&

The Netherlands

Architectural Principles for Large Scale Web sites:
a Case Study

Tristan Linnenbank

Thesis for a Master of Science degree in Computer Science from the University of Twente, Enschede, The Netherlands.

Date December 6, 2006
Assignment Organization Hyves
Herengracht 252, 1016 BV, Amsterdam, The Netherlands
Graduation Organization University of Twente
Faculty of Electric Engineering, Mathematics and Computer Science
Department of Computer Science
Architecture and Services of Network Applications Chair
Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
Graduation Committee dr. L. Ferreira Pires (University of Twente)
dr.ir. D. A. C. Quartel (University of Twente)
dr.ir. R. van de Meent (University of Twente)
ir. K. Kam (Hyves)
R.J. van Alteren (Hyves)
Available to public ~ 1st of March 2007

Abstract

Nowadays, almost everyone has access to the Internet. On the Internet, a large amount of Web sites exists.
In practice, most Web sites start as small Web sites with a small scale architecture and might experience
an enormous unexpected and/or unanticipated growth in users, page views and features. Because of this
growth, the Web site’s architecture of today has limited applicability for tomorrow’s growth. This increased
use and adoption of the Web site’s services causes a demand for a higher level of scalability and redundancy,
when compared to the original requirements of the current architecture. Google, MySpace and MSN are
examples of such large Web sites that probably had to handle with these problems. We do not know for
sure, since except for Google, little is known about the architectures of these Web sites.

In this Master thesis, we gain insight into the architectures of large scale dynamic Web sites like Google
and Myspace by using the Web site of the Hyves service as a case study. The Hyves Web site currently
experiences an enormous growth in users and page views and the current architecture is expected not to
be scalable for this growth. Within the case study, we identified architectural principles for designing and
implementing such large scale Web sites. The results from a case study are not necessarily applicable
for designing and implementing any large scale Web site, therefore the identified principles are not general
applicable.

We restricted our research to the media service part of the architecture of the Hyves Web site, and divided
the research up to three smaller researches that identified architectural principles for the resource manage-
ment layer, the application logic layer and the presentation layer. Part of the architectural principles were
identified by studying and analyzing the current architecture first. Secondly, we analyzed the current expe-
rienced problems with the Hyves Web site. The analyzed problems and the solutions we designed to solve
these problems were used to identify the other part of the architectural principles.

By analyzing the current architecture we identified the following architectural principles:

e Supporting services within the large scale Web site should be prevented from being single points
of failures. During our research we experienced that supporting services that were not regarded as
critical were implemented as single points of failures. During the growth of the large scale Web site,
these services became more critical and the design decision to implement these services as single
points of failures became invalid. Redundancy, improved performance and portability are mentioned
as possible solutions;

e One should prevent tight coupling as much as possible. This concerns hard coding parameters in the
application and using limited resources like storage for more than one part of the service. During our
research we experienced that both concerns limited the growth of the case study’s Web site;

e Implement application-level monitoring from the start when designing a part of a large scale Web site.
System-level monitoring the applications and machines that are used to implement the service is not
sufficient. The performance and functioning of in-house written applications should also be monitored
and also the aggregate performance and functioning of the applications and machines that are used
to the implement the service.

By analyzing the currently experienced problems and the solutions we designed to solve these problems we
identified the following architectural principles:

The load of resources should be balanced using a scheme in which the chance that an item is stored
on an arbitrary storage node is equal for all storage nodes and all stored items. In our case study we
have seen that current performance problems can be solved when introducing such a scheme.

Every design should incorporate that current available resources such as processing capacity and
storage capacity are not sufficient when used as a stand-alone solution. This principle overcomes the
problem of a growth of a large scale Web site that outperforms the growth of the capacity of available
resources. As a solution, the use of pools and/or clusters of resources are mentioned.

The use of pools and/or clusters of resources also create redundancy and scalability. The current
problems in our case study showed that some parts were not scalable, since it was not possible to add
additional capacity to increase the performance of that part of the service. The same problems also
showed that in case of failure, that part of the service was stopped because there was no redundancy
to overcome a failure.

For the use of any large scale Web site, research the request pattern. When designing a large scale
Web site incorporate the monitoring of the requests. Current performance problems in our case
study were solved by analyzing the requests served by the large scale Web site and adjusting the
architecture handle such requests more efficiently.

Preface

This Master’s Thesis is the final product of my Computer Science education at the department of Computer
Science, at the Faculty of Electrical Engineering, Mathematics and Computer Science of the University of
Twente, The Netherlands.

I would like to thank a number of people who have given me the opportunity to complete this thesis:

From the University of Twente, | would like to thank Luis Ferreira Pires and Remco van de Meent for their
valuable input while discussing my progress and approach. Luis and Remco, thank you for keeping me on
track and for the guidance during this research.

From Hyves, | would like to thank Koen Kam for the opportunity to do my research at such a large scale Web
site and Ramon van Alteren for being a nice co-worker and discussing several implementation details. | also
would like to thank Reinoud Elhorst for philosophizing about certain problems and solutions on the media
service during my research. | would also like to thank the rest of my co-workers at Hyves for the pleasant
time at Hyves Headquarters.

Finally, | would like to thank Cynthia, my girlfriend, for her support, for her patience, for reading the several
versions of the thesis and hearing me talking way too much about my graduation project ®.

Lelystad & Amsterdam, The Netherlands, December 6, 2006.

Tristan Linnenbank

Vi

Table of Contents

1

Introduction
1.1 Motivation.
1.2 Case Study
1.3 Problem and Challenges
1.3.1 Media Growth Storage Challenges . .
1.3.2 Media Growth Processing Challenges
1.3.3 Media Growth Serving Challenges . .
Objectives
Approach
Restrictions
Structure of this Document

1.4
15
1.6
1.7

Architecture
2.1 Initial Architecture
211 ResourceTier.
2.1.2 Application Logic Tier
2.1.3 Presentation Tier
Implementation
221 ResourceTier.
2.2.2 Application Logic Tier
2.2.3 Presentation Tier
2.2.4 \Vertical Sub-systems
Media Service
2.3.1 Media Uploading and Rendering
2.3.2 Media Storage
2.3.3 Media Serving
2.4 Architectural Principles
2.4.1 Prevent Single points of Failures
2.4.2 Loose Coupling
2.4.3 Application-level Monitoring

2.2

2.3 MediaService

Media Service
3.1 Introduction
3.2 Interactions
3.2.1 Request Media Interaction
3.2.2 Response Media Interaction
3.2.3 Upload Media Interaction
Hyves Media Service
3.3.1 Rendered Media Web server Interval .
3.3.2 Storage
3.3.3 Autorender Daemon
3.3.4 Member Database

3.3

vii

© O ~N~N~NOOPSDBPANERE PR

11
11
11
12
12
13
13
14
14
15
16
17
19
21
21
21
22
22

TABLE OF CONTENTS TABLE OF CONTENTS

3.35 Website PHPcode 30
3.3.6 Website Webserver e 30
3.3.7 Remarks 30

3.4 ResStrictions e e e e e 31
4 Media Serving and Storage 33
4.1 Introduction L e 33
4.2 Performance decreaseo 34
4.2.1 Problemdescription. e e e e 34
422 Analysis 34
4.2.3 RequIremMents e e 35
424 SOlUtioONS e 36
425 Implementation e e e e 37
426 Evaluation. e 38

4.3 Unbalance in the number ofrequests L 39
4.3.1 Problemdescription. 39
4.3.2 Analysis e e e 40
4.3.3 Requirements e e e e e 43
4.3.4 Solutions e 43

4.4 Caching. e 43
4.4.1 Problemdescription. e e e e 43
442 Analysis e e 44
443 RequUIremMeNntS o o e e e 46
4.4.4 SoOlUtiONS L e 46
445 Implementation L e e e e e e 47
446 Evaluation. 48

4.5 Optimizingcaching 50
451 Problemdescription. 50
452 Analysis 50
453 Requirements e e e e e 51
454 SolUutionNs 51
455 Implementation 53
456 Evaluation. L 53

4.6 Storage e e 55
4.6.1 Problemdescription. e e e e 55
4.6.2 Analysis 55
4.6.3 RequIrements e e 55
4.6.4 SOIULIONS 56
4.6.5 Implementation L e e e e e 57

4.7 Storage and Serving Review 64
4.8 Conclusion e 64
5 Media processing 67
5.1 Introduction e 67
5.2 Coldmaxmediaid set-back 68
5.2.1 Problemdescription. 68
5.2.2 Analysis e e 68
5.2.3 Requirements e e 70
5.2.4 Solutions e 70
5.2.5 Implementation 71

53 CPRUUSage 71
5.3.1 Problemdescription. e 71
5.3.2 Analysis e e 71
5.3.3 Requirements 74

TABLE OF CONTENTS TABLE OF CONTENTS

5.3.4 Solutions 74

5.3.5 Implementation e 75

5.4 NFS . . . 75
5.4.1 Problemdescription. 75

542 Analysis 76

5.4.3 Requirements 76

544 Solutions 76

545 Implementation e e e 76

5.5 RenderSoftware 76
5.5.1 Problemdescription. 76

552 Analysis 77

5.5.3 Requirements L 77

55.4 Solution 77

5,55 Implementation e e 77

55.6 Evaluation. e 77

5.6 Design 78
5.6.1 Problemdescription. 78

5.6.2 Analysis e 78

5.6.3 Requirements e e e e e 78

5.6.4 Solutions e 78

5.6.5 Implementation L 79

5.6.6 Evaluation. e 80

5.7 Conclusion e 81

6 Conclusions and Recommendations 83
6.1 Architectural Principles 83
6.1.1 Architectural Principles for Storage Architectures 83

6.1.2 Architectural Principles for Static Content Serving Architectures 85

6.1.3 Architectural Principles for Processing Architectures 85

6.1.4 General Architectural Principles L 85

6.2 Conclusions L e 86
6.3 Recommendations 86
6.4 Future Work L e 87
Index 89
References 90
Web References 95
A Tools 97

TABLE OF CONTENTS TABLE OF CONTENTS

List of Figures

1.1 AHyvesprofile e
1.2 HyvesWebsite e
1.3 Numberof members
1.4 OneStat page view statistics for the Hyves Web sites
1.5 Numberofuploads
1.6 Different levels to apply scalability and redundancy

2.1 Three-tier architecture of the Hyves service
2.2 Current storage capacity expansion e e e e e e e
2.3 Loadbalancersetup e
2.4 Media Service in the architectural view
25 Mediaservice flow L
2.6 Sequence diagram of the scenario in which a mediaitemis uploaded
2.7 Sequence diagram request hotand notrendered
2.8 Hot and Cold rendered media repository structure
2.9 Sequencediagramrequestcold
2.10 Sequence diagram request hotandrendered
2.11 Summary and URL generationscheme o
2.12 Sequence diagram of the Autorenderdaemon

3.1 Global View Information Flow
3.2 Request L
3.3 Hyves Media Service internalcomponents. 00 n e
3.4 Flow Diagram of a Rendered MediaWeb server.
3.5 Flowdiagramofalocalstorage.
3.6 Flow diagram of the renderdaemon. o
3.7 Flow diagram of the Member Database.
3.8 Flow diagram of the Web site PHP code.

4.1 Flowofresearches L
4.2 Structure of each discussed researcho L
4.3 Number of requests on one day, perinterval
4.4 Possibleimprovements L L
4.5 Moving media items frominterval L tointerval O
4.6 Media growth visualized e
4.7 Userrequests, grouped by Mediaido L
4.8 Total requests divided per distinct requests per partition
4.9 Number of user-requests perresolutions 0o
4.10 Accelerating a Web server by use ofaReverse Proxy
4.11 Back-end requests per media-id
4.12 Reduction of the number of requests as a result of the use of a caching reverse proxy
4.13 Cooperative Caching Setup o

Xi

© o U1 O W W

12
14
15
16
17
17
18
18
18
19
19
20

25
26
28
28
29
29
30
31

33
34
35
36
39
40
42
45
45
47
48
49

LIST OF FIGURES LIST OF FIGURES

4.14 Requests per id with the modulo approach 54
4.15 ConsistentHashing e e e 58
4.16 Example of Modulo Operation e 59
4.17 Example of MD5 operation e e 60
4.18 Using aredirector 60
4.19 Reconfiguration procedure 61
4.20 Phase shiftexplanation e 62
4.21 Logical Presentation LayerDesign e e e 64
422 ACLS . . o o 64
5.1 Structure of each discussedresearch 67
5.2 “Hotand cold” setup analysis e 68
5.3 Visualization of the queue length of the Autorender Daemon 69
5.4 Autorender Daemon Queue and ProcessorUsageo 71
5.5 Queuing Theory Definitionand Analogy 72
5.6 Pseudo code of the AutorenderDaemon. 73
5.7 Autorender Daemon Logfile e 74
5.8 Autorender Daemon Logfile 75
5.9 New AutorenderDesign e 80
6.1 Photograph of a DDR drive X1 andiRAM 87

Xii

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4

Load balanced clusters L e 15
Render formats per uploadedfiletypeo 20
Calculation of the number of items to move - initial situation 38
Calculation of the number of items to move - desired situation. 38
User requested resolutions on August 1st, 2006. 46
Comparison back-end requests interval setup vs. modulosetup 53

xiii

LIST OF TABLES LIST OF TABLES

Xiv

Chapter 1

Introduction

This chapter provides an overall introduction to the work reported in this Master’s thesis. It first presents the
motivation behind the reported work, followed by the objectives to be achieved. Subsequently, this chapter
illustrates the approach applied in accomplishing these objectives. This chapter ends with a global overview
of the structure of this report.

1.1 Motivation

Nowadays, almost everyone has access to the Internet. On the Internet, a large amount of Web sites® exists.
Web sites are either static or dynamic. In the first case, the content consists of a set of HTML-pages which
are placed on a Web server by an administrator. The contents of the Web site only changes when a different
set of HTML-pages is placed on the Web server. In the second case, the content of a Web site is generated
either periodically (e.g., every three hours), or instantaneously (e.g., on every request). The context of a
generation (e.g., the user, the time of the day, the location of a user, the information in a database) can
influence the generated contents at some time and in the future.

The more Web sites are used, the more requests they receive. When a single Web server cannot cope with
the number of requests, for example, when the maximum number of requests per server is CPU-bounded,
multiple load-balanced servers using content replication techniques can be used to increase the service's
performance. Content-replication is a technique that uses redundant resources. In the case of dynamic
Web sites, the content is often stored in a database. Content-replication of databases is called database
replication. In such a setup, multiple databases are used (replication slaves) that requests for updates from
a single database (replication master).

For our example, a solution like content replication is theoretically sufficient to increase the service’s per-
formance, but in practice, when the number of slave requests increases and/or the number of information
changes increases above a certain threshold, the replication master is not fast enough to serve all its slaves.
Furthermore, it is not designed to have many large content repositories and to keep them synchronized. This
issue on content replication is a typical example of the use of a standard technique for increasing perfor-
mance that appears to be insufficient in practice when applied at large scale dynamic Web sites.

Within this thesis, we define large scale dynamic Web sites as Web sites that demand for non-standard
techniques for improving performance in order to enable a higher level of scalability and redundancy for
storing, processing or serving (or any combination of these three options) large amounts of requests. A
higher level of scalability reduces overhead and/or extends the maximum number of requests that a system
stores, processes or serves. The non-standard techniques are embodied in scalable architectures for large
scale Web sites. A higher level of redundancy increases the maximum number of failures that have to occur
to disable the entire service.

1We use Web site according to the Associated Press guidelines [WIKIW], and not web site or website as sometimes seen.

1.2. CASE STUDY CHAPTER 1. INTRODUCTION

In practice, most Web sites start as small scale Web sites with a small scale architecture and might expe-
rience an enormous unexpected and/or unanticipated growth in users, page views and features. Because
of this growth, the Web site’s architecture of today has limited applicability for tomorrow’s growth. This in-
creased use and adoption of the Web site’s service causes a demand for a higher level of scalability and
redundancy, when compared to the original requirement of the current architecture. The increased use and
adoption of the service also limits the possibilities of migrating to an improved scalable architecture because
of two reasons. First of all, it is not possible to shut down the Web site’s service for a long period of time and
replace it with an improved one, because the down-time leads to the loss of page views, orders, advertise-
ments, users and eventually, money. Secondly, user data (e.g., photos, entered information, etc.) in the old
architecture should be accessible in the new architecture because we do not want users to experience data
loss caused by a migration.

Google [GOOGLE], MySpace [MYSPACE] and MSN [MSN] are examples of such large Web sites that
probably had to handle with these problems. We do not know for sure, since except for Google [GLABS],
little is known about the architectures of these Web sites. Probably the companies behind those Web sites
are not willing to share their intellectual properties. However, Web sites like those mentioned, are the proof
that it is possible to create and maintain such large and complex dynamic Web sites and to overcome the
standard performance problems that arise from such scales.

In this Master thesis, we gain insight into the architectures of large scale dynamic Web sites like Google and
MySpace and we identify principles for creating architectures for such large scale dynamic Web sites. By
taking into account these principles when creating a Web site, from the start a more scalable and redundant
architecture is created and problems caused by poor scalability can be prevented. These principles can also
be applied on existing large scale Web sites when developing a new architecture to enable a higher level of
scalability and redundancy.

We use the Web site of Hyves [HYVES], a Dutch online community, as a case study of a large scale dynamic
Web site. The Hyves Web site currently experiences an enormous growth in users and page views and the
current architecture is expected not to be scalable for this growth.

In the next sections we provide an overview of our case study and its problems and challenges.

1.2 Case Study

Hyves is an online community, which is a group of people communicating and interacting with each other
by means of information technologies, typically the Internet, rather than face to face [WIKIOC]. “Hyves” is
derived from the English word “hives”, which, according to [AHDOO] is “a place swarming with activity” or “to
live with many others in close association”.

Hyves’s members can create or extend their own hyves of friends by inviting and adding each other to their
hyves. For its members, the Web site offers sophisticated user profiles (see Figure 1.1) and photo albums.
In addition to hyves based on friendships, one can also join hyves based on locations, events or interests.

The service of Hyves is based on in-house written software in PHP [PHP] and it offered via a Web site
(http:/www.hyves.nl) using tools like MySQL [MYSQL], Apache [APACHE], Squid [SQUID], Nagios
[NAGIOS], IPVS [IPVS] and Gentoo Linux [GENTOQ] running on about 200 servers.

The Hyves service consists of these services:
e the Web site (user profiles, Web blogs, user messages);
e a chat service;

e a media service (storing, processing and serving of media items like photos and videos).

CHAPTER 1.

INTRODUCTION

1.2. CASE STUDY

G- - 8 0 % [htpidromedaris hyves.nl/

:] ©co [GL

/('\fﬂ HYvemmmmwm

HOME VRIENDEN HYVES AMERSFOORT

Jebent hier: Hyver > Tristan

Tristan)

PROFIEL VRIENDEN

Profiel D)
547 x sinds 27 april, Hyver sinds 16-09-2005

wreanBOT O] ¥

Naam: Tristan Linnenbank
Leeftijd: 25
Woonplaats: Lelystad

wizig foto
© Tristan (42}

2, Chatten

& Voegtoe als vriend

& schnf tesamonial

Sport: Fitnes. hardlopen, windsurfen

Etc (Events, Tips & Advertenties)
WY oslanae p Tip: Unix Hater's Handbook (Boeken)
@ Voegtoe als crush

@ (Deppiokkeren

& GoogleTristan

) Tip: Natuurpark Lelystad (Overig)
p Tip: lachen voor nerds (Kopie)
) Stuur bericht

& Ditis et ok

& roto's & video's

[‘ Wijn menu ¥ | Inbox (0) | Goldmembers | Help ‘

SCHOLEN & BEDRI[VEN.

Reageer

Zoeken:[[wE = ok

PIMP MY PROFILE!

FOTO'S BLOG TIPS

POLLS

Vrienden (42) ©

3

r

Youri (136) @
Suzanneke
Koen Kam (194)
(197) NEW STORE
AT WWW.HM.COM
OPEN 24 HOURS
i
el
Jason (149)
cien &
(106)
q
Boris (75)
Martine (LB1}
GilslA
(203)

University Twente
(852)

Figure 1.1: A Hyves profile

8 x

G- @ @ @ [A hupwwwhyves i/
e vegnet
,s’(q/)\ HY always in touch with your friends

You are here: Home

Already 2195013 members since oct Lst 2004!

IN THE PRESS

Hyves Hires oa/z3
Help us help you: @ We're still offering half our kingdom, unlimited karma
a EUR 1000 finders fee for new top programmers & system administrators

20712 Dear Hyvers,
19/07 Hyves 2.0 live & kicking!

[Photos Featured- | Most viewed | Most respectsd | Most comments

chersonissos
2006 jpg

de 150 107.pg

T Videos

ML7S droptshit- B-Boy Wouteron Rellen met Phocbe
check. the beat

-Featured- | Mast viewed | Most respected | Most comments

wicked dance avi

servus en serva en Beach Comber (Fijj) SNEAKERZOG-08@BDAAL Venlo by

. %
¥
4

Search:| [mambn = k|
JOIN FOR FREE

pol

Je eigen track met Brainpower maken?

Check de Recrelease hyves.ni!

110015 & CMPANIES
8 i

© Visser 't Hooft Lyceum - Leiden
Kagerstraat{857)

& Thorbecke
Scholengemesnschap(797)

© Stedelijk Gymnasium Nijmegen(795)

B con

© Riksuniversiteit Groningen(4873)

© Erasmus Universiteit
Rotterdam(3809)

& Radboud Universiteit
Nijmegen(3544)

& companies:

O ABN AMRO(434)
O KLM(460)
© Mise en Place(302)

Night

Finn belt
Martijn

Figure 1.2: The Hyves Web site

1.3. PROBLEM AND CHALLENGES CHAPTER 1. INTRODUCTION

Examples of scalability problems with the Hyves service at the start of this research were:

e Database scaling: 32-bits MySQL can address 2GB of RAM-memory, but the indexes in the database
eventually will be larger than 2GB. Performance decreases dramatically in case the indexes cannot
be stored entirely in RAM because of disk access caused by paging.

e Chat: how to offer a chat service to more than two million users?

e Media growth: Currently more and more photos and other media are uploaded. A good storage and
serving architecture is necessary to offer millions of media items to millions of users. It is expected
that the current architecture does not scale out well. How can we change the current architecture to
a more scalable solution?

e Maintenance: how to maintain, configure, backup or install 200 or even more servers?

Because of the complexity and size of the Hyves service, we had to select one specific problem to address
in this thesis. We have chosen the media growth problem to be addressed in this thesis. The main argument
for choosing the media growth problem is that the media service includes all layers of a typical distributed
application [ALONSO] and, therefore, when analyzing it, we might identify architectural principles for all the
three layers.

What Hyves distinguishes from other so called “online communities” is that Hyves does not limit its members
by some sort of quota on the number of photos that can be uploaded or on the aggregate disk usage as a
result of these uploads. Not limiting its members with respect to the photo uploading is a strategic choice.
This makes Hyves a popular place to share photo’s (see in Figure 1.2 the “Photos” and “Video” sections) as
can be derived from the number of photo downloads.

In addition to photo sharing, Hyves recently released video sharing in which Hyves continues its strategy
to allow its members to share unlimited amounts of videos. Currently just small videos are supported (i.e.,
from a mobile phone camera) but future use might allow larger and longer videos. Hyves is considering
offering file sharing in the nearby future (i.e., Powerpoint presentations, Word reports). All these items that
can be uploaded are referenced with the term media.

Within the Hyves media service, three functions exists:

e Media items are stored;
e Media items are processed;

e Media items are served.

These functions are affected by the increasing number of page views and members.

1.3 Problem and Challenges

The number of Hyves members and sub sites (e.g., Classifieds, Hyvertising, Photo’s, etc.) is still growing.
Next to the growing number of members (see Figure 1.3), the number of page views per day is also growing
(see Figure 1.4). This implies that more server capacity is needed to service all users and sub sites.

1.3.1 Media Growth Storage Challenges

The Hyves service experiences a large number of file uploads by its users (see Figure 1.5). The number of
uploaded items is expected to increase because of the following reasons:

e the number of uploads per period of time is larger than the number of deletions per period of time.
Actually, deleted items are not deleted from storage, but only their entry in the database is deleted;

4

CHAPTER 1. INTRODUCTION 1.3. PROBLEM AND CHALLENGES

2500000

number of members —+—

2000000

1500000

1000000

500000 [

| I — § IS [(S N (NN N N I N S N — —
S ¥ & § W W0 Ww W wwwwLwwwwmw O © © © © © © © O
O O O O O 0O O O O O O 0 O © © O O © © O O © © O O
O O O O O O O O O O O O O O O O O O 9O O O O 9O 9O O
I FTFFFI QY qgyqqd
3 3 3 5 oE5T 2t ssssoos5TELEE o8
2 9 29 29 8 5 £ 3235 53 32 L2988 £ 25 53 3 2
ESEEZ2ZE8IL23"°3E9gEE228IT23"°85¢E
g8 3838 = 2 238¢8 548 = I e
203 §g~d 203 ¢8> ¢ 2
d) Q d)
& Z 0 3 Z 0 &

Figure 1.3: Graph of the number of members as known on the first of each mont h, displaying the period of
October 2004 - September 2006.

Figure 1.4: Page view statistics for the last 24 months (generated at 9th of August 2006), as measured by One-
Stat [ONESTAT]. The numbers in the graph should be multiplie d by 10, because OneStat, an external page-view

statistics producer, does not support large amounts of page -views. Every bar corresponds to the total number
of page views for a week.

1.3. PROBLEM AND CHALLENGES CHAPTER 1. INTRODUCTION

3500000

media ——
photos ¥3ow
video

3000000

2500000

2000000 4 % -

1500000 SR -

1000000 oL 6 1 -

aazal

ra

500000

SaXATY

TS
1

LYY

T7SE
LN

2005-08 L

[,

2005-06

esavaras

Lm
2005-10 [

2005-05 =3

2004-10
2004-11
2004-12
2004-12
2005-01 F
2005-03 [~
2005-03
2005-04 =4
2005-07
2005-09
2005-11 [~
2005-12
2006-01
2006-02
2006-03 |
2006-04 |
2006-05 [
2006-06 £
2006-07 E2E5
2006-08
2006-09

Figure 1.5: Number of uploads measured approx. per month as measured on t he 15th of September 2006.
Media: total number of uploads (video and photos). Video: nu mber of video uploads. Photos: humber of photo
uploads. Note that the results for the last month are not defin ite, because September had not ended yet at the
creation of this graph.

e the number of users increases and therefore the number of potential uploads increases too;

e the number of media types is expected to increase, therefore increasing the likelihood that a user may
upload even more items.

Each uploaded and stored media item takes space in the storage of the Hyves media service. Items are
also processed. The processed media items are also stored in the storage of the Hyves media service.

The increase of the number of uploads demands for a scalable storage architecture. A first version of such
a storage architecture is currently in use, but it is not expected to be scalable enough.

1.3.2 Media Growth Processing Challenges
In the Hyves service, every media item is processed. For example:

e photos are rendered to different geometries into the JPEG-format to fit in nicely into the layout of the
Web site;

e videos are downsized and rendered to the FLV-format so that they are accessible in the Web site.
Also a JPEG-thumbnail is rendered from the video for the Web site.

Processing the uploads takes time and processing capacity. At the beginning of this research, items not
yet processed (those are queued to a render daemon), they were rendered instantly on a Web server. The
rendering process takes time, so the user experienced a delay between the request and the result. The
rendering process also takes CPU-power of a Web server, that otherwise could process more requests. To
improve user experience, the time between the upload of the item and the availability on the Web site should
be as low as possible.

When the number of uploaded items increases, the processing capacity demands also increase. This
demands for a scalable processing service. The current processing service is not expected to be scalable
enough for the future growth.

CHAPTER 1. INTRODUCTION 1.4. OBJECTIVES

1.3.3 Media Growth Serving Challenges

Visitors of the Web site (members and non-members) can download media items. Each newly uploaded item
has the potential of being downloaded multiple times. Because of the increase of the number of uploads the
number of downloads is also likely to increase. To handle the increased number of downloads, the capacity
has to be extended. This demands for a scalable download service.

1.4 Objectives

We formulate our overall research question based on the motivation and the context of this thesis as follows:
Which architectural principles should be applied in the design of a large scale Web site?

In practice, large scale Web sites’ architectures conforms to the architecture of a typical distributed informa-
tion system [ALONSO], which consists of three layers: a resource management layer, an application logic
layer and a presentation layer. Furthermore, the challenges in Section 1.3.1, 1.3.2 and 1.3.3 fit into this
division. Therefore to answer our research question, first the following sub-questions need to be answered:

What architectural principles should be applied in the design of a scalable and redundant stor-
age architecture for a large scale Web site?

What architectural principles should be applied in the design of a scalable and redundant pro-
cessing architecture for a large scale Web site?

What architectural principles should be applied in the design of a scalable and redundant static
content serving architecture for a large scale Web site?

To answer these sub-questions, we set ourselves the following objectives:

1. Make the high-level architecture of Hyves service explicit in terms of functions and components. Give
a more in-depth view of the Hyves media service that reflects the initial situation at the beginning of
our research and which allows analysis and evaluations;

2. Identify the architectural principles and decisions that have been applied in the design of the large
scale Web site of our case study;

3. Identify current and future bottlenecks of the Hyves media service;
4. Design an improved Hyves media service architecture;

5. Identify the architectural principles and decisions that have been applied in the improved design of
the media service architecture.

1.5 Approach

The first and the second objective are achieved by studying the initial architecture and implementation as
found at the beginning of our research. In this study, we perform these two steps:

e Define the Hyves service architecture in terms of its parts and their relations;

e Define the Hyves service architecture in terms of components and their relations.

1.6. RESTRICTIONS CHAPTER 1. INTRODUCTION

e |dentify the architectural principles that were applied at the design and the implementation of the
current architecture and its implementation.

The third objective is achieved by gathering log data from the machines and by processing this data using
utilities specially written for this purpose. We also wrote utilities to generate graphs from this data. Subtasks
of the third objective are:

e Identify the information flow in the Hyves media service;
e |dentify current performance problems by using measurements;

e |dentify future performance problems using measurements.

The fourth objective is achieved by researching alternatives for the current architecture and to provide a
design ready to implement. Subtasks of this objective therefore are:

e Analyze the characteristics of the identified performance problems;

e Create requirements for the possible solutions, using the characteristics of the performance problem;

Propose possible solutions and select the best one or design a solution;

Describe how the solution should be implemented;

Implement the solution;

Evaluate the solution with respect to the problem.

The fifth objective is performed by studying the identified problems and the designed solutions for these
problems. Subtask of this objective therefore are:

e Identify the architectural principles by using the identified performance problems found in the current
Media service architecture and its implementation;

e Identify the architectural principles that have been applied in the design of the solutions for the identi-
fied performance problems.

1.6 Restrictions

Before starting the research, we would like to identify six restrictions which should be taken into account
while reading this thesis.

While using a case study we gain deep insights in large scale Web sites. However, case studies in general
have some restrictions, therefore the identified architectural principles in this report may not hold for a
generic large scale Web site but at least for the Hyves Web site. We encourage readers to implement the
architectural principles gained in this thesis according to their own situation.

Our case study research has to take place in a dynamic environment: the current architecture of our case
study is still work in progress. Any architectural improvement done by us should be done with respect to
a minimum of downtime and a minimum of impact for the other parts of the service. This might influence
possible measurements.

At the start of the research, the media service of the Hyves service supported photos only, but currently
it supports both photos and videos. Therefore the research focuses only on the architectural principles of
a design of a photo-based media service. A video and photo based media service compared to a photo-
only based media service requires a different setup, but nonetheless, it is expected that most architectural
principles that are derived from our research are also applicable for a video and photo-based service. We

CHAPTER 1. INTRODUCTION 1.7. STRUCTURE OF THIS DOCUMENT

expect this, because the current work flow (storing, processing, serving) for videos is comparable to the
work flow for images. Further, at the moment the videos are rather small and the file sizes are comparable
to some of the images, therefore storing and serving the videos is somewhat similar to serving and storing
images. Of course this has to be reconsidered when larger videos are allowed.

Further, because of the performance issues, any identified and solved bottleneck during our research are
implemented as soon as possible to allow a further growth and adoption of the service. As a consequence,
we will do our research in an incremental way.

Our design of an improved architecture should reflect the architectural principles found in our research.

Machine A Machine B Machine C
] [] [

Distributed Applications

Network OS Network OS Network OS
services services services
Kernel Kernel Kernel
network

Figure 1.6: Different levels to apply scalability and redundancy. We fo cus on the distributed application. This
image was taken from [DSYS].

In the introduction, we defined scalability and redundancy. In our research questions, we state that we want
to identify principles for the design of a scalable and redundant architecture. Scalability and redundancy
are widely used understandings and both can be applied extremely and at different levels (kernel, network,
application, see Figure 1.6). We focus on the distributed application the large scale Web site provides and
assume that supporting subsystems like the network and the operating system are a solid base for the
distributed application.

1.7 Structure of this Document

This thesis is further structured as follows:

Chapter 2 gives an overview of the Hyves service architecture and its implementation. In this chapter we
provide a high-level overview of the Hyves architecture explicit in terms of functions and components. Fur-
thermore, we provide an in-depth view of the Hyves media architecture that allows analysis and evaluation
to identify the architectural principles and decisions that have been applied in the design of the Hyves Web
site.

In chapter 3 we present the implementation details for the Media Service architecture. Furthermore, we
present the interactions with the service, the internals of the service and the implementation details of the
service. These service implementation details are the starting point for our analysis.

Analysis and design in a typical research are executed in order and therefore described in single chapters.
In our research, we worked using an incremental approach: research leads to a design, and this design
needs to be improved, so more research is necessary and so on. Further, we have three problem areas:
media storage, media serving and media processing. In our research we experienced that media storage
and media serving are two problem areas that are closely related. Therefore we combine these two problem
areas in one chapter. In chapter 4 we present our analysis and design activities for Media Serving and
Media Storage. Chapter 5 presents our analysis and design activities for Media Processing.

1.7. STRUCTURE OF THIS DOCUMENT CHAPTER 1. INTRODUCTION

We conclude our thesis by answering our research questions and presenting an overview of all the archi-
tectural principles identified during our research in Chapter 6. Further we present some recommendations
that can be useful for Hyves.

Next to the thesis, an appendix that shows the utilities that we have written to aid our research is attached
to this document.

10

Chapter 2

Architecture

In this chapter we provide a high-level overview of the Hyves architecture explicit in terms of functions and
components. Furthermore, we provide an in-depth view of the Hyves media architecture that allows analysis
and evaluation to identify the architectural principles and decisions that have been applied in the design of
the Hyves Web site. Therefore this chapter discusses the situation as found at the beginning of our research.

We start the high-level overview of the Hyves service by decomposing the architecture in layers and discuss
each of them. Thereafter, we give an overview of the implementation of the Hyves service. After this, we
provide a more in-depth overview in terms of functions and components of the Hyves media service. This
chapter concludes with the architectural principles that were applied when the discussed architecture was
designed and implemented.

2.1 Initial Architecture

Like typical distributed information systems, our case study’s architecture conforms to a three-tier architec-
ture [ALONSO] with a resource management tier that provides access to resources like storage, databases
and interfaces to other systems, an application logic tier that combines the resources, and a presentation tier
that enables interaction between the users and the application. Figure 2.1 displays this layered architecture
of the Hyves service. In the following sub sections we present the parts of each tier.

2.1.1 Resource Tier

In the resource management tier, several resources can be found (see Figure 2.1). These resources are:

e The management database resource that holds configuration data for multiple parts of the application;
e The rendered media resource, which is a repository of files containing the rendered media items;
e The media resource, which is a repository of files containing the original media items;

e The member database that holds all data for the members of Hyves. For example, the information put
into user’s profile is stored in this database;

e The contact database that holds the address books of the Hyves members (imported from Hotmall,
Gmail, etc.);

e The friend invitation database that holds all unconfirmed Hyves invitations to possible new members
of the Hyves service;

e The Search database resource that stores all Search information. This database is used for imple-
menting the search function in the application.

11

2.1

INITIAL ARCHITECTURE CHAPTER 2. ARCHITECTURE

lient L
‘ client program (web browser) ’ ‘ cl(?air‘r:t:ige::r ’ E E
1o
i A A A A i
""""""""""""" | I A A R
renderecrine ia static content Web site ads mail server
Web server cache Web server Web server
presentation tier
:: Q
Q
2
autorender parsemail Web site invitations search @
tools an
daemon daemon code daemon daemon @
application logic tier %

JC

management rendered media member contact invitation search
database media database database database database

resource management tier

Figure 2.1: Three-tier architecture of the Hyves service

2.1.2 Application Logic Tier

The application logic tier contains all application logic. It uses the resource management tier, and serves
the presentation tier (see Figure 2.1). The components in the application logic tier are:

Tools, which is a collection of scripts and programs that are used to maintain the application;

Autorender daemon, which is a process that renders all uploaded media items. It uses the media
resource and stores the rendered images on the rendered media resource. It uses the member
database resource to obtain data on the uploaded media items;

Parse-mail daemon, which is a process that parses all the e-mails sent to the Web site. Users can
send e-mails to the Web site for (mobile) blogging. The daemon reads the mails and insert the blogs
into the database. If attachments are included, they are stored at the media resource;

Web site code is a collection of mostly PHP-scripts that renders the Web site. These scripts use all
databases and interact via Web servers with the members of the service;

Invitation daemon, which is a process that sends an invitation message to a possible new member;

Search daemon, which is a process that updates the Search databases periodically so the Search
databases contains actual information. It uses the member database.

2.1.3 Presentation Tier

The presentation tier contains all services that interact with the client programs like Web browsers and e-mail
clients. (see Figure 2.1). On the server side of the presentation tier, the following parts exists:

e Rendered media Web server, which serves all the rendered media to the members;

12

CHAPTER 2. ARCHITECTURE 2.2. IMPLEMENTATION

e Static content Web cache server, which serves all static content to the members. Examples are static
images such as Smiley’s and Java-Script sources;

e Advertisements Web server, which serves all the advertisements to the members;

e Web site Web server, which serves all dynamic content to the members. Examples are the Web site’s
home page but also the pages containing the member profiles;

e Mail server, which handles e-mail interaction. For example, mobile blogging and member invitations
use e-mail as a transport medium.

For the client side of the presentation tier, Hyves assumes that users use Web browsers and e-mail clients
to access the service. The Web browsers must allow the use of cookies [COOKIE], JavaScript [WIKIJS] and
Flash [FLASH].

2.2 Implementation

This section discusses the implementation of the components that we presented in the previous section.
First, we discuss the implementation of the components of the three tiers, and then additional implementa-
tion details.

2.2.1 Resource Tier

The Management database uses MySQL [MYSQL] and runs on one host.

The rendered images usually have a smaller file size than the original images, so the storage capacity of
the Rendered Media repository is smaller than the storage capacity of the Media repository. The Ren-
dered Media repository is stored on two volumes. The first volume contains all rendered media items with
0 < id < intervalboundary, where id is a unique number assigned by the application. This first vol-
ume is called “interval 0” or “first interval”. The second volume contains all rendered media items with
intervalboundary < id. This volume is called “interval 1" or “second interval”. Both volumes are redun-
dantly stored on two disks and each disk is placed in one server each, for performance and redundancy.
These volumes are not exported, because the applications serving the media items are located on the same
servers. When there is demand for more storage, either another interval is introduced to store more media
items or the volumes are moved to disks with a larger capacity.

For the Media repository, network attached storage (NAS) [WIKINAS] is currently used. The NAS exports
its file system to all Web servers in the cluster. Previously, when more storage capacity was needed, the
NAS was replaced by another NAS with a larger capacity. Currently, when more storage capacity is needed,
media items with a low media id are moved to disks on other machines. The moved media items remain
accessible via the NAS by means of NFS [WIKINFS] shares and symbolic links. This process of expanding
the storage capacity is displayed in Figure 2.2. Figure 2.2 (a) displays the initial single NAS. This NAS is
replaced with one with a larger capacity (see Figure 2.2 (b)). Figure 2.2 (c) displays the results of moving
media items to an external disk. These media items remain accessible via the NAS using a NFS link
between the NAS and the server with the external disk. Figure 2.2 (d) displays the next iteration of moving
of media items.

The Member Database is implemented using a master-slave setup. The master handles all database write
transactions and the slaves handles all the data requests. When more performance is needed, the number of
slaves is increased. When more storage capacity is needed, the disks in the database servers are replaced
with disks with a larger capacity or the database is divided to a setup with more masters and a set of slaves
for each master. The Contact and the Friendinvitation Databases are implemented without a master-slave
setup. If there is a demand for extra capacity for these databases, a master-slave setup is will be introduced.
The Search Database is implemented using three redundant machines without a master-slave setup.

13

2.2. IMPLEMENTATION CHAPTER 2. ARCHITECTURE

3 3 =
3 = ILE
| | -
| 2| |NAS 1 g } ! server
| .8 LS| 1/@ +
.z : | | | disk
| 9 | | ! nfS
=k - NAS | | ! ! server| { ‘ server
gl INAS| | © 1 | ‘ D | ! i D
§V : Y ~ } Y : ~ 7: nfs disk : Jg,ﬁ J nfs disk
Tnfs | Tnfs | nfs | nfs
a | b . C | d

Figure 2.2: Current storage capacity expansion: (a) original NAS; (b) | arger NAS; (c) and (d) NAS and disk(s)
with moved media items.

2.2.2 Application Logic Tier

The “Tools” collection of scripts is written in Perl [PERL], Bash [BASH] and Awk [AWK]. They are executed
either periodically (using Cron [CRON], e.g., cleaning up log files, making back-ups) or instantaneously (at
the command line, e.g., when deploying the code).

The Autorender daemon [DAEMON] is written in PHP [PHP] and runs on one of the Rendered Media Web
servers. It peeks into the Member Database to discover newly uploaded media items. These items are then
rendered using the convert command from the ImageMagick software suite [IMGMGK]. Newly rendered
media items are then stored in the Rendered Media repository.

The Parse-mail daemon is written in PHP [PHP] and runs on a machine dedicated to daemon processes.
It receives e-mails from Hyves members, parses them, and converts them into content, and stores the
content in the Member Database. If the parsed e-mail contains attachments, then these are stored in the
Media repository and the Member Database is altered so the Autorender daemon can render these items.

The Web site code is written in PHP [PHP] and runs on Web site Web servers. It uses all the databases to
generate the dynamic content for the Web site.

The Invitations Daemon, which is written in PHP, runs on the machine dedicated to daemon processes.
From the information stored in the Invitation Databases, it generates messages to (non-) Hyves members.
The messages are forwarded to the Mail server.

The Search daemon uses the Member database to generate information for the Search databases. There-
fore it disconnects one Search database server from the Web site, fills it with new search information and
connects it again with the Web site. Every three hours one Search database server is updated.

2.2.3 Presentation Tier

The Web server for the rendered media is implemented using Apache [APACHE]. This Web server runs on
4 redundant hosts (two per interval). When there is a demand for more performance, the number of Web
servers per interval is increased.

Static content cache is a caching reverse proxy implemented using Squid [SQUID], which caches the static
content. This caching reverse proxy runs redundantly on two hosts. When there is a demand for more
performance, the number of Web servers is increased.

14

CHAPTER 2. ARCHITECTURE 2.2. IMPLEMENTATION

The Web server for the advertisements is implemented using Apache [APACHE]. This Web server runs on
a single host. When there is a demand for more performance, the number of Web servers is increased.

The Web server for the Web site’s dynamic content is implemented using Apache [APACHE]. This Web
server also serves static content to the Static content cache. This Web server runs on about 40 redundant
hosts. The number of hosts is regularly increased to increase the maximum number of requests.

The Mail server is implemented using Postfix [POSTFIX]. This runs on a single host. Currently, there is no
perspective on how to scale this service when more performance and/or storage capacity is needed.

2.2.4 Vertical Sub-systems

The overview of the architecture parts of Figure 2.1 given so far, is not complete, because additional tech-
niques are used to implement the architecture. These additional techniques are presented in this section.

Web site

5
response

client N eb server ll 4
~Yequest request
h \\:’— secondary -: Rendered Media
\loadbalancer 1

""""

Figure 2.3: Load balancer setup. (1) client sends a request to a Web serve r cluster. (2) load balancer intercepts
the requests, determines cluster from request and chooses a cluster node. (3) requests is forwarded to chosen
cluster node. (4). Cluster node Web server handles requests . (5) the response is send directly to the client.

All the Web servers are load balanced using IPVS [IPVS]. The load balancer software runs on two hosts:
a primary and a secondary load balancer. The secondary load balancer takes over when the primary load
balancer fails. These load balancers direct requests designated at different clusters to the correct pool of
servers. The response returns directly to the client. The load balancer maintains a list of connections be-
tween clients and Web servers. When a client makes consecutive requests and the time intervals between
any consecutive requests are not larger than a certain period of time, these consecutive requests are for-
warded to the same Web server. If the time interval between two consecutive requests exceeds a certain
period of time, the load balancer again elects a server to forward the request to. This is displayed in Figure
2.3. The clusters currently defined and load-balanced are summarized in Table 2.1.

cluster's DNS entry | cluster function load balanced IP address |
*.hyves.nl dynamic Web site 213.193.242.126
intervalO.rendered.startpda.net | rendered media interval 0 Web servers | 213.193.242.128
intervall.rendered.startpda.net | rendered media interval 1 Web servers | 213.193.242.130
cache.hyves.nl static content Web cache 213.193.242.123
clarice.startpda.net advertisements Web server 213.193.242.127

Table 2.1: Load balanced clusters

The Web site Web servers are connected to the pool of Member databases slaves for requesting information
from the Member database and to the Member database master for storing information into the Member
database.

15

2.3. MEDIA SERVICE CHAPTER 2. ARCHITECTURE

The NAS is not only used for storing the media items, but also for the database backups and the code (Web
site as well as Tools).

System-level monitoring is available to determine statistics (e.g., disk utilization, database on host A is
running, Web server on host B is running, etc.). System-level monitoring currently runs on one host. On
the same host, also application-level monitoring is running to gather statistics about running processes like
MySQL, Apache and Squid.

2.3 Media Service

The Media Service part of the Hyves architecture consists of Web servers that serve the rendered media
items, file servers that store the rendered and the original media items and the Autorender daemon that
processes media items. These components are depicted in Figure 2.4.

1 \E
! ‘ client program (web browser) ’ '
' o
:_ B W) EE PR _e
E rengered web server |
1 media) '
, web server website !
! presentation _tier ;
i autorender website '8
! daemon code e
1 . N L 'n
i AN applcation logic tier [
H 1 @
' / / =
1 T
: rendered) member i
i) media |
| media database !
! resource management tier E

Figure 2.4: Media Service in the architectural view

The media service performs the following functions:

e uploading of media items (Web site code, Member database);

storing of media items in the Media repository (Media repository);

e processing of media items into rendered media items (Autorender, Member database);

storing of rendered media items in the Rendered Media repository (Rendered Media repository);

serving the rendered media item requests (Rendered Media repository, Rendered Media Web servers,
Web site code, Member database).

The flow of the functions of the Media service is depicted in Figure 2.5.

The next sections give an overview of the functions mentioned above and how the components of the Media
Service (see Figure 2.4) interact to perform these functions.

16

CHAPTER 2. ARCHITECTURE 2.3. MEDIA SERVICE

processing - -
. i o . storin servin
uploading storing media item into 9 9
media item rendered rendered rendered
media item o media items media items
media items

Figure 2.5: Media Service flow. A media item is uploaded. The media item is stored in the media repository. The
Autorender Daemon renders the media item into the rendered m edia items. These are stored in the Rendered
Media repository, and thereafter, they can be served to clie nts.

2.3.1 Media Uploading and Rendering

Uploading of media items can happen on each Web server in the cluster. If the uploaded items file type is
recognized and accepted, the media item is assigned a media id (which is stored in a database) and the
item is copied to the Media Repository using the mediaid as file name. Because of the interaction the Web
site offers the uploader of the file, the file is directly rendered into 75x75 format. This is achieved by pushing
the Web browser of the uploader to refresh its page for one in which the result of the upload is showed,
using this rendered image. A sequence diagram of this scenario is given in Figure 2.6.

user Web site Web site code member rendered media web server
Web server database media rendered media

upload item

Py

process item

create db entry

store item

\l

page with reference I
térendered media item

response

Figure 2.6: Sequence diagram of the scenario in which a media item is uplo aded

The Web browser therefore requests a Web server to serve the media item. If the media item is not yet
rendered (if its media id is above the coldmaxmediaid id and if it cannot be found in the Rendered Media
Repository) the Web server renders the image only for the requested resolution. Therefore it loads the
media item from the Media Repository, renders the item, stores the item in the Rendered Media Repository
and serves the item to the requester. This process is displayed in the sequence diagram in Figure 2.7.

When a media item is uploaded, is it appended to the “hot” part of the Rendered Media repository. The “hot”
part is defined as the part of the repository that the Autorender daemon is to process. The “cold” part is
defined as the part of the repository that the Autorender daemon has processed already.

Figure 2.8 displays this “hot and cold” setup.

If a media item was processed by the render daemon, its media id (a by the application assigned unique
number) it is below the coldmaxmediaid pointer. When a user requests such a media item, the following
process occurs. The Web site’s code checks if the media id is below the coldmaxmediaid . If so, then the
Web site’s code generates the URL for the media item. For this, it first checks the media id of the requested
media item. If the media id is below the interval boundary, it generates an URL for the media item designated
at the first interval. If the media id is above the interval boundary, an URL for the media item designated at
the second interval is generated. We display this process in the sequence diagram of Figure 2.9.

If a media item is not processed by the render daemon, but already by the site, the following process occurs.
The user requests a Web page. The Web site’s code checks the mediaid of the mediaitem. If the media id
is above the coldmaxmediaid pointer, the Web site’s code checks if the rendered media item exists in the
rendered media repository. If so, the Web site’s code generates an URL. The client requests the URL and
the rendered media item is collected from the Web site directly. This process is displayed in Figure 2.10.

17

2.3. MEDIA SERVICE CHAPTER 2. ARCHITECTURE

Web site . member rendered . Web server
user Website code . media .
Web server database media rendered media
request
o process _
" check coldmaxmediaid
-t
check globalmediarendered

_, Negative T

o get file from media storage

_ return file

render file and store

__return rendered file
-

return page
request image

return image

Figure 2.7: Sequence diagram of the scenario when a request is made for am edia item that is in the hot part of

the Rendered Media Repository and is not rendered yet.

intervalboundary coldmaxmediaid ?ediaid
increasing media id >

0 >
cold | | hot | empty space
intervalO | intervall
Figure 2.8: Hot and Cold rendered media repository structure
user Web site Web site code member rendered media Web server
Web server database media rendered media
request
process request
| check coldmaxmediaid
return url ‘
return page ‘
request url
get file

return file

return response

Figure 2.9: Sequence diagram of the scenario when a request is made for a m edia item that is in the cold part

of the Rendered Media Repository.

18

CHAPTER 2. ARCHITECTURE

2.3. MEDIA SERVICE

[user

J |

Web site
Web server

member
database

) (oo) (o (

rendered

media

J e

Web server
endered media

request

fo

process _ |
-

check coldmaxmediaid
L

check glpbal mediarendered

foynd

A

response

Figure 2.10: Sequence diagram of the scenario when a request is made for a m edia item that is in the hot part

of the Rendered Media Repository and is already rendered.

All these scenarios are summarized in Figure 2.11

request second interval

yes http://intervall.rendered.startpda.net/1-50000/1.jpeg

mediaid > intervalboundary
request first interval
http://intervalO.rendered.startpda.net/1-500000/1.jpeg
——P mediaid > coldmaxmediaid
request web site

http://www.hyves.nl/showimage/1
rendered yet?

request web site and render
http://www.hyves.nl/showimage/1

Figure 2.11: Summary and URL generation scheme.

Simultaneously the auto-render daemon is running. This daemon checks for newly uploaded images by
comparing the value of coldmaxmediaid and maxmediaid and renders them into certain formats depend-
ing on their file type. This process is displayed in the sequence diagram of Figure 2.12. An overview of
the file types is given in Table 2.2. After rendering, the rendered media items are stored in the cold part
of the Rendered Media Repository and the so called cold pointer (coldmaxmediaid) is increased. The
auto-render daemon renders the next image. The rendering process is done sequentially by media id .

2.3.2 Media Storage

In Section 2.2 we argued that there are two repositories for media, namely a Rendered Media repository
and a repository for the original media items.

The original media repository is stored on a NAS and exported via NFS [WIKINFS]. Media items are
sequentially stored in directories per 50.000 media id 's. In the case of Rendered Media, this implies that
about 300.000 media items are stored per directory; in the case of the Media repository, 50.000 media items
are stored per directory.

The interval boundary is always defined per directory of 50.000 items.

The rendered media repository is stored (as stated) on two volumes, and those volumes are stored on two
machines per volume.

We have analyzed that on average, the aggregate file size of the rendered media items is about one sixth of
the original media file size.

19

2.3. MEDIA SERVICE CHAPTER 2. ARCHITECTURE

autorender member rendered .
I media
daemon database media

get coldmaxmediaid o
. coldmaxmediaid T
.
@ naxmediaid o
il get media item
A render iteml L | . >
e eturn media item |
| get media i
render item| L m»
|‘ return media item
...500x
| get media item
Y render item | L_ return media item |
L stoferendereditems .|
-aajust coldmaxmediaid

Figure 2.12: Sequence diagram of the Autorender daemon.

file type || render format

image JPEG 50x50

JPEG 70x70 pixels
JPEG 120x120 pixels
JPEG 200x200 pixels
JPEG 500x500 pixels
JPEG 700x700 pixels

video FLASH movie
JPEG 50x50 pixels
PDF JPEG 50x50 pixels

Table 2.2: Render formats per uploaded file type

20

CHAPTER 2. ARCHITECTURE 2.4. ARCHITECTURAL PRINCIPLES

2.3.3 Media Serving

Because of the amount of requests and media items, media serving is done by two clusters of two Apache
Web servers, load-balanced by using IPVS.

The first cluster of Web servers serves the domain interval0.rendered.startpda.net . This cluster
serves only the media items that are located in the first interval. The second cluster of Web servers serves
the domain intervall.rendered.startpda.net and serves only the media items that are located in the
second interval.

Each Web server has its own copy of the media items of the interval it serves. The media items are served
with an HTTP expiration date of one year after the request to allow the users Web browser to cache the
media items.

The Web site PHP code generates the URLs (see Figure 2.11) for the media items. If a media item's id is
above the coldmaxmediaid , the media item is requested from a dynamic content Web server because the
media item is in the hot part of the Rendered Media Repository. This Web server checks if the media item
is already rendered. If not, the Web server renders the media item, stores the media item in the Rendered
Media Repository and serves the request to the client (Figure 2.7). If perhaps another Web server has
already rendered the media item, the media item is server by the Web server (Figure 2.10).

If a mediaitem’sid is above below the coldmaxmediaid , the generated URL provides that the Web browser
requests the media item via the media-rendered Web servers (Figure 2.9).

2.4 Architectural Principles

This section presents our observations of the Hyves Web site architecture and based on these observations,
the architectural principles for large scale Web sites are defined.

2.4.1 Prevent Single points of Failures

We have observed several single points of failures in the Hyves Web site. Examples are the NAS, the Mail
Server, the advertisement Web server and a single daemon server. If the NAS fails, there is no access
to backups, the original media items and the Tools repository for maintaining the Web site. If the Mail
server fails, the Hyves Web site is unable to receive e-mails from clients or to send e-mails to clients. If
the advertisements Web server fails, no advertisements can be showed. If the daemon server fails, several
processes such as the Friendinvitation daemon stall.

Because not all these services that are provided by these parts have to be accessible at every moment in
time, these services are not considered as critical. A single point of failure is only critical if the service is
essential for the large scale Web site.

At the beginning of our research, the Autorender Daemon was a single point of failure, but not very critical.
The Autorender Daemon was capable of processing a backlog caused by downtime within half a day and
at the beginning of our research, there were lesser page views and therefore the impact of the Web site
rendering media items on demand was less when compared to nowadays. When the number of users, the
number of page views and the number of uploads increased, the impact of the Web site rendering media
items was increased and the Autorender daemon was no longer able to process a backlog within half a day.
The Autorender Daemon service became critical.

The Mail server, the advertisements Web server and the daemon server are not very critical at the moment.
It is expected that these services become critical as well, when performance demands increase because of
a growth in users or page views, because all these services provide a sort of processing service, similar to
the Autorender Daemon.

To prevent this, there are three options. The first option is to increase the performance of the service. In
case of failure, this reduces the time to process the backlog caused by the service stopping from running.

21

2.4. ARCHITECTURAL PRINCIPLES CHAPTER 2. ARCHITECTURE

Increasing the performance also reduces the chance of the service becoming a bottleneck. Note that this
solution only minimizes the effects of a failure and not prevents the service for failure.

The second option is to require that for each service, there are at least two instances, running on different
machines. In case of a failure on one machine, the instance on the other machine continues to run the ser-
vice. This prevents or reduces the length of a possible backlog. As a consequence, the service should allow
multiple instances simultaneously and thus adds complexity to the design to prevent concurrency problems.
Another benefit from this option is that the performance of the service is the aggregate performance of the
multiple instances. If there is demand for more capacity, more instances can be started. Note that it is
possible to run multiple instances from different services on one machine.

A third option is to design the service more portable. In case of failure, the service can be installed/started
on another machine and the service remains accessible.

As an architectural principle for designing large scale Web sites, we conclude that supporting services within
the large scale Web site should be prevented from being single points of failures, even when these services
are not critical at the moment. Three possible solutions were discussed: increasing performance to minimize
effects of a failure, design redundant instances for the service and design the service with portability in mind.

2.4.2 Loose Coupling

Although the Hyves Web site can be placed into the typical three-tier architecture, some parts are tightly-
coupled in the implementation.

The interval-boundary that determines which media id s are in the first and second interval is hard coded
programmed in the application. This implicates that when the value of the intervalboundary has to be
adapted (e.g., because rendered media items should be moved from the second to the first interval), the
source code of the Web site’s code has to be adapted and redeployed to all Web servers.

Another example is the NAS. It serves as the storage for original media items, but also as a storage for
database back-ups and as a file server for the Tools repository. We have experienced that backup-scripts
need to be adapted to store their data on other hosts, because the Media repository contained so many me-
dia items, that there was no space for storing back-ups. We also experienced that back-ups were removed
to create space for the Media Repository.

We think that dependencies between different sub-parts of the Hyves Web site need to be removed. The
value of the interval-boundary should be editable without redeploying the code afterward and back-up files
should not interfere with storing media items.

Small Web sites often start with one server that performs all the services. the requests are served with a
web server which also runs a database for the dynamic content and that stores static content. Backups
are made on the same machine etc.. When the Web site evolves in a large Scale Web site, dependencies
between parts of the Web site need to be removed as soon as possible.

We consider loose coupling as an architectural principle for large scale Web sites. The examples of tight
coupling discussed above limits the growth of parts of the large Scale Web site and therefore should not be
implemented.

2.4.3 Application-level Monitoring

We have observed that the Hyves Web site performs fully system-level monitoring and for some applications
application-level monitoring. Examples of system-level monitoring are “how much space of the disk is free
at the current moment?” and “what is the state of the first network interface of machine X?”. Examples of
application-level monitoring are “how many queries does the MySQL database on host X currently process?”
and “how many requests does the Apache Web server on host X currently serve?”. Current application-level
monitoring of the Hyves Web site only entails statistics of applications that are not written by Hyves. Exam-
ples of applications that were not written by Hyves but are used in the Hyves Web site and are monitored

22

CHAPTER 2. ARCHITECTURE 2.4. ARCHITECTURAL PRINCIPLES

at application-level are MySQL, Apache and Squid. Examples of applications that were written by Hyves
but are not monitored at application-level are the daemons (Autorender, Parsemail) and Web site statistics
(total number of media items, total number of members). Within the existing application-level monitoring,
there are no aggregate views (e.g., the total number of processed queries by all MySQL servers). We can
conclude that only parts of the service are monitored, but not the service as a whole.

A current problem is that at some times, more media items are uploaded per period of time than the Au-
torender Daemon can render during that period of time. Because of the growth of the number of users, one
also expects a growth in the number of uploaded media items. Thus, when introducing a processing service
like the Autorender Daemon, one could expect that at a certain moment in time, the number of media items
uploaded per period of time overtakes the number of media items processed per period of time.

The problem discussed in the text above illustrates the desire of application level monitoring of applications
written by Hyves. If the number of uploaded media items per period of time was monitored, and the number
of rendered media items per period of time also, then with these data one is enabled to determine the
moment that the maximum capacity of the Autorender daemon will be reached. If this moment could be
determined in advance (e.g., when extrapolating the results from the monitoring), one could anticipate and
improve the Autorender daemon before the expected problem starts to take effect. This enables proactive
maintenance.

Because of a continuous growth of users and sub sites of the Hyves service, one should expect a growth
in page views and an increasing demand of capacity. In the above text we have argued that currently there
exists no monitoring for the self-written applications used in the Hyves Web site and we have given an
example of a problem that could be dealt with pro-actively, if such monitoring had existed. We also argued
that because of the growth of the number of users and sub sites, this issue might occur again in the future.

Another recent problem illustrates the desire for monitoring the application as a whole. Earlier in this chapter
we mentioned that the rendered media is stored on two intervals. We also mentioned that these intervals
are two volumes. With system-level monitoring only, we receive warnings about the disk usage (volume).
As a response to these warnings, we moved data from the second interval to the first interval. The second
interval disk usage is decreased and we can continue the service a little bit longer. This process is repeated
every now and then when the second interval reaches 100% disk usage. Because of the number of uploads
doubling every month (which we did not know at that time), the movement of media items followed each
other each time sooner. Suddenly it appeared that the first interval was also filling up. If the first interval is
full, and the second one also, we cannot move media items from the second to the first interval.

If application monitoring had existed, that monitored the aggregate disk usage for the rendered media and
we also used extrapolation, the moment we would reach 100% disk usage could be calculated in advance.

Next to enable detection of future problems, application-level monitoring also allows verification of the ap-
plied measures. For example, suppose that as a measure the capacity of a certain part of the architecture
is expanded, does it really enable more requests of might there be another problem?

From this, we conclude that a good architectural principle would be to implement application-level monitoring
from the start for every storing, processing and serving part of the service when designing a large scale Web
site.

Note that monitoring the application by a monitoring service is not sufficient. The monitored values should
be looked at periodically and the values should be interpreted correctly. Monitoring only takes into account
the values of the current moment and in the past, prediction and extrapolation are necessary to increase the
value of monitoring.

There exist good solutions for automatic monitoring of pre-defined services [NAGIOS], [CACTI], which are
already in use at Hyves. Therefore there is no need to write an entire monitoring solution, but the services
one has to write for a large scale Web site should allow monitoring.

23

2.4. ARCHITECTURAL PRINCIPLES CHAPTER 2. ARCHITECTURE

24

Chapter 3

Media Service

3.1 Introduction

In this chapter we present the implementation details for the Media Service architecture. Furthermore, we
present the interactions with the service, the internals of the service and the implementation details of the
service. These service implementation details are the starting point for our analysis, which is presented in
Chapter 4 and 5.

Client

<)eractions

Hyves Media Service

Figure 3.1: Global View Information Flow

The service provisioning is constituted by three parts (see Figure 3.1):

e The client that interacts with the service. The client is a Web browser that interacts with the service
using the HTTP protocol or the client is a e-mail program that interacts with the service using the
SMTP protocol. We do not discuss the client in this chapter;

e The interactions between client and service, which are encapsulated in HTTP requests and re-
sponses. We discuss the interactions in Section 3.2;

e The service which replies the interactions from the client using a HTTP Web server. We discuss the
service in Section 3.3.

3.2 Interactions

By analyzing the Hyves Web site architecture and its implementation details, we identified the working and
the purpose of the system:

e The service has to process requests for media items and as a response it has to serve the requested
media items;

25

3.2. INTERACTIONS CHAPTER 3. MEDIA SERVICE

e The service has to process uploaded media items. After processing, the processed media items are
made available for requests and responses.

From these two functions we can derive three interactions between the client and the service:

e Media Requests (requests for the media items);
e Media Responses (responses to the request, the media items);

e Media Uploads (to transfer user media items to the service).

These three interactions are discussed hereafter.

3.2.1 Request Media Interaction
Description

When a user wants to request a rendered media item, the client interacts a Media Request to the system.

Attributes

The requested rendered media item has a unique id , which is a number that identifies the media item.
Because a rendered media item is rendered into multiple formats, the request also has to contain the
requested format.

(a) http://intervalO.rendered.startpda.net/12400001-12450000/12423223_500_500_OmSu.jpeg

T unic:ue id forntat T

application provided parameter application provided parameter (@ O]

(b) (© application provided parameter

®

Figure 3.2: Request

Next to these attributes, a request also has implicit attributes, such as originator (address of the client that
did the request) and the time of the request.

This request is executed as a HTTP request. The HTTP request contains the requested URL (see Figure
3.2(a)). This URL contains all explicit attributes, such as the id (Figure 3.2(d)) and the format (Figure 3.2(e)).
The URL also contains some implicit attributes, such as the service access point to which the request is
directed (Figure 3.2 (b)) and the directory in which the rendered media item can be found (Figure 3.2(c)).

The Web server that receives the HTTP-request logs the HTTP-request in its log files. Therefore we can
say that the Media service logs the media requests.

3.2.2 Response Media Interaction
Description

In answer to the media request of the user, the Media Service replies with the use of the Media Response
interaction.

26

CHAPTER 3. MEDIA SERVICE 3.3. HYVES MEDIA SERVICE

Attributes

A Media Response is formed by a media item with the requested id and format .

Next to these attributes, a Media Response also has implicit attributes: size and time. The response is sent
to the client in response to the request that the client has sent before. This response is executed as a HTTP
response.

In the case that the Media Service cannot find the requested media item, a HTTP 404 response is sent to
the client in response to the request.

3.2.3 Upload Media Interaction
Description

When a client uploads a media item, it uses the Media Upload interaction.

Attributes

Attributes of the Upload Media Interaction are the type and the size of the Upload.

Next to this intrinsic characteristic of an Upload, there is also an extrinsic characteristic of the number of
Uploads in time, because the Upload Media Interaction is executed in a HTTP Post interaction. There are
implicit attributes: type (file type), size (file size), time and originator (address of the client that requested
the Upload).

We do not consider Upload Media interactions using SMTP or HTTP as separate interactions. We do not
focus on the “upload” of the media item, we focus on the effect of the interaction; a media item must be
processed and made available for requests and responses.

3.3 Hyves Media Service

In this section, we present the internals of the Hyves Media Service. The components and their relations to
other components are explained below. The internal components are displayed in Figure 3.3.

3.3.1 Rendered Media Web server Interval

The Rendered Media Web server receives a Request from the Client. If the requested media item is in
cache, the Web server returns a Response immediately. If the requested media item is not in cache, the
Web server fetches the media item from the Rendered Media Storage (see Figure 3.4).

The Rendered Media Web server for the first and the second interval have the same internal functioning,
but a different storage has been defined for each interval.

3.3.2 Storage

This section entails Rendered Media Storage Interval 0, Rendered Media Storage Interval 1, Media Storage
and Rendered Media Global Storage.

The Rendered Media Storage receives requests from the Media-rendered Web-server and returns Re-
sponses. It receives Uploads from the Auto-render daemon and stores files (see Figure 3.5).

27

3.3. HYVES MEDIA SERVICE

CHAPTER 3. MEDIA SERVICE

-

Rpsponse ; Response
Reduest pload client Resp?jngsee ues Request
website Web server
webserver Interval 1 IntervalO
dispatching _3
Y
@
e 0
bsite oh member autorender ©
website php =]
L database daemon S 54
N T} \O/ =
8
S
T

1l

Rendered Media [

torage Global storage

@,(\.
&

Rendered Media
torage
Interval 1
N %

Rendered Media
torage
Interval 0

“hot” part of the
rendered media storage

“cold” part of the
rendered media storage

Figure 3.3: Hyves Media Service internal components.

Response

Figure 3.4: Flow Diagram of a Rendered Media Web Server.

28

CHAPTER 3. MEDIA SERVICE 3.3. HYVES MEDIA SERVICE

The Rendered Media Storage internal functioning for both the intervals are equal, but only the second
interval receives requests to store media items. There is no essential difference between Media Storage
and Rendered Media Storage.

The Rendered Media Global Storage receives requests for media items from the Web site PHP code and
returns the media items. The Rendered Media Global Storage also stores the media items rendered by the
Web site PHP code.

StoreFile | GetFile

store fjle .
: et fily
on dis} r%m

Figure 3.5: Flow diagram of a local storage.

File

3.3.3 Autorender Daemon

The Autorender Daemon processes uploads when coldmaxmediaid < maxmediaid . The Autorender re-
quests uploads to the Media-rendered Storage, asks the database for the values of coldmaxmediaid and
maxmediaid , does writes updates to the database, requests Media Storage and receives Responses from
the Media Storage (see Figure 3.6).

Member
database
Coldmaxmediaid

GetColdmaxmediaid
\E>SetColdmaxmediaid
e
start
sleep de ¢
deteymine work colq pediaid
work
todo?
@ :
File more to
copy? (StoreFile

Rendered Media
Storage Interval 1

Media Storage

GetFile \{

Figure 3.6: Flow diagram of Render Daemon.

The Autorender process starts at “start” in Figure 3.6. It asks the database the values of coldmaxmediaid
and maxmediaid . If these values are not equal, the Autorender has to process media items. Otherwise, it
sleeps for a certain period of time and the process starts over again.

29

3.3. HYVES MEDIA SERVICE CHAPTER 3. MEDIA SERVICE

When the Autorender has to process media items, it requests the Media Storage resource for the media
item and renders the media item. If the number of media items to process is more than 500, 500 media
items are rendered. If the number of media items to process is less than 500, only that amount of media
items is processed.

The “work to do?” process switches to the process of copying the media items. In a loop, each rendered me-
dia item is copied to the Rendered Media Storage. When this is finished, the new value for coldmaxmediaid

is calculated and written to the database. The Daemon then sleeps for a certain period of time and this pro-
cess starts over again.

3.3.4 Member Database

The Member Database receives requests for queries to calculate maxmediaid (whichis theid of the media
item that was most recently uploaded) and coldmaxmediaid ~ (which is the id of the media item that was
most recently rendered by the Autorender daemon). After an Autorender iteration, the Member database
also receives requests for queries to update coldmaxmediaid (see Figure 3.7).

Result

process
query

Figure 3.7: Flow diagram of the Member Database.

3.3.5 Web site PHP code

When the Web site PHP code receives a Media Request, first it determines if the requested media item is
already rendered. If the media item is already rendered, the Web site PHP code returns the media item if it is
in cache. Otherwise, the Web site PHP code will request the Rendered Media Global Storage for the media
item. Then the media item is put into cache and return as a Response to the Request. If the requested
media item is not yet rendered, the Web site PHP code requests the Media Storage for the original media
item and renders the media item. This rendered media item is then stored in the Rendered Media Global
Storage and then, after putting the media item into cache, served as a Response (see Figure 3.8).

3.3.6 Web site Web server

The Web site Web server dispatches requests and uploads from clients to the Web site PHP engines.

3.3.7 Remarks

In the above service decomposition, there are three access points that use the same service primitives
“Request” and “Response”. In a typical service, there would be just one access point for the same primitives.

The three service access points are there because of historical reasons. The access point at the Web
site Web server was established for enabling not rendered but requested media items to be rendered in
the application. The service access point at Rendered Media Web server Interval 1 was established as a
resolution to the problem that one Rendered Media Storage was not sufficient.

30

CHAPTER 3. MEDIA SERVICE 3.4. RESTRICTIONS

Client Response

Request

rendered?

ny

<

GetFile

Media Storage File

SToreFile

Rendered Media
Global Storage

cache

Figure 3.8: Flow diagram of the Web site PHP code.

These three service access points implicate that there is additional routing that has been pre-programmed
by the application when pages are built by the Web site PHP code. Based on the id the request is routed
to one of the three service access points (see also Figure 2.11).

3.4 Restrictions

In this service decomposition we do not take the “Delete” service primitive into account.

31

3.4. RESTRICTIONS CHAPTER 3. MEDIA SERVICE

32

Chapter 4

Media Serving and Storage

4.1 Introduction

In this chapter we provide an overview of our research and design activities for Media Serving and Storage.
We combine Media Serving and Media Storage in this chapter because during our research we experienced
that the problems in these two areas are closely related.

In this chapter we present the research on Media Serving and Media Storage scalability problems that are
currently experienced within the Hyves Web site. The reasons to research these problems is that some of
these scalability problems cause a decrease of the performance of the Hyves Web site to unacceptable low
levels and that the current implementation of the Media Storage and Media Serving is expected not to scale
well (e.g., inefficient use of resources). Researching these scalability problems might identify architectural
principles for designing large scale Web sites.

performance

<«—— Section 4.2
decrease

Y

unbalance in the
umber of requests

Section 4.3
decoupling storage scheme
) Section 4.6
Section 4.4 | |
caching new storage
Y

. optimize
Section 4.5 .
caching

Figure 4.1: Flow of researches in this chapter.

In our initial research for Media Serving and Media Storage we focus on a performance problem with Media
Serving: the time between requesting and receiving media items was unacceptable long for certain rendered
media items. In the first focus (see Section 4.2), this performance problem is researched and solved. The

33

4.2. PERFORMANCE DECREASE CHAPTER 4. MEDIA SERVING AND STORAGE

implementation of the solution to the performance problem raised a demand for further research, because
it appeared that the performance problem is just temporarily solved because it is part of a larger problem
area: the scheme to store media items on multiple storage nodes. In the second research (see Section
4.3), we focus on this scheme to store media items on multiple storage nodes and the characteristics of
the problem were identified and two solutions were proposed: decoupling media serving and media storage
and a different storage scheme. Both solutions demanded for more research on how to implement them.
These researches are presented in the third (see Section 4.4) and fourth focus (see Section 4.5). This flow
of researches is displayed in Figure 4.1. This flow and the next sections in this chapter are presented in a
logical order that does not correspond with the order in which these results have been obtained.

For every research in this chapter, we present a problem description, a analysis, requirements for possible
solutions, possible solutions and a discussion to choose the best solution. For all discussed problems we
propose an implementation of the solution and sometimes we implement the solution. In that case, we also
present an evaluation of the implemented solution. This is summarized in Figure 4.2.

|: description H analysis H requirements H solutions J—»Enplememation H evaluation J

Figure 4.2: Structure of each discussed research.

4.2 Performance decrease

4.2.1 Problem description

The symptoms of the performance decrease for the Hyves Web site are that when requesting a page from
the Hyves Web site, the Web browser is waiting an unacceptable long time for a response from a Rendered
Media Web server.

4.2.2 Analysis

From Chapter 3 we know that Rendered Media Web server is implemented using two clusters of Web
servers, each serving a different volume with media items. When requesting a page from the Hyves Web
site, we saw in the status bar of the Web browser that it was waiting for responses from the second interval.

The first and the second interval are implemented identically: identical machines, identical software, con-
nected to the same network switch, etc. (see also Chapter 3), and investigation with system utilities showed
that none of the machines experienced problems (e.g., disk corruption) that could cause this decrease in
performance. We noticed a difference in the percentages of CPU-time spent waiting for input and output:
servers serving the second interval spend more time waiting for input and output (I/O) when compared to
servers serving the first interval. The only I/O these servers perform is with their network interface and their
disks. System utilities showed that network bandwidth used is far below the maximum so we concluded that
the server’s disks are overloaded.

Our best guess was that the performance problems are caused by a difference in load (e.g., the number of
requests, the size of the requests). More requests lead to more disk access and when disk access increases
too much, a server has to wait a long time before the requested file is delivered by the disk. This could be a
possible explanation of the symptoms of the performance problem.

Our research goal has been to identify the cause of the performance problems. Our hypothesis was that
the performance decrease is caused by a difference in load. Our research method aimed at determining
the number of requests per interval. Therefore we collected the log files of the Web servers serving the
downloads for both intervals and processed them with tools we wrote especially for this purpose. The tools
counted the number of requests per interval.

34

CHAPTER 4. MEDIA SERVING AND STORAGE 4.2. PERFORMANCE DECREASE

12000000
requests before ==
requests after ©=

10000000 - 3

8000000 -

6000000 —

4000000

2000000

interval 0 interval 1

Figure 4.3: Number of requests on one day, per interval. Dark/red: reque sts per interval in the initial situation.
Light/green: requests per interval after moving media item s from the first to the second interval.

In Figure 4.3 the number of requests per interval is displayed: the number of requests is displayed in the
y-axis of the graph and on the x-axis of the graph denotes both intervals. For this analysis, only the bars
showing 'requests before’ are relevant. The usage of the 'requests after’ bars becomes clear further in this
report.

From this graph, we can conclude that:

1. a difference in load for both intervals exists. The second interval receives about twice as much re-
guests than the first interval.

2. since the second interval experiences performance problems and the first interval does not, and Web
servers for both intervals are exactly the same, we can conclude that not all processing capacity of
the first interval is used.

From the analysis, we concluded that the performance problem for the Web servers serving the second
interval are caused by significant more requests to serve, and this amount of requests approaches the
maximum number of requests a disk can serve.

4.2.3 Requirements

Currently, we use two redundant servers for two intervals. A solution may not break the current available
redundancy. Redundant copies is a requirement, since:

e in case of a disk failure, the rendered media items remain available to be served;

e in case of recovering from a failure (e.g., disk corruptions or a failed server) the rendered media items
can be copied instead of rendering again. Rendering the rendered media items costs more time than
copying.

35

4.2. PERFORMANCE DECREASE CHAPTER 4. MEDIA SERVING AND STORAGE

4.2.4 Solutions

The following solutions fix this performance problem and are displayed in Figure 4.4:

1.

Increase processing capacity for the second interval (i.e., add another Web server and disk to the
second interval). This solution can be implemented by using more Web servers serving requests for
the second interval (see Figure 4.4(b)).

Decrease load for the second interval by moving load from the second interval to the first interval. This
solution can be implemented by copying media items from the second interval to the first interval.
After the copy is complete, the copied media items can be deleted from the second interval (see
Figure 4.4(c)).

Decrease load for the second interval by moving load from the second interval to a third interval, which
should be introduced. This solution can be implemented by using additional machines to create the
third interval (see Figure 4.4 (d)).

4. Any combinations of the solutions above.

(CY

interval boundary additional serv r + disk
two redundant servers two redundant servers
-
interval0 | intervall interval0o intervall

\i

C C C i’
m m [server + disk JJ [server+disk]_] [server + disk]J

A

all media items . X
additional redundant server + disk

intervalo H intervall | intervalO | intervall | interval2 |

AN i

o shift interval boundary
move media items additional interval

Figure 4.4: Possible improvements for increasing performance. (a) Int he original situation, each interval is
served by two redundant Web servers. (b) A possible solution is to add an extra server to the second interval.
(c) Another possible solution is moving load from the second interval to the first interval. (d) Another possible

solution is to introduce an additional interval.

These possible solutions can be characterized according to:

e how long the Web site suffers from even more performance decrease as a consequence of the copying

of media items. Making copies is time and resource consuming: the performance problems of the
Web servers of the second interval are caused by disks that can not cope with the large amounts
of requests. Copying data from the second interval to another disk (e.g., to an additional disk in the
case of the first solution, to the first interval in the case of the second solution or to the third interval
in case of the third solution) only increases the number of the requests that the disk has to cope, and
therefore performance decreases even more temporarily.

The time at which we can take benefit from our solution. The solutions presented above take time for
preparation, finishing and executing actions. With some solutions we can take benefit (i.e., experience
an improved performance) before the actions of the solution are completely executed.

36

CHAPTER 4. MEDIA SERVING AND STORAGE 4.2. PERFORMANCE DECREASE

e The number of machines needed for the solution. If additional machines are necessary for the solu-
tion, we have to take into account the time needed for purchasing and preparing the machines and
disks. Purchasing machines is a long administrative process. Alternatively, we can take machines
from other parts of the Hyves Web site. That would lead to a possible performance decrease of these
other parts of the Hyves Web site.

The first solution (increasing processing capacity) would result in more redundant copies than necessary
(one copy is the minimum). This is inefficient use of resources, but on the other hand, it leads to a perfor-
mance increase. Copying the entire volume of the second interval would take a long time, and during that
time, the second interval would experience a performance decrease. We can take benefit from this solution
only until after the last rendered media item is copied. Further, we need additional machines and disks
for this solution. This extends the time before we can take benefit from our action. We have to say that
this solution really fixes he problem: additional performance is needed, and the solution provides additional
performance.

For the second solution (decrease load for the second interval by moving load to the first interval) not all
rendered media items need to be copied to the first interval, therefore the time needed for this solution is
less than with the first solution. Further, if we copy the items sequentially by id , we can execute this solution
in small portions. After copying each portion of rendered media items, we can move the interval boundary
which effects the actual moving of the load. Because of the change of the interval boundary actually effects
the moving of the load, we can schedule the deletion of rendered media items in the second interval to
off-hours. For this solution, no additional machines are needed, so we can save time when compared to the
first and third solution. We have to say that this solution does not increase the performance of the second
interval, it only utilizes the current machines more. Although it leads to a better balance with respect to the
number of requests per interval, it also leads to a unbalance with respect to the number of stored rendered
media items per rendered interval.

The third solution (introducing an additional interval) demands for more machines. This increases the time
before we can take benefit from our solution. If we decide not to move any rendered media items to the third
interval but just wait for it to start filling, the load remains on the second interval. When we do decide to
move rendered media items to the new interval, we can take benefit of this new interval, but after we have
copied the rendered media items, which will take time.

Because the performance of the Web site is unacceptable, there is no time to order and prepare new
machines or take them from other parts of the Web site. As a solution to the performance problem of
our initial situation, we decided for the second solution as a short term improvement. For this solution, no
additional machines are required, and therefore we can save time by choosing this solution. Another time
saving aspect of this solution is that only a part of the rendered media items need to be copied.

Because it is expected that this solution is only temporarily (when the number of media items increases it is
expected that again a performance problem is experienced at the second interval), there is also a demand
for a longer term improvement. This longer term improvement should increase processing capacity, for the
reason that it is expected that the number of requests increases in the future.

4.2.5 Implementation

To implement the second solution, we have to determine the number of media items we are moving from
the second to the first interval. Therefore we have to take into account the number of rendered media items
per interval in the initial situation and the number of requests per interval. From this, we can calculate the
desired number of rendered media items per interval and we can derive the number of rendered media
items we have to move.

In the initial situation, the media service of Hyves contained 7.5 million media items. Of those 7.5 million
items, 4.85 million media items are stored in the first interval and the rest of the items (2.65 million) are
stored in the second interval. About % of the requests are experienced at the second interval and about %
of the requests are experienced at the first interval. This is summarized in Table 4.1.

37

4.2. PERFORMANCE DECREASE CHAPTER 4. MEDIA SERVING AND STORAGE

In the desired situation, the number of requests is equally distributed over the two intervals. Therefore we
have to ‘'move’ 7 of the requests for the second interval to the first interval. Therefore we have to move % of
the rendered media items at the second interval to the first interval. % - 2.656M=0.66M. This means that in
the desired situation, the first interval has 4.85+ 0.66M rendered media items and the second interval has
2.65— 0.66M rendered media items. Because we expected that in a period of time we again have to move

rendered media items, we decided not to move 0.66M rendered media items, but 1 million.

In this new situation, the first interval contained 6 million media items and the second interval contained the
rest (about 1.5 million media items). We decided for 6 million because % of the requests were at the second
interval. % - 7.5M=5M. So at least we wanted 5 million media items in the first interval. To be ready for the
future, we added another 1 million media items.

| Numberof.. | Interval0 [Intervall | | Numberof.. | IntervalO | Intervall |
... media items 4.85 million | 2.65 million |=]| ... media items % é
... requests 4.2 million | 8.4 million ... requests % %
Table 4.1: Calculation on the number of rendered media items to move - in itial situation.
| Numberof.. | Interval0 [Intervall | | Numberof.. | Interval0 | Intervall

=| ... mediaitems | 5.51 million 2 million
... requests 6.3 million | 6.3 million

P 7.1 2_3
.. mediaitems | g+(3-£) =7
... requests %

NS

Table 4.2: Calculation on the number of rendered media items to move - de sired situation.

Now we calculated how many rendered media items to move, we can move the rendered media items. This
process of moving media items is displayed in Figure 4.5. Figure 4.5 (a) displays the initial situation. In
the initial situation there is free space on both volumes. To move media items from the second to the first
interval, those media items are copied from the second to the first interval (see Figure 4.5 (b)). After the
copying, the interval boundary is moved to the new value (see Figure 4.5 (c)). After this, the media items
that were copied to the first interval are deleted from the second interval (see Figure 4.5 (d)). After this, the
goal situation is reached.

4.2.6 Evaluation

After media items were moved, users no longer reported that their browsers had to wait long for a response
of the servers serving the second interval of media items. We also noticed a small decrease in the percent-
age of CPU-time spent waiting for I/O at the servers serving the second interval and we noticed an increase
in the percentage of CPU-time spent waiting for 1/O at the servers serving the first interval.

In order to verify that the solution fixed the problem, we measured the number of requests again. Our
hypothesis is that if the solution fixed the problem, the total number of processed requests is increased and
that the difference in load is decreased. The total number of requests should be increased because of the
more efficient use of the first interval and the difference in load is should be decreased because that was
the goal of the solution.

The results of the measurements are displayed in Figure 4.3 using the 'requests after’ bars. In this graph
we see that the number of processed requests at the first interval is approximately 10.5 million requests and
the number of processed requests at the second interval is about 10 million requests. The total number of
requests processed (20.5 million) is larger than in the initial situation (13.5 million). We can also see in this
graph that the number of requests per interval is more balanced when compared to the initial situation.

38

CHAPTER 4. MEDIA SERVING AND STORAGE 4.3. UNBALANCE IN THE NUMBER OF REQUESTS

interval O storage interval 1 storage

(@ B | = |

b) B = | = |

(© R -

=
@ B | =z |

(e) i | |

interval 0 media items interval 1 media items e space ihterval boundary
Figure 4.5: Moving media items from the second interval to the first inter val. (a) Initial situation (b) Copying
media items from the second to the first interval (c) Move the i nterval boundary to its new value (d) Delete media

items from the second interval that are also available via th e first interval (e) Goal situation: media items have
been moved.

We conclude from the measurements that the total number of requests is increased and that the difference
in load is decreased. With these numbers and the positive user experiences, we concluded that the problem
is fixed temporarily.

Remarkable is that the total number of requests is more than expected: When we consider Figure 4.3 and
assume the value of the number of requests for the second interval in the initial situation as a maximum
(about 9 million) for a cluster of Rendered Media Web servers, then in the new situation, we expected the
total number of requests being twice as much as that value (18 million). Instead of that, the total number of
requests is higher (20.5 million).

After this short term improvement, we implement the long term improvement. We freed up 6 machines (three
for each interval) from other parts of the Web site and equipped them with larger disks (500GB). Because of
these larger disks (previous disks were 280GB), we decided not to introduce an additional interval because
two intervals with improved storage capacity should be enough for the time being. We do not perform any
measurements to verify the effect of this improvement, because evidently, three redundant servers serving
two intervals perform better then two redundant servers serving two intervals.

4.3 Unbalance in the number of requests

4.3.1 Problem description

From the analysis and solutions in Section 4.2, we concluded that although the number of requests per
interval is more balanced, the number of stored media items per interval is still unbalanced: the first interval
contains three times more media items than the second interval. This does not seem like a problem, but in
the future, this might lead to a problem with the current Media Storage implementation.

Considering the expected growth of the number of media items in the future and the fact that the new
rendered media items are stored on the second interval, it is expected that over a period of time, the number
of requests per interval will be more unbalanced and that results in a performance problem at the second

39

4.3. UNBALANCE IN THE NUMBER OF REQUESTS CHAPTER 4. MEDIA SERVING AND STORAGE

interval again. Then again we have to move rendered media items from the second interval to the first
one. Because of the media growth, the performance problem would keep appearing and we would have
to repeatedly moving rendered media items between the first and the second interval. This process is
visualized in Figure 4.6.

2]
(a) | interval 0 interval 1 §
El —
o
H*
initial situation
i0 i1
b | o o -~ i1 | % |« unbalance in the number
(b) Interval Interval gl of requests experienced
[
number of rendered media items grows #*
oo i
@ -
() | interval 0 interval 1 | 23 [~ balance in the number
> of requests is restored
[
move media items from second #* . .
to first interval o 1 process is repeated because of media growth
i i

Figure 4.6: Media growth visualized. (a) Initial situation. Web server clusters for both intervals serve the same
amount of requests. (b) Number of rendered media items is inc reased. The number of requests at the second
interval is increased. (c) Rendered media items are moved fr ~ om the second to the first interval. Both Web
server clusters serve the same amount of requests again.

Currently, the first interval contains three times as much media items than the second interval. Because of
the growth in media items, we expect that over a period of time this ratio will increase. As a consequence,
we need a very large storage for the first interval.

The current implementation does not use very large storages that might be required in the future and is also
not designed for repeatedly moving rendered media items between storage intervals when performance
decreases. Therefore it it necessary to analyze the consequences of the current approach used in the
Hyves Web site.

4.3.2 Analysis

In the previous research, we did the following observations:

e A balance in the number of requests for both intervals implicates that there is no balance in the
number of stored rendered media items per interval. This was a result of the fact that we had to move
rendered media items to cause a balance in the number of requests for both intervals;

e A balance in the number of stored rendered media items per interval implicates that there is no
balance in the number of requests for both intervals. This observation reflects the initial situation in
our previous research when the rendered media items were almost balanced, but the second interval
received more requests;

e Addition of new rendered media items to the second interval and items in the second interval being
requested more often then items in the first interval implicates that if we want to maintain a balance
(either in the number of requests or the number of stored rendered media items per interval) to prevent
performance problems we need a (continuous) process to enforce this.

40

CHAPTER 4. MEDIA SERVING AND STORAGE 4.3. UNBALANCE IN THE NUMBER OF REQUESTS

If we combine the first observation and the expected media growth, then it would result in a relatively very
large first interval and a relatively very small second interval. This raises the question if it is possible to
have just one storage, because if you have a “super storage”, why also have a smaller storage? Further,
until now, disks are available with capacity large enough to hold all data of the first interval. What if the
demanded storage exceeds the capacity of the currently available disks? If there are no such disks, we
have to design a solution that uses larger storage systems (e.g., a NAS) instead of a single disk or a
solution that combines single disks. For example, we can extend the current setup with another interval.
However, instead of dividing rendered media items over two volumes, we have to divide them over three
volumes. This would add complexity because for every interval we then would have to decide the number
of items to store. Furthermore, when we decide to move rendered media items from the last interval to the
last but one, we probably also have to move rendered media items between the other intervals, because the
addition of rendered media items would disturb the balances between other intervals also.

The second observation raises some questions. Why were there more requests for the second interval in
the initial situation? Is this just occasional because perhaps a popular range of rendered media items is
currently stored in the second interval and when the number of media items grows, this popularity fades
out? Or is it structural? Another question is if we have to intervals to share the load of requests, why is the
load not equally shared?

The third observation demands for a (continuous) process to maintain a balance. Currently, this process
is not automated because to change the position of the interval boundary, the Web site’s code has to be
redistributed to the Web servers. This can not be done at any time, because the code is always work in
progress. The code has to be declared “stable” before it can be deployed. Furthermore, because the large
amounts of data and loaded servers, moving data is an intensive process: it has to be scheduled to off-
hours, if the connection between the servers fails, the process has to be restarted, if the copying is delayed
the process might last longer than the scheduled time and continues to run in the peak hours, it interferes
with the Autorender Daemon and so on. It also implicates that we have to handle the data twice: once when
it is stored in the second interval and once for moving it to the first interval.

We can generalize the questions from the observations discussed above into two main questions:

1. How can the fact that more requests for the rendered media items in the second interval be charac-
terized?;

2. Why is the number of requests not equally distributed over the two intervals, if we have two intervals
to share the load?;

3. How about the process to endorse a balance between the two intervals?

In this analysis, we answer these three questions. We start with the first question, because we think that the
other two questions are related to the first one.

Our explanation for more requests for the second interval is popularity:

e Users do not know the media item yet so they are more likely to request it. Recently uploaded media
items are used in various places in the Hyves Web site (e.g., every user’s profile contains an overview
of the most recently uploaded media items by that user, the front page of the Hyves Web site shows
an overview of the most recently uploaded media items by the users);

e It is more likely for Web browsers to have already requested media items in their cache, but not
requested media items cannot be in the cache. The cache of the Web browser stores Web sites
contents. When a Web site is visited more than once, a Web browser can request the cache to
provide (parts of) the content, instead of requesting the Web site again. This only holds when the
served content is cachable (e.g., not changed often or static content);

e Recently uploaded media items are stored and served using the second interval.

41

4.3. UNBALANCE IN THE NUMBER OF REQUESTS CHAPTER 4. MEDIA SERVING AND STORAGE

To be able to evaluate the popularity of new media items, we have to analyze the requests processed by the
Web servers more thoroughly. Our hypothesis was that, if popularity is an issue, then when we consider the
id (the unigue number of a media item, see Chapter 3) of a requested media item, more requests are done
for items with a larger id . Our method of research has been to collect all the processed requests from the
log files of the Web servers and to consider the id s of these requests.

6000000 — -

5000000

4000000

3000000 -

2000000 =

1000000 [} e . A HHHHE -
0 Wlall=llelell=lellallalolnlallollaloUalslollalelalolellallelalelelslelslelolalslslnlalslaUn DRURUSURUS I ey 41
[elelelololelelolololelelolololelelolololelelolololelelololelelolololelelolololelelolololelelololalelelo)
ISlololelolelelelelolslelelelolelelolelololelolelololelolslololelolslololelolslelalelolslelolelallelale]
OO0 00000000000000000600000000000000000000000000000000
[Slololelalelelelelolslelalelolelolalelollelolslololelolelololelolslololelolelelalelolelelele ol lelale]
OO0 000000600
HOINOIHONODLOMONOINONOLOMONONODLOLONONOLOMLONONONONOLONONS
SHHNNOOTFHDOONN-RRHHOOHANNRMIFIONOORNRRDHOOTIANNDOIF OO
e e e e e e T T e S S S QI QI QI QI QI QI AN
papmpmpmpapmpbapat ettt bbb AT TR AT AT DA AT AT A AN
OO0 00066060600060065000000000000000000000000000000000
COO0008
o lolelelalelelelelolelolalelolelolelelolelelelelolelelelelololelolelolelelolelolelelolelelale ol ole]
istalistalTolalylalls e lslallylallellolelolslolslelolslelolslolslololslolslelolslol e o]slelslelo]sle]=]
AHNNAO I FOOOORNDOSHOMONONONONOMONONONONONONONOLONOD
POOAANNNINT F OO ONH OO AANNDNIT <O

.................... ANNNNNNANNNN

Figure 4.7: Number of requests per media id on 26th of August, 2006. Reque sts: Number of requests per media
id on 26th of August, 2006, grouped by 0.5 million ids per part ition. Unique requests: number of requested ids
per media id, grouped by 0.5 million ids per partition.

These measurements are displayed in Figure 4.7. Because of the large number of possible id s, we par-
titioned the id space in partitions of 0.5 million id s. On the x-axis, the domain for a partition is displayed
(0-500000 indicates that the corresponding bar shows results for all requests with an id between that value).
On the y-axis, the number of requests is displayed. For this analysis, only the “request” bars are relevant.
We do not take the last partition of 0.5 million id s into account, because in that partition not all id s are
used, and therefore comparing the number of requests for this partition to other partitions would not be
correct. The graph was created using the logs of August 1st, 2006. During the research, several graphs
were created on other dates, but a curve like the one in Figure 4.7 is seen for all dates.

From this graph we could conclude that our hypothesis is correct. The graph shows that more recently
uploaded media items are requested more often than less recently uploaded media items. Furthermore,
because during this analysis, we only created graphs with curves like the one in Figure 4.7, we conclude
that popularity is an structural issue. This also answers one other question in this analysis: the load is not
equally distributed between both intervals because the second interval always receives the most requested
rendered media items.

The problem is characterized by two factors:

e The number of items that are to be stored is too large to fit on one storage. The set of items has to be
partitioned and stored on multiple storage nodes that are equal in storage and serving capacity.

42

CHAPTER 4. MEDIA SERVING AND STORAGE 4.4. CACHING

e The (linear) partitioning/storing scheme and the number of requests per item result in a proportionally
unequal number of requests per partition and, therefore, the maximum number of requests becomes
limited by one storage node.

4.3.3 Requirements

From our analysis, we can derive the following requirements for possible solutions:

e A new storage setup should consist of multiple nodes that share in the load caused by processing
requests and storing rendered media items;

e Create a scheme for storing the rendered media items on these storage nodes that enforces:

— that the load of requests is equally distributed over the storage nodes. This requirement prevents
that the maximum number of requests becomes limited by one storage node that contains all
popular rendered media items;

— that the load of rendered media items is equally distributed over the storage nodes. This require-
ment prevents one storage node from becoming completely filled and others not, and therefore
prevents the need to (manually) move rendered media items between storage nodes.

e The requirements listed above should be maintained when increasing the number of nodes.
e |t should decouple serving rendered media items from storing rendered media item, because:

— This prevents adding disks to increase serving capacity instead of storage capacity, and
— prevents adding machines to increase storage capacity instead of serving capacity.

4.3.4 Solutions

Because every requested rendered media item is requested at least one time from the disks (otherwise the
rendered media item cannot be served), we cannot completely decouple serving and storing of rendered
media items. However, we could minimize the amount of requests for the storage nodes using caching. We
researched if caching is applicable in our situation and how to implement it in Section 4.4.

The research to a new storage scheme with the requirements listed above is presented in Section 4.6.

Caching, if applicable, as well as a new storage scheme can be combined.

4.4 Caching

4.4.1 Problem description

To decouple the serving of rendered media items from the storing of rendered media items as a solution for
the disk access performance problem in Section 4.2, caching was analyzed.

Caching is a technique storing the results from a intensive process for later use so the next time the stored
results can be used instead of repeating the process to calculate the same results again. A drawback
of caching is the possibility that the original contents is changed and the stored result therefore becomes
invalid. In our case the intensive process is the fetching of a rendered media item from disk and the drawback
does not hold since the media items are not changed once rendered. Hyves’s Rendered Media Web servers
only serve static content, so the replies are always cachable.

In this section we present the research if caching is applicable in our situation to decouple the serving of
rendered media items from storing rendered media items. It seems logical to cache popular requests, but
until now, we only have identified popular partitions of 0.5 million media id s. We also have to identify popular
requests, before we are certain that caching is a solution.

43

4.4. CACHING CHAPTER 4. MEDIA SERVING AND STORAGE

4.4.2 Analysis

Each partition in Figure 4.7 contains 0.5 million id s. From Chapter 2 we know that per media item, there are
six rendered media items, one per format. Per partition of 0.5 million id s, there are 3 million possible distinct
requests. Figure 4.7 indicates that sometimes there are more than 3 million requests (e.g., 5 million, see
the 23500000-2400000 partition). Therefore we conclude that some requests are received multiple times
per day.

Caching can be a solution to decrease the number of disk accesses per interval. This would decouple the
maximum number of requests that can be fetched from disk from the maximum number of requests that can
be served. This enables us to store more rendered media items in the second interval, so that the unbalance
between the number of stored rendered media items per interval can be relieved.

In Figure 4.7 we can see that there are more requests than the number of possible distinct requests per
interval. This holds mainly only for the most recently uploaded media items. From this, we can conclude
that caching is applicable for the second interval. To know if caching is also applicable for the first interval,
we need to extend our analysis.

Therefore we need to identify from the total number of requests per partition, the number of distinct requests.
For example, if the total number of requests for partition A is 5, and the number of distinct requests for that
partition is 2, we know that on average every rendered media item that was requested, was requested 2.5
times.

Our hypothesis is that if the less recently uploaded media items are also requested, then there is a large
difference between the number of requested items and the number of distinct requested media items.

Our method is to count the number of distinct requests per interval. In this context, 'distinct’ means distinct
ids (so a request for a media item with a certain id and a certain format and another request for a media
item with the same id but a different format are counted as one distinct request).

These results are also displayed in Figure 4.7 using the 'distinct requests’ bars. When we compare the
number of requests per partition with the number of distinct requests per partition, we see that for every
partition the number of distinct requests is much lower.

We calculated how much more requests were received compared to the number of distinct requests. The
results are displayed in Figure 4.8. In this graph we see per partition of 0.5 million media ids the factor
of how much more the total number of requests per partition is when compared to the number of distinct
requests per partition. For example, from Figure 4.7 we saw that in the first partition there were 1.2 million
requests in total and 0.044 million distinct requests, so the factor is 26.

From the results in Figure 4.7 and Figure 4.8, we can conclude that not all the possible requests are made,
but just a small selection and that the requests in that selection are made on average at least 7 times and
on average at most 26 times. We concluded that our hypothesis is correct and that caching is applicable in
our situation.

To be able to implement a caching solution efficiently, we have to investigate the traffic more thoroughly.
Next to an id , a requests can indicate a certain rendering of the media item with a certain size (resolution).

We want to analyze if certain resolutions of images are requested more that other resolutions of images.
Our hypothesis is that if that is the case, then when counting the requests that indicates a certain resolution,
then we should notice a difference in the number of requests per resolution. Our method has been to collect
log files from the Web servers and to process these by counting all the requests for all possible resolutions.
The results are displayed in Table 4.3 and graphed in Figure 4.9.

In the graph in Figure 4.9, we see that the “75” resolution is requested most, followed by the “50” and “120”
resolutions. Remarkable is that the “200” resolution is almost never requested (only 28.386 requests from
43 million requests in total).

From Figure 4.9 and Table 4.3, we concluded that the “75” resolution is requested most and that the different
resolutions are not requested equally. We use this result in the implementation of a caching solution.

44

14

‘pake|dsip ale suonnjosal a|qissod |e ‘sixe-x

u ay) ‘sixe-A ay1 uQ "uonnjosal Jad sisenbal-1asn Jo JaquinN 6 aInbBi4

ay1 uQ ‘pake(dsip si sisanbai jo Jaquin

50:

75:

120:

200:

500:

700:

= = N N w w
a o 13 =] a =] a
=] S o] =] S =3
=] =] o =] =] o =)
=] =] Q =] =] =] =]
=] S S o =] S o
] S <] =]] S o
] oS [s]]] o o

J @

Q
c
@
&a
_‘ @

JO 1ST WoJ) SYNSaJ 3yl YIM pareasd ydels "spi eipaw uoljjiw

"900z ‘1snbny

a1 10uUnsSIp Jo Jaquinu ay) Aq papIAIp sisanbal [e10] Jo JaquinN 8t ainbi4

G'0 Jo uonired Ag padnoib ‘sisanb

0-500000:
500001-1000000: |
1000001- 1500000;

3000001-3500000: T
3500001-4000000:
4000001-4500000: |

5500001-6000000°
6000001-6500000:
6500001-7000000:

8500001-9000000" |
9000001-9500000: !
9500001- 10000000;

0 :
11500001-12000000: |
12000001-12500000:
12500001- 13000000;

15000001-15500000: |
15500001- 16000000;

17500001- 180000005
18000001-18500000:
18500001 19000000;

000001-20500

20500001 21000000: ‘

21000001-21500000:

21500001 22000000: |
22000001-22500000:

23500001-24000000:
24000001-24500000:
24500001-25000000:
25000001-25500000:
25500001-26000000:

R
Q
o

R
(72

FOVHOLS ANV ONIAY3S VIAIN ¥ 431dVHD

ONIHOVD vt

4.4. CACHING CHAPTER 4. MEDIA SERVING AND STORAGE

Resolution Amount Per cent

50 4998784 | 11.48 %
75 | 30968683 | 71.11%
120 4581470 | 10.52%
200 28386 0.07 %
500 2486386 571%
700 486711 1.12%
Total | 43550420 100 %

Table 4.3: User requested resolutions on August 1st, 2006.

4.4.3 Requirements

For caching solutions, there are proprietary and open-source solutions. Hyves requires that the solution
is not a proprietary solution, because it is Hyves’s policy to rather gain or create the knowledge and/or
technology, than to purchase a proprietary solution.

A cache memory is limited in size. When the cache memory is entirely filled, a replacement policy decides
which item to delete from the memory to make space for a new item.

Operating systems cache file accesses in free memory. For example, when starting the same application
twice, the second time the operating does not has to access the file system. According to [CHENO2], an
operating system’s cache replacement policy is LRU (last recently used, which means that the last recently
used cached object is deleted from cache to make space for a new object). This is not suitable in our case,
because of the large number of items to cache. In case of large numbers of items to cache, it is possible
that with a LRU cache replacement policy, a certain request that should be cached (because is its requested
often) is not cached, because the cache memory is not large enough to cache all the distinct requests
between two subsequent requests for the same item. Therefore we require that the caching solution uses a
different cache replacement policy than LRU.

Furthermore, we need more cache memory than an operating system normally has (the operating system
only uses unused memory for caching) because of the large amount of rendered media items. Therefore
we require that the cache solution is not limited to system memory only.

4.4.4 Solutions

Caching solutions are either in software (caching proxies) that has to be run on an operating system or in
hardware (caching appliances).

Software caching solutions for Web sites are caching Web proxy servers or caching reverse proxy servers
[WIKIWP]. Caching Web proxy servers are designed for caching for a group of users, caching reverse proxy
servers are designed for caching a (group of) servers. Therefore we use a caching reverse proxy. In the
software category, there exists Squid [SQUID], PET [PET], Netscape Proxy Server [NPS] and Microsoft ISA
[MSISA].

The caching appliances are routers with additional caching software. Examples are Cisco Cache Engine
[CISCOCE] and Juniper’s Application Acceleration Platform [JUNIPER)].

Hyves required no proprietary solutions, therefore caching appliances, Microsoft ISA and Netscape Proxy
Server are no options. Furthermore, these solutions are not available for Linux.

Squid and PET are the remaining solutions because they are free. PET is a spin-off of a university project.
It does not have a large community of developers and is not widely-used. Squid has a large community of
developers, is widely used and exists much longer than PET. Furthermore, there exists little experience with
Squid at Hyves. Further, with Squid we can use cache replacement policies other than LRU. We were not

46

CHAPTER 4. MEDIA SERVING AND STORAGE 4.4. CACHING

able to find out which cache replacement policies PET allows. Squid also allows the use of cache disks in
addition to system memory. Therefore we have chosen for Squid as a caching solution.

4.4.5 Implementation

""""" N\
! 1
I\\
7 \,
A Web server
’ + disk
client
Web server
............................... G D PR
! L accelerated Web server
I\
Web server
Reverse proxy + disk

Figure 4.10: Accelerating a Web Server by use of Reverse Proxy

Squid has three modes: proxy mode, caching proxy mode and reverse proxy mode. The first two modes
are used to accelerate a connection to another network (e.g., the Internet) and the third mode is used to
accelerate a Web server. We use Squid in reverse proxy mode to accelerate our Web servers. Accelerating
a Web server is a technique in which an additional machine is placed between the Internet and the Web
server (see Figure 4.10). This additional machine (a so called reverse proxy) receives the requests that are
directed to the Web server. If the reply of the Web server to a certain request is cachable and in cache,
the reverse proxy will reply immediately with the cached result instead of forwarding the request to the Web
server. By using this mechanism, requests for popular items do not have to be forwarded to the Web server.
This is faster, because the cached items are served from memory instead of disk. Even in case the proxy
server uses a disk for caching, this prevents forwarding requests to the Web server. A Web server that
serves as a source for a reverse proxy is called a “back-end server” or “origin server”.

In section 4.4 we have shown that from the resolutions the Hyves Web site offers, the smaller resolutions
(75", “60" and “120") are requested more than the larger resolutions (“200”, “500”, “700”). Evidently, media
items with smaller resolutions have smaller file sizes than media items with larger resolutions We tune the
Squid configuration to use a cache replacement policy in which caching small files prevails above caching
large files, using the heap GDSF algorithm [HPLTR1], [HPLTR2]. This algorithm combines LFU (least
frequently used) and replaces large objects in preference to smaller objects. In our situation this results
in rather replacing rendered media items with the larger resolutions (“200”, “500”, “700") than replacing
rendered media items with the smaller resolutions (507, “75”, “120").

Squid can be configured with or without caching on disk. Although only in-memory caching is especially
attractive because of its speed, in addition we decided to use caching on disk, which is an option Squid
offers. Although caching on disk is slower, we can use this to limit the number of disk accesses on the
origin server or to allow more distinct disk accesses on the origin server. This optimizes the use of the origin
server and decouples the serving of rendered media items from the storing of rendered media items.

First we implemented Squid on one server. When we completed the configuration, we added the reverse
proxy server in the load balancer cluster for the second interval Rendered Media Web servers for testing the
configuration. When we got more machines for caching purposes, we copied the configuration and added
the servers to the clusters for the first and the second interval. One by one, the original Rendered Media
Web servers were taken out of the load balancer clusters. This reduced their function to backend-servers
for the proxy servers. Using this approach, we did not cause any down-time for the Hyves Web site.

47

4.4. CACHING CHAPTER 4. MEDIA SERVING AND STORAGE

1000000 -

900000 - ., distinct requests &sCxo

800000
700000
600000
500000 -
400000

300000 +

200000

100000

0

Figure 4.11: Back-end-requested Media-ids.

4.4.6 Evaluation

To verify whether number of disk accesses is limited, we measured the number of back-end requests and
also the number of distinct back-end requests. The number of backend-requests and the number of distinct
backend-requests are displayed in figure 4.11. In this graph the x-axis depicts the partition of 0.5 million
media id s and the y-axis depicts the number of backend-requests for that partition. In this graph the values
for the partition of id s 2400000-24500000 should not be considered, since this partition is not fully used.

When compared to the number of requests at the reverse proxies (see Figure 4.7), we can see that on
average one fifth of the requests are forwarded to the origin servers. This is a reduction of 80 per cent.
Because it is somewhat difficult to see when comparing Figure 4.7 and Figure 4.11, we made this more
clear in Figure 4.12. In this graph, per partition of 0.5 million mediaid s, the share of the number of backend-
requests to the total number of requests is displayed.

When comparing Figure 4.7 and Figure 4.11, we can also see that the ratio between the number of requests
and the number of distinct requests is increased, which indicates a improved use of the origin server.

We conclude that the implementation of the reverse proxies as a solution to minimize requesting the storage
nodes and disk access is a success because it reduces the use of the storage nodes with 80 per cent.
Therefore it decouples the serving of rendered media items and the storing of rendered media items.

48

67

‘pusyoRq 8y) 0] PAPIEMIO) SISM

K ay1 up "paroidap aJe spi eIpaw uolj|iw G0 Jo suonied ay:

©D ® JO 9sn 8y} Jo)nsal e se 1sanbal Jo Jaquinu ayl JO uonanpay 2Ty ainbiq

Tey) sisenbai Jo Jaquinu ay) Jo abejuaalad ay) sixe-

sIxe-x ay) uQ *Axoud asianai Buiyo

-26000000:

C——waoiJad i

FOVHOLS ANV ONIAY3S VIAIN ¥ 431dVHD

ONIHOVD vt

4.5. OPTIMIZING CACHING CHAPTER 4. MEDIA SERVING AND STORAGE

4.5 Optimizing caching

4.5.1 Problem description

Caching was one step towards a solution that decouples serving of rendered media items and storing
rendered media items.

With the setup with the caching reverse proxies, also the total number of served requests was allowed
to grow. However, because of the expected growth in media items and rendered media downloads, it is
expected that the number of backend-requests eventually increases, because of the number of back-end-
requests is just a share of the total number of requests. Therefore it is expected that reaching the storage
node’s maximum capacity causes performance problems again.

The problem can be seen in two different perspectives. One perspective is that the performance problem is
caused by too much backend-requests at the backend-servers. The other perspective is that the capacity of
the backend-servers should be increased.

The second perspective in handled in the next section (see Section 4.6) when we analyze and design a new
storage architecture.

The analysis and design of a solution within the first perspective is discussed in this section.

4.5.2 Analysis

In this analysis, we focus on the aspect of decreasing the number of backend-requests at the backend-
servers. For improving our caching solution, we have to analyze the current situation.

A cache can contain relatively more cache hits when the set of data to be cached is relatively smaller: when
decreasing the number of items that can be cached, the chance of an object being in cache increases. A
cache’s performance also increases when the requests are less diverse because the chance that a item
that already has been cached is requested, increases. Further, if we can increase the cache’s size, more
objects fit into the cache, and therefore the chance that a cached item is requested, increases.

In Chapter 3 we showed that the Rendered Media Web servers are load balanced. In Section 4.4 we de-
scribed how we replaced the Rendered Media Web servers with the caching reverse proxy servers. There-
fore, the caching reverse proxies are also load balanced.

The load balancer binds a client temporarily to a caching reverse proxy server in order to distribute the
clients over the pool of caching reverse proxy’s. Therefore it is possible that any caching reverse proxy can
receive any request. This results in two possible scenario’s:

e Scenario 1: it is possible that a request for a popular rendered media item was received at more
than one caching reverse proxy and therefore the item is cached at more than one caching reverse
proxy. Instead of using the cache memory for other popular items, it is used to store one popular item
multiple times. It decreases cache performance. because the number of distinct items in the cache
decreases;

e Scenario 2: it is also possible that a request for a certain rendered media item was received at one
caching reverse proxy which does not have the requested item in cache. But there might be other
caching reverse proxies that do have the requested item in cache. Instead of using the other caches,
the cache fetches the rendered media item from the backend-server. It can also occur that at the
same time, the rendered media item is removed from cache, because is it not requested enough
when compared to other items in that cache.

Both scenarios lead to inefficient use of the caching solution. Performance would be improved if a rendered
media item is stored in just one cache (because that would increase the number of distinct items in cache)
and the requests for that rendered media item are only directed to that cache.

50

CHAPTER 4. MEDIA SERVING AND STORAGE 4.5. OPTIMIZING CACHING

When taking the number of requests and the number of distinct requests (see Figure 4.11) into account,
this actually might be happening. Another possible explanation might be that the cache memories are too
small to contain all popular items, and therefore sometimes a caching reverse proxy server has to request a
backend-server multiple times for a rendered media item.

4.5.3 Requirements

We want to improve our caching solution by requiring that rendered media items are not allowed to be stored
in more than one cache.

4.5.4 Solutions
When requiring that a rendered media item only can be stored in one caching reverse proxy, we have to

e find a solution to handle requests for the same item at the caching reverse proxies (e.g., what to do
when caching reverse proxy A receives a request for a rendered media item that is cached at caching
reverse proxy B);

e find a solution to direct requests for a certain rendered media item to a specific caching reverse proxy,
instead of directing it to all caching reverse proxies.

So if a cache receives a requests for a reply it does not have in cache, the cache should request other
caches if they might have a cached reply for the request. This is called cooperative caching [CHENO2],
[DSYS]. Such a setup is displayed in Figure 4.13.

backend
Web server

3 caching
cache
\ reverse proxy

caching
cache
reverse proxy

2 caching
cache
6 | reverse proxy

i

Figure 4.13: Cooperative Caching Setup. (1) A client requests an item fro m the caching reverse proxy.
(2) Caching reverse proxy checks it cache. If the item is cach ed, the item is returned to the client. (3) If the

item is not cached, the caching reverse proxy contact other c aching reverse proxies. (4) A response is sent to

the caching reverse proxy. The response is either the reques ted item or a message that the requested item is

not cached. (5) The caching reverse proxy requests the backe nd Web server and receives the requested item.
(6) Possibly the item is stored in cache and (7) sent to the cli ent. This figure is partly copied from [DSYS].

Another solution is that the client requests all caching reverse proxy servers, and only the server that has
the requested rendered media item in its cache, replies to the response. But suppose none of the caching

51

4.5. OPTIMIZING CACHING CHAPTER 4. MEDIA SERVING AND STORAGE

reverse proxies reply because the requests concerns a rendered media item that is not in the caches (e.g.,
the rendered media item has just been uploaded)?.

Another solution is that the client is aware of in which caching reverse proxy a certain rendered media item
is cached, or should be cached. This can also be applied to the caching reverse proxy: if the caching
reverse proxy receives a request for a rendered media item it knows in which other caching reverse proxy
it is cached or should be cached. Then we can create partitions, and each caching reverse proxy then has
to cache just a small data set of the entire data set. However, we must prevent an unbalanced load for the
cache servers, because this would limit our growth, as we have seen the results of other analyses in this
research.

We studied the Squid application [SQD04] and found out that caching reverse proxy servers can be placed
in a caching hierarchy (with cache peers and cache parents) in which caching reverse proxy servers are
able to request each others caches (cache peers) if the requested rendered media item cannot be found in
their own cache. If none of the caching reverse proxy servers has cached the requested item, the request
is forwarded to the backend-server (parent). Different techniques are available for implementing such a
hierarchy when using Squid:

e Inter Cache Protocol (ICP). Using ICP a Squid in a caching hierarchy is able to request (one by one in
a sequence or by broadcast) other ICP cache peers if they might have a cached reply to that request;

e Cache Digest (Digest). A cache digest is a summary of the contents of a cache. In a Cache Digest
hierarchy, the cache peers exchange Cache Digests so a cache peer can determine in advance which
cache peer to ask for the requested item (with a limited certainty). Because the contents of the cache
changes over time, the Digest has to refreshed from time to time;

e Cache Array Routing Protocol (CARP). When a cache peer of a CARP hierarchy receives a request,
the request is processed by a mathematical procedure which determines to which cache peer the
request is forwarded to. For a certain request, the mathematical procedure always produces the same
result on any cache peer in the CARP hierarchy. Therefore a certain request always is forwarded to
one particular cache peer.

[SQDO04] also gives guidelines for the above strategies. ICP is not suitable when the number of cache peers
increase because of the broadcasts. If the number of cache peers increase it will result in cache peers being
more occupied of processing ICP requests than processing their own client’s requests.

Cache Digest is not suitable for large caches, because the calculation of a digest is time and space con-
suming. When the number of cache peers increases, the more cache peers have to download each others
Digests. Because these digests are space consuming, there will be a trade off between the number of items
that can be cached and the number of correct forwarded requests.

CARP is the best solution, because the additional calculations are relatively simple and this calculation limits
contacting another caches peer to at most one if case the item is not cached at the caching reverse proxy
that receives the request from the client. Further enforces the mathematical procedure to select the cache
peer to forward the request to, an equal distribution of the requests to the cache peers, and therefore the
number of requests is balanced at all cache peers. We failed to implement CARP because of unknown
reasons. Contacting support using mailing lists and searching did not solve the problem.

Because of the urgency of the performance issue, we decided to design a comparable solution. The URLs
that are used for the requests to our media service are constructed by our application, so it is possible
to extend our application with logic to construct the URLs in such a way that certain requests are always
devised to certain cache servers.

In this design, we can include the requirements that we identified earlier in Section 4.3. Therefore the
requirements for this design are:

1. balanced sharing of the load

2. partitioning of the data set so each cache server serves one partition

52

CHAPTER 4. MEDIA SERVING AND STORAGE 4.5. OPTIMIZING CACHING

We can realize these requirements using a 'modulo’ approach: we can use the media items id and a modulo
function to create partitions. Because of this modulo function, each partition contains an equal share of
'unpopular’ and 'popular’ media items and thus the load is shared. Using this modulo approach also realizes
that a certain request is always directed to a certain cache server.

In addition to balancing the load and increasing cache performance , the modulo approach also has the
benefit of allowing a scalable growth: if more media items are to be served or to increase cache performance
(e.g., when the number or rendered media items has increased, and therefore the number of rendered media
items in each partition), the number of cache peers can be extended.

The modulo problem has as a drawback that by increasing the number of partitions (e.g., in case of growth)
and decreasing the number of partitions (e.g, in case of failure) almost all items have to be remapped.
Consistent Hashing [AKAMAI], [WIKICH], [WCCH] can be used to minimize the number of re-mappings.
Consistent hashing is explained in 4.6, where we also use it in our storage design.

4.5.5 Implementation

Code for consistent hashing was added to the Web site’s code. The consistent hashing algorithm was
altered to use a database to detect the number of cache nodes instead of a fixed number in the algorithm.
In case of failure of a node, a record in the database is updated and consistent hashing is adjusted to the
new number of cache nodes. Without this adjustment, the Web site code should be deployed every time
in case of failure and recovery of a cache node. In Chapter 2 we discussed that the approach in which we
have to redeploy the Web site’s code should be prevented.

We added four new entries to the load balancer configuration: from modulo0.rendered.startpda.net to
modulo3.rendered.startpda.net . The network interfaces on the reverse proxies were adjusted to allow
requests for the new load balancer entries. By keeping the old load balancer entries intact, the old interval
setup stays available for the users.

The Squid configuration was adjusted to allow requests with the new URL scheme. Squids can be reconfig-
ured without downtime.

The adjusted Web site PHP code was deployed to a single machine in the cluster. This allowed us to test
the new code and the new configurations.

After this, the code was deployed to the other Web servers in the Web site cluster.
4.5.6 Evaluation
To verify our results, we measured the number of requests and the number of back-end requests (see Figure

4.14). The total number of requests was 46 million and the total number of back-end requests was 7 million.
This means that 15 per cent of the requests were requested at the origin server (see Table 4.4).

| Measurement | Interval Setup with Caching | Consistent Hashing Setup |

Total requests 43 million 46 million
Back-end requests 8.9 million 7.0 million
Ratio Back-end/Total Requests 20 % 15 %

Table 4.4: Comparison back-end requests interval setup vs. modulo set up

In the old situation with caching, but without consistent hashing, we had 43 million requests in total and 8.9
million back-end requests. This means that about 20 per cent of the requests was requested at the origin
server (see Table 4.4).

We conclude that the consistent hashing approach leads to a decrease in the number of back-end requests.
To decrease the number of back-end requests even more, we suggest increasing the number of cache nodes

53

145]

‘yoeoud

bal pua-yoeg (q) yoeoidde ojnpow ayr yum pi Jad sisanbay () 4Tt ainbi4

-de ojnpow ayr yum pi Jad sisan

(a)

(e)

25500000- 260000005

= 00000€

~+< 00000V

= 000008

-+ 000009

~i= 00000

= 000008

~+-= 000006

[Eez e

i sisanbal 1ounsIp

— sisanbal

~ < 000000T

25500000~ 260000005

0-500000:
500000-1000000:

000000T

“M

-~ 0000002

- 000000€

~+=000000%

~+= 0000005

D
o
o
o
o
o
o
-

-~ 000000Z

2 s)senbal punsip

X

2

—1 sisanbal :

X

ONIHOVO ONIZINILHO 'SV

I9VHOLS ANV ONIAYES VIAIN ¥ 431dVHD

CHAPTER 4. MEDIA SERVING AND STORAGE 4.6. STORAGE

(currently there is about 32GB of memory cache and 32 GB of disk cache for 1.5TB of data). However, it
is not possible to decrease the number of back-end requests to 0% because of the continous uploading of
new media items.

4.6 Storage

4.6.1 Problem description

In this section we want to design a new storage architecture, that overcomes the current analyzed problems
that are stated in the previous sections.

4.6.2 Analysis

In Section 4.2 we analyzed that disk access capacity of the second interval is not sufficient, while the
disk access capacity of the first interval is not fully used. In Section 4.3 we analyzed that because of the
number of items to store, storing items on more than one storage is necessary, but the current (linear)
storage scheme implicates that one storage node limits the maximum number of requests. In Section 4.4
we analyzed a caching solution to decrease the number of disk access and in Section 4.5 we analyzed the
caching solution even more to decrease the number of disk accesses even further. In Section 2.2.1 and 2.4
we analyzed the current storage setup for original media items, how it is expanded to increase capacity, that
it is a single point of failure and that it should be decoupled from other tasks like storing backups.

Although the original media storage is only discussed in Chapter 2, in the future it is expected that the
current setup is not scalable. When the current capacity has to be expanded, media items are copied to
disks on other machines and they are made accessible via NFS shares. If we continue to offer more and
more media items via a single NFS share via the NAS, it is expected that in time, the maximum capacity of
the NAS is reached. We have experienced the same with the Rendered Media Storage, and therefore we
should prevent this situation.

If we analyze the model that we discussed in Chapter 3, we know that original media items are only re-
quested by the Autorender Daemon and the incidentally if the Web site has to render the media item. From
this chapter, we know that rendered media items are requested very often. From Chapter 2 we also know
that on average, the aggregate file size of the rendered media items is about one sixth of the original file
size.

If we combine the storage for original media items with the storage for rendered media items into one single
storage, we can reduce the number of media ids stored on one interval to about one seventh of the number
of media is that is currently stored in a interval. In Section 4.5 we analyzed that if we decreased the diversity
in requests, the caching performance improves. As a consequence, we have to increase the number of
intervals, to be able to provide sufficient storage capacity for all the data.

4.6.3 Requirements

Redundancy is a requirement because in case of a disk failure, the rendered media items are still available
to be served and in case of recovery from a failure, copying the rendered media items takes less time then
render them all over again. We require that at least there is one copy of every rendered and original media
items. We require that a new storage architecture further decouples serving rendered media items from the
storing of rendered media items, because:

e This prevents adding disks to increase serving capacity instead of storage capacity, and

e prevents adding machines to increase storage capacity instead of serving capacity.

55

4.6. STORAGE CHAPTER 4. MEDIA SERVING AND STORAGE

Therefore we require that the maximum number of copies of every rendered and original media items equals
one.

We require that original media items and rendered media items are stored in the same storage, instead
of in two separate storages in order to reduce the number of media ids stored on one interval, to reduce
the number of possible requests for that interval and to increase caching performance. We also expect that
maintaining one storage instead of two reduces the work involved with this (e.g., deleting media items, which
takes actions on both storages in the current setup).

We require that we can extend the number of storage nodes to anticipate to increased storage capacity
demand.

We require that the a storage architecture should consist of multiple storage nodes that share the load
caused by processing requests and storing rendered and original media items and the new storage ar-
chitecture uses a scheme for storing the original and rendered media items on these storage nodes that
enforces that:

e the load of requests is equally distributed over the storage nodes. This requirement prevents that
the maximum number of requests becomes limited by one storage node that contains all popular
rendered media items. This requirement should be maintained when the number of storage nodes is
increased or decreased;

e that the load of rendered media items is equally distributed over the storage nodes. This requirement
prevents one storage node from becoming completely filled and others not, and therefore prevents
the need to (manually) move rendered media items between storage nodes. This requirement should
be maintained when the number of storage node is increased or decreased.

Hyves prefers a solution that is developed and maintained in-house rather that a proprietary solution in order
to stay independent from vendors and consultants.

4.6.4 Solutions
Solutions for the resource layer (storage) can be generalized to two options:

e purchase a total proprietary storage solution;

e constructing a solution using building blocks and creating the logic to glue the building blocks.

Both options are discussed hereatfter.

Examples of total storage solutions are Panasas [PANASAS], CoRaid [CORAID], Equallogic [EQUALLOGIC]
and EMC'’s Clariion [CLARIION]. These solutions provide a network designed to attach computer storage
devices such as disk array controllers. A SAN allows a machine to connect to remote targets such as disk
on a network for block level 1/0.

Example of storage building blocks are CoRaid boxes [CORAID], Equallogic [EQUALLOGIC], a standard
NAS or any machine with large disks and file serving software.

Software to incorporate these storage blocks into one large storage are distributed file systems, which is
a file system that supports sharing of files and resources in the form of persistent storage over a network
[DFS], [DSYS]. Examples are Coda [CODA] and GFS [RHGFS]. An overview of distributed file systems
is given in [IBBD]. Traditional distributed file systems are add-ons or implemented in the operating system
kernel. To make this setup scalable not only in a storage capacity sense, but also in a storage serving sense,
a cluster of servers that can access the distributed file system is necessary.

There are also distributed file systems that are implemented at the application level, although they are
mostly referred to as Content Delivery Networks or content distribution network [DSYS]. Examples are

56

CHAPTER 4. MEDIA SERVING AND STORAGE 4.6. STORAGE

[MOGILE] and [CORAL]. These application level distributed file systems are implemented on top of network
file systems and use an add-on or are implemented in the application that uses the file system.

When purchasing a total storage solution, the price per gigabyte of storage is higher, because we also have
to pay for backup-software, data-retention software, information life-cycle management software, etc.. We
also become dependent of the supplier for support. Next to this, most total storage solutions are more
complex and have more functionality than we demand from a storage solution (e.g., back-ups, snap shots).

When choosing to design and create a storage solution, the price per gigabyte of storage is lower because
no additional software has to be purchased. In case we build it ourselves, the technology is developed
in-house and we are less dependent of a supplier (although this costs time and thus money to develop). A
little bit of dependency still remains because we have to buy the storage blocks and in case of failures, we
still have to request for support from the supplier. Most of the dependencies can be solved by buying spare
parts, so in case of failure, these parts are at hand.

We decided for designing and implementing a solution instead of purchasing a total storage solution because
of the lower costs and the consequence that the technology is build in-house.

We started the implementation with building a cluster with a distributed file system. During the implemen-
tation of this cluster, we revised our vision on the suitability of a cluster with a distributed file system as a
solution to requirements. The main reasons for revising our vision on the suitability of a cluster are that the
used cluster technology has a maximum file system size of 8TB and the fact that it is very intensive to create
and maintain a cluster. The desired media storage should allow more capacity than 8TB and should not be
difficult to maintain. We decided that Hyves does not need a cluster based distributed file system in which
we can read, write and manipulate files many times. From Chapter 3 we know that Media items are uploaded
once, read once for rendering, rendered media items are written once after rendering and requested many
times. We realized that a content delivery network or a application level distributed file system matches
our requirements more than a cluster with a distributed file system because we do not desire the additional
capabilities of a cluster with a distributed file system. Therefore we decided to design a new implementation
based on an application level distributed file system. In the next section, only the implementation of the new
storage architecture based on application level distributed file system is discussed, which only contains the
design. We did not implement this storage architecture because of a lack of time.

4.6.5 Implementation

The base of our new storage architecture is an application based distributed file system, which is built on
top of a document based system using HTTP and FTP.

The clients that would use our new storage architecture are the caching reverse proxy servers (to requests
rendered media items) and the Autorender Daemon (to requests the original media item and to store the
rendered media items). The caching reverse proxy servers are responsible for almost all the requests to the
new storage architecture. These requests are HTTP-requests. The Autorender Daemon currently uses NFS
to request the storage architecture, but this can be altered to use HTTP. Storing the rendered media items
by the Autorender Daemon can be altered to use HTTP, but we can also use FTP for this. Although FTP and
HTTP are more resource consuming than NFS because FTP and HTTP are handled in special applications
and NFS is handled in the kernel, we must take into account that almost all the requests to the new storage
architecture are done via HTTP.

By using FTP and HTTP as transport protocols, we have a solution for the problems with NFS (see Chapter
5).

To provide storage capacity, we use servers on which we install Web server software, in order to enable
access to the files with HTTP. If we have chosen to use FTP for storing files, we also have to install FTP
server software. We can use Web servers with large disks (approximately a storage capacity of 1TB per
server), Web servers with CoRaid like boxes (approximately a storage capacity of 6TB per server) or NASs
(approximately a storage capacity within a range of 1TB to 9TB per NAS). We refer to a server with Web
server software and a large disk as storage node. In our new storage architecture we want to allow a

57

4.6. STORAGE CHAPTER 4. MEDIA SERVING AND STORAGE

heterogeneous set of storage nodes because it is likely that in a period of time disks, CoRaid boxes and
NASSs with larger capacity become available. Further, it also allows us to reuse the parts of the current used
storage.

In order to distribute the data over these Web servers, we have to partition the set of data (original media
items and rendered media items). Each Web server should hold a partition of the data. To partition the
data in such a way the items are equally distributed over all the Web servers, we use consistent hashing
[AKAMALI], [WIKICH], [WCCH].

Consistent hashing uses two principles, which we use in order to distribute the data over the storage nodes.
The first principle is a hashing function, which is necessary to classify items into a limited set of classifica-
tions. The second principle is partitioning the set of classifications. When storing a media item, the item is
first classified into one classification. Then the media item is stored on the Web server that stores all media
items for a certain set of classifications. When requesting a media item, the request is classified to the same
classification in which the stored media item is classified. Then the requested media item is requested from
the Web server that stores the media items for that particular set of classifications (see Figure 4.15).

2

(e N
D i(classification 1) 5
L o
. . 2]
'D §(classification 2) 5
3 3 =
) . . N
hashing D i(classmcatlon 3) §
function) 3 ?J
(classification) D i(classification 4) g
1 — “
input space () D (classification 5) 5
(media items) ; %
: ;)
D (classification 6) 2
\ :)2

Q

o -

T

Qo

o .

<

w0 .

C

N .

Figure 4.15: Consistent Hashing. (1) first an input value is classified. (2) the classifications are grouped into
partitions.

When considering the design so far, the design is not different from the current rendered media storage. In
the current rendered media storage the classification algorithm is “the first 5 million media id s are fit into
classification 1, the next 5 million media id s fit into classification 2, etc.”, and the partitions are the current
intervals. The difference is the use of a hashing function as a classification scheme.

A hashing function (or hash algorithm) is a reproducible method of turning data (usually a message or a file)
into a number suitable to be handled by a computer. These functions provide a way of creating a small digital
“fingerprint” from any kind of data [HASH]. By creating this fingerprint, we can classify items. Although the
term “fingerprint” is often connected to uniqueness, this does not necessarily be the case.

58

CHAPTER 4. MEDIA SERVING AND STORAGE 4.6. STORAGE

To illustrate the use of a hashing function in our storage design, we use the modulo operation, which finds
the remainder of the division of one number by another (see Figure 4.16). Because the outcomes of the
modulo operation are cyclic when using increased inputs, equal distribution of the items to the possible
outcomes is guaranteed when using a large number of items (i.e., classifying 24 subsequent media items
results in 2 media items per classification). Suppose we use the media id of a media item, then we can
classify the media items into classes with the same remainder after a division by 12.

0
Omod12=0
I1mod12=1
10 2 2mod_._12:2
10 mod 12 =10
9 311 mod 12 =11
12 mo_q_ 12=0
45 mo_p_l 12=9

12345 mod 12 =9

Figure 4.16: Example of Modulo operation. In this example, we use 12 as the value for the base of the modulo
operation. The remainder of the division of 12 by 12 equals O. The base parameter of the modulo operation
limits the number of possible outcomes (12 in this example). Two subsequent values (e.g., 33 and 34) result in
two subsequent outcomes (e.g., 9 and 10).

To complete the example, we have to group the possible classifications in our example and assign these
groups to different Web servers. Suppose we have three storage nodes, two with 1TB of storage capacity
and one with 2TB of storage capacity. Then we have to create three groups, because the number of groups
should equals the number of storage nodes. Two groups entails one fourth of the classification space each
(i.e., classifications 0-2 to one group, 3-5 to the other group), and the second group entails one half of the
classification space (i.e., classifications 6-11). This also illustrates the use of heterogeneous storage nodes.

The example shows that it is required that the number of classifications should be larger than the number
of storage nodes to enable to create partitions that are weighted with the capacity of the storage node. In
the future, the number of storage nodes might increase because storage capacity demands might increase.
Therefore, the number of classifications should be far more larger than the number of storage nodes.

In our example we used the modulo operation as a hashing function. Because of the cyclic behavior of the
outcome of the modulo operation when using increased inputs, when the base is too large, many media
items with increasing media id are placed on the same storage node. Suppose we use 1200 as base to
the modulo operation and we create three groups. Two groups then will entail the classifications 0-299 and
300-599 and the other group will entail 600-1199. This would result in 300 subsequent media items on the
same storage. When the number of media items is large enough, this effect is minimized.

We can also use another hash function like MD5 [WIKIMD5] or SHA-1 [WIKISHA]. These functions have
the effect that when the input is slightly changed, the output is changed significantly. In cryptography, this
is called the Avalanche effect [AVALANCE]. Because of the Avalanche effect that occurs with these two
functions, randomization is introduced. Therefore media items with subsequent media id s will not have
subsequent outcomes.

Now we have showed how we can partition the dataset in order to store it on multiple storage nodes, we
have to implement this scheme to enforce that data item reads and writes are directed to the correct storage
node. Because we use HTTP, we could decide for a HTTP redirector (see Figure 4.18). Such a redirector is
capable of processing the request and to redirect the user (e.g., the Autorender Daemon or caching reverse
proxy) to the correct storage node. If we decide to use FTP as transport protocol for writing media and

59

4.6. STORAGE CHAPTER 4. MEDIA SERVING AND STORAGE

0
md5(1) = CFCD208495D565EF66E7DFFIFO8764DA
4444, A4A4— md5(2) = CACA4238A0B923820DCCE09A6F 758498
md5(10) = 45C48CCE2E2D7FBDEALAFC51C7C6AD26
8888....8888 —| md5(11) = D3D9446802A44259755D38E6D163EE20
md5(12) = 6512BD43DICAAGEO2CII0BOAB2652DCA
n md5(45) = F7177163C833DFFAB38FCBD2872F1ECH
ccee....cece md5(12345) = D10906C3DACL172D4F60BDALF224AET5

Figure 4.17: Example of MD5 operation. The outcomes of an MD5 operation va ry from 0 to 2128 (it is custom to
use the hexadecimal notation).

rendered media items, we could implement a FTP redirector, based on the workings of an HTTP redirector.
The HTTP redirector processes the requests, determines the correct storage node and then redirects.

. . storage storage
client redirector
server 1 server 2

GET 12345.jpg

REDIRECT storage2
GET 12345.jpg

REPLY

GET 12346.jpg
REDIRECT storagel
GET 12346.jpg

o
REPLY

Figure 4.18: Using a redirector

We have showed how media items can be classified and that classifications are grouped to be stored on one
storage. When the number of storage nodes is increased, we have to create new groups. In our example,
we used the groups that hold classifications 0-2, 3-5 and 6-11. We increase the number of storage nodes in
our example to 4 storage nodes. The added storage node has a capacity of 2 TB. Then we have to create
4 groups. The first two groups for the storage nodes with a 1 TB capacity entail the classifications 0-1 and
2-3, the second two groups entail classifications 4-7 and 7-11. This results in the first storage node to not
store items with classification 2 anymore, the second storage node not to store items with classifications 4
and 5 anymore and third storage node not to store items with classifications 7, 8, 9, 10 and 11 any more.
The second storage node has to store items with classification 2 also, the third storage node has to store
items with classifications 4 and 5 and the newly added storage node has to store items with classifications
6to 11.

To not lose any data, media items should be copied to the storage nodes that store them in the new config-
uration. When all the storage nodes contain the classifications that they suppose to store in both the current
and the new configuration, items of classifications that not supposed to be stored in the new configuration
can be deleted on the first three storage nodes.

Therefore, reconfiguration of groups of classifications is done in three phases.

In the first phase, a storage node collects the items of the classifications that should be stored in the new
configuration on the node from other storage nodes. Also the table or algorithm that matches the classifi-
cation with one of the storage groups is altered, so that media items are stored in the storage group that

60

CHAPTER 4. MEDIA SERVING AND STORAGE 4.6. STORAGE

holds a certain classification at current and the media items are stored in the storage group that should hold
a certain classification in the new configuration. One could implement rate controlling in order to be able to
regulate the load caused by the reconfiguration. We refer to this first phase as “collect phase”. When all the
storage nodes have finished collecting, the first phase is over and the second phase is started.

In this second phase, the algorithm or table that matches classifications with storage groups is altered to
the new configuration. Then items are only stored and requested from the storage node that stores the item
in the new configuration. We refer to this phase as “reconfiguration phase”. After this, the third phase can
start.

In the third phase, all the storage nodes delete media items from the classifications that should not be stored
anymore on that storage node. One could implement rate controlling to be able to regulate the load caused
by deleting the media items. We refer to this phase with “delete phase”. When all storage nodes finished
the deletion, the third phase is over.

When the third phase is completed, the reconfiguration is completed. The same procedure can be used to
reconfigure to increase or decrease the number of storage nodes.

During reconfiguration, additional space on the storage nodes is required, since for a period of time, some
media items can be stored multiple times: on the original group and the group for the new configuration.
This is caused by making available the data items for both the current number of storage nodes and the new
number of storage nodes. Consequence from this is also that one cannot expand the storage array when
the maximum capacity is reached. It is necessary to monitor the storage array and start expanding in time.

Experience with the new storage setup should be gained to answer questions like how long does it take to
reconfigure.

Because of the use of heterogeneous capacities, it is possible to extend the storage array with a number
of small storage nodes in order to increase serving capacity or a large storage node in order to increase
storage capacity or mix. The storage is scalable and can be extended by a storage box and a front-end
Web server per expansion. But it is also possible to expand by using a i larger amount of storage boxes and

front-ends.
stable stable
current storage nodes

node <~ [node [+ phode node node collect
phase 1

change reconfig
) new storage node
config phase 2

Figure 4.19: Reconfiguration procedure

Now we achieved to create a storage that can be extended if storage capacity demands increase and that
guarantees distribution of the media items according to the capacity of the storage nodes, we can extend
our design to create redundancy to satisfy the redundancy requirement.

To achieve a redundant setup, we have to incorporate redundant storing of the media items in our design.
We do this by partitioning the space on a storage node into two halves. On the first halve, data items are
placed. The second halve contains a copy of the first halve of another storage node. Because the storage
arrays may have different sizes, this is not an option. For example, the backup of a large storage node might
not fit on a smaller storage node. This can be solved by shifting the classification space with a phase equal
to the largest phase of a group.

61

4.6. STORAGE CHAPTER 4. MEDIA SERVING AND STORAGE

o —m]) T

a L1 | N2 |n3|”4| c ny | na |”3|n4|
¢ < mng m<o<n—mn
¢ ni ni ¢ ni
b ny no |n3 | n4| niq | na |TL3 | N4
d n
o =mn m<o&n—n <o

maﬂf(nh n2,ng, n4) =n1

n=>i—N;

Figure 4.20: Phase shift explanation

In Figure 4.20 (a) one can see that when using a phase shift (@) smaller than n1 (@ < n1) then the backup
of that partition partly is stored on the same storage box. When using a phase shift equal to the phase of
the largest partition (Figure 4.20 (b)) then this is not the case. Even a larger phase shift is possible (Figure
4.20 (c)), but it should not exceed n— N, since then the backup is partly stored on the same storage node
(Figure 4.20 (d)). If necessary, redundancy can be expanded by using a larger share of the storage node
for backup (e.g., dividing the capacity of a storage node into three equal parts, the first partition for the data
and the other partitions for the backup of other media items).

From the same Figure, we can also derive that the capacity for the largest storage box must not exceed
half of the capacity of the storage array, because then a shift of the hash space by more than a half of the
capacity results in an overlap, and therefore causing that it is not possible to store the backup of the largest
storage node on other parts of the storage array. We can also derive that the minimum number of storage
boxes in the storage array equals two.

In case of failure of one storage node, we can alter the algorithm or table that matches the classifications
with the storage groups. When the storage node is replaced, it can be filled with the data from the backup.

Now we have extended our design with redundancy, we have to alter the reconfiguration procedure and re-
questing and storing a media item. In the reconfiguration procedure, the collect-phase also has to incorpo-
rate collecting backup-media items next to collecting media items. The delete-phase also has to incorporate
deleting backup-media items.

When a media item is stored, it also has to be stored on the storage node that handles the backup. When a
media item is requested, the request procedure has to be aware of possible failures. In case of failure, the
request is retrieved from the backup-location.

The application and its daemons should be modified to use the new storage architecture and to get and put
files using FTP or HTTP.

Just one configuration file is the basis for the configuration files per storage node, front-end and tool.

The following steps have to be taken in order to implement the designed solutions: Storage nodes have to
be prepared. Web server software should be installed.

Next to hardware preparations, four programs/scripts are to be written:

e a script that can collect the necessary data items after adding or before removing a storage array. The
script has to take into account the current number of storage nodes and the number of storage nodes

62

CHAPTER 4. MEDIA SERVING AND STORAGE 4.7. STORAGE AND SERVING REVIEW

after wards.

a script that can delete unnecessary data items after adding or removing a storage array. The script
has to take into account the new number of storage nodes.

a script that stores a data item on the storage nodes. The script has to take into account to also store
the data item in the correct storage node that serves the backup. Further, the script should take into
account the fact if the array is expanding or shrinking, so the new placed data item is available in both
old an new situations (if the expanding of shrinking affects the location of the data item).

e a script that fetches a data item from the correct storage node.

On the servers that act as front-end to the storage array, HTTP and FTP daemons should be configured.

A procedure for extending, removing or restoring a backup has to be written.

We have to find a good solution to security. FTP uses plain-text passwords. This is no problem when using
FTP internally, but when the traffic has to traverse the Internet because of multiple co-locations, this is not
desired. We have to research how to make this more secure. Secure FTP might be an option, as well as
using SSL, SHFS or tunneling the traffic using a VPN.

Now, we can describe the migration process, in which we transfer the current implementation to the new
implementation.

For the old design storage cluster, additional CoRaids are ordered. These CoRaids could be used to build
the new storage setup.

9.

10.

Machines need to be prepared (e.g., formatting, partitioning, creating LVM volumes, making file sys-
tems, ftp daemon configuration)

Create the scripts that are mentioned above.

Create a script that collects current media items from the originals repository and the rendered media
repository and that injects the media items into the new storage.

Test if this goes OK.

Test 'shrinking’ and 'expanding’ scripts.

Inject additional media items.

Test application with the new storage.

Disable uploads. Finish renderings and photo orders.
Deploy code changes

Restart uploads, renderings and photo orders.

In case of emergency during the deploy:

1.

2.

deploy previous version of the code

restart old uploads, restart old renderings and photo orders.

After a successful out-roll of the new storage

1.

2.

break down old storage cluster

expand new storage with old storage cluster hardware

63

4.7. STORAGE AND SERVING REVIEW CHAPTER 4. MEDIA SERVING AND STORAGE

(=] o ™ ™
a a = S a [} application mapping
o — n n N o
2] 2] 1] %]

| squidO | squidl | squid2 | squid3 | caching partitions

| storage0 | storagel | storage2 | storage3 | primary storage partition

| | hash space

Figure 4.21: Logical Presentation Layer Design on top of Logical Storage Design. The backup layer is not

displayed in this figure.

4.7 Storage and Serving Review

Now we designed a new storage solution, we also might want to redesign the serving solution.

Instead of creating a new partitioning scheme, we use the same one as used in Section 4.6. In this way, we
can take advantage of the same benefits: minimize the number of re-mappings and an equal distribution of
requests.

The number of caches or their sizes does not necessarily have to correspond to the number of storages.
This implicates that it is needed for a cache to be able to direct requests to multiple storages.

In the current use of the cache, it has a single accelerating host and multiple cache peers (with each the
same information). We need a way to tell the cache to which storage node to forward the request.

We do this by introducing extra domain names. Suppose http://interval0.rendered.startpda.net
has a DNS A record, and http://s0.interval0.rendered.startpda.net has not, than the latter di-
rects to the same address as the one with an A record.

Squid is able to notice the difference between a request starting with sO or without by means of ACLs

(access control list). We can use the ACLs to redirect requests to a certain storage by using the options in
Figure 4.22.

acl sOurl dstdom s0.sq0.rendered.startpda.net
acl slurl dstdom sl1.sqO.rendered.startpda.net
cache_peer storage0 no—query 80 allow sOurl
cache_peer storagel no—query 80 allow slurl
accelerating_host intervalO.rendered.starptda.net

Figure 4.22: ACLS

By the use of the accelerating host line, all sO.intervalO.rendered.startpda.net are replaced with inter-
valO.rendered.startpda.net.

In this way we can create the scheme in Figure 4.21.

4.8 Conclusion

In this chapter we have discussed our research and design activities for Media Serving and Media Storage.
We started with discussing the initial currently experienced performance problem in which the maximum

64

CHAPTER 4. MEDIA SERVING AND STORAGE 4.8. CONCLUSION

serving capacity of the second interval was reached. Rendered media items in the second interval were
requested more often, so a solution was designed in which rendered media items were moved from the
second to the first interval in order to balance the load of requests to both intervals.

Because of the growth of the number of media items, we realized this is just a temporarily solution, and
therefore we continued our analysis. We identified that because of the increasing number of rendered media
items and the used scheme to store the rendered media items, an unbalance in the number of requests and
the number of rendered media items per interval requires (continuous) maintenance to create a balance.

From this, we derived two strategies to solve the problem of the unbalance between the number of stored
and requested items per interval: we analyzed a caching solution to decouple serving and storing rendered
media items per interval and we designed a new storage solution that enforces a balance in the number of
stored and requested items per interval. Both strategies can be used simultaneously and such a solution is
designed and presented.

65

4.8. CONCLUSION CHAPTER 4. MEDIA SERVING AND STORAGE

66

Chapter 5

Media processing

5.1 Introduction

This chapter discusses the analysis and improvements we did on the Autorender daemon, the processing
service of the media part of the architecture.

We identified problems with the Autorender Daemon when we analyzed and improved the Media Storage.
These problems include:

e unexpected set-backs of the value of coldmaxmediaid , causing media items being rendered multiple
times;

e not using all processor capacity, while there are items to be processed;
e NFS problems causing the Autorender Daemon to stall;

e a problem with the used render software, in which the render software enters an infinite loop causing
the Autorender to stall.

For each problem in this chapter, we present a problem description, an analysis, requirements for possible
solutions, possible solutions and a motivation for choosing one of the solutions. From each problem, we
derive requirements for a new version of the Autorender Daemon that overcomes the current problem.
Therefore we combined all solutions and requirements to create a new design for the Autorender Daemon.
This design has been implemented and we evaluate our design and implementation. Therefore the structure
of this chapter reflects the diagram in Figure 5.1.

{ description J—»{ analysis)—»[requirements H solutions]

(section 5.2) Coldmaxmediaid set-back

{ description J—»{ analysis)—»[requiremen(s Hsolulions]
(section 5.3) CPU-usage
solutions implementation evaluation

- . . . (section 5.6) New Autorender Daemon
description analysis requirements solutions

(section 5.4) NFS
[description)—»[analysis H requirements H solutions }
(section 5.5) Render Software

Figure 5.1: Structure of each discussed research.

67

5.2. COLDMAXMEDIAID SET-BACK CHAPTER 5. MEDIA PROCESSING

5.2 Coldmaxmediaid set-back

5.2.1 Problem description

Because of the experienced problems, we investigated the Autorender Daemon’s log files, in which the
Autorender Daemon periodically writes its status (e.g., number of media items to render, timestamp, if the
daemon is busy rendering or copying of media items, etc.). We noticed that sometimes the number of items
to render suddenly increased with additional 50.000 media items. This behavior was not anticipated, so we
consider this behavior to be unexpected and undesirable.

5.2.2 Analysis

The number of items to be processed depends on two factors: the number of media item uploads per period
of time and the number of media items that are processed per period of time. We illustrate this with Figure

5.2.
intervalboundary coldmaxmediaid 7ediaid
R Ryt i
‘ : ‘ '
| 1
1
1
1
0 = increasing media id T L :
@ | | !
- > !
cold | ! [hot empty space i
o ! »l !
interval0 | : intervall :
1 1
(b) (©)
1
coldmax- max-— coldmax— max—
mediaid mediaid mediaid mediaid
cold >l free
i I
coldmax— max-— coldmax—- max—
mediaid mediaid mediaid mediaid

Figure 5.2: “Hot and cold” setup analyzed: (a) Hot and cold setup as discu ssed in Chapter 2. In (b), (c), (d) and
(e), we focus on the area surrounded with the dashed rectangl e. (b) Initial situation. (c) The Autorender Dae-

mon increases coldmaxmediaid id because media items were re ndered. (d) The Web site PHP code increases
maxmediaid because media items were uploaded. (e) Steady st ate. The Autorender Daemon has rendered all

uploaded media items.

We focus on the area that is surrounded by the dashed rectangle in Figure 5.2 (a). This area is displayed in
5.2 (b), showing the cold part, which contains mediaid s from rendered media items, the hot part, which con-
tains media id ’s from media items which are not rendered in all formats, and free space, in which mediaid s
from uploaded media items can be placed. Figure 5.2 (c) shows an increased value for coldmaxmediaid
This increased value of coldmaxmediaid is set by the Autorender Daemon after finishing rendered a num-
ber of hot mediaid s. Figure 5.2 (d) shows an increased value for maxmediaid , which is set by the Web site
PHP code after storing uploaded media items. Figure 5.2 (e) shows the steady state in which the Autorender
Daemon has rendered all hot media id s. The value of coldmaxmediaid and maxmediaid are equal in this
situation and as a consequence, the hot part contains no media id s.

68

CHAPTER 5. MEDIA PROCESSING 5.2. COLDMAXMEDIAID SET-BACK

From Figure 5.2 we can derive that the hot part actually works as a queue: items are removed at the head
of the queue by the Autorender Daemon and items are inserted at the tail of the queue when they are
uploaded. The number of media id s in the hot part equals the length of the queue. Because the Autorender
Daemon and uploading of media items are executed in parallel, the queue length changes over time. When
per period of time more media id’s are rendered (i.e., removed from the queue) than uploaded (i.e., inserted
in the queue), the queue length decreases.

As explained, the number of items to be processed by the Autorender Daemon depends on the number of
items processed per period of time and the number of items that were uploaded in that same period of time.
Therefore the cause of the sudden increase of the number of items to be processed as experienced with
the Autorender Daemon is limited to two factors: a sudden increase of maxmediaid or a sudden decrease
of coldmaxmediaid . Further investigation of the log file of the Autorender Daemon showed that the value
of coldmaxmediaid decreases with the amount of 50.000 items.

Because the Autorender Daemon is programmed to render the media items with a media id between the
values of maxmediaid and coldmaxmediaid (see Chapter 2), this results in 50.000 media items being
rendered and copied to the rendered media storage more than once. However:

e a mediaitem that is processed by the render daemon does not need to be processed again. Process-
ing a media item more than once is a waste of time and CPU power;

e because of the URL generation scheme (see Figure 2.11) and the interaction of the components (see
Figure 3.3) large queue length implies that the Web site Web servers spend time and CPU power on
the rendering of media items, instead of serving pages.

We want to identify how often and at which times this decrease in the value of coldmaxmediaid occurs to
identify the impact of the problem. We analyzed this by monitoring the number of media items that need to
be rendered. Therefore we created a script that allowed us to measure at any moment in time the number
of media items that needed to be processed. We used this script and the Hyves’s monitoring tool to create
a graph of the number of items to be rendered. This has been a first step towards application monitoring
(see the Architectural Principles of Chapter 2).

cubalibre - autorender todo

render
(x 300)

o i [\
: M [\,\ \‘ h A ﬂ |
:“:_’ \.\ | \k |(‘-.\ !\\/ \ .'\

SV EERERIELEN) L\/\ \ [y

g Sat Sun Mon Tue Wed Thu Fri
:I todo day of the week

D@ @6 ® @

Figure 5.3: Visualization of the queue length of the Autorender daemon.

The resulting graph is displayed in Figure 5.3. The x-axis of the graph denotes the time of the day and the
y-axis of the graph denotes the number of media items that need to be processed at that moment in time.

0 in Figure 5.3 indicates an occurrence of that the coldmaxmediaid ~ was set back with 50.000 items. The
number of items that need to be processed was around 0 for some time and suddenly the number of items
is increased by 50.000.

Ll in Figure 5.3 indicates a stale NFS mount. When a server experiences a stale NFS mount, the server
is not able to read or write to an NFS network share. Because the daemon depends on these shares for

69

5.2. COLDMAXMEDIAID SET-BACK CHAPTER 5. MEDIA PROCESSING

writing the rendered media and reading the original media files, the daemon is not able to process media
items. Therefore the curve at [] is more steep. We identified that the server experienced a stale NFS mount
by analyzing the server logs.

0 indicates another occurrence of that the coldmaxmediaid was set back with 50.000 items. We fixed the
error manually by restoring the coldmaxmediaid . [shows this manual restore of the coldmaxmediaid
[, O and O show the set-back and the manual restore of the value of coldmaxmediaid

By interviewing the programmer of the Autorender Daemon, we learned that only when the file which holds
the value of coldmaxmediaid is not readable or does not exists, the value of coldmaxmediaid s set to the
value of maxmediaid minus 50.000 items in order to guarantee the robustness of the daemon.

From Figure 5.3, we can conclude that this happens at least once a day. Since the file containing the value
of coldmaxmediaid is located on an NFS-share, it is most likely that a stale NFS mount is the cause of
this error. The system’s log files has confirmed our suspicions. Therefore, we can conclude that the cause
of the set back of the coldmaxmediaid s that the file containing the coldmaxmediaid is on a NFS share,
and this share becomes stale.

Because there is just one Autorender Daemon process, in case of failure, the number of items that need to
be processed increases immediately. This increase would be less stringent if there were multiple instances
of the Autorender process, because it is less likely that all instances would experience the same problems
at once.

From the above analysis, we can draw the following conclusions:

e The problem of the value of coldmaxmediaid being set-back by 50.000 media items is caused by
the variable being located in a configuration file which is placed on a NFS share;

e Stale NFS handles cause the Autorender Daemon to stall;

e Because there is one Autorender Daemon process and there is only one server running the Autoren-
der Daemon, in case of failure the number of items to be processed increases quickly.

We have to research how to prevent or anticipate these stale NFS shares and we have to investigate if it
is possible to run multiple Autorender Daemons that can share the load, and in case of a failure of one
Daemon, items can remain being processed.

5.2.3 Requirements

Based on our analysis, we define the following requirements for a new architecture for the Autorender
Daemon:

e A mechanism different from NFS shares or memory has to be designed for sharing the value of
coldmaxmediaid , because stale NFS handles caused the loss of this value. Sharing this variable in
memory is also not an option, because the value would be lost in case of failure.

e Multiple daemons should enable redundancy to keep the service running.

5.2.4 Solutions

A solution is to share the value of coldmaxmediaid is to use a database for this purpose. The maxmediaid
is also shared using the database, so it is possible to do the same for coldmaxmediaid . Because the
database uses a master-slave setup (see Chapter 2), the value remains available even in case of failure of
a database slave.

As a solution to create redundancy, we can improve the design of the Autorender Daemon to enable the use
of multiple instances on different machines.

70

CHAPTER 5. MEDIA PROCESSING 5.3. CPU USAGE

5.2.5 Implementation

The design and implementation of a solutions that fulfills the requirements above are discussed in Section
5.6.

5.3 CPU usage

5.3.1 Problem description

In Section 5.2 we introduced application level monitoring of the Autorender Daemon. When we apply this
in combination with the available system level monitoring (see Figure 5.4) we conclude that although there
is a large number of media items that need to be rendered, the machine only uses half of its processing
capacity.

cubalibre - autorender todo

-]

—_— ——

=

(x300)
m—=

B
14:00 1E:00 18:@0 20:00 22:00 00:00 02:00 04:00 06:00 02:00 10:80 12:08
From 2006/04/06 13:27:03 To 2006/04/07 13:27:03

number of items to render

H todo time of the day

(@)

cubalibre - cpu usage

o A S AR T] } | e -
14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 O06:00 08:00 10:00 12:00
From 2006/04/06 13:27:03 To 2006/04/07 13:27;03

(b) MW iowait [@idle Muser Eirg MBEnice @O soft irg system

Figure 5.4: Autorender Daemon Queue and Processor Usage. (a) Length of t ~ he Autorender daemon queue in
time (b) CPU-usage of the machine that runs the Autorender da emon.

Because of the Hot and Cold setup (see Chapter 2), not rendered media items are served by the Web site
Web servers. Therefore when the number of not rendered media items increases, the number of requests
that are processed by the Web site Web servers instead of the Media Service Web servers also increases.
The analysis in Section 4.3 showed that recently uploaded media items are requested relatively more then
not recently uploaded media items. Therefore when the number of items that need to be rendered increases,
the load of rendered media items requests shifts from the Media Service Web servers to the Web site Web
servers, resulting in a performance decrease.

Therefore, we have to find a way to minimize the number of media items that need to be rendered.

5.3.2 Analysis

In our analysis, we translated this problem to a queuing theory model. In queuing theory’s context, a service
station is a group of servers, a server is a process that processes the items in the queue, which are called
clients or requests (the media items) [ASIQT], [IQT]. In Figure 5.5. a server machine can be seen as a

71

5.3. CPU USAGE CHAPTER 5. MEDIA PROCESSING

service station. The server machine contains multiple processing units on which we run the Autorender
Daemon process, which can be seen as a server. The hot media ids can be seen as clients in the queue.

In the analyzed situation, there is only one machine running one instance of the Autorender Daemon pro-
cess.

queue |IlI| [perver queue |11

cpu

Autorender
— Daemon

W

@) queue 1| server () queue |l proces
cpu
queue |I1l| [server queue |11
cpu
L service station | L machine |

Figure 5.5: Queuing Theory Definitions and Analogy. (a) Queuing Theory D efinitions (b) Analogy to our situation.

In the queuing theory, there exists three options in order to decrease the queue length:

e increase the number of servers per service station;
e increase the performance of the server (lowering the average service time per client);

e increase the number of service stations.

We can translate these options from queuing theory to real solutions.

Increasing the number of servers would result in running multiple Autorender Daemon processes on a single
machine. The aggregate processing capacity of the servers can be used to render the media items. For this
option, the machine has to have multiple processing units, otherwise multiple processes have to compete
for one processing unit, which does not result in improved performance.

Increasing the performance of the server would result in using faster processing unit per machine. In that
case, Autorender Daemon process renders more items in the same time.

Increasing the number of service stations would result in using multiple machines, and an instance of the
Autorender Daemon process would run on each machine. The aggregate processing capacity of the ser-
vice stations can be used to render the media items. Next to increasing performance, this also provides
redundancy: in case of failure of one machine, another machine continues to render media items.

We can also combine the three options. For the first and third option, we have to analyze if it is possible to
have multiple instances of the Autorender Daemon running and if these instances do not interfere with each
other. To perform this analysis, we have to inspect the code of the Autorender Daemon, in order to identify
possible concurrency problems.

For the second option, we have to analyze why only half of the processing capacity of the machine is used.
Furthermore, we can analyze the Autorender Daemon in order to optimize the process. For this, we also
have to inspect the code of the Autorender Daemon.

We present the Autorender daemon in pseudo code in Figure 5.6.

72

CHAPTER 5. MEDIA PROCESSING 5.3. CPU USAGE

procedure renderdaemon {
while(true){
tmpdir = create_temporar

for i in renderinterval {
if (check_media_database(i) == ok) {
getOriginalMedia(i); ~<— rendering
render(i, tmpdir);
}

} determine workload

renderdestinations = getRenderDestinations();
for i in renderdestinations {

copy tmpdir/* to i = copying

remove_temporary_directory(tmpdir);

Figure 5.6: Pseudo code of the Autorender daemon.

From Figure 5.6 we conclude that the work of the Autorender Daemon consists of three sequential steps:

1. determine which items to render;
2. render the media items;

3. copy the rendered media items to the Rendered Media Storage.

The Autorender Daemon runs on a “dual core single processor” machine. A dual core single processor
machine has two cores that can execute instructions. To benefit from this, there should be multiple tasks (at
least two) because a task can not run on two cores simultaneously. From the code inspection was learned
that the work of the Autorender Daemon is done sequentially. This explains why only a half of the processing
capacity of the machine was used.

Because of the above sequence, we can derive that when the daemon is rendering, no items are copied,
and when the daemon is copying items to their destinations, no media items are rendered.

From Figure 5.7, which is part of a log file from the Autorender Daemon, we conclude that rendering and
copying the media items take a relatively long time, and the getting and setting the values of coldmaxmediaid
and maxmediaid do not. System analysis tools showed that rendering media items utilizes a lot of CPU
cycles and that copying rendered media items utilizes much less CPU cycles. We therefore conclude that
rendering media items takes a relatively long time because it takes a lot of CPU power and that copying the
rendered media items takes a relatively long time because the process has to wait for responses from the
Media Storage.

If we can perform the rendering and copying of rendered media items in parallel, there would be two or
more tasks simultaneously and therefore the processing capacity of a dual core processor is used more
efficiently. There are also dependencies to be taken into account: media items must be rendered first,
before the rendered media items can be copied to the repositories.

The determineRenderinterval() function gets the values of coldmaxmediaid and maxmediaid and
uses these to calculate the render interval. Suppose multiple instances of the Autorender Daemon process

73

5.3. CPU USAGE CHAPTER 5. MEDIA PROCESSING

Tue Mar 7 09:51:40 CET 2006: Daemon render_media started

09:51:41 Creating temp directory

09:51:57 Starting autorender, ids=[12174930,12175429] (500) maxMediald=12206771; (todo: 31842)
09:51:57 Done 0, now at mediald 12174930; Memory used: 3.769736*10"6 bytes

09:52:26 Done 50, now at mediald 12174980; Memory used: 4.637984*10"6 bytes

09:52:57 Done 100, now at mediald 12175030; Memory used: 5.047328*10"6 bytes
09:53:35 Done 150, now at mediald 12175080; Memory used: 5.457184*10"6 bytes
09:54:06 Done 200, now at mediald 12175130; Memory used: 5.863152*10"6 bytes
09:54:23 Done 250, now at mediald 12175180; Memory used: 6.269024*10"6 bytes
09:54:54 Done 300, now at mediald 12175230; Memory used: 6.679976*10"6 bytes
09:55:26 Done 350, now at mediald 12175280; Memory used: 7.085808*10"6 bytes
09:55:58 Done 400, now at mediald 12175330; Memory used: 7.491864*10"6 bytes
09:56:32 Done 450, now at mediald 12175380; Memory used: 7.897232*10"6 bytes
09:57:11 Finished rendering

09:57:11 Copying to /var/MEDIARENDEREDTARGET/cI13

10:00:02 Copying to /varfMEDIARENDEREDTARGET/clI15

10:04:37 Copying to /varyMEDIARENDEREDTARGET/cubalibre

10:05:34 Setting coldmediaid

10:05:34 removing temp dir

Tue Mar 7 10:05:35 CET 2006: Daemon render_media stopped (ended with returnvalue 42)

Figure 5.7: Autorender Daemon Log file. In this run of the Autorender Daem on, rendering 500 media items
takes approximately 5 minutes and copying the rendered medi a items approximately 7 minutes. Creating and
removing the temporary directories and calculating the ren der interval takes multiple seconds.

are running, then they might calculate the same or overlapping render intervals. This would result in ren-
dering the same media items multiple times, which is a waste of CPU power. Furthermore, when multiple
Autorender Daemon processes set the value of coldmaxmediaid , the processes would set it with respect
to their local stored value, not taking into account media items rendered by other processes, which can lead
to an incorrect value. Therefore the daemon in this form is not multithread safe.

5.3.3 Requirements

New requirements for the Autorender daemon therefore are:

e rendering and copying of media items should be done in parallel;
e parallel processing should be allowed to optimize the capacity of the machine;

e the Autorender Daemon should allow the use of multiple instances without causing interference of the
other instances to enable activation of multiple instances if there is a demand for more performance.

5.3.4 Solutions

To be able to render and copy media items in parallel while taking the render-before-copy dependency into
account, we can construct a solution with pipelines [PL]. A pipeline can be understood as an assembly line
in which the first step is to render the media item and the second step is to copy the rendered media items to
the media storage. If there are multiple processing units, each processing unit can execute one step of the
pipeline, and therefore throughput is increased when compared to the initial Autorender Daemon design.
The code of the Autorender Daemon should be modified to integrate such a pipeline construction.

To allow multiple instances, the code of the Autorender Daemon should be modified so that each instance
of the Autorender Daemon process receives or calculates a unique set of media items to render. Further,
the value of coldmaxmediaid should be set unambiguously.

74

CHAPTER 5. MEDIA PROCESSING 5.4. NFS

5.3.5 Implementation

The design and implementation of a solution that fulfills the requirements above are discussed in Section
5.6.

5.4 NFS

5.4.1 Problem description

NFS is a network file system that enables hosts to share file systems via the network. The Autorender
Daemon requests the Media Storage via NFS for media items and stores the rendered media items to the
Rendered Media Storage via NFS. Further, the value of coldmaxmediaid is also stored in a file, which is
placed on a NFS share.

We have seen two problems related to NFS in our analysis:

e stale NFS mounts. In case this problem occurs, suddenly a remote file system is not accessible
and the process using remote file system access halts, while the NFS server apparently remains
accessible to other clients. Sometimes multiple clients experience the problem at the same time,
sometimes only a single client experiences the problem. Sometimes the service is inaccessible for
a small period of time and the service is restored automatically. Sometimes the service remains
unaccessible and the service has to be restored with intervention;

e slow NFS mounts. Because NFS uses the network, it can suffer from heavily loaded (and sometimes
congested) networks. NFS also implies that a machine becomes dependent of how fast NFS requests
are processed at the server side. Figure 5.7 shows how a slow NFS mount affects the daemon. Figure
5.8 shows a log file of a Autorender Daemon run in which no slow NFS mount was experienced. Notice
that copying rendered media items in Figure 5.7 takes approximately 7 minutes, while in Figure 5.8 it
approximately takes 20 seconds.

Both problems stall the Autorender Daemon because of the sequential nature of the Autorender Daemon
process, as described in Section 5.3.

Fri Apr 7 14:45:59 CEST 2006: Daemon render_media started

14:46:00 Creating temp directory

14:46:00 Starting autorender, ids=[14398900,14399399] (500) maxMediald=14401533; (todo: 2634)
14:46:00 Done 0, now at mediald 14398900; Memory used: 7.46272*10"6 bytes

14:46:28 Done 50, now at mediald 14398950; Memory used: 8.37708*10"6 bytes

14:46:57 Done 100, now at mediald 14399000; Memory used: 8.843544*10"6 bytes
14:47:20 Done 150, now at mediald 14399050; Memory used: 9.311224*10"6 bytes
14:47:50 Done 200, now at mediald 14399100; Memory used: 9.77268*10"6 bytes
14:48:28 Done 250, now at mediald 14399150; Memory used: 10.237456*10"6 bytes
14:48:53 Done 300, now at mediald 14399200; Memory used: 10.691832*10"6 bytes
14:49:24 Done 350, now at mediald 14399250; Memory used: 11.15076*10”6 bytes
14:49:42 Done 400, now at mediald 14399300; Memory used: 11.612056*10"6 bytes
14:50:01 Done 450, now at mediald 14399350; Memory used: 12.073608*10"6 bytes
14:50:30 Finished rendering

14:50:30 Copying to /varyMEDIARENDEREDTARGET/cl13

14:50:39 Copying to /varyMEDIARENDEREDTARGET/clI15

14:50:48 Copying to /var/MEDIARENDEREDTARGET/cubalibre

14:50:51 Setting coldmediaid

14:50:51 removing temp dir

Fri Apr 7 14:50:52 CEST 2006: Daemon render_media stopped (ended with returnvalue 42)

Figure 5.8: Autorender Daemon Log file. In this run of the Autorender Daem on process, rendering 500 media
items takes approximately 4 minutes and copying the rendere d media items approximately 20 seconds.

75

5.5. RENDER SOFTWARE CHAPTER 5. MEDIA PROCESSING

5.4.2 Analysis

Stale NFS mounts is a problem we experienced on multiple hosts in the Hyves internal network. We and
the Hyves system administrators have made several efforts to optimize NFS settings in order to prevent this
problem, but at present, no solution has been found to fix this problem.

Stale NFS mounts are local: host A can experience a stale NFS mount to server B, while host C using the
same share to server B does not experience a stale NFS mount.

Slow NFS mounts are caused by heavily loaded hosts. In this case, the hosts are the machines that store
and serve the rendered media items. Decreasing the load of these machines is discussed in Chapter 4. If a
server gets slow, all connected hosts experience the slow NFS mount.

Although there are no solutions to fix this directly, we can anticipate to the situation.

5.4.3 Requirements

From the problems at the Autorender Daemon caused by the use of NFS, we can conclude:

e As arequirement for the new Autorender Daemon, rendering and copying of the media items should
be decoupled so a stale or slow NFS mount does not stop the Autorender Daemon entirely;

e Allowing multiple instances of the Autorender Daemon can overcome a local stale NFS mount.

5.4.4 Solutions

For example, it is possible to introduce a queue to hold rendered media items. In case of a slow NFS mount,
the Daemon can keep rendering without having to wait for rendered media items to be copied and therefore
the processing capacity is more efficiently used. In case of stale NFS mount, the Autorender Daemon can
keep rendering, and when the mount is manually restored, the Autorender Daemon can restart copying of
the rendered media items. This also implies that we have to monitor such a queue, because it may be
possible that numerous media items are rendered, but are never copied to the Rendered Media Storage.

5.4.5 Implementation

The design and implementation of a solution that fulfills the requirements above is discussed in Section 5.6.

5.5 Render Software

5.5.1 Problem description

Sometimes the Autorender Daemon stalls. Symptoms are that the convert process, which is spawned for
every rendered media item, takes all CPU-time of one core for a long period of time. For example, after
three hours of CPU-time a single media item still has not been rendered. Currently, we can only detect this
by logging in to the host running the Autorender Daemon and using system analysis tools to request the
time spent on the current running convert process.

76

CHAPTER 5. MEDIA PROCESSING 5.5. RENDER SOFTWARE

5.5.2 Analysis

To be able to detect these events, we created a script that uses the age of file in which the value of
coldmaxmediaid is saved. After rendering 500 media items, this value is updated and this is done by
generating a new file with the value of coldmaxmediaid . When the file is created, the file system saves the
date and time of the file creation.

The script compares the timestamp of the file with the current date and time. We combined this script with
our monitoring tool. Since rendering of 500 media items should be done within half an hour, we got an alarm
from our monitoring tool if the age of the file is more than half an hour.

At each alarm we investigated the log files from the Autorender Daemon and the host that runs the Autoren-
der Daemon. It appeared that the symptoms only occur when the Autorender Daemon is rendering a video
file. From the log files we concluded that the convert command entered an infinite loop.

The Web site of the used tool does not report a problem similar to the problem described above. A solution
would be to analyze which specific type of video files cause the convert command to enter an infinite loop
(e.g., by debugging) but this would not fit in the scope of our research.

Therefore we design a workaround instead of a solution.

5.5.3 Requirements

In our workaround, we require that the maximum CPU-time the convert command is allowed to use, should
be limited.

5.5.4 Solution

A workaround has been designed by creating a wrapper that runs the convert command and sets a timer
each time the convert command is started. The wrapper then uses a time-out. If the time-out elapses, the
started convert command can be killed and the next media item can be rendered. Media items that can
not be rendered, can be requested via the Web site, but are not displayed, since there is no rendered media
item.

5.5.5 Implementation

Because the Autorender Daemon is written in PHP and uses the Bash [BASH] shell to execute commands,
we used the ulimit built-in command from Bash to limit the resources for the convert command. From
the manual of Bash [BASHM]:

Provides control over the resources available to the shell and to processes started by it, on
systems that allow such control. [...] options are interpreted as follows: [...] -t: The maximum
amount of CPU time in seconds.

The code of the Autorender Daemon was adapted from starting a Bash shell that starts a convert command

to starting a Bash shell that limits all started processes to 300 seconds CPU-time and then starts a convert
command.

5.5.6 Evaluation

The problem was not experienced any longer.

We conclude that although we did not fix the problem, the Autorender Daemon became more robust.

77

5.6. DESIGN CHAPTER 5. MEDIA PROCESSING

5.6 Design

5.6.1 Problem description

In previous sections we analyzed problems with the Autorender Daemon and proposed solutions to fix the
problem, but we postponed the design and implementation of a solution for the Autorender Daemon to this
section. Therefore this section contains a new Autorender Daemon design.

5.6.2 Analysis

In Section 5.2 we concluded that the value of coldmaxmediaid s set-back by 50.000 media items mainly
because the variable is located in a file placed on a NFS share, NFS shares causes the Autorender Daemon
to stall and since the Autorender Daemon is not redundant, a failure can cause the service to stop.

In Section 5.3 we concluded that performance of the Autorender Daemon is low because it uses only one of
the two processing units. This can be improved if we parallelize the process in order to use both processing
units and combine a CPU intensive and a not CPU intensive task. Furthermore, we analyzed the current
limitations to create a solution with multiple instances.

In Section 5.4 we analyzed the current NFS problems and how these problems affected the performance of
the Autorender Daemon.

In Section 5.5 we analyzed a problem with the used software that renders the media items and we created
a workaround for that problem.

5.6.3 Requirements

The following requirements are collected from the previous sections:

e A mechanism other than NFS shares or memory has to be designed for sharing the value of coldmaxmediaid

because stale NFS shares caused the loss of this value. Sharing this variable in memory is no option
either, because the value would be lost in case of system failure.

e Multiple daemons should enable redundancy to keep the service running.
e Parallel processing to optimize the capacity of the machine.

e The Autorender Daemon should allow the use of multiple instances without causing interference of the
other instances to enable activation of multiple instances if there is a demand for more performance.

e Rendering and copying of the media items should be decoupled so a stale or slow NFS mount does
not stop the Autorender Daemon entirely.

e Multiple instances should be allowed to overcome a local stale NFS mount.

5.6.4 Solutions

In Section 5.2 we suggest to use the database to store the value of coldmaxmediaid . In order to allow
multiple instances of the Autorender Daemon to render different sets of media items, we can extend the
current media table in the database with two columns. In the first column we maintain the status of a media
item so an instance of the Autorender Daemon can claim a media item to render. The different states
could be “rendered” for already rendered media items, “not rendered” for media items that are uploaded,
but not rendered yet, and “claimed” to indicate that that particular media item is claimed by an instance of
the Autorender Daemon. Then we have to modify the part of the Autorender Daemon that calculates which

78

CHAPTER 5. MEDIA PROCESSING 5.6. DESIGN

media items to render. Instead of calculating an interval, the Autorender Daemon can request the database
for a set of media id s that have the status “not rendered”. The Autorender Daemon then can claim these
media ids by changing their status to “claimed”. If we use transactions to request and claim the media
id s, we can prevent other instances to claim the same media id s. After the media items are rendered and
the rendered media items are copied to the Rendered Media Storage, the status of the media items can
be changed to “rendered”. Suppose an instance of the Autorender Daemon fails (e.g., because of power
failure), then the claimed mediaid s are never released. To prevent this, we could the second added column
to store a timestamp of the claim. Then we can use the timestamp to determine the age of the claim, and
if a maximum age is reached, the claim is released and other instances can claim the media id to render
the media item. We can create a process that checks the claims in the database and releases them if the
claim reaches a maximum age, but we also can add this functionality to the Autorender Daemon every time
it checks for new media items to render. The value of coldmaxmediaid then can be derived by finding the
lowest media id that has not been rendered.

The current Autorender Daemon is written in PHP. From this implementation we know that PHP is not very
suitable for creating daemons, because daemons have to run for long times and when a PHP process
run for a long time, it suffers from memory leaks. Although multi-threading or creating multiple processes
that communicate with each other is possible in PHP, PHP is mainly a Web server scripting language and
therefore less suitable for creating multi-threaded or multi process applications when compared to other
programming languages.

We can consider other programming or scripting languages, but since the entire Web site Code is created in
PHP, it would be difficult to create a program in another language that has to use the same classes, objects
and relations as used in the Web site. Furthermore, the Web site Code’s classes and objects are mapped
to the database using a mapping tool, which is not available in other programming languages but PHP. A
solution would be to create a daemon program in another programming language that is more suitable for
this purpose, and let this daemon program call the PHP code to render a single media item. Since in this
case, a PHP process would be created to render a media item, the chances of memory leak are reduced.

As a solution to the requirement to allow parallel processing, we can create multiple threads:

e athread that renders the media items. We refer to this thread as the “RenderThread”;

e athread that copies the rendered media items to the Rendered Media Storage. We refer to this thread
as the “CopyThread”;

e a thread that interacts with the database in order to request for new media id s to render and that
updates the database when the media items are rendered and copied. We refer to this thread as the
“DatabaseThread”.

Because copying the rendered media items and interaction with the database should not be CPU-intensive,
we can use multiple RenderThreads to fully utilize multiple processing units.

To allow interaction between the threads, we suggest the use of queues. The DatabaseThread determines
the media id s that should be rendered and stores these in a queue. The RenderThreads monitor the queue
and if the queue is not empty, they retrieve the first item in the queue and render it. After rendering, the
RenderThread stores the media id of the rendered media items in another queue. This queue is monitored
by the CopyThread. If that queue is not empty, the CopyThread retrieves the first item of the queue and
copies the rendered media items to the Rendered Media Storage. After copying the rendered media items,
the CopyThread stores the media id of the copied items in another queue, which is monitored by the
DatabaseThread. The DatabaseThread releases the claim in the database and sets the status of the media
item to “rendered”. This solution is displayed in Figure 5.9.

5.6.5 Implementation

We did not implement this design. The design was recommended to the programmers of Hyves, who im-
plemented a similar solution. The differences between the proposed solution and the implemented solution

79

5.6. DESIGN CHAPTER 5. MEDIA PROCESSING

(N
RenderThread
.)\
[11 (3) [CopyThread [11
(N
) / 4 6
@ RenderThread “) (5) ©)
\ _J
DatabaseThread
1) (7)

Figure 5.9: New Autorender Design. (1) The DatabaseThread interacts wi th the database to determine which
media items to render. It claims the media ids. (2) The ids of t hese media items are stored in a queue. (3) The
media items are rendered by the RenderThreads. (4) The media ids of the rendered media items are stored in a
queue. (5) The CopyThread copies those items to the Rendered Media Storage. (6) The media ids of the copied
rendered media items are stored in a queue. (7) The DatabaseT hread interacts with the database to release the
claims and to adjust coldmaxmediaid.

are explained below.

Instead of extending the media table in the database, Hyves decided to extend the database with an ad-
ditional table. In this additional table, all recently uploaded media items that have not been rendered are
stored. If a media item has been rendered, the entry is moved from this additional table to the media table.
In the new table, the media item and details concerning possible claims are stored. When an instance of
the Autorender Daemon claims a media item, the claim is registered in this table. Hyves developers also
decided to create a controller process that monitors the claims and releases them if the claim reached a
certain age. Hyves decided for an additional table because otherwise queries for finding media items with
a state “not rendered” will consider millions of already rendered media items, while only a small part is not
rendered. Hyves decided to create a controller process instead of adding this functionality to the Autorender
Daemon because in their opinion creating a controller process is less complex than extending the current
Autorender Daemon with functionality to release over-aged claims.

Hyves developers also decided not to extend the current design with multi-threading, but instead they cre-
ated a solution that allows multiple instances on multiple machines. Therefore it is also possible to start
multiple instances on the same machine, and thus multiple processing units are used more efficiently.

In addition, the design of the Web site code was modified and the “Hot and Cold” structure as discussed
in 2 was removed. Rendered Media items can only be requested if they are rendered. After uploading a
media item, users receive a notification that the uploaded media item will be processed and until that time,
the item is not visible in their photo albums.

5.6.6 Evaluation

Using an additional table instead of our proposed solution to extend the current media table with additional
columns is more efficient, because with our solution each time all the rows in the media table are considered
(currently 35 million rows) and with the solution of the Hyves developers only the newly uploaded media
items are considered (on average 1000 rows).

The introduction of an additional controller process instead of adding this functionality to the design of
the Autorender Daemon is less robust, because each additional process could be a single point of failure.

80

CHAPTER 5. MEDIA PROCESSING 5.7. CONCLUSION

Instead of using the multiple Autorender Daemon processes for this functionality, now at least two controller
processes have to run.

Instead of multi-threading, allowing multiple instances on the same machine is an elegant solution in our
opinion, but a little less efficient. In the case of multiple instances on the same machine, it is still possible
that both instances are waiting for copying the rendered media items at the same time, and therefore leaving
the processing units idle.

Removing the “Hot and Cold” structure is in our opinion a good design decision. We have identified two
options: the Web site renders the uploaded media item to all formats and stores them directly into the
Rendered Media Storage and obsoletes the Autorender Daemon, or the Web site does not render at all
and the Autorender Daemon renders all the media items. The “Hot and Cold” solution is in between these
solutions and has the disadvantages of both solutions: media items are rendered multiple times (by the
Web site and the Autorender Daemon) and there is a queue which users are not aware of, which causes
confusion why their uploaded media item is not visible.

After the implementation of the redesigned Autorender Daemon and running multiple instances on multiple
machines, there has not been a large number of not rendered media items anymore. Multiple machines
running multiple instances of the Autorender Daemon software keeps the queue of not rendered media
items very short.

5.7 Conclusion

In this chapter we discussed the analysis we did on the Autorender Daemon. First we discussed the problem
in which the value of coldmaxmediaid was set-back by the amount of 50.000 media items. We identified
that this was caused by storing this variable in a file on a NFS share. We also identified that the machine
running the Autorender Daemon was not fully utilized because the machine has a so called dual-core ar-
chitecture, while the Autorender Daemon was not programmed to utilize this feature although there was a
demand for more processing performance. Next to this, we identified that slow or stale NFS shares were
not anticipated which limited the performance of the Autorender Daemon and for a problem with the used
render software a workaround was designed. From all the identified problems with the Autorender Daemon,
requirements for a new Autorender Daemon were derived and a new Autorender Daemon was designed
and partly implemented. The implemented Autorender Daemon is evaluated.

81

5.7. CONCLUSION CHAPTER 5. MEDIA PROCESSING

82

Chapter 6

Conclusions and Recommendations

In this chapter, we provide an overview of the identified architectural principles and use them to answer our
initial research question. Further, we provide recommendations for the implementations and designs that
resulted from the architectural principles and our research. Finally, some future work is proposed.

6.1 Architectural Principles

Our initial research question was:
Which architectural principles should be applied in the design of a large scale Web site?
To answer this research question, first these sub-questions need to be answered:

What architectural principles should be applied in the design of a storage architecture for a
large scale Web site?

What architectural principles should be applied in the design of a static content serving archi-
tecture for a large scale Web site?

What architectural principles should be applied in the design of a processing architecture for a
large scale Web site?

Therefore, we give per sub-question an overview of the architectural principles identified in our research.

6.1.1 Architectural Principles for Storage Architectures

In our case study, the combination of the linear storage pattern and the requests pattern that was not linear,
resulted in the situation in which the ratio of the number of items per storage node and the ratio of the
number of requests per storage node did not correspond. This caused a difference in load and therefore the
storage with the most requests experienced a performance problem because its maximum request capacity
was reached.

Storing items with a pattern in which the chance of storing an item at an arbitrary storage node is equal for
all storage nodes, balances the number of items stored per storage node. Furthermore, independent of the
request pattern, it also balances the number of requests per storage node. Even if there are no performance
issues, it is optimal to balance the load, in order to handle peak loads properly.

83

6.1. ARCHITECTURAL PRINCIPLES CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

Using such a storage scheme in which the chance of storing an item at an arbitrary storage node is equal for
all storage nodes, the ratio of the number of items per storage node and the ratio of the number of requests
per storage node correspond, and therefore there is no difference in load.

We have identified as an architectural principle for designing a storage architecture for a large scale Web
site, that the load of storage actions (writes and reads) should be balanced on each storage node. One
should design a storage architecture that uses a mechanism or scheme in which the chance that an arbitrary
item is stored is equal for all storage nodes and storage items, because the randomness enforces a natural
balance suitable for every request pattern. This prevents the situation in which one storage node limits the
maximum number of reads and writes and enables to use the aggregate storing and processing capacity of
the storage.

In our case study, at first, a NAS with a capacity of 4TB was purchased. Because the NAS was used for
storing backups and storing the media items, it was decided that when the capacity of this NAS was not
sufficient, to purchase a second NAS with 4TB capacity. In the new situation, the first NAS was used for
storing backups, and the second NAS was used for storing media items. When the second NASs capacity
appeared insufficient, a larger NAS was purchased. In this situation, the first and the second NAS with a
capacity of 4TB were used for storing backups and the third NAS with a capacity of 9TB was used for storing
media items. Also the capacity of 9TB appeared insufficient. Additional external disks are used to provide
sufficient capacity in combination with the NAS, because currently there are no NASs available with larger
capacity. We have seen that it is possible that a large scale Web sites growth outperforms the growth of the
capacity of available resources.

We identified that when designing a storage architecture for a large scale Web site, one should find a
solution to overcome the limits in capacity provided by one single machine (e.g. processing capacity or
storage capacity), because it might be possible that, sooner or later, the growth of the large scale Web site
outperforms the growth of the available technology. Such a design should use clusters or pools of machines
with disks, in order to overcome the limitations by one single machine with disks. By taking into account that
in the future new and/or improved technology might become available (e.g., allowing nodes with different
capacities) enables migration to newer technology and phasing out the old technology.

Both architectural principles are not only applicable to the design of a storage architecture, but also to any
design in which items of a certain class need to be distributed over items of another certain class. Examples
seen in the case study are rendering the media items using multiple Autorender Daemon servers, storing
rendered media items in a number of storage nodes and serving Web pages to a number of clients using a
number of Web servers.

In our case study, the load-balancing principle was applied at several parts of the service. Examples are
load-balancing the users over the Web site Web servers and, not mentioned in this report, load balancing
the Web site Web servers over a number of member database slaves. In the parts of the service where
this principle was not applied (e.g., the storage), scalability problems occurred that were experienced as
performance problems.

We have to mention that there is a essential difference between load-balancing Web servers over a number
of database slaves and load-balancing the storage nodes. In the first case any Web server can be binded to
any database slave because their content should be equal, in the second case the contents of each storage
node are not equal. Therefore additional logic is necessary to combine the request and the destination and
wee can not speak of the term “binding”.

In our case study, the principle to use pools or clusters to serve a storage or processing service in order
to overcome the limits by using a single unit can be applied at several parts of the service. We already
mentioned the issue with the NAS, but it also holds for the Autorender Daemon: its processing capacity
was limited and the demand for processing capacity exceeded this limit. Because the service was limited
to a single machine, it was not possible to improve the performance without changing the design or the
implementation of the Autorender Daemon.

84

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 6.1. ARCHITECTURAL PRINCIPLES

6.1.2 Architectural Principles for Static Content Serving Architectures

In our case study, we have seen that by interpreting the statistics of the requests that were done by clients
to the case study’s Rendered Media Web servers resulted in the use of a caching solution. Therefore we
would like to suggest that the request pattern for a large scale Web site should be analyzed. Although this
is not a design principle, creating tools which allows one to analyze the request pattern when designing a
large scale Web site is.

Further, we have used a caching solution to cache “popular” rendered media items. Although rendered
media items can be popular without any reason, there are also rendered media items popular with a reason.
Examples are the rendered media items that appear for a long period of time on the “Open Home Page”.
The Open Home Page is a page on the Web site showing the most recently uploaded media items, the
most popular rendered media items in terms of numbers of requests, numbers of credits or numbers of
comments. Introducing such a page on the Web site can be a reason to research the effects for the request
pattern and might lead to introducing additional caching strategies.

We have identified as an architectural principle for designing a large scale static content serving architec-
ture, that analysis on the requests pattern should be enabled by allowing monitoring of the requests and by
deriving request patterns by monitoring the requests. This can provide deep insight into the use of the ap-
plication by its users and can provide guidelines when maintaining, extending or improving the performance
of the large scale Web site.

We have seen that this architectural principle is not only applicable to a static content serving architecture,
but can be applied for every part of the large scale Web sites. We think that when designing a large scale
Web site the focus should be on maintaining the large scale Web site also, next to the focus on extending
the large scale Web site and maintaining the systems that run the large scale Web site.

6.1.3 Architectural Principles for Processing Architectu res

As architectural principle for designing a large scale storage architecture, we have identified that pools or
clusters are necessary to provide sufficient capacity and not being limited by one machine or device. Next to
overcoming the limits as opposed by using single machines or resources, pools and/or clusters also provide
redundancy.

We saw that this architectural principle was applied at several parts in our case study. Some parts were
considered not critical and therefore these parts were not redundantly implemented or in pools or clusters.
Although some parts were not considered critical, the growth of the large scale Web site caused a change
in view. Therefore it is better to apply the principle for every part of the large scale Web site from the start.
This prevents future bottlenecks because of being limited to a single machine and this limits the impact of a
failure when only one machine is being used for a certain purpose.

We have also seen that most of the redundancy provided by the use of multiple instances (e.g., multiple Web
site Web servers) was just a side effect of creating a scalable solution. Therefore we stress redundancy in
this section.

As architectural principle for designing processing architectures for large scale Web sites, we have identi-
fied that every sub-service of the large scale Web site should be implemented using pools or clusters for
providing the necessary redundancy.

6.1.4 General Architectural Principles

Next to the architectural principles identified for designing a large scale storage architecture, a large scale
processing architecture and a large scale static content serving architecture, we also identified general
architectural principles.

We have identified that tight coupling of some parts of the Hyves Web site lead to limiting the growth of
the large scale Web site. Examples of such tight coupling are using the NAS as a backup and file server

85

6.2. CONCLUSIONS CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

simultaneously, which caused both functions to interfere with each other. Another example is the variable
intervalboundary that has been hard-coded into the application and limited the flexibility of adjusting this
value.

We consider loose coupling as an architectural principle for designing large scale Web sites. The exam-
ples of tight coupling limits the growth of parts of the large scale Web site and therefore should not be
implemented.

We have seen that in our case study system-level monitoring has been implemented and there is also
application-level monitoring for the used applications like Apache and MySQL, but there is no application-
level monitoring for the in-house written applications and there is no monitoring of the aggregate results. This
limits the monitoring of the large scale Web site as a whole. We have also seen an example of application-
level monitoring that was implemented for monitoring an in-house written application after performance
problems occurred and how this lead to more knowledge on how to handle the problem.

Therefore we have identified that a good architectural principle is to implement application-level monitoring
from the start of the design from every storing, processing and/or serving part when designing a large scale
Web site.

6.2 Conclusions

Since all sub-questions are answered, we can answer our initial research question:
Which architectural principles should be applied in the design of a large scale Web site?
Our answer is:

The principles that we have identified in the sub-questions are mostly identified after perfor-
mance or capacity problems in several parts of our case study. Therefore the identified archi-
tectural principles are applicable to our case study certainly but are not necessarily applicable
to the design of any large scale Web site. The identified architectural principles are that redun-
dancy and scalability should be provided by implementing (sub)services of the large scale Web
site using pools or clusters, that the requests the large scale Web site processes should be in-
vestigated in order to gain more insight to improve or extend the current implementation and/or
design of the large scale Web site and application-level monitoring enables a more proactive
maintenance. The identified architectural principles are not much different from topics covered
in any book on distributed systems, still our research showed the consequences of not applying
these concepts at the design of a large scale Web site.

6.3 Recommendations

e The current caching solution with Squid uses an in-memory cache and an disk cache. Current caching
performance can be improved by using more machines, more partitions and by extending the RAM of
the machines. Furthermore, there exists interface cards for x86 based servers which can be inserted
into a PCI slot of the server (see Figure 6.1). These cards provide a simulated hard disk to the
computer. The simulated hard disk is implemented in the RAM of the interface card. According to
the specifications, these cards offer lower access times than the current fastest SCSI hard disks. By
altering the current caching reverse proxy server setup with an in-memory cache and a disk cache to
a setup with in-memory cache, on memory-disk cache and a disk cache, caching performance can
be improved. Comparisons of such cards can be found in [DDRX] and [IRAM]. The vendor can be
found in [DDRG];

86

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 6.4. FUTURE WORK

Figure 6.1: Photograph of (a) a DDR drive X1 and (b) iRAM.

e Replace the current media storage and the rendered media storage with a setup comparable as
discussed in this thesis. Instead of focusing on a large distributed file system like GFS or Panasas,
focus on technologies that content delivery networks like Akamai and Coral use;

e In large applications like SAP or ERP administration is divided into two distinct administration areas:
system administration and application administration. We think that, now the Hyves Web site has ex-
perienced a considerable growth, it it time to introduce application administration. We have to say that
to certain levels, application administration is already in progress (e.g., the community managers that
delete undesired content from the application like pornography and illegal activities). An application
administrator can, using the application level monitoring as suggested, enable a more proactive ap-
proach when extending and maintaining the current architecture of the Hyves Web site. For example,
the growth of the number of media items can be an indication for when to order additional storage
nodes and the growth in the number of page views can be an indication of when to order new rack
space and Web servers.

6.4 Future work

e A research why the '200’-resolution is significantly less requested than the other by the application
offered resolutions is necessary. Questions to be answered are:

1. is the resolution unpopular by the users or does there exist another reason for not requesting
this resolution?;

2. depending on the outcome of the question above, reconsideration is necessary if the resolution
should be kept in the application or maybe dropped;

3. Effects of both scenarios could be investigated. Think in terms of decreased render times,
decreased storage capacity needs, application reprogramming etc.;

e Statistics on the requests that are received at the Rendered Media Web servers can be used to
generate statistics on the number of distinct media items that are requested and how much memory
is needed to cache all distinct requests. Using these data together with extended information from
the caching solution, one is able to calculate the efficiency of the caching solution. This can be an
indication how future improvements take effect on the caching solution (e.g., adding additional caching
machines);

e A prototype of the storage solution that is provided in this thesis could be implemented as a proof
of concept and evaluated. Perhaps it is possible to determine the desired amount of storage nodes
in order to provide enough serving capacity. Perhaps it is possible to find a correlation between the
number of users, the number of media items and the number of storage nodes;

87

6.4. FUTURE WORK CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

e Several times there were ideas at Hyves to implement cache nodes at the networks of large Internet
service provides in the Netherlands. Research on how this could be done is necessary and how this
could improve the current performance is needed.

88

References

[AKAMAI]

[ALONSO]

[ASIQT]

[AVALANCE]

[BASHM]

[CHENO2]

[COOKIE]

[DAEMON]

[DFS]

Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web, David R. Karger and Eric Lehman and Frank Thomson
Leighton and Rina Panigrahy and Matthew S. Levine and Daniel Lewin. STOC '97:
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, 1997,
p. 654-663, El Paso, Texas, United States.
http://www.akamai.com/dl/technical_publications/Con sistenHashingandRandom
TreesDistributedCachingprotocolsforrelievingHotSpot sontheworldwideweb.pdf
Last viewed on November 16th, 2006.

Web Services, Concepts, Architectures and Applications, G. Alonso, F. Casati, H. Kuno, V.
Machiraju, Springer-Verlag, 2004, Berlin, Germany.

A Short Introduction to Queuing Theory, Andreas Willig, Technical University Berlin,
Telecommunication Networks Group, 1999, Berlin.
http:/Aww.tkn.tu-berlin.de/curricula/ws0203/ue-kn/ qt.pdf

Last visited November 16th, 2006.

On the design of S-boxes, A.F. Webster, S.E. Tavares, Department of Electrical Engineer-
ing, Queen’s University, Kingston, Ont. Canada, p524- 534.
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/P DF/C85/523.PDF

Last visited November 16th, 2006.

The GNU Bash Reference Manual, for Bash, Version 2.05b Free Software Foundation, Inc.
1991-2002, ulimit section.

http://www.gnu.org/software/bash/manual/bashref.htm [#1DX106

Last visited November 16th, 2006.

A Scalable Cluster-based Web server with Cooperative Caching Support, G. Chen, C.L.
Wang and F.C.M. Lau, Department of Computer Science and Information Systems, The
University of Hong Kong, Hong Kong. A preliminary version of this paper appeared in
Proceedings of IEEE International Conference on Cluster Computing (Cluster 2001), New-
port Beach, California, October 2001, under the title “Building a Scalable Web Server with
Global Object Space Support on Heterogenous Clusters”.

http://www.cs.hku.hk/ ~ clwang/papers/WebServer-CCPE2002.pdf

Last visited November 16th, 2006.

Computer Networking, A Top-Down Approach Featuring the Internet James F. Kurose,
Keith W. Ross, second edition, international edition, 2003, Addison Wesley, Boston, United
States of America. p.100-101.

The Linux A-Z, Phil Cornes, 1997, Prentice Hall, Essex, England, p.352.

Applied Operating System Concepts, first edition, Abraham Silberschatz, Peter Galvin,
Greg Gagne, 2000, New York, United States of America. p541-553.

89

REFERENCES REFERENCES

[DSYS] Distributed Systems, Principles and Paradigms, Andrew S. Tanenbaum, Maarten van
Steen, 2002, Prentice Hall, Upper Saddle River, NJ. p.33, p.427-432, p.672-676.

[HASH] Discrete and Combinatorial Mathematics, an Applied Introduction, Ralph P. Grimaldi, 5th
edition, international edition, 2004, Pearson Education, Boston. p.694

[HPLTR1] Evaluating Content Management Techniques for Web Proxy Caches, Arlitt, Martin;
Cherkasova, Ludmila; Dilley, John; Friedrich, Richard; Jin, Tai, HP Labs Technical Re-
ports, HPL-98-173, 990430
http:/iww.hpl.hp.com/techreports/98/HPL-98-173.htm I
Last visited November 1st, 2006.

[HPLTR2] Enhancement and Validation of Squid’s Cache Replacement Policy, Dilley, John; Arlitt,
Martin; Perret, Stephane, HP Labs Technical Reports, HPL-1999-69, 990527
http://www.hpl.hp.com/techreports/1999/HPL-1999- 69. html
Last visited November 1st, 2006.

[1QT] Introduction to Queuing Theory, Second Edition, Robert B. Cooper, Computer Systems
and Management Science, Florida Atlantic University, Boca Raton, Florida, North-Holland,
New York.

[PL] Logic and Computer Design Fundamentals, M. Morris Mano, Charles R. Kime, 2nd edition,
international edition, Prentice Hall International, Upper Sadle River, NJ, United States.
p.453-455.

[SNA97] Sed & Awk, 2nd edition, D. Dougherty and A. Robbins, O’Reilly, Sebastopol, CA, UsA

[SQDO04] Squid, The Definitive Guide, D. Wessels, O'Reilly, Sebastopol, Ca, UsA

[WCCH] Web caching with consistent hashing, D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,

R. Dhanidina, K. lwamoto, B. Kim, L. Matkins, Y. Yerushalmi. MIT Laboraty for Computer
Science

http://iwww8.org/w8-papers/2a-webserver/caching/pape r2.html

Last visited November 22nd, 2006.

90

Web References

[AHDOO] The American Heritage Dictionary of the English Language, Fourth Edition, 2000,
Houghton Mifflin Company.
http://dictionary.reference.com/browse/Weh%20site
Last visited on November 16th, 2006.

[APACHE] The Apache Project
http://httpd.apache.org
Last visited on November 16th, 2006.

[AWK] Gawk - Gnu Project - Free Software Foundation (FSF)
http://www.gnu.org/software/gawk
Last visited on November 16th, 2006.

[BASH] Bash - Gnu Project - Free Software Foundation (FSF)
http://www.gnu.org/software/bash
Last visited on November 16th, 2006.

[CACTI] Cacti, the complete rrdtool-based graphing solution
http://www.cacti.net
Last visited on November 16th, 2006.

[CACTIH] Hyves internal Cacti
closed source.

[CLARIION] EMC Clariion Networked Storage Systems
http://www.emc.com/products/systems/clariion.jsp?op enfolder=
storage _systems
Last visited November 16th, 2006.

[CISCOCE] Cisco Cache Engine
http://www.cisco.com/univercd/cc/td/doc/product/web scale/webcache/
index.htm
Last visited November 16th, 2006.

[CISCOCSM] Cisco Content Switching Module
http:/iww.cisco.com/en/US/products/hw/modules/ps27 06/ps780/index.
html
Last visited November 16th, 2006.

[CODA] Coda File System
http://www.coda.cs.cmu.edu/
Last visited November 16th, 2006.

[COOKIE] Wikipedia on HTTP Cookie
http://en.wikipedia.org/wikiHT TP _cookie
Last visited November 17th, 2006.

91

WEB REFERENCES WEB REFERENCES

[CORAID]

[CORAL]

[CRON]

[DDRG]

[DDRX]

[EQUALLOGIC]

[EWEEK]

[GENTOO]

[GOOGLE]

[GLABS]

[FLASH]

[HASH]

[HYVES]

[IBCFS]

[IBBD]

TrueBit/CoRaid
http://www.coraid.nl
Last visited November 17th, 2006.

Coral: The Coral Content Distribution Network
http://www.coralcdn.org/
Last visited November 17th, 2006.

cron from FOLDOC
http://foldoc.org/?query=cron
Last visited November 22nd, 2006.

Gigabyte Computer Products - DDR drive
http://www.ddrdrive.com/ddrdrive _prototype.html
Last visited November 1st, 2006.

Tweakers.net - DDR X1 drive
http://tweakers.net/nieuws/38098
Last visited November 1st, 2006.

EqualLogic Networked Storage
http://www.equallogic.com/ Last visited November 17th, 2006.

Eweek: MySpace and Isone
http://www.eweek.com/article2/0,1895,1947684,00.asp a
Last visited November 22nd, 2006.

Gentoo Linux
http://www.gentoo.org
Last visited November 16th, 2006.

Google
http:/Aww.google.com
Last visited November 16th, 2006.

Google Labs publications
http://labs.google.com/papers
Last visited November 16th, 2006.

Macromedia Flash Professional
http:/iww.adobe.com/products/flash/flashpro/
Last visited November 16th, 2006.

Wikipedia on Hash Function
http://en.wikipedia.org/wiki/Hash _function
Last visited November 17th, 2006.

Hyves.net - Always in touch with your friends
http://www.hyves.net
Last visited November 16th, 2006.

lan Blenke Clustered File System
http://ian.blenke.com/projects/xen/cluster
Last visited November 22nd, 2006.

lan Blenke Computer Engineer
http://ian.blenke.com/projects/cornfs/braindump/bra indump.html
Last visited November 22nd, 2006.

92

WEB REFERENCES WEB REFERENCES

[IMGMGK] ImageMagick: Convert, Edit and Compose Images
http://www.imagemagick.org
Last visited November 22nd, 2006.

[IPVS] The Linux Virtual Server Project
http://www.linuxvirtualserver.org
Last visited November 22nd, 2006.

[[RAM] Tweakers.net - iRAM drive
http://tweakers.net/nieuws/38256/
Last visited November 1st, 2006.

[JUNIPER] Juniper Application Acceleration Platform
http://www.juniper.com
Last visited November 22nd, 2006.

[KTCPVS] KTCPVS Software: Application-Level Load Balancing
http://www.linuxvirtualserver.org/software/ktcpvs/k tcpvs.html
Last visited November 22nd, 2006.

[MOGILE] MogileFS,
http://www.danga.com/mogilefs/
Last visited November 22nd, 2006.

[MSISA] Microsoft Internet Security and Acceleration Server
http://www.microsoft.com/isaserver/prodinfo/previou sversions/2004.
mspx
Last visited November 22nd, 2006.

[MSN] MSN.com
http://www.msn.com
Last visited November 16th, 2006.

[MYSPACE] MySpace
http://www.myspace.com
Last visited November 16th, 2006.

[MYSQL] MySQL
http://www.mysql.org
Last visited November 16th, 2006.

[NAGIOS] Nagios Network Monitor
http://www.nagios.org a
Last visited November 17th, 2006.

[NPS] Netscape Proxy Server
http://wp.netscape.com/proxy/v3.5/datasheet/index.h tml
Last visited November 22nd, 2006.

[ONESTAT] OneStat
http://www.onestat.com
Last visited on November 16th, 2006.

[PANASAS] Panasas - Accelerating Time to Results with Clustered Storage
http://www.panasas.com
Last visited November 16th, 2006.

93

WEB REFERENCES

WEB REFERENCES

[PERL]

[PET]

[PHP]

[POSTFIX]

[RHCS]

[RHGFS]

[SQUID]

[UVADFS]

[WIKICH]

[WIKIDHT]

[WIKIJS]

[WIKIMD5]

[WIKINAS]

[WIKINFS]

[WIKIOC]

The Perl Directory - perl.org
http://www.perl.org
Last visited November 16th, 2006.

PET Cooperative Proxy Cache
http://pet.sourceforge.net
Last visited November 16th, 2006.

PHP: Hypertext Preprocessor
http://www.php.net
Last visited on November 16th, 2006.

The Postfix Home Page
http://www.postfix.org
Last visited on November 16th, 2006.

Red Hat Cluster Suite

http://www.redhat.com/docs/manuals/csgfs/pdfirh-cs-

Last visited November 22nd, 2006.

Red Hat Global File System

http://www.redhat.com/docs/manuals/csgfs/pdf/rh-gfs

Last visited November 22nd, 2006.

Squid Web Proxy Cache
http://www.squid-cache.org
Last visited November 16th, 2006.

uvadfs
http://staff.science.uva.nl/
Last visited November 22nd, 2006.

Wikipedia on Consistent Hashing
http://en.wikipedia.org/wiki/Consistent
Last visited November 22nd, 2006.

Wikipedia on Distributed Hash Table
http://en.wikipedia.org/wiki/Distributed
Last visited November 22nd, 2006.

Wikipedia on JavaScript
http://en.wikipedia.org/wiki/JavaScript
Last visited November 22nd, 2006.

Wikipedia on MD5
http://en.wikipedia.org/wiki/MD5
Last visited November 22nd, 2006.

Wikipedia on Network Attached Storage
http://en.wikipedia.org/wiki/Network-attached
Last visited November 22nd, 2006.

Wikipedia on NFS
http://en.wikipedia.org/wiki/Network
Last visited November 22nd, 2006.

Wikipedia, Online Community
http://en.wikipedia.org/wiki/Online
Last visited November 22nd, 2006.

_hashing

_hash _table

_storage

_File _System

-community

en-4.pdf

-en-6 _1.pdf

~delaat/snb-2004-2005/p15/report.pdf

94

WEB REFERENCES WEB REFERENCES

[WIKISHA] Wikipedia on SHA hash functions
http://en.wikipedia.org/wiki/SHA _hash _functions
Last visited November 22nd, 2006.

[WIKIW] Wikipedia on Website
http://en.wikipedia.org/wiki/Website
Last visited November 22nd, 2006.

[WIKIWP] Wikipedia on Proxy Server
http://en.wikipedia.org/wiki/Proxy _server
Last visited November 22nd, 2006.

95

WEB REFERENCES WEB REFERENCES

96

Appendix A

Tools

This appendix contains the source codes of the tools that were written and used for our research.

1. requeststats_a.awk see A.1

2. requeststats_id2plot.sh see A.2
3. requeststats_id2plot_unig.sh see A.3
4. requeststats_time2plot.sh see A4

5. tcpdump.sh see A5

6. processtcpdump.sh see A.6

The requeststats_a.awk script processes Apache- or Squid-logs and generates a summary with statis-
tics. Execute by awk -f requeststats_a.awk <access.log >result.txt . In the source, grain, max-
imum_id and several other options can be adjusted. The output consists of statistics per format, per id, per
unique id and per period of time (all configurable), and the number of lines parsed.

Listing A.1: requeststats_a.awk

requeststats.awk
tristan@hyves.nl

expects an apache access log as input

BEGIN {
config
max_interval = 26000000;
#grain = 500000;
#grain = 4850000;
grain = 500000;

timegrain = 1800;
timemax = 3600 * 24;

init counters for requests per resolution
f50 = 0;

f75 = 0;

f120
f200
f500
f700
ftotal
utotal

eLeee”

= 0;

= 0;

init counters for requests per interval
for (i=0; i*grain < max_interval; i++){

97

APPENDIX A. TOOLS

icount[i] = 0;
uniekperintervalli] = 0;
0;
0.

e

]
f500a[i}
]

}
itotal=0;

#init counters for requests per id
for (i=0; i < max_interval; i++){
irequest[i] = 0;

requesttotal=0;

for (i=0; i * timegrain< timemax; i++){
timereq[i] = 0;

#time stamp is $4

strip leading [dd/mmm/yyyyy:

dl = substr($4,index($4, ":")+1, 99);

#print "d1 _is " dl

split(dl, datum, ":");

seconde = datum[3];

minuut = datum[2];

uur = datum[1];

time = seconde + (minuut * 60) + (uur * 3600);

#request is $7

#strip leading /

pl = substr($7,length("http://intervall.rendered.star
strip leading 10...0-15...0/

p2 = substr(pl, index(pl, "/")+1, 99)

strip trailing .jpeg

p3 = substr(p2, 0, index(p2, ".")-1)

split(p3, plaatje, "_");

id = substr(plaatje[1],
resolutie = plaatje[2]

index(plaatje[1], "/")+1, 99);

i f (resolutie == "50") {
f50++;
f50a[i nt (id/grain)]++;
}
if (resolutie == "75") {
f75++;
f75a[int (id/grain)]++;
}
if (resolutie == "120") {
f120++;
f120a[i nt (id/grain)]++;
}
if (resolutie == "200") {
f200++;
f200a[i nt (id/grain)]++;
}
i f (resolutie == "500") {
f500++;
f500a[i nt (id/grain)]++;
}
if (resolutie == "700") {
f700++

f700a[i nt (id/grain)]++;

icount[int(id/grain)]++;
timereq[i nt (time/timegrain)]++;
irequest[id]++;

tpda.net/"),99)

98

APPENDIX A. TOOLS

END {
ftotal = f50 + f75 + f120 + f200 + f500 + f700;
for (i=0; i * grain < max_interval; i++){
itotal += icount[i];

}

for (id=0; id < max_interval; id++){
i f (irequest[id] !'= 0){
uniekperintervall i nt (id/grain)]++;

}

for (i=0; i * grain < max_interval; i++){
utotal += uniekperintervalli];
print uniekperintervalli];

print NR, "lines _parsed";

printf("\n");

printf("Resolutie _ statistieken\n");

printf("Res ___aantal __ . %%\n");

printf("50: _%8d., .%02.2f _.\n", f50, f50/ftotal * 100);

printf("75: _.%8d__%02.2f _.\n", f75, f75/ftotal * 100);

printf("120:%8d __%02.2f _.\n", f120, f120/ftotal * 100);
(An", f200, f200/ftotal * 100);
(An", 500, f500/ftotal* 100);
(An", {700, f700/ftotal * 100);
(
(

printf("200:%8d L.%02.2f
printf("500:%8d Lo %02.2f
printf("700:%8d Lo %02.2f
printf("\n");
printf("Id _interval _statistieken\n");
for (i=0; i*grain < max_interval, i++){

printf("%10d-%10d: L%10d_%2.2f\n", i*grain, (i+1)*grain, icount[i], icount[i]/it otal * 100);

[
[
[
[
[

printf("Interval-resolutieverdeling\n”);

for (i=0; i*grain < max_interval; i++){
printf("%10d-%10d: . %10d_(%10d,%10d,%10d,%10d,%10d,%10d)\n",
i*grain, (i+1)*grain, icount[i], f50al[i], f75a[i], f120a [i], f200a[i],
f500ali], froo0ali]);

printf("ld _uniek _statistieken\n");

for (i=0; i * grain < max_interval; i++){
printf("%10d-%10d: _%10d_%2.2f\n", i*grain, (i+1)*grain,
uniekperinterval[i], uniekperinterval[i]/utotal * 100)

}

printf("Tijd _Vverdeling\n");

for (i=0; i*timegrain <timemax; i++){
printf("%10d-%10d: L%10d_%2.2f\n", i*timegrain, (i+1)*timegrain, timereq[i],
timereq[i]/itotal * 100);

}

The requeststats_id2plot.sh script processes the result of a requeststats_a.awk script and creates a graph
of the number of requests per interval of ids. Execute by requeststats_id2plot result.txt . Output is
in graph.eps . The result can be viewed with a Postscript-viewer like Ghostview.

Listing A.2: requeststats_id2plot.sh

#1/bin/bash

#

tristan@hyves.nl

FILE=$1

PLOTCOMMAND ="a_plotcommand"
PERCENTAGES="a_percentages"”
INTERVALLEN="a_intervallen"
RUW="a_ruw"

if [-e $PERCENTAGES]
then

rm $PERCENTAGES
fi

if [-e SINTERVALLEN]
then

rm $INTERVALLEN
fi

99

APPENDIX A. TOOLS

if [-e $SRUW]
then

rm $RUW
fi

if [-e $PLOTCOMMAND]
then

rm $PLOTCOMMAND
fi

cat $FILE |
sed -n '/ld _interval _statistieken/,/Interval-resolutieverdeling/p’ |
sed 'I71.*$/d’|
awk '{ _print _$4}
> $PERCENTAGES
cat $FILE |
sed -n '/ld _interval _statistieken/,/Interval-resolutieverdeling/p’ |
sed 'I71.*$/d’|
awk '{ _print _$1$2_}
> $INTERVALLEN

cat $FILE |
sed -n '/ld _interval _statistieken/,/Interval-resolutieverdeling/p’ |
sed 'I71.*$/d’|
awk '{ _print _$3_}
> $RUW
echo -e "set _terminal _postscript _eps_color" >> $PLOTCOMMAND
echo -e "set _grid" >> $PLOTCOMMAND
echo -e "unset _border" >> $PLOTCOMMAND
echo -e "set _boxwidth _0.6 _absolute" >> $PLOTCOMMAND
echo -e "set _style _fill _solid _0.5 border" >> $PLOTCOMMAND
echo -e "unset _xtics" >> $PLOTCOMMAND
echo -e "set _yrange[0:]" >> $PLOTCOMMAND
e

echo -e "set _format _y_\"%9.0f\"" >> $PLOTCOMMAND

make the xtics

i="0"

STRING="set _xtics _nomirror _rotate _by 90 ("

for label in ‘cat $INTERVALLEN; do
STRING='echo -ne "$STRING\"$label\" L8
let i=i+1

done

STRING='echo -ne $STRING | sed 's/,$//"

STRING=8$STRING")"

echo $STRING >> $PLOTCOMMAND

#echo "plot _'$PERCENTAGES' title _'requests’ _with _boxes" >> $PLOTCOMMAND
echo "plot _'$RUW’ _title _'requests’ _with _boxes" >> $PLOTCOMMAND

gnuplot <$PLOTCOMMAND >graph.eps

The requeststats_id2plot_uniq.sh script processes the result of a requeststats_a.awk script and creates a
graph of the number of requests per interval of ids and shows only the number of unique requests (the
same id number). Execute by requeststats_id2plot_uniq result.txt . Outputis in graph.eps . The
result can be viewed with a Postscript-viewer like Ghostview.

Listing A.3: requeststats_id2plot_unig.sh

#!/bin/bash

#

tristan@hyves.nl

FILE=$1

PLOTCOMMAND ="a_plotcommand"
PERCENTAGES="a_percentages"”
INTERVALLEN="a_intervallen"
RUW="a_ruw"

URUW="a_uruw"

if [-e $SPERCENTAGES]
then

rm $PERCENTAGES
fi

100

APPENDIX A. TOOLS

if [-e SINTERVALLEN]
then

rm $INTERVALLEN
fi

if [-e $SRUW]
then

rm $RUW
fi

if [-e SURUW]
then

rm $URUW
fi

if [-e $PLOTCOMMAND]
then

rm $PLOTCOMMAND
fi

cat $FILE |
sed -n '/ld _interval _statistieken/,/Interval-resolutieverdeling/p’ |
sed '71.*$/d’|
awk '{ _print _$4}
> $PERCENTAGES
cat $FILE |
sed -n '/ld _interval _statistieken/,/Interval-resolutieverdeling/p’ |
sed 'I71.*$/d’|
awk '{ _print _$1$2 Y}
> $INTERVALLEN

cat $FILE |
sed -n '/ld _interval _statistieken/,/Interval-resolutieverdeling/p’ |
sed 'I71.*$/d’|
awk '{ _print _$3_}
> $RUW
cat $FILE |
sed -n '/ld _uniek _statistieken/,/Tijd _verdeling/p’ |
sed '[I|T.*$/d" |
awk '{ _print _$3}
> $URUW
echo -e "set _terminal _postscript _eps_color" >> $PLOTCOMMAND
echo -e "set _grid" >> $PLOTCOMMAND
echo -e "unset _border" >> $PLOTCOMMAND
echo -e "set _boxwidth _0.6 _absolute" >> $PLOTCOMMAND
echo -e "set _style _fill _solid _0.5 border" >> $PLOTCOMMAND
echo -e "unset _xtics" >> $PLOTCOMMAND
echo -e "set _yrange[0:]" >> $PLOTCOMMAND
echo -e "set _format _y_\"%9.0f\"" >> $PLOTCOMMAND

make the xtics

i="0"

STRING="set _xtics _nomirror _rotate _by, 90 ("

for label in ‘cat $INTERVALLEN; do
STRING='echo -ne "$STRING\"$label\" LS
let i=i+1

done

STRING=‘echo -ne $STRING | sed ’'s/,$//"

STRING=8$STRING")"

echo $STRING >> $PLOTCOMMAND

#echo "plot _'$PERCENTAGEStitle _'requests’ _with _boxes" >> $PLOTCOMMAND
echo "plot _'$RUW’_title _'requests’ _with _boxes,
. SURUW'’ title _’'unique _requests’ _with _boxes" >> $PLOTCOMMAND

gnuplot <$PLOTCOMMAND >graph.eps

The requeststats_time2plot.sh scripts processes the result of a requeststats_a.awk script and creates a
graph of the number of requests per interval of time. Execute by requeststats_time2plot.sh results.txt
Output is in graph.eps . The result can be viewed with a Postscript-viewer like Ghostview.

Listing A.4: requeststats_time2plot.sh

101

APPENDIX A. TOOLS

#!/bin/bash

#

tristan@hyves.nl

FILE=$1

PLOTCOMMAND ="time_plotcommand"
PERCENTAGES="time_percentages"
INTERVALLEN="time_intervallen"
RUW="time_ruw"

if [-e $PERCENTAGES]
then

rm $PERCENTAGES
fi

if [-e $INTERVALLEN]
then

rm $INTERVALLEN
fi

if [-e $SRUW]
then

rm $RUW
fi

if [-e $PLOTCOMMAND]
then

rm $PLOTCOMMAND
fi

cat $FILE | sed -n '/Tijd _verdeling/,$p’ | sed 'I'T.*$/d’| awk { _print _$4} > $PERCENTAGES
cat $FILE | sed -n '/Tijd _verdeling/,$p’ | sed 'I"T.*$/d’| awk '{ _print _$1$2 _} > SINTERVALLEN
cat $FILE | sed -n '/Tijd _verdeling/,$p’ | sed 'I"'T.*$/d’| awk { _print _$3_} > $RUW

echo -e "set _terminal _postscript _eps_color® >> $PLOTCOMMAND

echo -e "set _grid" >> $PLOTCOMMAND

echo -e "unset _border" >> $PLOTCOMMAND

echo -e "set _boxwidth _ 0.6 _absolute” >> $PLOTCOMMAND

echo -e "set _style _fill _solid _0.5 border" >> $PLOTCOMMAND

echo -e "unset _xtics" >> $PLOTCOMMAND

echo -e "set _yrange[0:]" >> $PLOTCOMMAND

echo -e "set _format _y _\"%9.0f\"" >> $PLOTCOMMAND

make the xtics

i="0"

STRING="set _xtics _nomirror _rotate _by, 90 ("

for label in ‘cat $INTERVALLEN; do
STRING='echo -ne "$STRING\"$label\" L8
let i=i+l

done

STRING=‘echo -ne $STRING | sed 's/,$//"

STRING=$STRING")"

echo $STRING >> $PLOTCOMMAND

#echo "plot _'$PERCENTAGEStitle _'requests’ _with _boxes" >> $PLOTCOMMAND
echo "plot _'$RUW’_title _'requests’ _with _boxes" >> $PLOTCOMMAND

gnuplot <$PLOTCOMMAND >timegraph.eps

Tcpdump.sh is a script that dumps all the network traffic (in a certain period of time) in a file.

Listing A.5: tcpdump.sh

#!/bin/bash

tcpdump -w tcpdump.txt -s 256 &\; sleep 60\; kill %tcpdump

Processtcpdump.sh processes the dump made by tcpdump.sh and filters it for HTTP-traffic and sorts it.

Listing A.6: processtcpdump.sh

#!/bin/bash

tethereal -r $1 |
grep "GET _" |

102

APPENDIX A. TOOLS

sed -e 's/\[P.*e\]//' -e 'lintervall/d’ |

awk ‘{print _$2, $3, _$8} |

sed -e’'s/\/.*\\([0-9]*\) _.*$/\1/" -e '/Retransmission 1d’|
sed -e '/Previous/d’ -e 'limages/d’ -e 'I"$/d’|

sed -e '/101.10\.0\.[0-9]*/d" |

sort -t. -k3,3n -k4,4n -k5,5n -k6,6n -k1,1n

Listing A.7: requestsperip.sh

#!/bin/bash
export PATH=$PATH:.
processtcpdump.sh $1 |

awk -f requestsperip.awk |
awk -f stats.awk

Listing A.8: requestsperip.awk

BEGIN {
last = 0
counter = 0

$2 != last {
if (NR != 1) print counter
counter = 1
last = $2

}

$2 == last {
counter++
}

Listing A.9: stats.awk

BEGIN{
count = 0
total = 0
total2 = 0
max 0
9999

total += $1
total2 += ($1 * $1)
count += 1

if (max < $1) max = $1

if (min > $1) min = $1
}

END{
printf("Cnt _%d, Tot %d, M1 %f, M2 _%f, Var_%f, _StDev _%f, Max_%d,_Min_%d\n",
count,
total ,
total/count,
total2/count,
(total2/count)-((total/count)*(total/count)),
sqrt((total2/count)-((total/count)*(total/count))),
max,
min);

Listing A.10: requestspersec.awk

BEGIN{
grain = 1
start = 0
end = start + grain

103

APPENDIX A. TOOLS

count = 0

#print $1
if ($1 >= start && $1 < end) {
count++
} else {
print count
start = end
end += grain
count = 1

104

