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Signaal’s command & control systems require high-performance data distribution and main-
memory storage for periodically produced data, sensor data for instance. The developed main-
memory object database can be used to built a new generation of SPLICE, Signaal’s real-time
distributed database.

As a starting point the object database interface defined by the Object Database Management
Group was used. Due to Signaal’s real-time requirements the transaction system had to be removed
from the interface. It is replaced by a reference mechanism that uses three types of references: a
read & write reference, a read-only reference and a keep-only reference. This mechanism is created
using C++ smart pointers. These smart pointers provide easy of use to the programmer.

Contrary to Signaal’s strong desire to use a standard API, the standard ODMG API had to be
changed. The database used in SPLICE has such special requirements in terms of performance
that it is not feasible to use transactional disk-resident object database to replace the main-memory
storage.

The work done was eventually used in a commercially available product called OpenSplice by
PrismTech.
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Preface
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new company he took the time to read this report and approve it.

It is hard to express my gratitude towards Twente University, Pierre Jansen and Robert Poth in
particular. This thesis would never have been finished without their support.

Hellevoetsluis, April 2007,
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Introduction

New developments like object orientation and pressure to use commercial off the shelf (COTS)
software and hardware components force Signaal to review its current middleware solutions.

SPLICE is such a middleware solution. The SPLICE system is currently 8 years old. A new
project is running to replace the old implementation with a more efficient one and provide new
functionality that is needed to be able to develop SPLICE-software more efficiently and adapt
SPLICE to more open standards and new techniques.

Assignment

From the original assigment defined by Signaal in March 1999:

The assignment is about the analysis, design and implementation of a real-time
object-oriented main-memory database system for Splice2. Due to the time-critical
nature of C&C 1 systems, this database will have to implement high-performance real-
time transactions. Most data distributed in C&C systems, will never need to be stored
on disk, therefore the databse will have to support persistent and non-persistent data.

Influences

Several developments in Signaal strongly influenced this assignment:

1. A strong desire within Signaal to adopt standard API’s strongly influenced the choices made
in chapter 3. The reasons for this desire are mainly

• to reduce the amount of training needed for application developers, and
• to have drop-in replacements available for standardized components.

2. Increase developer productivity by adopting new programming language features, such as
object orientation in C++. This made C++ the language of choice for the implementation
part of this assignment.

Changing the title

During my assignment part of the title of this assignement was changed from real-time to high-
performance. The main reason for this change is that there are no real real-time constraints defined
for this new database system. Signaal’s distributed systems use the following measures to be as
close to real-time as possible

• Minimize latencies where possible

• Provide clock-synchronization amongst the nodes of the distributed system

1Command & Control
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Introduction

• Add timestamps to all data

The measures above are best-effort measures, and not (hard/soft) real-time guarantees. Hence,
changing title change.

Transactions

The original assignment stated that this database will have to implement high-performance real-
time transactions. Chapter 6 will discuss the disadvantages of a transaction system for real-time
systems. Chapter 8 will show a replacement for the transaction mechanism.

Limitations

Just considering the implementation part, this assignment is a huge undertaking. Building such a
system as a commercial quality product will probably take many man years to complete. There-
fore, the scope has been limited. The requirement to support persistent data has been dropped.
Altogether, the emphasis of this assignment is more on the analysis & design part, than on imple-
menting a complete product. The parts that were actually implemented have been implemented
to make sure the ideas put forward in this report actually work.

Literature

Literature on designing databases in general and main-memory databases in particular is very
limited. There is an enormous amount of literature on using and programming databases, however.
This is strange because

• numerous databases have been implemented,

• some databases are open source,

• even some main-memory databases are open source [Knia].

This report

This report describes the work and research done on replacing a part of SPLICE, the local database,
with a high-performance main-memory object database. This report is divided into five parts:

1. Analysis
Problem analysis.

2. Design
Design of a new object database

3. Implementation
Implementation details

4. Results
Results, conclusions and retrospect

5. Appendix
Splice2 Object Definition Language and the bibliography
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Analysis
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1 SPLICE introduction

SPLICE is an acronym of:

Subscription Paradigm for the Logical Interconnection of Concurrent Engines

SPLICE in short:

‘SPLICE is a real-time distributed database system, that provides an asynchronous
communication mechanism for data exchange between various applications in a dis-
tributed environment’ [Sig93]

SPLICE is based on a subscription paradigm, applications subscribe to data that other applications
publish. This chapter explains what SPLICE is and how it works. A good introduction to SPLICE
can be found in [Sig93].

1.1 SPLICE conceptually

The notions producer and consumer are introduced because an application can publish data and
subscribe to data multiple times. Consumers and producers must identify themselves to SPLICE,
they need to tell SPLICE what data they consume or produce. Producers and consumers commu-
nicate with each other using messages defined by a datasort. A datasort defines the layout of the
message. A producer can only produce one datasort, i.e. one type of message. A consumer can
only consume one datasort.

If an application wants to publish (consume) two or more different datasorts, it plays the publisher
(consumer) role two times or more and identifies itself to SPLICE for every datasort it wants to
produce (consume).

In traditional client-server systems data is kept at a central server and may be resident in a client-
side cache after a client’s request for data. In a publish/subscribe system the system knows in
advance which applications require which data. This gives the system the ability to send the data
immediately to the applications that are interested.

In real-time systems sending in advance has the advantage that an application has all necessary
data locally when it accesses it. Consumers do not have to wait for (possibly slow) responses from
a server. In this way consumers can run completely asynchronous with respect to their producers.

Every consumer has its own buffer in which SPLICE stores all messages1. The buffer is part of
SPLICE (see figure 1.1). In this way, SPLICE handles the arrival of new data asynchronously.
The data can be read by the consumer at any moment it wants. An application that is subscribed
to various datasorts, is associated with a separate buffer for each subscription it has.

5



1 SPLICE introduction

Splice

Producer

Producer

Producer
datasort A

datasort A

datasort B

Consumer

Consumer

Consumer
datasort B

datasort B

datasort Abuffer

buffer

Figure 1.1: SPLICE overview

Figure 1.1 shows the SPLICE-system with consumers and producers for two different datasorts.
The SPLICE-system depicted here, is the overall system, across all nodes in the distributed envi-
ronment.

Figure 1.2 show a system consisting of three nodes. Node 1 contains one producer for a specific
datasort, nodes 2 and 3 contain one and two consumers for that datasort respectively. When the
producer in node 1 produces a message, this message is send across the network and copied into
all the node-specific buffers for that datasort.

C CCP

SPLICE SPLICE SPLICE

node1 node2 node3

network

buffer buffer

Figure 1.2: Consumer buffers in nodes

1.1.1 Producers

Producers publish data without knowing whether this data will be used by a consumer. Therefore,
the producer

• does not know whether there are consumers interested in its data,

• will not wait until the data is received, and

• does not need to be informed that data has been received.
1All messages in a buffer are of the same datasort, i.e. the same type of message
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1 SPLICE introduction

Publication

To a producer a publication consist of the following steps

1. Create an instantiation of a datasort locally

2. Fill it with with data (e.g. from sensor)

3. Ask SPLICE to publish it

1.1.2 Consumers

Consumers will consume data without knowing which producer produced the data. Also, it does
not matter to the consumer, whether the data have been produced by one or several producers.

Consumption

To a consumer a consumption consists of the following steps

1. Be informed by SPLICE that new data is available

2. Ask SPLICE to copy the latest data to the consumer’s process space

3. Use it

It is important to note that before being available to a consumer the data needs to be copied from
the SPLICE buffer to the process space of the consumer.

1.1.3 Datasorts

Communication between producers and consumers is purely message-based. The definition of a
message is called a datasort. A datasort describes the layout, like a struct in the language ‘C’, of
a message. Instantiations of datasorts are distributed from producer to consumers. Datasorts con-
tain type-definitions, attributes and datasort-properties. They are called component_definitions,
component_spec and attributes in SPLICE respectively. Figure 1.3 shows an example datasort
definition of tactical_track.

One of the datasort-properties is the persistence level, based upon the real-time characteristics of
the data.

Data characteristics

SPLICE handles three types of data with different persistence levels

1. periodic (real-time data)
e.g. periodic sensor data from radars, trackers, etc.

• If there are no consumer in the system, data will not be distributed and is lost
• Low integrity, losing a message does not jeopardize system integrity

7



1 SPLICE introduction

datasort tactical_track;

component_definitions(

component_spec track_id_type = (

INTEGER,

range: 0...2000000000,

unit: "track id"

);

component_spec source_id_type = (

INTEGER,

range: 0...2147483647,

unit: "source"

);

component_spec category_type = (

ENUMERATION,

range: air_point, land_point, subsurface_point, surface_point, acoustic_bearing,

ecm_bearing, esm_bearing, visual_bearing, air_ref_pos, asw_ref_pos, gen_ref_pos, datum_ref_pos,

ecm_fix_ref_pos, esm_fix_ref_pos, acoustic_fix_ref_pos

);

component_spec validity_type = (

ENUMERATION,

range: invalid, valid

);

);

datasort_components(

tact_track_id of type track_id_type ;

tact_source_id of type source_id_type ;

category of type category_type ;

datasort_validity of type validity_type ;

);

with attributes(

dataclass = CONTEXT ;

context_expiry_time = INFINITE ;

context_spectrum = tact_track_id ;

);

end datasort tactical_track;

Figure 1.3: Example datasort definition

• No arrival checking, a message may get lost
• No overflow checking, a message may get lost
• (very) Short life span
• Produced periodically

2. context (non-real-time data)
e.g. system state, mission context

• Distributed to a node when it is added to an operational system
• Distributed to all nodes even if there is no consumer
• New consumers for context-data can ask SPLICE for initial data, to get all data available
• High integrity, losing a message does jeopardize system integrity
• Long life span (mostly valid until shutdown)
• Not periodically produced

3. persistent
e.g. system parameters and configuration

• Comparable with context data, with higher integrity
• Must remain available when system is switched off and restarted

8



1 SPLICE introduction

• Stored on disk
• Read into SPLICE at startup

Because context and persistent data need to be stored indepent of any existing consumers, every
node in the system has separate buffers for these types of data. Figure 1.4 shows a node containing
these separate buffers. Every buffer is for a specific datasort. In this case four context data buffers
and three persistent data buffers.

Splice node

context

CC

persistent
buffers

SPLICE

buffers

Figure 1.4: SPLICE node internally

Every node also has an administration of available worlds2, consumers and producers and available
SPLICE-programs. This administration is known as the SPLICE-administration.

1.1.4 Consistency

If

• two consumers at different nodes,

• subscribed to the same datasort,

• virtually at the same time,

issue a read request and receive the same data, the database system is consistent.

In a distributed database system this is hard to achieve, since it is not possible to write into the
buffer of every consumer at exactly the same time. This is not possible because of some differences
between the nodes, like:

• small differences in the system clocks of the nodes

• different locations in the netwerk

2This creates groups of SPLICE-programs operating in a different domain. This allows for a separation between
real-world data and simulated data for example.
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1 SPLICE introduction

• different loads on the system

Implementing a distributed lock mechanism can overcome this problem, but can lead to unwanted
differences between the state of the database and the state of the outside world.

SPLICE is used differently from traditional database systems. Traditional database systems have
a dominant read-access pattern. The database is accessed with a high frequency for reading,
but with a low frequency for writing. SPLICE has a high-frequency reading and writing access
pattern. Write-locking a message across all systems is a very expensive operation and can very
easily become a bottleneck when system load increases.

Being behind on reality (state of outside world) due to distributed locking, is in SPLICE considered
worse than temporary inconsistencies between nodes. SPLICE does not impose consistency of the
database, but tries to follow the outside world as swiftly as possible.

1.1.5 Datasort identity

Every datasort (the type) is assigned a unique ID. This ID consists of a world-ID and a datasort-
ID. This is needed to achieve a system-wide identification of datasorts in order to communicate
datasort definitions across a network.

1.2 SPLICE real-time properties

Except for being assigned a persistence level, datasorts are also assigned a data quality. This
attribute is necessary when data instantiations (of the same datasort) are produced by different
producers who produce data with a different quality.

Two mechanisms for assigning quality to data exist:

1. A linear decay of quality

2. An expiry time (maximum quality before, minimum quality after)

T1

pr
od

uc
tio

n 
tim

e 
A

T5T4

t

current quality

pr
od

uc
tio

n 
tim

e 
B decay time B

T2

decay time A

initial quality A

initial quality B

T3

Figure 1.5: Linear decay of data quality
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1 SPLICE introduction

Figure 1.5 shows two datasort instantiations produced by producer A and B using the linear decay
mechanism. When the data instantiation from producer B reaches the database (in which the
data from producer A is already present), the present quality of both instantiations is determined.
The data instantiation will only be updated between T2 and T3 by the data instantiation from
producer B, as the data from B has a higher quality during that period.

A garbage collector deletes the expired data in idle time. When a read-action is performed,
SPLICE skips the expired data and moves on to the next non-expired data.

1.3 Comparing SPLICE with traditional relational databases

Table 1.1 shows a brief comparison between SPLICE and traditional relational databases.

SPLICE distributed

database system

Traditional relational

database

Transactions Every read or write operation

is considered atomic

Advanced transaction

mechanism with commit and

rollback options

Queries Very limited Full SQL support

Data Model Non-relational Relational

Persistence

models

Persistenct, context &

real-time

Only persistent and temporary

(temporary tables)

Data dictionary On every node in the form of

generated code

Centralized data dictionary

Table 1.1: Comparing SPLICE with a traditional relational database

1.4 SPLICE drawbacks

For Signaal’s future needs the current SPLICE has a some drawbacks

1. Datasorts are producer defined (consumers must gather their information from several data-
sorts which each hold part of the attributes that describe an entity in the real world)

2. It is not possible to define relationships between datasorts and it is not possible to refer to
another datasort

3. Non-standard interface

4. Performance-lacks (startup-time and network load)

1.4.1 Producer defined datasorts

Suppose a system containing

11



1 SPLICE introduction

• four sensors measuring different properties of an object

• one display that does some calculation on these measurements and displays one number

Each sensor produces a datasort consisting of one attribute, the measured value. The display
must subscribe itself to four datasorts, and combine the information in these four datasorts. If the
system would contain various displays but doing different calculations, each display would contain
the same code for accessing the data. Only the calculation is different.

One way to solve this problem in SPLICE would be to have an intermediate application contain-
ing four consumers, that read the data, and a producer that produces a datasort containing all
properties. All displays can now consume one datasort, thereby reducing code duplication. But
still code that combines datasorts has to be written and maintained.

1.4.2 Relationships, references

The drawback of not having relations or references will be illustrated with an example3, which
will be used throughout this report.

The track example

Track a track is a representation of the track (the path) of a real-world object (e.g. an airplane,
a ship, ...)

The following information has to be recorded:

• a trackID

• a creation time

• an identification (enemy, friend, neutral)

• a classification (747, F-16, T80, etc.)

• a series of positions of the object through time

In current SPLICE a consumer program would have to subscribe to four different datasorts: Track,
Identification, Classification, Position.

These datasorts are defined as shown in table 1.2.

Datasort Track Identification Classification Position
Attributes trackID trackID trackID trackID

creation-time identification classification time-stamp
position

Table 1.2: Basic datasort definitions for the track-example

3This example is an educational example, and does not in any way reflect to Signaal’s use of the notion ’Track’.
In reality this is far more complicated.
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1 SPLICE introduction

The trackID field in every datasort can be used to combine data from the four datasorts. The
trackID field in the datasorts Identification, Classification and Position are foreign keys to
trackID in Track. However, datasort definition do not model them as foreign keys. An application
programmer cannot read that knowledge from the datasort definitions.

Every consumer program that uses Track has to combine the information for every track itself.
This process is repeated within numerous consumer programs, this is costly and error prone.

At first glance it seems logical to simply combine the Track, Identification and Classification
datasorts. However, they are (or can be) produced by different producers. The Identification
datasort may be produced by an IFF4-device. The Classification datasort may be produced
by an application that is used by an operator doing manual classification.

4Identification Friend or Foe
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2 New Splice2

As part of a redesign of SPLICE a new local high-performance main-memory database will be
developed, that will eliminate the drawbacks that were identified for SPLICE. This database will
be called Splice2DB from now on. First an architectural overview of Splice2 is discussed in section
2.1. Section 2.3 discusses Splice2DB specific requirements.

2.1 New architecture of Splice2

Figure 2.1 shows a layered view of the new Splice. The top level consists of the applications
using Splice2. They can be written in various languages (e.g. C, C++, Java, Ada) and will use a
language specific API to communicate with Splice2. This language specific API itself, will use a
lower level Splice API to communicate with the Splice2 Engine.

process

Splice2 Engine

Application

OS
OS Abstraction layer

Language specific Splice API
Generic Splice API
Platform independent API Posix compliant

Pluggable APIlibrary

Figure 2.1: Splice2 layered view

The Splice2 Engine consists of three parts (see figure 2.2):

• Kernel, for processing requests from applications

• Network part, provides basic network IO functions

• Database part, provides local data storage for the consumer buffers

Kernel (processing)

(IO)
Database
(memory)

Network

Generic Splice API

Platform independent API Posix compliant

Internal Splice component APIs

Figure 2.2: Splice2 Engine

The Splice2 system will be accompanied by several daemons to assist in distributing data across
the network and to provide fault-tolerant services to the system. Figure 2.3 shows all of these
services together.

A more detailed architecture discussion can be found in [Pot99].
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Application

Daemons
Kernel

DatabaseNetwork
OS Abstraction layer
OS

Plugins
Language specific Splice API

Generic Splice API

Platform independent API Posix compliant

Pluggable API

process

library

Internal Splice component APIs

Figure 2.3: Complete Splice2 system layered view

2.2 Splice2DB

The database depicted in figure 2.2 and 2.3 is the scope of this assignment. This database is not
directly accessible to Splice2 clients. It is used by Splice2 to replace the SPLICE buffers.

Splice2 will use the new Splice2DB for:

1. Storing its internal administration of worlds, consumers and producers

2. Storing data received from producers

2.3 Splice2DB requirements

2.3.1 No unnecessary copying of data

Internally Splice2DB should use references where possible, to avoid unnecessary copying of blocks
of memory. If there is more than one consumer for the same data within a node, they should each
have a reference to the data, not a copy. In current SPLICE only in a few cases1 a copy of the
data is made. Copying blocks of memory is expensive and should be avoided. Figure 2.4 shows
both the unwanted and the wanted situation.

2.3.2 Relations and references

On of the major drawbacks of SPLICE is a lack support for relations and references between
datasorts.

Relations are bidirectional. If a datasorts A contains a relation to a datasorts B, then datasorts
B contains the inverse relation to a datasorts A.

References are unidirectional. A datasorts A can contain a reference to a datasorts B, B does
not necessarily contain a reference to A.

1When providing initial data for consumers to context data and when copying data from network buffers to
SPLICE memory
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2 New Splice2

System

C C C

Splice node

message message message

identical message

(a) Unwanted situation

System

CC C

Splice node

general database

message

(b) Wanted situation

Figure 2.4: Distribution of messages

In the ’track’-example (see section 1.4.2) every datasort has a trackID field. When an application
wants to know the classification of a certain track, it has to scan all classifications for a particular
trackID. Of course, using keys and an index mechanism on the trackID field can speed up these
searches, but still the classification has to be sought for.

If the Track datasort could contain a direct reference to its Classification, no seeking will
be necessary, the classification can be read directly. Table 2.1 shows the track-example using
references. The Identification, Classification and Position types don’t need a trackID
field anymore, because you can navigate towards these types using the references in Track. This
example show the use of unidirectional references. It also shows a collection of unidirectional
references, set of Position

Datasort Track Identification Classification Position

Attributes trackID identification classification time-stamp

creation-time position

reference to Identification

reference to Classification

set of Position

Table 2.1: Track-example using references

2.3.3 Persistence

Persistency will not be part of the Splice2DB prototype. Persistency can be dealt with at kernel
level. Splice2DB will only implement a main-memory storage initially.

2.3.4 Optimized locking mechanism

The performance of a high-frequency reading & writing database system, is very much related
to its locking mechanism. The locking mechanism to be implemented in Splice2DB should be
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2 New Splice2

optimized for Signaal’s use of SPLICE. The type and granularity of locking will be researched in
chapter 8.

2.3.5 Standardized interface

Splice2DB should use a standard database interface as much as possible. In chapter 3 a comparison
is done on current database interface standards and a choice is made which standard to use for
Splice2DB.
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3 Database standards

In order to make a decision which database standard to use in Signaal’s future Splice2 database
implementation a comparison is done between the two major standards. The two standards
considered are the upcoming de jure SQL3 standard and the de facto ODMG 2.0 standard.

First the models are discussed based on the data models and querying mechanisms they provide.
After that the standards are compared based on Splice2 requirements and a proposal is done which
standard to use as a model for the interface of Splice2DB.

3.1 The models

SQL3 is the successor of SQL2 and is an extension to the relational model. This new model can
be called ’object-relational’ or ’extended-relational’.

ODMG 2.0 [C+97] is the successor of the ODMG-93 Release 1.2 standard [C+94]. ODMG 2.0
is defined by the Object Database Management Group, a joint effort of the largest Object
Data Base Management System vendors.

The article ‘Object Database versus Object-Relational Databases’ by Steve McClure [McC97] gives
a good overview of the models and standards.

3.1.1 Relational model

The relational data model was originally described by E.F. Codd [Cod70] and is implemented in
several products. The eventual standard to describe relational databases is published by ANSI
as the X3H2 specification and its ISO counterpart. More popularly, it is referred to as SQL plus
a version number, the latest being SQL2. Relational databases have a mathematical foundation
in relational theory, but it is not always implemented fully compliant with the theory. This
mathematical basis is being further vitiated by the object extensions now being discussed for
SQL3.

Data model

A relational database stores data in a database consisting of one or more tables of rows and
columns. The rows correspond to a record (tuple); the columns correspond to attributes (fields in
the record). Each column has a data type. The types of data that can be stored are confined to
a very limited set of data types. A field of a record can store only a single value. Variable length
fields are not supported. Relationships are not explicit, but rather implied by values in specific
fields. These values are called foreign keys. A foreign key matches the key of a record in a second
table. Many-to-many relationships typically require an intermediate table that contains just the
relationships.
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3 Database standards

Query language

A view is a subset of a database that is the result of the evaluation of a query. In a relational
database the result of a query is a table. Data is retrieved based on the value in a certain field in
a record. The standard query language for relational databases is SQL. SQL can be embedded in
the host application.

Extensions

To overcome the shortage of data types most proprietary extensions to the SQL standard have
been the introduction of more complex data types, like lists, sets and bags. Another type extension
has been the introduction of BLOBs, binary large objects, to include multimedia data types in
the database. There are no provisions for querying the content of a BLOB. Thus, one can save
and retrieve a BLOB, a document for instance, but cannot query the database for all BLOBs
containing a certain pattern.

3.1.2 Object model

Object databases have no official standard. The de facto standard1 is ODMG 2.0 defined by the
Object Database Management Group. The mathematical foundation of object technology is still
being debated.

Data model

Object databases use a data model that has object-oriented aspects like:

• classes with attributes and methods,

• provides object identifiers (OID) for any persistent instance of a class,

• support encapsulation (data and methods),

• (multiple) inheritance,

• abstract data types.

Currently there is no consensus on an object-oriented data model, but several proposals exist.
These models differ on several issues, like multiple versus single inheritance, and whether the
operations/methods or only the definitions should be stored. Part of the source of these differences
is the difference in capabilities of OO-languages that should use the OODB.

For example, C++ supports multiple inheritance, so all object databases that support object-
persistence and C++ as the host programming language must support multiple inheritance in
the object database. The database can also restrict the database programmer to use only single
inheritance.

If the object database supports different programming languages, it probably should store the
interface of the methods rather than the methods itself. With this kind of problems, it is very
difficult to reach an agreement on all parts of the modelling perspective.

1November 1999
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Query language

An object-oriented programming language is the language for both the application and the database.
It provides a very direct relationship between the application object and the stored object. Data
definition, manipulation and querying are part of the binding between database and the pro-
gramming language. The functionality of the database system is mapped into the object-oriented
programming language.

The ODMG-standard also defines a query language, OQL, for read-only query of database objects.
This query language is also embedded in the host programming language in the form of an API.

3.1.3 Object Relational model

Extended relational and object relational are descriptions for databases that try to unify aspects
of both relational and object databases. For most of the products from major vendors ’extended
relational’ is the most appropriate term. Object relational databases will be specified by the
extensions to the SQL standard, SQL 3/4, which is still under development2. ORDBMS vendors
have been anticipating these extensions in their products, which are therefore proprietary. This
category of databases is really a no-man’s land between object and relational.

Data model

Object relational databases employ a data model that attempts to ’add OO-ness to tables’ [McC97].
All persistent information is still in tables, but fields can have richer data structures, abstract data
types (ADT). An ADT is a data type that is constructed by combining basic types. The new data
type can be used to index, store and retrieve records based on the content of the new data type.
This approach, though it provides more structures for modelling, lacks the fundamental object
requirement of encapsulation of operations with data. It also has limited support for relationships,
identity, inheritance and integration with host object oriented languages.

Query language

An object relational database supports an extended form of SQL. It has to be an extended SQL
to support the object model (e.g. queries involving object attributes).

3.2 Comparing the standards

SQL3 will be the future de jure standard for object-relational databases.

ODMG 2.0 is the de facto standard for object databases.

The standards will be compared on the following issues

• Standard

• Complex data relationships

• SQL2 compatibility

• Integration with host programming languages
2November 1999
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3.2.1 Standard

SQL3 is not yet a standard, it is expected somewhere in 1999. The ODMG 2.0 standard is the
successor of the ODMG-93 standard, ODMG 2.0 has been around since 1997.

3.2.2 Complex data relationships

Because of the use of OIDs in object databases, they are much more suitable for applications
that have to process complex relationships. Object relational databases have little support for
these capabilities. modelling relationships may require additional tables in the object relational
database. Processing usually involves multiple time-consuming joins of tables.

3.2.3 SQL2 compatibility

Object relational databases have the advantage of being SQL-based. The availability of SQL-
expertise is enormous. SQL is the most universal database language. Recognizing this fact,
most object databases now support at least some of SQL, sometimes including extensions to
support object queries using methods, relationships, inheritance and others. OQL is partly SQL-
compatible.

3.2.4 Integration with host programming languages

Object databases are tightly integrated into object-oriented programming languages. The ODMG
2.0 standard defines C++, Java and SmallTalk bindings. There is a direct correspondence between
an application object and a stored object. Object persistence can be provided by declaring an
application class ’persistent capable’ by deriving them from a ’persistent capable’ base class, and
then object instances may be either persistent or transient, but are otherwise the same. There is no
overhead due to converting data from the database to a data-object in the programming language.
In relational and object relational databases there is no such direct binding. All database functions
are executed from embedded SQL statements inserted into the host programming language. This
pure query language approach has advantages when providing end-users with querying capabilities
but is not an advantage when dealing with a programmer’s environment where performance is key
issue.

3.2.5 Comparison overview

Table 3.1 shows a short overview of the comparison done in the previous paragraphs.

3.3 Conclusions

• Splice uses the database from a programmer’s viewpoint, there are no end-users who need
to access the database ad-hoc. Because of the ability to integrate database actions into the
host programming language the ODMG standard is most suitable for Splice2.
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SQL-3 ODMG 2.0
Standard? Not yet, de jure standard Yes, de facto standard
Complex data
relationships

Complex data relationships Can handle arbitrary
complexity

SQL2 compatibility Can take advantageof
RDBMS tools and
developers

Limited, adapted to
pureobject-oriented style

Integration with
host programming
language

Database functionality is
separated from programming
language; continuous
mapping of programming
data to database data

Database functionality
integrated into programming

language

Table 3.1: Overview SQL-3 / ODMG 2.0 comparison

• SQL is currently not used in SPLICE, so complete SQL-compatibility is not needed to allow
backwards compatibility with legacy SPLICE applications.

• Object databases can easily store complex administrations, like the consumer-, producer- &
world-administration in SPLICE. Using references and relations, this administration can be
used efficiently. No joining of tables is required.

• ODMG 2.0 is the standard to choose
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4 Object-oriented approach

Object-oriented modeling has become widely accepted as a very powerful modeling concept, and
is still gaining popularity for industrial use. This chapter will show what the advantages of an
OO-approach are for Splice.

4.1 Track-example OO model

Modeling the track-example from section 1.4.2 in an object-oriented fashion, the model1 would
look like figure 4.1.

0..*
0..*

1

1..*1

Classification

1

Position Identification

Track

Figure 4.1: Track-example OO model

This model states the following:

• A Track associates with one Classification.

• A Track associates with one Identification.

• A Track associates with one or more Position.
There can only be a Track if you have at least one measured (or estimated) position.

• A Classification associates with zero or more Track.
A classification ’F-16’ can hold for several tracks, and even if there are no Track-objects in
the system, you want to keep the possible classifications, hence zero or more.

• A Identification associates with zero or more Track.
An identification ’hostile’ can hold for several tracks, and even if there are no Track-objects
in the system, you want to keep the possible identifications, hence zero or more.

• A Position associates with one Track.
This is an composition relation. If there are no tracks in the system, there are no positions
in the system. A Position (even if there are two position objects with the same values)
always belongs to one Track.

1This is a class diagram using UML notation. For an introduction to UML and design patterns see [Lar98]
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Thus, Classification-objects and Identification-objects have a ’right to live’ even if there
are no Track-objects in the system. Position-objects have no ’right to live’ if there are no
Track-objects in the system.

4.2 Track-example in an OODB

Using an OODB the classes can be defined like this2:

class Identification {
attribute enum Ident {friend, hostile, neutral, . . . } ident;

relationship set<Track> identifies

inverse Track::is_identified_by;

}

class Classification {
attribute enum Classification {F-16,747,T-80, . . . } classification;

relationship set<Track> classifies

inverse Track::is_classified_by;

}

class Position {
attribute timestamp time;

attribute Position position;

}

class Track {
relationship Identification is_identified_by

inverse Identification::identifies;

relationship Classification is_classified_by

inverse Classification::classifies;

attribute set<Position> positions;

attribute timestamp creation_time;

}

As opposed to the track-example using unidirectional references in section 2.3.2, this example uses
bi-directional relations for the attributes is_identified_by and is_classified_by. This makes it
possible to navigate in both directions.

Class Identification has a relation with a set of Track. When the relation is defined, the inverse
relation has to be defined too. The positions of a track are not implemented as a relation in the
definition above, but as a set of Position in Track. This is because a Position always belongs
to one Track. This way, when a Track instance is removed, all Position instances of that track
are removed too.

4.3 Advantages of the OO-track model

An OO-approach has several advantages, only the most notable advantages from the track-example
will be discussed here. These are
2This definition uses the ODMG Object Definition Language syntax. More on this syntax in chapter C.
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• Accessing related data

• Complex types

• Object identity

• Inheritance

4.3.1 Accessing related data

The main advantage illustrated in the previous example is that the relations between object lie
within the database. If you have a reference to a Track-object called trackref that has been
constructed earlier, you can create a reference to its identification, like this:

Ref<Track> trackref;

Ref<Identification> mytrack_ident = trackref→is_identified_by;

If you have the Identification-object with ident=hostile, you can access all hostile tracks,
like this:

Identification hostile_ident;

set<Track> hostile_tracks = hostile_ident.identifies;

You now have a set containing all hostile tracks. You need an iterator3 (see [Str97]) to access the
elements of the set. An example:

set<Track>::iterator hostile_tracks_begin = hostile_tracks.begin();

set<Track>::iterator hostile_tracks_end = hostile_tracks.end();

while(hostile_tracks_begin != hostile_tracks_end) {

print( (*hostile_tracks_begin)→creation_time );

hostile_tracks_begin++;

}

The type set<Track>::iterator is an iterator that returns objects of type Track when you access
it. The operator * returns the object the iterator is currently pointing to. The operator ++ moves
an iterator to the next element in the set. An end iterator points past the last element in the set
and can be compared with a NULL-pointer in the language C.

4.3.2 Complex types

Complex types are built from simpler ones by applying constructors to them The simples objects
are objects such as integers, characters, booleans and floats. Using an OODB you can create
complex types, using constructs like sets, lists, bags, arrays, etc. These complex types are used in
the track OO model.

3In short, an iterator is a generalization of a pointer. It provides functions to move to the next element and to
dereference the iterator. The main difference between pointers and iterators is the fact that the elements don’t
need to be in memory sequentially. The increment operator can move to the next element by traversing a tree
for example.
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4.3.3 Object identity

In an OODB every object is assigned an unique number, the object identifier. In a model with a
unique number, an object has an existence which is independent of its value. Thus two notions of
object equivalence exits:

1. two objects can be identical (they are the same object)

2. two objects can be equal (they have the same value)

This has implications:

• object sharing

• object updates

Object sharing

In an identity-based model two objects can share a component. In the track example two tracks
can have a relation with the same classification.

Object updates

If in the track example a classification object is updated, all the tracks having a relation with this
object now have access to the updated information.

4.3.4 Inheritance

Using inheritance it is possible to distinguish between different kind of tracks, like SurfaceTrack,
SubSurfaceTrack, Airtrack, LandTrack, all inheriting from Track and adding new attributes
and/or methods. This is useful if you would like to see them as different concepts.
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The main purpose of the Splice2DB is to replace the buffer mechanism used in SPLICE, while
adding the needed extra functionality identified in chapters 2 and 4. Additionally, an object-
oriented database is powerful enough to store the administration model of SPLICE1, therefore it
is possible to built the SPLICE administration using Splice2 database features.

5.1 Restrictions

5.1.1 Network transport capability

In SPLICE the buffer mechanism itself has no transport capability. Within a node a network
daemon2 acts as a special consumer for all data that needs to be transported across the network
to remote consumers. Therefore the replacement, Splice2DB, will not need this capability.

5.1.2 Data characteristics

As with networking capbilities, handling the data characteristics mentioned in section 1.1.3 (periodic,
context, persistent), is left to special daemons in SPLICE. Therefore the replacement, Splice2DB,
will not need this capability. This means all data will always be in main memory, no disk-access
will be necessary.

5.2 New capabilities

Chapters 2 and 4 identified the following new capabilities of Splice2DB:

• Relationships

• References

• Object orientation

– Complex types
– Inheritance

1The consumer, producer and world-administrations mentioned in chapter 1
2This daemon is part of the Splice2 system
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5.2.1 Reading datasort definitions

In SPLICE datasort definitions are communicated between nodes to check whether a consumer in
a node has the same definitions as the producer. This is because of possible different versions of
datasort definitions. This is still needed in Splice2. Checking whether two users of the database
have the same idea about the contents of an object is necessary for system stability. Therefore
there should be a mechanism that retrieves information about an objects structure. In the ODMG-
standard this information is called meta-data. There is a complete, read-only, interface to the
meta-data defined by ODMG.

5.3 Architecture

In chapter 2 figure 2.3 shows a complete Splice2 architecture. The database is just a little part of
it. Figure 5.1 shows a magnification of this database part into three components.

Database
(memory)

Platform independent API Posix compliant

Internal Splice component APIs

Database

Memory management &
Synchronization primitives

database
Meta-

Figure 5.1: Splice2 database architecture

Explanation of parts:

Database

This part will implement the data interface defined by ODMG.

Meta-database

This part will implement the meta-data interface defined by ODMG.

Memory-management & Synchronization primitives

This part will contain low level memory-management routines and synchronization primitives used
for concurrency control.
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6 Design overview

This part of the report describes the design of Splice2DB. This chapter will give an introduction
to main memory databases and their characteristics. After that an overview is given of a series of
basic assumptions and design choices for the database system.

The next chapters in this part will give a more detailed design, describing the following topics:

• Data representation

• Concurrency control

• Data-access interface

• Storage

• Metadata

The definition of the Splice2 Object Definition Language can be found in chapter C in the Ap-
pendix.

6.1 Main memory databases

Main memory database (MMDB) systems or memory resident database systems store their data
in main physical memory and provide very high-speed access. In conventional database systems
(DRDB) data is disk resident, data may be cached into memory for access; in a MMDB the
memory resident data may have a backup copy on disk. So in both cases, an object can have
copies both in memory and on disk. The key difference is that in a MMDB the primary copy lives
permanently in memory.

A computer’s main memory clearly has different properties from that of magnetics disks, and these
differences have profound implications on the design and performance of the database system. A
summary of these differences [GMS92]:

1. The access time for main memory is orders of magnitude less than for disk storage.

2. Main memory is normally volatile, while disk storage is persistent.

3. Disks have a high, fixed cost per access that does not depend on the amount of data that is
retrieved during the access. For this reason, disks are block-oriented storage devices. Main
memory however is not block oriented, it can be accessed byte at a time.

4. The layout of data on a disk is much more critical than the layout of data in main memory,
since sequential access to a disk is faster than random access. Sequential access is not that
important when accessing main memory.

5. Main memory is normally directly accessible by the processor(s), while disks are not. This
may make data in main memory more vulnerable than disk resident data to software errors.
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The question arises if DRDB systems with large caches are any different from MMDB systems,
because if the cache of a DRDB is large enough, copies of the data in the database will always
reside in memory . Although such systems have enough performance for some application areas,
they still do not use the full advantage of being able to access data directly. For example, index
structures in a DRDB are designed for disk access (B-trees or more advanced equivalents), even
though their data may be in memory. Also, applications may have to access the data through a
buffer manager, as if the data were on disk. The buffer manager computes the address of needed
data. Clearly, if the data always resides in memory, it is more efficient to refer to it using its
memory address.

Advanced DRDB systems, that recognize the fact that big parts of their active data set will
actually reside in memory and implement some of the optimizations possible for MMDB systems,
exist.

Concurrency control

Because access to main memory is much faster than disk access, transactions complete more
quickly in a MMDB. In systems that use locking based concurrency control, this means that locks
will not be held as long as in DRDBs. For further discussion on concurrency control see chapter
8.

Commit processing

In traditional DRDBs and even in legacy MMDBs it is necessary to have a backup copy of the
database and to keep a log of transactions, in order to be able to reconstruct the database if
something goes wrong or the system needs to be restarted. In Splice2DB however, all real-time
and context data do not need to be copied to disk. If the system goes down, all non-persistent data
are gone and they should be gone. Only persistent data need a disk copy. Because Splice2DB will
be a part of Splice2 beneath a generic Splice interface (see section 2.1), Splice2DB will not need
to have support for persistent data initially. This support can be provided by higher layers, where
persistent data can be given to the database and to a separate persistence-manager. On startup
this data is read by the persistence-manager and stored in the database. This persistence-manager
is not part of the assignment.

Access methods

In a main-memory database, index structures like B-Trees, which are designed for block-oriented
storage, lose much of their appeal. Designing a query and index mechanism is not part of the
assignment.

Data representation

Main memory databases can also take advantage of efficient pointer following methods for data
representation. Complex structures can be navigated directly, instead of having to look up every
object. These methods are described in chapter 7.
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Database architecture

The ANSI/SPARC architecture divides the architecture of a database system into three levels
[Dat90]:

1. internal, closest to physical storage

2. external, closest to the users

3. conceptual, between internal and external, a level of indirection

(storage view)
internal level

conceptual level
(community user view)

(individual user views)
external level

Figure 6.1: ANSI/SPARC architecture

These three levels require two mappings of methods and data, one mapping between the internal
level and the conceptual level and one mapping between the conceptual level and the external
level . In a high-performance database these mappings must be avoided as much as possible
because they slow down the system. The external level should be mapped as directly as possible
to the internal level. It is easy to remove the top-level mapping by removing the possibility of
different user views. This way the external and conceptual level become the same level. When
objects are stored in the database exactly the same way they are stored in application memory,
the conceptual level practically becomes the internal level. Of course some parts have to be hidden
from an application, but this is easily accomplished using the protection and visibility levels on
class attributes in an object-oriented language.

6.2 ACID

In ODMG-standard complying systems all actions on the data have to be executed inside the
context of a transaction. Transactions are a way to group database actions. A transaction collects
all actions and will only commit the changes at the end of the transaction. Within a transaction
all used objects will be locked and, in case of a client/server system, will be collected from the
server. Inside a database program this mechanism looks like this:

Transaction transaction;

transaction.begin();

...

various database actions

...

transaction.commit(); or transaction.abort();
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This transaction mechanism has four characteristics, denoted by the acronym ACID . These char-
acteristics are:

• Atomicity

• Consistency

• Isolation

• Durability

Atomicity requires that either all or none of the operations included in the transaction is reflected
in the database. These operations often have interdependencies, and performing only a
subset of them compromises the overall intent of the transaction

Consistency requires that a transaction ends with a new correct state of the database, preserving
its semantical and physical integrity. For example, if a relation has been created, both ends
are connected when the transaction ends.

Isolation requires that each transaction appears to be the only transaction manipulating the
database even though other transactions may be running concurrently. A transaction should
not see intermediate results of other transactions that have not committed yet.

Durability implies that committed transactions are guaranteed to be reflected in the database,
even if failures occur after the commit. This has no meaning in a main-memory database,
since all changes will be lost when the system is shut-down.

6.2.1 Splice2DB and transactions

Transactions are a method to combine serveral database actions into one action that satisfies the
ACID constraints.

But this transaction mechanism has three disadvantages:

1. The possibility to abort a transaction
To be able to abort a transaction, the database has to do the actions in the transaction on a
copy of the original data because of the isolation constraint. When the transaction commits
these copies will replace the old data. This also requires a log of all actions done. This
process uses a lot of resources and is slow.

2. Locks to objects are kept until the transaction completes
When an object is accessed, the database management system locks that object for the re-
maining duration of the transaction, even though the object might not be accessed anymore.
This can lead to unnecessary locked objects, and can slow down other concurrently running
transactions.

3. References to objects only valid inside a transaction
Because in an ODMG-compliant database there is no other unit of control than a transaction
that satisfies the ACID constraints, all references to objects lose their validity outside of a
transaction. A transaction is the only unit in which access to objects is granted. Objects in
the SPLICE administration are accessed with a high frequency. If finding these object will
have to be done by looking up a name, this becomes very expensive (in CPU-time). Thus,
it should be possible to have valid references outside of a transaction.

In chapter 8 a design based on object locking, using references, will be discussed.
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6.3 Storing data

A database stores data. An object database stores objects. And a lot more. An object database
that complies to the ODMG standard has to store the following data:

1. Complex administrations to keep track of the types of objects that can be stored in the
database (metadata).

2. Administrations to keep lists of all objects of one class (extents).

3. Administration to associate names with objects.

4. Index-administration for faster access to objects.

5. The object-storage itself.

These different types of data have different usage and access characteristics.

Type of data Usage Access

metadata Intensively read by system, contents is

relatively stable in running system

Written by DB-system,

read by system & apps

extents Updated by the DB-system every time

an object is inserted in or removed from

database

Written by DB-system,

read by apps

name-object

association

Only written when name is added or

changed, only read when an name is

looked up

Read & write by DB-

system

indices Updated by the DB-system when an

object is changed, inserted in or re-

moved from database, read by DB-

system for evaluation of queries

Written by DB-system,

read by DB-system

object stor-

age

Intensively read & written High frequent read &

write by apps

The data stored for each data-type also has certain characteristics:

Type of data Sizes When is size known? Data

coupling

metadata Low number of fixed size

data chunks

DB library compile time Very tight

extents Low number of fixed size

data chunks

DB library compile time Loose

name-object

association

Low number of fixed size

data chunks

DB library compile time Loose

indices Low number of fixed size

data chunks

DB library compile time Loose

object stor-

age

Varying size data chunks Application compile

time

Tight
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6 Design overview

The field Data coupling shows how strong the data of that type is inter-related , how much
references there are between data of that type.

It is possible for a system to allocate all storage for the types of data in the same storage arena,
using the same allocator. However, this approach eliminates the possibility to use storage-type-
optimized allocators and reduces concurrent access to different storages. Taking the usage patterns,
access patterns and data characteristics into account, three types of storage will be distinguished
in the Splice2DB system:

1. Metadata storage arena
For metadata

2. Data storage arena
For object data

3. Administration storage arena
For the other administrations

The advantages of splitting arenas are:

1. More concurrent access to different storage arenas

2. It is possible to use different allocators, that are optimized for the data they have to store

Disadvantages:

1. Every arena has its own free space. These free spaces do not add together, thus the system
will probably use more memory than a system with a one-for-all allocator.

2. When using fixed size storage arenas, choosing the sizes for the arenas is important. Choosing
the size to small can result to system failure when a storage gets exhausted.

Figure 6.2 shows the database system consisting of three storage arenas.

Meta−data administration Instance

Meta−data storage arena

1

1

1

1

contains

Data storage arena

0..*

1

0..*

1

contains

Database

1

1

1

1

has

1

1

1

1

has

Extent administration Name−instance  administration

Administration storage arena

1

1

1

1

has

1

1

1

1

contains
1

1

1

1

contains

Figure 6.2: Database system storage overview
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7 Data representation

Applications and the database system itself, need a way to refer to data stored in the system. This
chapter discusses the possible mechanisms to be used. Deciding which mechanism to choose, will
be done mainly on basis of expected performance.

7.1 Object identifiers

In a disk resident object database (DRODB), object identifiers (OID) are very important. They
have the following roles:

1. OIDs are used (internally) to refer to other objects

2. Two references point to the same object if, and only if, their OIDs are equal

In Splice2DB neither role is necessary, because pointers and pointer comparison can suffice.

OIDs in a DRODB may contain any of the following components [Jor98]:

• Database identifier for the current database of the object

• Identifier of the database in which the object was originally created

• Segment identifier

• Page identifier

• Page offset of an object

None of these components are necessary in a MMODB, since most of them are used to translate
an OID to a position in cache or on disk.

However, when sending objects to another node over a network, pointer comparisons do not suffice
any more. Objects need to be identified independent of a node’s memory layout. Therefore, OIDs
are still necessary in Splice2DB. They must be assigned unique across a distributed environment.
Splice2DB will assume such a service present, but will not implement such a mechanism itself,
since this kind of resource management services will be part of Splice2 [Pot99].

7.2 References

Jordan [Jor98] discusses four mechanisms to refer to data in the system from an application. Figure
7.1 shows two of these four mechanism schematically. Only these two are applicable to MMDBs.
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T* T

T* T

2.

1.

d_Ref<T>

Figure 7.1: Approaches for mapping references to objects

Approach 1 Let applications use a direct pointer into the data memory. One of the major dis-
advantages of this approach is a complete lack of concurrency control. Locking will have
to be done explicitly. When objects are referenced this way, it will never be possible to
move objects and accessing already deleted objects will most probably result in a crashing
application and/or MMDB.

Approach 2 Applications use a special reference class that contains the pointer to the object.
Special actions when using the pointer can be handled by the reference class. When this
reference class is a C++ template class, they are completely type safe1.

Approach 2 will be the only approach supported by Splice2DB (for applications that is) because
of the inherent safety. Chapter 8 will use this reference class approach to give a design of a
concurrency control mechanism using different type of reference classes.

7.3 Relations

The ODMG object model supports only binary relationships, i.e. relationships between two types.
The model does not support n-ary relationships, which involve more than two types. A binary
relationship may be one-to-one, one-to-many or many-to-many, depending on how many instances
of each type participate in the relationship.

(a) 1:1
(b) 1:N relation

Figure 7.2: Relations

In a one-to-one relationship (see figure 7.2a), setting the relation on one side, sets the inverse
relation on the other side (and clears any old relations these two objects may have had). In a

1You cannot reference an object of another type than the type the template is specialized with
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one-to-many relationship (see figure 7.2b) setting the relation on the one-side, adds the inverse
relation to the many side (optionally clearing an old relation on the one side). In a many-to-many
relationship, adding the relation to a side, adds the inverse relation to the other side. Removing
a relation on a side, removes it from the inverse side too. Thus, relations maintain referential
integrity .

Direct pointers are the fastest way to access the other object. An object with a to-one relationship
has a pointer to the other object. An object with a to-many relationship has a set of pointers to
other object. These direct pointers can be encapsulated in smart-pointer classes [Str97].

7.4 Administration

7.4.1 Name-instance administration

The name-instance administration is a part of the database, it associates names with instances.

NameInstanceAssocName−instance  administration
0..*1 0..*1

contains

NameInstance 0..*1 0..*1

associates

Figure 7.3: Name-instance administration

Representation of objects

• Instances can be represented as direct pointers to instances or OIDs. Direct pointers are
faster, since there will be no lookup of an OID necessary, and will be used where possible.

• Names will be represented as strings

Finding

Finding an object in the name-instance administration will always be done by looking up a name.

Definition

Using STL2 [Str97], this can be defined in C++ as

typedef name-instance-adm map< Instance*, set<string> >;

2Standard Template Library, part of C++ standard
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if a pointer to an instance is chosen to be the representation for instances.

This maps pointers to instances to a set of strings. This might be a correct implementation, of the
object model given in figure 7.3, but it is absolutely not efficient. With the additional requirement
that no two instances can be associated with the same name, and the fact that lookup will always
be done by name, the following definition is better:

typedef name-instance-adm multimap<string, Instance*>;

A map maps keys (strings here) to data (instance pointers here). A map is a unique associative
container [Sil96], meaning that no two elements have the same key.

To decrease lookup time it is better to use:

typedef name-instance-adm hash_map<string, Instance*>;

7.4.2 Extent administration

The extent administration is a part of the database, it keeps track of all instances of a class. The
type definer can specify whether the database should keep an extent for a type or not. It contains
1:n relations between classes and instantiations. Thus, the administration associates classes to
sets of instances.

ExtentExtent administration
0..*1 0..*1

contains

Class InstanceInstanceSet1 11 1

has

0..*1 0..*1

contains

Figure 7.4: Extent administration

Representation

• Classes can be represented by a pointer to their associated class definition in the metadata
administration or a MID3.

• The instances can be represented as direct pointers to instances or OIDs. Direct pointers are
faster, since there will be no lookup of an OID necessary, and will be used where possible.

Finding

Finding an element in the extent administration will be done my looking up a MID or pointer to
a class definition. Thus, Class is the KEY field and the associated set of Instances the DATA field

3Like objects in the database the metadata objects also have unique IDs (MID)
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Definition

If pointer to instance is chosen to be the representation of Instance and MID is chosen to be the
representation of Class, we can define the extent administration using STL like this:

typedef instance-set set<Instance*>
typedef extent-adm map<mid,instance-set>

Again, a lookup is faster if a hash map is used:

typedef extent-adm hash_map<mid,instance-set>

7.4.3 Metadata administration

Details about data representation in the metadata administration can be found in chapter 9.
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8 Concurrency control

As identified in the design overview (chapter 6), transactions are an unwanted mechanisme for
a MMDB for Splice2. In a distributed environment the price (performance-wise) for achieving
distributed transactions is to high for Splice2. Even within a node there is no necessity for
transactions. As transactions provide a unit in which the database satisfies the ACID-constraints,
another mechanism should take that role. This chapter describes a reference locking mechanism
based on references, that satisfies the ACID constraints without using a complete transaction
mechanism. The possible level of concurrency increases, especially in multi-processor systems.
However, the ability to abort actions or rollback actions is lost. The reference locking mechanism
will be explained in section 8.1.

The ODMG-interface defines six ways to get access to objects in the database:

1. Create a new object (section 8.2)

2. Access a collection within an object (section 8.3)

3. Lookup an object by name (section 8.4)

4. Extents (section 8.5)

5. Relationships from an object to another object or other objects (section 8.6)

6. Reference from an object to other objects (section 8.7)

All these six ways must be protected by a concurrency control mechanism.

Applications generally use references to refer to an object that resides in the database. With the
new mechanism this has to be the only way applications can access an object.

8.1 Reference locking mechanism

Although modification of an object requires exclusive access, it is acceptable to allow several
threads/processes to simultaneously read the data, as long as no one is trying to write to it at that
time. This requires a complex lock that permits both shared and exclusive modes of access. These
readers/writer locks are part of the Solaris 2.6 thread library. If not present on a system they can
be built using spinlocks and condition variables[Vah96]. Every object in the database will have
such a readers/writer lock. This lock will be used by the reference to set the desired access level.

In Splice2DB there will three types of references with an associated lock:

1. A read & write reference for full access to an object (also right to delete) (RW) called
d_RW_Ref

2. A read-only reference for read-only access to an object (R) called d_Read_Ref

3. A keep-only reference for no access to an object (K) called d_Ref
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The system should be able to upgrade or downgrade these references. The purpose of the third
type is to be able to keep a reference while you are currently not accessing it. When access is
needed, the reference must be upgraded to the needed access level. In case of a keep-only reference,
the object can be deleted without warning.1 The application will have to check if it is still valid.

Current Requested mode
mode RW R K
RW deny deny grant
R deny grant grant
K grant grant grant

Table 8.1: Locking compatibility matrix

Table 8.1 shows the locking compatibility matrix. This table in short:

• If a process in the system holds a RW-lock, only a request for a keep-only lock can be granted,

• If no process in the system holds RW-lock, requests for read-only and keep-only locks can
be granted,

• If no process in the system holds a RW- or an R-lock, request for all types of locks can be
granted.

In the ODMG-standard a reference template class is defined, d_Ref<T>, that is used to provide
type-safe access to objects in the database. The implementation of the reference locking mechanism
will be based on this interface. The most important member functions are:

• constructor d_Ref(), an empty constructor, creates a null-reference

• constructor d_Ref(T* p), a constructor that takes an object pointer as argument

• constructor d_Ref(d_Ref<T>& r), a copy constructor

• several assignment and equality checking operators

• void clear(), clears the reference

• T* operator→() const, returns a pointer to the object, does not change the reference

• void delete_object(), deletes the referenced object

In case of a keep-only reference only functions that change the reference will be provided, no access
or deletion functionality. In case of a read-only reference the operator → will return a const T*.
Only a read-write reference will have all the functionality of the original d_Ref<T>.

8.1.1 Upgrading and downgrading

Three mechanisms will be supported to up- or downgrade references and their associated locking
level:

1. Copy constructor mechanism

1This is a matter of choice. It is possible to add a fourth type of reference, or change the keep-only reference, that
prevents deletion of the referenced object.
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2. Assignment operator mechanism

3. Cast mechanism

Copy constructor mechanism This mechanism creates a new object, copying the reference of its
argument. Table 8.2 shows the semantics of the constructor mechanism. When the argument
is a locked reference type (RW or R) the arguments gets cleared, i.e. unlocked and the
reference cleared. The reference also gets cleared when a read-only reference lock is asked
for, with a read-only reference as the argument, even though not clearing the argument will
not cause deadlock2.

Example:

d_Ref r1;
d_RW_Ref a(r1);

Constructed Argument

reference RW R K

RW deny copy referenceun-

lock Rclear argu-

mentlock RW

copy reference-

lock RW

R copy referenceun-

lock RWclear ar-

gumentlock R

copy referenceun-

lock Rclear argu-

mentlock R

copy reference-

lock R

K copy reference copy reference copy reference

Table 8.2: Copy-constructor action table

Assignment operator mechanism Using this mechanism, an existing reference can be assigned a
new value from another reference. Table 8.3 show the semantics of the assignment operator
mechanism. When the argument is a locked reference type (RW or R) the arguments gets
cleared, i.e. unlocked and the reference cleared. The reference also gets cleared when a read-
only reference lock is asked for, with a read-only reference as the argument, even though not
clearing the argument will not cause deadlock.

Example:

d_Ref r1;
d_RW_Ref r2;
r1=r2;

Cast mechanism This mechanism creates a casted reference from its argument. The cast mech-
anism does not release the old lock since this mechanism will mostly be used in arguments
to function calls. Therefore, a lot of casts are not allowed. Table 8.4 shows the semantics of
the cast mechanism.

Example:

d_RW_Ref r1;
do_something((d_Ref)r1);

2This is a matter of choice. The risk of leaving an extra read-lock in the system, is a little smaller this way.
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Assigned Argument

reference RW R K

RW deny copy referenceun-

lock Rclear argu-

mentlock RW

copy reference-

lock RW

R copy referenceun-

lock RWclear ar-

gumentlock R

copy referenceun-

lock Rclear argu-

mentlock R

copy reference-

lock R

K copy reference copy reference copy reference

Table 8.3: Assignment operator action table

Cast Argument

to RW R K

RW deny deny copy reference-

lock RW

R deny copy reference-

lock R

copy reference-

lock R

K copy reference copy reference copy reference

Table 8.4: Cast operator action table

8.2 Locking of new objects

Applications create objects in the database using a overloaded new operator, e.g.:

Track *t = new(&db, "Track") Track(...)

Now the application has a direct pointer to the object in memory. The application can now change
t’s attributes:

t→trackID = 4123;

t→trackID = 4123;

and assign a name to t:

db.set_object_name(d_Ref_Any(t),"A track");

When an other application request an extent of type Track (the collection of all Track objects) or
looks up the ‘A track’ object by name, it can access the object even while the application that
created it has a pointer and can access it too.

This behavior of the new operator cannot be changed, as it is the behavior of the built-in C++
new operator. It always returns a direct pointer to the type it created.

Therefore, an object has to be locked for reading & writing when it is created. It is the respon-
sibility of the application that created the object to release this initial lock. The three reference
classes will unlock the object and re-lock it at the appropriate level when given a pointer to an
object. Thus
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d_Ref<Track> new_ref(t);

will unlock t, keeping a keep-only reference to t.

In general applications will use the reference mechanism by directly assigning the result of the new
operator to a reference class:

d_Ref<Track> tref = new(&db, "Track") Track(...),

or

d_Read_Ref<Track> tref = new(&db, "Track") Track(...),

or

d_RW_Ref<Track> tref = new(&db, "Track") Track(...)

8.3 Access a collection within an object

A class definition like

class Track {

d_Set<Position> positions;

}

contains a collection of position objects.

Iterators are used to access collection types ([C+97] & [Str97]). Because iterators define their
own operators for returning the elements in the collection type they access, the access level of
the composing object does not matter when accessing objects in the collection. The access level
however does matter when changing the collection itself, for instance by inserting or deleting an
object.

When two applications acquire a read-lock on the same Track-instance, they can both use the
interface provided by the collection type. Therefore, access control to the elements in the collection
has to be provided by the interface of the collection type.

Concurrency control for accessing the elements in the set will be done with a three types of
iterators. These three represent the types of references introduced in this chapter. Each collection
type will define three iterator-types. For d_Set for example:

• d_Set<T>::iterator
get_element()3 returns a d_Ref<T>

• d_Set<T>::read_iterator
get_element() returns a d_Read_Ref<T>

• d_Set<T>::rw_iterator
get_element() returns a d_RW_Ref<T>

3Or the operator *, which is equivalent.
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The programmer has to choose which type of access is needed. To access all position objects in
track a programmer will have to write:

d_Read_Ref<Track> track = db.lookup_object("A track");

d_Set<Position>::read_iterator first_position = track→positions.begin();

d_Set<Position>::read_iterator last_position = track→positions.end();

while(first_position != last_position) {

do something with *first_position

first_position++;

}

In the ODMG-standard iterators are used in three places:

1. In composite objects (like the Track-Positions example above)

2. In extents

3. In 1:N or N:M relations

The second and third case are discussed in section 8.5 and 8.6 respectively.

8.4 Looking up an object by name

When an application asks the database to look up a single object by name,

d_Ref_Any track = db.lookup_object("A track");

the database returns an unlocked generic4 reference, a d_Ref_Any.

This generic reference cannot be used to access the object it references. The reference has to be
upgraded to a specific reference with an associated locking level:

d_RW_Ref<Track> track = db.lookup_object("A track");

The application now has a RW-lock on the object.

Other options:

d_Read_Ref<Track> track = db.lookup_object("A track");

for a read-only reference to "A track" or,

d_Ref<Track> track = db.lookup_object("A track");

for a keep-only reference to "A track". This is similar to the generic d_Ref_Any, except for the
type information.

4Not type-safe
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8.5 Locking extents

In ODMG, extents are accessed by means of iterators. To guarantee safe access to the objects in
the extent, these iterators should not directly return objects or pointers to objects, but references.

Extents will support three types of iterators conforming with the three types of references.

An Extent<T> will have three associated iterator types:

• Extent<T>::iterator
get_element()5 returns a d_Ref<T>

• Extent<T>::read_iterator
get_element() returns a d_Read_Ref<T>

• Extent<T>::rw_iterator
get_element() returns a d_RW_Ref<T>

8.6 Locking of relations

Between objects three types of relations can exist:

1. 1:1 relations, an object of type A relates to one object of type B and vice versa.

2. 1:N relations, an object of type A relates to multiple objects of type B, objects of type B
relate to exactly one object of type A.

3. N:M relations, objects of type A relate to multiple objects of type B and vice versa

From the viewpoint of a class-definition, a class can have a to-one relationship with another class
or a to-many relationship with another class, independent of the inverse relation. The interface
used to access this relation is therefore a to-one interface or a to-many interface.

8.6.1 to-one relation

Suppose the following (ODMG-like) class definitions

class A {

relationship B b

inverse B::a;

}

class B {

attribute integer i;

//inverse relation of arbitrary type...

}

Two objects are created, one object of type A (name "a1") and one object of type B, a relation
between them is created. Schematically this looks like in figure 8.1.

Creating the objects and setting the relation has to be done in three steps, a fourth step releases
all references:
5Or the operator *, which is equivalent.
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b"a1"

BA

a

Figure 8.1: to-one relation

1. Create an object of type A and get a RW reference and give it a name
d_RW_Ref<A> a_instance = new(&db,"A") A();
db.set_object_name(a_instance,"a1");

2. Create an object of type B and get a keep-only reference
d_Ref<B> b_instance = new(&db,"B") B();

3. Set the relation between the instances
a_instance.b = b_instance;

4. Release the references (releasing a keep-only reference is not crucial since no guarantees are
given for this type of reference)
a_instance.clear();
b_instance.clear();

When another application, or the same application later, looks up the "a1" object and needs a
RW-lock6,

d_RW_Ref<A> a1 = db.lookup_object("a1");

it is possible to access the integer in B like this (in ODMG):

a1→b→i = 3;

Using the→ operator on the relation b in a1, the elements of the related object can be accessed for
reading & writing. This has to be avoided since the related object is not locked by the application.
There are two possible solutions:

1. Change the interface of the to-one relation to make it impossible to directly refer to the
related object

2. Automatically lock the object that is related by the to-one relation

The first approach changes the interface and makes the use of the database less intuitive. The
second approach can potentially lock a lot of objects if there are a lot of to-one relations in the
system. In this case ease of use is preferred to locking the related objects.

Automatically locking of related objects creates a possible deadlock problem when to-one relations
between objects contain a cycle. Consider objects that relate each other like in figure 8.2. All
relations in this figure are to-one relations in both directions.

When object "a1" is locked, the system will lock its related B-object, which will lock its related
C-object. This C-object tries to lock its related A-object and waits forever to acquire the lock.
This automatic locking system should therefore contain a cycle-detection mechanism, which will
not let the C-object lock "a1".
6By putting the reference to the object found into a d RW Ref-class, the application asks for full Read&Write

access. The lookup_object function returns a unlocked generic reference to an object.
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b"a1"

c c

C

a b

BA

a

Figure 8.2: 1:1-relations with a cycle

8.6.2 To-many relations

Suppose the following (ODMG-like) class definitions

class A {

relationship set<B> b

inverse B::a;

}

class B {

//inverse relation of arbitrary type...

}

A series of objects is created and related. Figure 8.3 shows such a structure.

B4B3B2B1

"noot"

A1

"aap"

Figure 8.3: 1:N relation

A to-many relation can be seen as a system-maintained collection of references to objects. This
type of relation is also accessed using iterators, just like the collection types mentioned in section
8.3. Access control to this special collection type can be done using the same three types of
iterators techique as used for the normal collection types (see section 8.3). This way it is not
necessary to lock all related objects.
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8.7 Locking of references

8.7.1 Locking single references

An object can contain a reference to another object. This reference, unlike a relation, has no
inverse reference.

class A {

reference<B> b;

}

class B {

attribute integer i;

}

In the ODMG-standard the same type (d_Ref<T>) of reference is used for:

1. references between objects,

2. acces to objects from applications.

This mechanism cannot be used any more, since the single reference type from for applications
has been replaced by three types of references. Therefore a separate reference type will be used to
reference between objects. The interface will almost be equivalent, however.

Like the interface of a to-one relation, the ODMG-standard defines the → operator to give an
application full access to the referenced object. Therefore, all referenced objects have to be locked
for reading and writing if the interface remains unchanged.

d_RW_Ref<A> a;

a→b.i = 3;

Like the deadlock problem identified for to-one relations, this reference mechanism has a potential
deadlock problem when the class definitions contain a cycle of references and automatically locking
references is done. For discussion of possible actions see section 8.6.1.

8.7.2 Locking collection of references

An object can contain a collection of references to other objects.

class A {

d_Set< reference<B> > b;

}

class B {

attribute integer i;

}

Like accessing a collection of objects within a class , the acces to a collection of references is done
using iterators. Therefore, the same three types of iterators can be used. For furthur discussion
of this mechanism see section 8.3.
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A database system maintains a schema, a description of all the objects that can be stored in the
database. The schema must include a complete description of each type stored in the database.
This information includes relationships, operation prototypes and exceptions.

Because of the rich modeling capabilities of object-oriented databases, the amount of meta-
information needed is much bigger than within traditional database systems, such as relational
databases. This data, called metadata, is used internally to calculate object sizes, to check query
parameters, maintain extents, etc. Some OO-languages support meta-objects or meta-classes, de-
scribing the classes declared in the applications. C++ does not have a standard representation
for meta information. Most of the information defined in a C++ class must be represented in the
database as metadata.

ODMG 2.0 [C+97] defines a set of classes that provide access to the schema in an object database.
In order to communicate on metadata-level with the database system two interfaces are needed:

• An interface to feed the database with new metadata

• An interface to read the schema of the database for use in database development tools,
distribution systems and management tools

The C++ metadata interface defined by the ODMG 2.0 standard [C+97] is a read-only interface.
Extensions to the standard have been planned to include a full read/write interface, to enable
programmers to dynamically modify the schema of the database. In this chapter a description is
given of the generation of metadata, the representation of metadata in the system and the schema
access from applications.

9.1 Metadata generation

The schema definition of a C++ application is most often based on parsing the application header
files. The database system must acquire the metadata by parsing C++ code. However, several
approaches exist [Jor98]:

1. A schema definition language parser generates both the schema and the C++ header files

2. A preprocessor examines original C++ header files, capturing the schema and sometimes
producing new header files to be used by the application

3. A postprocessor examines the symbol table information produced by the compiler, eliminat-
ing the need to parse C++ source code1

1Parsing C++ code might be cumbersome, due to differences in C++ language interpretations by compiler builders
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Both parsing C++ code and examining object files are not language-independent. The ODMG
2.0 standard [C+97] defines C++, Java and SmallTalk bindings for ODMG-compliant databases.
Generating schema information from code or object files eliminates the possibility of using one
definition of classes within several programming languages. Splice2DB will be used from applica-
tions written in various languages, therefore the first approach is chosen. ODMG 2.0 defines an
object definition language, ODL. Splice2DB will use a subset of ODL, called SODL. The definition
of this language is given in chapter C in the appendix.

Thus, the metadata is generated from one SODL input file, by a preprocessor which produces two
products:

• Definitions to be included in the application source.

• metadata to be included in the database

Figure 9.1 gives an overview of the applications and files involved. To create a new application
a preprocessor, a compiler2 and a run-time linker are needed. The compiler and run-time linker
are standard tools, the preprocessor is a dedicated tool, that can only be used for one OODB
implementation.

library
ODB runtime

Schema declaration Application source

CompilerDeclaration preprocessor

Running
Application

Database

m
et

ad
at

a

data access

headerfile

appl. binary

Runtime linker

Figure 9.1: metadata flow

In figure 9.1 metadata flows directly from the preprocessor to the database. Logically this is
correct, since only the database uses the metadata created by the preprocessor. However, two
approaches are possible

• Generate separate application header files and metadata files.

• Generate one application header files which contains both class definitions to be used in the
application and metadata to be used by the database.

The advantage of the latter approach is the possibility, to create and start new applications,
without having to feed the metadata into the database separately. The generated metadata has
to be valid C++ code in this case.

2For simplicity, it is assumed that the compiler generates a complete executable
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9.2 Representing metadata

Metadata, in the ODMG standard, is described using a set of classes that can be accessed from
every application using the database.

9.2.1 Meta objects & scopes

Every class except d_Scope in the metadata hierarchy, is derived from d_Meta_Object. This
d_Meta_Object class has a name, a comment and is defined in a scope.

d_Scope instances are used to form a hierarchy of meta objects. A d_Scope contains a list of
d_Meta_Object instances that are defined in its scope, as well as operations to manage the list.
The method d_Scope::resolve is used to find a d_Meta_Object by name.

All instances of d_Meta_Object, except d_Module, have exactly one d_Scope object3. This rep-
resents a ‘defined in’ relationship. The type d_Scope::meta_object_iterator defines a protocol
to traverse this relationship in the other direction.

d_Meta_Object

name() : String
comment() : String

d_Scope

resolve(name : String) : d_Meta_Object0..* 10..* 1

defined_in

Figure 9.2: d_Meta_Object and d_Scope

9.2.2 Module

Every application that uses the database has to define a top level module containing definitions
of constants, types and operations.

A d_Module contains lists of:

• d_Constant, constant definitions

• d_Type, type definitions

• d_Operation, operation definitions

that are defined in its scope. d_Module provides an interface for accessing these definitions by
means of iterators. Using these iterators it is possible to navigate further down in the hierarchy.
For example, from d_Operation, the set of d_Parameter instances can be reached and so on.

The ODMG standard text does not comply with their class definition for the C++ language
binding. Modules cannot be defined within modules, because there is no interface to browse
sub-modules.
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d_Operation

d_Constant

d_Type

d_Module

0..*

1

0..*

1

defines_operation

0..*
1

0..*
1 defines_constant

0..*
1

0..*
1

defines_type

d_Scope d_Meta_Object1 0..*1 0..*defined_in

Figure 9.3: d_Module

d_Structure_Typed_Alias_Type d_Collection_Type d_Ref_Type d_Primitive_Type

d_Enumeration_Type

d_Keyed_Collection_Type

d_Scope

d_Class

d_Type

d_Meta_Object

Figure 9.4: Hierarchy of d_Type

9.2.3 Types

Figure 9.4 shows the inheritance tree of all classes derived from d_Type.

In short:

d_Alias_Type Another name for a type, like a typedef

d_Collection_Type For collection types like set, list, bag

d_Keyed_Collection_Type For collection types that map keys to values, like

a map or a dictionary

d_Ref_Type References to other objects

d_Structure_Type Struct definition

d_Class Class definition

d_Primitive_Type Definition of built-in types like int, char and double

d_Enumeration_Type For enumerations, which are of a certain

d_Primitive_Type

3The top level scope is a d_Module. This top level module has no ‘defined in’ relation with a d_Scope.
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Only d_Class and d_Primitive_Type will be explained here. For more complete information
about the ODMG meta-classes see [C+97] and [Jor98].

d Primitive Type

An instance of d Primitive Type represents a primitive type. Table 9.1 shows an overview of
available primitive types and their properties as defined by ODMG. The column ‘Implement as’
shows a possible C++ type definition.

Type Size Description Implement as

d_Char 8 bit ASCII character char

d_Octet 8 bit No interpretation unsigned char

d_Boolean undefined d_False and d_True bool

d_Short 16 bit Signed short integer short

d_UShort 16 bit Unsigned short integer unsigned short

d_Long 32 bit Signed integer long

d_ULong 32 bit Unsigned long integer unsigned long

d_Float 32 bit IEEE Standard 754-1985 float

single-precision floating-point

d_Double 64 bit IEEE Standard 754-1985 double

double-precision floating-point

Table 9.1: Overview of available primitive types

d Class

Every class that is to be stored in the database is represented by a d_Class instance in the
metadata administration. For classes involved in an inheritance relationship, a d_Inheritance
instance is used to associate the two classes. A d_Class contains lists of:

• d_Inheritance, baseclasses

• d_Inheritance, subclasses

• d_Operation, operation definitions

• d_Attribute, attribute definitions

• d_Relationship, relationship definitions

• d_Constant, constant definitions

• d_Type, type definitions

d Property

The d_Property class is an abstract base class for d_Attribute and d_Relationship. A property
is a field of a class or a structure.

Figure 9.6 show the class diagram of d_Property. d_Property is derived from d_Meta_Object
and therefore has a name and a comment. A property is of a certain type and has an access kind
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d_Property

d_Meta_Objectd_Scope 0..*1 0..*1 defined_in

d_Constant

d_Type

d_Operation

d_Attribute

d_Relationshipd_Class

0..*1 0..*1 defines_constant

0..*1 0..*1 defines_type

0..*1 0..*1 defines_operation

0..*

1

0..*

1

defines_attribute

0..*

1

0..*

1

defines_relationship

d_Inheritance

0..*
0..*

0..*
0..* base_class_list

0..*0..* 0..*0..* sub_class_list

1 0..*1 0..*derives_from

1 0..*1 0..*inherits_to

Figure 9.5: d_Class

(private, protected or public). Only properties that are defined in a d_Class can have an
access kind other than public.

A d Attribute has the following additional methods:

• is static, returns true when this is a static attribute

• is read only, returns true when this is a read-only attribute

• dimension4, returns the dimension of the attribute

9.3 Creation of metadata by applications

Applications have to have the metadata resident when they open a database. This metadata can
be present in the form of descriptor strings or in a form that resembles the metadata administration
in the database. Because there already is a parser creating C++ header files from SODL files, a
structure resembling the metadata administration can be created. An advantage of this approach
is that the database does not need to have a parser for SODL-strings.

Figure 9.7 shows a sequence diagram of an application creating a metadata structure. The steps
are:
4The dimension is the number between the square brackets in an attribute definition like: attribute int

twoints[2];
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d_Meta_Object

d_Attribute

d_Typed_Property

d_Access_Kind
d_Relationship

d_Rel_Kind

10..* 10..* type_of

0..*

1

0..*

1
access_kind

1

1

1

inverse

1

0..*

1

0..*

1

rel_kind

Figure 9.6: d_Property

1. Create an attribute

2. Create a class containing the attribute from step 1

3. Create a top level module containing the class from step 2

The methods show in figure 9.7 are simplified, all meta objects have to be given a name, classes
can contain much more than attributes only etc.

9.4 Schema Access

The C++ Metadata interface defined by ODMG 2.0 is a read-only interface. Extensions to the
standard have been planned to include a full read/write interface, to enable a programmer to
dynamically modify the schema of the database.

Figure 9.8 shows the complete inheritance overview of the metadata representation as defined by
ODMG 2.0.
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application attribute1 : 
d_Attribute

class1 : 
d_Class

top_level : 
d_Module

new( )

new( &attribute1)

new( &class1)

Application startup sequence

Figure 9.7: Application creates metadata
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d_Structure_Typed_Alias_Type d_Collection_Type d_Ref_Type d_Primitive_Type

d_Enumeration_Typed_Keyed_Collection_Type

d_Scoped_Meta_Object

d_Property d_Parameter

d_Attribute d_Relationship

d_Class

d_Operationd_Constant d_Type

d_Module

Figure 9.8: Overview of metadata class hierarchy
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10 Structure

The prototype for Splice2DB has been divided into several packages that together provide the
Splice2DB functionality. An overview of the packages is given in section 10.1. The relations
between the packages will be discussed in section 10.2.

10.1 Packages

The Splice2DB library consists of four packages:

1. ODMG data interface package

2. ODMG metadata interface package

3. Memory management package

4. Synchronization primitives package

Splice2DB

ODMG data 
interface

ODMG metadata 
interface

Memory 
management

Synchronization 
primitives

Figure 10.1: Splice2DB packages

The total Splice2DB library is implemented in the namespace1 odmg.

10.1.1 ODMG data package

Provides the implementation for the data access interfaces defined by ODMG. The following classes
are implemented here:

1namespaces are part of the new C++ standard, see [Str97]
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d_Database

d_Extent<T>

d_Object

d_RW_Ref<T>

d_Read_Ref<T>

d_Ref<T>

d_Ref_Any

d_Set<T>

d_Rel_Ref<T,MT>

d_Reference<T>

The following classes from the ODMG data access interface are not implemented yet:

d_Rel_List<T,MT>

d_Rel_Set<T,MT>

d_Collection<T>

d_Bag<T>

d_List<T>

d_Varray<T>

d_Dictionary<K,V>

d_Error

d_OQL_Query

The following class will not be implemented:

d_Transaction

d_Iterator<T>

d_Iterator<T> will not be implemented because not all collection types can use the same iterator
interface, because for some collection classes a three-level iterator mechanism is used and the STL
collection classes cannot use one iterator type because of performance constraints [Sil96]. Instead,
each collection type defines its own iterator type, like: d_Extent<T>::iterator.

10.1.2 ODMG metadata package

Provides the implementation for the metadata. The following classes are implemented here:

d_Attribute

d_Class

d_Meta_Object

d_Module

d_Property

d_Relationship

d_Scope

d_Type

The following classes from the metadata are not implemented yet:
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d_Alias_Type

d_Collection_Type

d_Constant

d_Enumeration_Type

d_Exception

d_Inheritance

d_Keyed_Collection_Type

d_Operation

d_Parameter

d_Primitive_Type

d_Ref_Type

d_Structure_Type

10.1.3 Memory management package

This package provides wrapper classes for the C2 based shared memory claimer and memory
allocator mentioned in chapter B.

Spl_Shm

Spl_mm

10.1.4 Synchronization primitives package

This package provides a wrapper classes for operating system dependent synchronization primi-
tives. Currently it only contains a wrapper for the Solaris rw_lock.

d_RW_lock, an abstraction of a readers-writers lock

10.2 Interrelation

Packages are dependent on other classes. Figure 10.2 show the dependencies between the packages
in Splice2DB.

Both the ODMG data interface and the metadata interface use the memory management routines.
Only the ODMG data interface uses the synchronization primitives.

2the language
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Splice2DB

primitives
Synchronization

management
Memory

interface
ODMG metadata

ODMG data
interface

Figure 10.2: Splice2DB package overview and dependencies
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11 Creating metadata

Metadata will be resident in a started application in a structure that resembles the structure in
the metadata administration. This approach was chosen in chapter 9. This chapter will show how
this is implemented in Splice2DB. It will show what information has to be created by a SODL to
C++ parser. Because of the size of the metadata API only some examples are given. The rest of
the documentation is in the documentation generated from the library source.

11.1 From SODL to C++

Suppose the following class definition in SODL:

class example {

attribute long attr;

};

The parser will have to create a C++ class definition and metadata for the database.

11.1.1 C++ class definition

Creating a C++ class definition from the example is straightforward:

class example : public d_Object {

public:

long attr;

static const char * const class_name;

}

const char * const example::class_name = "example";

The example class extends from d Object to be able to be stored in the database. The parser adds
a static member1 class_name to the class definition. This identifies the object to the database in
some special cases where type information is needed. A static member has to be initialised outside
the class definition, and should be done only once in an application.

11.1.2 C++ metadata

The parser has to generate metadata for the attribute and for the class. Finally, the parser has to
generate a module containing the definitions.
1A static attribute is shared along all instances of the class. It does not occupy space in instances of the class.
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Attribute

d_Attribute *__example_attr = {

new d_Attribute("attr",

"",

"LONG",

offsetof(example, attr),

false, false,1),

0};

The parser generates code for a d_Attribute-pointer array containing all attribute definitions for
the example class. The last element in the array is a NULL-pointer2 to indicate the end of the
defintions. The constructor for an attribute takes the following arguments:

1. const char* name, the name of the attribute

2. const char* comment, an optional comment

3. const char* type, the name of the type of the argument

4. size_t offset, the offset of the attribute in the class

5. const bool is_read_only=false, whether this is a const-member

6. const bool is_static=false, whether this is a static member

7. const unsigned int dimension=1, the dimension of the attribute3

Class

d_Class __example ("example","",0,0,0,

__example_attr,0,0,0,0,

true,true,false);

The parser generates code for a d_Class containing the attribute defined above. The constructor
of d_Class takes the following arguments:

1. const char* name, name of the class

2. const char* comment, an optional comment

3. d_Class* subclasses[], list of derived classes

4. d_Class* baseclasses[], list of base classes4

5. d_Operation* operations[], list of operation

6. d_Attribute* attributes[], list of attributes

7. d_Relationship* relations[], list of relations

8. d_Constant* constants[], list of constants

9. d_Type* types[], list of types

10. bool persistent_capable=true, whether the class is persistent capable5, this is useful classes
that are part of other classes and don not have to be persistent capable by themselves

11. bool has_extent=true, whether the database should keep an extent for this class

12. bool forward=false, whether this class should be declared forward
2In the new C++ standard the number 0 is used to indicate a NULL-pointer.
3attribute int[4] ints; specifies an int-array with four elements.
4In single inheritance this is only one class
5i.e. can be stored in the database
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Module

d_Type* __top_level_types[]={&__example,0};

d_Module top_level("top_level","",__top_level_types,0,0);

First the class type-definition is put into an array of type definitions. Then a top level module is
created, using this array of type definitions.

The constructor of d_Module takes the following arguments:

1. const char* name, a name (does not matter actually for the top level module)

2. const char* comment, an optional comment

3. d_Type* types_begin[], a list of type definitions

4. d_Constant* constants_begin[], a list of constant definitions

5. d_Operation* operations_begin[], a list of operation definitions

11.2 An application framework in C++

Applications are typically composed of several source files to create one executable. Because
multiple source files may need the class definitions defined using SODL, these files should include
a header-file containing the class definitions. The metadata, however, may only be defined once.
The same goes for definitions6 of static class members . Therefore, the class definitions and the
metadata must be split into two header files. Figure 11.1 shows a possible source tree consisting
of one main C++ file and two extra C++ files. Only the main C++ file includes the metadata.
Every C++ file includes the class definitions.

class_defs.h

meta_data.h

class_defs.h class_defs.h

main.cpp extra1.cpp extra2.cpp

Figure 11.1: An application using Splice2DB

6Static class members are declared inside a class, but have to be defined outside a class.
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12 Polymorphism and late binding

One of the main advantages of object-oriented languages is the possibility to defer binding of
function-calls to run-time. This allows for polymorphic behavior of classes. In C++ a function
whose binding is deferred to run-time, is called a virtual function. This mechanism leads to a
problem when used in conjunction with shared memory.

12.1 Virtual functions

Derived classes can redefine functions declared in a base class, if a function is declared to be virtual
in the base class. Now every derived class can override the function.

An example in C++ code:

class Screen {

virtual void DrawWindow(...)=0;

}

class X11Screen : public Screen {

virtual void DrawWindow(...) { /*implementation*/ };

}

class DirectScreen : public Screen {

virtual void DrawWindow(...) { /*implementation*/ };

}

Class Screen is an abstract class. By specifying =0 behind the function declaration, a function
is defined to be a pure virtual function, i.e. it has no implementation. A class containing one or
more pure virtual functions is an abstract class [Str92]. Instances of the Screen-class cannot be
created since it is abstract, it can only be used as a base class for other classes. If a derived class
does not implement all pure virtual functions from its base classes, it is still an abstract class.
Both X11Screen and DirectScreen inerhit from Screen and implement the DrawWindow(. . . )
function and therefore are not abstract classes. Instances can be created from both X11Screen
and DirectScreen.

12.2 Late binding

Consider the following program fragment:
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12 Polymorphism and late binding

Screen* scrPtr;

if(...) {

scrPtr = new X11Screen;

}

else {

scrPtr = new DirectScreen;

}

scrPtr→DrawWindow(...);

It is not possible to determine at compile-time whether scrPtr points to an object of type
X11Screen or DirectScreen. Determining which implementation of DrawWindow to choose, should
be done at run-time. This is called late binding.

12.3 Virtual function tables

Because C++ objects normally do not carry around type-information1, compilers have to add
extra information to an object in order to choose the right function at run-time. This is mostly
done by adding a pointer to a virtual function table to the end of object. Figure 12.1 shows the
layout of the objects if in the code fragment above the ‘else’-branch was taken.

DirectScreen object

virtual function table DirectScreen
virtual function table X11Screen

pr
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virtual function table pointer

scrPtr
virtual function table DirectScreen

Figure 12.1: Screen application object layout

Virtual function tables contain memory addresses of all the functions defined virtual in the class.
In the example there is only a pointer to the implementation of the DrawWindow funtion in both
tables. Two instances of the same class point to the same virtual function table .

12.4 Virtual function tables and shared memory

In a main memory database an application opens a shared memory region and attaches this region
to its own address space. All objects the application creates in this memory area, contain a virtual
1That is, if the new C++ feature Run-Time Type Information is not used.
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12 Polymorphism and late binding

function table pointer that points to a virtual function table in its own address space, most possibly
different from the address in other executables. This is because a linker can map these virtual
function tables to a different position in the executable. As shown in figure 12.2 two instances
of X11Screen in shared memory contain pointers that are only valid in the process that created
the object. In a process that did not create the object, the pointer points to an address which
most possibly does not contain valid machine-code or is an illegal address, thereby crashing the
program.
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Figure 12.2: Virtual function tables and shared memory

The whole idea of a database is to be able to share objects between applications. There are three
possible solutions:

1. Circumvent virtual functions (not really a solution)

2. When a process tries to access an object, activate the object within that process’s address
space

3. Map all virtual function tables at the same address in all processes that use it

The third solution can be called the ‘trivial’ solution, because a different mapping of function
tables created the problem.

Circumvent virtual functions

Circumventing virtual functions is more a workaround than a solution. It is an ‘if everything else
fails’ option. The type of an object can be identified by adding a type field to every object. A
dispatch function in the base class with a switch on the type, can call the correct function. This
implies that a base class has to know of all its descendants. This is a very common mechanism in
non object-oriented systems, but is hardly preferable in object-oriented systems.
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12 Polymorphism and late binding

Object activation

An object can be copied from shared memory to a local cache within the process, thereby replacing
the virtual function table pointer with a pointer that is correct within the process’s address space.
Now the application can use the object. Copying an object to a local cache and copying it back
if changed is slow, and must be avoided in high-performance systems. This activation mechanism
diminishes the performance advantages of a main memory database. Figure 12.3 shows the neces-
sary action in an object activation scheme. It is also possible to change the virtual function table
pointer in the shared memory without caching the object. However, this mechanism only allows
for one simultaneous reader because the virtual function table pointer is only valid for one process.

Application Data Cache Database 
Shared Memory

access
activate

use

use

end access
deactivate

Figure 12.3: Activating objects in a local cache

Map virtual function tables at the same address

This mechanism needs linker support. The linker should be able to map all virtual function tables
to a fixed address within all Splice2DB applications. This way, all virtual function pointers point
to the same address, which is the start of a correct virtual function table. Two steps are required:

1. Collect all virtual function tables from all source files into one object file

2. Map the contents of this file tothe same address within all executables

Modern C++ compilers like GCC 2.7 and up and Solaris CC 4.0 and up support the first step.
The Solaris and the GNU linker support the second step, although the needed map-files are very
different.
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12 Polymorphism and late binding

This approach does not create any overhead like the other two options and is therefore tested for
Splice2DB. A map-file for the Solaris linker looks like:

vtable = LOAD V0x80000000;

vtable : .rodata : tables.o;

This map-file maps all entries in the .rodata segment in the tables.o object file to the vtable
segment. This is a segment that is defined in this map-file, which will be loaded by the system
loader at virtual address 0x80000000. The syntax of map-file is described in [Sun98].

Every application that uses Splice2DB has to be linked using the same map-file.

This approach has two disadvantages

• It is very compiler and linker dependent. If the compiler does not output its virtual function
tables to the .rodata segment (which happened in the upgrade from GCC 2.7.2.1 to GCC
2.95) the mapping is not performed.

• Debugging code that faults because of an incorrect virtual function table pointer is very
hard, because the offending action cannot be seen in a symbolic source-level debugger.
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13 Results

13.1 Analysis phase

Aside from gaining knowledge about the current SPLICE system and main-memory database
systems, emerging database standards were investigated to find a standard that would be used
as a starting point for the Splice2DB system. The ODMG 2.0 standard has been chosen. The
reasons for this choice are given in paragraph 3.3. The most important considerations were:

• Strong integration with host programming language

• Ability to store complex data models

13.2 Design phase

In the design phase serveral choices have been made:

• How to represent data and provide access to the data (chapter 7)

• How to handle concurrency control (chapter 8)

• How to generate and represent meta-data (chapter 9)

The following three paragraphs will elaborate on these choices.

Data representation

Based on Signaal’s performance demands and C++’s support for smart pointers, smart pointers
have been chosen. The smart pointer approach was stretched to its limits by the inclusion of
concurrency control in this mechanism. This mechanism is elegant and easy to use.

Concurrency control

Especially in the area of concurrency control the biggest differences from standard client/server
databases are noticeable. Chapter 6 discussed the disadvantages of a transaction system for real-
time systems. A new mechanism was designed that does not support the full ACID semantics,
but is able to prevent race conditions. This system was designed to be used in conjuction with
special language features of C++ to be as unobtrusive as possible (chapter 8). The burden of
concurrency control is mostly shifted towards features of the C++ language, for a lesser part to
the programmer. The main reasons for this approach are:

• Increase in developer productivity

• Decrease in programmer errors caused by forgotten unlock operations
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Meta-data generation and representation

In chapter 9 mechanisms have been chosen how to generate metadata and how to represent it in
Splice2DB. Based on Signaal’s demands a parser mechanism was chosen that generates language
dependent interface files (header files for C++) from a language independent meta-data repre-
sentation (SODL). This language independent representation is easy to read because it does not
depend on C macros and compiler trickery. Also, it allows for easy translation to other languages
than C++.

SODL was designed to be a subset of ODL. Major differences between SODL and ODL are
limitations to enable direct translation to C++. See appendix C.

13.3 Implementation phase

During implementation emphasis was placed on the following functionality:

• Shared memory support

• Meta-data support

• Concurrency control

Shared memory support

Implemented is the ability to place database elements in shared memory by overriding the standard
C++ memory manager. The ability to share memory segments seriously reduces memory needs,
but is not without challenges. These challenges have been researched and resolved. See paragraph
12.4. However, mixing C++ virtual function tables and shared memory still remains a dangerous
practice and should be avoided where possible.

Meta-data support

A mechanism was implemented to allow meta-data to be represented in C++ code. This allows
SODL definitions to be translated to C++ and be included in compilation and linking stages of
an application. See chapter 11.

Concurrency control

The mechanism designed in chapter 8 was implemented and tested successfully.

Implementation status

Chapter 10 and in particular the paragraphs 10.1.1 and 10.1.2 show the status of the implemen-
tation.
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14 Conclusions

Standardization

As stated in the introduction to this thesis, Signaal had a strong desire to adopt standard API’s.
This influenced the decision to use the ODMG API as the API for Splice2DB instead of designing
a new API. However, parts of the ODMG interface had to be changed to adapt to Signaal’s re-
quirements. This is off course not the idea of using a standard interface, but Signaal’s requirements
are far from standard.

It is therefore not surprising that an interface defined for a client/server model using transactions
does not suffice. It is safe to say that this API is a mismatch for Signaal’s requirements, because
changing just parts of the API renders the original goal of interoperability with COTS systems
impossible. You simply cannot compare the requirements for Splice2DB with the features of a
COTS object DBMS.

Concurrency control

A transaction system conforming to the ACID requirements as specified by the ODMG 2.0 speci-
fication does not match Signaal’s requirements. Therefore, a light-weight unobtrusive concurrency
control mechanism has been designed. This mechanism strongly relies on the available features of
the C++ language such as smart pointers and const pointers.

The combination of the C++ smart pointer approach and concurrency control allows for code that
is easy to read and write:

• the strongly typed smart pointers show what kind of access this line of code has at a glance,

• the smart pointers allow for C++ style access to attributes, using the -> notation.

Meta-data

Splice2DB needs a lot of knowledge about the structure of the objects stored. Splice2DB needs
this data to manage relationships between objects and to provide run-time insight in available
data definitions, in particular to support ODMG’s read-only meta-data API.

The implemented meta-data structure allows applications to provide the meta-data of the objects
stored to Splice2DB. Aside from the needs of Splice2DB itself, applications can get insight into
the structures of the data stored in Splice2DB without the need of link-time inclusion of this data.
Having meta-data available at run-time also opens the possibility to interface with more dynamic
scripting languages like Python and Rails.
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14 Conclusions

Performance

Performance, and low latency especially, is crucial to Signaal. The following design elements
contribute to Splice2DB’s low latency:

• Memory for database objects can be allocated directly in shared memory. This prevents
unnecessary copying of memory blocks between application memory and database memory.

• Direct access to data. After having gained the rights to access an object, the attributes of
the object can be accessed directly without any indirection.
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15 Recommendations

Design a better API

The ODMG API is not a perfect match for a low latency main memory database. As the entire
transaction system was removed the API compatibility is gone. The transaction system is so
crucial to using the ODMG API, there is no reason left to strictly use the rest of the ODMG API.

It is therefore recommended to investigate whether other parts of the API can be changed to
better facilitate the needs of Splice. Possible research topics:

• Collections like historic collections (e.g. a collection that can keep the last hour of data)

• Direct support for data quality in the database like Splice

Separate data from behavior

Some object-oriented databases use the host programming language to define the data dictionary.
As class definitions in programming languages combine data and behavior definitions, the definition
in the programming language contain more information than the data dictionary alone.

The ODMG 2.0 defines the ODL language as a programming language independent object data
definition language. SODL was created to be a subset of ODL to ease the translation to C++
(and thereby to most object-oriented programming languages).

There are several features of (S)ODL tat cannot be expressed (directly) in a programmig language.
These are:

• The ability to define key attributes

• The ability to define extents (collection of all instances of a class)

• The ability to define 1:N or N:M relations as collections like set, list & bag1

Research shared memory allocation and C++

When allocating a C++ object in shared memory, the compiler adds an extry entry (usually at
the end) to the object in memory. This entry points to a virtual function table (see paragraph
12.4). Even when the tables are mapped to the exact same address in memory, this solution is very
brittle. This solution requires that all applications and libraries that use Splice2DB use exactly
the same compiler (both make and version).

It is therefore recommended to research the possibility to split the object between a C++ ’holder’
object and a pure data object.
1Most frameworks contain definitions for these collections but they are usually not part of the language definition.
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Consider using C

To support scripting languages that have the ability to add types at run-time, the availability
of meta-data is a must. However, these languages tend to have the ability to bridge to libraries
written in C, not C++. If support for these languages is important, consider providing a C based
API. Possibly, in addition to the C++ API which can be built on top of the C API.
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16 Retrospect

All work for this thesis was done in 1999. For the reasons explained in the preface, this report is
finished in 2007. This chapter describes developments over the years since early 1999, that have a
relation to the Splice2 project and the work done for this thesis.

16.1 Changes to the Splice2 project

During the assignment Signaal changed its mind about the Splice2 project. The more ambitious
requirements have been removed and were largely reduced to a serious rebuild and refactoring of
the existing SPLICE code base.

• Splice2 will not be implemented in C++ but in C.

• Splice2 will not support any object-oriented features on the API level

• Splice2 will have support for object-oriented features internally, to enable additional API in
the future

Also, the decision was made to continue the assignment according to its original definition and
plan and to learn from its results.

16.2 The database standards

Chapter 3 is devoted to the, then, upcoming database standards SQL3 and ODMG 2.0. When
the research was done, the SQL3 standard was not yet finalized and it was far from clear if the
ODMG 2.0 would be successful.

SQL3 was standardized at the end of 1999. Although standardized, its object-relational features
are still somewhat controversial and not yet widely supported.

The ODMG suffered an even worse fate as it was disbanded in 2001 after releasing version 3.0 of
their specification.

In 2001 the ODMG Java Language Binding was submitted to the Java Community Process as a
basis for the Java Data Objects specification. The ODMG member companies then decided to
concentrate their efforts on the Java Data Objects specification and disbanded their organisation.
In 2004, the right to revise the ODMG specification was granted to the Object Management Group
(OMG).

In 2006 the OMG announced plans to work on revision 4 of the ODMG specification.
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16 Retrospect

16.3 A new standard

The Splice2 project was limited to create a new Splice implementation with an original Splice
compatible API. This did not imply that the long-term desire to have object-oriented features in
Splice and have a standardized API were abandoned.

Under the umbrella of the Object Management Group (OMG) two companies, Thales and Real-
Time Innovations, set out to create a new standardized API for data distribution in distributed
real-time systems, the Data Distribution Service (DDS). There are currently two products that
implement the DDS standard:

• OpenSplice by PrimsTech (formerly Thales Splice)

• DDS by Real-Time Innovation

The original Thales Splice found a new home at the company PrismTech that specializes in middle-
ware solutions. Instead of being a home-grown solution only used in Thales products, OpenSplice
is now a product on its own and available to more parties than Thales alone.

16.3.1 The Data Distribution Service by OMG

As stated in the the conclusions (chapter 14) there was no good match between Signaal’s require-
ments in 1999 and the ODMG API. The DDS solves this mismatch by providing two data oriented
API’s:

• Data-Centric Publish Subscribe API (DCPS). This is an API, that focusses on providing
a low-level QoS based API to exchange single messages between publishers and their sub-
scribers. This API is designed to be implemented in languages like C.

• Data Local Reconstruction Layer API (DLRL). This layer is able to reconstruct an object-
graph between messages exchanged through DCPS based on their keys. DLRL strongly
resembles object-relational mappers (ORM), because it uses the implicit relationships in the
messages (foreign keys) to create application objects that have directly navigatable relation-
ships. The DLRL layer is meant to be implemented in languages that support object-oriented
features like C++ and Java.

The biggest difference between the layers is that the DCPS layer does not handle object graphs.
Relationships between objects are modelled as foreign key fields and only recombined to graphs in
the DLRL layer. Refer to paragrah 1.4.2 to see an example of relationships modelled using foreign
keys.

16.3.2 Relationship to this assignment

The DLRL is the part of DDS that solves Signaal’s original goal of being able to use richer object-
oriented modelling techniques for their data model. Using the DLRL, applications do not have
to recombine the relations between messages themselves, but DDS does this for them. (Parts of)
Splice2DB could be used to provide the object storage of the recombined objects.

Also, the OpenSplice product has strong support for run-time availability of meta-data which was
inspired on the meta-data abilities of Splice2DB.
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16 Retrospect

In retrospect we may say that the original ambitions of the Splice2 project to provide a full
distributed publish/subscribe object database system were too high. Analogue to developments
in the relational database world the DDS standard advocates a two layer approach: one layer for
simple tuple management, like a relational database, and one layer to combine tuples to objects,
like an object-relational mapper.
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Appendix
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A Data-access Interface (API)

Earlier on the decision was made to use the ODMG interface as the interface for Splice2DB.
This chapter briefly explains the data-access interface defined by ODMG 2.0. More complete
descriptions can be found in [C+97] and [Jor98].

Not all ODMG classes are relevant for Splice2DB, like d_Transaction. Only the most important
classes will be discussed. These classes are:

• d_Database

• d_Extent<T>1

• d_Object

• d_Ref_Any

• d_Ref<T>

• d_Rel_Ref<T,MT>

• d_Rel_Set<T,MT>

• d_Rel_List<T,MT>

Not all functionality needed for Splice2DB can be provided with this interface, the standard has
been extended with the following classes:

• d_RW_Ref<T>

• d_Read_Ref<T>

• d_Reference<T>

Database

The main entry point for every application using Splice2DB is the d_Database class. Before
anything can be done on a database, an application has to create a d_Database instance and open
a database using its open member-function.

d_Database

The database object is transient, that is, a database cannot be stored in a database. Databases
must be opened before starting any action that use the database, and closed after ending these
actions.

Table A.1 shows the member functions available to applications.

An application that uses the database has to follow a specific calling sequence:
1All classes contaning <T> are template classes
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Method Semantics

d_Database() Constructor

~d_Database Destructor

void open(...) Opens a database by name

void close() Closes an opened database

void set_object_name(...) Attaches a name to an object in the database

void rename_object(...) Renames an object in the database

d_Ref_Any lookup_object(...) Finds an object by name

Table A.1: d_Database member functions

d_Database d; //create a database object

d.open("name"); //open a named database

//various actions on database

d.close(); //close the database2

or

d_Database *d = new d_Database;

d->open("name");

//various actions on database

d->close();

delete d;

When an object of this type has been created, applications can use the database. An applications
now has to possibilities to retrieve data that is already in the database:

1. Use the lookup_object member function, to look up a paritcular object by name
2. Ask for the extent containing all instances of a type

Using the ‘Singleton’ design pattern [GHJV95], it can be ensured that the database class has only
one instance. Although this is not ODMG-compliant, this will prevent the system from having to
collect objects from more than one database when the application asks for the extent of a type.

Accessing objects

d_Object

All objects that can be stored in the database have to be derived from d_Object. In ODMG
terms, deriving from d_Object makes a class persistence-capable.

class Track : public d_Object {...};

makes Track persistence-capable.

Table A.2 shows the member functions available to applications.
2A call to the desctuctor of the database object, is automatically inserted by the compiler when the object goes

out of scope
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Method Semantics

d_Object() Constructor

d_Object(...) Copy constructor

~d_Object Destructor

d_Object& operator=(...) Assignment operator

void* operator new(...) Creates persistent or transient instance

void operator delete(...) Deletes instance from the database

Table A.2: d_Object member functions

d_RW_Ref<T>

The d_RW_Ref template class acts as a smart pointer to an instance of class T. There is also a
d_Ref_Any class (section A) that provides a generic reference to any type. d_RW_Ref is a template
class, which means that it provides a type-safe reference to instances of class T. A d_RW_Ref<X>
cannot be used to reference an instance of class Y. References behave like C++ pointers, but
provides a safe access to objects in the database. Having a d_RW_Ref reference to an object in
the database means having write-accesss to it. When releasing the reference, the write-lock gets
released. When an objects has to be accessed only for reading, it is better to use d_Read_Ref<T>.
A d_RW_Ref<T> reference can be downgraded to a d_Read_Ref<T> (read-only) or a d_Ref<T>
(non-read/non-write) reference.

Table A.3 shows the member functions available to applications.

Method Semantics

d_RW_Ref() Constructor, null reference

d_RW_Ref(...) Constructor, copy reference from pointer, d_Ref_Any,

d_Read_Ref<T> or d_Ref<T>

~d_RW_Ref Destructor

... operator =(...) Assign reference from pointer, d_Ref_Any,

d_Read_Ref<T> or d_Ref<T>

operator ...() Various cast operators

void clear() Set reference to null reference

T* operator→() Dereference, return pointer to referenced object

T& operator*() Dereference, return referenced object

T* ptr() Return pointer to referenced object

void delete_object() Deletes referenced object from database

bool operator !() Return true if the reference is a null reference

bool is_null() Return true if the reference is a null reference

bool operator==(...) Various equality operators (friends, not members)

bool operator!=(...) Various not equal operators (friends, not members)

Table A.3: d_RW_Ref<T> member functions

d_Read_Ref<T>

The d_Read_Ref template class is very similar to the d_Ref template class. The only difference
is that d_Read_Ref is a read-only reference. Having a d_Read_Ref to an object, means that you
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have a read-lock to it. When releasing the reference, the write-lock gets released.

A d_Read_Ref<T> reference can be upgraded to a d_RW_Ref<T> (read/write) reference or be down-
graded to a d_Ref<T> (non-read/non-write) reference. There is no delete function for this class,
because that requires a write-lock. All member-functions that dereference the reference, return a
const-pointer or a const-reference. This way the compiler can check if the user tries to change the
object.

Table A.4 shows the member functions available to applications.

Method Semantics

d_Read_Ref() Constructor, null reference

d_Read_Ref(...) Constructor, copy reference from pointer, d_RW_Ref<T>,

d_Read_Ref<T>, d_Ref<T>, d_Ref_Any

~d_Read_Ref() Destructor

... operator =(...) Assign reference from pointer, d_RW_Ref<T>,

d_Read_Ref<T>, d_Ref<T> or d_Ref_Any

operator ...() Various cast operators

void clear() Set reference to null reference

const T* operator→() Dereference, return const pointer to referenced object

const T& operator*() Dereference, return const reference to referenced object

const T* ptr() Return const pointer to referenced object

bool operator !() Return true if the reference is a null reference

bool is_null() Return true if the reference is a null reference

bool operator==(...) Various equality operators (friends, not members)

bool operator!=(...) Various not equal operators (friends, not members)

Table A.4: d_Read_Ref<T> member functions

d_Ref<T>

The d Ref template class is a class like d_Ref, but you cannot access the instance it references.
This class can be used to keep a reference. This is useful when you need the reference later, but
you don’t want to have a read or write lock on it. Keeping a read or write-lock prevents other
processes/threads from updating the referenced object. A d_Ref<T> reference can be upgraded
to a d_Read_Ref<T> (read-only) reference or a d_Ref<T> (read/write) reference. Table A.5 shows
the member functions available to applications.

d_Ref_Any

Class d_Ref_Any provides a generic interface to an instance of any persistence-capable class, any
class derived from d_Object. The standard defines d_Ref_Any to have a method delete_object().
This member has not been included, since d_Ref_Any is a sort of d_Ref<T>. That is, it has a pointer
to the object, but no way to extract this pointer from the reference in order to manipulate the
object. TableA.6 shows the member functions available to applications.
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Method Semantics

d_Ref() Constructor, null reference

d_Ref(...) Constructor, copy reference from pointer, d_RW_Ref<T>,

d_Read_Ref<T>, d_Ref<T>, d_Ref_Any

~d_Ref() Destructor

... operator =(...) Assign reference from pointer, d_RW_Ref<T>,

d_Read_Ref<T>, d_Ref<T> or d_Ref_Any

operator ...() Various cast operators

void clear() Set reference to null reference

bool operator !() Return true if the reference is a null reference

bool is_null() Return true if the reference is a null reference

bool operator==(...) Various equality operators (friends, not members)

bool operator!=(...) Various not equal operators (friends, not members)

Table A.5: d_Ref<T> member functions

Method Semantics

d_Ref_Any() Constructor, null reference

d_Ref_Any(...) Constructor, copy reference from pointer, d_RW_Ref<T>,

d_Read_Ref<T>, d_Ref<T>, d_Ref_Any

~d_Ref_Any() Destructor

... operator =(...) Assign reference from pointer, d_RW_Ref<T>,

d_Read_Ref<T>, d_Ref<T> or d_Ref_Any

operator ...() Various cast operators

void clear() Set reference to null reference

bool operator !() Return true if the reference is a null reference

bool is_null() Return true if the reference is a null reference

bool operator==(...) Various equality operators (friends, not members)

bool operator!=(...) Various not equal operators (friends, not members)

Table A.6: d_Ref_Any member functions

d_Reference<T>

Template class d_Reference<T> provides a reference from one d_Object descendant to another
d_Object descendant. As described in section 8.7 this reference type requires deadlock detection
if the → operator is to be supported. Because relations are a more powerful reference mechanism
and the possible interrelations are known by the database metadata, the → operator will not be
supported. This type of reference has to be locked by the application programmer.

Table A.7 shows the member functions available to applications.
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Method Semantics

d_Reference() Constructor, null reference

~d_Reference() Destructor

... operator =(...) Assign reference from pointer, d_RW_Ref<T>,

d_Read_Ref<T>, d_Ref<T> or d_Ref_Any

operator ...() Various cast operators

void clear() Set reference to null reference

bool operator !() Return true if the reference is a null reference

bool is_null() Return true if the reference is a null reference

bool operator==(...) Various equality operators (friends, not members)

bool operator!=(...) Various not equal operators (friends, not members)

Table A.7: d_Reference<T> member functions

Accessing extents

d_Extent<T>

The template class d_Extent<T> provides an interface to the extent of class T. The extent of
class T contains all instances of T in the database. It is maintained automatically as instances
are created and deleted. The interface as defined by ODMG also includes member functions to
execute queries on an extent. These member functions have been removed because queries are not
part of the assignment.

Method Semantics

d_Extent(d_Database* db) Constructor, gets extent of type T from db

~d_Extent Destructor

unsigned long cardinality() Returns number of T instances in extent

bool is_empty() Returns true if there are no T instances in extent

bool allows_duplicates() Always returns false, extents do not contain du-

plicates

bool is_ordered() Always returns false, extents are unordered

d_Iterator<T> begin() Returns iterator pointing at beginning of extent

d_Iterator<T> end() Returns iterator pointing past the end of extent

Table A.8: d_Extent<T> member functions

Relations

d_Rel_Ref<T,MT>

This template class represents a to-one bidirectional relationship between a class S (in which an
instance of d_Rel_Ref<T,MT> is embedded) and the class T. The class T at the other end of the bidi-
rectional relationship must have a member that is of type d_Rel_List<S,MS>, d_Rel_Set<S,MS>,
or d_Rel_Ref<S,MS>. The second template parameter MT must be a character string that contains
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the name of the member in class T that references class S. Similarly, the member in T should have
a second template parameter, MS, that refers to the member in class S that is the instance of this
class d_Rel_Ref<T,MT>.

This class is always contained in an object definition. Therefore, the generation of the code can
be left to a SODL to C++ parser that determines the template parameters .

Method Semantics

d_Rel_Ref() Constructor, null relation

~d_Rel_Ref() Destructor

... operator=(...) Assign relation from pointer, d_Ref<T>, d_Read_Ref<T>,

d_RW_Ref<T> or d_Ref_Any

void clear()

T* operator→() Dereference, return pointer to the related object

T& operator*() Dereference, return reference to the related object

T* ptr() Return pointer to the related object

void delete_object() Delete the reference object

Table A.9: d_Rel_Ref<T,MT> member functions

d_Rel_Set<T,MT>

This template class represents an unordered to-many bidirectional relationship between the class S
(in which an instance of d_Rel_Set<T,MT> is embedded) and the class T. In the ODMG interface
this class inherits from d_Set publicly. Therefore, all public member functions defined for d_Set
are part of the interface of d_Rel_Set<T,MT>. But, to support the three-level iterator mechanism,
this interface has to be overridden by d_Rel_Set<T,MT>. The most important member functions
are the functions that create iterators, insertion and deletion operators.

d_Rel_Set<T,MT> defines three types:

1. d_Rel_Set<T,MT>::iterator

2. d_Rel_Set<T,MT>::read_iterator

3. d_Rel_Set<T,MT>::rw_iterator

d_Rel_Set<T,MT> has a lot of member functions, for more information see [Jor98] and [C+97].

d_Rel_List<T,MT>

This template class represents an ordered to-many bidirectional relationship between the class S
(in which an instance of d_Rel_List<T,MT> is embedded) and the class T. In the ODMG interface
this class inherits from d_List publicly. Therefore, all public member functions defined for d_List
are part of the interface of d_Rel_List<T,MT>. But, to support the three-level iterator mechanism,
this interface has to be overridden by d_Rel_List<T,MT>. The most important member functions
are the functions that create iterators, insertion and deletion operators.

d_Rel_List<T,MT> defines three types:

90



A Data-access Interface (API)

1. d_Rel_List<T,MT>::iterator

2. d_Rel_List<T,MT>::read_iterator

3. d_Rel_List<T,MT>::rw_iterator

d_Rel_List<T,MT> has a lot of member functions, for more information see [Jor98] and [C+97].
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As identified in chapter 6 there will be three storage arenas in Splice2DB. This chapter will describe
the creation and use of these arenas.

Storage allocation

As part of the Splice2 project, Signaal developed a general-purpose shared memory claimer and
general-purpose memory allocator. This claimer and allocator will be used in Splice2DB. The
memory allocator is able to operate on any contiguous memory area it is assigned to. So it is
possible to open one shared memory area, and assign multiple allocators to non-overlapping areas
in this single area. Not a region of shared memory, but a contiguous memory area assigned to an
allocator will be called an arena.

Creation of arenas

When a database with a given name is opened, it will have to create or attach to storage arenas,
depending on whether a database with that name has already been opened.

Figure B.1 shows a sequence diagram of the d_Database::open method. The actions are:

1. Create or attach to three arenas

2. Get the root object from the metadata administration

3. Get the root object from the object administration

4. Create an initial object administration for extents and name-instance administration if this
is a newly opened database

5. Create an initial metadata administration for type information if this is a newly opened
database

6. Store any type definitions defined by the application in the metadata administration

Using arenas

In C++ it is possible to overload the standard new and delete operators. This makes it possible
to do a customized memory-allocation for a class.
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application db : 
d_Database

object_adm : 
Arena

object_data : 
Arena

meta_data : 
Arena

top_level : 
d_Module

open("Splice")
open( )

open( )

open( )

find_named( "metaroot")

find_named("objectadmroot")

store_definitions( )

create_initial_object_adm( )

create_initial_meta_data_adm( )

Creates all 
primitive types

Creates a name−instance 
administration and an extent 
administration

The open−method opens an 
existing shared memory 
region if it exists, otherwise 
it creates a new region

Figure B.1: Creation of arenas when opening a database

Metadata classes

All classes in the metadata class hierarchy can be derived from a single base class that overloads
the new and delete operators. This class will be called d_Meta_Storage.

Extent-administration

The extent administration will be built using collection classes from the C++ STL. These collection
classes can be provided with a customized allocator. Information about building a customized STL
allocator can be found in [Str97].

Name-instance administration

The name-instance administration will be built using collection classes from the C++ STL. See
previous paragraph.
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Object data

In the ODMG model all object that need to be stored in the database are derived from d_Object.
Therefore, overloaded new and delete operators in the d_Object class can be provided. Derived
classes should never redefine the new and/or delete operators.
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The Splice2 Object Definition Language is a subset of ODL by ODMG 2.0. The most notable
differences are:

• No interfaces

• No modules within modules

• No multiple inheritance

• No constant expression for initializing constant attributes

• No named extents
A class can only be declared to have or have not an extent

Specification

Rule Nr.

<class> ::= <class header> { <interface body> } 2a

<class header> ::= class <identifier> [ extends <scoped name> ] [

<type property list> ]

2b

Type Characteristics

Rule Nr.

<type property list> ::= ( [ <extent spec> ] [ <key spec> ] ) 2c

<extent spec> ::= extent 2d

<key spec> ::= key[s] <key list> 2e

<key list> ::= <key> | <key> , <key list> 2f

<key> ::= <property name> | ( <property list> ) 2g

<property list> ::= <property name> | <property name> , <property list> 2h

<property name> ::= <identifier> 2i

<scoped name> ::= <identifier> | :: <identifier> | <scoped name> :: <identi-

fier>

11

Instance Properties
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Rule Nr.

<interface body> ::= <export> | <export> <interface body> 8

<export> ::= <type dcl> ; | <const dcl> ; | <except dcl> ; | <attr dcl>

; | <rel dcl> ; | <op dcl> ;

9

Types

Rule Nr.

<const dcl> ::= const <const type> <identifier> = <const exp> 12

<const type> ::= <integer type> | <char type> | <boolean type> | <float-

ing pt type> | <string type> | <scoped name>

13

<const exp> ::= <integer literal> | <string literal> | <character literal> |
<floating pt literal> | <boolean literal>

new

<type dcl> ::= typedef <type declarator> | <struct type> | <union type>

| <enum type>

27

<type declarator> ::= <type spec> <declarators> 28

<type spec> ::= <simple type spec> | <constr type spec> 29

<simple type spec> ::= <base type spec> | <template type spec> | <scoped name> 30

<base type spec> ::= <floating pt type> | <integer type> | <char type>

| <boolean type> | <octet type> | <date type> |
<time type> | <interval type> | <timestamp type>

31*

<date type> ::= date 31a

<time type> ::= time 31b

<interval type> ::= interval 31c

<timestamp type> ::= timestamp 31d

<template type spec> ::= <array type> | <string type> | <coll type> 32*

<coll type> ::= <coll spec> < <simple type spec> > 32a

<coll spec> ::= set | list | bag 32b

<constr type spec> ::= <struct type> | <union type> | <enum type> 33

<declarators> ::= <declarator> | <declarator> , <declarators> 34

<declarator> ::= <simple declarator> | <complex declarator> 35

<simple declarator> ::= <identifier> 36

<complex declarator> ::= <array declarator> 37

<floating pt type> ::= float | double 38

<integer type> ::= <signed int> | <unsigned int> 39

<signed int> ::= <signed long int> | <signed short int> 40

<signed long int> ::= long 41

<signed short int> ::= short 42

<unsigned int> ::= <unsigned long int> | <unsigned short int> 43

<unsigned long int> ::= unsigned long 44

<unsigned short int> ::= unsigned short 45

<char type> ::= char 46

<boolean type> ::= boolean 47

<octet type> ::= octet 48

<any type> ::= any 49

<struct type> ::= struct <identifier> {<member list>} 50

<member list> ::= <member> | <member> <member list> 51

<member> ::= <type spec> <declarators> ; 52

96



C Splice2 Object Definition Language

Rule Nr.

<union type> ::= union <identifier> switch ( <switch type spec> ) {

<switch body> }

53

<switch type spec> ::= <integer type> | <char type> | <boolean type> |
<enum type> | <scoped name>

54

<switch body> ::= <case> | <case> <switch body> 55

<case> ::= <case label list> <element spec> ; 56

<case label list> ::= <case label> | <case label> <case label list> 56a

<case label> ::= case <const exp> : | default : 57

<element spec> ::= <type spec> <declarator> 58

<enum type> ::= enum <identifier> { <enumerator list> } 59

<enumerator list> ::= <enumerator> | <enumerator> , <enumerator list> 59a

<enumerator> ::= <identifier> 60

<array type> ::= <array spec> < <simple type spec> , <positive int const>

> | <array spec> < <simple type spec> >

61*

<array spec> ::= array | sequence 61a*

<string type> ::= string < <positive int const> > | string 62

<array declarator> ::= <identifier> <array size list> 63

<array size list> ::= <fixed array size> | <fixed array size> <array size list> 63a

<fixed array size> ::= [ <positive int const> ] 64

Attributes

Rule Nr.

<attr dcl> ::= [readonly] attribute <domain type> <attribute name> [

<fixed array size> ]

65*

<domain type> ::= <simple type spec> | <struct type> | <enum type> 65a

Relationships

Rule Nr.

<rel dcl> ::= relationship <target of path> <identifier> inverse <in-

verse traversal path>

65b

<target of path> ::= <identifier> | <rel collection type> < <identifier> > 65c

<inverse traversal path> ::= <identifier> :: <identifier> 65d

<rel collection type> ::= set | list | bag 65e
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Operations

Rule Nr.

<op dcl> ::= [ <op attribute> ] <op type spec> <identifier> <parame-

ter dcls>

67

<op attribute> ::= oneway 68

<op type spec> ::= <simple type spec> | void 69

<parameter dcls> ::= ( [ <param dcl list> ] ) 70

<param dcl list> ::= <param dcl> | <param dcl> , <param dcl list> 70a

<param dcl> ::= <param attribute> <simple type spec> <declarator> 71

<param attribute> ::= in | out | inout 72

Example

This example shows a definition of a Person class. The spouse relation is a 1:1 relation with itself.
The children relation is a N:M relation. Its inverse relation is the parents relation in Person.
Person is specified to have an extent and to maintain indices on the name and address field.

class Person

( extent key name, address )

{

attribute string name;

attribute struct Address { unsigned short number, string street,

string city_name } address;

relationship Person spouse

inverse Person::spouse;

relationship set<Person> children

inverse Person::parents;

relationship list<Person> parents

inverse Person::children;

};
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A database system is not complete without a query mechanism. Because of the complexity of
queries this query mechanism is not part of the assignment. However, efficient access methods
are the key to high performance query execution. These mechanisms cannot be provided without
support of the database. These access methods have to provide efficient functionality for

• inserting elements,

• deleting elements,

• searching elements,

• range searching elements, and

• sequential scan searching elements1,

while not using to much resources. Because Signaal explicitly chooses for maximizing performance
even when a lot more resources are needed, performance remains key issue.

Indices

An index provides a mapping of a value to a reference, and, by its structure, an efficient means
for searching for a particular key. An index can be kept for one or more attributes of a class to
allow efficient lookup of instances based on their values for those attributes. There is an entry in
the index for each instance of the class. ODMG does not yet support the specification of indices
in their interface definition. Some ODMG-compliant implementations allow indices on multiple
attributes, some only on one attribute.

An index mechanism needs to compare the values of the indexed attribute. Some database imple-
mentations only allow indices on primitive data types that the database software already under-
stands (e.g. integer, double, char, . . . ) and knows how to compare. Other database implementa-
tions provide a mechanism for the database to gain access to operators defined for the application
defined type, in order to be able to compare complex attributes.

When the value of an indexed attribute is modified, the index must be updated to reflect the
change.

Suppose the following data structure containing three integer attributes:

class Data {

attribute integer field1;

attribute integer field2;

attribute integer field3;

}

1read each item sequentially
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When an application programmer asks the database to maintain an index on field1, queries on
field1 will perform significantly faster than without an index on field1. When the database
has to perform a query on all Data instances like "WHERE field1=3”, the database can now search
for the object containing a field1 value equal to 3 in the index , and return a reference to that
object. The database does not have to scan all instances for the value.

It is up to the application programmer or type definer2 to decide which attributes need indices.

Keys

An object can have one ore more attributes whose values uniquely identify an instance. These
attributes are referred to as the key for the object.

A key can be simple or composite. A simple key consists of a single attribute, whereas a composite
key consists of multiple attributes. A foreign key is an attribute used to contain the value of an
object’s primary key. Such a foreign key is similar to, but less efficient than, an object reference
in an object database.

Supporting keys in the database means that after every update of an object that has attributes
tagged as key, the system should check the uniqueness of the key attributes, and reject or permit
the change.

Keys and indices

In a relational database system, keys are the primary means for relations between rows in a table.
A foreign key in a table refers to a key in another table. Efficiently combining these two tables
(joining) can be performed by using the index on the key and foreign key fields.

When an index is requested for a key field, all entries in the index are unique because all values
in the key field are unique. Supporting indices on non-key fields implies supporting indices that
allow for more than one instance for a key value.

For the future design of the query mechanism two choices must be made:

1. Support for keys or not

2. Support for indices on non-unique values or not

Not supporting keys implies supporting indices on non-unique values.

Maintaining indices & keys

Indices can provide high-speed access to the database, but have to be maintained every time an
object is inserted, updated or deleted. Thus, there is overhead involved in maintaining indices.
Depending on the type of index, an index can also take up a considerable amount of space if it
contains a large number of entries. A trade-off exists between the performance of lookup versus
update of index because of these maintenance costs.

The next three paragraphs will discuss the three actions.
2There is discussion about who should be responsible for assigning indices to the attributes of a data structure.
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Inserting

When an object is inserted in the database it has to be inserted in the indices associated with the
type of the object. If insertion does not violate any key-constraints, the database system has to
read the indexed attributes and insert the reference to the object at the correct place in the index.
If insertion does violate the constraints of a key attribute, insertion must be denied.

Updating

When an object is updated in the database, it might have to be moved in its associated indices.

If the update does not violate any key-constraints, the database system has to read the indexed
attributes and possibly have to move the reference to the object to the correct place in the index.

If the update does violate the constraints of a key attribute, the update must be denied and the
old key-values must be restored. This also implies that the old key-values should be kept by the
database.

Deleting

When an object is deleted its reference must be deleted from the index.

Data representation for indices

The database system can, for instance, create an ordered tree structure as index, containing
pointers to instances. In disk-resident databases, it is crucial to add the key value itself to the
structure, since the pages containing the needed object might have to be brought into memory
first, which is a big performance penalty. In main-memory databases these objects are always
memory resident, so their values can be read directly.

Types of indices

Having an ordered index is crucial when a field is mostly queried on inequality, like "WHERE
field1>3”. However, hash-structures are know to be fastest when searching on equality, like
"WHERE field1=3”. Hash-structures however do not maintain an ordering, so range searching is
known to be slower than for tree-structures. Sequential searching on hash-structures can be quite
fast, but they are not ordered on the key-field. Therefore, it is up to the database programmer or
type specifier to choose what type of index structure is to be used for a certain field.

Despite its age the article ‘A study of index structures for main memory database management
systems’ by Lehman & Carey [LC86] gives a good overview of possible index structures for main
memory databases and their strengths and weaknesses. The different structures will not be dis-
cussed in this thesis.
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Multiple indices on a type

When a type contains multiple attributes, multiple indices can be requested. These indices can
be serialized or parallelized.

Serial indices

When indices are serialized, the order of indices matters. Not only for the internal structure, but
also for the performance of the queries.

In a serialized index only the last index contains references to instances, the start and intermediate
indices only contain references to sub-indices.

Structure

Suppose a type containing three indexed integer fields, field1, field2 and field3. Indices
are requested in that order. The resulting structure is depicted in figure D.1. The index for
field1 contains a new index on field2, the index on field2 contains a new index on field3.
Intermediary indices have to have copy of the key value in their index-nodes, because they don
not have a reference to an instance. In this mechanism the combination of the indexed fields is a
composite key if the last index cannot contain multiple instance references for a key value.

field3

field2

field1

Figure D.1: Serial indices

Query execution

Figure D.2 shows a sample index structure when a binary tree is chosen to be the index mechanism.
Three instances are inserted, (1, 1, 1), (2, 2, 1) and (2, 2, 2). The start and intermediate indices only
point to the next level index. When a query like "WHERE field1=2" is executed, the value 2 is
looked up in the field1 index. The result is all the instances in all sub-indices.

A major disadvantage of this approach is when a query like "WHERE field3=1" has to executed.
For all nodes in the field1 index and for all nodes in the field2 index, the field3 index has to be
checked for a field equal to 1. All results from all sub-indices have to be combined. Therefore, the
order of the indices and the expected form of the queries are very important to query performance.

Queries containing boolean expressions such as "WHERE field1=1 AND field2=2" can be executed
very efficient.
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2

1

1 2

1 2

1

field1

field2

field3

instances

(2,2,1) (2,2,2)(1,1,1)

Figure D.2: Serial indices example

Resource usage

When the index is implemented as a tree, the resource usage can simply be calculated. Suppose
an n-level index on m instances. The number of nodes for each index level is m in worst case,
therefore in the total index, there are n∗m tree -nodes. If there are no more than j different values
(where j ≤ m) for the first attribute, the number of worst case tree-nodes can be reduced to:

j + (n− 1)̇ ∗m ≤ n ∗m

In case of an index on 3 attributes that together form a key for a type , the number of worst case
tree-nodes for 30 instances can vary between 90 (if all values of the first attribute are different) and
32 (if all values of the first and second attribute are the same). If all values of the first attribute
are the same, the worst-case number of tree-nodes equals 61.

This also shows that the order of the indices is very important. A limited number of different
values for the first attributes can reduce the number of sub-trees significantly.

Parallel indices

In a parallelized index the order of attributes does not matter. All indices contain references to all
instances. Note that when a type has a composite key (a key containing more than one attribute),
the indices must be capable of containing more than one reference for a key value. In case only
simple keys are supported this is not necessary.

Structure

When indices are parallelized, a separate non-coupled index is created for every indexed attribute
(see figure D.3). The key values don not have to be inserted in the index-nodes, because all nodes
have a reference to an instance.
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field1 field2 field3

Figure D.3: Parallel indices

Query execution

Figure D.4 shows a sample index structure when a binary tree is chosen to be the index mechanism.
Three instances are inserted, (1, 1, 1), (2, 2, 1) and (2, 2, 2). This example treats the three fields as
a composite key, that is, for one or two attributes two objects can have the same values, but not
for all three. That is why each tree-node points to a list of objects. If every field is a key in its
own right, each tree-node can directly point to an instance.

Now a query like "WHERE field3=1" performs as fast as "WHERE field1=2". An expression like
"WHERE field1=1 AND field2=2" has to be executed on the two indices separately and the two
resulting sets have to be intersected. This is clearly more expensive than when being executed on
a serialized index mechanism.

2

1 1

2 2

1

(1,1,1) (2,2,1) (2,2,2)

field2field1 field3

instances

sets

Figure D.4: Parallel indices example

Resource usage

When the index is implemented as a tree, the resource usage can simply be calculated. Suppose
an n indices on m instances. Call un the number of different values for attribute n. The number
of tree-nodes now equals

∑n
1 un. In worst case un equals m for all indices, therefore the number

of tree-nodes in worst case equals n ∗m . If all of these indices are based on a key, they all point
to an instance directly. If not, they all point to a list of references to instances, and the size of the
list administration has to be taken into account too.

In case of an index on 3 attributes that together form a key for a type, the number of worst case
tree-nodes for 30 instances can vary between 90 (if all values of the first attribute are different)
and 32 (if all values of two attributes are the same, no matter which attribute). If all values of an
attribute are the same (no matter which attribute) the number of worst-case tree-nodes equals 61.
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Because the number of tree-nodes decreases immediately when the number of different values for
one of the key attribute decreases, the average number of tree-nodes will be lower than the average
for a serialized index mechanism.
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