A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in

Virtualization Subsystems

ALEXANDRU DAN CULDA, University of Twente, The Netherlands

Virtualization is a cornerstone technology in modern computing, underpin-
ning everything from cloud services to enterprise IT infrastructure. Despite
proprietary architectures or vendor-specific implementations, certain cate-
gories of vulnerabilities might be present across multiple hypervisors, under-
lying a possible systemic flaw. This study does a quantitative meta-analysis
of 1,536 vulnerabilities through means of secondary research, spanning over
four major hypervisors - VMware, Xen, Hyper-V, and KVM. It uses the Na-
tional Vulnerability Dataset (NVD) as the sole resource for dataset creation,
gathering vulnerabilities, also referred to as Common Vulnerabilities and
Exposures (CVE), from 2009 up to 2024. Moreover, this paper proposes a
6-category taxonomy based on hypervisor functionalities - CPU, Device I/O,
Control & Execution, Interrupts, and Timer Mechanisms (ITM), Soft Memory
Management Unit (Soft MMU), and Add-ons & Management - paired with
the industry-standard Common Weakness Enumeration (CWE) classifica-
tion in order to outline possible conceptual or systemic flaws present across
the four hypervisors. The 1,536 vulnerabilities were classified into the six
aforementioned categories using an implementation of the Self-Attention
Deep Neural Network (SA-DNN) presented by Vishnu et al. [6] because it
demonstrates superior performance in vulnerability classifications. Addi-
tionally, further analysis is performed on the vulnerability distribution by
category (Fig. 1), temporal trends across the 16 years (Fig. 2), and distribution
of the 6-category taxonomy across hypervisors (Fig. 3). The contribution of
the study to the state of the art is that it introduces a novel dual-stratified
classification meant to bridge the gap between granular and vendor-specific
vulnerabilities and high-level systemic insights across the four major players
in the virtualization market. The intended audience of the present paper is
fellow students and researchers that present interests in the field of cyberse-
curity, while having prior, Bachelor-level knowledge of Natural Language
Processing models, virtualization technologies, and vulnerability reporting
and documenting.

CCS Concepts: « Security and privacy — Virtualization and security.

Additional Key Words and Phrases: Virtual Machine; virtual security; cloud
security; cross-Hypervisor, meta-bug

1 INTRODUCTION
1.1 Context and Motivation

Virtual Machines are virtual systems that imitate physical ones,
with the exception of the hardware being virtualized. This virtu-
alization of the underlying infrastructure is managed by a Virtual
Machine Monitor (VMM), also known as a hypervisor. A VMM is
a virtualization technology that runs either alongside (Type 2) or
under (Type 1) an operating system [2]. Given the highly sensitive
environment in which processes related to the VMM are running,

Author’s address: Alexandru Dan Culda, a.culda@student.utwente.nl, University of
Twente, P.O. Box 217, Enschede, The Netherlands, 7500AE.

TScIT 42, January 29, 2025, Enschede, The Netherlands

© 2024 ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of 42"%
Twente Student Conference on IT (TScIT 42), https://doi.org/10.1145/nnnnnnn.nnnnnnn.

the hypervisors represent a technology with potentially high re-
wards, albeit difficult to exploit due to the inherent technological
knowledge required about computer architecture, organization, and
proprietary, closed-source software. There are two types of VMMs:
type 1, which refers to hypervisors that are directly running onto the
hardware, also known as bare-metal hypervisors, and type 2, which
runs alongside the existing operating system (OS), also known as
hosted. The present study is motivated by the importance of vir-
tualization in modern computing services and the high stakes of
possibly discovering hidden cross-hypervisor patterns. Although fu-
ture work is needed for a statistically proven correlation of identical
vulnerability exploitations between hypervisors, this study serves
as an excellent starting point for subsequent research.

1.2 Specific Problem

The specific problem stems from the assumption that vulnerabil-
ities present in hypervisor implementations are unique, isolated,
and vendor-specific, despite the shared technological features and
concepts between virtualization solutions. This study challenges
that assumption, measuring and answering if systemic flaws re-
cur across the four hypervisors, despite the varied proprietary and
technological capabilities. If flaws categorized based on hypervisor
functionalities are deemed to be easy to pivot from one hypervisor
to another, the security implications could be considerable for all
stakeholders. The four hypervisors were selected due to a survey
showing that 93% of the market share is represented by four main
hypervisors - two closed-source (VMware and Microsoft Hyper-V)
and two open-source (Xen and KVM) [4]. As such, others would
represent too small of a market portion, deeming them unimportant
for the analysis.

1.3 Research Questions

The aim of this study is to identify systemic and conceptual vul-
nerabilities within VMware, Xen, KVM, and Hyper-V, aiming to
assess the ease with which attackers can pivot from one hypervisor
to another by exploiting identical flaws. As a guide, the following
research questions are formulated, each of which is addressed in
section 6:

(1) Which hypervisor functionalities account for the largest share
in virtualized environments?

(2) How are vulnerabilities distributed across Hyper-V, KVM,
VMware and Xen when categorized based on hypervisor func-
tionalities?

(3) Do conceptually similar vulnerabilities recur across Hyper-V,
KVM, VMware and Xen?

1.4 Approach
This study employs a quantitative meta-analysis of 1,536 vulnerabil-

ities from 2009 to 2024, acquired from NVD. The approach begins

TScIT 42, January 29, 2025, Enschede, The Netherlands.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2« Alexandru Dan Culda

with collecting, organizing, preparing, and providing vulnerabili-
ties to the SA-DNN model, which labels the vulnerabilities into six
distinct functionality-based categories. Vulnerabilities are participat-
ing in a pre-processing stage of Tokenization, Case Normalization,
Curation, and Lemmatization, forming a Vocabulary Matrix with
padded vectors. The vectors are mapped to pre-trained, 6 billion
parameters, 100-dimensional GloVe embeddings and given to the
SA-DNN model. The model is comprised of an Embedding layer,
aforementioned in this paragraph, a Bi-directional Long Short-Term
Memory (Bi-LSTM) layer, an Attention Layer, one Flatten, and two
Dense rounds [6]. A standard 80/20 train-test split is performed
on the labelled data, with Precision, Recall, and F1-scores being
provided for each category. The process, coupled with a standard-
ized CWE categorization, depicts that, whilst attackers can pivot
some attacks from one hypervisor to another, the degree to which
it is possible vastly depends on the category and involved hyper-
visors. Certain categories lead to no evidence of cross-hypervisor
meta-bugs, whereas others do.

1.5 Structure

The study commences with explanations in regards to Section 3.1
and Section 3.2, whilst explaining the source from which the pro-
posed 6-category taxonomy stems. Afterwards, the SA-DNN model
is detailed. Accuracy metrics are provided for the text-mining model.
Section 4 regarding vulnerability trends and patterns follows. Fi-
nally, Section 6 rounds the study, offering potential explanations for
the results and answering the 3 Research Questions.

2 RELATED WORK

Perez-Botero et al. [4] conducted an early analysis on hypervisor
vulnerabilities in 2013, albeit the study focused solely on Xen and
KVM, prioritizing the characteristic of being open-source. Their re-
search introduced, among classification systems based on the attack
source and target, 11 functionalities of traditional hypervisors as
attack vectors. Whilst the work provided a solid knowledge base
and taxonomy for subsequent research, their analysis was limited
to just two of the four major players in the market. Moreover, their
vulnerability dataset was significantly smaller, spanning over 97
vulnerabilities, limiting the generalization aspect that my paper
considers. Hence, this research takes upon the research and does an
exhaustive research based on all four hypervisors, while abstracti-
fying the 11 categories into 6 due to the necessities of NLP models,
all while enhancing the existing taxonomy with a doubled-layer
classification that embeds CWE IDs.

Russo et al. [5] addressed the challenge of processing vulnera-
bility descriptions through means of natural language processing.
The study proposes CVErizer, a method to automatically extract
summaries of vulnerabilities and categorize them based on a clearly
defined taxonomy system [5]. Whilst proving itself to be of much
use, especially due to the comparison between multiple ML algo-
rithms, the model was trained on 3,369 vulnerabilities. Moreover, no
emphasis was paid to a cross-hypervisor analysis, incapacitating the
formulation of conclusions in regards to meta-bug patterns. As such,
my work builds upon their classification, employing deep neural
networks for a better semantic understanding. By combining the

TScIT 42, January 29, 2025, Enschede, The Netherlands.

Hypervisor Products

Microsoft Hyper-V | Hyper-V on Windows

Xen -

KVM -

VMware VMware vSphere Foundations

Workstation Suite
Fusion Suite

Cloud Foundation
View/Horizon Suite
VMware Cloud
Other

Table 1. List of Covered Hypervisors and Their Products

aforementioned improvement with the novel 6-category taxonomy,
the current research underlines how vulnerabilities manifest across
multiple virtualized environments, rather than solely improving the
readability of CVEs.

Vishnu et al. [6] presented a novel model for categorizing vul-
nerabilities— a Self-Attention Deep Neural Network. The results,
which depict better metrics than existing state-of-the-art models,
are sufficiently convincing for subsequent research that involves vul-
nerability classification based on text-mining techniques. The paper
built upon the results of Russo et al. [5] by employing deep neural
techniques and expanding the dataset with the work of Vishnu et
al. [6]. The research undertaken in the work of Vishnu et al. [6]
did not emphasize a cross-hypervisor analysis, but rather a generic
approach to all existing vulnerabilities in the dataset. Further on, a
generic taxonomy has been deployed, which, whilst proving itself
the right approach for the given problem, would not have brought
novel conclusions into this analysis. My study builds upon the pre-
sented SA-DNN model by, firstly, suggesting lemmatization methods
instead of word stemming, and, secondly, by applying a taxonomy
better suited to the requirements of the present dataset.

3 METHODOLOGY
3.1 Data Collection

The preliminary dataset used for the research was acquired from the
National Standardized Vulnerability (NVD) database of the United
States of America [1]. The NVD offers downloadable data feeds from
2002 to 2025.

The research is based upon data from 2009 to 2024. Data from
earlier years are not included in the present research, as some hyper-
visors could accumulate more documented vulnerabilities simply
due to being on the market for a longer time. As Microsoft Hyper-V
was released in 2008, KVM in 2007, Xen in 2003, and VMware in
1998, the bias that stems from uneven release dates is reduced by
ensuring the initial year is 2009.

Moreover, the dataset doesn’t contain CVEs that are rejected or
disputed. It is considered that the dataset must be concise, up-to-date,
and, last but not least, a valid list of vulnerabilities.

A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in Virtualization Subsystems « 3

Attribute
CVEID

Description

Uniquely identifies each dataset entry. Exam-
ple: CVE-2014-1776.

Year Used for further research based on dataset
trends. This attribute supports longitudinal
analysis

Classification of software vulnerabilities into
granular categories. IDs are standardized and
maintained by NVD

CWE ID

Target High-level overview of affected hypervisors.
Each item is represented by a vendor and its

product(s)

Description Used for classification via Natural Language
Processing. Provides contextual understand-

ing of vulnerabilities

Broad classification of vulnerabilities for cross-
hypervisor analysis

Table 2. List of Attributes and Their Meaning

Category

3.2 Data Organization

In total, 1536 vulnerabilities were gathered. 561 (36,52%) targeted
VMware products, 383 (24,93%) targeted Xen, 235 (15,29%) targeted
KVM and 213 (13,86%) Hyper-V. Note that some vulnerabilities target
two or more hypervisors, so that there might be overlaps in the
counting. The list of CVE files went under a curation process. For
clarity purposes, the attributes are presented and described in Table
2.

The dual-stratified categorization has two levels of granularity
and purposes. The first type of categorization lies on the Common
Weakness Enumeration (CWE), the industry’s standard proposed
by the MITRE Organization'. The community-driven taxonomy is
presented as a hierarchical tree of low-level vulnerabilities, where
each item has a base, class, and variant. The second type of catego-
rization lies on the work of Perez-Botero et al. [4], which outlines
11 functionalities offered by traditional hypervisors.

The 11 functionalities would have formed an overly granular
classification for the present 1536 vulnerabilities that used a corpus
for the SA-DNN, so an abstraction has been performed as follows:

e CPU
— Virtual CPUs
— Symmetric Multiprocessing (SMP)
e Device I/0
- I/O and Networking
- Paravirtualized I/O
e Control & Execution
— VM Exits
— Hypercalls
e Add-ons & Mgmt
— VM Management (configure, start, pause, and stop VMs)
— Remote Management Software

Uhttps://cwe.mitre.org/about/index.html

— Hypervisor Add-ons
o Interrupt Timer Mechanisms (ITM)
o Soft MMU

As such, hereby a 6-category taxonomy is adhered to. The CWE
taxonomy is kept as-is, ensuring standardized vulnerability identifi-
cation, whereas the 6-category taxonomy is present due to providing
a way to reach the research goals.

3.3 Data Preparation

The number of 1536 vulnerabilities was deemed too high for a
manual classification; hence, a Natural Language Processing (NLP)
model was employed. In those regards, the work of Vishnu et al. [6]
is present, which proposes a Self Attention - Deep Neural Network
(SA-DNN) to identify the category of vulnerabilities from their de-
scription via text mining approaches. The DNN was chosen because
it proves itself to be more effective at categorizing vulnerabilities
based on their description, with the model outperforming other
DNN models - Convolutional Neural Networks Long Short-Term
Memory Networks (CNN-LSTM), Graph Convolutional Networks
(GCN), and Support Vector Machine (SVM). Moreover, the ambiguity
and complex security contents of hypervisor descriptions require
a supervised learning model as a way to learn precise mappings
to the proposed 6-category taxonomy. The following steps have
been performed after the architectural description of the SA-DNN
presented in [6], with one improvement - this research replaces
word stemming with lemmatization.

3.3.1 Corpus Pre-Processing. The preprocessing stage involved sev-
eral intermediary steps: Tokenization, Case Normalization, Descrip-
tion Curation, and, building upon the presented architecture and
improving it, Lemmatization. The final step preceding Corpus Train-
ing, Testing and Modelling is characterized by Feature Extraction.
For a better representation of the meaning and purpose of each step,
an example is provided;

e "Windows Hyper-V, as in Windows 11, has a Remote
Code Execution Vulnerability!’.

Tokenization. The tokenization of vulnerability descriptions rep-
resents a method through which sentences are divided into smaller
units, usually words which are also known as tokens. Text mining
models require granular representations of paragraphs to better
process and understand the semantic correlation between different
words. The architectural implementation included, at this step, the
removal of punctuation or special characters, such as !, @, , or .,
through RegexpTokenizer from NLTK.

¢ "Windows’, "Hyper-V’, ’as’, ’in’, "Windows’, ’17’, "has’, ’a’,
’Remote’, ’Code’, ’Execution’, ’Vulnerability’.

Case Normalization. Case normalization is needed to ensure con-
sistency and avoid mistreating the words due to case variations.
This step is crucial due to the current text mining implementation
assigning weights to the meaning of words based on the context
[6]. Using native Python built-in functionalities, all tokens were
transformed into their lower case form.

¢ ’'windows’, ’hyper-v’, ’as’, ’in’, 'windows’, ’11’, ’has’, ’a’,
’remote’, ’code’, ’execution’, "vulnerability’.

TScIT 42, January 29, 2025, Enschede, The Netherlands.

4 «+ Alexandru Dan Culda

Description Curation. In order to exclude irrelevant noise, this
process implied removing stopwords, numbers, hexadecimals, and
special cases. Stopword tokens, such as "my", "on", "during”", or "this"
do not add meaningful context to vulnerability descriptions. The
NLTK built-in list of stopwords was used for filtering. Further on,
strings of words representing hyperlinks, memory addresses, and
byte packets were removed by only including words with a length
of at least 3 characters (to exclude instances such as a3 80 00 00 2f
9b and no more than 2 repeating letters (to exclude instances such
as fiffffffda). However, a check for words with a digit at the end was
included for meaningful words such as vmxnet3.

¢ 'windows’, ’hyper-v’, ’has’, 'windows’, ’remote’, ’code’,
’execution’, 'vulnerability’.

Lemmatization. As an improvement brought to the architecture
presented in the work of Vishnu et al. [6], lemmatization is used
instead of word stemming. Lemmatization is similar to stemming,
although is considered the superior method due to morphologically
analysing the words, resolving the ambiguousness of English?. For
example, the verb "have" might as appear as "had", "having" or
"haven’t", and lemmatization converges all variations into "have".
The WordNetLemmatizer library from NLTK has been used, such
that each token of each description is processed to acquire the
nltk_tag 3. The 36 categories of NLTK tags are mapped to 4 broad
categories (verbs, nouns, adjectives, adverbs) considering the first
NLTK tag letter (E.g., The NLTK tag starts with the letter J, therefore
it is mapped to an adjective). The resulting WordNet tag is analysed
and the vast majority of words are categorized, albeit technical
words specific to vulnerability descriptions are kept as-is if the tag
is None.

¢ 'window’, ’hyper-v’, ’have’, ’'window’, ’remote’, ’code’,
’execution’, ’vulnerability’.

Feature Extraction. The curated corpus served as a basis for the
process of building a Vocabulary Matrix, a matrix of all unique
words that appear across all 1536 vulnerabilities. Each word in the
vocabulary was assigned a unique index, and these indices were then
organized into the Vocabulary Matrix, where each row corresponds
to a vulnerability description and each cell represents the index
of a word. Each row was then padded with 0’s up to size 315, as
the SA-DNN model requires equal-size vectors. The 315 represents
the maximum size of a description in the corpus. Then, a different
matrix was created during the process called Word Embedding, the
methodology undertaken in the Embedding layer. Word Embed-
ding refers to the process of attributing numerical values to the
correlation between words. The co-existence of words in a corpus
might reveal meaningful correlations that are especially useful in
the context of textual mining for vulnerability classifications. GloVe
(Global Vectors for Word Representation) [3] creates a matrix of
word vectors by calculating the probability of each word occurrence
across the entire text dataset. Although a train on any given corpus
is possible, the restricted size of the present corpus prompted the
research to use GloVe’s 6-billion pre-trained embedding represented
as 100-dimensional vectors.

https://www.geeksforgeeks.org/python-lemmatization-approaches-with-examples/
Shttps:/www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

TScIT 42, January 29, 2025, Enschede, The Netherlands.

Category Keyword

Soft MMU ["page table", "shadow page", "TLB", "paging"]

Control & Exe- | ["Remote Code Execution"]

cution

CPU ["vCPU", "SMP", "CPU scheduling", "multi-
threading”, "Intel", "AMD"]

Device I/O ["paravirtual”, "emulator”, "PCI", "TOMMU",
"network stack", "I/O buffer overflow",
"vmxnet3", "NIC"]

IT™ ["APIC", "timer", "pit", "irq", "idt", "trap", "inter-
rupt"]

Add-ons & | ["vCenter", "plug-in", "management interface",

Mgmt "configuration file"]

Table 3. Category-to-Keywords mapping for training-test dataset

Therefore, every cell in Vocabulary Matrix was replaced with the
corresponding GloVe vector. Then, the result was presented to the
Bi-LSTM layer. The 6 target labels underwent a one-hot encoding
process to enable multi-class classification [6].

3.3.2 Corpus Training, Testing and Modelling. 536 vulnerabilities
out of 1536 were selected based on keywords for each category, as
can be seen in Table 3. The 536 vulnerabilities were preprocessed
as described in the aforementioned section and processed into a
Bidirectional-Long Short-Term Memory Layer (Bi-LSTM) and an
Attention Layer. Then, the results are flattened into a 1D vector, as
the last 2 steps, the Dense steps, expect a 1D input. The third-to-last
and second-to-last steps are paired with a Dropout layer in order to
overcome overfitting. The final step, the output layer, is activated
with the Softmax function. All layers are abstracted with the aid of
the Keras library.

Out of the 536 vulnerabilities, 80% were assigned to training
and 20% for testing. After multiple fine-tunes of hyperparameters, it
seems that the optimal configuration for the present 6-class problem
is: Epochs=15, Batch size=32, Attention Layer Dropout=0.3, Dropout
Layer=0.2, Early stopping=5.

4 RESULTS

Precision Recall F1-Score Support
CPU 0.75 0.75 0.75 32
Soft MMU 0.77 0.83 0.80 12
IT™ 0.36 0.36 0.36 14
Device I/O 0.71 0.67 0.69 18
Control & Execution 1.00 1.00 1.00 16
Add-ons & Mgmt 1.00 1.00 1.00 15
Accuracy 0.77 107
Macro Avg 0.76 0.77 0.77 107
Weighted Avg 077 0.77 0.77 107

Table 4. Classification Report for Vulnerability Categories

A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in Virtualization Subsystems « 5

CVEs per Category

Soft MMU

Control & Execution

mm

CVE Categories

Add-ons & Mgmt

Device /O

T T T T
100 200 300 400
CVEs Counter

o

Fig. 1. Number of Vulnerabilities per Category

Trend of Virtualization Vulnerabilities Over Time

Number of CVES
3 8 8 8 2

a
g

5
&

2010 2012 2014 2016 2018 2020 2022 2024
Year

Fig. 2. Trend of Virtualization Vulnerabilities Over Time

The precision, recall and F1-score presented in Table 4 are further
affected by one outlier, the Interrupt and Timer Mechanisms (ITM).
The following results reflect the analysis of a dataset that, due to its
niche nature, is limited in size.

Figure 1 illustrates the distribution of the 1536 vulnerabilities
under the 6-category classification. The results align with the ex-
pectations set by Perez-Botero et al. [4], as the Device Emulation
categories (i.e., I/O and Networking and Paravirtualized I/O) ac-
counted for more than one-third in their analysis. The vast attack
surface created by the I/O Devices or Add-ons and Management
Tools represents a tempting target for attackers. Their lower tech-
nical barrier and, in some cases, open-source characteristic make
them more accessible for researchers and professionals. In con-
trast, memory-related vulnerabilities - such as the ones associated
with the Soft MMU category - are considerably fewer due to being
complex and challenging to execute. The inherent complexity and
heightened risk of technical and operational errors act as barriers
that safeguard hypervisors.

Figure 2 presents the temporal trend of vulnerabilities from 2009
up to 2024. A steady increase can be seen from 2009 to 2012, followed
by a plateau of the following 4 years. A surge in 2017 follows after

CVEs by Hypervisor and Category (in %

)
Category
= Add-ons & Mgmt
m— cPU
== Control & Execution
= Device /O
- M
= Soft MMU
s =
3 %

Fig. 3. Bar Graph of Categories Distribution by Hypervisor

®
&

a
g

Percentage of CVES

s

100
40 I
0

HyperV
VMWARE

Hypervisor

that. Such an abnormal variation is thought to be attributed to the
security patches that followed the infamous low-level Meltdown and
SPECTRE attacks. A decline in reported vulnerability is observed
between 2020 and 2023, which may be attributed to the reduced
research and delayed disclosure process under the pandemic context.
2024 appears to be the starting point for an ascending slope that
will characterize the following years.

The bar chart presented in Figure 3 depicts the distribution of
vulnerability categories across the four hypervisors. Hyper-V has
the largest distribution across Control & Execution and Device I/O.
The split reveals that Hyper-V is susceptible to more attacks targeted
to hardware emulation or execution control, possibly due to the
integration within an equally complex software - Windows, an
Operating System. Control & Execution actions, such as API calls or
hypercalls possible are reasons for the predominant two categories.
It is crucial to specify that that present research pertains to the
stand-alone version of Microsoft Hyper-V; the version included in
Microsoft Server environments exhibits separate characteristics.

KVM and Xen present a more balanced categorical distribution.
When compared to Hyper-V, KVM has a noticeable drop in Control
& Execution and Device I/O-based flaws, possibly due to a deeper
integration within the Linux kernel; hence, it offers the hypervisor
more mature privilege separation mechanisms. Its largest two vul-
nerability categories, CPU and ITM, suggest that, as a drawback
of its deeper integration within the Linux kernel, precise timing
attacks over the CPU are easier to execute. The reason might be
likely due to its reliance on Linux Kernel scheduling.

VMware is severely prone to Add-ons & Management attacks.
The vast exposed surface possibly stems from its unique complex
infrastructure such as: extensions through enterprise integrations,
web-based management interfaces, APIs, or cloud management tools.
As a characteristic of closed-source products, including VMware,
there is a minimal number of Soft MMU-based vulnerabilities. A
possible trade-off is visible - clients choose between the pricey and
more opaque closed-source hypervisors, which may reduce the
attack surface, or the low costs and transparency of open-source
alternatives, which are possibly more susceptible to sophisticated
attacks.

Xen, as opposed to other hypervisors, exhibits a nearly equal
distribution of Soft MMU, ITM, CPU, and Device I/O-based vulner-
abilities. The disproportionately high share of Soft MMU attacks

TScIT 42, January 29, 2025, Enschede, The Netherlands.

6 « Alexandru Dan Culda

Top CVESs by (Category, CWE) Across Hypervisors

vevice 1020 | " .
Control & Execution 20 :
Device 10119 - f ;
Device 10:264 - 2 .

ma-20 - o £l

4
2
13
7
o |
faboms & wamast ° ° ° [~
1
1
4

Category / CWE ID

cPu-a76 - 1 2
-264 - o 5

Add-ons & Mgmt-79 - o 1
Device 1/0-399 - 1 5

Hyperv KM VMWARE XEN
Hypervisor

Fig. 4. Heatmap of the 6 categories grouped by CWE on the 4 hypervisors

might stem from Xen’s architecture that emphasizes paravirtual-
ization, exposing it to low-level virtualization mechanisms such as
shadow paging. Device I/O vulnerabilities remain steadily at ap-
proximately 20%, with minimal variation between hypervisors. The
distribution of the category depicts how Xen, alongside VMware,
KVM, and Hyper-V, are more prone to virtualized device emulation
attacks. A possible explanation would be the widespread adoption
of shared emulated devices, alongside the lower technical barrier
for exploitation.

Figure 4 presents a structured breakdown of CVEs across the four
analysed hypervisors. It categorizes the vulnerabilities based on the
proposed taxonomy and their associated CWE IDs. The discrepancy
between Hyper-V and the rest of the three counterparts is noticeable,
with the exception of CWE ID 20 (Improper Input Validation) in
Control & Execution and Device I/O-based attacks. There is evidence
that vulnerabilities targeting Hyper-V are not transferable to other
hypervisors. Hyper-V exhibits signs of (Device I/O + CWE-20) and
(Control & Execution + CWE-20) issues, possibly due to a deeper
integration with the proprietary Windows ecosystem. Certain flaw
types (e.g., Device I/O and ITM) showcase evidence of meta-bugs
appearing across KVM, VMware, and Xen, whereas the Add-ons
& Management or CPU appear to be more vendor-specific. With
the exception of Device I/O attacks coupled with CWE-119 (i.e.,
Improper Restriction of Operations within the Bounds of a Memory),
Xen exhibits a lower degree of transferability, indicating that its
paravirtualization emphasis vastly affects the exposure to different
classes of attacks.

5 THREATS TO VALIDITY
5.1 Construct Validity

Specific to this study, the construct validity refers to the 6 categories
used as a labelling method for the 1,536 vulnerabilities. The number
of 6 categories was used to achieve an optimal balance between
granularity and abstraction, providing the ideal input for the accu-
racy of the model. The type of obtained results are in line with what
was expected before performing the analysis.

5.2 Internal Validity

In the case of the present study, confounding factors affecting inter-
nal validity are expressed through inconsistencies or errors within
the NVD dataset and selection bias stemming from years when

TScIT 42, January 29, 2025, Enschede, The Netherlands.

certain hypervisors were not yet released. The first confounding
factor was addressed by eliminating vulnerabilities that were classi-
fied as Rejected. The second factor was addressed by initiating the
analysis from the year immediately after the most recently released
hypervisor.

5.3 External Validity

The small corpus of 1,536 vulnerabilities, albeit inherently small
due to the complexity of the topic, limits the generalizability of the
findings. Although NVD presents itself as an exhaustive dataset,
certain real vulnerabilities might not be present. The aforementioned
two aspects count as threats to the validity.

5.4 Conclusion Validity

Future research should aim to improve the model accuracy metrics
by expanding the 1,536 corpus used for the present research. The
expansion could be achieved either by abstractifying the niche topic
with other virtualization solution, or by extending the temporal in-
terval, considering vulnerabilities from previous years. Subsequent
research exploring alternative classification models is possible, albeit
attention must be paid upon the granularity of such classification;
more categories may result in lower accuracy metrics in a niche
dataset of which entries are inherently low due to the high technical
complexities of VMMs.

6 CONCLUSIONS

6.1 General Conclusion

The analysis highlights that while attackers can pivot from one hy-
pervisor to another, the degree to which it is possible vastly depends
on the category and involved hypervisors. Some categories show
no evidence of cross-hypervisor meta-bugs, whereas others do. As
seen in Figure 1, Device I/O and Add-ons & Management vulner-
abilities appear consistently across all four analysed hypervisors,
irrespective of the CWE ID, reinforcing the idea that virtualized em-
ulated devices, both proprietary and open-source, remain the largest
attack vector and attract the efforts of attackers and researchers.
The number of virtualization vulnerabilities has fluctuated over
time, albeit the idea that the hypervisor-based threat landscape is
evolving remains. The lower number of documented vulnerabilities
in 2018, after the SPECTRE and MELTDOWN attacks, indicates
a reactive rather than proactive approach from the industry. By
highlighting an ascendant trend of virtualization vulnerabilities,
the present study suggests a collaboration among KVM, VMware,
and Xen to establish standardized security measures, enhance vul-
nerability mitigation strategies, and promote a unified response
mechanism against emerging threats.

6.2 Research Question Answers

6.2.1 Which hypervisor functionalities account for the largest
share in virtualized environments? The results suggest that De-
vice I/O (430) and Add-ons & Mgmt (352) account for the largest
share of vulnerabilities across hypervisors.

A Cross-Hypervisor Analysis of Recurrent Vulnerability Categories in Virtualization Subsystems « 7

6.2.2 How are vulnerabilities distributed across Hyper-V,
KVM, VMware and Xen when categorized based on hyper-
visor functionalities? This study reveals an even vulnerability
distribution across hypervisors. If KVM shows a higher proportion
of CPU and ITM-based flaws, VMware exhibits indications of sys-
temic flaws in its add-ons and management tools. Hyper-V has a
disproportionate amount of vulnerabilities in the Device I/O and
Control & Management categories, possibly due to the exposure of
low-level integrations within the Windows Operating System, such
as API interactions or hypercalls. In contrast, Xen demonstrates a
more balanced distribution of only 4 out of 6 categories. The distri-
bution is attributed to Xen’s development principles of following a
leaner architecture or privileged domains (Dom0).

6.2.3 Do conceptually similar vulnerabilities recur across
Hyper-V, KVM, VMware and Xen? This study does not present
evidence of systemic flaws between the analysed 4 hypervisors.
While some functionality-based categories, coupled with CWE IDs,
might reveal underlying cross-hypervisor meta-bugs, the vast dif-
ference between architectural implementations prevents attackers
from easily pivoting from one hypervisor to another.

REFERENCES

(1]
(2]

NVD - Home. URL: https://nvd.nist.gov/ (visited on 01/19/2025).

Michael Pearce, Sherali Zeadally, and Ray Hunt. “Virtualization: Issues, security
threats, and solutions”. In: ACM Computing Surveys 45.2 (Feb. 2013), pp. 1-39.
ISSN: 0360-0300, 1557-7341. DoI: 10.1145/2431211.2431216. URL: https://dl.acm.
org/doi/10.1145/2431211.2431216 (visited on 11/29/2024).

Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). EMNLP 2014. Ed. by
Alessandro Moschitti, Bo Pang, and Walter Daelemans. Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1532-1543. por: 10.3115/v1/D14-
1162. UrL: https://aclanthology.org/D14-1162/ (visited on 02/01/2025).

Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. “Characterizing hypervisor
vulnerabilities in cloud computing servers”. In: Proceedings of the 2013 interna-
tional workshop on Security in cloud computing. ASIA CCS ’13: 8th ACM Sympo-
sium on Information, Computer and Communications Security. Hangzhou China:
ACM, May 8, 2013, pp. 3-10. ISBN: 978-1-4503-2067-2. DOI: 10.1145/2484402.
2484406. URL: https://dl.acm.org/doi/10.1145/2484402.2484406 (visited on
01/21/2025).

Ernesto Rosario Russo et al. “Summarizing vulnerabilities’ descriptions to support
experts during vulnerability assessment activities”. In: Journal of Systems and
Software 156 (Oct. 2019), pp. 84-99. 1sSN: 01641212. poI: 10.1016/].js5.2019.06.001.
URL: https://linkinghub.elsevier.com/retrieve/pii/S016412121930130X (visited on
01/21/2025).

P. R. Vishnu, P. Vinod, and Suleiman Y. Yerima. “A Deep Learning Approach
for Classifying Vulnerability Descriptions Using Self Attention Based Neural
Network”. In: Journal of Network and Systems Management 30.1 (Jan. 2022), p. 9.
ISSN: 1064-7570, 1573-7705. poI: 10.1007 /810922 - 021 - 09624 - 6. URL: https:
/Mlink.springer.com/10.1007/s10922-021-09624-6 (visited on 01/20/2025).

TScIT 42, January 29, 2025, Enschede, The Netherlands.

https://nvd.nist.gov/
https://doi.org/10.1145/2431211.2431216
https://dl.acm.org/doi/10.1145/2431211.2431216
https://dl.acm.org/doi/10.1145/2431211.2431216
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162/
https://doi.org/10.1145/2484402.2484406
https://doi.org/10.1145/2484402.2484406
https://dl.acm.org/doi/10.1145/2484402.2484406
https://doi.org/10.1016/j.jss.2019.06.001
https://linkinghub.elsevier.com/retrieve/pii/S016412121930130X
https://doi.org/10.1007/s10922-021-09624-6
https://link.springer.com/10.1007/s10922-021-09624-6
https://link.springer.com/10.1007/s10922-021-09624-6

	Abstract
	1 Introduction
	1.1 Context and Motivation
	1.2 Specific Problem
	1.3 Research Questions
	1.4 Approach
	1.5 Structure

	2 Related Work
	3 Methodology
	3.1 Data Collection
	3.2 Data Organization
	3.3 Data Preparation

	4 Results
	5 Threats to Validity
	5.1 Construct Validity
	5.2 Internal Validity
	5.3 External Validity
	5.4 Conclusion Validity

	6 Conclusions
	6.1 General Conclusion
	6.2 Research Question Answers

