KVMand 213 (13,86%) Hyper-V. Note that some vulnerabilities target

two or more hypervisors, so that there might be overlaps in the

counting. The list of CVE files went under a curation process. For

clarity purposes, the attributes are presented and described in Table

2.

The dual-stratified categorization has two levels of granularity

and purposes. The first type of categorization lies on the Common

Weakness Enumeration (CWE), the industry’s standard proposed

by the MITRE Organization
1
. The community-driven taxonomy is

presented as a hierarchical tree of low-level vulnerabilities, where

each item has a base, class, and variant. The second type of catego-

rization lies on the work of Perez-Botero et al. [4], which outlines

11 functionalities offered by traditional hypervisors.

The 11 functionalities would have formed an overly granular

classification for the present 1536 vulnerabilities that used a corpus

for the SA-DNN, so an abstraction has been performed as follows:

• CPU
– Virtual CPUs

– Symmetric Multiprocessing (SMP)

• Device I/O
– I/O and Networking

– Paravirtualized I/O

• Control & Execution
– VM Exits

– Hypercalls

• Add-ons & Mgmt
– VM Management (configure, start, pause, and stop VMs)

– Remote Management Software

1
https://cwe.mitre.org/about/index.html

– Hypervisor Add-ons

• Interrupt Timer Mechanisms (ITM)
• Soft MMU

As such, hereby a 6-category taxonomy is adhered to. The CWE

taxonomy is kept as-is, ensuring standardized vulnerability identifi-

cation, whereas the 6-category taxonomy is present due to providing

a way to reach the research goals.

3.3 Data Preparation
The number of 1536 vulnerabilities was deemed too high for a

manual classification; hence, a Natural Language Processing (NLP)

model was employed. In those regards, the work of Vishnu et al. [6]

is present, which proposes a Self Attention - Deep Neural Network

(SA-DNN) to identify the category of vulnerabilities from their de-

scription via text mining approaches. The DNN was chosen because

it proves itself to be more effective at categorizing vulnerabilities

based on their description, with the model outperforming other

DNN models - Convolutional Neural Networks Long Short-Term

Memory Networks (CNN-LSTM), Graph Convolutional Networks

(GCN), and Support VectorMachine (SVM). Moreover, the ambiguity

and complex security contents of hypervisor descriptions require

a supervised learning model as a way to learn precise mappings

to the proposed 6-category taxonomy. The following steps have

been performed after the architectural description of the SA-DNN

presented in [6], with one improvement - this research replaces

word stemming with lemmatization.

3.3.1 Corpus Pre-Processing. The preprocessing stage involved sev-
eral intermediary steps: Tokenization, Case Normalization, Descrip-

tion Curation, and, building upon the presented architecture and

improving it, Lemmatization. The final step preceding Corpus Train-
ing, Testing and Modelling is characterized by Feature Extraction.

For a better representation of the meaning and purpose of each step,

an example is provided;

• ’Windows Hyper-V, as in Windows 11, has a Remote
Code Execution Vulnerability!’.

Tokenization. The tokenization of vulnerability descriptions rep-

resents a method through which sentences are divided into smaller

units, usually words which are also known as tokens. Text mining

models require granular representations of paragraphs to better

process and understand the semantic correlation between different

words. The architectural implementation included, at this step, the

removal of punctuation or special characters, such as !, @, , or .,
through RegexpTokenizer from NLTK.

• ’Windows’, ’Hyper-V’, ’as’, ’in’, ’Windows’, ’11’, ’has’, ’a’,
’Remote’, ’Code’, ’Execution’, ’Vulnerability’.

Case Normalization. Case normalization is needed to ensure con-

sistency and avoid mistreating the words due to case variations.

This step is crucial due to the current text mining implementation

assigning weights to the meaning of words based on the context

[6]. Using native Python built-in functionalities, all tokens were

transformed into their lower case form.

• ’windows’, ’hyper-v’, ’as’, ’in’, ’windows’, ’11’, ’has’, ’a’,
’remote’, ’code’, ’execution’, ’vulnerability’.

TScIT 42, January 29, 2025, Enschede, The Netherlands.



4 • Alexandru Dan Culda

Description Curation. In order to exclude irrelevant noise, this

process implied removing stopwords, numbers, hexadecimals, and

special cases. Stopword tokens, such as "my", "on", "during", or "this"

do not add meaningful context to vulnerability descriptions. The

NLTK built-in list of stopwords was used for filtering. Further on,

strings of words representing hyperlinks, memory addresses, and

byte packets were removed by only including words with a length

of at least 3 characters (to exclude instances such as a3 80 00 00 2f
9b and no more than 2 repeating letters (to exclude instances such

as ffffffffda). However, a check for words with a digit at the end was

included for meaningful words such as vmxnet3.

• ’windows’, ’hyper-v’, ’has’, ’windows’, ’remote’, ’code’,
’execution’, ’vulnerability’.

Lemmatization. As an improvement brought to the architecture

presented in the work of Vishnu et al. [6], lemmatization is used

instead of word stemming. Lemmatization is similar to stemming,

although is considered the superior method due to morphologically

analysing the words, resolving the ambiguousness of English
2
. For

example, the verb "have" might as appear as "had", "having" or

"haven’t", and lemmatization converges all variations into "have".

The WordNetLemmatizer library from NLTK has been used, such

that each token of each description is processed to acquire the

nltk_tag
3
. The 36 categories of NLTK tags are mapped to 4 broad

categories (verbs, nouns, adjectives, adverbs) considering the first

NLTK tag letter (E.g., The NLTK tag starts with the letter J, therefore
it is mapped to an adjective). The resulting WordNet tag is analysed

and the vast majority of words are categorized, albeit technical

words specific to vulnerability descriptions are kept as-is if the tag

is None.

• ’window’, ’hyper-v’, ’have’, ’window’, ’remote’, ’code’,
’execution’, ’vulnerability’.

Feature Extraction. The curated corpus served as a basis for the

process of building a Vocabulary Matrix, a matrix of all unique

words that appear across all 1536 vulnerabilities. Each word in the

vocabulary was assigned a unique index, and these indices were then

organized into the Vocabulary Matrix, where each row corresponds

to a vulnerability description and each cell represents the index

of a word. Each row was then padded with 0’s up to size 315, as

the SA-DNN model requires equal-size vectors. The 315 represents

the maximum size of a description in the corpus. Then, a different

matrix was created during the process called Word Embedding, the

methodology undertaken in the Embedding layer. Word Embed-

ding refers to the process of attributing numerical values to the

correlation between words. The co-existence of words in a corpus

might reveal meaningful correlations that are especially useful in

the context of textual mining for vulnerability classifications. GloVe

(Global Vectors for Word Representation) [3] creates a matrix of

word vectors by calculating the probability of each word occurrence

across the entire text dataset. Although a train on any given corpus

is possible, the restricted size of the present corpus prompted the

research to use GloVe’s 6-billion pre-trained embedding represented

as 100-dimensional vectors.

2
https://www.geeksforgeeks.org/python-lemmatization-approaches-with-examples/

3
https:/www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Category Keyword

Soft MMU ["page table", "shadow page", "TLB", "paging"]

Control & Exe-

cution

["Remote Code Execution"]

CPU ["vCPU", "SMP", "CPU scheduling", "multi-

threading", "Intel", "AMD"]

Device I/O ["paravirtual", "emulator", "PCI", "IOMMU",

"network stack", "I/O buffer overflow",

"vmxnet3", "NIC"]

ITM ["APIC", "timer", "pit", "irq", "idt", "trap", "inter-

rupt"]

Add-ons &

Mgmt

["vCenter", "plug-in", "management interface",

"configuration file"]

Table 3. Category-to-Keywords mapping for training-test dataset

Therefore, every cell in Vocabulary Matrix was replaced with the

corresponding GloVe vector. Then, the result was presented to the

Bi-LSTM layer. The 6 target labels underwent a one-hot encoding

process to enable multi-class classification [6].

3.3.2 Corpus Training, Testing and Modelling. 536 vulnerabilities
out of 1536 were selected based on keywords for each category, as

can be seen in Table 3. The 536 vulnerabilities were preprocessed

as described in the aforementioned section and processed into a

Bidirectional-Long Short-Term Memory Layer (Bi-LSTM) and an

Attention Layer. Then, the results are flattened into a 1D vector, as

the last 2 steps, the Dense steps, expect a 1D input. The third-to-last

and second-to-last steps are paired with a Dropout layer in order to

overcome overfitting. The final step, the output layer, is activated

with the Softmax function. All layers are abstracted with the aid of

the Keras library.

Out of the 536 vulnerabilities, 80% were assigned to training

and 20% for testing. After multiple fine-tunes of hyperparameters, it

seems that the optimal configuration for the present 6-class problem

is: Epochs=15, Batch size=32, Attention Layer Dropout=0.3, Dropout

Layer=0.2, Early stopping=5.

4 RESULTS

Precision Recall F1-Score Support

CPU 0.75 0.75 0.75 32

Soft MMU 0.77 0.83 0.80 12

ITM 0.36 0.36 0.36 14

Device I/O 0.71 0.67 0.69 18

Control & Execution 1.00 1.00 1.00 16

Add-ons & Mgmt 1.00 1.00 1.00 15

Accuracy 0.77 107

Macro Avg 0.76 0.77 0.77 107

Weighted Avg 0.77 0.77 0.77 107

Table 4. Classification Report for Vulnerability Categories

TScIT 42, January 29, 2025, Enschede, The Netherlands.



A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in Virtualization Subsystems • 5

Fig. 1. Number of Vulnerabilities per Category

Fig. 2. Trend of Virtualization Vulnerabilities Over Time

The precision, recall and F1-score presented in Table 4 are further

affected by one outlier, the Interrupt and Timer Mechanisms (ITM).

The following results reflect the analysis of a dataset that, due to its

niche nature, is limited in size.

Figure 1 illustrates the distribution of the 1536 vulnerabilities

under the 6-category classification. The results align with the ex-

pectations set by Perez-Botero et al. [4], as the Device Emulation

categories (i.e., I/O and Networking and Paravirtualized I/O) ac-

counted for more than one-third in their analysis. The vast attack

surface created by the I/O Devices or Add-ons and Management

Tools represents a tempting target for attackers. Their lower tech-

nical barrier and, in some cases, open-source characteristic make

them more accessible for researchers and professionals. In con-

trast, memory-related vulnerabilities - such as the ones associated

with the Soft MMU category - are considerably fewer due to being

complex and challenging to execute. The inherent complexity and

heightened risk of technical and operational errors act as barriers

that safeguard hypervisors.

Figure 2 presents the temporal trend of vulnerabilities from 2009

up to 2024. A steady increase can be seen from 2009 to 2012, followed

by a plateau of the following 4 years. A surge in 2017 follows after

Fig. 3. Bar Graph of Categories Distribution by Hypervisor

that. Such an abnormal variation is thought to be attributed to the

security patches that followed the infamous low-level Meltdown and

SPECTRE attacks. A decline in reported vulnerability is observed

between 2020 and 2023, which may be attributed to the reduced

research and delayed disclosure process under the pandemic context.

2024 appears to be the starting point for an ascending slope that

will characterize the following years.

The bar chart presented in Figure 3 depicts the distribution of

vulnerability categories across the four hypervisors. Hyper-V has

the largest distribution across Control & Execution and Device I/O.

The split reveals that Hyper-V is susceptible to more attacks targeted

to hardware emulation or execution control, possibly due to the

integration within an equally complex software - Windows, an

Operating System. Control & Execution actions, such as API calls or

hypercalls possible are reasons for the predominant two categories.

It is crucial to specify that that present research pertains to the

stand-alone version of Microsoft Hyper-V; the version included in

Microsoft Server environments exhibits separate characteristics.

KVM and Xen present a more balanced categorical distribution.

When compared to Hyper-V, KVM has a noticeable drop in Control

& Execution and Device I/O-based flaws, possibly due to a deeper

integration within the Linux kernel; hence, it offers the hypervisor

more mature privilege separation mechanisms. Its largest two vul-

nerability categories, CPU and ITM, suggest that, as a drawback

of its deeper integration within the Linux kernel, precise timing

attacks over the CPU are easier to execute. The reason might be

likely due to its reliance on Linux Kernel scheduling.

VMware is severely prone to Add-ons & Management attacks.

The vast exposed surface possibly stems from its unique complex

infrastructure such as: extensions through enterprise integrations,

web-basedmanagement interfaces, APIs, or cloudmanagement tools.

As a characteristic of closed-source products, including VMware,

there is a minimal number of Soft MMU-based vulnerabilities. A

possible trade-off is visible - clients choose between the pricey and

more opaque closed-source hypervisors, which may reduce the

attack surface, or the low costs and transparency of open-source

alternatives, which are possibly more susceptible to sophisticated

attacks.

Xen, as opposed to other hypervisors, exhibits a nearly equal

distribution of Soft MMU, ITM, CPU, and Device I/O-based vulner-

abilities. The disproportionately high share of Soft MMU attacks

TScIT 42, January 29, 2025, Enschede, The Netherlands.



6 • Alexandru Dan Culda

Fig. 4. Heatmap of the 6 categories grouped by CWE on the 4 hypervisors

might stem from Xen’s architecture that emphasizes paravirtual-

ization, exposing it to low-level virtualization mechanisms such as

shadow paging. Device I/O vulnerabilities remain steadily at ap-

proximately 20%, with minimal variation between hypervisors. The

distribution of the category depicts how Xen, alongside VMware,

KVM, and Hyper-V, are more prone to virtualized device emulation

attacks. A possible explanation would be the widespread adoption

of shared emulated devices, alongside the lower technical barrier

for exploitation.

Figure 4 presents a structured breakdown of CVEs across the four

analysed hypervisors. It categorizes the vulnerabilities based on the

proposed taxonomy and their associated CWE IDs. The discrepancy

between Hyper-V and the rest of the three counterparts is noticeable,

with the exception of CWE ID 20 (Improper Input Validation) in

Control & Execution and Device I/O-based attacks. There is evidence

that vulnerabilities targeting Hyper-V are not transferable to other

hypervisors. Hyper-V exhibits signs of (Device I/O + CWE-20) and

(Control & Execution + CWE-20) issues, possibly due to a deeper

integration with the proprietary Windows ecosystem. Certain flaw

types (e.g., Device I/O and ITM) showcase evidence of meta-bugs

appearing across KVM, VMware, and Xen, whereas the Add-ons

& Management or CPU appear to be more vendor-specific. With

the exception of Device I/O attacks coupled with CWE-119 (i.e.,

Improper Restriction of Operations within the Bounds of a Memory),

Xen exhibits a lower degree of transferability, indicating that its

paravirtualization emphasis vastly affects the exposure to different

classes of attacks.

5 THREATS TO VALIDITY

5.1 Construct Validity
Specific to this study, the construct validity refers to the 6 categories

used as a labelling method for the 1,536 vulnerabilities. The number

of 6 categories was used to achieve an optimal balance between

granularity and abstraction, providing the ideal input for the accu-

racy of the model. The type of obtained results are in line with what

was expected before performing the analysis.

5.2 Internal Validity
In the case of the present study, confounding factors affecting inter-

nal validity are expressed through inconsistencies or errors within

the NVD dataset and selection bias stemming from years when

certain hypervisors were not yet released. The first confounding

factor was addressed by eliminating vulnerabilities that were classi-

fied as Rejected. The second factor was addressed by initiating the

analysis from the year immediately after the most recently released

hypervisor.

5.3 External Validity
The small corpus of 1,536 vulnerabilities, albeit inherently small

due to the complexity of the topic, limits the generalizability of the

findings. Although NVD presents itself as an exhaustive dataset,

certain real vulnerabilitiesmight not be present. The aforementioned

two aspects count as threats to the validity.

5.4 Conclusion Validity
Future research should aim to improve the model accuracy metrics

by expanding the 1,536 corpus used for the present research. The

expansion could be achieved either by abstractifying the niche topic

with other virtualization solution, or by extending the temporal in-

terval, considering vulnerabilities from previous years. Subsequent

research exploring alternative classificationmodels is possible, albeit

attention must be paid upon the granularity of such classification;

more categories may result in lower accuracy metrics in a niche

dataset of which entries are inherently low due to the high technical

complexities of VMMs.

6 CONCLUSIONS

6.1 General Conclusion
The analysis highlights that while attackers can pivot from one hy-

pervisor to another, the degree to which it is possible vastly depends

on the category and involved hypervisors. Some categories show

no evidence of cross-hypervisor meta-bugs, whereas others do. As

seen in Figure 1, Device I/O and Add-ons & Management vulner-
abilities appear consistently across all four analysed hypervisors,

irrespective of the CWE ID, reinforcing the idea that virtualized em-

ulated devices, both proprietary and open-source, remain the largest

attack vector and attract the efforts of attackers and researchers.

The number of virtualization vulnerabilities has fluctuated over

time, albeit the idea that the hypervisor-based threat landscape is

evolving remains. The lower number of documented vulnerabilities

in 2018, after the SPECTRE and MELTDOWN attacks, indicates

a reactive rather than proactive approach from the industry. By

highlighting an ascendant trend of virtualization vulnerabilities,

the present study suggests a collaboration among KVM, VMware,

and Xen to establish standardized security measures, enhance vul-

nerability mitigation strategies, and promote a unified response

mechanism against emerging threats.

6.2 ResearchQuestion Answers
6.2.1 Whichhypervisor functionalities account for the largest
share in virtualized environments? The results suggest that De-

vice I/O (430) and Add-ons & Mgmt (352) account for the largest

share of vulnerabilities across hypervisors.

TScIT 42, January 29, 2025, Enschede, The Netherlands.



A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in Virtualization Subsystems • 7

6.2.2 How are vulnerabilities distributed across Hyper-V,
KVM, VMware and Xen when categorized based on hyper-
visor functionalities? This study reveals an even vulnerability

distribution across hypervisors. If KVM shows a higher proportion

of CPU and ITM-based flaws, VMware exhibits indications of sys-

temic flaws in its add-ons and management tools. Hyper-V has a

disproportionate amount of vulnerabilities in the Device I/O and

Control & Management categories, possibly due to the exposure of

low-level integrations within the Windows Operating System, such

as API interactions or hypercalls. In contrast, Xen demonstrates a

more balanced distribution of only 4 out of 6 categories. The distri-

bution is attributed to Xen’s development principles of following a

leaner architecture or privileged domains (Dom0).

6.2.3 Do conceptually similar vulnerabilities recur across
Hyper-V, KVM, VMware and Xen? This study does not present

evidence of systemic flaws between the analysed 4 hypervisors.

While some functionality-based categories, coupled with CWE IDs,

might reveal underlying cross-hypervisor meta-bugs, the vast dif-

ference between architectural implementations prevents attackers

from easily pivoting from one hypervisor to another.

REFERENCES
[1] NVD - Home. url: https://nvd.nist.gov/ (visited on 01/19/2025).

[2] Michael Pearce, Sherali Zeadally, and Ray Hunt. “Virtualization: Issues, security

threats, and solutions”. In: ACM Computing Surveys 45.2 (Feb. 2013), pp. 1–39.
issn: 0360-0300, 1557-7341. doi: 10.1145/2431211.2431216. url: https://dl.acm.

org/doi/10.1145/2431211.2431216 (visited on 11/29/2024).

[3] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global

Vectors for Word Representation”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). EMNLP 2014. Ed. by

Alessandro Moschitti, Bo Pang, and Walter Daelemans. Doha, Qatar: Association

for Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14-

1162. url: https://aclanthology.org/D14-1162/ (visited on 02/01/2025).

[4] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. “Characterizing hypervisor

vulnerabilities in cloud computing servers”. In: Proceedings of the 2013 interna-
tional workshop on Security in cloud computing. ASIA CCS ’13: 8th ACM Sympo-

sium on Information, Computer and Communications Security. Hangzhou China:

ACM, May 8, 2013, pp. 3–10. isbn: 978-1-4503-2067-2. doi: 10.1145/2484402.

2484406. url: https : / /dl .acm.org/doi/10.1145/2484402.2484406 (visited on

01/21/2025).

[5] Ernesto Rosario Russo et al. “Summarizing vulnerabilities’ descriptions to support

experts during vulnerability assessment activities”. In: Journal of Systems and
Software 156 (Oct. 2019), pp. 84–99. issn: 01641212. doi: 10.1016/j.jss.2019.06.001.
url: https://linkinghub.elsevier.com/retrieve/pii/S016412121930130X (visited on

01/21/2025).

[6] P. R. Vishnu, P. Vinod, and Suleiman Y. Yerima. “A Deep Learning Approach

for Classifying Vulnerability Descriptions Using Self Attention Based Neural

Network”. In: Journal of Network and Systems Management 30.1 (Jan. 2022), p. 9.
issn: 1064-7570, 1573-7705. doi: 10 . 1007 / s10922 - 021 - 09624 - 6. url: https :

//link.springer.com/10.1007/s10922-021-09624-6 (visited on 01/20/2025).

TScIT 42, January 29, 2025, Enschede, The Netherlands.

https://nvd.nist.gov/
https://doi.org/10.1145/2431211.2431216
https://dl.acm.org/doi/10.1145/2431211.2431216
https://dl.acm.org/doi/10.1145/2431211.2431216
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162/
https://doi.org/10.1145/2484402.2484406
https://doi.org/10.1145/2484402.2484406
https://dl.acm.org/doi/10.1145/2484402.2484406
https://doi.org/10.1016/j.jss.2019.06.001
https://linkinghub.elsevier.com/retrieve/pii/S016412121930130X
https://doi.org/10.1007/s10922-021-09624-6
https://link.springer.com/10.1007/s10922-021-09624-6
https://link.springer.com/10.1007/s10922-021-09624-6

	Abstract
	1 Introduction
	1.1 Context and Motivation
	1.2 Specific Problem
	1.3 Research Questions
	1.4 Approach
	1.5 Structure

	2 Related Work
	3 Methodology
	3.1 Data Collection
	3.2 Data Organization
	3.3 Data Preparation

	4 Results
	5 Threats to Validity
	5.1 Construct Validity
	5.2 Internal Validity
	5.3 External Validity
	5.4 Conclusion Validity

	6 Conclusions
	6.1 General Conclusion
	6.2 Research Question Answers


