MSc Computer Science
Final Project

Code Green: Evaluating the
Carbon and Energy
Implications of LLM
Integration in Software
Development

Boris Belchev

Supervisor: Fernando J. Castor de Lima Filho & Maya Daneva

February, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.

Contents

1 Introduction 1
1.1 Research objectives 2
2 Background 4
3 Related Work 8
4 Methodology 9
4.1 Model selection 9
4.1.1 Criteria 9
4.1.2 Selected models 10
4.2 Dataset selection e 12
4.3 Experiment setup 14
4.3.1 Environment Evaluation and Selection 14
4.3.2 Hardware 14
4.3.3 Precision Trade-offs: BFloat16/Float16 vs. FP32 in Inference 14
4.4 Experiment designo 15
4.5 Multi-Objective Optimization Using Pareto Frontier 16
5 Results 18
5.1 RQI1: What are the energy and carbon impacts of LLMs in software devel-
opment? L. e 18
5.2 RQ2: How do coding, fine-tuned, and general-purpose models compare in
efficiency? 19
5.2.1 Coding versus fine-tunedo 20
5.2.2 General with fine-tuned twin versus fine-tuned twin 21
5.2.3 Fine-tuned versus general (all) 23
5.2.4 Coding versus fine-tuned and general 25
5.3 RQ3: How does energy consumption vary across different software develop-
ment tasks? L. L 27
5.3.1 Overall comparison 27
5.3.2 Breakdown on types: coding, general, finetuned 28

5.4 RQ4: What characteristics of the model influence energy use and efficiency? 28

6 Discussion 30
6.1 Energy in Action: Scaling LLMs for Real-World Code 30
6.2 Not All Models Are Created Equal 30
6.3 Context matters: Tasks aren’t equal aswell 31
6.4 Breaking the Myth: Bigger Isn’t Always Better 32

Threats, Conclusions & Future Work
7.1 Threats to validity o

7.2 Conclusions
7.3 Future work

Models

B Prompts

C Data

34
34
34
35

41

42

46

Abstract

Large Language Models (LLMs) have demonstrated incredible growth in their capabilities
and the opportunities they provide, which has caught the public’s attention. The domain
of software development is naturally more inclined to bear the fruits of these advancements.
However, deploying and using LLMs on a large scale comes with the burden of using more
energy and releasing more carbon emissions. Although research has focused on the training
costs of these models, there is a gap left uncovered and questions to be answered about
the deployment phase. Therefore, this study aims to fill the gap and evaluate the use of
LLMs in their inference stage. More specifically, in the context of software development.
Through a series of experiments, this study quantifies the energy consumption of coding
and general-purpose models across code-related tasks, such as code generation, bug fixing,
documentation and testing. The findings provide insights into the trade-offs between ac-
curacy and energy efficiency, helping guide future research and development toward more
sustainable and effective LLM deployment.

Keywords: Green Al, LLM, Large Language Model(s), Inference, Software Development,
Energy, Sustainability

Chapter 1

Introduction

Artificial intelligence (AI) has recently experienced a very rapid development, which has
contributed to improving its adaptability and integration across industries. Particularly,
Generative Al, a subset of Al specializing in generating content such as text, images, or
audio from data patterns, has undergone significant growth. This growth was triggered by
the introduction of the transformer model in 2017 [55]. In turn, led to the creation of the
first Generative Pre-trained Transformer (GPT) models, which set the stage for OpenAl’s
GPT family of Large Language Models [4]. Following that, major tech companies, such
as Google and Meta, released their generative models, namely BERT and LLaMa[15, 54].
However, this wave of new LLMs was not exhausted, as many new models were released
afterwards, and companies were founded specialized in that area, like Mistral [37].

Generative Al extended beyond the confines of research and professional spheres closely
associated with Artificial Intelligence and captured the wider public’s interest. For exam-
ple, ChatGPT reached 1 million users five days after its release, beating other services and
technologies like Facebook and Instagram [17]. Another report about adults in the US
showed that 70 % of respondents are aware of it, while almost 31 % have used Generative
AT chatbots like ChatGPT, Bing and Bard. Apart from the general public becoming more
aware of generative Al, businesses have indicated that they have either already used or are
planning to use GenAl, with only 1 % saying that they do not intend to use it in their
business [44].

From the sectors leveraging Generative Al, software development is expected to be one
of the primary beneficiaries. This can be seen from the results of surveys conducted in 2023
by StackOverflow and GitHub, which revealed a significant use of Al tools among software
engineers. In the first survey, 44 % of developers use Al tools, and 25 % plan to, while the
second survey concludes that 92% of US developers use Al tools |2, 20]. In this domain,
GenAl finds its application mainly through coding assistants powered by fine-tuned Large
Language Models such as OpenAI’s Codex (fine-tuned GPT-3) or Code LLaMa (fine-tuned
LLaMa)[42, 35, 46]. Unlike the traditional conversational interface approach, they integrate
into developers’ IDEs, suggesting and completing code in real-time.

LLMs offer improved efficiency and vast potential across numerous applications in life;
however, they inherently require substantial computational resources [40, 60]. For instance,
training the LLaMa models, the Meta team spent 1,770,394 GPU hours using high-end
NVIDIA GPU A100-80GB . In terms of energy, the 7B (billion parameters) and 65B
models consumed 36 MWh and 449 MWh of energy, where the former is analogous to the
annual energy use of 13 households and the latter to 160 households in the Netherlands

!Source: "NVIDIA A100 Tensor Core GPU," available at: https://www.nvidia.com/en-us/
data-center/al00/.

https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/

[11, 54]. Continuing this notion, it was derived that the carbon emitted for training the
65B parameter version is equal to 173 metric tons, equivalent to the annual emissions of 37
US cars [3]. This shows a considerable energy and emissions footprint from training these
models. However, training the model is often a one-time event. At the same time, a more
interesting area of exploration is the energy usage of the LLM’s deployment phase, or the so-
called inference. As discussed previously, software development is inherently more inclined
to adopt Al tools such as GenAl for tasks within the field. Despite growing research on
inference energy usage, studies have focused predominantly on general-purpose tasks such
as question-answering context. There is a gap in research on software development tasks
such as code generation, code completion, etc., which this study aims to fill. To address
the gap in existing literature, the study will encompass a series of experiments on different
proprietary Large Language Models measuring the energy used by inference for different
software development tasks related to coding. The models will be selected according to
criteria such as popularity, performance, etc. Because of the proprietorial nature of some
of the most notable examples, such as OpenAl’s GPT model, the study will not attempt
to analyze them and will focus on locally downloadable open-source models. The results
will provide a more comprehensive understanding of the energy implications of LLMs in
software development.

This thesis is part of a broader research effort, culminating in a published study at the
22nd International Conference on Mining Software Repositories (MSR 2025). The paper,
co-authored by Negar Alizadeh, Boris Belchev - the author of this thesis, Nishant Saurabh,
Patricia Kelbert, and Fernando Castor, titled Language Models in Software Development
Tasks: An Experimental Analysis of Energy and Accuracy, presents key methodological
approaches, analysis of the results, and findings from this research [5].

1.1 Research objectives

The main objective of this study is to investigate the energy consumption and carbon emis-
sions associated with the use of Large Language Models (LLMs) in software development.
Specifically, the study will explore the following research questions:

RQ1: What energy consumption and carbon emissions are associated with using Large
Language Models (LLMs) in software development?

To answer this research question, we conducted experiments that comprise deploying
a sample of selected LLMs and measure the energy used during inference of tasks, such as
code generation, documentation, bug fixing and test generation. The measurements will
cover a large sample of LLMs from different research teams and companies. The answer
to this question should provide quantitative data on a large enough sample to support the
derivation of estimates on the overall usage of LLMs and their implications.

RQ2: How do coding models, fine-tuned models, and general-purpose LLMs compare
in software development tasks in terms of energy usage and efficiency?

In this study we differentiate the models in three types: coding models, which are specif-
ically designed and trained to generate programming language text; general models, which
are primarily designed for generating natural language text but can also generate program-
ming language text; and fine-tuned models, which are general models further trained or
fine-tuned specifically for generating programming language text. The study will compare
the energy efficiency of fine-tuned or purely coding models versus general-purpose LLMs.
Its aim is to identify if there are energy and carbon savings between using specialized
coding models and general-purpose models. In addition, it will indicate whether further
fine-tuning of a model might enhance its efficiency.

RQ3: How does the energy consumption of LLMs vary across different software devel-
opment tasks, such as code generation, bug fixing, documentation, and testing?

This research question focuses on the differences in energy consumption in software de-
velopment tasks. It helped us identify existing efficiency gaps in particular tasks compared
to others. By comparing the energy efficiency of the tasks, it will also provide guidance on
which ones can be utilized most efficiently and for which tasks better approaches might be
needed in the future.

RQ4: What characteristics of Large Language Models (LLMs) impact energy con-
sumption and efficiency in software development tasks such as code generation, bug fixing,
documentation, and testing?

This question investigates the influence of model characteristics, such as parameter
count, transformer block count, embedding size, and attention head count, on energy
efficiency and accuracy. By using correlation analysis, the study identifies key architectural
features that affect performance, helping to optimize model design for specific tasks and
operational constraints.

In summary, the research objectives of the study will seek to provide an answer to small
or medium enterprises that want to preserve their privacy and choose the best solution ac-
cording to their infrastructure and requirements. This involves filtering out cost-ineffective
and environmentally harmful options to deploy their own locally available LLM.

Chapter 2

Background

LLMs, or Large Language Models, find their roots in Deep Neural Networks (DNNs). DNNs
are a common term for a family of artificial neural networks based on their principles and
working, such as Convolutional neural networks (CNNs) and Recurrent neural networks
(RNNs). Deep Neural Networks consists of multiple layers in between input and output.
At the same time, those layers consist of neurons, synapses, weights and biases, drawing
inspiration from the structure and functioning of the human brain [8]. Fundamentally, deep
neural networks (DNNs), in their basic forms, are not well suited for language modelling.
Therefore, LLMs were based on the idea of Recurrent neural networks, which are more
suitable for language tasks [52, 51, 27].

LLMs do not process words as directly as text as humans usually do. They use tok-
enization schemes to convert words to numbers, which come predefined in the tokenizer
of the model. These numbers are associated with embeddings, vectors representing the
word (or part of the word). Embeddings are not hard-coded or predefined, but are
learned during the training process. Using these embeddings is what the model pro-
cesses as input to generate an output (Figure 2.1). In addition to that, tokenizers also
have special tokens, such as [END]|, which marks the end of a sequence, or [PAD]| for
padding. They serve more of an organizational purpose where the model is specifically
trained to recognize them and adjust its behavior, e.g. when the model observes [PAD]
in the input, it simply ignores them as it knows they are not needed for the prediction.
However, there are slightly different ap-
proaches to tokenization, such as Byte Pair BEE is howBENEOREREEE works!
Encoding (BPE) and WordPiece [50, 49]. / / / [N .
In both approaches, the word is first di- (1212, 318, 703, 262, 11241, 7509, 2499, 0]
vided into the individual characters, but at

the next step in the former, it merges the [[0.12, -0.03, .45, 0.07, -0.18],
characters on the most frequently occurring [e.34, ©.08, -0.22, 0.09, 0.04],

o . . * [-e.19, .21, 0.11, -0.85, 8.02],

together criteria while the latter directly [0.01, -0.09, ©.36, 0.12, -0.03],
starts forming subwords and checking for © [0.43, 0.12, -0.33, 0.45, 0.27],

) _ . [e.22, -0.14, 0.29, .83, -8.01],

an occurrence of this subword in a prede- [-0.05, 0.17, ©.06, 0.15, -0.22],
fined vocabulary. [0.00, 0.00, 6.00, 0.00, 0.00]]
As with every program and machine, FIGURE 2.1: Transformation of input
LLM comes with adjustable parameters. through tokenization and conversion

Those hyperparameters control the be- to embedding.

haviour during training and inference. One
such important parameter is the tempera-
ture. Temperature controls the model’s 'creativity’ or randomness, where higher tempera-

ture gives more random and diverse responses. Lower temperature makes the model more
deterministic - it chooses the most likely response. The hyperparameters do not get ex-
hausted with temperature, but there are also top-p, sampling, maximum length, maximum
new tokens, etc. The top-p, for example, limits the pool of possible answers (0.95 value
means only the top 5% most likely answers participate in the pools), and the max new
tokens limit the number of new tokens to be generated!. In contrast, max length limits the
length of the response counting and including the input. Large Language Models (LLMs)
vary not only in size but also in the architectures that underlie them and power their
capabilities. Depending on the context of usage, several terms are used for these types of
architecture.

Encoder-decoder architecture has two components: the encoder that processes the
input to internal abstract representation, and the decoder utilizes that to generate target
output text. Depending on the context, this architecture can also be recognized as Seq2Seq
(Sequence to Sequence) whenever the focus is on translating sequences of varying lengths,
where the whole sequence is encoded to decode the target output [52|. Additionally, when
the model, instead of processing the entire sequence it focuses on important parts of it, it
is regarded as Attention or Transformer|55].

The decoder-only architecture uses of only one component: the decoder. Models
utilizing this architecture generally try to predict the subsequent tokens from the ’initial
state’, which can be a prompt, such as "This paper is about...". The state-of-the-art refers
to this architecture with different terms, such as generative or autoregressive |45, 10].

The encoder-only architecture uses the encoder component only by capturing the
essence of the input and translating it into a high-dimensional vector or abstraction to
detect the underlying pattern. It is also known as Bidirectional, Feature Extractors,
and Contextual Embedding, each highlighting a unique facet of this architecture [15].
Due to the foundational relationship between LLMs
and DNNs, they inherit a valuable property known
as transfer learning. Transfer learning is a capa-

bility of neural networks that, once pre-trained on

a dataset(s), can be retrained or fine-tuned on a Floating point Integer
smaller task-specific dataset while leveraging the 6543.1234 —} 6543
previous knowledge gained [23|. This allows the

model to gain new knowledge in a task with fewer 32-bit 8-bit

data and computational resources. Examples of
fine-tuned code models are CodeLlama, a fine-tuned
Llama2 general model, and CodeGemma, which is —} 0110100
based on Gemma. On the other hand, a coding
model can also be trained from "scratch", where
such cases are StarCoder2 and Granite Code. FIGURE 2.2: 32-bit floating-

As Large Language Models evolve, their com- point to 8-bit integers.
plexity and size increase, and the demand for more
computational power rises. Innovative techniques
such as quantization of neural networks are employed to address this. Quantization
reduces computational requirements by transforming the floating-point representation of
weights and activations into integers (Figure 2.2). That method makes the model more
accessible to a broader range of devices with less computational power, such as personal
computers and notebooks. There are different approaches to performing quantization.

1Source: "Model Parameters and Prompting,"

saas?topic=lab-model-parameters-prompting.

available at: https://www.ibm.com/docs/en/watsonx/

https://www.ibm.com/docs/en/watsonx/saas?topic=lab-model-parameters-prompting
https://www.ibm.com/docs/en/watsonx/saas?topic=lab-model-parameters-prompting

Examples include Post-Training Quantization (PTQ) and Quantization-Aware Training
(QAT). Different quantization levels, e.g. 8-bit and 4-bit, offer trade-offs between perfor-
mance and accuracy [39, 25|.

One important aspect of large language models is their evaluation after training.
Evaluating can cover different aspects, such as how much a model text is human-like or
how well the model answers to previously unseen data. All these have associated metrics
such as BLEU and perplexity and datasets with predefined tasks used to carry out the
evaluations. For code generation, one such dataset is HumanEval, introduced by OpenAl
for evaluating their coding model - Codex[13]. It contains prompts with Python functions
and docstring, which must be completed. A newly defined metric, called pass@n, was
used to measure the accuracy. There are slightly different variants of that metric, such as
pass@1, pass@10 and pass@100, which differ in the number of attempts to be measured.
The first is the strictest, where the model accuracy is measured from the first attempt to
determine if the generated code will pass the test suites. At the same time, the rest give
the model multiple attempts where one successful generation is counted as positive. Since
the introduction of this way of evaluating the coding capabilities of models, the dataset
has been extended through HumanEval-X to other languages such as Java, C++, etc., and
through HumanEvalPack to other tasks such as bug fixing and explaining code and via
HumanEvalPlus with more tests|38, 30]. The first entry of HumanEval is shown in Figure
2.3.

task_id

HumanEval/0

prompt

from typing import List

def has_close_elements{numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>>has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

canonical_solution
for idx, elem in enumerate{numbers):
foridx2, elem2 in enumerate(numbers):
if idx = idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True

return False

test

METADATA = {
‘author’: 'jt',
'dataset": "test’

}

def check(candidate):
assert candidate([1.0, 2.0, 3.9, 4.0,5.0, 2.2], 0.3) == True
assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False
assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True
assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False
assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True
assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True
assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

FIGURE 2.3: HumanEval task adapted from Yetigtiren et al. (2022) [57]

Software development is concerned with all phases of a software from the initiation
to the post-deployment activities. It includes tasks such as designing, documenting, im-

plementing, testing and maintenance. It employs different methodologies such as Agile,
Waterfall and etc. (Figure 2.4). These methodologies have different advantages and dis-
advantages according to the context of the software to be developed. Agile is based on the
incremental development philosophy and it is more suitable for software that should keep
up with changing customer and market requirements. On the other side, Waterfall tends
to be more traditional approach ideal for software with stable requirement and regulatory
obligations [24]. Regardless of the methodology, the core processes involved in software
development remain consistent. LLMs integrate into the software development context in

Requirements
specification
A
‘ Design
4
Implementation &
Testing
A
Integration and
system tests

A

Deployment &
Maintenance

FIGURE 2.4: Waterfall model with stages of focus for this study highlighted in
blue. Based on "Software engineering" 10th edition of Ian Sommerville [24]

several ways, including chat interface models such as OpenAIl’s GPT 3.5 and 4 and coding
assistants such as GitHub CoPilot embedded in the IDE, subtly providing generations and
completions. In the former case, the user should explicitly write instructions to the LLM
in the provided interface with context on what to generate. In contrast, in the former, the
model, without explicit prompting, suggests completion of the unfinished code, as shown
in Figure 2.5.

Write a binary search algorithm
const binarySearch = (arr, target) == {

@ Here s a binary search algorithm in JavaScript using the arrow function syntax:

Javasaript

left = ¢;
right = arr_len

const binarySearch = (

(left ¢~ right) {
mid - 5 ((left + right) / 2);

target) {

(A) GitHub Copilot (B) ChatGPT 4

FIGURE 2.5: Binary search algorithm implemented in both approaches.

Chapter 3

Related Work

This chapter aims to describe the current state of research related to measuring energy
usage of the inference phase of LLMs. One of the first examples is the work of Luccioni et al.
[34], which estimates the energy in the life cycle and the carbon footprint of the BLOOM
176B model. It sets a precedent by also studying the deployment stage of the model. The
model was hosted on the Google Cloud Platform, and measured the inference energy was
measured over a period of 18 days. Following this first study, subsequent research delved
explicitly into the deployment phase of state-of-the-art models of Meta AI. This work
measured the energy consumption of three different model sizes using two datasets: one
for general question-answering tasks and another for mathematical problem-solving [47].
Moreover, a study was conducted that provides a comprehensive analysis and comparison
of inference energy costs across a wide range of generative systems, including both task-
specific and general-purpose models [33]. The work utilized 88 models over 10 tasks and
30 datasets, including image generation, text completion, etc. The study presented key
insights into the area, pointing out that generative tasks tend to produce more carbon
and consume more energy than discriminative ones. Furthermore, it found that task-
specific models are more energy efficient for these same tasks than the general-purpose
ones. The analysis extends to comparing the efficiency of different architectures: encoder
only, decoder only, and encoder-decoder. Lastly, a review-based study examined existing
research on training and inference costs. The focus is on the trends of models’ energy usage
as performance and size increase. In the area of natural language processing, it referred to
past studies that used the GLUE benchmark to estimate their compute costs. Some of the
cutting-edge models under review are GPT and BERT. The findings indicate that, while
larger models require more computational power energy, advances in newer models allow
them to achieve the same performance using less power. Contrary to previous assumptions,
it was found that the growth of energy consumption is not exponential but rather gradual
due to algorithmic and hardware improvements. The study also highlights the scarcity of
research for the inference phase of models compared to the training phase [14]. A recent
work by Faiz et al. (2023) went further and created a large language model which estimates
the carbon footprint and, with that, the energy usage by using different factors as input,
such as parameter count, TFLOP, and hardware efficiency called LLMCarbon [19].

Chapter 4

Methodology

This chapter of the study describes the methodology, employed to assess the energy con-
sumption and operational efficiency of large language models (LLMs) in software devel-
opment contexts. The methodology has several different aspects: selection of models to
assess (Section 4.1), selection of dataset covering the different software development activ-
ities (Section 4.2), setup, and design of the experiment that will produce results on the set
problem (Sections 4.3 & 4.4) and lastly it will dicuss possible derived metrics to be used
for effective comparison (Section 4.5).

4.1 Model selection

4.1.1 Criteria

The choice of different LLMs is important as it impacts the relevance and applicability of
the study’s findings. Therefore, the selection process adheres to a defined set of criteria:

e Popularity: Popular models among the community are more likely to see widespread
adoption and continued support, which adds to the relevance of measuring their
energy impact. Popularity can be measured by the number of downloads of the
model. The data about a number of downloads is sourced from HuggingFace [1].
This will ensure that the results are applicable to the most commonly used models
in real-world scenarios. For the sake of consistency, the total number of downloads
is summed across every variation and version of the same model, independent of size
(e.g., 3B or 7B) or type. Furthermore, only repositories provided by the model’s
original creators are included, excluding those modified by third parties.

e Research presence: Models that are included in research papers on comparing
performance or evaluating the model’s capabilities in different aspects etc. show a
robust basis for inclusion. This will enhance the validity and the value of the study
as it will position it among the existing literature.

e Reputability of creator: While this criterion can be arguably subjective, it is still
important. Companies and research teams that have substantial funding and support
from other entities in the field are perceived as more likely to develop further and
support their models. They are assumed to have a larger infrastructure and more
research capabilities as they strive for competitiveness with other key players in the
field. For example Google and its research team made significant breakthroughs in
the field and became a key figure in the field of AI. Choosing models according to
that criteria increases the value of the results as small or medium-sized companies

would be more likely to contract such entities and deploy their models as they already
have experience in the field of provided SaaS solutions.

e Coding vs General LLMs: Models with general purpose versions and fine-tuned
coding versions will also be included (e.g. Code Llama vs LLaMa). This will facili-
tate comparison to asses whether optimizations related to the software development
context have a positive energy impact. Due to limitations such as some popular
and well-known models not having fine-tuned versions or otherwise, this criteria will
not be of high priority (e.g. Mistral). Apart from that, an equal number of general
models should be selected to serve as a baseline for the coding models. Additionally,
general models might be better in certain tasks, such as documentation; therefore,
this would allow for a nuanced analysis of the trade-offs between generalization and
specialization.

e Proprietary vs open-source: Because some models are private and not available
for download and local setup, such as GPT-3 and 4, those models automatically are
excluded from the study. The study will focus on models that are either open source
or accessible under specific licensing agreements (e.g. Meta models), requiring users
to accept terms and conditions before downloading. These models can be set up
locally, ensuring accessibility and reproducibility of the research findings.

4.1.2 Selected models

Using survey studies on Large Language models in the context of software engineering
and coding, the study sourced 33 models specialized in code [59, 58, 22|. Certain models
identified as "specialized in code" in these studies were omitted based on a more rigorous
interpretation of what constitutes a large language model for coding in this research. In
this study, models explicitly designed and aimed at coding tasks such as code generation
and bug fixing are considered, whereas those that also serve general Q&A purposes are
categorized as "general". For example, GPT-Neo by EleutherAl and Phi-2 by Microsoft
were excluded because they target a wider array of tasks beyond coding, even though they
were listed under coding LLMs in those studies due to their competitive performance in
evaluations [9, 29]. In Figure 4.1, the ranking of models based on their download counts
is displayed. To narrow down the selection, models with more than 10,000 downloads are
categorized for the subsequent phase of selection. Among the models in the green box, the
Phind codellama was excluded because it did not meet the reputability criteria. Details
about the organization 'Phind’ were unavailable. Additionally, since it is derived from an
existing model by Meta, it does not constitute entirely original work. We also removed
StarCoder and SantaCoder, both of the BigCode research teams. The reason for their
exclusion is that Starcoder represents an older version of StarCoder2. Therefore, it is more
suitable to look at the most recent iteration. SantaCoder is excluded because it is one of
the oldest models from that team and lacks community activity and updates. Phi-1 is also
excluded as it is the oldest iteration from Microsoft’s Phi family, and since version 1.5 they
hadve been focusing more on general tasks. Therefore the model purpose changed with
every iteration.

The research also seeks to determine whether general-purpose models consume more or
less energy compared to their coding-specific counterparts in code-related tasks. To facili-
tate this comparison the general-purpose equivalents must be considered. For CodeLlama,
this equivalent is Llama2, and for CodeGemma, it is Gemma. During the course of the
study, Meta introduced a new model dubbed Llama3, which is included to increase the
study’s relevance considering it is the most likely successor. The remaining models lack

10

Popularity on Huggingface

250,000

200,000
150,000
100,000
50,000 | I
0 1 1
@‘\0 o (\\@ 2 2

& £ & & & Q& 0 & &] & 2 N & ®
N Loé F &F S &« & Qob Qb & FlS F o E P (Job ¢ & & F & O
P RO A S S S R O PO O
& & @ < ® Lobe S (Jot’ ¢\\@ PO UG ¢
SN QQ’Q/ &
] °

FI1GURE 4.1: Popularity by the number of downloads with models above the 10,000
threshold highlighted in green (snapshot date is August 2024)

general-purpose counterparts. One of HuggingFace’s most popular models, Mistral 7B,
was selected to address this. Other versions, such as Mixtral, exist but cannot be deployed
due to hardware limitations. In the resulting selection, there was still an unequal number
of general-purpose (4) and coding models (5). To address this, Phi-3 from Microsoft was
included as another general-purpose model. Phi-3 is available in a smaller variant with
3.82 billion parameters, allowing for comparisons with other ’small’ coding models such
as Granite 3B, CodeGemma 2B and DeepSeekCoder 1.3B. Additionally, Phi-3 extends to
a larger version with 14 billion parameters, enabling comparisons with larger models like
Starcoder 16B and Granite 20B. In Figure 4.2 can be seen the final population of models

Timeline of Model Releases

2
2 &
& ot ¢ &
@' Ry 2
& K & & @‘i"‘, &S 2

N (<4 N & & ¢ ¥ & R
00— 00— 00— 00— 00— 00—

T T T T T T T T T T T T T - T T T T T T T T
o o o o o &

2 S £
NS CH x"?) 1N 1N N
i 4 3 o o s
3 o 3 » » 3

Date

FIGURE 4.2: Timeline of release of models. Red are general-purpose models and
blue is coding models.

plotted on a timeline according to their release date.

Figure 4.3 presents the selected models and their respective sizes, with the red line
indicating the maximum number of parameters deployable on the available hardware for
this study without quantizaton. It can also be observed that model sizes tend to cluster
between the 6B and 9B marks. The complete list of models and their technical reports can
be found in Appendix A

11

Model Sizes by Number of Parameters

Models
Starcoder CodeGemma L 4 4 L 4
Y CodeLlam:
b DeepSeek
Phi-3| @ Gemma
Granite
@ Uama2
" # Uamas
Mistral Mistral
Phi-3
Starcod
Llama3 | -=- 228 Mark ® "
Llama2 * L] L] *
3
T
2
Granite
Gemma
DeepSeek = & +*
Codellama * * * *
CodeGemma
1B 2B 3B 5B 6B 7B 9B10B 20B 30B 40B

Number of Parameters (Billions)

FIGURE 4.3: Models and their sizes. The red dashed line represents the demarca-
tion line

4.2 Dataset selection

For selecting the datasets, aspects such as relevance to software development tasks, pop-
ularity as evaluation benchmarks, and the computational time required for completing
inference are considered. Datasets evaluating code generation, bug fixing, and test gener-
ation capabilities will be included to mirror real-world use cases accurately. Additionally,
datasets used in past research for evaluating and comparing model performance and accu-
racy will be considered, enhancing the credibility and contextual relevance of the results.

Selected datasets

Datasets were sourced from the technical papers of the selected models, ensuring consis-
tency and credibility. The most popular benchmark among them was chosen based on
past research and accuracy evaluations, thereby aligning with established standards and
enhancing the reliability of comparisons.

Regarding code generation capabilities, it was found out that HumanEval from Ope-
nAl is used to evaluate the models in every technical report [13]. Another was MBPP from
Google, but results on it were not reported on Llama2 and Llama3[6]. Another reason is
the size of MBPP compared to HumanEval, as it is almost 2.5 times larger, and it is not
feasible for us to use it in the context of this project. An example of a HumanEval task
for code generation can be seen in Figure 4.4. This is used as part of a larger prompt (the
instruction part in Figure 4.7) to input into the model. To accommodate the rest of the
tasks, such as bug fixing and documentation, an extended version of HumanEval is going
to be used, namely HumanEvalPack, which was presented in the work of Muennighoff et
al. |38].

For bug/code fixing, only the technical papers of Granite and StarCoder2 offered
evaluation results [36, 32]. Conveniently, they included results for most of the models
chosen for our study, with the exception of Llama2. We utilized the information from
these papers for the other models to address this gap. In this context, HumanEvalFix
from the HumanEvalPack was chosen (Figure 4.5).

For documentation generation, only Granite offered evaluation results. These re-

12

from typing import List

def has_close_elements (numbers: List[float], threshold
float) -> bool:
""" Check if in given list of numbers, are any two
numbers closer to each other than
given threshold.
>>> has_close_elements ([1.0, 2.0, 3.0], 0.5)

False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0,
2.0], 0.3)

True

nun

FIGURE 4.4: The first function/task from the HumanEval dataset

from typing import List

def has_close_elements (numbers: List[float], threshold: float) ->
bool:
nnn
Check if in given list of numbers, are any two numbers closer
to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
nnn
for idx, elem in enumerate (numbers):
for idx2, elem2 in enumerate (numbers):
if idx !'= idx2:
distance = elem - elem2
if distance < threshold:
return True
return False

def check(has_close_elements):
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3)
== True
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05)
== False
assert ...
check(has_close_elements)
Fix bugs in has_close_elements.

yy

FIGURE 4.5: Same function constructed with a buggy solution in HumanEvalFix
as per Muennighoff et al. [3§]

sults were used to supplement the other models that served as baselines in the same paper,
excluding Llama2. Consequently, HumanEvalExplain from the HumanEvalPack was se-
lected for this task.

For test generation, no results could be obtained from the technical papers of the
models. Other studies try to evaluate the models for test generations using the HumankEval
dataset or others |28, 48|. They propose various ways of approaching this problem, but
there is currently no standard set, e.g. code generation, on evaluating the LLMs for test
generation. Therefore, we decided to use the docstring and the code, including the solution
to it, to prompt the LLM to produce assertions for it. For the remaining code-related tasks,
such as code reasoning and understanding, code execution, code completion, vulnerability

13

repair and code translation, results could not be obtained neither directly nor implicitly
using other technical papers of the models under research, more specifically for Gemma,
Llamad, Mistral and Llama2. Therefore, these tasks are not included in the scope.

4.3 Experiment setup

There are various LLM deployment scenarios in software development. It is important
to explore all of them to provide an understanding of the energy implications of different
platforms. Primary deployment scenarios include platforms such as the cloud or clusters,
where users access LLMs via the network. Alternatively, the models can be deployed locally
on edge devices, such as notebooks or desktop machines. The availability of sufficiently
capable platforms also influences the choice of models for the study, as less resourceful
platforms may not effectively support larger models.

4.3.1 Environment Evaluation and Selection

There are various environments where the experiments might take place. From past re-
search on the topic, two solutions were identified: third-party cloud environment (Google
Cloud or AWS) and local institutional clusters (EEMCS-HPC CLUSTER) [34, 47]. The
former was rejected due to its monetary nature and the lack of available funding. The
latter option was initially accepted, but due to insufficient hardware capabilities (GPUs)
and its non-interactive batch nature, it was deemed not controllable enough for the exper-
iments. A compromise was reached by using the Jupyter Lab cloud environment provided
by the University of Twente, which allows for a more interactive approach and offers access
to newer, more powerful NVIDIA GPUs without incurring any financial expense.

4.3.2 Hardware

In the chosen environment, there are three different models of NVIDIA GPUs - T4, A10,
A16. The A10 model was selected due to its larger VRAM capacity and was based on
the technical brief from NVIDIA - "GPU Positioning for Virtualized Compute and Graph-
ics Workloads", which outlines the performance and cost-effectiveness of each GPU for
different workloads [41]. From that report, it can be extrapolated that Al6 is not a
benchmark for AI inference because this is not its intended workload. T4 and A10 are
benchmarked among other GPU as well, and the latter shows better performance metrics
for that workload. Additionally, A10 is based on the new Ampere architecture compared
to the older Turing architecture of T4, which makes it more efficient in Al inference tasks
due to architectural improvements, including higher tensor core performance and better
memory bandwidth. It is also the same architecture of the standard for deploying LLM’s -
A100 NVIDIA GPU. The chosen hardware is also more financially accessible to small and
medium enterprises than the more expensive higher-grade GPUs.

4.3.3 Precision Trade-offs: BFloat16/Float16 vs. FP32 in Inference

For this study, the BFloat16 or Float16 precision standard will be applied for inference
instead of the single-precision FP32. This will be the baseline of the experiments for several
reasons:

Consistency with training precision: The models used in the experiments are
trained using the precision of FP16 or BFloatl6, therefore, to preserve consistency and
minimize discrepancies from precision mismatches (Figure 4.6).

14

Computational efficiency: Models deployed using half-precision formats have sig-
nificantly fewer memory requirements. This reduction in memory usage enables the de-
ployment of larger and more accurate models, such as Granite 20B and StarCoder2 15B,
expanding the scope of results in terms of model sizes and diversifying the model popu-
lation. For example, by using the 'Model Memory Calculator’ provided by HuggingFace,
we can calculate the VRAM needed to deploy StarCoder2 15B [18|. The float32 single-
precision needs 58.95 GB, while the bfloat16 half-precision needs 29.47 GB of VRAM,
which is a significant difference.

Training

Model

Architecture: Transformer decoder with grouped-query and sliding window attention and Fill

in-the-Middle objective
Pretraining steps: 1 million
Pretraining tokens: 4+ trillion

Precision: bfloat16

FIGURE 4.6: Training precision of StarCoder2 from its official HuggingFace page

Accuracy preservation: There is a concern that reducing the precision of the floating
number operation from FP32 to FP16 or BFloatl6 will affect the accuracy negatively.
Studies have suggested that the difference in accuracy is negligible, and it is not considered
critical [12, 26].

4.4 Experiment design

The experiment’s design constitutes how the energy measurements would be taken and
under what hyperparameters the models will be deployed. Given the utilized hardware
of NVIDIA, nvidia-smi interface will be used to take measurements at a sample rate
of 100ms. Hyperparameters, such as temperature and top-p, were configured to 0.1 and
0.95, respectively. This decision aligns the study with previous state-of-the-art research,
including studies in the same domain, technical reports and their evaluations. Moreover,
a lower temperature and high top-p result in more deterministic answers with minimal
randomness, which is beneficial for coding tasks but less effective for essay writing.

To have more control over the configuration of the model, the base version is to be
deployed so that it can be optimally tuned to closely represent the evaluation results on
HumanEval (the pass@1 accuracy score). After initial experiments, it was found that a
custom prompt would be needed to have more processable output for evaluating it using
HumanEval. Initially, the output couldn’t be processed to be passed on to the HumanEval
automatic script for measuring pass@l. The prompts were curated according to past
evaluations by research groups such as BigCode. Our prompt structure was inspired from
the StarCoder2 and Code Generation LM Evaluation Harness repository, as they provided
a lot of details and how they carried out the evaluation [43, 56, 7|. For each prompt, the
maximum new token limit was adjusted according to the expected length of the answer,
even above that limit. That was measured by doing a test run through the evaluation
pipeline and measuring the average number of tokens the LLM produces for each task.

15

That was done because limiting the number of produced tokens would improve the post-
processing of the answers to a variant ready for automatic evaluation and reduce the
inference time, reducing the total time of the experiments. Those limits for code generation,
bug fixing, docstring generation and test generation are 150, 150, 256, and 300 tokens. For
test generation, 300 was chosen as a balance between getting complete and accurate answers
and limiting the inference time, as models frequently produced many assertions. For more
detailed look into the prompts used for the evaluation see Appendix B.

You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to
user instructions.

Instruction
{instruction}

Response
{response’}

Ficure 4.7: SC2_INSTRUCT PROMPT used in our experiments.

4.5 Multi-Objective Optimization Using Pareto Frontier

In this study, we employ the Pareto frontier (or Pareto curve) for analyzing the final
results [31]. This allows us to identify optimal models that balance competing objec-
tives—maximizing model accuracy and minimizing energy usage. A model is deemed
Pareto optimal if no other model dominates in both accuracy and energy usage.

To construct the Pareto front, the models are first sorted in ascending order based on
the metric to be minimized (e.g., energy consumption). If two models have the same value
for this metric, they are further sorted in descending order of the metric to be maximized
(e.g., accuracy). Once sorted, the models are iteratively compared, starting from the lowest
value of the minimizing metric. A model is included in the Pareto front if not dominated
by any previously selected model, meaning its accuracy is greater than or equal to the
current maximum observed accuracy. This process ensures that only the most efficient
trade-offs between metrics are retained.

16

Algorithm 1 Pareto Frontier Identification

Input : Set of data points D = {(x;,y;) | i = 1,...,n} where x; is to be minimized and
y; is to be maximized.
Output: Set of Pareto-optimal points P.

Step 1: Sort Points
Sort D in ascending order of x;. If x; = z;, sort by descending order of y;.
Step 2: Initialize
P+
current _max < —o0
Step 3: Iterative Comparison
foreach (z;,y;) € D do
if y; > current_max then
L Add (x;,y;) to P

current _max < ;

return P

This approach was chosen over statistical tests, and a custom efficiency metric was
defined, such as a ratio or score produced from the summed weighted accuracy and energy
usage. In the former, the population sample from each type of model is unbalanced, e.g.
there are only four fine-tuned models compared to 8 coding models (counting each different
size of a model as separate). This sample imbalance might lead to unreliable conclusions
as it can skew the data in favour of the larger group. Significant flaws were found in
the latter approach. Firstly, the ratio metric values (e.g. energy/accuracy) can produce
misleading results in edge cases. For example, consider two models where the first has an
extremely low accuracy of 0.5 and energy of just 1 Wh will yield a ratio of 2. In contrast,
the second model, with an accuracy of 50 and energy of 100 Wh, will yield a ratio of
2 again despite the second model being much more efficient and practical than the first.
That is because ratios disproportionately favour small denominators, which can skew the
results. Secondly, the efficiency score metric, which would be a weighted sum of both
accuracy and energy usage, is flawed as well due to the possible incorporation of subjective
bias when choosing the weights. For example, choosing a higher weight in acccuracy
might prioritize models with excessive energy usage, making them impractical in resource-
constrained environments. Conversely, higher weight on energy usage could undervalue
more practical models. Additionally, a weighted sum assumes a fixed linear trade-off
between accuracy and energy, treating every unit of energy saved as equally valuable
regardless of the accuracy gain or loss. The Pareto frontier addresses the abovementioned
issues by skipping assumptions of linear trade-off and subjective bias towards one of the
metrics. It ensures that models not dominated by both metrics are considered optimal by
adapting correspondingly to the complex relationships between the objectives.

17

Chapter 5

Results

This chapter presents the study’s results aligned with the research questions. Each section
presents the specific findings for the particular research question. It also contains informa-
tive and comparative charts. For section 5.1 we use the average for the carbon intensity of
the power sector for the year 2023. We present it using three regions - Netherlands (268.5
gCO2/KWh)!, European union (662 gCO2/KWh)? and World (481 gCO2/KWh) 3. The
results can be found in more detailed form in Appendix C.

5.1 RQ1: What are the energy and carbon impacts of LLMs
in software development?

To address the first research question, we present the average results from 3 runs for each
tasks for all models. In Figure 5.1 The total energy used by each model to complete the
HumanEval dataset for each task examined can be seen. In total ~ 5377 Watts per hour
were used to complete all tasks for all models and on average a model used 256 Wh to
complete all four tasks. Furthermore, this means that a model on average spend 64 Wh
per task (code generation, bug fixing, etc.) which is ~ 0.39 Wh per inference.

The corresponding carbon emissions depend on the electricity grid’s carbon intensity.
Using regional emission factors, the total energy consumption results in approximately
1444 gCO2 (Netherlands), 3560 gCO2 (EU), and 2586 gCO2 (World). On average, a model
emits 68.7 gCOy (Netherlands), 169.5 gCOy (EU), and 123.1 gCO2 (World) to complete
all tasks. For a single task, the emissions amount to 17.2 gCO2 (Netherlands), 42.4 gCO»
(EU), and 30.8 gCO2 (World). At the inference level, a single query produces 0.10 gCOq
(Netherlands), 0.26 gCO2 (EU), and 0.19 gCO2 (World).

However, the tasks require various prompts with different lengths; therefore, a direct
comparison of the net energy would not be fair. On Figure 5.2 it can be seen the net energy
divided by the tokens outputted by the model for each task in Joules. On average, a model
used = 3.122 J to output a token given the data from all four tasks. This results in carbon
emissions of 0.00023 gCO4 (Netherlands), 0.00057 gCO4 (EU), and 0.00042 gCO2 (World)
per token. Furthermore, because tokenizers differ slightly, where one tokenizer can divide
a word into one token and another in two, a more suitable average would be per second

InStatista: Carbon intensity of the power sector in the Netherlands from 2000 to 2023", https://www.
statista.com/statistics/1290441/carbon-intensity-power-sector-netherlands/.

ZnGtatista: Carbon intensity of the power sector in the European Union in 2023", https://www.
statista.com/statistics/1291750/carbon-intensity-power-sector-eu-country/.

3nStatista: Electricity generation emission intensity worldwide", https://www.statista.com/
statistics/943137/global-emissions-intensity-power-sector-by-country/.

18

https://www.statista.com/statistics/1290441/carbon-intensity-power-sector-netherlands/
https://www.statista.com/statistics/1290441/carbon-intensity-power-sector-netherlands/
https://www.statista.com/statistics/1291750/carbon-intensity-power-sector-eu-country/
https://www.statista.com/statistics/1291750/carbon-intensity-power-sector-eu-country/
https://www.statista.com/statistics/943137/global-emissions-intensity-power-sector-by-country/
https://www.statista.com/statistics/943137/global-emissions-intensity-power-sector-by-country/

Code Generation Bug Fixing Docstring Generation Test Generation

200.0

—

50.0

100.0

Net Energy (Wh)

50.0

0.0

0 Granite Ins 3b B Starcoder B 3b EE® Gemma Ins 2b [mm CodeGemmaIns 7b BN Codellama Ins 7b EEH Llama 2 Ins 13b Phi-3 Ins 3.8b
B2 Granite Ins 8b E=E Starcoder B 7b E= Gemma Ins 7b [Mistral Ins 7b B8 Codellama Ins 13b DeepSeek Ins 1.3b I Phi-3 Ins 7b
B Granite Ins 20b B Starcoder Ins 15b E=8 CodeGemma B 2b Llama 3 Ins 8b Llama 2 Ins 7b E== DeepSeek Ins 6.7b [Phi-3 Ins 14b

FIGURE 5.1: Net energy (Wh) for all models across the tasks examined.

of inference. On average a model used 184.50 Joules per second, leading to emissions of
0.0138 gCO2 (Netherlands), 0.0339 gCO2 (EU), and 0.0247 gCO2 (World) per second.

Code Generation Bug Fixing Docstring Generation Test Generation

10.0

Net Energy (Wh)

B Granite Ins 3b BR Starcoder B 3b Bl Gemma Ins 2b [CodeGemma Ins 7b B Codellama Ins 7b EEHE Llama 2 Ins 13b Phi-3 Ins 3.8b
@@ Granite Ins 8b Starcoder B 7b BE= Gemma Ins 7b [0 Mistral Ins 7b B Codellama Ins 13b DeepSeek Ins 1.3b @I Phi-3 Ins 7b
BN Granite Ins 20b EEEE Starcoder Ins 15b E##@ CodeGemma B 2b Llama 3 Ins 8b Llama 2 Ins 7b E=3 DeepSeek Ins 6.7b [Phi-3 Ins 14b

FIGURE 5.2: Energy per token in Joules for all models across the tasks examined.

5.2 RQ2: How do coding, fine-tuned, and general-purpose
models compare in efficiency?

In this section, the comparison analysis results are presented using Pareto optimality.
Additionally, quadrants are introduced and created from the mean energy and accuracy.
This complements the Pareto analysis by offering a broader view of model performance
relative to average energy and accuracy. It enables to identify models that are not Pareto
optimal but still perform competitively. The models were divided into four categories:
general (which includes the next category), general with twin fine-tuned, fine-tuned, and
coding models. Comparing the two categories, one can determine which category dominates
the rest in a software development context. The comparisons in this chapter section are
coding vs. fine-tuned, fine-tuned vs. general with fine-tuned twin, fine-tuned vs. general,
and general vs. coding vs. fine-tuned. The comparison will go through all four tasks: code
generation, bug fixing, docstring, and test generation.

19

5.2.1 Coding versus fine-tuned

This subsection compares coding and a fine-tuned model using the Pareto frontier, mean
energy, and accuracy to locate the most optimal quadrant. The comparisons cover the four
tasks from software development examined in this study.

Code generation

The comparison of coding versus fine-tuned models using the Pareto frontier for code
generation can be seen in Figure 5.3a. Coding models are solely dominate the Pareto
front. Specifically, Granite Instruct 3b, DeepSeekCoder Instruct 1.3b and 6.7b. In the
same figure, it can be seen that the top left quadrant, which signifies the most optimal
models, is dominated by coding models. Additionally, above the average accuracy line, are
two coding and one fine-tuned model, where the coding models are more accurate, but at
the same time more energy intensive.

(A) Codin (B) Bug Fixin:
100 9 100 9 9
80 80
J/
/ o
/
/
/
60 .,'_'j 60
g ;. o g
=
4 2 II]
5 5
g © g ! o
< 4 e} R e
e
m} I
'm o
D ﬁ A4
=H-©
20 o 20 o
@)
0 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Net Energy (Wh) Net Energy (Wh)
(C) Docstring generation (D) Test generation
100 100
80 80
60 60
g 2 g
> / >
8 / 3
5 ! 5
g @ o 2
20 =] o 20
]
o ----@
g /,_E]
%
20 = 20 = ©
o
(om]
o o O 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Net Energy (Wh) Net Energy (Wh)

Model Versions (Shapes: @ Fine-tuned, Bl Code)
| Granite | 8b O Granite | 3b O Starcoder B 7b @® CodeGemmal 7b @ Codellamal7b @ DeepSeek| 1.3b
O Granite | 20b O Starcoder | 15b O Starcoder B 3b © CodeGemma B 2b © CodelLlama | 13b O DeepSeek!6.7b

FIGURE 5.3: Coding vs fine-tuned models using Pareto optimality

20

Bug Fixing

Comparison of coding versus fine-tuned models for the task of bug fixing outlines three
coding models (DeepSeekCoder 1.3B & 6.7B and StarCoder2 3B) on the Pareto frontier
and one fine-tuned (CodeLlama 7B) on Figure 5.3b. One model falls short of the frontier,
and that is StarCoder2 7B. Although it dominates over CodeLlama 7B in accuracy (29.87
vs 26.83 respectively), it uses slightly more energy (36.68 Wh compared to 36.39 Wh).
Still, the Pareto frontier is mainly dominated by coding models, with 3 out of 4 from that
group. Analyzing further the quadrants that we defined previously, where the top left
quadrant is considered the most prominent in terms of efficiency, it can be observed that 2
out of 3 models are coding type. Starcoder2 7B is on the border of the top-left quadrant.
The model with the highest accuracy is DeepSeekCoder 6.7B (coding), which is both on
the optimal frontier and the top-left quadrant. At the same time, the second most accurate
model is CodeGemma 7B (fine-tuned), which is not on the Pareto line but is inside the
quadrant.

Docstring generation

In the context of docstring generation, where a model is tasked to produce a docstring
for a given Python function and then use that docstring to generate the function again
from the result of the previous step and measure the accuracy, there are three models on
the optimal Pareto front (Figure 5.3c). From these models, 2 out of 3 are coding models,
namely DeepSeekCoder 1.3B & 6.7B, while from the fine-tuned category, only CodeGemma
7B. Looking at the top-left quadrant, most models are coding models, while only one is
fine-tuned.

Test generation

In Figure 5.3d, the results can be seen by comparing fine-tuned and coding models in the
context of test generation. On average, the models are less accurate and generally use more
energy. On the frontier, there are two-to-one coding and general models (DeepSeekCoder
6.7B & Granite 8B, CodeGemma 7B). The top-left quadrant is dominated by coding mod-
els, where two are also close to the efficient Pareto frontier - Granite 3B and DeepSeekCoder
1.3B.

5.2.2 General with fine-tuned twin versus fine-tuned twin

This section will compare the models from the fine-tuned category, the general model with
their fine-tuned "twin". The former is based on the latter, with the difference that it has
been fine-tuned additionally for code. Instead of multi-objective optimization with Pareto
frontier, a direct one-to-one comparison was conducted, as both categories have the same
number of data points and consist of related model pairs.

Net energy comparison

The direct one-to-one comparison did not indicate an improvement in efficiency between
the fine-tuned and the general version of a model in the code generation task (Figure
5.4a). The difference between net energy usage is minimal, below 1%, except for Gemma
and CodeGemma 2b, where the latter used 5.1% more energy. However, this can be con-
sidered insignificant because of the small magnitude of the difference, which falls within
the expected variability. Similarly, bug fixing in Figure 5.4b has equivalent insignificant

21

differences. In contrast to the trend, the generation of docstrings shows significant differ-
ences in net energy usage (Figure 5.4¢). For example, for CodeGemma and Gemma 2B, the
fine-tuned version has more than triple the energy impact. Significant differences can be
observed in the CodeLlama and Llama models, where the code models again used double
the amounts of energy. One outlier from the group is CodeGemma and Gemma 7B, where
the general model uses slightly more than 50 % compared to its fine-tuned counterpart.
For test generation in Figure 5.4d it can be seen that the larger models of the population
(Code)Gemma 7B and (Code)Llama 13B tend to not have significant discrepancies be-
tween the fine-tuned and general models. On the other hand, the smaller versions 2B and
7B have respectively ~ 64 % and 45 % difference, where the fine-tuned uses more energy
for that task.

200 200

-
~
o

-
1)
S

Net Energy (Wh)
Net Energy (Wh)

o ~
=3 G

N}
o

o

(C B 28 (C 178 (Code)Llama | 7B (Code)Llama 1 138 178 (Code)Llama | 78 (Code)Llama 1 138

(A) Code generation (B) Bug fixing

200

175

150

-
)
o

Net Energy (Wh)

100

Net Energy (Wh)

N
o

44.8%

50 0.5%
63.9%

25

(C B28 (C 178 (Code)Llama | 78 (Code)Llama 1 138 (C B 2B (Ce 178 (Code)Llama | 78 (Code)Llama 1 138

(c) Docstring generation (D) Test generation

FIGURE 5.4: One-to-one comparison of general (purple) and their fine-tuned
(green) version using net energy.

Accuracy comparison

However, when comparing the accuracies for code generation using a one-to-one comparison
again, it can be observed for 3 of 4 models (Figure 5.5a). The fine-tuned models almost
double or even triple the accuracy. Again, except for Gemma and CodeGemma 2B, the
improvement was only with ~ 15%. Again, this trend repeats for bug fixing and docstring
where, in some cases, the accuracy even quadrupled (CodeLlama 7B and Llama 7B in bug
fixing). The exception to this is with CodeGemma and Gemma 2B, where the accuracy
improved in favour of the general model or remained equivalent (Figure 5.5b & 5.5¢). The
test generation results are represented using the correctness (how many are correct), branch
and statement coverage of the produced test. Figure 5.5d shows that the Llama 2 family
general models tend to be more accurate in generating tests. In contrast, for Gemma, the

22

fine-tuned model is outperforming only for the 7B version case. In the case of branch and
statement coverage that can be observed in Figures 5.5e¢ & 5.5f, it can be seen that the
Gemma family general models outperform significantly (24.8 % & 15.1 %) in case of the
former and with not so much significance (6.9 % & 9.6 %) in the case of the latter while
for the Llama 2 family is the opposite way (fine-tuned model outperform) but with not

that large of a difference - 8-9 %.

100

80

o
S

115.0%

158.6%

Accuracy (%)

209.1%

IS
S

20 14.8%

100

80

Accuracy (%)
o
=3

IS
S

20

66.7%

78.4%

300.0%

104.2%

(Ce 178

(Code)Llama | 78

(A) Code generation

100

(Code)Llama | 138

(Co

178 (Code)Llama | 78

(B) Bug fixing

(Code)Llama | 138

80

o
S

78.0%

Accuracy (%)

N
S

104.2%
110.5%
20

178

(Code)Llama | 7B

(¢) Docstring generation
100

(Code)Llama 1 138

100

80

o
=3

»
S

Accuracy/Correctness (%)

20

128.6%

29.8%

B 2B (Ce

178

(Code)Llama | 7B

(D) Test generation (correctness)

80.5%

(Code)Llama | 138

15.1%
24.8%

80

60

Branch coverage (%)

40

20

(C B28B (Ce

178

(E) Test generation (branch coverage)

(Code)Llama | 78 (Code)Llama | 138

Statement coverage (%)

(C

B 2B (Co

178

(Code)Llama | 7B

(Code)Llama | 138

(F) Test generation (statement coverage)

FIGURE 5.5: One-to-one comparison of general (purple) and their fine-tuned
(green) versions using accuracy /correctness

5.2.3 Fine-tuned versus general (all)

This subsection compares the fine-tuned models against all of the general models, including

their general twin versions.

23

Code generation

Comparison of fine-tuned versus all general models outlines a broad Pareto frontier from

the lowest < 20 % accuracy to the highest energy usage ~ 120 Wh (Figure 5.6a). On the
optimal front, there is only one fine-tuned model and five general, with one pair of models
being a fine-tuned and general twin. Analysing further, the top left quadrant is shared
equally between two fine-tuned and two general models, but the latter dominates accuracy
and energy. Suppose we exclude impractical cases like Gemma and CodeGemma 2B from
the Pareto frontier (due to their low accuracy). In that case, we can conclude that General
models that are not twins to the fine-tuned dominate over fine-tuned.

100 (A) Coding 100 (B) Bug Fixing
80 80
B e R Attty A
60 ,"‘ ‘ 60
) A o0 O e A
g ! g I R N i A
g ! ° g AL
< 40 L9 < % -)
l’ ’I
| /
;oA % e
! A A © R
20 ® 20
A
zg a A A
e 4
°2 20 40 60 80 100 120 140 160 180 % 20 40 60 80 100 120 140 160 180
Net Energy (Wh) Net Energy (Wh)
(C) Docstring generation (D) Test generation
100 100 T
|
80 1 80
60 ? 60
R N A g
g ® g
40 i 40
!
|
A 9 12N
Y A O A
204 7 20 ¥4 o
/ /
A L0 A AR x A
/
, . 4 e A
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Net Energy (Wh) Net Energy (Wh)
Model Versions (Shapes: @ Fine-tuned, A General)
A Gemmal7b @ CodeGemma B 2b A Llama318b © Codellamal 13b A Llama 2113b A Phi-317b
A Gemmal2b A Mistral | 7b © Codellama | 7b A Llama217b A Phi-3114b A Phi-313.8b
@ CodeGemmal 7b
FIGURE 5.6: Fine-tuned vs general model using Pareto optimality
Bug Fixing

The comparison for bug fixing shown in Figure 5.6b indicates that general models are the
most optimal for the Pareto frontier. From the Pareto models, 3 out of 4 are from one
family, namely the Phi-3 family, and one model is Gemma 2B, which has a fine-tuned
version. The top left quadrant contains most general models, with only one out of three

24

models being fine-tuned. Thus, for bug fixing, general models are the most efficient ones,
whereas the majority of those models do not have fine-tuned versions.

Docstring generation

For docstring generation, the Pareto front is dominated by general models (4 out of 5
models), which can be seen in Figure 5.6c. However, two of those general models are below
the mean accuracy threshold line, so if we exclude them due to their impracticality, the
general models still dominate the frontier with 2 out of 3. Looking at the top-left quadrant,
there are only two models - one general and one fine-tuned. Interestingly, these models
have almost equivalent energy usage and accuracy (CodeGemma 7B & Phi-3 3.8B). Still,
it can be concluded that general models without fine-tuned versions are the most optimal
for docstring generation.

Test generation

In Figure 5.6d, it can be seen that for test generation, the Pareto frontier is shared between
one general (Gemma 2B) and one fine-tuned (CodeGemma 7B). However, the former has
very low test correctness, while the latter has the highest scores from the whole population.
In the top-left quadrant, the space is divided again equally with one general model, namely
Llama 2 7B, being second and almost overlapping with CodeGemma 7B (the highest
accuracy). The next model in that quadrant is a general one followed by a fine-tuned one
if we order them by accuracy.

5.2.4 Coding versus fine-tuned and general

In this subsection a comparison is made between all types of model: coding, fine-tuned
and general.

Code Generation

Figure 5.7a shows the results from the comparison for code generation. There are only
coding models on the Pareto line, namely Granite 3B, DeepSeekCoder 1.3B & 6.7B. In the
top-left quadrant, 4 out of 7 models are coding (Pareto models plus Granite 8B), while two
are general, namely Phi-3 3.8B and Llama 3 8B. Only one model in that same quadrant
is fine-tuned - CodeGemma 7B. Another notable model that is neither on the Pareto line
nor in the top left quadrant is StarCoder 15B (code model), which had the second highest
accuracy.

Bug Fixing

Figure 5.7b is the analysis for bug fixing. Most models on the frontier are general ones, with
4 out of 7, while the rest are coding models. Three of the models, namely DeepSeek 1.3B
(coding), Gemma 2B (general) & Starcoder2 3B (coding), are below the mean accuracy
(30 %). The top left quadrant has two coding, two general and one fine-tuned model. One
model that barely crosses into that same quadrant is StarCoder2 7B (coding). An outlier
here, not in the quadrant but on the Pareto line, is Phi-3 14B, with the highest accuracy.
The highest accuracies have two general along with one coding model, followed in second
place with two general and one coding.

25

100 (A) Coding 100 (B) Bug Fixing
80 B 80
K
/ a
4 A A
60 ¥ A 60
3 !] = 9
7 oA d >
g o g [I Y A
= g N =
< w0 @ = 40 i Zo
=] /
! m 0
O A -8 ©
9
A ‘E] A
20 g A 20 o
A A A
® a
0 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Net Energy (Wh) Net Energy (Wh)
(C) Docstring generation (D) Test generation
100 100
80 80
A
60— — A== 60
g B- A g
ol / oy
8 / ®
; @] g
< w0 -,-/ = o < w0
1
L
1
A g ® /%j"ia
i 4 PN
209 = 20 & e
i 1
NS A | A A A
I
0 o Al om mA o
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Net Energy (Wh) Net Energy (Wh)
Model Versions (Shapes:A General, @ Fine-tuned, B Code)
@ Granite | 8b @ Starcoder B 7b O CodeGemmal 7b @ Codellamal 7b A Llama2113b A Phi-3114b
O Granite | 20b O Starcoder B 3b @ CodeGemma B 2b O Codellama | 13b [l DeepSeek!1.3b A Phi-317b
O Granitel 3b A Gemmal7b A Mistral | 7b A Llama217b O DeepSeekl| 6.7b A Phi-313.8b
@ Starcoder | 15b A Gemma l 2b A Llama 318b

F1GURE 5.7: Coding vs fine-tuned vs general models using Pareto optimality

Docstring generation

Figure 5.7c presents the results for docstring generation. In this case, the Pareto line is
slightly extended on the lower end, including a model below 20 % accuracy. On the Pareto
front, there are two coding and two general models where only one is fine-tuned. One of
the general models is on the lower end of the frontier, namely, Gemma 2B. One model
from the general models (Phi-3 3.8B) almost overlaps with the Pareto fine-tuned model
(CodeGemma 7B). On the other hand, in the top-left quadrant, we can identify six models,
of which four belong to the coding category and one from the rest fine-tuned and general
(the beforementioned models). One notable model not in that quadrant but on the Pareto
frontier and has the highest accuracy is Phi-3 14B but with higher energy usage.

Test generation

Figure 5.7d shows the results for test generation tasks. On the Pareto frontier, there
are two coding models (DeepSeekCoder 6.7B, Granite 8B), one general and one fine-tuned

26

(respectively Gemma 2B and CodeGemma 7B). However, the general one can be considered
an impractical model as it is well below the mean accuracy for this task by only 5% correct
answers. In the top-left quadrant, close to the Pareto front, Llama 2 7B (general) and two
coding models, Granite 3B and DeepSeekCoder 1.3B, are situated. The rest of the models
are general (Mistral 7B) and fine-tuned (CodeLlama 7B). Models which are neither Pareto
nor in the ’efficient’ quadrant but are one of the most accurate are Llama2 13B, which does
not differ in accuracy significantly from it is smaller 7B variant and Granite 20B, which
has slightly lower accuracy than it is smaller but more efficient variants 3B and 8B.

5.3 RQ3: How does energy consumption vary across different
software development tasks?

For the third research question, the study will examine and compare the averages of the
four tasks—code generation, bug fixing, docstring generation, and test generation. The
averages include the energy per token in Joules and the tasks’ accuracy or correctness (in
the case of test generation). In this research question, we use energy per token because the
tasks require prompts and outputs of different lengths (in tokens). In the first subsection,
tasks will compared overall, including all the results. The following subsection breakdown
in categories will be analysed: coding, general, and fine-tuned models.

5.3.1 Overall comparison

Comparing the tasks in energy per token and accuracy/correctness* can be seen in Figure

5.8. For energy per token in Figure 5.8a, it becomes clear that code generation and bug
fixing are the least resourceful tasks, while docstring and test generation are almost twice
as energy-intensive. In Figure 5.8b, code generation is the clear leader in accuracy, while
bug fixing and docstring generation are next with similar results. Test generation has the
lowest accuracy.

In order to find the most efficient task where accuracy is maximized and energy per
token is minimized, a ranking approach is used. The task with the lowest energy is assigned
the rank of 1, while the one with the highest is assigned 4. The opposite is done for ranking
the tasks in accuracy, where the highest accuracy is assigned 1 and the lowest 4. The sum
of the ranks provided in Table 5.1 indicates which task is the most efficient (lowest rank):
code generation followed by bug fixing, docstring generation and test generation.

Average Energy per Token Across Tasks Average Accuracy / Correctness Across Tasks

Average Energy per Token (joul

Code Generation Bug Fixing Test Generation Documentation Test Generation Bug Fixing Doc i Code

(A) Average nergy per token (B) Average accuracy/correctness

FIGURE 5.8: One-to-one comparison of the tasks

4For test generation here the correctness are only taken into account.

27

TABLE 5.1: Task Performance and Energy Usage with Ranks

Task Average Accuracy (%) | Average Energy (J) | Energy Rank | Accuracy Rank | Total Rank
Test Generation 15.79 3.77 3 4 7
Bug Fixing 30.25 2.34 2 3 5
Documentation 33.81 4.12 4 2 6
Code Generation 44.91 2.26 1 1 2

5.3.2 Breakdown on types: coding, general, finetuned

Table 5.2 presents the average breakdown into the model type for each task. From there, we
can observe that general models are the most efficient for test and code generation (equal
ranks), followed by bug fixing and docstring generation. On the other hand, coding models
are the most efficient in code generation (rank of 2), while they are much less efficient in
tasks such as bug fixing, docstring, and test generation. Finally, finetuned models fare
best with code generation, while the score of bug fixing is almost equivalent, followed by
docstring and test generation.

Model Type | Task Avg. Energy per Token (J) | Avg. Accuracy (%) | Energy Rank | Accuracy Rank | Total Rank
Code Generation 3.10 15.55 2 2 4
X Bug Fixing 2.91 10.67 1 4 5
General Docstring Generation 4.54 13.11 4 3 7
Test Generation 4.81 28.35 3 1 4
Code Generation 2.15 50.51 1 1 2
. Bug Fixing 2.87 31.20 2 3 5
Coding Docstring Generation 5.19 34.76 4 2 6
Test Generation 4.64 15.85 3 4 7
Code Generation 2.35 39.63 2 1 3
. Bug Fixing 2.15 26.37 1 3 4
Finctuned Docstring Generation 4.24 28.20 4 2 6
Test Generation 3.46 14.93 3 4 7

TABLE 5.2: Energy and Accuracy Metrics with Total Ranks for Different Model
Types and Tasks

5.4 RQ4: What characteristics of the model influence energy
use and efficiency?

Figure 5.9 a correlation matrix between five model characteristics and five performance
metrics. The numbers in each cell represent the Spearman correlation; for example, -
0.41 is the correlation between transformer blocks and GPU memory utilization. The
matrix shows only coefficients with statistically significant p-values. To control the family-
wise error rate, Bonferroni correction was applied by dividing the default alpha value
(=0.05) by the number of conducted tests n(n=25). The figure shows that accuracy
is not significantly correlated to any of the model characteristics, while the feed-forward
network size was not correlated with any of the performance metrics. Parameter count,
or in other words, the model’s size, does not correlate with the accuracy and memory
utilization of the GPU. In contrast, it correlates positively with the total energy used
(net energy(Wh)), elapsed time and Joules per token. Embedding size exhibits a similar
pattern, showing no significant correlation with accuracy and GPU memory utilization
while positively correlating with total energy consumption (net energy [Wh]), elapsed
time, and energy per token (Joules per token). Transformer blocks (count) have a positive
correlation with net energy (Wh), elapsed time (s), and Joules per token, while they are
negatively correlated with GPU memory utilization. Attention Heads (count) show the
same pattern of correlation.

28

Filtered Correlation Matrix (Spearman)

0.8
Transformer Blocks -
0.6
Attention Heads -
-0.4
Feed-Forward Size - -0.2
-0.0
Embedding Size -
-0.2
Parameter count -
-0.4

accuracy -
utilization -

§
>
=
9]
c
3]
o
9]
c

FIGURE 5.9: Spearman’s correlation matrix for all models across all tasks

elapsed time (s)
Joules per token

29

Chapter 6

Discussion

6.1 Energy in Action: Scaling LLMs for Real-World Code

The findings show that the energy usage of LLLMs varies across different tasks and models.
They provide a foundation for estimating the energy usage of LLMs at scale. Without
considering the optimality or efficiency of the other models in this study, we can try to
assess the implications in the real-world use case. Assuming a project of 100,000 LOC
translates to 7,900,000 characters in total if we use PEPS8! as a guideline for writing Python
code and with a rough estimation of the total tokens that translates to (different models
have slightly different tokenizers), that would be a 1,975,000 tokens project. Deploying an
LLM solely for this project would end up using 6,165,950 Joules or =~ 1,712.76 108 Wh, of
course, assuming the ideal case of 100 % accuracy, where in reality, the average accuracy
of models is much lower. If we take that into account as well, then developing this project
might require 5,491.3 Wh, which is equivalent to &~ 31.38 km driving with a Tesla Model
S?. If we continue to scale further with a real-world project like the social media Instagram,
estimated to have around 1 million LOC, it will take 54,913 Wh, which is 313.8 km with
our Tesla Model S example. In carbon emissions, this would mean the release of 36.35
kgCOs in the environment.

6.2 Not All Models Are Created Equal

Even though that provides a rough baseline on what to expect from the average Large
Language Model, it does not consider the full complexity of model performance. A deeper
examination into the intricacies and trade-offs of different model types, coding, fine-tuned
and general, reveals that the choice of model might significantly improve inference effi-
ciency.

When comparing the coding and fine-tuned types, model types are inherently expected
to excel in software development tasks. Coding models dominated over the fine-tuned for
all four tasks. For code generation, code models dominated the whole spectrum by being
the only ones on the Pareto frontier, top-left quadrant and most models with accuracy
higher than the mean (50 %). Coding models maintain their dominance for bug fixing,
docstring and test generation, with some fine-tuned models becoming more competitive,
like CodeGemma 7B. These findings emphasize that coding models, designed specifically
for software tasks, generally outperform fine-tuned models.

'PEP 8 - Style Guide for Python Code, https://peps.python.org/pep-0008/#maximum-1ine-length.
2Tesla. Tesla Support, https://waw.tesla.com/en_ie/support/power-consumption.

30

https://peps.python.org/pep-0008/#maximum-line-length
https://www.tesla.com/en_ie/support/power-consumption

However, in the following comparisons between the fine-tuned models and their general
counterparts, the former showed that in code generation and bug fixing, it uses almost the
same energy as the former but most of the time with significant improvement in accuracy.
Docstring was the only task in which the fine-tuned versions used significantly more energy
than the general, even though they still provided improvement in accuracy. Test generation
provided mixed results, wherein only one case did a fine-tuned model provide meaningful
improvement and for the rest, the general models outperformed. The additional training
proved to improve model performance in accuracy while not increasing the energy usage
except for docstring generation, where there is an obvious trade-off of energy for accuracy
in the task.

On the other hand, fine-tuned models proved to be less performant when compared to
other general models. General models consistently outperform those models on both the
Pareto frontier and top-left quadrant and have the highest accuracy. Interestingly, in all
cases, models from the Phi-3 family are the reason for that result. Another model, Llama
3 8B, also outperforms fine-tuned models in code generation and bug fixing. Both model
families are newer based on previous iterations, such as Phi-2.5 and Llama 2. However,
test generation is an exception, where a fine-tuned model (CodeGemma 7B) achieves the
highest accuracy, suggesting that fine-tuning may still be beneficial in certain scenarios
despite its overall inefficiency. Yet, Llama 7B scores closely to these results, suggesting
that fine-tuning is not quite outcompeting general models again.

Finally, the analysis, including all types of models: coding, fine-tuned, and general,
confirmed the leading spot in efficiency for coding models in the task of code generation,
followed by the aforementioned top performers from the general models. Coding models are
becoming less efficient for tasks such as bug fixing than general models. The general models
are more performant in that task. In docstring generation, coding models dominated again,
even though some general models from the Phi-3 family showed competitive performance,
with Phi-3 14B being the most accurate for that task. This challenges the assumption
that coding models might be generally better, but it is also worth considering that the
predecessors of Phi-3 were focused on code, so it might be that the same datasets are
included in its training. For test generation, coding models generally outperformed other
models, but there were still outliers from other groups competing closely with them. The
results highlight that assuming that one type of model is generally superior is incorrect;
on the contrary, for each task, there is a suitable model or one that is at least as good as
the other.

The pairwise comparison showed that while highly effective and efficient for code gen-
eration, coding models may not be the optimal choice when addressing a broader range of
software development tasks. They provide ready-to-use solutions in use cases where code
generation is the focus but are not versatile enough if the range of tasks expands. General
models can be a better choice for cases where the scope of tasks is more extensive, offering
strong baseline performance. Furthermore, in such cases, fine-tuning can improve these
baseline capabilities significantly without trade-offs in energy usage most of the time.

6.3 Context matters: Tasks aren’t equal as well

Still, choosing the right type of model does not exhaust the tale of efficiency. The context
in which the model is deployed also matters, which, for this study, means one of the four
tasks.

Code generation emerged as the most efficient task, using the least average energy
and having the highest accuracy. This can be attributed to the straightforward nature

31

and predictability of coding patterns, which likely reduce the computational complexity.
Another reason might be the availability of high-quality datasets for code generation and
focus during training on that specific task, as this is the most prominent task in software
development.

Next was bug fixing, a task in which the model should generate code in a different
context. Almost the same energy was used, similar to code generation, but the output was
less accurate. This can be attributed to the models being focused mainly on completing or
predicting the next token. Bug fixing, however, involves additional complexity: identifying
the location of the bug, repairing the problematic code, while preserving the surrounding
prefix and suffix, and reasoning about correct code execution with potential inputs and
outputs (at least that is how it works in the human case).

Docstring generation is slightly higher in accuracy than bug fixing but twice as energy-
intensive compared to bug fixing and code generation. Still, evaluating the docstring has
limitations, such as being limited by the understanding of the underlying model and its
coding capabilities ("eat your own food" approach). The best way to evaluate it is by
human experts. Nevertheless, this shows that models struggle with generating sensible
docstrings and use significantly more energy than the other tasks. Lastly, test generation
proved to be the least efficient task due to its low accuracy/correctness. This was assumed
to be due to the lack of high-quality datasets that contain training data related to producing
tests.

When analyzing the breakdown by model type, code generation consistently emerges as
the most efficient task (alongside test generation for general models), with coding models
exhibiting the lowest energy usage per token and the highest accuracy. Similarly, docstring
generation consistently stands out as the most energy-intensive task, achieving higher accu-
racy than bug fixing but ranking among the least efficient tasks alongside test generation,
except in the case of general models, where bug fixing and docstring generation are the
least efficient.

These findings underscore the need for creating high-volume, high-quality datasets to
improve models’ capabilities for tasks such as docstring generation and test generation and
address their current limitations. Another implication is when it comes to deploying such
models for real-world use cases, where they would be more valuable and efficient for code
generation and bug fixing.

Finally, if we consider the findings in the context of developing an application like
Instagram again and taking into account the average accuracy of coding models (50.51 %)
in code generation, this would result in 23,590.28 Wh of energy, almost two and a half
times (2.32 times exactly) less than 54,913 Wh or equivalently ~135 km with the Tesla
Model S.

6.4 Breaking the Myth: Bigger Isn’t Always Better

Analysing further using the Spearman correlation also gave us interesting insights into
what model characteristics might affect the performance metrics. Accuracy, one of the
most important metrics in LLM, proved to be uncorrelated with any of the characteristics,
which means that no matter the size (parameter count) or depth of the model (transformer
blocks), it can improve the accuracy of answers. We must assume that this is purely a
training and dataset problem. Therefore, a larger or deeper model does not guarantee
superior performance. Increasing the size of the models decreases their energy efficiency,
while utilization is unaffected. This indicates that larger models consume more energy
without effectively leveraging additional resources for improved performance. Similarly,

32

increasing the embedding size, which would allow a model to capture more nuanced and
complex patterns, does not affect accuracy or GPU memory utilization. However, it in-
creases the inference time and energy consumption. Transformer blocks and attention
heads count exhibit similar correlations as they are interconnected, with the former repre-
senting the depth of the model and the latter indicating the breadth of each layer. More
attention heads mean additional focus points, resulting in greater computational work at
each layer. Increasing the depth and breadth of a model does not increase its accuracy,
and it affects energy efficiency negatively by increasing energy per token and energy in
total. Additionally, it reduces GPU memory utilization, making it less resource-efficient.

In summary, larger and deeper models inherently require more energy and computa-
tional time, while accuracy does not necessarily improve. This shows the importance of
training and quality datasets over the size of the model.

33

Chapter 7

Threats, Conclusions & Future Work

7.1 Threats to validity

A potential threat to the validity of the results is using uniform prompts across all mod-
els. This might result in differences from the evaluation in the models’ technical reports.
The chosen prompt might be suboptimal for some models, but it was done to facilitate a
fair comparison between models. Moreover, the outputs from the models required post-
processing steps, which were dependent on the structure of the answer. In some cases, a
model might not end their answer properly with the expected keywords, which could re-
sult in incorrect evaluation and negatively affect accuracy. To bypass that, a semi-manual
inspection was carried out on the results to confirm missed function implementations or
docstrings further. Another potential limitation of the study is the usage of one particular
dataset - HumanEval. HumanEval might not represent the complexity of real-world soft-
ware development tasks to the best of its ability or fully grasp their versatility. This, along
with the fact that the study was carried out in the context of one programming language,
Python, might impact the generalizability of the results. Additionally, the transformers
library provided by HuggingFace was used for all models deployment. It configurations,
optimizations, etc. might not fully represent the most efficient deployment for some mod-
els. Variability in library implementations might affect the generalizability of the results.
Moreover, the underlying hardware may have influenced model performance, as more ad-
vanced hardware could enable more optimal outcomes. Finally, during the course of this
study, many new models and versions of models, which were included in the scope. How-
ever, adding these new models would significantly expand the scope. Therefore, this study
provides a snapshot of a specific period. For example, model selection ended in August
2024, and the last experiments were conducted in September 2024.

7.2 Conclusions

This work explored the energy consumption, performance, and efficiency of large language
models in software development, specifically the four core tasks of successfully producing
a working software product: code generation, bug fixing, docstring generation, and test
generation. It provided insights into the trade-offs between the different types of models
and tasks. It explored the relationship between model size and architectural characteristics
and their impact on energy efficiency and accuracy.

The findings show that Large Language models have substantial energy demands when
deployed to real-word use cases. As usage and deployment scale, it becomes important to be
able to choose energy-efficient models and define optimization strategies to mitigate exces-

34

sive energy consumption and carbon footprint. Additionally, it was found that the model’s
energy usage varies significantly across tasks and models, underscoring the importance
of selecting the models according to the context in which they are deployed. Moreover,
the findings showed that coding models outperform general models only for code, while
the latter showed more versatility in expanding the scope of software tasks. Furthermore,
fine-tuning a general model significantly improves the efficacy across all tasks, which shows
promising research and development for future models. Finally, we found that model accu-
racy does not increase with a model’s overall size or depth. This results in a poor trade-off
where the accuracy increase is not proportional to the energy increase. Therefore, smaller
models are more efficient and a better choice than large ones.

In conclusion, improving the efficiency of LLMs requires selecting the right model for
the right task, curating high-quality datasets, that encompass a broader range of software
development activities, and optimizing model architectures for better energy efficiency and
performance.

7.3 Future work

Future work could involve cross-validating the model’s performance across different li-
braries, such as transformers, Ollama, Triton, ONNX, etc. This would help identify vari-
ations in different deployment scenarios where a library/framework might provide further
optimizations or limitations to the model performance.

Another potential venue involves deploying the models on different GPUs and architec-
tures, such as NVIDIA A100, L40, etc., or AMD alternatives to investigate the differences
and trade-offs in accuracy and energy usage. This can provide valuable insights into how
model-hardware interplays and optimize further model deployments.

Finally, a promising area of research is to deploy the models in a real-world scenario.
This can involve selecting the already identified performant models and deploying them in
an organization for employees to use. This can solve the limitations of using datasets like
HumanEval, which does not fully grasp the prompts that could be served to an LLM in a
software development context. Real-world deployment would provide a more comprehen-
sive evaluation of the models’ effectiveness, usability, and energy efficiency under practical
conditions, offering insights beyond controlled experimental settings.

35

Bibliography

1]
2]

3]

4]

[5]

(6]

7]

18]

9]

[10]

[11]

[12]

Hugging face — the ai community building the future. https://huggingface.co/.

Developer sentiment around ai/ml, March 2023. URL: https://stackoverflow.co/
labs/developer-sentiment-ai-ml/.

Greenhouse gas emissions from a typical passenger vehicle. https://www.epa.gov/
greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle, 2023.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anad-
kat, et al. Gpt-4 technical report. arXiv preprint arXiv:2503.08774, 2023.

Negar Alizadeh, Boris Belchev, Nishant Saurabh, Patricia Kelbert, and Fernando
Castor. Language models in software development tasks: An experimental analysis of
energy and accuracy. arXiw preprint arXiv:2412.00329, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski,
David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program syn-
thesis with large language models. arXiw preprint arXiw:2108.07732, 2021.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. A framework for the evaluation of code generation models. https:
//github.com/bigcode-project/bigcode-evaluation-harness, 2022.

Y. Bengio. Learning deep architectures for ai. Foundations, 2:1-55, 01 2009. doi:
10.1561/2200000006.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-

20b: An open-source autoregressive language model. arXiv preprint arXiv:2204.06745,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877-1901, 2020.

Centraal Bureau voor de Statistiek. Energy consumption private dwellings; type of
dwelling and regions. https://www.cbs.nl/en-gb/figures/detail/81528ENG, 2023.

Aditya Chakravarty. Deep learning models in speech recognition: Measuring gpu
energy consumption, impact of noise and model quantization for edge deployment.
arXiw preprint arXiv:2405.01004, 2024.

36

https://huggingface.co/
https://stackoverflow.co/labs/developer-sentiment-ai-ml/
https://stackoverflow.co/labs/developer-sentiment-ai-ml/
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://www.epa.gov/greenvehicles/greenhouse-gas-emissions-typical-passenger-vehicle
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://www.cbs.nl/en-gb/figures/detail/81528ENG

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]
[25]

[26]

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, et al. Evaluating large language models trained on code. arXiv preprint
arXw:2107.03374, 2021.

Radosvet Desislavov, Fernando Martinez-Plumed, and José Hernandez-Orallo. Trends
in ai inference energy consumption: Beyond the performance-vs-parameter laws of
deep learning. Sustainable Computing: Informatics and Systems, 38:100857, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiw:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al.
The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Exponential View. Adoption rate for major milestone internet-of-things services
and technology in 2022, in days [graph|. https://www.statista.com/statistics/
1360613/adoption-rate-of-major-iot-tech/, 2022. Accessed: December 12, 2022.

Hugging Face. Model memory utility. https://huggingface.co/spaces/
hf-accelerate/model-memory-usage, 2024.

Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Osi, Prateek Sharma, Fan Chen, and
Lei Jiang. Llmcarbon: Modeling the end-to-end carbon footprint of large language
models. arXiv preprint arXiv:2309.14393, 2023.

GitHub. Survey reveals ai’s impact on the devel-

oper experience, June 2023. URL: https://github.blog/
2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting
Chen, Xiao Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model
meets programming-the rise of code intelligence. arXiv preprint arXiv:2401.14196,
2024.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David
Lo, John Grundy, and Haoyu Wang. Large language models for software engineering;:
A systematic literature review, 2024. arXiv:2308.10620.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. pages 328-339, 01 2018. doi:10.18653/v1/P18-1031.

Sommerville Tan. Software engineering tenth edition, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2704-2713, 2018.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal
Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu
Huang, Hector Yuen, et al. A study of bfloat16 for deep learning training. arXiv
preprint arXiv:1905.12322, 2019.

37

https://www.statista.com/statistics/1360613/adoption-rate-of-major-iot-tech/
https://www.statista.com/statistics/1360613/adoption-rate-of-major-iot-tech/
https://huggingface.co/spaces/hf-accelerate/model-memory-usage
https://huggingface.co/spaces/hf-accelerate/model-memory-usage
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://arxiv.org/abs/2308.10620
https://doi.org/10.18653/v1/P18-1031

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436—444, 2015.

Kefan Li and Yuan Yuan. Large language models as test case generators: Performance
evaluation and enhancement. arXiv preprint arXiv:2404.13340, 2024.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and
Yin Tat Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint
arXiv:2309.05463, 2023.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code
generated by chatgpt really correct? rigorous evaluation of large language models for
code generation. Advances in Neural Information Processing Systems, 36, 2024.

Alexander V Lotov and Kaisa Miettinen. Visualizing the pareto frontier. In Multiobjec-
tive optimization: interactive and evolutionary approaches, pages 213-243. Springer,
2008.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder
2 and the stack v2: The next generation. arXiv preprint arXiv:2402.19173, 2024.

Alexandra Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry pro-
cessing: Watts driving the cost of ai deployment? arXiv preprint arXiv:2311.16863,
2023.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the
carbon footprint of bloom, a 176b parameter language model. Journal of Machine
Learning Research, 24(253):1-15, 2023.

Meta. Introducing code llama, a state-of-the-art large language model for coding, 2023.
URL: https://ai.meta.com/blog/code-1lama-large-language-model-coding/.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adri-
ana Meza Soria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep

Singh, et al. Granite code models: A family of open foundation models for code
intelligence. arXiv preprint arXiv:2405.04324, 2024.

Mistral AI. Mistral ai homepage, 2023. URL: https://mistral.ai/.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Long-
pre. Octopack: Instruction tuning code large language models. arXiv preprint
arXiv:2308.07124, 2023.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. A white paper on neural network quantiza-
tion. arXiv preprint arXiv:2106.08295, 2021.

Shakked Noy and Whitney Zhang. Experimental evidence on the productiv-
ity effects of generative artificial intelligence. Science, 381(6654):187-192,
2023. URL: https://www.science.org/doi/abs/10.1126/science.adh2586,
arXiv:https://www.science.org/doi/pdf/10.1126/science.adh2586, doi:
10.1126/science.adh2586.

38

https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://mistral.ai/
https://www.science.org/doi/abs/10.1126/science.adh2586
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.adh2586
https://doi.org/10.1126/science.adh2586
https://doi.org/10.1126/science.adh2586

[41] NVIDIA Corporation. Gpu positioning for virtualized compute and graphics
workloads: Selecting the right gpu for your virtualized workload. Technical brief,
NVIDIA Corporation, 2023. URL: https://images.nvidia.com/data-center/
technical-brief-gpu-positioning-virtualized-compute-and-graphics-workloads.
pdf.

[42] OpenAl. Openai codex, 2021. URL: https://openai.com/blog/openai-codex/.

[43] BigCode project. StarCoder2-Instruct: ~ Fully Transparent and Permissive
Self-Alignment for Code Generation. https://github.com/bigcode-project/
starcoder2-self-align, 2024.

[44] Rackspace. Stage of generative artificial intelligence (ai) implementation within
businesses in 2023 [graph|, 2023. URL: https://www.statista.com/statistics/
1447897/stages-of-generative-ai-implementation-in-business/.

[45] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving
language understanding by generative pre-training. 2018.

[46] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama:
Open foundation models for code. arXiv preprint arXiv:2308.12950, 2023.

[47] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael
Jones, William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From
words to watts: Benchmarking the energy costs of large language model inference. In
2023 IEEE High Performance Extreme Computing Conference (HPEC), pages 1-9.
IEEE, 2023.

[48] Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of
using large language models for automated unit test generation. IEFE Transactions
on Software Engineering, 2023.

[49] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012
IEEF international conference on acoustics, speech and signal processing (ICASSP),
pages 5149-5152. IEEE, 2012.

[50] Rico Sennrich. Neural machine translation of rare words with subword units. arXiv
preprint arXiww:1508.07909, 2015.

[51] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recur-
rent neural networks. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 1017-1024, 2011.

[52] Tlya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. Advances in neural information processing systems, 27, 2014.

[53] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupati-
raju, Shreya Pathak, Laurent Sifre, Morgane Riviére, Mihir Sanjay Kale, Juliette
Love, et al. Gemma: Open models based on gemini research and technology. arXiv
preprint arXiv:2403.08295, 2024.

[54] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal

39

https://images.nvidia.com/data-center/technical-brief-gpu-positioning-virtualized-compute-and-graphics-workloads.pdf
https://images.nvidia.com/data-center/technical-brief-gpu-positioning-virtualized-compute-and-graphics-workloads.pdf
https://images.nvidia.com/data-center/technical-brief-gpu-positioning-virtualized-compute-and-graphics-workloads.pdf
https://openai.com/blog/openai-codex/
https://github.com/bigcode-project/starcoder2-self-align
https://github.com/bigcode-project/starcoder2-self-align
https://www.statista.com/statistics/1447897/stages-of-generative-ai-implementation-in-business/
https://www.statista.com/statistics/1447897/stages-of-generative-ai-implementation-in-business/

[55]

[56]

[57]

[58]

[59]

[60]

Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXi:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder:
Empowering code generation with oss-instruct, 2024. URL: https://arxiv.org/abs/
2312.02120, arXiv:2312.02120.

Burak Yetistiren, Eray Tiiziin, and Isik Ozsoy. Assessing the quality of github copilot’s
code generation. 11 2022. doi:10.1145/3558489.3559072.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li,
and Rui Wang. Unifying the perspectives of nlp and software engineering: A survey
on language models for code. arXiv preprint arXiw:2311.07989, 2023.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi Ye,
and Jiachi Chen. A survey of large language models for code: Evolution, benchmark-
ing, and future trends. arXiv preprint arXiw:2311.10372, 2023.

Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin, Shawn
Simister, Ganesh Sittampalam, and Edward Aftandilian. Productivity assessment
of neural code completion. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, MAPS 2022, page 21-29, New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3520312.3534864.

40

https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.1145/3520312.3534864

Appendix A

Models

Name Size (in B) | Version | Repository ID on HF Technical Report
StarCoder 2 3.0 2.0 bigcode/starcoder2-3b [32]
- 7.0 - bigcode/starcoder2-7b -

- 15.0 - bigcode/starcoder2-15b-instruct-v0.1 -
DeepSeek Coder 1.3 1.0 deepseek-coder-1.3b-instruct [21]
- 6.7 - deepseek-coder-1.3b-instruct -
Gemma 2.0 1.0 google/gemma-2b [53]
- 7.0 - google/gemma-7h-it -
CodeGemma 2.0 1.0 google/codegemma-2b-it -

- 7.0 - google/codegemma-7b-it -
Granite Code 3.0 1.0 ibm-granite/granite-3b-code-instruct [36]
- 8.0 - ibm-granite/granite-8b-code-instruct

- 20.0 - ibm-granite/granite-20b-code-instruct -
Llama 3 8.0 3.0 meta-llama/Meta-Llama-3-8B-Instruct | [16]
Llama 2 7.0 2.0 meta-llama/Llama-2-7b-chat-hf [54]
- 13.0 - meta-llama/Llama-2-13b-chat-hf -
CodeLlama 7.0 1.0 meta-llama/CodeLlama-7b-Instruct-hf | [46]
- 13.0 - meta-llama/CodeLlama-13b-Instruct-hf | -
Phi-3 3.8 3.0 microsoft /Phi-3-mini-4k-instruct [29]
- 7.0 - microsoft /Phi-3-small-8k-instruct -

- 14.0 - microsoft /Phi-3-medium-4k-instruct -
Mistral 7.0 0.1 mistralai/Mistral-7B-Instruct-v0.1 [37]

TABLE A.1: Models used in the study

41

Appendix B

Prompts

"""You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to user
instructions.

Instruction

Write a Python function to solve the given task:"""

“¢¢python

from typing import List
def has_close_elements (numbers: List[float], threshold: float) ->
bool:

""" Check if in given list of numbers, are any two numbers closer
to each other than given threshold. >>> has_close_elements
([t.0, 2.0, 3.0]1, 0.5) False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True

nmnn

[4

"""### Response"""

‘¢ ¢python

from typing import List

def has_close_elements (numbers: List[float], threshold: float) ->
bool:

""" Check if in given list of numbers, are any two numbers closer
to each other than given threshold. >>> has_close_elements
(f(t.0, 2.0, 3.0], 0.5) False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True

nmnn

F1GURE B.1: Prompt used for code generation

42

"""You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to user
instructions.

Instruction

Fix the bugs in the given task:"""

f¢‘python

from typing import List

def has_close_elements (numbers: List[float], threshold: float) ->
bool:

for idx, elem in enumerate (numbers):

for i1idx2, elem? in enumerate (numbers):
if didx !'= idx2:
distance = elem - elem2
if distance < threshold:
return True
return False
def check(has_close_elements):
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.21,

0.3) == True

assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.21,
0.06) == False

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95)
== True

assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) ==
False

assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0],
0.1) == True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1]1, 1.0) ==
True

assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) ==
False

check(has_close_elements)

[

mmn ”###RQSPOHSQ" mnn

f¢¢python

from typing import List

def has_close_elements (numbers: List[float], threshold: float) ->
bool:

FI1GURE B.2: Prompt used for bug fixing

43

"""You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to user
instructions.

Instruction

Provide a concise natural language description of the function
using at most 213 characters. No code, only docstring."""

¢‘python

from typing import List

def has_close_elements (numbers: List[float], threshold: float) ->
bool:
for idx, elem in enumerate (numbers):
for idx2, elem2 in enumerate (numbers):
if idx !'= idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False

[S Y
"""### Response
Sure, here is the docstring of the function:
\“\H\H

FiGUrE B.3: Prompt used for docstring generation

44

"""You are an exceptionally intelligent coding assistant that
consistently delivers accurate and reliable responses to user
instructions.

Instruction

Generate a number of assertions for the following Python function:
nmnn

‘¢ “python

from typing import List

def has_close_elements (numbers: List[float], threshold: float) ->
bool:
""" Check if in given list of numbers, are any two numbers
closer to each other than given threshold.

>>> has_close_elements ([1.0, 2.0, 3.0], 0.5) False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True nnn

for idx, elem in enumerate (numbers):
for idx2, elem2 in enumerate (numbers):
if idx !'= idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
[N
"""### Response
Sure, here are the assertions:"""
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) ==
True
assert

FIGURE B.4: Prompt used for test generation

45

Appendix C

Data

Model version

Net Energ;

(Wh)

(0-100)

code generation

bug fixing

docstring generation

test generation

code generation

bug fixing

docstring generation

test generation

Granite Instruct 8b 24.17489512 43.0093067 32.63000863 66.663 57.31707317 34.14634146 40.85365854 29.87
Granite Instruct 20b 69.28621455 149.4153794 136.5452015 235.4269392 56.09756098 34.75609756 44.51219512 27.43
Granite Instruct 3b 11.89454785 23.52750703 19.71109012 49.234 50 18.90243902 37.19512195 27.43
Starcoder Instruct 15b 81.87624397 120.7194031 148.2261201 188.9208369 70.73170732 43.29268293 39.02439024 3.04
Starcoder Base 7b 36.69989645 36.67828591 61.60805651 72.909 37.8 29.87804878 26.82926829 2.43
Starcoder Base 3b 21.72962423 21.36081562 37.65765126 42.621 31.1 26.2195122 20.12195122 4.87
Gemma Instruct 7b 45.59114942 45.67050693 48.70008147 43.607 24.3902439 22.56097561 25 12.8
Gemma Instruct 2b 20.40975039 19.88996541 9.655239393 20.861 16.46341463 25.6097561 14.02439024 5.48
CodeGemma Instruct 7b 45.82735338 44.673628 23.5271141 43.378 52.43902439 40.24390244 44.51219512 29.26
CodeGemma Base 2b 21.46032723 20.10983619 32.47232163 34.196 18.9 8.536585366 14.02439024 4.87
Mistral Instruct 7b 38.60648174 38.81854665 20.91772614 70.787 29.26829268 14.02439024 28.04878049 13.41
Llama 3 Instruct 8b 39.97664413 39.59375871 44.27539593 80.016 62 43.29268293 - 3.04
CodeLlama Instruct 7b 37.25617721 36.39265213 60.33147283 66.551 41.46341463 26.82926829 24.3902439 20.12
CodeLlama Instruct 13b 106.8386744 106.3009683 177.844116 211.6721158 45.73170732 29.87804878 29.87804878 5.48
Llama 2 Instruct 7b 37.20401372 36.40957056 27.6471476 45.95 13.41463415 6.707317073 11.58536585 28.65
Llama 2 Instruct 13b 107.0205267 106.9420922 89.11395357 207.0458329 17.68292683 14.63414634 14.63414634 28.04
DeepSeek Instruct 1.3b 15.82529399 13.48869557 12.67345212 61.358 60.36585366 21.73170732 40.85365854 26.21
DeepSecek Instruct 6.7b 37.24320432 36.40892399 35.07584102 23.148 78.04878049 48.17073171 57.31707317 19.51
Phi-3 Instruct 14b 118.9238602 118.5994719 101.6319049 223.0481285 63.4146 51.2195122 62.80487805 2.43
Phi-3 Instruct 7b 67.90343695 67.68818819 100.7889995 115.46 63.4146 48.7804878 56.70731707 13.41
Phi-3 Instruct 3.8b 32.53580813 31.2501674 25.22170093 52.626 53.0487 45.73170732 43.90243902 23.78

TABLE C.1: The raw data of the results

46

	Introduction
	Research objectives

	Background
	Related Work
	Methodology
	Model selection
	Criteria
	Selected models

	Dataset selection
	Experiment setup
	Environment Evaluation and Selection
	Hardware
	Precision Trade-offs: BFloat16/Float16 vs. FP32 in Inference

	Experiment design
	Multi-Objective Optimization Using Pareto Frontier

	Results
	RQ1: What are the energy and carbon impacts of LLMs in software development?
	RQ2: How do coding, fine-tuned, and general-purpose models compare in efficiency?
	Coding versus fine-tuned
	General with fine-tuned twin versus fine-tuned twin
	Fine-tuned versus general (all)
	Coding versus fine-tuned and general

	RQ3: How does energy consumption vary across different software development tasks?
	Overall comparison
	Breakdown on types: coding, general, finetuned

	RQ4: What characteristics of the model influence energy use and efficiency?

	Discussion
	Energy in Action: Scaling LLMs for Real-World Code
	Not All Models Are Created Equal
	Context matters: Tasks aren't equal as well
	Breaking the Myth: Bigger Isn’t Always Better

	Threats, Conclusions & Future Work
	Threats to validity
	Conclusions
	Future work

	Models
	Prompts
	Data

