UNIVERSITY OF TWENTE.

Faculty of Geo-Information
Science and Earth Observation

Deep Reinforcement Learning
for Autonomous Indoor
Exploration with UAVs

Andrea Bravo i Forn
M.Sc. Thesis
March 11, 2025

Supervisors:
Prof. Dr. Ing. Francesco Nex
PhD student Bavantha Udugama

Earth Observation Science (EOS) Department

Faculty of Geo-Information Science and Earth Observation
University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

Summary

This master’s thesis addresses the challenge of autonomous exploration in un-
known, office-like indoor environments using an Unmanned Aerial Vehicle (UAV).
The primary objective is to train a[UAV|to explore such environments through Deep
Reinforcement Learning (DRL) techniques within a physics-accurate, photorealistic
simulation framework.

To achieve this, a modular and adaptable pipeline was designed, integrating
three core components: a high-fidelity simulation environment, a high-level DRL
policy for decision-making, and a low-level controller to ensure the drone accurately
tracks the given commands. Given its versatility, the pipeline can be adapted to other
[DRL tasks beyond exploration, such as navigation or search tasks, with minimal ad-
justments. During implementation, various simulation tools, interaction libraries, and
[DRL algorithms were rigorously evaluated, and the most suitable ones were se-
lected based on requirements.

The pipeline was validated through two distinct tasks. First, a preliminary navi-
gation task served as a proof of concept, where the drone had to navigate toward
a goal while avoiding obstacles. Second, the main exploration task was evaluated,
focusing on the drone’s ability to autonomously map unknown environments. For
each task, the Reinforcement Learning task specifications—including the ac-
tion space, observation space, and reward function—were clearly defined. Using
these specifications, agents were trained, and the resulting policies were evaluated.

Contents

i
[List of acronyms| \
1__Introduction| 1
(1.1 Preliminary technical notions| 2
(1.2 General Background| 3

1.3 Thesis Problem Formulation|. 6
(1.4 Report Organization| 7
[2__State of the art 8
2.1 State Of The Artl 8
[2.1.1 Geometric approaches| 8

[2.1.2 Dynamic approaches| 9

[2.1.3 Approaches for tasks complementary to autonomous exploration| 11

13
(3.1 Exploration Pipeline Overview|. 13
B2 ChoiceofTools| L 15

.21 Simulator Choicel 15

2.2 _Chol t Framework to Interact with | mi. 16

3.2.3 Choiceof DRLLibrary| 18

(3.3 EnvironmentSetup|. oL 18
3.3.1 Environment workilow! 18
[3.3.2 SceneSetup| 19
3.4 Low-level Non-linear Controller Modulel 24
3.4.1 Non-linear Control Lawl 24
[3.4.2 Implementation specifications|. 25

(3.5 High-level DRL Controller] 26
[3.5.1 Selected Model-free DRL algorithm| 27
3.5.2 General DRL architecture| 27

v CONTENTS

4 Experiments| 29
4.1 Experimental Setup for Controller Validation| 29
4.2 Experimental Setupfor DRL Tasks| 29

4.2.1 Task 1: Collision-Free Target Navigation| 29
[4.2.2 lask 2: Autonomous Exploration| 31

5 Resulis! 38
0.1 Performance Results for Controller Valigation 38
5.2 Resultsof DRLTasks| 40

[6.2.1 Task 1: Collision-Free Target Navigation| 40
[0.2.2 Task 2: Autonomous Exploration| 41

6__Conclusions and recommendations! 45

6.1 Conclusions|. 45

2 Future Workl. o e e 46
References 47
|A State of the art summary table| 54

Available Simulation n 57

List of acronyms

EOS

RL

DRL
VIO
DNN
RNN
A-SLAM
POMDP
MDP

IT
TOED
KLD
DWA

Mi

DQN
NN
CNN
MLP
SAC

PPO

Earth Observation Science

Reinforcement Learning

Deep Reinforcement Learning

Visual-Inertial Odometry

Deep Neural Network

Recurrent Neural Network

Active Simultaneous Localization and Mapping
Partially Observable Markov Decision Process
Markov Decision Process

Information Theory

Theory of Optimal Experimental Design
Kullback—Leibler Divergence

Dynamic Window Approach

Mutual Information

Deep Q Network

Neural Network

Convolutional Neural Network

MultiLayer Perceptron

Soft Actor Critic

Proximal Policy Optimization

VI LIST OF ACRONYMS
TRPO Trust Region Policy Optimization
DDPG Deep Deterministic Policy Gradient
ML Maximum Likelihood

SB3 Stable Baselines 3

OIGE Omniverse-lsaac-Gym-Envs

Ccw Clock-wise

CCw Counter Clock-wise

USD Universal Scene Description

FLU Front (x), Left (y), Up (2)

UAV Unmanned Aerial Vehicle

Chapter 1

Introduction

Optimal autonomous exploration of unknown indoor environments remains an open
problem in the robotics community, drawing significant attention due to its broad
range of applications. These include inspecting deteriorating confined spaces, such
as old buildings, mines, or ballast water tanks; conducting search and rescue mis-
sions, like navigating burning buildings locating victims, or assisting police in haz-
ardous operations; and exploring areas beyond human reach, such as ventilation
systems and pipelines that are too narrow for a human to enter.

Despite considerable efforts to address this challenge, it is far from solved. A
major obstacle is the inability to perform global path planning effectively, due to the
inherent uncertainty in the structure of the environment.

This thesis was conducted at the Department of Earth Observation Science
(EOQS) at the University of Twente and is linked to the research of PhD candidate Ba-
vantha Udugama. His previous work focuses on developing a real-time spatial per-
ception system deployed on a drone, which uses a monocular camera and IMU data
to create a hierarchical 3D scene graph — environment representation that com-
pacts geometric and high-level semantic information into a graph [1]. The system
uses deep learning models to predict depth and semantic information from RGB im-
ages. By integrating these models with a Visual-Inertial Odometry algorithm,
3D scene graphs can be generated [2]. Currently, the drone is manually controlled
during the graph construction process. His next step is to train a DRL policy to en-
able autonomous 3D scene graph generation.

This work marks the first step in that direction, initiating a new research line within
the [EOS| Department. While complementary to Bavantha’s research, it remains a
standalone, independent project. A [DRL exploration pipeline has been developed
from scratch, including the selection of a simulator, interaction libraries, and the es-

1

2 CHAPTER 1. INTRODUCTION

tablishment of a general codebase. The resulting pipeline is highly modular, making
it valuable not only for Bavantha'’s research but also for other projects that don't fo-
cus on exploration or use Additionally, significant insights gained during this
project will contribute to future work in this research line.

Assuming that this pipeline will eventually be integrated with Bavantha'’s spatial
perception system, we consider the drone to have access to depth and semantic
images without addressing how these are generated. Furthermore, we assume the
[UAV| has access to precise pose information from the simulator, and will not use
Bavantha’s [VIO| algorithm. Considering pose uncertainty and sensor noise is left as
future work to keep the thesis within a manageable scope.

1.1 Preliminary technical notions

[RL provides a framework for solving problems where an agent learns to make de-
cisions to achieve a specific goal by actively and sequentially interacting with its
environment while optimizing a feedback reward signal.

This type of interaction is formally described by a Markov Decision Process
(MDP). At each timestep ¢, the agent selects an action a, € A from its current
state s; € S, according to its policy 7 (s|a;). The environment then transitions to
a new state s,;; € S based on the transition probability function p(s;;1|s, a;), and
provides a reward signal r, = R(s;, a;). The agent’s goal is to find a policy 7(a|s;, 0),
where 6 represents the policy parameters, that maximizes the expected cumulative
reward E[>_, v'r,], with being ~ the discount factor and T the time horizon. [3]

In Equation [1.1], the value function v.(s) represents the expected cumulative re-
ward when starting form state s and acting under policy =. Similarly, the Q-function
q-(s,a) represents the expected cumulative reward when starting from state s, tak-
ing action a and then following policy =. These functions measure how beneficial
it is for the agent to be in a given state (or take a specific action) under the given
policy. Notice that, for a deterministic policy, v, (s) = ¢ (s, 7(s)).

277}|30—5 G (s, a) 277}|30—$ ag = al (1.1)

Model free [DRL approaches use a Deep Neural Network (DNN) to solve R
problems when p(s;y1]s:, a;) and R(s;, a;) are unknown. We can classify these ap-
proaches into value-based and policy-based methods. In value-based methods,
the estimates v.(s) or ¢.(s,a) for all possible actions in a discrete action

1.2. GENERAL BACKGROUND 3

space, given state s, inferred from the observation. Well-known examples of this ap-
proach are Deep Q-Learning methods. In policy-based methods, the [DNN| directly
parametrizes policy m(a, s). An example within this category is the Proximal Policy
Optimization method. Actor-critic methods, where an actor network updates
the policy and a critic network evaluates the actions, combine both approaches.

1.2 General Background

The Active Simultaneous Localization and Mapping (A-SLAM) problem aims to op-
timize the exploration of unknown environments, by proposing navigation strategies
that generate future goals or actions for a robot to minimize uncertainty in its map
and pose estimates. Acting as an “envelope” of already existing SLAM systems,
[A-SLAM enables fully autonomous exploration. A key challenge is balancing en-
vironmental exploration (maximizing coverage) and exploitation (revisiting areas to
improve map and pose accuracy). This thesis focuses on the exploration aspect of
the problem, as assuming exact pose knowledge prevents drift, makes loop closure
straightforward, and ultimately removes the need for exploitation.

can be seen as a sequential decision-making process under actuation
and observation uncertainties. Thus, it can be modeled as a Partially Observable
Markov Decision Process (POMDP), formally described by the tuple {S, A, Z,¢&,.&., R, v}
Here, S is the state space -set of all possible true states s of the environment (e.g.,
exact robot’s pose and true geometry of the environment, with landmarks and dy-
namic objects)-, A is the action space that contains any action « that the agent can
take (e.g., discrete velocity commands or goal positions) and Z is the observation
space - set of all possible observations > the agent can make (e.g., raw sensor
measurements). Moreover, & = p(si11]¢, a¢) is the transition model (accounting for
actuation uncertainty), &, = p(zi11/s:41, a¢) is the observation model (accounting for
measurement uncertainty), R(s:, a;) is the reward function, and v € [0, 1] is the dis-
count factor (balancing the importance of immediate and future rewards).

In the agent cannot access the true state s;. Instead, it maintains an
internal belief of it given by b,(s;) = p(s¢|z1.4,a14-1), @ posterior probability function
over the states at time ¢. Additionally, we define the control policy 7f(b;) = p(a.|b;)
as a mapping from the agent’s belief to actions (parametrized by 6) that determines
the agent’s behaviour. Since the belief is a sufficient statistic, optimal policies for the
original POMDP may be found by solving the optimization problem in equation (1.2}
where p(b;, w(b;)) = fs bi(st)R(sy, ay)ds, is the expected reward for belief state b, [4].

4 CHAPTER 1. INTRODUCTION

" = arg mj}xE[Z v p(be, 7(by))] (1.2)

t=0

This optimization is computationally very expensive. To manage its complexity,
classical approaches typically divide the implementation of an method into
three sub-modules. First, collision-free waypoints are identified within the available
map estimate. Next, a utility function based on Information Theory (IT) or Theory
of Optimal Experimental Design (TOED) evaluates the potential information gain of
visiting each waypoint candidate. With this, a goal position is chosen. Finally, a
path-planning method guides the robot toward the selected goal generating a trajec-
tory [5]. In contrast, dynamic approaches —primarily DR}based— aim to directly
predict the control inputs the agent must follow to generate collision-free trajectories
that maximize coverage, while minimizing state uncertainty.

Traditional methods have been extensively studied in the literature and, while
they perform well, DRL}-based methods offer several advantages:

* Reduced computational complexity during inference. Unlike classical ap-
proaches that require intensive computations at runtime, [DRL}based methods
transfer the computational burden to the [DNN] training phase, requiring only
feed-forward propagation during evaluation [6].

» End-to-end optimality: Classical approaches decouple optimal goal selection
from path planning, leading to suboptimal solutions of the exploration problem.
[DRL optimizes these tasks jointly, enabling more globally efficient solutions by
directly maximizing exploration rewards.

» Flexibility in input modalities. Classical approaches rely on specialized sen-
sors to observe geometry, whereas learning-based approaches can directly
process diverse input types (eg. can infer geometry from raw RGB images) [7].

» Better generalization to unseen environments. DRL-based methods can
effectively leverage structural regularities of the real world, leading to more
efficient behaviour in previously unseen environments [7].

» Improved robustness to uncertainty. These methods can handle errors in
state estimation [7].

Given these advantages, we adopt a DRLbased approach to address the chal-
lenge of autonomous exploration in 3D environments. However, it is important to
acknowledge the limitations of this approach. A critical concern is the design of the
action and observation spaces, as high sample complexity can lead to extremely

1.2. GENERAL BACKGROUND 5

large search spaces during training and non-convergence. To overcome this, pre-
vious work (such as [8]) uses imitation learning to guide the exploration. Yet, it still
underperforms compared to classical approaches [7]. Notice that imitation learning
might not be the best solution, as it is labor-intensive and susceptible to bias [9].

After reviewing the state-of-the-art (Section[2.1)), several domain gaps have been
identified in based autonomous exploration approaches:

1. There is a notable lack of research on methods for optimal indoor explo-
ration using visual input (e.g., depth, semantic, or RGB images) that general-
ize well to unseen environments without imitation learning. End-to-end trained
methods are entirely absent.

2. To the best of my knowledge, no existing works employing DRL for indoor ex-
ploration are specifically tailored for [UAVs. A key challenge in this context is
the limited payload capacity of [UAVk, which limits computational power, mak-
ing it impractical to process highly detailed maps. The reviewed studies that
have been tested in realistic environments typically use grid cells of 5 cm x 5
cm. Furthermore, enabling 3D exploration —where the [UAV| can move verti-
cally— adds another layer of complexity to the problem compared to ground
robots, which are constrained to 2D motion.

3. None of the reviewed works explicitly incorporate semantic information as part
of the observations or utilize it in reward shaping. Some methods attempt to
learn semantic cues from RGB images using a Convolutional Neural Network
(CNN) trained for object classification ([8], [10]).

4. Many approaches have been trained and tested in highly simplified environ-
ments. Some [DRL methods leveraging visual data are trained in more ad-
vanced simulators (e.g., Habitat-Sim [11]), but these simulators are relatively
outdated and lack advanced physics models. Instead, a photorealistic simu-
lator with advanced physics should be used to accurately capture the robot’s
dynamics and minimize the sim-to-real gap, enhancing the policy’s transfer-
ability to real-world deployment.

5. Episode termination conditions often depend on prior knowledge of the envi-
ronment’s map (e.g., covering a certain percentage of the area). Developing
map-agnostic termination criteria remains largely unexplored.

6 CHAPTER 1. INTRODUCTION

1.3 Thesis Problem Formulation

The main goal of this thesis is formulated as follows:

Train a[UAV| using to autonomously and efficiently explore unknown indoor
office-like environments relying on visual input. The [UAW's movement will be con-
Strained to a 2D plane, maintaining a fixed flight altitude. Training and evaluation will
be conducted in a physics-accurate, photorealistic simulator.

In addition, subject to time constrains, the following extended goals were defined:

» Evaluate the impact of semantic information on exploration performance.

 Design termination conditions independent of prior environment knowledge.

To tackle these goals, the following research questions were posed:
1. Which simulator and libraries should be used to set up the exploration pipeline?

2. How should the architecture of the exploration pipeline be? What modules
should it include?

3. Which DRL policy, DNN]architecture, action and observation spaces should be
used?

4. How can we exploit lightweight low-resolution environment representations in
a safe way to navigate without collisions?

5. What cues from the environment, observations or map estimate can be used
to determine when an episode should end?

A key challenge in this thesis was designing and implementing the exploration
pipeline to train such a model from scratch. Crucial design choices —such as the
pipeline architecture and the software tools used- had to be made from the very be-
ginning. The most promising software libraries were chosen and, while later on they
became the standard for [DRL frameworks, at the time this project began, they had
minimal documentation and were under active development with frequent updates.
To maximize utility beyond this work, the pipeline was designed with modularity as
a core principle, enabling the reuse of individual components for other applications.
The final pipeline is intended for release as open-source software to support repro-
ducibility and benefit the research community.

1.4. REPORT ORGANIZATION 7

1.4 Report Organization

The remainder of this report is organized as follows. Chapter 2| provides a review of
the state of the art in autonomous exploration. Chapter [3] gives an overview of the
designed exploration pipeline, discusses the selected software tools and libraries,
and details the pipeline modules. Chapter [4] presents the experiments conducted
to validate the exploration pipeline, including tests for the low-level controller, pre-
liminary [DRL] tasks designed to verify system readiness before tackling the full ex-
ploration task, and the specifications of the exploration task itself (the main goal).
Chapter [presents the results of these experiments. Finally, Chapter [6| summarizes
the thesis’s conclusions and insights and discusses potential directions for future
work.

Chapter 2

State of the art

2.1 State Of The Art

Many approaches have been proposed to tackle the [A-SLAM| problem. A recent
survey [9] categorizes these methods into geometric and dynamic approaches.

2.1.1 Geometric approaches

Geometric approaches seek optimal robot trajectories that minimize uncertainty in
both the robot's map and localization. As mentioned in Section [1.2, these meth-
ods typically follow three steps. First, potential goals or paths are identified within
the estimated map. Next, candidates are ranked using a utility function that favors
goals/paths maximizing the uncertainty reduction in the robot’s trajectory and map.
Ideally, the utility function would quantify how much each candidate sharpens the
joint probability distribution of the map and robot’s pose. However, this is computa-
tionally expensive. Instead, most methods propose a cost function that leverages|T]|
and[TOED|notions to separately assess the uncertainty reduction in the robot’s pose
and map estimates associated to each candidate. Finally, a path planner is used to
navigate towards the selected goal or follow the selected path.

To select candidate goals, [12] introduces the concept of frontiers, borders be-
tween known and unknown map regions, where the center of each frontier serves as
a goal candidate. In this work, the nearest frontier is chosen as the next exploration
target. Other works also using frontier-based exploration are [13], [14], [15] and [16].

Information-driven utility functions rank candidates based on information gain,
for instance checking which candidate minimizes the robot’s pose and map entropy.
Both [13] and [14] use Rao-Blackwellized Particle filter SLAM and [[Tibased util-

8

2.1. STATE OF THE ART 9

ity functions. The former compares three cost functions (joint trajectory and map
entropy, expected map mean and Kullback-Leibler Divergence (KLD)-based infor-
mation gain) and finds them computationally prohibitive. The latter uses A* [17] to
compute trajectories to candidate frontiers and selects the one with the highest map-
segment covariance, with Dynamic Window Approach (DWA) [18] as a local planner.

Task-driven utility functions use optimality criteria to map the pose-graph
covariance matrix (from graph-based SLAM, quantifying the uncertainty in the esti-
mated robot’s trajectory) into a scalar value for ranking candidates. [15] computes
trajectories to all candidate frontiers with Djikstra’s algorithm [19] (global planner).
For each trajectory, a hallucinated pose-graph is created from the last pose-graph
of the SLAM algorithm, and D-optimality is used to rank candidate trajectories. [16]
extends this by augmenting the utility function with a path entropy term, combining
[T and notions.

Other approaches not relying on frontier-based exploration include the method
in [20], which uses Topological Feature Graphs as environment representations,
samples reachable goals from the graph and selects the one maximizing landmark
entropy reduction. Work in [21] grows an RRT* tree [22] within the known region of
a map estimate, and selects the candidate path that minimizes joint path and map
entropy change per distance traveled. This work highlights the link between map
entropy and coverage, as well as path entropy and accuracy.

2.1.2 Dynamic approaches

Dynamic approaches frame[A-SLAM|as a sequential decision-making problem, where
the robot selects a control action at each step to minimize map and pose estimation
uncertainty. These methods typically employ DRL, where a learned policy maps
sensor and state inputs to actions. Based on the reward function, these approaches
are sorted as uncertainty-based, area-coverage-driven or a hybrid of both.

Uncertainty-based DRL methods use a reward function that encourages uncer-
tainty minimization in state estimation, addressing both exploration and exploitation.
Many approaches shape rewards by mimicking the utility functions of geometric
methods. For instance, [6] and [23] use [TOED}based reward functions, employ-
ing the D-optimality and A-optimality criteria, respectively. Meanwhile, [24], [25],
and [26] adopt[ITtbased rewards: the first two leverage Mutual Information gain
to determine the next best view, while the latter uses entropy reduction. Other meth-

10 CHAPTER 2. STATE OF THE ART

ods quantify uncertainty more loosely and are often referred to as curiosity-driven
approaches. For instance, [27] rewards actions that move the robot beyond a cer-
tain distance from previously visited waypoints, while [28] encourages visiting states
that are difficult to predict in a learned feature space. Slightly outside the scope of
[DRL [29] employs supervised deep learning with an[ITtbased loss function.

Area-coverage-driven DRL methods use a reward function based on the increase
in explored area at each step, overlooking exploitation. All reviewed approaches in
this category rely on imitation learning for generalization. Work in [8] uses a classi-
cal mapping module to generate an occupancy grid, which, along with RGB images,
is fed into a policy to predict velocity commands. Similarly, [7] proposes a
hierarchical approach combining learning-based and classical modules. A Neural
SLAM module [30], trained jointly with a [DRL}based global policy, processes RGB
and odometry data to generate an estimate of the map and agent’s pose. The
global policy receives these estimates to set long-term goals. A geometric planner
then computes a trajectory and samples short-term goals, which a local imitation
learning policy uses with RGB images to generate velocity commands. Work in [10]
enhances [/] by incorporating spatial and channel attention mechanisms.

Hybrid DRL methods combine uncertainty-based and area-coverage reward terms
to balance exploration and exploitation. For example, [31] uses a coverage reward
term equal to [8] alongside a curiosity-driven term similar to [27]. Likewise, [32]
adopts a modular hierarchical approach akin to [7], with a reward function compris-
ing three components: a coverage term, a term encouraging loop closures for map
consistency, and a term based on ORB feature points to ensure accuracy.

An extensive summary table of the reviewed papers on autonomous exploration
is provided in[Al

Notably, all policies rely on environment representations (either learned or
provided as input) to avoid overfitting to training environments. Moreover, none of
the reviewed works explicitly incorporates semantic information in observations or
reward functions. The closest approaches, [8], [7] and [10], attempt to implicitly learn
semantic cues from RGB images via encoders. In addition, exploration methods that
rely solely on visual inputs are rare, as many approaches use range measurements.

2.1. STATE OF THE ART 11

2.1.3 Approaches for tasks complementary to autonomous ex-
ploration

DRL methods for tasks directly related to autonomous exploration have also been
reviewed, as they can provide valuable insights and inspiration.

Some works focus on collision avoidance in unknown environments without ex-
plicitly encouraging exploration. All reviewed approaches for this task use reward
functions with a term heavily penalizing collisions, along with extra terms encourag-
ing behaviors like staying alive, moving fast, or avoiding rotations. Q-learning-based
methods include [33] and [34], both using a Deep Q Network [35] to process
depth images and generate 2D velocity commands. The former rewards survival,
while the latter encourages speed and minimal turning. [UAV}specific methods in-
clude [36] and [37]. The first uses a Soft Actor Critic (SAC) policy [38], with a
Neural Network (NN) architecture featuring an encoder extracted from an autoen-
coder trained to predict depth images from RGB inputs. This setup allows the policy
to process raw RGB images, and generate continuous linear and angular velocity
commands for high-level [UAV| control. Meanwhile, [37] uses a[DQN]that processes
stacked depth images (for temporal awareness) and is trained with a reward function
that incentivizes maintaining distance from obstacles. Finally, [3] compares Deep
Q-Learning and [39] methods across different observation and action spaces.
Notably, none of the reviewed approaches for collision avoidance leverage a map of
the environment.

A large body of research focuses on target navigation, guiding robots to specific
coordinates while avoiding obstacles. All reviewed works for this task use reward
functions that heavily reward reaching the target and strongly penalize collisions.
Since the reward for reaching the target is sparse, many works introduce intrin-
sic reward terms to provide more continuous feedback, improving training stability.
A common approach is to give continuous rewards based on the robot’s distance
and heading difference from the target. This method is used in [40] and [41], both
employing a Deep Deterministic Policy Gradient (DDPG)) [42] [DRL algorithm. The
first work uses an observation space consisting of laser readings, the previous ac-
tion (2D velocity command), and the target’s position in the robot’s frame, while the
second is tailored for UAVs. When navigating towards faraway targets in unknown
environments, an exploration component is also needed in the reward function. For
this reason, works in [43] and [9] include, on top of the previously mentioned re-
ward terms, a continuous curiosity term (similar to the one in [28])) that encourages
visiting states difficult to predict in a learned feature space. Moreover, work in [44]

12 CHAPTER 2. STATE OF THE ART

optimizes the navigation policy with auxiliary tasks (e.g., depth prediction from RGB
images), although the policy does not generalize well, as shown in [45]. Finally,
some methods leverage semantic information for improved navigation. For exam-
ple, [46] incorporates object-based reward terms to maintain safe distances from
humans and other robots, while [47] proposes a semantic-aware DRL algorithm for
[UAVE that minimizes SLAM drift by avoiding low-information regions, such as flat
surfaces with limited semantic variety.

Other[DRL methods address the active localization problem, estimating an agent’s
pose in an environment by guiding it toward locations that provide more informative
observations. The works reviewed for this task use [Ttbased reward functions that
account for the Maximum Likelihood of the robot being in a state, measuring
belief accuracy. Examples include [48], using laser scanners and a map as policy
observations, and [49], using RGB images and a map as observations.

Finally, some methods focus on exploring unknown environments to locate object
instances. Notably, all reviewed works leverage semantics. Examples include [50],
where a [DRL] policy maps 3D scene graph [1] observations to motion primitives;
[51], which uses joint visual-semantic embeddings as policy inputs; and [52], which
infers a complete semantic map (including unobserved regions) from partial RGB-D
observations and employs a policy to select actions based on this map and
target object class.

Chapter 3

Tools and Methods

3.1 Exploration Pipeline Overview

The developed exploration pipeline had to meet several requirements: i) the used
simulator should be photorealistic, physics-accurate, and should support easy ac-
cess to depth and semantic images from modeled cameras within the scene, ii)
trained [DRL policies should consider the dynamics of the drone, iii) the pipeline
should enable scalability for parallel multi-agent training, and iv) the pipeline archi-
tecture should ensure modularity to facilitate reusability.

Figure [3.1] shows an overview of the proposed pipeline. In continuous-line boxes
we find it’s four main modules: the simulation environment (in blue), a classical low-
level controller (in green), modules to process simulator data (in purpule), and a
high-level controller (in orange). Sensor data and environmental information
are collected and processed to generate crafted observations, termination signals,
and rewards for the[DRL]controller. The high-level policy outputs velocity commands,
which serve as a reference for the low-level controller. The latter then computes the
appropriate torque to be applied to the [UAV]s body in the simulator.

In this pipeline, requirement i) is met thanks to the low-level controller that ac-
counts for the drone’s dynamics. If this requirement wasn'’t in place, a simpler ap-
proach (similar to works using ground robots reviewed in Section could have
been taken, where the drone is spawned in the simulator at a target position given
by the high-level controller, without physics considerations. By using a low-level con-
troller, we ensure that the high-level policy learns to generate actions that construct
realistic, trackable trajectories. Another option considered was having the [DRL] pol-
icy directly output drone torques. However, this was discarded due to the added
training complexity of learning both the drone’s dynamics (how to hover and move)
and the exploration task simultaneously.

13

14 CHAPTER 3. TOOLS AND METHODS

__

e Stable Baselines 3 ~

[High-level RL Controller]

1
(] 1
I 1
1 1
: A A A i
1
T B B een e e e e R EE s ~
1oy IsaacLab 0@ el AU
1 1 K . S H 1
HE o ‘ IsaacSim y ol i
o termination ! HEH]
1 1 . 1 1 1
| W R
1 1 . data 1 Environment 1o 1
i 5 computation <= I
P4 9= (R VEWE _ P : T
. observation () data | Pl
1 1 1 processing |% = Sensors [H
: : v : : : 1
1 1 1 1 1 1
P [Low-level] H > Drone i i
o Non-linear Controller I - o '
1 1
1 i J 3D body wrench :\ \ / ,: ,: ;
VoA W= (§W, 6, 6%, 1, 1, 1,7) . 4t
\\ \‘ XDy D 208y 0N N e e e - S ,I

--

Figure 3.1: General pipeline scheme. Continuous-line boxes indicate modules, while dashed-line
boxes represent frameworks. Modules: simulated environment (blue), low-level con-
troller (green), data processing (purple), and high-level controller (orange). Frame-
works: Isaac Sim simulator (blue), IsaacLab (green), and SB3|[DRL] library (orange).

The pipeline’s modular design also satisfies requirement|iv], As shown in Figure
3.1}, the framework’s core (inside the green dashed box) consists of the low-level
controller, the simulator, and sensor processing modules providing access to col-
lected data (e.g., RGB/depth images or IMU data). This core component, on its
own, can be used for other applications beyond [DRL, for example, to test SLAM
algorithms by having the drone follow a predefined trajectory or driving it manu-
ally via keyboard. The created codebase also supports interchangeable low-level
controllers for [UAVE, enabling their testing in simulation. The [DRL modules act as
a wrapper around the core component, making the pipeline adaptable to various
[DRL] tasks beyond exploration, such as goal navigation, collision avoidance, object
search, and active localization. Overall, the framework is highly versatile and ex-
tendable to other research applications.

The pipeline development process consisted of three stages. First, a suitable
simulator was selected (see Section [3.2.1). Next, libraries to interact with the sim-
ulator were chosen and the pipeline core was set up (see Section [3.2.2). Finally,
a[DRL library was integrated (see Section [3.2.3). After evaluating the available op-
tions, we chose Isaac Sim 4.2.0 [53] as the simulator, Isaac Lab 1.2.0 [54] as the
interaction library, and Stable Baselines 3 2.3.2 [55] as the [DRL library.

3.2. CHOICE OF TooLS 15

3.2 Choice of Tools

3.2.1 Simulator Choice

The first step in the development process was selecting a simulator that met require-
ment [i), ensuring physics accuracy, photorealistic rendering, and precise sensor
data, including seamless depth and semantic images from scene cameras. Table
compares the considered options.

Gazebo [56] is a widely used simulator designed for robotics research. It utilizes
the DART [57] rigid-body physics engine for accurate dynamics modeling. While
flexible and well-integrated with ROS, it lacks photorealism, though it benefits from
strong community support. Habitat [11], developed by Facebook Al, is tailored for
Embodied Al research. It is mainly used to train Al agents for navigation tasks in 3D
photorealistic environments, relying on 3D scans to generate realistic scenes. Its
physics engine, Bullet [58], while adequate for navigation applications, is not opti-
mized for precise robot dynamics. Simulators built on top of game engines, such as
AirSim [59] and Flightmare [60] (based on Unreal Engine and Unity), offer photore-
alistic rendering and custom physics engines that enhance standard game physics
for robotics applications. However, they are difficult to use and extend, with high API
complexity, and lack strong community support compared to Gazebo or Isaac Sim.

Isaac Sim [53], part of NVIDIA’'s Omniverse, is a modern simulator tailored for
robotics applications and multi-modal data generation. It features a high-fidelity RTX
rendering engine and the PhysX GPU-accelerated physics engine, providing precise
simulations. While it has demanding system requirements, it supports Universal
Scene Description (USD) files, integrates with ROS, and offers extensions for re-
inforcement learning and domain randomization. Isaac Sim was chosen as it best
meets the project’s requirements. It is a rapidly growing platform, gaining popularity
in both academia and industry, and shows strong potential for advanced robotics
simulation.

Simulator Physics Accuracy | Photorealism | Depth & Semantics | APl Complexity
Gazebo [56] i X v **
Habitat [11]] * v v b

Unreal Engine/Unity * v v e
Isaac Sim [53] b v v **

Table 3.1: Comparison of simulators based on requirement Some entries follow a progressive

qualitative rating scale, where more * symbols indicate a higher degree of fulfillment.

16 CHAPTER 3. TOOLS AND METHODS

3.2.2 Choice of Framework to Interact with Isaac Sim

Once Isaac Sim was selected as simulator, the next step was to choose a framework
to interface with it and implement the core of the exploration pipeline. As discussed
in Section [3.1], this core is responsible for spawning an office-like environment in the
simulator scene, along with a [UAV] and enables the drone to navigate and gather
scene data using a low-level controller that receives velocity commands (from the

keyboard or[DRL policy).

The chosen framework needed to be compatible with a library (i.e., have
an environment class that interfaces with Isaac Sim, and includes a step method
accepting actions from the [DRL algorithm and returning observations and rewards).
A key implementation challenge stemmed from the non-standard way in which the
[DRL policy and the drone interacted in the proposed pipeline: instead of directly
controlling rotor speeds or body torque, the high-level [DRL] controller provides set-
points for the low-level controller to track. Since most Isaac Sim [RL frameworks are
designed to handle direct joint torques or velocities, they lack native support for this
hierarchical control structure. Thus, we had to integrate the low-level controller into
the default workflow of the chosen framework, bridging the gap between out-
puts and environment inputs.

Several frameworks were considered, but none stood out as an ideal solution,
either because they did not fully meet our requirements or were not well-established
at the time this thesis started. See Table for a comparison. One option was
Pegasus Simulator [61], a framework built on top of Isaac Sim to simulate multi-rotor
dynamics. It integrates with the PX4-Autopilot controller [62] and supports custom
Python controllers, making it a strong candidate to handle the low-level control por-
tion of the pipeline. However, its codebase offers limited flexibility for adding sensors
or processing sensor data and, most importantly, lacks integration with[DRL] libraries.

At the time this thesis began, two frameworks — Omniverse-lsaac-Gym-Envs
[63] and Orbit [64] — were competing to become the standard for [DRL] in
Isaac Sim. Neither was designed for [UAVE, as both focused on manipulators and
legged robots. Additionally, as mentioned earlier, neither natively supported hierar-
chical control structures.

On one hand, [OIGE| [63], developed by NVIDIA, was a well-established [RL]
framework for robotics applications, optimized for fast, parallel training. At the time,
it was the go-to choice for [DRL|in Isaac Sim, integrating Isaac Gym [65] function-
alities and providing a set of example implementations. While effective for legged

3.2. CHOICE OF TooLS 17

robots due to its precise mechanical simulations, it was less optimized for photoreal-
istic rendering and image-based tasks. lts lack of modularity also made integrating
a low-level controller challenging. On the other hand, Orbit [64] was a modular and
flexible framework for robot learning built on top of Isaac Sim. Unlike [OIGE] Orbit
was specifically designed to simplify common workflows in robotics research. lts
modular structure facilitated interaction with Isaac Sim for [BL] tasks and made it a
better candidate for integrating a custom low-level controller. In addition, it provided
better rendering capabilities than [OIGE| making it more suitable for applications re-
quiring high-fidelity visuals.

A fourth option, Omnidrones [66], was specifically designed for [RL tasks with
drones in Isaac Sim. The default action space allowed [DRL] policies to directly com-
mand the target thrust of each rotor. While its documentation mentioned the option
of integrating a high-level controller, this feature was poorly supported. Additionally,
Omnidrones was less mature and modular than Orbit, with limited documentation
and a smaller community, making it a riskier choice.

Ultimately, Orbit was chosen for its modularity, flexibility, and high-fidelity physics
and rendering. This decision was validated later on when NVIDIA officially merged
Orbit into Omniverse and rebranded it as Isaac Lab [54], solidifying its role as the
standard framework for [RL with Isaac Sim. Throughout this entire thesis, the frame-
work remained in constant evolution, with major updates occurring at least once a
month. Keeping up with these changes was essential, as new features were regu-
larly introduced, further enhancing Isaac Lab’s capabilities and reinforcing its posi-
tion as the best choice for this work.

Framework l%‘compatibility Modularity | Low-Level Controller | Native UAV
Integration Support
Pegasus [61] X * - v
OIGH|[63] v e - x
Orbit/ Isaac Lab [64] v x
Omnidrones [66] v ** e v

Table 3.2: Comparison of frameworks to interact with Isaac Sim. Some entries follow a progressive
qualitative rating scale, where more * symbols indicate a higher degree of fulfillment.

The symbol - means non-applicability.

18 CHAPTER 3. TOOLS AND METHODS

3.2.3 Choice of DRL Library

After selecting Isaac Sim and Isaac Lab as the simulator and interaction framework,
the next step was to choose a suitable DRL library. Isaac Lab provides wrappers
for four RL] libraries: RL-Games [67], RSL-RL [68], SKRL [69], and [55]. For a
comparison of these libraries, visit Isaac Lab’s webpage [70].

RL-Games and RSL-RL offer a limited range of DRL algorithms, while SKRL and
provide a much broader selection. With this, the options were narrowed down
to the latter two libraries, as they offer greater flexibility. Furthermore, RL-Games,
RSL-RL, and SKRL have minimal documentation and small support communities,
although Isaac Lab maintainers have progressively released more examples using
these frameworks. In contrast, benefits from a large, active community, com-
prehensive documentation, and a model zoo filled with examples. This extensive
support ultimately made [SB3|the preferred choice.

[SB3|supports vectorized environments during training, allowing multiple indepen-
dent environments to be stacked into one. This enables training on n environments
simultaneously, aligning with the scalability requirement (iii)). To use this feature, the
environment passed to must inherit from its inner VecEnv class. Without using
a wrapper provided by Isaac Lab, defaults to its DummyVecEnv class, which
wraps the environment sequentially, disabling parallel training.

3.3 Environment Setup

3.3.1 Environment workflow

Isaac Lab uses a manager-based system to set up and run simulation environ-
ments. With this, the environment is broken down into individual components (or
managers) that handle different simulation aspects, such as spawning objects in the
scene, computing observations, and applying actions. The user defines a configu-
ration class for each manager, and an environment class coordinates them, calling
the functions specified in the configurations. Figure (from Isaac Lab’s website)
illustrates how these managers interact. The environment class has a step method
that receives actions, advances the simulation by one time step, and returns envi-
ronment information such as observations, rewards, and done signals.

A basic environment consists of a Scene Manager (spawning objects, robots,

3.3. ENVIRONMENT SETUP 19

and sensors in the virtual world), an Observation Manager (extracting observations
from the simulation state and sensor data), and an Action Manager (converting raw
actions into low-level commands). The Non-linear controller for the [UAV| was inte-
grated into the Action Manager. [RL environments introduce additional managers:
an Event Manager (triggering operations based on simulation events, such as ran-
domizing object properties at the beginning of an episode), Reward and Termina-
tion Managers (computing reward and done signals), a Command Manager (switch-
ing between command strategies), and a Curriculum Manager (gradually increasing
task difficulty to stabilize learning).

{

Action Manager Command Manager Reward Manager

R
Interactive Scene @ m
Joint-space Pose
N
> e —
Eﬁ ﬂ (uy? -
Termination Manager

NVIDIA Objects Articulation Sensors Learning
Isaac Sim Task-space Velocity = —1 Agent

I
Event Manager @ m

N
N 1
N~

Domain External ¥
Randomization Disturbances Observation Manager Curriculum Manager

- O

Proprioception Exteroception Custom

Figure 3.2: Diagram showing the interaction between managers in Isaac Lab (extracted from Isaac
Lab’s website [54]).

3.3.2 Scene Setup

In this Section, the components handled by the Scene Manager when setting up the
simulation environment are described in detalil.

Drone Model

For this project, the Iris[UAV|model shown in Figure[3.3|has been used. This quadro-
tor features two descending-chord propellers (R, R;) and two ascending-chord pro-
pellers (R, R3), as shown in Figure[3.3al The drone was described to the Isaac Sim
simulator using a[USD|file. More detailed drone specifications can be found in [71].

20 CHAPTER 3. TOOLS AND METHODS

The following frames have been used throughout the project: the world frame
FV = {0% %, 7w, Zw}, With 2z, pointing upwards, the drone body frame FP =
{OP %p,4p, Zp}, and the propeller frames Ffi = {O! 7;, 4, z;} for i = 0,1,2,3. No-
tice that the drone-attached frames, displayed in Image [3.3b] follow the Front (z),

Left (y), Up (z) (FLU) convention.
A

| FRz

P —

FRo

(a) Top view of the Iris drone with rotors’ spec-
ifications. Counter Clock-wise (CCW) and
Clock-wise (CW) correspond to descending
and ascending chord propellers respectievly.

(b) Side view of the Iris drone with drone-
attatched frames (body frame F” and pro-
peller frames F % for i = 0,1,2,3). The red,
green and blue colors correspond to the z, y
and z axis.

Figure 3.3: Iris quadrotor

« Dynamics model of an underactuated quadrotor

As shown in [72], the wrench W2 (&) € R generated on the drone’s body by the
movement of the N propellers (expressed in frame F?) is given by Equation [3.1]

WP (@) = (—'D d (12;)D (a‘)) - <ZN 2z Cri ()1 .) = A(u,)u)

i1 (=kicni ZP () + pP X cpiZ] () Juni
(3.1)

In this equation, f (@) € R® and miP (@) = ik, (@) + k.., € R® are the total
thrust force and total moment on the drone’s body, both expressed in frame FP.
Notice that the total moment includes contributions from both thrust forces and drag
moments acting on the N propellers.

Matrix A(i,) € R®¥ relates the wrench W2 (%) and the input vector @ = [u;,, i3]” €
RX+N . This vector consists of: u, = [u,;]/=,' € R¥, denoting the positions of the
servomotors in the drone’s joints, and u) = [uM]fV:‘Ol € RY, inputs related to the rotor
velocities. Specifically, uy; = w;|w;| being w; € R > 0 the angular velocity of the

i" rotor. The parameters c;; and c,; are the thrust and drag coefficients for the i

3.3. ENVIRONMENT SETUP 21

propeller, assumed to be identical for all propellers. Moreover, the free vector 7 (u;,)
represents the z-axis of each propeller frame F¥: (expressed in frame F”), while
pP = (pui, pyi, P=i) 1S the position of the i propeller origin O relative to the origin O”
of P (see Figure [3.3b).

In the case of an underactuated quadrotor, the number of propellers is N = 4.
Furthermore, no servomotors are used for thrust vectoring, so u;, = () and
Uy = [qu,uM,u@?uxg]T € R*. Consequently, as shown in Equation matrix
Aluy,) = A = %@@ - becomes constant and equal to the allocation matrix, as
WP (@) is linearly dependent on @ -. Additionally, all the propellers are aligned with
the drone’s body frame F?, so that Vi zP = 25 = [0, 0, 1]7.

ST

0 0 0 0
0 0 0 0 (51 (51 0
WPy = Aii= | < “ ki el - (0254> Sl I P
CfPyo CfPy1 CtDy2 CtDy3 Uus A Uus My
—CfPx0 —CfPzr1 —CfPx2 —CfPx3 Uyg Uyg my
—Cr —Cr cr —C, m,

As shown in Equation rank(A) = rank(A) = 4. Thus, A € R*** is a bijective
linear map that uniquely relates @ = (uy, us, us, us)” and @ = (f, My, My, m,)7 via
@ = Ai. Since the first two rows of A are zero, no input @ can generate a force along
the z- or y-axis of frame FP. To move the drone in these directions, the [UAV] must
first reorient to align the thrust force fD(ﬁ) = (0,0,)T with the desired direction, by
generating the necessary torque m” (i) = (m., m,, m.)". This principle underlies
the controller described in Section 3.4

Using the 3" Newton’s Law and Euler’s rotation equations, the dynamics of a
genericcan be described as in Equation . Here, 3%, oV, p%y € R represent
the drone’s position, velocity, and acceleration relative to frame F*, while RY € R3*3
is the rotation matrix of the drone with respect to F'*. The angular velocity and
acceleration of the drone with respect to F'“ (expressed in frame FP) are w§W,
wBW e R?3, respectively. J, € R3*3 is the drone’s inertia matrix, g and m € R are
the gravitational constant and drone mass, and 03,3, Ids.3 € R3*3 are the zero and
identity matrices. Note that the translational dynamics is expressed in the F™, while
the rotational dynamics is in frame FP.

Sy - w
M) = e) raP@, o= (P) eroe 39
Jpwh wp' X Jpuwp O3x3 Id3xs

22 CHAPTER 3. TOOLS AND METHODS

In the case of a quadrotor, we can re-write Expression[3.3]as in Equation [3.4] us-
ing GWP (@) = [2W f, ma, m,, m.]T € RS, being 7V the z-axis of frame F'” (expressed
in frame F'). With this, i can be seen as the input of the dynamical system (and its
corresponding « can be retrieved with map « = [1—1{7).

Sy > AV
mpy, mMGZy, _— _ Zp 0143 64
spw | = 7\ —pw _pw | TG, G = € R> (3.4)
JDwD wp X JDUJD 03><1 Id3><3

As shown in [73], the quadrotor dynamics with the four inputs (u*) is differentially
flat, meaning that we can track trajectories in a carefully selected four-dimensional
space of flat outputs. In our case, we select as outputs: (pp,,pp,, Pp., %) = (D,)
— the drone’s position and yaw.

Sensors

Isaac Lab supports various sensor types (including cameras, IMUs, contact sensors
and ray caster sensors). Through its APIs, users can configure and spawn sensors
within the simulation scene, and can acess their measurements during runtime.

In this thesis, the drones instantiated in the virtual world were equipped with
onboard cameras (capturing RGB, depth, and semantic images from the camera’s
viewport), and a contact sensor that measures the net force acting on the drone’s
body (enabling collision detection). Examples of the RGB, depth, and semantic im-
ages captured by the onboard camera are provided in Figure [3.4] Data from these
sensors, along with real-time scene information, are used to design the observation
spaces, reward functions, and termination conditions for both the preliminary target
navigation [RL task and the main exploration task.

While Isaac Sim natively provides access to depth and semantic images from
modelled cameras, the semantic images were limited to pre-labeled scene objects.
To address this limitation, all prims in the scene were semi-automatically annotated
with semantic labels (see Section[3.3.2). This ensured that all relevant objects within
the camera’s field of view could be detected.

Environment

The autonomous exploration task addressed in this project is set in an office-like en-
vironment. Isaac Sim provides a default office environment described in a[USDfile,
see in Figure an image this environment from the drone’s onboard camera. To

3.3. ENVIRONMENT SETUP 23

(a) RGB image (b) Depth image

BACKGROUND
wall

books

floor

door
bookshelf
floor mat
other furniture
blinds

ceiling

dresser

other structures
lamp

(c) Semantic image

Figure 3.4: Images captured by the drone’s onboard camera in an office environment.

ensure robust training and testing of the [DRL] policies, a diverse set of environments
was required. To achieve this, the default office environment was divided into four
distinct scenes, as illustrated in Figure 3.5a Scenes D and B feature large rooms
with attached smaller rooms, while scenes A and C consist of medium-sized rooms
connected by corridors, creating a maze-like structure.

Additionally, the original [USD]files were modified to simplify the environment and
reduce potential sources of error. All windows were removed, and semantic labels
were semi-automatically added to all office objects, with labels extracted from the
NYUDv2 dataset. Furthermore, adjustments were made to ensure that doors, en-
trances, and corridors were clearly visible on a low-resolution map, with grid cells
sized at 0.4 x 0.4 meters. As a result, all doorways and hallways were designed to
be at least twice the size of a grid cell to maintain navigability.

24 CHAPTER 3. TOOLS AND METHODS

AAAAAA

ol T -

=Scene A (train) |l = Scene D (train) |Ill= Scene B (test) =Scene C (test) (b) View of one office area in the
(a) Office environment map, with different areas highlighted. environment.

3.4 Low-level Non-linear Controller Module

The low-level controller, implemented within Isaac Lab ‘s Action Manager, receives
an action vector v = (v, v, w,) from the high-level @ policy or from the keyboard.
This vector specifies 2D linear and angular velocity commands (in the drone’s body
frame ['P) to move the drone at a fixed height. The controller module computes the
body torque to be applied to the [UAV[s body to track these velocity commands.

3.4.1 Non-linear Control Law

The implemented controller, proposed by [73], is designed to track trajectories in
the 4D space (5% (t),4(t)), being p% € R? and ¢ € R the drone’s 3D position
and yaw in F''. To achieve this, it computes the appropriate control inputs {Z(t) =
(f,mz, m,,m,)", being f the thrust force and m?” = (m,, m,, m.)" the torque on the

[UAV]s body.

First, the controller computes the desired force F* the should exert to follow
the desired trajectory, as in Equation [3.5 In this expression, ¢, = pp" — pp? and
¢, = pW — pib are the position and velocity errors (being pp? and 3t the reference
position and velocity values). Additionally, ¢; = [¢,dt is the integral error (added
as in the custom controller of [61]). With this, we can compute f = F¢. 2% which
projects F¢ onto F? z-axis.

F' = —K,6, — K., — Ki€; + mgz, + mjf (3.5)

As mentioned in Section for the drone to move in the desired direction
marked by £, it must reorient itself so that z% aligns with F¢. Based on this, we
compute the drone’s desired orientation R, = [z, 7%, 2%] € R**® as in Equation
with 74, = [cos(¢?)], sin(1)?), 0] being ¢ the desired drone yaw.

3.4. LOW-LEVEL NON-LINEAR CONTROLLER MODULE 25

o Zh x @y ~d _od o, d
—— Y= == I, =yp XZ 3.6
|Fe 7P lE < @l TP T 56)
Finally, the body torque m?” to be applied to the drone to achieve orientation R4,

can be computed as in Equation[3.7]

ZD:

mP = —K,é, — K6, (3.7)
In this expression, ¢, = %(RdDTR%’ — RWTR4)V is the orientation error (where v
is the vee map sign) and ¢,, = wEB" — ¢, is the angular velocity error. The desired

angular velocity %, is computed as in Equation where /¢ is the desired yaw
rate, as in the custom controller of [61].

—d 7o 7 ad idsd(T T m -zd ~d Bd
Wy = [~hw - §p, hw - T, Y Zp)] hoy = 7(1’ p— (Zp- Pp)Zp) (3.8)
See Figure [3.6]to get an overview of the workflow inside the controller module.
Isaac Sim
=g 5 w —
b | Py Rp wp'"
ﬁg 4 E »TF
_____ —_ l
S = wbw
Pp Fd . w
————— - PID > p?‘ongde »f = uyq

Zd

Pp

Trajectory Tracking
lpd Desired Rﬁ _ Uz
* Rotation Matrix — — e i PD . mD= Uz
Computation l- Uy

o '

Y wg |
o Desired Angular - _D —
Pp Velocity Computation

Attitude Tracking

Figure 3.6: Diagram of the drone controller workflow

3.4.2 Implementation specifications

We set the reference values pp?%, ﬁiD, ﬁ}), 'ﬁ'%, »? and ¢? from the action vector
U = (vg, vy, w,). The vector components v,,v,,w, € [—1,1] and can have a discrete
or continuous nature. Here, v, and v, specify the desired = and y linear velocity

26 CHAPTER 3. TOOLS AND METHODS

components for the drone in F”, while w, specifies the desired yaw rate (also in
FD).

With this, the reference linear velocity is computed as p% = M, RY [v,, vy, 0],
where M;, € R scales the velocity components to the drone’s maximum achievable
linear velocity, and .4, = 0 is enforced. The reference position is obtained by in-
tegrating the velocity pp,* = [ptdt and and enforcing p.% = H, where H is a fixed
height value. We compute the reference yaw rate as ¢* = M,,w,, where M,, € R
scales the yaw rate to it's maximum system value. Finally, we can obtain the refer-
ence yaw value by integrating the yaw rate o = [dt.

As for the controller outputs, once i = (f,mz, m,,m,)" is computed, a real
quadrotor would use the allocation matrix A to map this controls to adequate ro-
tor velocities @ = (uy, ug, uz, ug)’, where u; = w;|w;| for i € [0,4] (see Section[3.3.2).
However, due to simulator limitations — specifically, the inability to accurately model
the physics of rotating propellers generating thrust and moments on the rotors - we
directly apply the computed body wrench to the [UAV]s body. This approach by-
passes the need for drone-specific thrust and drag coefficients ¢y, ¢, requiring only
the UAV’s mass m and the linear and angular velocity limits defined by M;, and M,,,.

There is still significant room for improvement in the implementation of this con-
troller. For example, looking at the controller modules in Figure [3.6] it would be
desirable for the attitude tracking to operate at a higher rate than the trajectory track-
ing. However, in the current implementation, both components run at the same rate,
which is sufficient for our application.

3.5 High-level DRL|Controller

The high-level controller, implemented with [SB3] receives observations, re-
wards, and done signals from the simulation environment, to generate adequate
action vectors v = (v,, vy, w,) for the R[] task at hand.

As outlined in Section [3.1] the designed pipeline is highly versatile and can be
adapted to various [RL tasks by modifying the [MDP)] specifications (e.g., observa-
tion space, action space, reward function and termination conditions), as well as the
used [DRL] algorithm and [NN|architecture. The implemented pipeline was first tested
on a simple goal navigation task before being applied to the more complex prob-
lem of autonomous exploration in unknown environments. This section provides a
general overview of the [DRL] controller, detailing its basic structure and the common

3.5. HIGH-LEVEL [DRL|CONTROLLER 27

elements shared across all tasks. For detailed task-specific configurations, refer to
Section 5.2

3.5.1 Selected Model-free DRL algorithm

The Proximal Policy Optimization (PPO) [39] method was chosen for both the pre-
liminary navigation task and the main exploration task. The reasoning behind this
choice is that[PPQ]is specifically designed to ensure training stability and is compu-
tationally less costly than other policy-based methods, such as Trust Region Policy
Optimization (TRPQ) [74]. [PPQ] achieves this through a clipping mechanism on the
loss function, which limits how much the policy can change during each optimization
step. Additionally, its ability to handle both continuous and discrete action spaces
provided the flexibility we needed for our tasks.

[PPQ, being a policy-based method, learns a parametrized policy 7q(b;) = p(a.|b;)
through a DNN| The network takes observations as inputs and learns a probability
distribution over the action space, from which actions are sampled. Additionally, it
is trained to maximize the expected cumulative reward over an entire episode while
avoiding large, destabilizing policy updates. The loss function defined in Equation
is used, where A™ (s, a) = g.¢(s,a) — vrg(s) is the advantage function measuring
how much better or worse action « is in comparison to the expected action from
policy w. Also, ¢ is a hyperparameter which roughly says how far away the new
policy is allowed to go from the old [75].

L(0,0,4) = Elmin|rA™e clip(r,1 — e, 1+ €)A™eu]] 1 = _molals) (3.9)
Toora(als)

In the implementation of the [PPQ] algorithm, rollouts are collected from n

agents interacting in parallel with the environment. The interaction data is stored in

a buffer and later used to update the using the loss function described above.

3.5.2 General DRL architecture

Although each considered task utilized a different DNN] all networks shared the
same underlying structure, pictured in Figure [3.7, As shown, the network takes
observations as inputs, which can include depth images, semantic images, veloc-
ities, and other relevant data. For each type of observation, the [DNN| employs a
dedicated feature extractor (CNNfs for image-based observations and an MultiLayer
Perceptron for vector-based observations). The extracted features are then
concatenated and passed to two separate networks: a critic network (an [MLP) that

28 CHAPTER 3. TOOLS AND METHODS

estimates the value of the drone’s state (used to compute the advantage for the PPO]
loss function), and an actor network (also an[MLP) that parametrizes the policy. No-
tably, the concatenated features can be interpreted as the agent’s belief state b, at

time t.

INPUT FEATURE EXTRACTORS VALUE NETWORK OUTPUTS

‘I

Action distribution
representation

!

Latent vf features
State V-value

Features

POLICY NETWORK

—

observations =

Latent pi features
Action

Figure 3.7: Underlying structure of the networks used for both the preliminary navigation task and

the main exploration task

Chapter 4

Experiments

4.1 Experimental Setup for Controller Validation

To test the low-level controller module, a simple experiment was conducted in which
the drone was spawned in an empty simulator environment and manually controlled
using keyboard inputs. The drone was commanded to perform a sequence of basic
maneuvers: move forward, backward, to the right, and to the left, followed by a full
rotation to the right and another to the left.

During the experiment, reference values for the drone’s position pp?, velocity
P, acceleration pt, yaw angle ¢ and yaw rate 4 were recorded. Additionally,
the corresponding measured state values — position pp,", velocity ﬁg , acceleration
PV, yaw angle " and yaw rate w.5" — were tracked to assess the controllers
ability to follow the reference commands. Section presents an evaluation of the
controller’s tracking performance over time.

4.2 Experimental Setup for DRL Tasks

4.2.1 Task 1: Collision-Free Target Navigation

For this task, the drone had to navigate toward a fixed goal while avoiding an ob-
stacle positioned in the middle of its path. To set up the simulation, the drone
was spawned at the initial position pp" = (0,0,1.8)m, a small target sphere of
radius » = 0.25m (with collision properties deactivated) was placed at pj;,,., =
(5.0,5.0,1.8)m, and a large cubic obstacle with a side length of 1.5m was positioned
at Poparacie” = (2.5,2.5,1.8)m. See in Figure a picture of the scene. No ran-
domization was applied to the initial positions of the drone, target, or obstacle; all
episodes began with the same configuration.

29

30 CHAPTER 4. EXPERIMENTS

As mentioned in Section [3.3.2] the drone was equipped with an onboard camera
of resolution 480 x 640 providing access to both depth and semantic images, as well
as a contact sensor. Using this setup, two different observation spaces (with and
without semantics) were compared:

» O;: Downsampled depth and semantic images from the camera (reduced to a
size of 48 x 64 and stacked), the drone’s linear velocity 72 in frame F?, and
the goal position @Dwet and heading error Aty,,4; in the drone’s frame 7.

* Oy: Downsampled depth images from the camera (reduced to a size of 48 x 64),
the drone’s linear velocity 5 in frame F?, and the goal position Piarger @nd
heading error At in the drone’s frame FP.

Plot of Target Position Tracking Reward

— std = 8.0
— std = 0.2

T T T T T T T
0 1 2 3 5 6 7 8

4
Distance (d)

(b) Plot of R = — tanh(-%) for std = 0.2, 8.0

std

(a) Setup of the Navigation Task

Figure 4.1: Target Navigation task: drone, target (in red) and obstacle (in green).
The reward function for this task consists of five terms, and is defined as:
R = wcgtcht + wfgtngt + whtRht + wrgRrg + chc (41)

The first two terms, R., and R;,, share the same mathematical expression
R=— tanh(%), where d represents the distance between the drone and the goal,
and std is a parameter that controls the steepness of the function around zero.
Specifically, R., used std = 0.2, and Ry, uses std = 8.0. These terms encour-
age the drone to move toward the goal, but with different influences: as illustrated in
Figure Ry, (in blue) has a longer-range effect, guiding the drone from further
distances, whereas R, (in red) provides a stronger incentive when the drone is near
the target, acting as a final push. Moreover, the term Rj;, = ||Atarget|| €NCOUrages
the drone to orient itself toward the goal. The term R,, is a sparse reward, where

4.2. EXPERIMENTAL SETUP FOR DRL TASKS 31

R,, = 1 if the drone successfully reaches the goal and 0 otherwise, reinforcing suc-
cessful task completion. Finally, R. penalizes collisions, taking a value of R. = —1
when a collision is detected by the contact sensors and 0 otherwise.

Additionally, the termination conditions dictate that an episode can end in one
of three ways: the drone either crashes, reaches the fixed goal, or the episode
times out. The maximum episode duration is set to 16s. Regarding the action
space, the output action vectors v = (v,, v,, w,) have continuous components, where
v, vy, w, € [—1,1]. In the controller, the linear and angular velocity limits are set to
M,, = 1.5m/s, M,, = 1rad/s, respectively, while the drone’s height remains fixed at
H=18m.

In Isaac Lab, we differentiate between the simulation step dt and the environ-
ment step dt.,.., = decimation * dt. The first one is the timestep used by the physics
engine to update the state of the simulation, while the later one determines how
frequently the agent receives observations from the environment and makes a new
decision. For this task, we chose d¢t = 0.004s, and dt.,, = 0.016s. As a result, the
high-level controller sending an action vector at each environment step, operates
at a frequency of 62.5Hz, while the classical low-level controller runs at 250Hz. In
hindsight, this was a design flaw, as both frequencies were excessively high and
contributed to significant convergence issues during the policy training. A more in-
depth discussion on this topic is provided in Section[5.2.2

The architecture of the trained follows the structure outlined in Section
[3.5.2] Each observation has its own custom feature extractor: vector observations
are simply flattened, while image observations are processed through a[CNN] Both
the actor and critic networks are implemented as [MLP§s with two hidden layers con-
taining 128 and 64 neurons, respectively. The learned distribution for v,, v,, w, con-
sists of independent Gaussian distributions.

4.2.2 Task 2: Autonomous Exploration
Mapping module

As discussed in the literature review (Section [2.1), all the revised autonomous ex-
ploration approaches rely on environment representations, as these are essential
for preventing overfitting to specific scenarios and for distinguishing between visited
and unvisited regions. To tackle the exploration task, we integrate a mapping mod-
ule into the designed pipeline. In the general scheme of Figure [3.1] this module

32 CHAPTER 4. EXPERIMENTS

belongs to the set of computation modules (in purple) responsible for crafting obser-
vations for the [DRL] controller using sensor data and simulator information. Notably,
the module is implemented within Isaac Lab.

At each environment timestep, a 3D PointCloud of the environment (expressed
in world coordinates F'V) is generated using the drone’s pose and the depth im-
age collected at that moment. To achieve this, the extrinsic camera matrix is com-
puted based on the drone’s position and orientation. Then, depth image pixels are
transformed into 3D points using the pinhole camera model, the depth values cor-
responding to each pixel, the previously computed extrinsic matrix, and the intrinsic
calibration matrix, which is camera-dependent. This procedure follows standard
computer vision techniques, details of which can be found in any fundamental Com-
puter Vision course book [76]. The obtained PointCloud is refined by removing 3D
points that exceed a predefined distance threshold from the camera, or correspond
to pixels with invalid depth readings.

The drone maintains a global grid map estimate that is continuously updated as
the [UAV| explores the environment. At each timestep, a local grid map is generated
from the newly computed PointCloud and subsequently merged into the global grid
map. To ensure consistency, the current PointCloud is first projected onto a 2D grid,
and if any points fall outside the existing global map boundaries, the global map is
resized accordingly to accommodate the new data.

In this mapping module, we are constructing a traversability map for the drone.
At each timestep, the 3D points from the PointCloud that lie at the same height
as the drone (within a specified tolerance) are filtered. Cells in the local grid map
where these points are projected are marked as non-traversable, indicating obsta-
cles or areas that the drone cannot navigate. These obstacle cells are also marked
in the global grid map in a conservative manner, meaning that once an obstacle is
detected, it cannot be removed. Next, ray tracing is applied to the local grid map
within the drone’s field of view to determine hovered traversable regions. This is
necessary because, since the drone flies at a fixed height, areas beneath it that are
not directly visible remain classified as unknown (unless an obstacle is explicitly de-
tected), even though they are traversable in reality. Finally, the updated (seen and
hovered) traversable regions are added to the local map are merged into the global
map.

Figures [4.2a], [4.2b, and [4.2c| show the global grid map, local grid map and gen-
erated PointCloud at a specific time ¢. Notice how each map cell is assigned a value

4.2. EXPERIMENTAL SETUP FOR DRL TASKS 33

depending on its state: 0 indicates unknown, 1 indicates traversable, and 2 indicates
an obstacle. In the grid maps shown in Figures [4.2al and [4.2b} cells from the hov-
ered traversable region (added through ray tracing) are differentiated from the seen
traversable regions for better clarity. Normally, this distinction is not made.

The trained [DRL policies for autonomous exploration used a mapping module
that built local and global grid maps with a resolution of 0.4 x 0.4m. This is signifi-
cantly lower than the 0.05 x 0.05m resolution used in the reviewed works of Section
2.1l Initially, this choice was driven by system limitations, as the available server
struggled with the computational cost of high-resolution maps, leading to extremely
slow training. However, this constraint proved beneficial, as [UAVs have limited pay-
load capacity and cannot carry the powerful computers required to process such de-
tailed maps efficiently. Nevertheless, the reduced resolution introduced challenges,
particularly in collision avoidance, due to the increased mapping errors associated
with lower resolution. Moreover, the 3D points in the PoinCloud whose distance from
the camera was greater than 4m were filtered out.

30)
Occupancy Grid (2D) Local Gridmap

g -

25
) : i 1
“w g 2 g
H 158 & 5
s s 2 158
> 10 - 8 10 I . g
10

0 10 20 30 40 50 o 10 20 30 4 50
X axis 00 X axis

(a) Global estimated grid map (b) Local grid map at a specific time ¢

@ Drone Pose
Point Cloud
e Point Cloud Obstacles

(c) PointCloud at a specific time ¢

Figure 4.2: Global grid map, local grid-map and PointCloud at a specific time ¢. For the occu-
pancy grids: 0 -Unknown space, 1 -Seen traversable space, 2 -Obstacles, 3 - Hovered

traversable space.

34 CHAPTER 4. EXPERIMENTS

First test on a small environment

To tackle the autonomous exploration problem progressively, the agent was initially
trained to explore a simplified, small-scale environment consisting of a single room
with four columns, instead of the larger office environment that we are aiming for.
This smaller environment is shown in Figure [4.3] For each episode, randomization
was applied to the drone’s initial pose by sampling from a set of 20 possible initial
poses. With this, we aim to enhance the agent’s generalization capabilities.

...............

Figure 4.3: Simple scene consisting of one room and fours columns (in green) for the “small ex-

ploration” task.

As in the previous task, the drone was equipped with an onboard camera (this
time with a resolution of 48 x 64), which provided access to both depth and semantic
images, along with a contact sensor. Using this setup, the proposed observation
space consisted of semantic images from the camera, and an egocentric map of
size 41 x 41 cropped from the global grid map maintained by the drone.

The reward function for the "small exploration” task includes three terms:
R =w,R, + Weg R + W R, (4.2)

The first term, R, = A;,1 — A;, where A, represents the number of known cells in
the global map at time ¢, encourages exploration by maximizing area coverage. The
second term, R,,, is a sparse reward, where R., = 1 if the area covered in the global
map exceeds a specified threshold, and 0 otherwise. Note that this term requires
access to prior knowledge of the environment. Finally, R, penalizes collisions, tak-
ing a value of R. = —1 when a collision is detected by the contact sensors and 0
otherwise.

As for the termination conditions, we imposed that an episode can end in one of
three ways: the drone either crashes, maps a certain amount of area (successfully

4.2. EXPERIMENTAL SETUP FOR DRL TASKS 35

finishing exploration), or reaches the maximum episode time of 210s. Regarding the
action space, the policy outputs a discrete value a € [0, 5], with each possible
value corresponding to a predefined motion primitive represented by an action vec-
tor v = (v,, vy, w,). Specifically, « = 0 moves the drone forward with v = (1,0,0),
a = 1 moves it backward with ¢ = (—1,0,0), a = 2 moves it right with & = (0, 1, 0),
and a = 3 moves it left with v = (0, —1,0). For rotations, a« = 4 makes the drone turn
right with 7 = (0,0, 1) and a = 5 makes it turn left with o = (0,0, —1).

When concluding the navigation task (Section [4.2.1), we hypothesized that both
the high-level and low-level controllers were operating at excessively high frequen-
cies. This caused the drone to receive commands too rapidly, leaving it insufficient
time to engage with its actions or observe their consequences, which hindered train-
ing convergence. To test this hypothesis, we bypassed the low-level controller and
directly updated the drone’s position and yaw in the simulator using:

pp" (t+ 1) = pp" (t) +dtp, wp (t+1) = v](t) + dtw.) (4.3)

In this equation, dt is the simulation step (equal to the environment step), 1'?}) =
M, R v, vy, 0] (as when setting the reference for the low-level controller), and w.$,
is the third component of vector w4 = M,,R¥[0,0,w.]”. As in Section , we en-
force p.4, = 0 and p.4, = H with H = 1.8m. Two different models with d¢t = 0.1s and
dt = 0.25s were trained and compared.

As for the DNN] architecture, we employed two pretrained ResNet18 networks
as feature extractors for the image observations (semantic images and egocentric
maps). As in the navigation task, both the actor and critic networks were imple-
mented as MLPs with two hidden layers, containing 128 and 64 neurons, respec-
tively. The learned distributions for vz, vy, wz were modeled as Categorical distribu-
tions.

Final experiment on big training and testing environments

For the final task, we trained a[UAV|to autonomously explore an office environment.
As mentioned in Section the drone was trained in two distinct environments:
Scene A and Scene D. Scene A consists of a narrow corridor connecting three
separate rooms, introducing navigation challenges related to constrained spaces
and doorways. In contrast, Scene D features a spacious central area with multiple
adjoining smaller rooms, requiring the drone to adapt to open spaces. This setup
maximized environmental diversity, ensuring the drone was exposed to a wide range
of navigation scenarios. For each episode, randomization was applied to the drone’s

36 CHAPTER 4. EXPERIMENTS

initial pose by sampling from a set of 128 possible initial poses, with half belonging
to Scene A and the other half to Scene D. This ensured the drone had an equal
chance of being spawned in either environment.

As in the "small exploration” task, the drone was equipped with an onboard cam-
era with a resolution of 48 x 64 providing both depth and semantic images, along
with a contact sensor. Using this setup, two different observation spaces (with and
without semantics) were compared:

» O;: Depth images of size 48 x 64 (truncated for depth values higher than 4m),
and a one-hot-encoded egocentric map of size 4 x 61 x 61, cropped from the
global grid map in the mapping module. In the egocentric map, the first dimen-
sion represented distinct classes, similar to how cells are marked with specific
values in the global grid map of the mapping module. The four classes in-
cluded: unknown space, traversable space, non-traversable space, and the
drone’s current position.

» (O,: Same observations as in Oy, along with one-hot-encoded semantic images
of size num classes x 48 x 61. One model was tested using the 41 labeled
classes present in the scene, while another model was tested with only four
key classes: door, wall, ceiling, and floor. We refer to these observation spaces
as 0J"!" for the model using all 41 classes, and O} for the model using the
four key classes.

The reward function for the main exploration task was practically the same as the
one for the "small exploration task” (see Equation [4.2), with an added term R, that
takes a value of —1 at each step to encourage the drone to explore more quickly.

R =w,R, + WeqReq + W Re + w, R, (4.4)

The termination conditions were the same as those for the "small exploration
task.” With this, an episode could end in one of three ways: the drone either crashes,
successfully maps a predefined area (completing the exploration), or reaches the
maximum episode time of 700s.

Regarding the action space, two options were considered:

« A;: Identical to the one used in the "small exploration task,” where the DRL
policy outputs a discrete value a € [0, 5]. Each value corresponds to a prede-
fined motion primitive represented by an action vector v = (v,,v,,w,). With
these motion primitives, the drone can move forward, backward, left, right, and
rotate left or right.

4.2. EXPERIMENTAL SETUP FOR DRL TASKS 37

« Ay: The DRL] policy outputs a discrete value a € [0, 3], with each value cor-
responding to a predefined motion primitive represented by an action vector
U = (vg, vy, w,). In this case, the drone can only move forward and rotate left
or right. Since its movement is restricted to areas visible in the depth image,
this action space was tested to assess whether it improved collision avoidance
performance.

When training the [DRL] policy for the “large exploration” task, the low-level con-
troller was also bypassed and the drone was spawned at the adequate positions
following Equation [4.3|with dt = 0.25s.

The basic architecture of the trained DNN] was practically the same as in the
"small exploration task”. Pretrained ResNet18 networks were used as feature extrac-
tors for the image observations, with a separate network for each. The actor-critic
networks followed the same architecture as for the two previous tasks. Additionally,
we tested incorporating a Recurrent Neural Network (RNN) immediately after the
feature extractors and before the actor-critic networks, processing the concatenated
extracted features. This approach, commonly used in the reviewed papers in Sec-
tion [2.1] aimed to leverage memory mechanisms that could benefit the agent. For
example, a[RNN] could help retain crucial information when using local maps where
exploration borders might disappear from view, when dealing with noisy maps, or
when navigating environments with dynamic obstacles.

For this task, a total of five models were trained combining the different action
and observation space configurations: A;+0;, A;+O03"", A,+0;, A,+0f"*! and
Ay+0;+ with an added [RNN|

Chapter 5

Results

5.1 Performance Results for Controller Validation

The plots in Figures [5.1a, [56.1b] and [5.2] illustrate the performance of the low-level
controller in tracking position p},%, velocity pt, yaw ¢ and yaw rate ¢)* references
provided via keyboard input. These results were recorded during a series of basic
maneuvers designed to test the controller’s capabilities: moving forward, backward,
to the right, and to the left, followed by full rotations to the right and left.

The controller demonstrates excellent tracking performance in the = and y com-
ponents of both position and velocity, accurately following the commanded refer-
ences. However, the z component exhibits some strange behaviour. While the
reference for this component is constant for both the position (p.%, = 1.8m) and the
velocity (p.%, = 0m/s), the corresponding states p.}, 5.}y show noticeable spikes
over time. Additionally, the altitude p.!} is maintained around 1.7 m instead of the
desired 1.8 m, indicating a steady-state error. In contrast, the yaw and yaw rate ref-
erences are perfectly tracked. These observations suggest that we need to further
refine the gains for the z component.

We also observed that the drone sways significantly when the reference changes
abruptly. To mitigate this, we experimented with adjusting the derivative gain of the
controller to make it less reactive. Alternatively, interpolating the reference during
abrupt changes could help smooth the response.

38

5.1. PERFORMANCE RESULTS FOR CONTROLLER VALIDATION 39

Position vs Reference Position Velocity vs Reference Velocity
I 15 ——,
—~ Reference x 10 —~ Reference vy
15 y
£ 2
E £ 05
% 10 =
= 0.0
s z
B g o3
Bos 3
10
0.0
15
[1 2 3 4 5 6 7 0 3 4 5 6 7
Timestep Timestep
25 15]
—_y - — v
> ~ = Referencey 1.0 — — Reference v,
~ 15 I
E £ 05
= 104 =
= Z oo
=1 =
2 o5)
g S 05
F
= 00 B
-1.0
-05
15
0 1 2 3 4 5 6 7 5 6 7
Timestep
1.90
iy 0.10 —
—— Reference z ’ -
1.85 4 Reference v,
= & 005
5 g
"~ 180+ -
= = 0.004
g 2
T 1754 S —0.05 1
¢ g
~0.10 4
1.70 4
-0.15 4
0 1 2 3 4 5 6 7 5 6 7
Timestep

Timestep

(a) Low-level controller position tracking: xz-component (top), (b) Low-level controller velocity tracking: z-component (top),
y-component (middle), z-component (bottom). y-component (middle), z-component (bottom).

Figure 5.1: Position and velocity tracking.

Yaw vs Reference Yaw

— Yaw

150 ~~ Reference Yaw

100

50

; [
z
2

-50

-100

-150

o 1 2 3 4 5 6 7
Timestep
Yaw Rate vs Reference Yaw Rate
wo = ================
—— Yaw Rate
0754~ Reference Yaw Rate
0.50

Yaw Rate (rad/s)
°
2
8

L
o
o

-0.50

-0.75

-1.00 e

Timestep

Figure 5.2: Low-level controller yaw tracking (top) and angular velocity tracking (bottom).

40 CHAPTER 5. RESULTS

5.2 Results of DRL Tasks

5.2.1 Task 1: Collision-Free Target Navigation

Figures[5.3aland[5.3b|show the average episode length and average episode reward
during the training of an agent for the navigation task, using the MDP] specifications
outlined in Section [4.2.1] The light blue curve represents the model with observa-
tion space O,, which includes both semantic and depth images, while the darker
blue curve corresponds to the model with observation space O,, which excludes se-
mantic images. As the plots indicate, there is little difference in training convergence
between the two models. This is likely because, in such a simple environment, the
obstacle and target are already clearly visible in the depth images, and the semantic
labels don’t add any information.

Average episode length(s) Average episode reward
0, -0, 0, -0,
s e UMA N AN
[“w 2 / ’“‘*AVV»/ W
‘/
| ’,‘
\‘ /
\ /‘
‘\‘ A ’/
A/ WA \ /
M 'ﬂ“'vwrMﬂ.N’
1k
(a) Average episode length during training (b) Average episode reward during training

Figure 5.3: Average episode length and reward when training the Navigation task.

This task served primarily as a proof of concept for the pipeline and was not
the main focus of the study. A qualitative assessment was conducted by playing
back checkpoints, and we observed that the drone was able to successfully navi-
gate around the obstacle and reach the target. However, there is a very high pos-
sibility that the policy is overfitting, as the training did not include randomization for
the drone’s initial pose, the obstacle position, or the target location. If we had more
time, the policy could have been trained with randomized initial conditions of these
quantities to ensure better generalization. Under such conditions, the inclusion of
semantic information would likely have played a more significant role in improving
the agent’s performance and robustness.

After training multiple models with slight tweaks for the navigation task, a signif-
icant concern arose: the training process took an excessively long time—up to four
days—for a task that is in theory simple. Additionally, the drone’s behavior was often
suboptimal; instead of moving directly toward the goal, it sometimes appeared to
sway on the spot or exhibit erratic movements. These observations led us to think

5.2. RESULTS OF DRL TASKS 41

that the high-level controller frequency was improperly set, causing convergence is-
sues. Specifically, we suspected that the frequency was too high, resulting in the
drone receiving commands at an excessive rate. This left the [UAV| with insufficient
time to fully execute its actions or observe their consequences, ultimately hindering
the training convergence.

A possible reason why some policies converged, despite the potential issue with
the frequency, is that extended training allowed the drone to "memorize” the path
to the goal. Testing this would have required randomizing the drone’s initial pose,
obstacle position, and target location, but due to time constraints, we moved on to
the next task—the ”"small exploration task.” For this task, we tested an alternative
approach: bypassing the low-level controller and directly controlling the drone with
a larger environment step. This significantly reduced the high-level controller fre-
quency, helping us evaluate if the convergence issues were tied to the command
rate.

5.2.2 Task 2: Autonomous Exploration
First test on a small environment

For this task, two different models were trained with dt = 0.1s and dt = 0.25s. Figures
[5.4al and [5.4b| show the average episode length and average episode reward during
training. As the plots indicate, the model with dt = 0.25s (blue line) converges very
quickly, while the model with dt = 0.1s fails to converge at all. These results confirm
our suspicions regarding the issue with the high-level controller frequency.

Average episode length(s) Average episode reward
—— dt=0.25s — dt=0.1s — dt=0.25s — dt=0.1s
A P N T W YA A A LA A
A AN A el W " v !
W JNW\ [\Wl /W K i W 4 “ . AN
0 r W/ 'v“y Y \# \\ ‘A A | / “‘\\/ JAl/VA\ ’/W /v
¢ [v v o AW, /" | A/ \
‘ /{,\\‘ L V/J.N W W |
’,/‘ *\JV y
0 R SR e Step 2 :/ Step
(a) Average episode length during training (b) Average episode reward during training

A qualitative assessment of the model’s performance was conducted by playing
back checkpoints from the model that converged. The drone successfully covered
the majority of the room area, moving in a straight up and down” pattern, as illus-
trated by the red trajectory in Figure 5.5

42 CHAPTER 5. RESULTS

Figure 5.5: Global grid map created during training of the "small exploration” task. The drone’s
trajectory appears in red.

Final experiment on big training and testing environments

For this final task, a total of five models were trained, combining the action and
observation spaces detailed in Section [4.2.2} A,+0;, A;+O05"", A,+0,, Ay+Of1ere
and A,+0;+ with an added [RNN| To summarize:

« A;: Action space allowing the drone to move forward, backward, left, right, turn
left, and turn right.

» A,: Action space limiting the drone’s movement to the region visible in the
camera’s field of view (FOV), enabling only forward, turn left, and turn right.

» O;: Observation space composed of depth image observations and an ego-
centric map.

» O,: Observation space using semantic images on top of O,.In particular, +O3""
uses all 41 semantic labels during training, while OJ""** uses only four key
class labels.

Notice that the semantic images are one-hot encoded and fed into a feature ex-
tractor (ResNet). As a result, the number of trainable parameters increases with the
number of labels.

All models successfully converged during training. Figure [5.6lillustrates the train-
ing process for model A2+0O1. As shown, the average episode contribution of the
reward term R., (a sparse reward triggered when the entire scene is mapped) in-
creases over time. This indicates that, as training progresses, more agents success-
fully explore the full environment. Notably, training time for ogi“f"’ed is significantly
shorter than for O“". A crucial factor in achieving convergence was dramatically in-
creasing the optimization batch size. This adjustment allowed the drone to gather a
more diverse set of interactions per optimization step, reducing the risk of overfitting
to a specific batch of data. Specifically, the batch size was increased from 256 to
3500 interactions.

5.2. RESULTS OF DRL TASKS 43

Average episode reward
Average episode R, reward

Step

500 1k 1.5k
e H o (b) Contribution of R., to the average episode re-

(a) Average episode reward during training ward during training

Figure 5.6: Average episode length and reward when training the full exploration task with model
A2+01

A qualitative assessment of the models’ performance was conducted by playing
back checkpoints. For those checkpoints further along in training, the drone was able
to cover nearly all of Scene A and Scene D, as shown in Figure 5.7} Notably, the
drone seems to follow a strategy aimed at time-efficient mapping. In the trajectory
(shown in red) for Scene D (which features a very large room), the drone moves in
circles to maximize area coverage.

(a) Global grid map created during training in Scene A

(b) Global grid map created dur-
ing training in Scene D

Figure 5.7: Global grid maps created during training

To test the generalization capabilities of the trained policies, a drone following
each policy was spawned in all available scenes, both seen (during training) and
unseen, from various initial poses (268 in total, counting all scenes). While the
drone interacted with the environment, key data was recorded, such as area cov-
ered, timestep, episode ID, and the reason for episode termination. Based on this
data, the tables in Figure and were created, detailing for each scene and
model: average episode time (s), average area coverage (%), success rate (%), and
collision rate (%). The success rate indicates how many of the spawned drones

44 CHAPTER 5. RESULTS

cover at least an 80% of the total complete map of the corresponding scene. Note
that, to measure area coverage percentage and success rate, an exact ground truth
of each scene’s area (the number of cells in a complete map) was not available.
We approximated it from the scene geometric map, although it is not exact. Model
Ay+05™“4 could not be evaluated due to time constraints

Model coczzge :;ie::g: Collision Success coe;er:ge :;ie;:gi Collision Success

) time(s) rate (%) rate (%) (%) time(s) rate (%) rate (%)
0,+4, 69 1978,11 21 57 93 406 28 92
Ozf“” + A, 59 1023,86 77 47 81 257,07 56 78
0, +4; 72 2417,95 28 65 98 582,4 6 100
0, + A, + RNN 73 2400,86 26 64 95 597,25 19 94

Figure 5.8: Table comparing the generalization capabilities for each policy and scene pair, for

training scenes A and D

Scene] C
Model co‘::::ge ':‘T;:Ez Collision Success co.:;er:ge 2;::5: Collision Success
%) trme) rate (%) rate (%) (%) tima(s) rate (%) rate (%)
0, + 4, 57 1814.16 43 0 54 1264.16 74 4
0, + 4, 58 1942.13 58 0 31 871.72 84 1
0, + A4, 70 2613.68 18 0 61 2432.22 29 5
0, + A, + RNN 70 2627.38 12 0 59 2160.89 45 5

Figure 5.9: Table comparing the generalization capabilities for each policy and scene pair, for

testing scenes B and C

There doesn’t appear to be a policy that stands out significantly from the others.
Performance seems to be more influenced by the scene rather than the policy it-
self. In the training scenes, performance in Scene D is notably better than in Scene
A, which may be due to Scene A being more challenging with its smaller spaces.
Although there is a slight drop in performance between the training and testing envi-
ronments, it is not particularly significant, especially when comparing scenes of the
same type (e.g., Avs. C or D vs. B).

Chapter 6

Conclusions and recommendations

6.1 Conclusions

In this work, we have addressed the challenge of autonomous exploration in un-
known, office-like indoor environments using a trained with DRLL The primary
contributions of this thesis are as follows:

* Development of an Exploration Pipeline: A comprehensive DRL-based ex-
ploration pipeline was developed from scratch, integrating high-level decision-
making with low-level control to enable autonomous exploration. This pipeline
is modular and adaptable, making it suitable for a wide range of UAV tasks
beyond exploration.

+ Semantically Labelled Simulation Environments: Realistic, semantically
labelled environments were created from the default office environment in
NVIDIA Isaac Sim, providing a robust and versatile platform for training and
testing exploration agents.

* Low-Level Controller Implementation: A low-level controller for [UAVs was
implemented in Isaac Lab, making it one of the first of its kind for multirotors in
this framework. This controller can work independently or be easily integrated
into the DRL pipeline, providing flexibility for future use.

+ Bridging Gaps in Autonomous Exploration Literature: This work identifies
and addresses several gaps in the field of autonomous exploration

— It is one of the first approaches to avoid imitation learning, relying solely
on DR for training.

— It uses low-resolution maps that reduce computational costs, making the
proposed approach suitable for[UAVs with limited onboard processing ca-
pabilities.

45

46 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS
— It uses a photorealistic, physics accurate simulator.
— It provides initial insights into the use of semantic information as part of
the observation space.
6.2 Future Work

. Low-level controller integration for exploration. Combine the low-level and

high-level controllers to train the drone for the exploration task, accounting for
the robot’s dynamics. Use reference interpolation to reduce swaying.

. Implement termination conditions without prior knowledge. Avoid the

need to know the environment’s area for termination criteria. Instead, try to
detect "open ends” in the map.

Improve generalization. Create a module in Isaac Lab (using the Event Man-
ager) to randomly place walls and obstacles in the environment, ensuring the
drone encounters different layouts each time it's launched.

Benchmark against other methods. Compare the proposed method with
other exploration strategies to understand its strengths and weaknesses. Pos-
sible benchmarks include geometry-based approaches or those in [8].

Account for uncertainty. Currently, the drone assumes perfect data for pose
estimation. Future work should evaluate the policy’s performance with realistic
conditions by adding drift and noise to the odometry sensor data.

Real-world deployment.Test the trained policy on a real drone. Since the
policy uses depth and semantic images, the sim-to-real gap should be small.

Use semantics in reward shaping. Currently, semantic information is part
of the observation space, but its potential for improving the reward shaping is
unexplored.

3D exploration. Extend the approach to 3D actions. Develop methods to
represent and navigate in 3D spaces, such as volumetric mapping.

Bibliography

[1] N. Hughes, Y. Chang, S. Hu, R. Talak, R. Abdulhai, J. Strader, and L. Carlone,
“Foundations of spatial perception for robotics: Hierarchical representations
and real-time systems,” 2023.

[2] U. V. B. L. Udugama, G. Vosselman, and F. Nex, “Mono-hydra: Real-time 3d
scene graph construction from monocular camera input with imu,” 2023.

[8] P. Wenzel, T. Schoén, L. Leal-Taixé, and D. Cremers, “Vision-based mobile
robotics obstacle avoidance with deep reinforcement learning,” 2021.

[4] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Carlone, and
J. A. Castellanos, “A survey on active simultaneous localization and mapping:
State of the art and new frontiers,” 2022.

[5] M. F. Ahmed, K. Masood, V. Fremont, and I. Fantoni, “Active slam: A
review on last decade,” Sensors, vol. 23, no. 19, 2023. [Online]. Available:
https://www.mdpi.com/1424-8220/23/19/8097

[6] J. A. Placed and J. A. Castellanos, “A deep reinforcement learning approach
for active slam,” Applied Sciences, vol. 10, no. 23, 2020. [Online]. Available:
https://www.mdpi.com/2076-3417/10/23/8386

[7] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov, “Learning
to explore using active neural slam,” 2020.

[8] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for navigation,”
2019.

[9] C. Oh and A. Cavallaro, “Learning action representations for self-supervised vi-
sual exploration,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 5873-5879.

[10] Y. Wu, N. Chen, G. Fan, D. Yang, L. Rao, S. Cheng, X. Song, and Y. Ma, “Navs:
A neural attention-based visual slam for autonomous navigation in unknown 3d
environments,” Neural Process. Lett., vol. 56, p. 61, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:267961555

47

https://www.mdpi.com/1424-8220/23/19/8097
https://www.mdpi.com/2076-3417/10/23/8386
https://api.semanticscholar.org/CorpusID:267961555

48

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

X. Puig, E. Undersander, A. Szot, M. D. Cote, R. Partsey, J. Yang, R. Desai,
A. W. Clegg, M. Hlavac, T. Min, T. Gervet, V. Vondrus, V.-P. Berges, J. Turner,
O. Maksymets, Z. Kira, M. Kalakrishnan, J. Malik, D. S. Chaplot, U. Jain, D. Ba-
tra, A. Rai, and R. Mottaghi, “Habitat 3.0: A co-habitat for humans, avatars and
robots,” 2023.

B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Pro-
ceedings 1997 IEEE International Symposium on Computational Intelligence in
Robotics and Automation CIRA’97. "Towards New Computational Principles for
Robotics and Automation’, 1997, pp. 146—151.

J. Du, L. Carlone, M. Kaouk, B. Bona, and M. Indri, “A comparative study on
active slam and autonomous exploration with particle filters,” pp. 916-923, 07
2011.

D. Trivun, E. Salaka, D. Osmankovic, J. Velagic, and N. Osmic, “Active slam-
based algorithm for autonomous exploration with mobile robot,” Proceedings
of the IEEE International Conference on Industrial Technology, vol. 2015, pp.
74-79, 06 2015.

J. A. Placed and J. A. Castellanos, “Fast autonomous robotic exploration using
the underlying graph structure,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 6672—6679.

M. F. Ahmed, V. Frémont, and |. Fantoni, “Active slam utility function exploiting
path entropy,” in 2023 IEEE International Conference on Service Operations
and Logistics, and Informatics (SOLI), 2023, pp. 1-7.

P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968. [Online]. Available:
https://doi.org/10.1109/tssc.1968.300136

X. Yan, R. Ding, Q. Luo, C. Ju, and D. Wu, “A dynamic path planning algorithm
based on the improved dwa algorithm,” in 2022 Global Reliability and Prognos-
tics and Health Management (PHM-Yantai), 2022, pp. 1-7.

E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269-271, 1959.

B. Mu, M. Giamou, L. Paull, A. akbar Agha-mohammadi, J. Leonard, and
J. How, “Information-based active slam via topological feature graphs,” 2015.

https://doi.org/10.1109/tssc.1968.300136

BIBLIOGRAPHY 49

[21] J. Vallvé and J. Andrade-Cetto, “Active pose slam with rrt*;” in 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2015, pp. 2167—-
2173.

[22] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” 2011.

[23] F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot, “Autonomous explo-
ration under uncertainty via deep reinforcement learning on graphs,” 2020.

[24] F. Chen, S. Bai, T. Shan, and B. Englot, “Self-learning exploration and mapping
for mobile robots via deep reinforcement learning,” AIAA Scitech 2019 Forum,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:68149666

[25] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning
robot for search and rescue applications: Exploration in unknown cluttered en-
vironments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 610-617,
2019.

[26] H. Li, Q. Zhang, and D. Zhao, “Deep reinforcement learning based automatic
exploration for navigation in unknown environment,” 2020.

[27] N. Botteghi, R. Schulte, B. Kallfelz Sirmacek, M. Poel, and C. Brune, “Curiosity-
driven reinforcement learning agent for mapping unknown indoor environ-
ments,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. V-1-2021, pp. 129-136, 06 2021.

[28] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration
by self-supervised prediction,” 2017.

[29] S. Bai, F. Chen, and B. Englot, “Toward autonomous mapping and exploration
for mobile robots through deep supervised learning,” in 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2017, pp. 2379—
2384.

[30] J. Zhang, L. Tai, M. Liu, J. Boedecker, and W. Burgard, “Neural slam: Learning
to explore with external memory,” 2017.

[31] S. Zhao and S.-H. Hwang, “Exploration- and exploitation-driven deep deter-
ministic policy gradient for active slam in unknown indoor environments,” Elec-
tronics, 2024. [Online]. Available: https://api.semanticscholar.org/CorpuslD:
268328434

https://api.semanticscholar.org/CorpusID:68149666
https://api.semanticscholar.org/CorpusID:268328434
https://api.semanticscholar.org/CorpusID:268328434

50 BIBLIOGRAPHY

[32] W. Chen, W. Li, A. Yang, and Y. Hu, “Active visual slam based on
hierarchical reinforcement learning,” 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 7155-7162, 2023. [Online].
Available: https://api.semanticscholar.org/Corpusl|D:266195456

[33] L. Tai and M. Liu, “Towards cognitive exploration through deep reinforcement
learning for mobile robots,” 2016.

[34] K. Wu, M. A. Esfahani, S. Yuan, and H. Wang, “Depth-based obstacle
avoidance through deep reinforcement learning,” in Proceedings of the 5th
International Conference on Mechatronics and Robotics Engineering, ser.
ICMRE’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 102—106. [Online]. Available: https://doi.org/10.1145/3314493.3314495

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013.

[36] J. C. de Jesus, V. A. Kich, A. H. Kolling, R. B. Grando, R. da Silva Guerra, and
P. L. J. D. Jr, “Depth-cuprl: Depth-imaged contrastive unsupervised prioritized
representations in reinforcement learning for mapless navigation of unmanned
aerial vehicles,” 2022.

[37] D.-G. Thomas, D. Olshanskyi, K. Krueger, T. Wongpiromsarn, and A. Jan-
nesari, “Interpretable uav collision avoidance using deep reinforcement learn-
ing,” 2021.

[38] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” 2018.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” 2017.

[40] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation,” 2017.

[41] L. He, N. Aouf, J. F. Whidborne, and B. Song, “Integrated moment-based Igmd
and deep reinforcement learning for uav obstacle avoidance,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), 2020, pp. 7491—
7497.

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” 2015.

[43] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven exploration
for mapless navigation with deep reinforcement learning,” 2018.

https://api.semanticscholar.org/CorpusID:266195456
https://doi.org/10.1145/3314493.3314495

BIBLIOGRAPHY 51

[44] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell, “Learning
to navigate in complex environments,” 2016.

[45] V. Dhiman, S. Banerjee, B. Giriffin, J. M. Siskind, and J. J. Corso, “A critical
investigation of deep reinforcement learning for navigation,” 2018.

[46] L. Kastner, C. Marx, and J. Lambrecht, “Deep-reinforcement-learning-based
semantic navigation of mobile robots in dynamic environments,” in 2020
IEEE 16th International Conference on Automation Science and Engineering
(CASE), 2020, pp. 1110-1115.

[47] L. Bartolomei, L. Teixeira, and M. Chli, “Semantic-aware active perception for
uavs using deep reinforcement learning,” in 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2021, pp. 3101-3108.

[48] S. Krishna, K. Seo, D. Bhatt, V. Mai, K. Murthy, and L. Paull, “Deep active
localization,” 2019.

[49] D. S. Chaplot, E. Parisotto, and R. Salakhutdinov, “Active neural localization,”
2018.

[50] Z. Ravichandran, L. Peng, N. Hughes, J. D. Griffith, and L. Carlone, “Hierarchi-
cal representations and explicit memory: Learning effective navigation policies
on 3d scene graphs using graph neural networks,” 2021.

[51] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi, “Visual semantic
navigation using scene priors,” 2018.

[52] Y. Liang, B. Chen, and S. Song, “Sscnav: Confidence-aware semantic scene
completion for visual semantic navigation,” 2020.

[53] “Web site of nvidia isaac sim.” [Online]. Available: https://developer.nvidia.com/
Isaac/sim

[54] “Web site of nvidia isaac lab.” [Online]. Available: https://isaac-sim.github.io/
IsaaclL.ab/main/index.html

[55] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann,
“Stable-baselines3: Reliable reinforcement learning implementations,” Journal
of Machine Learning Research, vol. 22, no. 268, pp. 1-8, 2021. [Online].
Available: http://jmlir.org/papers/v22/20-1364.html

[56] “Web site of gazebo simulator.” [Online]. Available: https://gazebosim.org/home

https://developer.nvidia.com/isaac/sim
https://developer.nvidia.com/isaac/sim
https://isaac-sim.github.io/IsaacLab/main/index.html
https://isaac-sim.github.io/IsaacLab/main/index.html
http://jmlr.org/papers/v22/20-1364.html
https://gazebosim.org/home

52 BIBLIOGRAPHY

[57] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa, M. Stilman,
and C. K. Liu, “DART: Dynamic animation and robotics toolkit,” The Journal of
Open Source Software, vol. 3, no. 22, p. 500, Feb 2018. [Online]. Available:
https://doi.org/10.21105/j0ss.00500

[58] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for
games, robotics and machine learning,” http://pybullet.org, 2016—2021.

[59] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and
physical simulation for autonomous vehicles,” 2017.

[60] VY. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flightmare:
A flexible quadrotor simulator,” in Conference on Robot Learning, 2020.

[61] M. Jacinto, J. Pinto, J. Patrikar, J. Keller, R. Cunha, S. Scherer, and A. Pas-
coal, “Pegasus simulator: An isaac sim framework for multiple aerial vehicles

simulation,” in 2024 International Conference on Unmanned Aircraft Systems
(ICUAS), 2024, pp. 917-922.

[62] “Web site of px4 autopilot.” [Online]. Available: https://docs.px4.io/main/en/
tflight_controller/

[63] “Web site of omniverse isaac gym environments.” [Online]. Available:
https://github.com/isaac-sim/OmnilsaacGymEnvs

[64] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo,
H. Mazhar, A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg, “Orbit: A
unified simulation framework for interactive robot learning environments,” 2023.

[65] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mackilin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High
performance gpu-based physics simulation for robot learning,” 2021.

[66] B. Xu, F. Gao, C. Yu, R. Zhang, Y. Wu, and Y. Wang, “Omnidrones: An efficient
and flexible platform for reinforcement learning in drone control,” 2023.

[67] “Github of rl-games.” [Online]. Available: https://github.com/Denys88/rl_ games
[68] “Github of rsl-rl.” [Online]. Available: https://github.com/leggedrobotics/rsl rl
[69] “Web site of skrl.” [Online]. Available: https://skrl.readthedocs.io/en/latest/

[70] “Web site of nvidia isaac lab (drl library comparison).” [On-
line]. Available: https://isaac-sim.qgithub.io/IsaacLab/main/source/overview/
reinforcement-learning/rl_frameworks.html

https://doi.org/10.21105/joss.00500
http://pybullet.org
https://docs.px4.io/main/en/flight_controller/
https://docs.px4.io/main/en/flight_controller/
https://github.com/isaac-sim/OmniIsaacGymEnvs
https://github.com/Denys88/rl_games
https://github.com/leggedrobotics/rsl_rl
https://skrl.readthedocs.io/en/latest/
https://isaac-sim.github.io/IsaacLab/main/source/overview/reinforcement-learning/rl_frameworks.html
https://isaac-sim.github.io/IsaacLab/main/source/overview/reinforcement-learning/rl_frameworks.html

BIBLIOGRAPHY 53

[71] “Web site of the sellers of iris in uk” [Online]. Available: https:
/lwww.arducopter.co.uk/iris-quadcopter-uav.html

[72] C. Gabellieri and A. Franchi, “Lecture notes: Control for uavs 2022-2023,” Fac-
ulty of Electrical Engineering, Mathematics Computer Science, University of
Twente, May 2023.

[73] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for
quadrotors,” in 2011 IEEE International Conference on Robotics and Automa-
tion, 2011, pp. 2520-2525.

[74] J. Schulman, S. Levine, P. Moritz, M. |. Jordan, and P. Abbeel, “Trust region
policy optimization,” 2015.

[75] “Ppo explanation in openai website.” [Online]. Available: https://spinningup.
openal.com/en/latest/algorithms/ppo.htmi

[76] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed. Berlin,
Heidelberg: Springer-Verlag, 2010.

https://www.arducopter.co.uk/iris-quadcopter-uav.html
https://www.arducopter.co.uk/iris-quadcopter-uav.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html

12°]

State of the art summary table

Appendix A

Reference Approach Candidate Actions/ | Cost Function/ Re- | Sensors/ Observa- | Environment Map/ | Validation Stopping Robot Code
Action Space (AS) ward tion Space (OS) SLAM Criteria Available
Yamauchi, B [12] Geometric Frontier-based goal | Distance-based Laser, sonar, in- | Occupancy grid-map Real No candi- | Wheeled| x
selection frared date frontier | robot
poses
Jingjing et al. [13] | Geometric Frontier-based goal | [[Tlbased: Joint En- | Laser Occupancy grid-map | Sim (Mo- | No candi- | - X
selection tropy, Expected Map (Particle SLAM) bileSim) date frontier
Mean & KLD poses
Trivun et al. [14] Geometric Frontier-based goal [[}based: map- | Laser Occupancy grid-map | Sim (Stage) | No candi- | Wheeled| x
selection segment covariance (Particle SLAM) & Real date frontier | robot
poses
Placed et al [15] Geometric Frontier-based goal TOED!based: D- | Lidars Occupancy grid-map | Sim (Gazebo) | No candi- | Wheeled | v
selection optimality (Graph SLAM) date frontier | robot
poses
Muhammad Geometric Frontier-based goal E]& TOED|hybrid: D- | Lidars Occupancy grid-map | Sim (Gazebo) | No candi- | Turtlebot | x
Farhan et al [16] selection optimality & Path en- (Graph SLAM) date frontier
tropy poses
Beipeng et al. [20] | Geometric Candidate goals in | [[Tlbased: Landmark | Laser TFG Sim (Gazebo) | - Turtlebot | x

reachable area

entropy reduction

& Real

Reference Approach Candidate Actions/ | Cost Function/ Re- | Sensors/ Observa- | Environment Map/ | Validation Stopping Robot Code
Action Space (AS) ward tion Space(0OS) SLAM Criteria Available
Vallvé et al. [21] Geometric RRT* path Mbased: Joint map | Laser Occupancy grid-map | Sim - - X
& pose Entropy (Pose SLAM)
change/distance
Placed et al [6] DRL (DQN) | AS: Discrete (Go for- | Collision avoidance | OS: Laser readings | Occupancy grid-map | Sim (Gazebo) | Collision/ Turtlebot | v
ward, Turn Left, Turn | term + Uncertainty (Particle SLAM) Fixed steps
Right) term (TOED}based:
D-optimality)
Fanfei et al [24] DRL (DQN) | AS: Discrete (Quasi- | Collision avoidance | Range sensor/ OS: | Occupancy grid-map Sim Map en- | - v
random poses within | term + Uncertainty | Local map estimate tropy =
a fixed radius of the | term ([Tjbased: [MI] 0
robot) gain)
Fanfei et al |23] DRL (DQN/ | AS: Discrete (Graph | Uncertainty term | Range sensor/ OS: | Pose Graph (Graph | Sim map % cov- | - v
A2C) frontier nodes) (TOED}based: A- | Pose graph SLAM) ered
optimality) + Distance
penalty term
Farzad et al |25] DRL (A2C) AS: Discrete (candi- | Uncertainty term @ Laser/ OS: map, | Occupancy grid-map | Sim (Stage) | - Turtlebot | x
date frontier poses) based: mgain) + Dis- | robot pose, frontier | (Particle SLAM) & Real
tance penalty term poses
H. Li et al [26] DRL (DQN) | AS: Discrete (uni- | Uncertainty term @ LiDAR/ OS: Partial | Occupancy grid-map | Sim(Stage) map % cov- | - X
formly sampled poses | based: Entropy gain) | map + robot trajec- | (Karto SLAM) ered
in map) + Distance penalty | tory
term + Collision
penalty term
Botteghi, et al [27] | DRL AS: continuous linear | Curiosity term (go far | OS: Lidar readings, | Occupancy grid-map | Sim (Gazebo) | % covered | - X
(DDPG) & angular velocity set- | from visited poses) + | root pose, % cov- | (Particle SLAM) map or
points Collision penalty term | ered map, time left, fixed steps
+ Complete map term | previous action
Pathak, et al [28] DRL (A3C) AS: Discrete (move | Curiosity term (error | Game display - Sim (Viz- | Fixed steps, | - v
forward, left, right, | in next feature predic- Doom, Mario | Game end
stop / 14 # Nintendo | tion) Bros Game)
button presses)
Bai et al [29] Supervised | AS: Discrete (36 | [ITlbased Loss func- | Range sensor/OS: | Occupancy grid-map Testing Dead end | - X
DL poses around the tion:lWl_Tlgain Local map dataset of | reached
robot, excluding non- generated
known free space) maps

GS

Reference Approach Candidate Actions/ | Cost Function/ Re- | Sensors/ Observa- | Environment Map/ | Validation Stopping Robot Code
Action Space (AS) ward tion Space(0S) SLAM Criteria Available
Tao Chen et al [8] DRL (PPO) | AS: Discrete (move | Collision penalty + | RGB-D Camera, | Occupancy grid-map Sim Fixed steps | Mobile v
forward, backward, | Coverage term bump sensor/ OS: (House3D) robot
left or right; turn left or fine and coarse
right) local maps, RGB
image
Chaplot et al |7] DRL (PPO) | AS:long-term goal Coverage term RGB Camera, | Probabilistic maps | Sim (Habitat) Fixed steps | Mobile v
pose sensor/ OS: | (Neural SLAM) robot
map, robot pose
estimates
Yu Wu et al [10] DRL (PPO) | AS:long-term goal Coverage term RGB Camera, | Probabilistic maps | Sim (Habitat) Fixed steps | Mobile X
pose sensor/ OS: | (Neural SLAM) robots
map, robot pose
estimates
Shengmin et al | DRL AS: Continuous (lin- | Complete map term+ | LiDAR, IMU/ OS: | Occupancy grid-map | Sim (Gazebo) | Collision, Turtlebot | x
131] (DDPG) ear velocity € [0,1] | Collision penalty + | Map, LiDAR data, | (Karto SLAM) fixed steps
to go forward, angular | Coverage term + | previous action
velocity € [-1,1]to turn | Curiosity term
Wensong et | DRL (PPO) AS: Discrete (long- | Coverage term + | RGB-D Camera/ | Occupancy grid-map | Sim (Habitat | Fixed steps | Wheeled | x
al [32] term goal position) SLAM Accuracy term | OS: Global and | (ORB-SLAM2) simulator) & robot
+ Loop closure term Local map, robot Real
yaw

9%

379VL AHVINNNS LHY FHL 40 J1VLS 'V XIAN3IddY

Appendix B

Available Simulation Scenes

This appendix shows images of the office scenes created in IsaacLab. Starting from
an existing, unique office environment (3.5a), sections were cropped to form distinct
scenes. For visualization purposes, the ceiling, lights, and other details suspended
from the roof have been removed. Additionally, all windows from the original map
have been covered, and the walls fully enclose the scenes, with no open doors or
glass panels, ensuring a sealed scene.

B mm = wa

(a) Scene A (small). Corridor with two rooms. (b) Scene A (big). Corridor with three rooms.

Figure B.1: Scene A

Figure B.2: Scene B. Big room with two adjacent small rooms.

57

58 APPENDIX B. AVAILABLE SIMULATION SCENES

......

(a) Scene C (small). L-shaped scene with 3 corri- | EpEEEy
dors and 3 rooms. - -

(b) Scene C (big). L-shaped scene with 3 corridors and
4 rooms.

Figure B.3: Scene C

Figure B.4: Scene D. Big room with two adjacent small rooms.

	Summary
	List of acronyms
	Introduction
	Preliminary technical notions
	General Background
	Thesis Problem Formulation
	Report Organization

	State of the art
	State Of The Art
	Geometric approaches
	Dynamic approaches
	Approaches for tasks complementary to autonomous exploration

	Tools and Methods
	Exploration Pipeline Overview
	Choice of Tools
	Simulator Choice
	Choice of Framework to Interact with Isaac Sim
	Choice of DRL Library

	Environment Setup
	Environment workflow
	Scene Setup

	Low-level Non-linear Controller Module
	Non-linear Control Law
	Implementation specifications

	High-level DRL Controller
	Selected Model-free DRL algorithm
	General DRL architecture

	Experiments
	Experimental Setup for Controller Validation
	Experimental Setup for DRL Tasks
	Task 1: Collision-Free Target Navigation
	Task 2: Autonomous Exploration

	Results
	Performance Results for Controller Validation
	Results of DRL Tasks
	Task 1: Collision-Free Target Navigation
	Task 2: Autonomous Exploration

	Conclusions and recommendations
	Conclusions
	Future Work

	References
	State of the art summary table
	Available Simulation Scenes

