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Introduction

A ’freak wave’ is a wave that appears seemingly random and that is significantly larger
than the surrounding waves. It is a phenomenon that occurs on many oceans around the
world. These waves, that are known to have damaged and sunk some very large ships, will
appear very sudden and disappear just a short time after.

Tales of freak waves were once dismissed as seafaring myths. But nowadays the height
of the sea is continually monitored at many places such as oil rigs. One of these offshore
platforms, the Draupner platform in the Norwegian section of the North Sea, has recorded
a freak wave at 15:24 on 1st January 1995 [7]. (see figure 1)

We assume these freak waves originate from several smaller waves with different wave-
lengths that travel with different velocities. These smaller waves may at some point com-
bine to one very big wave and almost immediately dissolve into smaller waves again.

In this report I'll try to find a description for the maximum wave height for all times,
hoping to understand some of the phenomena of the ocean a bit better.

There are several partial differential equations that model wind generated water waves.
In this report I will look at a few of them. For example in chapter 1 I'll use linear dispersive
partial differential equations. The solution of such an equation, n (z,t) with one spatial
variable r and one time variable ¢, represents the wave height. A function called Maximal
Spatial Amplitude, MSA (t) = max 7 (x,t), is used to describe the maximum of the wave

height at a fixed time t. Though this formulation is simple, it is often not possible to get
an explicit expression for the M SA. In chapter 1 I'll try to find some descriptions for the
M S A using several mathematical analytical methods.
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Figure 1: This plot shows a freak wave at approximately 270 seconds after 15:20 hours



The linear dispersive differential equations I use in the first chapter have several con-
stants of motion including momentum and energy. In chapter 2 I will not use the differential
equations to model water waves exactly, but instead I will only prescribe the amount of
energy and momentum in the waves. Then I will look for the largest wave that satisfies
these energy and momentum constraints. The mathematical solution is obtained by solv-
ing the ordinary differential equation that follows from Lagrange multiplier rule. We also
look for periodic solutions of this differential equation.

In chapter 3 the largest wave from the previous chapter will be used as an initial
condition in the linear dispersive differential equations I used in the first chapter. The
solutions will be represented using the computer program Matlab. In this chapter I will
also look at the linear evolution of the soliton solution of the Korteweg de Vries equation.



Chapter 1

From linear dispersive wave equation
to Maximal Spatial Amplitude

1.1 Setting

First we investigate initial value problems for PDE’s which are of first order in time, linear
and dispersive:

O (z,t) = p (0z)n (2,1) (1.1)
1 (x,0) = 1o () (1.2)
with p (z) a polynomial. The dispersion relation for modes e**=“of the equation is then
Q (k) = ip (ik) (1.3)

The PDE can then formally be given by
o +1iQ(—id,)n =0 (1.4)

With the initial condition 7 (z,0) given in a Fourier integral, the solution of the initial
value problem is represented also by a Fourier integral

1 )
/ g (k) e'kx=2®D gp; (1.5)

o
12,0 = 5- [ 9 e (1.6)

With an initial spectrum concentrated around kg the expression for 7 (x, ) can be simplified
using a Taylor series for Q (k) around ko. We need at least second order to get a variation
in the maximum water height. Take Q (k) = Q (ko) + €' (ko) (k — ko) + 3" (ko) (k — ko)?
then 7 (z,t) becomes

n(z,t) = 1 / g (k) o (ke =Qko)t=8 (ko) (k—ko)t— 5" (ko) (k—ko)°t) 7.
’ o

n(x,t) =

. ) . ’ 7
= IV L [ g gy e
m



iko (JI— (ko) t

which is a combination of a carrier wave e ko ) and an amplitude

1 . ’ "
Az, t) = o /g (K + ko) ¢! (ra= 9 (ko) st—3 2" (ko)1) g (1.8)

With the transformation to a moving frame:

=z —Q (ko)t
{f z (ko) (1.9)
T=1
the amplitude becomes
1 : 1o 2
A&T) =5 /g (K + ko) /(R 3" (0)r) g (1.10)
s

Remember 7 (z,t) was given in the form of a Fourier integral (1.5) and as the solution of
a PDE (1.4). Since the amplitude is given in a similar integral, it can also be seen as the
solution of a PDE:

1
0. A+ iéQ” (ko) (—ide)> A =0

1
0-A — i Q" (ko) OgeA = 0 (1.11)

The envelope of 7 (x,t) is defined by:
envelope (§,7) = |A (&, 7)] (1.12)

Since the solution is smaller than the envelope for every ¢ and 7, the Maximal Spatial
Amplitude (MSA) is smaller than the maximum of the envelope for every 7:

MSA(T) = max {n(x,t)} < mex {envelope (£,7)} = MSE (1) (1.13)

where MSE stands for Maximal Spatial Envelope.

1.2 Simple example: Gaussian spectrum

In this section I will illustrate the material of the previous section for certain PDE and
initial condition.

Use a Gaussian spectrum
1 1 —kp)?

e 1.14
e (1.14)

g (k)=



for the initial condition (1.6)

1 ikx
12,0 = 5- [ 9
1 [ 1 eem?
S ~_ e 2 etk 1.1
27 0'\/7_1'6 ‘ (1.15)
The solution 7 (x,t) then becomes
. Q(kp)
0 (1) = 5 A (2, 1) (1.16)

with amplitude (using the coordinate transformation (1.9))
1 1 ; 1.2/ 1 F O
A _ = iKE—35K (U—Q-HQ (ko)T)d
€n =5 [ 7= :
1 67%5202/(1+i029”(k0)7)
V2 V1+i02Q" (ko) T
This is a complex solution. Therefore I have to take the real part of i (x, t) before plotting

and before calculating the Maximal Spatial Amplitude. The envelope of the solution 7 (z, t)
is:

(1.17)

envelope (§,7) = |A (&, 7)| (1.18)
1 6_%52‘72/(1+(UQQ//(/€0)T)2)

_ : 1.19

VT (14 (020 (ko) 7)) )
This envelope is maximal at £ = 0 for all 7 (first derivative = 0 and second derivative < 0).

If at time t the carrier wave has a top in & = 0 (which corresponds to x = ' (ko) ),
the maximum of 7 (z,t) is the same as the maximum of the envelope. If for a given ¢ the
carrier wave has no top in & = 0, the solution 7 (x,t) has it’s maximum a short distance
away from x = €' (ko) t, and therefore the maximum of 7 (z,¢) is a bit smaller than the

maximum of the envelope (see figure 1.1). We can use the maximum of the envelope, which
I denote M SE (7), as the general form of the M SA (see figure 1.2):

! _— MSE (r) (1.20)

1
MSA(T) <
VT (14 (0207 (ko) 7)) *

In order to make some plots we need to specify the PDE. For the plots below (figure 1.1 -
1.3) T used the linear version of the Korteweg-de Vries equation (see [3])

1
o + 0.m + Bﬁmxn =0 (1.21)
This PDE has the dispersion relation
1
Q@Q:k—gﬁ (1.22)

For the initial conditions I used the Gaussian spectrum (1.14) with ky =1 and 0 = 0.2



Figure 1.1: R (1 (z,t)) (solid) and the envelope (dotted) at times between t = —60 (bottom)
and ¢ = 0 (top).
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Figure 1.2: MSE (t) (solid) and a sketch of M SA (t) (dotted).
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Figure 1.3: MSE (t) over a longer period.

As figure 1.1 and 1.3 show, 7 (z,t) attains the highest maximum if t =0 and z = 0.
This will be the case in general, because the term e!**=2(®)?% in 1.5 is always smaller or
equal to 1, and it is exactly 1 for all values of k only if x and ¢ are both zero, resulting in
the highest value of the wave height: 1 (0,0) = &= [ g (k) dk.

In the remainder of this report I will not look at the actual M SA () anymore, because
the function MSE (t) gives a good description of the general form of MSA (t) and is easier
to calculate.

1.3 The influence of a phase difference

In this section I'll start with a different formula for n (z,t), but I'll follow the same steps
as in section 1.1, so the results from both sections can be compared.

As seen in the example from the previous section all the different waves had a maximum
inx =0att=0. All these maximums in exactly the same place at the same time give the
MSA it’s maximum at ¢ = 0. In general the waves will have a phase difference though.
This is modeled by adding the term ¢?*) to formula (1.5):

1 ) )
n(z,t) = o /g (k) 0 gilthe =2k} . (1.23)
m

You can see that choosing 0 (k) = 0 gives the same formula as formula (1.5). Therefore
choosing 6 (k) = 0 in the results of this section, should give the same results as in the
previous section.



In section 1.1 the dispersion relation €2 (k) was approximated by the second-order Taylor
expansion. We can do the same for the phase difference 6 (k) ~ 6 (ko) + 0’ (ko) (k — ko) +
10" (ko) (k — ko)?, which will result in an approximation to the real solutions only if the
spectrum g (k) is concentrated around ky. The solution 7 (x,t) now becomes

(1) = () oo L / g (10 + o) i Gnt= 0 ()0 ot 30" ko)) g
™
(1.24)

This is again a combination of a carrier wave and an amplitude. By using the transforma-
tion (1.9) the amplitude simplifies to

1 i R(E+0 (ko)) — L (ko2 [ r— & ko)
A(f,f):%/g(fwko)e((£+ o) ( @ (k°)>>d/4 (1.25)

Comparing this with equation (1.10) shows that the amplitude is now shifted in space
and time, as is the envelope, which is the absolute value of this amplitude. Taking the
maximum over all ¢ for each 7 results in a function MSE (7) which is just shifted in time
compared to the same function in the previous section:

MSE (1) = MSE 0" (ko) (1.26)
T) = —0 | T— :
But remember we assumed the spectrum to be concentrated around k£ = kg in order to use
the Taylor expansions, so this result might not be true for other spectra.

For some specific phases, however, this result of a MSFE shifted in time, is valid for
any spectrum. For example if the phase is a constant 6 (k) = a: The term e’ can be put
in front of the integral. And since the absolute value |e®| = 1, the envelope of the wave
height with a constant phase is the same as the envelope of the wave height with no phase.

Another possibility is a linear phase 0 (k) = Bk. In this case the solution 1.23 will be

1 . .
n(eit) = o [ o) et otnay 20
m
B QL g (k) @)= gp (1.28)
™
(1.29)

Therefore a linear phase is the same as a translation of the spatial variable. So the M SE (t)
stays the same.

Finally if the phase is a multiple of the dispersion relation 6 (k) = v (k). Then the
solution can be written as

1 . .
n(x,t) = 5 /g(k) e VUE) gilkz=QR)) g1 (1.30)
T
1 .
= o [ g (k) et am-gy (1.31)
T
(1.32)



This formula shows that a phase which is a multiple of the dispersion relation, gives the
same results as a linear translation of the time variable. Therefore the M SE will be shifted
in time with respect to the case with zero phase.

Of course any linear combinations of these three types of phases also result in a shifted
Maximal Spatial Envelope:

MSEy—ospriyar) () = MSEg—q (t —7) (1.33)

1.4 Various descriptions for the maximum of the en-
velope

If the envelope has it’s maximum at £ = 0 for all 7, various descriptions of this maximum
can be found by expressing A (0, 7) in different ways. With a small change in notation the
amplitude (1.10) becomes

1 [~ .
A7) = 5 / Ag (k) €97 g (1.34)

Now rewrite A (0, 7) using the fact that Ay (k) is the Fourier transform of A (£, 0)

A0, 7) = % / o () =907 g (1.35)
= [ ([ vt emsae) s (1.3
= / A (€) (% / e““ﬁ*”(”)ﬂdm) de (1.37)

_ / Ay () S (€, 7) de (1.38)

Similar to 7 (z,t) and A (&, 7) in section 1.1, S(&,7) = 5 [e (W dx is also the
solution of a PDE
0;5 +iv (i0) S =0 (1.39)

with initial condition

S(£,0) = %/ei“gd/@ =0() (1.40)

If from v (k), k can be written as a function of v, the expression (1.35) can also be
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rewritten to

A0, 7) = % / Ay (K) e ™7 (1.41)
;ﬂ Ao (k (v ))eiwd%”)dy (1.42)
:% ( / Ao (€ “’"(”5d£) “”d";(y)dy (1.43)
- / Ao (€) <27T / d’;fj) —i(s()E+vT) du) d¢ (1.44)
= / Ao (€) G (€. 7) de (1.45)
Just like S (&,7) also G (&, 7) = o [ LW e=in0)E7)qy is the solution of a PDE
aga +in (i0,) G = 0 (1.46)
G(0,7) = / %d%(jy)ei’”dy (1.47)

So if the envelope has it’s maximum at & =0 for all 7, it can be expressed as the
absolute value of an integral [ Ay (§) f (€, 7)d§. Where f (£, 7) is the solution of the initial
value problem (1.39) and (1.40) or boundary value problem (1.46) and (1.47).

1.5 Spectra based on field data

In this section I will look at the behavior of the maximum amplitude when using spec-
tra other than the Gaussian spectrum I used in section 1.2. In particular the Pierson-
Moskowitz and the JONSWAP spectrum which can be found for instance in the book of
S.R.Massel [5]. These spectra are based on theoretical discoveries combined with field data
of wind generated surface waves on different seas., hence more realistic than a Gaussian
spectrum. Because these are frequency spectra the Fourier integral should be taken over
w instead of k. Another important difference is that these spectra are power spectra, but
the Fourier integral needs an amplitude spectrum. Therefore I should use the square root
of these power spectra.

S / VS (w)elE@e=wt g, (1.48)
T

where K (w) is the inverse of the dispersion relation (k) = /ktanh (k). This is the
‘exact’ dispersion relation; the one I used in section 1.2 is an approximation of this one. I
don’t consider any phase in this equation. Therefore the highest maximum of 77 (:U t) W1ll be
obtained when x and t are both zero. The value of this maximum is 7 (0,0) = [ /S (w)dw.
The absolute value |1 (z,t)| is the envelope of 7 (z, ). Taking the maximum over t of thlS
envelope results in the Maximal Temporal Envelope MTFE (z).

11



The spectrum proposed by Pierson and Moskowitz in 1964 is [6]
S (w) = ag’wPe P (1.49)

where o = 8.1 1073, B = 0.74 and U is the wind speed at a height of 19.5 m above the sea
surface. This spectrum was proposed for fully-developed sea.

I calculated the normalized spectra with different values of the wind speed U and 1
plotted these normalized spectra and the corresponding MTFE (z) (see figure 1.4 and 1.5).
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Figure 1.4: Pierson-Moskowitz spectrum
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Figure 1.5: MTEFE (x) corresponding to Pierson-Moskowitz spectrum

The experimental spectra given by Pierson and Moskowitz yield % = 0.879. Substi-
tution into (1.49) leads to

5(w

S (W) = aglw e 1) (1.50)

The JONSWAP spectrum extends this form of the Pierson-Moskowitz spectrum to include
fetch-limited seas. JONSWAP stands for Joint North Sea Wave Project. It is a wave
measurement program carried out in 1968 and 1969 in the North Sea [4]. The JONSWAP
spectrum model that is based on this program takes the form

_ 5wy~ o2w2
S (w) = ag’w e Gy 478 o (1.51)

The mean JONSWAP spectrum yields v = 3.3, of, = 0.07, o) = 0.09 and

—0.22

gX
—0.33

9 (9X

For comparison with the Pierson-Moskowitz spectrum I plotted the normalized JON-
SWAP spectra and the corresponding MTE (z) for a fully developed sea (X = 200 km)
with different wind velocities U (figure 1.6 and 1.7).

13
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Figure 1.6: JONSWAP spectrum for fully developed sea
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Figure 1.7: Corresponding MTFE (x)

As you can see in figure 1.7, a lower wind speed results in a higher and sharper peak
in the MTE (z). Just like it did with the Pierson-Moskowitz spectrum (figure 1.5)

I also plotted the JONSWAP spectrum and the MTE for fetch X ranging from X = 25 km
(fetch-limited seas) to X =200 km (fully developed sea) with U =10 m/s (figure 1.8
and 1.9).
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Figure 1.9: Corresponding MTFE (x)

This figure shows that on fetch limited seas the MTE has a higher and sharper peak
than on fully developed seas.

Now I will observe how a change in some of the other parameters effects the spectrum
and the MTE (x). First I will look at 7 which describes the degree of peakedness of the
JONSWAP spectrum. A higher value of v results in a spectrum that is more peaked, and
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the corresponding MTE (x) will be wider (see figure 1.10 and 1.11).
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Figure 1.10: JONSWAP spectrum for different values of
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Figure 1.11: Corresponding MTFE (x)
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You can see in figures 1.10 and 1.11 that a spectrum which is more peaked, due to a
higher value of v, results in a MTE which is less peaked (the dotted line).

The width of the peak region will change when changing o, and o: Smaller values of
o, and o, result in a smaller peak of the spectrum (and a wider base after normalizing the
spectrum). The corresponding MTE (x) will be more peaked (figure 1.12 and 1.13).
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Figure 1.12: JONSWAP spectrum for different values of o, and oy
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Figure 1.13: Corresponding MTFE (x)

For a comparison with the Gaussian spectrum I used in a previous section, I normalized
a Gaussian spectrum, the Pierson-Moskowitz spectrum and the JONSWAP spectrum on
a fully developed sea with a wind speed U = 10 m/s. Next I calculated the MTFE (x) for
each of those three spectra, and plotted them in one figure (see figure 1.14 and 1.15).
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Figure 1.14: various spectra
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Figure 1.15: MTE (x) corresponding to various spectra

As you can see in this last picture, the tail of the JONSWAP and the Pierson-Moskowits
spectrum results in a sharper peak for the MTFE (x).
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Chapter 2

Largest possible wave given certain
momentum and energy

The differential equations I used in the previous chapter have several constants of motion
including momentum and energy:

1) = [ s (2.1)

1) = [ (@) da (2.2
So the momentum and energy of the initial condition are the same as the momentum and
energy of the wave height at any other time. In this chapter I want to investigate which
wave has the largest wave hight given only the momentum and energy.

I have to specify both the momentum and energy, because if I only specify one of them,
the solution with the largest wave height has a maximum which goes to infinity.

2.1 Formulation of the optimization problem

Consider the following problem with two constraints: momentum and energy.

[ @ie =, [ 0@y ae = 72} (23)

max {max n(x)
n €T

In this problem there are three functionals
P (n) = max {n (+)) (2.4)
Gi(n) = [ () do (25)
Gan) = [ (0un (2))* (2.6



We can translate this constrained variational problem into a differential equation by cal-
culating the variational derivative for each functional and applying Lagrange multiplier
rule.

The first variation of Gy (n) is

d
0Gy (;0) = — G (n + ev)

de I
A
=5/ ev (x :1:6:0

= /277 (x)v(x)dx (2.7)
Which is the Ly inner product of v (¢) and the variational derivative
oG () =21 (2.8)

The first variation of Gy (n) is

0Gy (n;v) = %/(&m () + €dyv (2))* da

e=0

- / 20,1 () 0,0 () de
= _/26”77 (z) v (x) dx + 20,1 (z) v ()], (2.9)

if n (z) goes to 0 for x — 400, so does v (z) and so the boundary term vanishes. The
related variational derivative is

5Gy () = 20,1 (2.10)

In order to calculate the first variational of the functional F'(n), I have to rewrite it as
follows:

F(n+ ev) = max {(n + ev) ()}
= (n+ ev) (z" (¢)) (2.11)

where x* (¢) is the value of x for which 7 (z) 4 ev (x) has its maximum. The first variation
of F'(n) is the derivative of F' (n + ev) with respect to € at € = 0. For continuous functions
7 and v this is

SF (n:0) = - (14 ) (& (6)
— (e (0)

e=0

(2.12)
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In order to calculate the variational derivative, the first variation must be in the form of
an integral

OF (1;v) = v (27 (0))
= /v(:p)é(:p—x* (0)) dx (2.13)
This first variation is again the inner product of v (z) and the variational derivative
0F (n) =06 (z —a") (2.14)

where z* = 2* (0) is the value of = for which 7 (z) has its maximum.
Applying Lagrange multiplier rule to the three variational derivatives calculated above

a0 F (1) = MG (1) + AdGa (1) (2.15)

gives a differential equation

0 (x — ") =2\ () — 20207 () (2.16)

2.2 Single peak solutions

In this section I want to find single solutions of the differential equation (2.16). In sec-
tion 2.4 I'll look for periodic solutions. The differential equation derived in the previous
section is

0 (x — ") =2\ () — 20207 () (2.17)

And the solution to this differential equation should of course satisfy the constraints in the
constrained variational problem (2.3)

/_00 n* (z)dr =7 (2.18)

[e.9]

/ " (@ (@) dr = 7, (2.19)

(e 9]

Because the first constraint [ n? (z)dz = v < oo we must assume the boundary con-
ditions lim 7 (z) =0 and lim 7 (z) = 0.

If o = 0 the differential equation reduces to A1 () — A20,.m () = 0. The only solution
to this differential equation that satisfies the boundary conditions above is the trivial
solution 7 (x) = 0. Therefore 1 take o =1 (for any other value I can divide the entire
differential equation by o.).

For x < 2* we have the differential equation A7 (z) — A20,.n () = 0. Because of the
first boundary condition, the solution to this differential equation is

A *
n(x) = cle\/g(%m ) for x < 2* (2.20)
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where A\; and Ay are both positive or both negative. In a similar way for z > x*:

A *
n(x) =coe ) for 1> o (2.21)

n (x) must be continuous in z = x*, so ¢y = ¢;. Now for the J-function it holds that
f;5 (r —x*)dx =1 for any a < 2* and b > z*. Therefore

b
1= / 2011 (2) — 2X20.,m (x) dx

b
=2\ / n(x) dx + 29 (0,1 (a) — 0,n (b))

b
)\ /\— a—$* — L —$*
= 2)\1/ n(x)de + 24/ )\—;cl (e 2 (4777) +e x O )) (2.22)

for any a < z* and b > z*. In the limit where a and b go to z*, the integral term tends to

zero, and this equation reduces to 1 = 4Xy,/ i—;cl, so ¢; must be ¢; = iﬁ, where the

negative sign is used when A\; and A\, are negative.

It turns out that a negative ¢; produces a negative solution 7 (x) with a minimum in
x = z*. Therefore the solution we are looking for is the one with the positive value of
c1. Now substitute this value for ¢; and the same value for ¢y into the solution (2.20)
and (2.21):

A
VRl

USVOSP.Y:

Substituting this solution in the constraints gives two equations from which A; and Ay can
be expressed in y; and ;. The first constraint (2.18) gives:

n(t) = (2.23)

" :/772 (z) dx

*

z 2

00 2
/ eV 35 (=) ot / V3 Ea) ]
= ——— x —_— x
4\/ )\1)\2 4\/ )\1)\2

v 62 ;—;(a:—x*) 006_2 i—;(x—x*)
= —d —d
/ oA, o / oAy,
62 ;—;(x—a:*) * 6_2 i—;(x—x*) o
321 Aoy /i—; ) 321 A2y /i—; )
1
=4 (2.24)

16 A1V A1 Ao

23



Similar for the second constraint (2.19):
TN/ ws

where the negative sign is used when A; and Ay are negative. Combining equations (2.24)
and (2.25) gives the following expressions for A; and Ay:

(2.25)

71/4
M o=t+2— (2.26)
497"
4
7
4y

with A; and Ay both positive or both negative. The solution (2.23) can now be written in
terms of v, and s.

Ao ==+

(2.27)

1/2
2" ja—a*|

0 () = () e i (2.28)

1.6
1.4

1.2 e

0.8 )
0.6 I
0.4+ r N\

: BN
0.2 a o

Figure 2.1: n (z) for 5 = 1 (solid), 72 = 3 (dashed) and ~, = 10 (dotted).

In this plot I used z* = 5, but any other value of x* results only in a linear translation
along the x-axis. As you can see in this plot, a higher value of v gives a solution 7 ()
with a smaller, but higher peak. This can be derived from the formulas as well. First the
height of the peak is the maximum of 2.28:

max (1 () = 1 (z") = (172) """ (2.29)
and second the vertex angle, which is a measure for the width of the peak, is

vertex angle = 2 arctan (fyi/4fy;3/4> (2.30)
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2.3 Verification by Fourier transformation

We can check whether the calculations in the previous sections are correct using Fourier
transform on the constrained variational problem we started with (2.3), on the differential
equation we found halfway through (2.16) and on the solution we found in the end (2.28).
To simplify the calculations I'll take x* = 0 in this section. In that case the constrained
variational problem (2.3) is

Y

[P @ar=an, [ @) ae=ns )} (231)

max {max n(x)

The differential equation (2.16) reduces to
d () =2Mn (z) — 2X20,.m (2) (2.32)
And the solution (2.28) reduces to

2

n(@) = () e (B) e (2.33)

If we express the constrained variational problem in the Fourier transform 7 of 7, and solve
this problem, we should get a solution which is the Fourier transform of the solution in the
previous section.

Let’s take a look at the three functionals of the constrained variational problem. The
first one is max () =n(0). Expressed in 7 this is

1 (0) ! / 7 (k) e*0dk = L / 7 (k) dk (2.34)

:% 2T

The second functional can be expressed in 7 using Parseval’s theorem.

1
[ @de = o= [lawFar (2.35)
T
For the last functional the calculations can be found in appendix A.
1
[ @@ ar =5 [#10 a (2.30)
7T
With these three functionals the constrained variational problem (2.31) can be expressed
in 7
i T

moc{ o [aae |- [lawPar =5 [Rla@Fa=} a7

Now we need to find the variational derivatives of the three functionals and apply
Lagrange multiplier rule. The variational derivative of i [ 7 (k) dk is % Assuming 7 is
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real, the variational derivative of 5~ [ |9 (k)|? dk is 527 (k) and the variational derivative
of i K20 (k)|2 dk is ikaﬁ (k). Applying Lagrange multiplier rule gives the following
equation

1 =217 (k) 4 2X0k7 (k) (2.38)

This is indeed the Fourier transform of the differential equation (2.32). The solution of
this equation is

M (k) = m (2.39)
By substituting this solution in the constraints we get:
1
vy = i16)\1\/m (2.40)
! (2.41)

= ii
TSV

where the negative sign is used when \; and A\, are negative. From these two equations \;
and Ay can be expressed in v, and ~s:

1/4

Yo
A=+ 2 (2.42)
a4y
1/4
Dy = £ (2.43)
4,

with A\; and Ay both positive or both negative. Since we want to find the maximal solution,
not the minimal one, we have to use the positive A\; and Ay. Then the solution 7 expressed
in 1 and s is

) 2 (1172)*
b = R (2.44)
The inverse Fourier transform of this solution is
12 \1/2 z
n(z) = (mp)te () (2.45)

which is indeed the solution (2.33) we found in solving the constrained variational problem
in 7.
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2.4 Periodic solutions
In this section I'll try to find periodic solutions of the differential equation (2.16)
0 (x — ") =2\ () — 20207 () (2.46)

For periodic solutions there is of course more than one x* where 7 attains it’s maximum.
I can choose 2* = 0 to simplify the calculations. T'll try to find a solution in the interval
[0, X] where X is the period of the solution 7 (x). Because I choose x* = 0, the differential
equation reduces to

20un () — 2Aa0 () = 0 (2.47)

in the interior of the interval [0, X].
If Ay and Ay have the same sign, the solution of this differential equation is

n(x) = c1e® + cpe™ ™ (2.48)

where s = y/A1/A2. This is a solution on one period, which I can extend to the entire real
line, but for the extended solution to be continuous I must hold that

1(0) =n(X) (2.49)

If o =0, and \; and Ay have the same sign, the only possible periodic solution of the dif-
ferential equation 2.46 is 1) () = 0. Therefore I can take o = 1. We assumed the maximum
to be at « = 0. At this maximum the delta-function in the differential equation (2.46) is
not equal to zero, so for the solution (2.48) to satisfy the differential equation at x = 0 it
must satisfy the following equation

1:/+05(x)d9€

0

+0 +0
1 :/ 211 () d:p—/ 2000,,m (z) dz
-0 -0

1 =0—2X (9,1 (+0) — 9,1 (—0))
1 =—2X(0,m(0) — 0y (X)) (2.50)

With these two equations I can find expressions for ¢; and ¢y, and the solution (2.48)
becomes

1 (z) = %S_(:__j_ 3 cosh <s (:c - ;)) (2.51)

with s = /2L,
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If T substitute this solution in the two constraints
X
/ n’ (z) dz =1 (2.52)
0

/0 (O (2))" dz = (2.53)

I get two equation which implicitly express A; and Ay in 7, and ~s.

B 25X 4 25X X — 1
16X dos (e5X — 1)
—e2X 4 25X s X + 1

= 2.55
I 16M2s (esX — 1) (2:35)

M (2.54)

with s =/ i—;
Now for some plots I choose X = 7 and v, = 1.

Figure 2.2: 7 (z) for 75 = 1 (solid), 72 = 3 (dashed) and ~, = 10 (dotted).

As you can see in this plot, for a fixed period X = 7 and a fixed value of v =1, a
higher value of v, results in a higher maximum of the solution. The next plot shows the
relation between this maximum and ,.
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Figure 2.3: The maximum of 7 (z) as a function of ~,.

If I make a plot of the maximum of the solution on the entire real line, as I calculated
in section 2.2, it will be the same as figure 2.3 for large values of v5 only. For small values
of 75 the maximum of the solution on the entire real line is a little bit smaller than the
maximum for the periodic case.

In the beginning of this section I assumed that A\; and Ay have the same sign. If I assume
they have a different sign, I can find a solution 1 (z) which has a lover maximum than the
solution in this section. Therefore it is not the solution of the constrained variational
problem (2.3)

[ @ae =, [ @2 as :%}

max {max n ()
n T

but it is a solution of
[ e =, [ @) i - 72}

Calculations and plots for this case can be found in appendix B.

crit {max n(x)
n x
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Chapter 3

Physical constraints related to
differential equations

In chapter 1 we used a linear dispersive differential equation to model ocean waves (1.4)
om+iQ(—id,)n=0 (3.1)

This differential equations has several constants of motion including momentum and en-
ergy:

1) = / rdn (3.2)
H () = / (0n)? du (3.3)

So the momentum and energy of the initial condition are the same as the momentum and
energy of the wave height at any other time. In chapter 2 I found the wave with the highest
possible maximum which satisfied certain momentum and energy by solving the following
constrained problem

masx {maux7) (2) |1 (n) = 71, H (n) = 2 | (3.4)

In this chapter I will use the solution to this problem as an initial condition for the differ-
ential equation.

3.1 Linear evolution of the largest possible wave

The two constraints in problem (3.4) represent momentum and energy.
I)= [ s (35
1) = [ (@) da (3.6



I will show that these constraints are constants of motion for the differential equation (3.1)
with dispersion relation Q (k) = k — 1k3. Taking the partial derivative of I (n):

ortt) =0 ([ ias) (37)

o0

:/ 2nmy dx (3.8)

[e 9]

The term 7, can be substituted using the differential equation (3.1)

O (I (n)) = / . —2n (m + %nm) dx (3.9)

—00

o 1
Using integration by parts on the second term we get
1 1 *

= {—nQ +5 ()" = gnnm] (3.12)

This is equal to zero for the solutions of the optimization problem in section 2.2, because
n and all it’s derivatives go to zero for x — oo. Therefore I (1) is a constant of motion.
Similarly for the second constraint we have

ottt = ( [ i) (313)

(e o]

= / 2ot di (3.14)
o 1
2700 <1 1 o0
1 1 o
2 2
= |~ - \Nzx) — Sllxlzzx 3.17
{m+6(n )" = 3l ]_Oo (3.17)
=0 (3.18)

So the second constraint is also a constant of motion.

Since the two constraints in the optimization problem (3.4) are constants of motion for
the differential equation (3.1), we can use the optimal solution (2.28) of the constrained
problem as an initial condition.

1 —(7—2)%\90\
n(z,0) =(ny2)te \n (3.19)
Next is a plot of this initial condition for I (n) =y, =1 and H (1) = ..
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Figure 3.1: Initial condition

In this plot, and all the following plots in this section, the solid line corresponds to the
initial condition with v = 1, the dashed line corresponds to v, = 3 and the dotted line to
Yo = 10.

In chapter 1 the solution of the differential equation is

1

n(x,t) = o /ﬁ (k) eke=2®D g, (3.20)

where 7 (k) is the Fourier transform of the initial condition 7 (x, 0). For the optimal solution
of the constrained problem the Fourier transform was calculated in section 2.3:

~ 2 (7172)3/4
k) =2 e (3:21)

In figure 3.2 is a plot of this Fourier transform with v, = 1.
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Figure 3.2: Spectrum

The term (k) in equation (3.20) is the dispersion relation. In the following plots I'll

use the ‘exact’ dispersion relation Q (k) = k/*222E,

We can’t work out the integral in equation (3.20) to get an explicit formula for the wave
height. Still we are able to make some plots (with the use of Matlab) of the solution 7 (z, t)
at different times. I added a constant for the solution at ¢ — 10 and at t = 10 so that the
plots at different times do not overlap each other.
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Figure 3.3: n(x,t) for t = —10 (bottom), t = 0 (middle) and ¢ = 10 (top)

The phase velocity for these waves is V, (k) = % = ,/%. This means that short

waves, which have a large wavenumber k, travel slow and large waves travel fast. You can
also see this in the figure 3.3. For ¢t < 0 the short waves are close to zero and the long
waves are further away to the left. But since these long waves travel faster, they will catch
up with the short waves, so that they all add up at = 0, generating a ’freak wave’. This
is called 'phase focussing’.

We are really interested in the Maximal Spatial Envelope, M SFE (t), which is for every
t the maximum over all z of the envelope of the solution:

MSE (t) = max 0 (z, )| (3.22)

For the n (x,t) I plotted in figure 3.3 the MSE is plotted in figure 3.4.
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Figure 3.4: Maximal Spatial Envelope

3.2 Linear evolution of a soliton

The differential equation (3.1) I used in the previous section and in chapter 1 is the lin-
earized KdV-equation. The KdV-equation in normalized form (see [3]):

O = =0y (Naw +1°) (3.23)

has several constants of motion, including;:

I)= [ @)ds (3.24)

2
Ny 7

This KdV-equation has many soliton solutions:

3V

2 cosh® (%\/V (x — Vt)) (3:20)

77(%0) =

where V' denotes the velocity of the soliton.
Now look at what happens if I use the constants of motion as constraints in the opti-
mization problem (3.4)

masc {maxn («) |1 (1) = 1, H (n) = 72 | (3.27)
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This constraint problem can be solved in a similar way as the one in chapter 2, resulting
in a differential equation:

For very special values of 7; and 75 the o will be zero. The solution of this problem is then
a single soliton:

N pp—1 (3.20)

2 cosh? (%\/VI)

In general o # 0, but the left hand side of the differential equation is equal to zero for
x # 0. So the solution of this problem is part of a soliton on z > 0 and also on x < 0,
combined at x = 0 to a continuous but non-smooth function. I will look at the smooth
soliton first.

22f — Vv=1/2 ||
- - v=1

2r V=3/2 [

181 4

1.6 E

PN
14r a \ b
/ \
/ \
r](X,O)l'z r / \ B

Figure 3.5: Initial condition: soliton profile

This smooth soliton will travel undisturbed with velocity V. Therefore the maximum
will be the same for all time, so the Maximal Spatial Amplitude will be a constant.

It is also interested to see what will happen if we use this soliton as an initial condition
for the linear differential equation we used in the previous section. I made some plots again
with Matlab. In all of the plots in this section the solid line corresponds to the soliton
with V = %, the dashed line to V' =1 and the dotted one to V = %
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First I plot the spectrum.

4L — V=1/2
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V=3/2
6 ~ b
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Figure 3.6: Spectrum of the soliton profile

Next is the solution 7 (z,t) at different times for the linear evolution according to the

dispersion relation (k) = k /222
T
— V=12
al // N - - V=1 Ll
, N V=3/2
7, N N
3 =
Al |
v//\\
1 / \ N
n(xt) 7 N
4 {
0 T N
) |
_2 = / 7 \\ -
v \
~ ~ \
-3 \\ =
1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20

Figure 3.7: n (z,t) for t = —10 (bottom), ¢ = 0 (middle) and ¢ = 10 (top)
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And finally a plot of the Maximal Spatial Envelope:
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Figure 3.8: Maximal Spatial Envelope

In figure 3.7 you can see the 'phase focussing’ again, which I spoke about in the previous
section (figure 3.3)

In figure 3.8 you can see, the MSE is now not a constant. But it also does not descent
as fast as the MSE in the previous section. The next section gives a better comparison of
the two.

3.3 Comparison of cornered and smooth initial pro-
files

For a better comparison of the solutions in the last two sections I will choose certain values
for the different constants (71, 72 and V') in such way that the asymptotic behavior of the
initial condition and the momentum are the same in both cases.

The solution in section 3.1 has momentum [ n*dz =~;. I choose the same value for
the momentum of the soliton:

"= /nzda: (3.30)

2
= / v dx (3.31)
4 cosh* (%Wx)

Njw

=6V (3.32)
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The initial condition (3.19) in section 3.1 has asymptotic behavior e~/ e The

soliton, which is used as initial condition in section 3.2, is for large values of x approximately

3V 6V
) (e%ﬁwf - VVz

n(x) ~ for =z >>0 (3.33)

2

So the asymptotic behavior is e~VVe. This is the same as for the initial condition of sec-
tion 3.1 if 75 = 11 V. Next are some plots. In these plots the dashed line corresponds to the
soliton and the solid line to the initial condition of section 3.1, which is the optimal solu-
tion of chapter 2. In these pictures I used V' = 0.75 and, to have the same momentum and
asymptotic behavior for both initial conditions, 7, = 6V*? = 2.92 and 7, = v,V = 3.90.

18 —— opt. sol. Ch2 |]
— — soliton

1.6 q

nxo) ‘|

Figure 3.9: Initial condition
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Figure 3.11: n (z,t) for t = —10 (bottom), t = 0 (middle) and ¢ = 10 (top)
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Figure 3.12: Maximal Spatial Envelope

In figure 3.11 you can see that the shape of the soliton changes much slower than the
shape of the solution from chapter 2. As a result the MSE has a much slower descent.

The soliton is a smooth solution of the constrained problem 3.27. But this problem also
has cornered solutions consisting of part of a soliton for x > 0 and also for x < 0, combined
at x = 0 to a continuous but non-smooth function. The dotted line in the following plot
shows such a function. The solid line is the solution of chapter 2 again. The constants (7,
72 and V') again are chosen in a way that the momentum and asymptotic behavior of these
two initial conditions are the same.
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Figure 3.14: Spectrum corresponding to the initial condition in figure 3.13
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Figure 3.15: n (z,t) for t = —10 (bottom), t = 0 (middle) and ¢ = 10 (top)
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Appendix A

In this appendix I'll show how to get equation (2.36) in chapter 2. Which means I'll show
how to express [ (9yn(t))>dt in the Fourier transform 7. First we need to express the
derivative of 7 in the Fourier transform 7.

om0 =0, (5 [ ) e
1

= — [ iwf (w) e dw (A.1)
2w

This equation states that iwn (w) is the Fourier transform of 9;n (t).

i () = / D (1) et dt (A.2)

Multiplication of equation (A.1) with 97 (¢) yields

(O (t))2 = QL /zwﬁ (w) Oy (1) e™'dw (A.3)

™

Now take the integral over ¢ on both sides of this equation
1 A
Jomwia= [ 5 [wrono e
T

- % / iwi) (w) ( / o (t) e“’%lt) dw (A.4)

The part between the brackets is the complex conjugate of the right hand side of equa-
tion (A.2). Therefore

/(&m (t))*dt = % iwn (w) iwn (w)dw
= o [P hi)P (A5)
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Appendix B

In section 2.4 I found periodic solutions of the differential equation (2.46)
0 (x — ") =2\ () — 203027 () (B.1)

where I assumed that A\; and Ay have the same sign. Now I will try to find solutions when
A1 and A\ have a different sign.

Similar to section 2.4 I can choose x* = 0, which means that the solution 7 (z) attains
it’s maximum at x = 0. I prescribe the period to be of length X. In the interior of the
interval [0, X] the differential equation reduces to

201 () — 2X20,,m () =0 (B.2)
The solution of this equation is
n(x) = ¢1 cos (sz) + ¢y sin (sz) (B.3)

where s = y/—A;/Ay. I can use three equations to find the values for the constants ¢, co
and s: one from the periodicity and two from the constraints.

1(0) =n(X) (B.4)

/0 () de =7 (B.5)
| @ as =, (B.6)

From the first equation (B.4) we get ¢; = ¢2 151:0(5()3( ))(). Using this expression for ¢; and the
second equation (B.5) it follows that co = + %s%. Now the third equation (B.6)

reduces to

58X —sin(sX)
REMTLX + sin (sX)
[ can’t find an explicit expression for s from equation (B.7), but If I choose a value for X,
I can make a plot of s versus % In the following plot I used X = w. Other values of X
result in a similar plot.

(B.7)
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Figure B.1: Relation between s and %
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Figure B.2: Relation between s and %, zoomed in on the first bump in figure B.1

As you can see in this plot, for some values of 3—2, s can have two or three different values.

1
Now I want to plot the solution n(x). If I take X =7, 79 =1 and s =1 then also

2

72 = 1. Then the solution becomes 7 () = j:\/;sin () with « € [0, 7]. The solution with

the minus-sign gives a maximum at x = 0, as we stated at the beginning of this chapter.

47



We can extend the solution 7 (x) = —\/gsin (x) on the interval [0, 7] to the entire real line,

which gives the following plot:

0.8
7 04

0 ) ; ' 5
-0.4
-0.8 X

Figure B.3: Solution n(z) if X =m, 74 =1 and 7, = 1.

™

The solution with the plus-sign has a minimum at x = 0, but the maximum at z = 7

is higher than the maximum in the previous plot.

0.8
=

0 % 5 2 ; 5

-0.4

-0.8 X

Figure B.4: Solution with the plus-sign if X =7, 73 =1 and v, = 1.

In the next plot I use s = 3, so 75 = 9. In this case the solution with the minus-sign is

n(x) = —/2sin(30).

el /N N
VYAV VAV

Figure B.5: Solution n (z) if X =m, 74 =1 and 75 = 9.

As you can see, this solution has a local maximum at z = 0, but it’s global maximum
is attained at some time x # 0. If [ want larger values of s, I have to choose larger values
for s and more local extrema will appear in one period.

The next plot shows the maximum 7 (z) as a function of 7,. The solid line corresponds
to the solution 7 (z) with a minimum in z = 0 and the dotted line (which is the same as
the solid line for higher values of ) corresponds to the solution with a maximum in z = 0.
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Figure B.6: The maximum of the solution 7 (x) versus 75. The solid line corresponds with
the solution with a plus-sign, the dotted one with a minus-sign.
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Figure B.7: The maximum of the solution 7 (z) versus v, zoomed in on the first bump in
the previous picture

If the solution 7 (z) I discussed in this section is the solution of the constrained vari-
ational problem (2.3), the line in the previous plot is the value-function V (7y2) of that
constrained variational problem (with ~; = 1). This value function must be increasing,
but the line in the plot is not. Therefore the solution I found in this section is not the
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solution of the constrained variational problem (2.3)

[ e =, [ @) o= ’72} (B.5)

max {max n ()
n x

but it is a solution of

Y

[ @re =, [ 0 ae - ’72} (5.9)

crit {max n ()

Besides, whatever values I choose for 7, and -5, the solution in section 2.4 has always
a higher maximum than the solution in this appendix.
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