fa
Y
Universiteit Twente
de ondernemende universiteit

Towards interoperability between existing
VoIP systems

Thesis for a Master of Science degree in Telematics
from the University of Twente, Enschede, the Netherlands
Enschede, February 26, 2008

Lianne Meppelink

C

a

|

| User A User B
)]

Gateway

r)];m a

Interconnection

Client B

ULL VolP system A ULL VoIP system B

VolP system A

VolP system B

Interoperable VoIP Gateway

GRADUATION COMMITTEE:

Dr. ir. B.J.F. van Beijnum (University of Twente)

Dr. ir. M.J. van Sinderen (University of Twente)

Prof. dr. ir. L.J.M. Nieuwenhuis (University of Twente)

Towards interoperability between existing
VoIP systems

Thesis for a Master of Science degree in Telematics
from the University of Twente, Enschede, the Netherlands
Enschede, February 26, 2008

Lianne Meppelink

UNIVERSITY OF TWENTE,

Faculty of Electrical Engineering, Mathematics and Computer Science,
Department of Computer Science,

Division of Architecture and Services of Network Applications

Abstract

Since the invention of the telephone people started to have real-time conversations over a
distance. With the rise of the Internet, another kind of real-time communication became
popular. People were sending text messages to each other using Instant Messenger (IM)
systems.

Nowadays the quality of the Internet infrastructure is good enough to have conversations over
the Internet. The agreements about how to make a call using the Internet is called Voice over
IP (VoIP). New VoIP systems came up and offered free VoIP calls.

Currently, many IM and VolP systems exist. Quite often, a user has several VoIP and IM
clients installed and possesses many accounts for all these several systems. Also applications
came up to interconnect different IM systems and to interconnect different VoIP systems.
Still, there is no universal solution that provides interconnection for all IM and VoIP systems.
Furthermore, IM and VolP system offers functionalities like login, buddy search, messaging,
call setup and tear down and the actual call. The applications to interconnect different IM
systems and different VoIP systems does not cover all the functionalities offered by the IM
and VoIP systems.

In this thesis, five commonly used IM and VoIP systems, Windows Live Messenger, Google
Talk, Yahoo! Messenger, ICQ and Skype, are presented. Each system is studied and compared
to each other. Based on the characteristics, the differences and the similarities of the IM and
VoIP systems, we made a design to provide interoperability between these systems.

In the design, the clients of existing VoIP and IM systems can be used. The VoIP and IM
systems are interconnected by the use of a Gateway, which is situated between the VolP
systems. The presented solution is protocol independent, supports the functionalities lo-
gin, buddy search, messaging and call (setup and tear down), and is extendable with more
functionalities.

KEYWORDS: INTEROPERABILITY, GATEWAY, VOIP, IM, DESIGN, IN-
TERCONNECTION, WINDOWS LIVE MESSENGER, MSN, YAHOO! MES-
SENGER, ICQ, SKYPE, GOOGLE TALK.

Preface

I would like to express my gratitude to my supervisors of the Univesity, especially Bert-Jan
van Beijum who came in as my new supervisor and handled everything very well. I want to
thank my study coordinator Jan Schut in special, for the mental support in hard times.

I would like to thank my boyfriend, Jasper Aartse Tuijn for supporting me. I also thank my
family and fiends for making this possible and supporting me.

Last but not least I would like to thank my company, KPN Newtel Essence, where I started
working while I was finishing this thesis. Thank you so much for the support and the believe
in me!

Amersfoort, the Netherlands
15 January 2008

iii

Contents

Abstract i
Preface iii
1 Introduction 1
1.1 Context e 1
1.2 Problem statement 3
1.3 Objective and research questions 3
1.4 Approach e e 4
1.5 Structure e 5

2 State of the art in VoIP 7
2.1 Introduction to the telephone network 7
2.2 Introduction to Voiceover IPo 9
2.3 The Call Processing Model 11
2.4 The Call Processing Protocols 12
2.4.1 H.323 . . . e 14

242 Megaco / H248 15

243 MGCP. e 16

2.4.4 SIP . . . e 18

2,45 SUMMAryo e e 21

2.5 The User Protocols e 21
2.5.1 Real Time Protocol (RTP) 21

2.6 The Support Protocols 21
2.6.1 RTP Control Protocol (RTCP) 22

2.6.2 Session Description Protocol (SDP) 22

2.6.3 Network Time Protocol (NTP) 22

2.7 Conclusions e 23

3 Overview of VolIP Systems 25
3.1 Aspects of VoIP systems 25
3.1.1 Features 26

3.1.2 Entities 26

3.1.3 Protocol 27

3.2 Windows Live Messenger (MSN) 30

3.3

3.4

3.5

3.6

3.7

3.2.1 Features

3.2.2 Entities
3.2.3 Protocol e
Google Talk
3.3.1 Features
3.3.2 Entities
3.3.3 Protocol e
Yahoo Messengero
3.4.1 Features
3.4.2 Entities
3.4.3 Protocol e
ICQ . . e
3.5.1 Features
3.5.2 Entities
3.5.3 Protocol
SKype . . . e
3.6.1 Features
3.6.2 Entities
3.6.3 Protocol
Conclusion e

VoIP system services

4.1

4.2

SEIVICES v o e e e e
4.1.1 Minimum Services o i e e e e e
4.1.2 Optional serviceso
Differences. e
4.2.1 Login e
4.2.2 Buddysearch
423 Messagingo
424 Call

Related work

5.1 PSGW . . . o e
5.2 Uplink
5.3 GTalk-to-VoIP
5.4 Trillian L e e e e
5.5 Gizmo Project
Requirements

6.1 User requirements
6.2 AP requirements
6.3 Interoperability Provider requirements
6.4 Designers and implementers requirements L.
6.5 Conclusion e

39
39
40
43
45
45
45
46
46

47
48
48
49
50
o1

7 Design approaches 57

7.1 Approach 1: Interconnected existing VoIP systems 58
7.2 Approach 2: Changes to the existing VoIP clients 61
7.3 Approach 3: Self made client 65
7.4 Approach 4: Self made peel client 67
7.5 Approach 5: Webclient 70
7.6 Conclusion 71

8 Design of the Gateway 73
8.1 Functional requirements L 73
8.2 Structure e 74
8.3 Behaviour of the Interoperable VoIP Gateway 7
83.1 Login e 7

8.3.2 Buddysearch 7

8.3.3 Messaging 78

8.3.4 Call e 79

8.4 Behaviour of the Proxies 80
8.4.1 Multiple instanceso 80

8.4.2 Plug-in possibilities oo oo 81

8.4.3 Buddysearch 93

8.4.4 Messaging 93

8.4.5 Audio forwarding 93

8.5 Conclusion 95

9 Conclusion 97
9.1 Solution summary L 97
9.2 Conclusions per research questions 97
9.2.1 Solved problems 99

9.2.2 Advantages 100

9.2.3 Disadvantages. 100

9.24 Futurework L 101

A Additional information: State of the Art in VolIP 103
A.1 On-hook and off-hook operations 103
A.2 Call Processing Protocols 103
A3 SIP INVITE method 104

B Additional information: Overview of VolIP systems 105
B.1 VoIP systems e 105
B.2 SkypelIP domain 106
B.3 MSN . . e e 107
B4 GTalk o 111
B.5 Yahoo 115
B.6 TCQ . . . o o e 120

B.7 Skype . ..o 125

C Additional information: Validation 131
C.1 Buddy search

.................................... 131
C.2 Messaging oo 145
C.3 Call e 147

Bibliography 149

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1

List of Figures

VoIP system architecture 2
Early telephone system L L L 7
Telephone system with switchboard 8
Example of initiating a call [82] oL 9
The Internet Call Processing Model 10
VoIP topology 12
Use of protocols according to [90] 13
Use of protocols according to [82] oL 13
H.323 protocol flow Lo 15
Megaco protocol flow oo 17
MGCP protocol flow part 1o 19
MGCP protocol flow part 2 20
SIP elements 21
Possible protocol flow of SIP Lo o 22
Entities of a VoIP system, 26
Entities of a VoIP system o 27
Login sequence diagram L 0 28
Buddy search sequence diagram 28
Messaging sequence diagram 29
Call sequence diagram 29
detailed GTalk architecture 32
VoIP system entities 39
VoIP system entities L 39
Login, Buddy search, Messaging and Call 40
Login 41
Buddy search 41
MesSsaging e e 42
Call . . . e 43
Optional services for buddy search 44
Optional services for messaging L oL 45
GTalk to VoIP technology [15] 49

ix

7.1 Overview of approach 1, 58

7.2 Overview of approach 2 62
7.3 Overview of approach 3 65
7.4 Overview of approach 4 L 68
7.5 Overview of approach 5 70
8.1 Architecture of the Interoperable VoIP Gateway 75
8.2 Proxy e 75
8.3 Proxy and Gateway 76
84 SAP numbering 7
8.5 Sequence diagram buddy search minimum 78
8.6 Sequence diagram buddy search full 000, 79
8.7 Sequence diagram messaging 79
8.8 Sequence diagram call oo 80
8.9 Sequence diagram of the call functions 82
8.10 Possible way of audio forwarding 94
8.11 Audio forwarding by a Virtual Audio Cable 94
A.1 SIP protocol flows of an INVITE 104
B.1 Login sequence diagram Lo 107
B.2 Buddy search sequence diagram L Lo 108
B.3 Messaging sequence diagramo e 108
B.4 File transfer sequence diagram L oL oo 109
B.5 Call sequence diagram L o 110
B.6 Login sequence diagram L Lo oo 112
B.7 Buddy search sequence diagram Lo 112
B.8 Messaging sequence diagram 113
B.9 Filetransfer sequence diagram L Lo 113
B.10 Call sequence diagram 114
B.11 Login sequence diagram 116
B.12 Buddy search sequence diagram 117
B.13 Messaging sequence diagram 117
B.14 Filetransfer sequence diagram 118
B.15 Call sequence diagram 119
B.16 Login sequence diagram Lo o 121
B.17 Buddy search sequence diagram L oo 122
B.18 Messaging sequence diagram Lo 122
B.19 Filetransfer sequence diagram oL oo 123
B.20 Call sequence diagram L 124
B.21 Skype login algorithm Lo 126
B.22 Login sequence diagram Lo 127
B.23 Buddy Search sequence diagram Lo 127
B.24 Messaging sequence diagramo 128
B.25 Filetransfer sequence diagram oo 129
B.26 Call sequence diagram L 129

Cl ICQ — SKype . . . o v o o e e 132

C.2 MSN, ICQ, Yahoo — ICQ e 133

C.3 MSN, ICQ, Yahoo — Skype 134
C4 ICQ — MSN, Yahoo e 135
C5 TCQ — GTalk .« o o o oo 136
C.6 MSN, ICQ, Yahoo — MSN, Yahoo, ICQ 137
C.7 MSN, ICQ, Yahoo — GTalk 138
C.8 Skype —ICQ e e 139
C.9 GTalk - ICQ e e 140
C.10 GTalk — SKype o o o e 141
C.11 Skype — MSN, Yahoo, ICQ 142
C.12Skype — GTalk e 143
C.13 GTalk — MSN, Yahoo, ICQ 144
C.14 MSN, Yahoo, ICQ — GTalk, Skype 145
C.15 MSN, Yahoo, ICQ — MSN, Yahoo, ICQ 145
C.16 GTalk, Skype — GTalk, Skype 146
C.17 GTalk, Skype — MSN, Yahoo, ICQ 146

C.18 MSN, Yahoo, GTalk, ICQ, Skype — MSN, Yahoo, GTalk, ICQ, Skype 147

21

3.1
3.2

4.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Al

C.1

List of Tables

Summary of the Internet Call Processing protocols 23
Differences and similarities of VoIP systems 37
Summary of VoIP systems 38
BIT messages, potential buddies and buddy acceptance 46
Plug-in facilities 81
Mappings of the Gateway L L 82
Mappings inside the Gateway 83
Mappings between GTalk API and the Gateway 83
Mappings between Skype API and the Gateway 86
Mappings between ICQ API and the Gateway 88
Mappings between GTalk, the GW and ICQ 91
Mappings between GTalk, the GW and Skype 91
Mappings between Skype, the GW and ICQ 92
On-hook and Off-hook Operations 103
BIT messages and potential buddies 131

xiii

Chapter 1

Introduction

This chapter provides an introduction to the work reported in this Master thesis. It first
presents the motivation behind the reported work followed by the objectives to be achieved.
Subsequently, this chapter illustrates the approach that is followed in accomplishing these
objectives. This chapter ends with a global overview of the structure of the remainder of this
report.

1.1 Context

About 130 years ago, the telephone was invented. This invention gave the possibility to
communicate over a distance. Soon the telephone earned a strong position in society. With
the invention of the switchboard, the Public Switched Telephone Network (PSTN) was a fact.

About 100 years after the invention of the telephone, a new communication medium earned
a strong position in society, called the Internet. To connect to the Internet in the early days,
the PSTN was used. Nowadays also other networks, like cable and ASDL, are used to connect
to the Internet.

The PSTN is a circuit switched network, and during a call, a dedicated circuit between the
caller and callee is set up. No other callers or callees can enter this dedicated circuit. The
Internet is a packet switched network, which provides the possibility for different nodes to be
connected at the same time.

With the Internet, new communication applications appeared, such as e-mail, chat, voice and
video. An example of a chat application is the Instant Messenger (IM). A contact list of an IM
client shows the presence (online, offline, etc) of the buddies of the user. If a buddy is online,
it is possible to chat, by sending (short) text messages. ICQ was the first IM application and
was released in 1996.

Nowadays, most customers of the Internet are always connected to the Internet, and do
not have to pay per online minute anymore. Applications can offer their functionalities for
free, and thus the opportunity for free calls using a computer connected to the Internet. To
connect computers and networks to the Internet, agreements on how to connect and how
to send messages are needed. Such kind of agreements are specified in a protocol. For the
interconnection of computer networks, the Internet Protocol (IP) has been standardized. The
agreements of making a call over the Internet are therefore called Voice over Internet Protocol
(VoIP).

1.1. Context Chapter 1. Introduction

VoIP conversations can be from PC-to-PC or from phone-to-PC and vice versa. PC-to-PC
calls are offered mostly for free. An example of an application to make (free) calls using the
Internet is ”Skype”. Skype has become the market leader very quickly, mostly because of
its good voice quality. Skype uses its own proprietary protocol, which means the agreements
on how to connect the Skype clients and their servers are not publicly available. Besides
this market leader, there are several other IM and VoIP systems, like Google Talk, Yahoo!
Messenger, ICQ and Live Messenger.

To have a call with a buddy, the user speaks into a microphone. This audio signal is an analog
signal and is changed into an digital signal to transport to the client of the buddy. At the
client of the buddy, the digital signal is converted to an analog signal again and sound at a
speaker. This is possible in both directions.

TUSH Budd%
Y '

Client Server Client

Figure 1.1: VoIP system architecture

An IM system is a system with the focus on Instant Messaging (but are nowadays often also
able to do VoIP). VoIP systems have their focus on VoIP (but are often also able to do IM).
At this report, the term VoIP system is used for both IM and VoIP systems, because the
systems presented in this report all provide both IM and VoIP. When the term IM is used,
this is used to emphasize it is only IM and not VoIP.

An typical VoIP system consists of two clients - the part of the VoIP system that is installed
on the computer, which provides the interface to the user - and one server - the part of the
VoIP system that provides authentication and that is the bridge between the clients. Figure
1.1 shows the architecture of such an typical VoIP system. When a user - a human being -
logs in (the client is authenticated by the server), he will see his online buddies - the users of
the VoIP system added to the contact list - and is able to communicate with these buddies.
In Figure 1.1 the user is the person using one client and the buddy is the person using the
other client, and vice versa.

To identify the client, a user name is used. At the server, this user name is associated to
the IP address of the client. When the user sends a text message to his buddy, this message
and the buddy name is sent by the client to the server. The server knows where to find the
client of the buddy and forwards the message to the client. When the user starts a call, the
call request is sent to the server and forwarded to the client of the buddy. When the call
is accepted, a peer-to-peer connection is setup. A peer-to-peer (P2P) connection is a direct
connection between the clients, which means the server is not used.

Buddies are added to the contact list by sending a buddy search request to the server. The

Chapter 1. Introduction 1.2. Problem statement

server searches for the client of the buddy and sends a request for acceptance to this client.
When the buddy accepts, the server receives an acceptance, and sends an updated contact
list, with the new buddy included, to the client of the requesting user.

The VoIP system offers two perspectives, (a) the external perspective and (b) the internal
perspective. The external perspective shows the interfaces between the users and the VoIP
system, the VoIP system is handled as a black box. The internal perspective shows the
interactions inside the VolIP system, such as the requests and responses of the clients and
server. We explain in the next section the need for an internal and external perspective.

1.2 Problem statement

In most cases, to be able to communicate, both users need to use the same VoIP system and
users of different VoIP system are not able to communicate with each other. Applications like
Trillian [2] makes it possible to send messages to several other VoIP systems without installing
these VoIP systems. Also other companies and people have tried to provide interoperability
between VoIP systems with other VoIP systems. For IM several solutions have been found to
create interoperability between the systems. A start has been made to create interoperability
between different VolIP services, but it is still not possible to find a universal solution to
provide full interoperability for all IM and all VoIP systems.

To communicate with buddies, using a VoIP systems, consists of several steps. First we have
the login phase, after a successful login, it is possible to perform a buddy search, send a
message or make an audio call. This audio call can be subdivided into the setup and tear
down of the call and the actual call. The biggest is the buddy search and the audio translation.
How is it possible to search in another VolIP system for a user?

Most VoIP systems encode the data sent from the client to the server or from client to client.
After receiving the encoded data, it is decoded. Some VoIP systems use proprietary codecs
- for the (en)coding and decoding - and others use open source codecs. A solution to create
interconnection between the VoIP systems is to translate the (audio) data sent by the clients
and server into the data another VoIP system can understand. Probably both the control
data (setup and tear down) and the audio data are encrypted. Because some VoIP systems
use proprietary codecs, translating the encoded data is not always possible. This makes the
need for a protocol independent solution: a solution using the external perspective.

1.3 Objective and research questions

Since an interoperable solution for VoIP does not exist, or at least no interoperable solution
exist with full coverage of functionalities, it has to be designed. A design of this system is
an architecture, which models the system in terms of functionality and structure [96]. The
objective is

to design an interoperable VoIP system that, in an Internet environment, allows each user to
use a single VoIP system for communication to all other VolP users from different vendors.

The goal of the assignment is to design a system to provide interoperability for VoIP systems,
which means that it should be possible to let clients of different VoIP systems communicate

3

1.4. Approach Chapter 1. Introduction

with each other. To reach this goal, some research questions should be answered. The main
question is:

How can VolIP systems interoperate?

This main question has the following sub questions:
A. What is the state of the art in VoIP?

B. What are the characteristics, differences and similarities of the VoIP systems and their
accompanying protocols?

C. What are the requirements for a system to create interoperability between several VolP
systems?

D. What are the options to create interoperability between the VoIP systems?
E. How is the interconnection modelled and realized?

Sub question A asks for a clear overview of the way VoIP works. This is answered by providing
the history of telephony and VoIP and by describing the protocols used for VoIP.

For sub question B, the systems MSN, Google Talk, Yahoo! Messenger, ICQ and Skype are
discussed. They all use different protocols for the communication. Differences and especially
the similarities of the VolIP systems and their accompanying protocols are important for the
design of the interoperable system.

For the design of the interoperable system, requirements should be kept in mind. Different
stakeholders have different requirements and are thus also important in the design process.
These requirements are the answer to sub question C.

For research sub question D, several possible solutions are considered to find out what the
best way to design the interoperable system is. These possible solutions are called ”possible
design approaches” in this report.

After selecting the desired design approach, this approach is converted into a design, which
provide an answer to research sub question E.

1.4 Approach

The structure of the solution is based on the structure of Robert Parhonyi [93], and thus the
approach is also based on this thesis. We divided the approach into four steps: background
information to get acquainted with the basics of the subject, design preparation, to find out
the best way to design the interoperable system, interoperable system design, the actual design
and the completion, to conclude the thesis. Research sub questions A and B are answered in
the background information section, and C, D and E in the design preparation section. The
main question is answered during the interoperable system design and the completion. The
four steps are subdivided into several main tasks:

4

Chapter 1. Introduction 1.5. Structure

1. Background information

Literature study on VoIP

Literature study on VoIP system and their accompanying protocols

e Experiments to fill up the information about the protocols where literature lacks

Services of the VoIP systems presented to the users

Related work on interoperability between VoIP systems
2. Design preparation

e Requirements for the interoperable system

e Possible approaches for the design of the interoperable system
3. Interoperable system design

e Behaviour of the interoperable system
4. Completion

e Conclusion

The background information displayed in this report is mostly based on literature. Five com-
monly used VoIP systems are chosen: MSN, Yahoo! Messenger, Google Talk, ICQ and Skype.
Each of these five VoIP systems uses different underlying protocol(s). Quite often, literature
lacks to provide all information about these protocols. To complete the information collec-
tion, experiments with the five VoIP systems are done. Furthermore, the services presented
to the users and related work on interoperability are defined.

Then we consider the requirements of several stakeholders. Furthermore, we consider possible
design approaches and the choose the most feasible one.

Finally, the design of the interoperable system should concluded.

1.5 Structure

The structure of this report is based on the design process, and thus complies the approach.

Chapters 2, 3, 4 and 5 provide the background information and provide answers to research
sub question A and B. The 2nd chapter provides an introduction to the telephone network
and voice over IP (VoIP). Furthermore the protocols used by VoIP systems are discussed in
detail. The 3rd chapter discusses five commonly used VoIP systems, named MSN, Google
Talk, Yahoo! Messenger, ICQ and Skype. Based on the information gathered in this Chapter,
the minimal and optional services of the VolIP systems are explained in Chapter 4. The
5th chapter provides work that is related to this research. Five applications that provide
interoperability between several VoIP systems are discussed.

Chapters 6 and 7 provide the design preparation. These chapters answer the research sub
questions C and D. The 6th chapter provides the requirements of several stakeholders that

1.5. Structure Chapter 1. Introduction

should be considered for the design of the interoperable system. Chapter 7 provides several
design solutions. The best and most interesting solution is chosen for the final design.

Chapter 8 gives the design of the interoperable system. This chapter shows the behaviour
of the interoperable VoIP Gateway. The design is a validation of the chosen approach in
Chapter 7. This is part of the answer to the main question.

Chapter 9 provides the completion of this thesis. It provides the answer to the research
questions.

The Appendixes A and B consist of extra information about the State of the Art in VoIP
and the research done at the five VoIP systems. The protocol messages sent by the VoIP
applications are defined. Some of this information is presented in literature, other information
is obtained by doing experiments: using the VoIP systems and sniffing the packets.

Chapter 2

State of the art in VolP

This chapter provides a short introduction to the telephone network and to VoIP. The VoIP
section describes also the protocols used for the setup and tear down of the call and the actual
call. The first section explains the telephone network.

2.1 Introduction to the telephone network

At 14 February 1876 Alexander Graham Bell submitted the patent on the telephone, just two
hours before Elisha Gray, seemingly his strongest rival. In 1871 Antonio Meucci already had
a patent ready for the telephone. Unfortunately he lacked the money to submit the patent.
The American Congress decided in 2002 Meucci as the real inventor of the telephone. [1]

During the early days of telephony, all telephones were directly connected to each other.
Figure 2.1 illustrates this directly connected network. This network architecture did not scale
up to a large number of telephones (e.g. if the network in Figure 2.1 grows by one telephone,
five extra cables are needed). [82] [83]

\

///‘j\
Y

(B
&9

Figure 2.1: Early telephone system

In 1878 the first telephone switchboard was introduced. A switchboard makes it possible to
switch between several lines, to create different connections, without connecting all phones
to all other phones. Figure 2.2 shows a telephone network system using a switchboard.

7

2.1. Introduction to the telephone network Chapter 2. State of the art in VolP

The development of the first telephone switchboard is the beginning of the Public Switched
Telephone Network (PSTN). In the beginning these switchboards were manned by operators
who were called by the caller and had to plug in the line to create the connection between
the caller and the called customer.

Figure 2.2: Telephone system with switchboard

In 1891 Almon Strowger patented the Strowger switch, a device which led to the automation
of the telephone circuit switching. Now it was possible to eliminate the need for human
telephone operators.

To keep matters simple, the telephone system was designed to perform many of its signaling
operations by on-hook and off-hook operations. The on-hook operation means the telephone is
not being used (the telephone handset is placed in a hook). The off-hook means the telephone
is in use (the telephone handset is lifted from the telephone).

Figure 2.3 shows the sequence diagram of an example of a call. [82] explains these information
in more detail. The figure shows on hook and off hook signaling between the originating office
and the terminating office. The originating office is the caller side of the telephone station and
the terminating office is the callee side of the telephone station. The on-hook and off-hook
signaling between the originating office and the terminating office is a method used in the
past. Nowadays, Signaling System 7 (SS7) or ”out-of-band” signaling is the most widely used
signaling system where the signals are transmitted on a separate physical channel from the
call channel. It is a set of telephony signaling protocols which are used to set up the vast
majority of the world’s public switched telephone network telephone (PSTN) calls. SS7 is
a means by which elements of the telephone network exchange information. Information is
conveyed in the form of messages, like ”The called subscriber for the call on trunk 11 is busy.
Release the call and play a busy tone”. [57] [42]

As mentioned by the name, the Public Switched Telephone Network uses a circuit switched
network. A circuit switched network establishes dedicated circuits (or channels) between
nodes and terminals over which the users can communicate. Each circuit cannot be used

Chapter 2. State of the art in VolP 2.2. Introduction to Voice over IP

: Originating Terminating
ti
| Local Station ‘ | Office Office Local Station

I | | |
i Idle S ldie S Idle i
i Onhook "1 Onhook g Onhook i
I | | |
! Line Connect | |
i Offhook s i i
I | | |
L. Dial tone } : :
LF Audible ; : :
: Dial pulsing } : :
i On/Offhook i Trunk connect | |
! ; Offhook - :
I | | |
! » Delay start | i
! " Offhook ! :
I | | |
! L Start dial ! :
! }' Onhook ! !
: } Dial pulsing J :
I L Lail! |
X | On/Offhaok | Ringing !
1 I 5

L Ringback | ! Audible !
by Audible | | - Answer :
I | [1
- 1 Answer ! Offhook :
i Answer - Offhook : :
il Offhook } : ;

Signal Name
where >
Signal type

Figure 2.3: Example of initiating a call [82]

by other callers until the circuit is released and a new circuit is set up. Even if no actual
communication is taking place in a dedicated circuit, that channel still remains unavailable
to other users. Channels that are available for new calls are in idle state. [6]

2.2 Introduction to Voice over IP

Voice over IP (VoIP) makes it possible to make a phone call using the Internet. The data
of this call travels over a packet switched network instead of a circuit switched network. A
packet switched network is used in the Internet. Packets (units of information carriage) are
routed between nodes over data links shared with other traffic. Packet switching is used
to optimize the use of the bandwidth available in a network, to minimize the transmission
latency (i.e. the time it takes for data to pass across the network), and to increase robustness
of communication. [35]

VoIP was first demonstrated in the early 1980s when Bolt, Beranek, and Newman in Cam-
bridge, Massachusetts, set up the ”voice funnel” to communicate with team members on the
West Coast as part of their work with the Advanced Research Projects Agency (ARPA). The
voice funnel digitized voice, arranged the resulting bits into packets, and sent them through
the Internet [3]. The development of IP telephony expanded in 1995 when the Israeli com-

9

2.2. Introduction to Voice over IP Chapter 2. State of the art in VolP

pany VocalTec released their softphone InternetPhone that enabled computer-to-computer IP
telephony. The first gateway between IP networks and the PSTN was released in the market
in 1996. The Israeli company DeltaThree offered a telephone-to-telephone communication
service over IP networks in 1997. [4]

The Open Systems Interconnection Basic Reference Model (OSI Reference Model or OSI
Model for short) [5] is a layered, abstract description for communications and computer
network protocol design, developed as part of Open Systems Interconnection initiative. It
is also called the OSI seven layer model. The OSI model shows seven layers, called the
Application layer, Presentation layer, Session layer, Transport layer, Network layer, Datalink
layer and Physical layer.

Call Processing Protocols User Protocols Support Protocols

|7‘ H.323, Megaco, Vel Wil
MGCP, SIP Data RTCP. NTP, SDP
RTP

L TCP,
4 TCP, UDP UDP uDP TCP, UDP
L
3 P
IS
1
L Data Link and Physical Layers

Figure 2.4: The Internet Call Processing Model

On top of the network protocol IP two transport protocols are situated, called UDP and TCP.
Figure 2.4 shows these protocols situated in the OSI model. TCP is connection oriented and
takes care of retransmissions. It ensures quality of the transport, i.e. packets are in order
and no packets are missing. For VolP it is not a problem if once in a while a packet is
dropped, because probably it is not even noticed by the users. If it is noticed by the users,
they can ask each other to repeat the text. Therefore often UDP is used for VoIP, since it is
connectionless and has less overhead then TCP. UDP does not retransmit lost packets and it
still uses the IP stack so packets will not necessarily be received in the order they were sent.
Therefore other mechanisms to ensure the reliability of the packet stream are needed. The
Real Time Protocol (RTP) helps to build the packet stream in the order as the stream was
sent, and different voice compression methods have the ability to regenerate lost packets. To
initiate a VoIP session, there is a need for information exchange between the clients before
the session can start. The most commonly used protocol is the use of the control protocols
Session Initiation Protocol (SIP) and H.323. Figure 2.4 shows the position of H.323 and RTP
in the OSI model; H.323 and RTP are discussed in more detail in Paragraph 2.3.

VoIP can be subdivided into three events:
1. Setup
2. Conversation

3. Tear down

10

Chapter 2. State of the art in VolP 2.8. The Call Processing Model

The setup is done with protocols like SIP or H.323. The conversation can be handled with
RTP and the tear down again with SIP or H.323

VoIP has some (dis)advantages in comparison with the PSTN. The advantages of VoIP are
[82]:

e It reduces costs.

— All data (speech and packets) is sent over the same infrastructure, so less cables
are needed and it is easier to maintain.

e It has more functionalities

— The network is easier to expand

— The network is less fragile

The implementation of a new function is much faster

— It is possible to bring your phone(number) with you and use it somewhere else
Some disadvantages are [82]:
e A specific QoS (Quality of Service) is needed

e Speech needs priority (above for instance downloads), without priority, QoS can not be
promised

In literature both the terms ”VoIP” and ”Internet telephony” are used to describe the pos-
sibility to use a computer to make a call. Because of the different explanations, the exact
differences between the two terms are unclear. In this report, they are treated as the same.

The overall model to have both PC-to-PC and PC-to-phone (and vice versa) calls is called
the Internet Call Processing model [82]. In the preceding paragraphs, the protocols SIP and
H.323 are already mentioned. These protocols and some others are used in this Internet Call
Processing model and are called the Internet Call Processing protocols. The following sections
will first explain the model and afterward the protocols.

2.3 The Call Processing Model

Figure 2.5 shows the VoIP topology [82]. It shows what the architecture for a PC-to-PC,
PC-to-phone and phone-to-PC call looks like. This can be P2P or with the use of a gateway.
In case of a PC-to-phone or vice versa call, a gateway should always be used to switch between
the circuit switched network and packet switched network.

The system handles the telephone’s control operations, like off-hook and on-hook operations.
These signals are converted into binary bits (packets) and later on encapsulated into the IP
datagram for forwarding the packet. At the receiving end, the process is reversed.

The computer sends and receives packets to and from the gateway. The telephone on the
other end is receiving tones. The gateway converts the IP based telephony message to the
conventional telephone format (e.g. SS7 message syntax) and the other way around.

11

2.4. The Call Processing Protocols Chapter 2. State of the art in VolP

The User The Services

o o

AN

’

Gateway Controller

Figure 2.5: VolIP topology

The key components used in this operation are the Gateway and a node known by three
names. This node is called a Gatekeeper in H.323, a Call Agent in MGCP and a Media
Gateway Controller in Megaco [82]. In this report the term Gateway Controller is used.

The Gateway is responsible for the connection of the physical links of the various systems.
The Gateway Controller is the overall controller of the system and thus the Gateway is a
slave to the master Gateway Controller.

The OSI reference model is used to show the Internet Call Processing Model in Figure 2.4.
The figure shows the following protocols [82]:

e (lall Processing Protocols: These protocols form the basis for most of the call processing
for voice and video services. They take care of the connection setup and tear down.
The conversation itself is handled by the user protocols. Examples of the call processing
protocols are H.323, Megaco, MGCP and SIP and will be explained later in more detail.

e User Protocols: These protocols are used to send the user voice (audio), video and data
traffic. Examples are RTP, FTP and e-mail.

e Support Protocols: These protocols support the Call Processing Protocols. They do not
control a call per se, but assist the Call Processing Protocols. Examples are RTCP,
NTP and SDP.

2.4 The Call Processing Protocols

Internet Call Processing protocols take care of the setup and tear down of the session. The
actual conversation is handled by the user protocols. There are different Call Processing
Protocols; the four most important ones are:

e H.323

12

Chapter 2. State of the art in VolP 2.4. The Call Processing Protocols

e The Media Gateway Control Protocol (MGCP)
e Megaco/H.248

e The Session Initiation Protocol (SIP)

In 2001, H.323 v2 was the most used standard. Figure 2.6 and Figure 2.7 show the different
protocols and their use. Both diagrams have information from the year 2001. The lower bar in
both diagrams is the current use of the protocol in products. The upper bar in both diagrams
is the expected use of the protocol in new products. According to [82] SIP is expected to
be the most used standard and according to [90] this will be Megaco. It is clear to see the
shifting of the use of standards. Nowadays, SIP [43] is most used. [41]

MGCP (ISC)
SIP+
none
Other

Megaco
MGCP
SIP
H.323 v4

H.323 3

H.323 2]

H.323 vi T:

0 20 40 60 80

Figure 2.6: Use of protocols according to [90]

Megaco
MGCP —

H.323 v4

H.323 V3

H.323 v2

H.323 :i!:l
0 10 20 3

0 40 50 60 70

Figure 2.7: Use of protocols according to [82]

13

2.4. The Call Processing Protocols Chapter 2. State of the art in VolP

2.4.1 H.323

H.323 is a standard approved by the ITU in 1996 to promote compatibility in video con-
ference transmissions over IP networks. H.323 was originally promoted as a way to provide
consistency in audio, video and data packet transmissions. Although it was doubtful at first
whether manufacturers would adopt H.323, it is now considered as a standard for interoper-
ability in audio, video and data transmissions, as well as Internet phone and VoIP because
it addresses call control and management for both point-to-point and multipoint conferences
as well as gateway administration of media traffic, bandwidth and user participation. [85]

H.323 was originally designed to support multimedia services over a LAN. H.323 uses the
H.245 protocol for control operations, the H.332 protocol for managing large conferences,
H.225 for connection management, H.235 for security support, T.120 for document support for
conferences, and H.246 for circuit-switch interworking. Furthermore some signaling protocols
of ISDN could be borrowed [82]. H.323 was not designed to interwork with Web architectures,
like HTTP. Its data structures and transfer syntaxes are based on the OSI Presentation Layer
(layer 6 of the OSI Model). Companies as Microsoft and IBM use this protocol in many of
their VoIP products. [83]

Services

The H.323 user terminal can provide real-time, two-way audio, video or data communica-
tions with another H.323 user terminal. The terminal can also communicate with an H.323
Gateway, which can also operate as a Multipoint Control Unit (MCU). The MCU supports
multi-conferencing between three or more terminals and Gateways.

H.323 invokes several operations to support end-user communications with other terminals,
Gateways and MCU (all these devices are called endpoints). Sometimes these operations are
called phases. The seven major operations are: [82]

e Discovery: The discovery phase starts with finding a Gatekeeper with which it can
register. The endpoint and the Gatekeeper exchange addresses. The IP multicast
address 224.0.1.4 is reserved for Gatekeeper discovery.

e Registration: At this point the endpoint is identified (end-user terminal, Gateway,
MCU) and joins the calling zone; the zone that is part of a network controlled by the
Gatekeeper.

e Connection Setup: A connection is set up between two endpoints for the end-to-end
call.

e Capability Exchange: Any multimedia traffic sent by one endpoint should be received
correctly by the endpoint. This operation ensures this and allows the endpoint and the
Gatekeeper to negotiate their capabilities.

e Logical Channel Exchange: This phase is used to open one or more logical channels
to carry the traffic.

e Payload Transfer: In this phase the traffic is exchanged.

e Termination: Finally all logical channels should be released.

14

Chapter 2. State of the art in VolP 2.4. The Call Processing Protocols

Protocol flow
Figure 2.8 shows the protocol flows for the connection setup and termination. Endpoint (EP)

End End
point A CatiieEmay point B
ARQ »
>
<« ACF<IP EP B>
-t
.931 call setu
< ARQ

-
ACF<IPEPA> _

>
Q.931 call respond

IRR >l IRR
DRQ
DCF DCF

[
-

A

Figure 2.8: H.323 protocol flow

A sends an ARQ (Admission Request) to the Gatekeeper, the Gatekeeper returns an ACF
(Admission Confirmation) with IP address of EP B. EP A sends Q.931 Call setup messages to
EP B and EP B sends the Gatekeeper an ARQ), asking if it can answer call. The Gatekeeper
returns an ACF with IP address of EP A and EP B answers and sends Q.931 to EP A.
Both endpoints send a IRR (Information Request Response) to the Gatekeeper. If EP A
disconnects the call, a DRQ (Disconnect Request) is sent to Gatekeeper. The Gatekeeper
sends to both Endpoints a DCF (Disconnect Confirmation).

2.4.2 Megaco / H.248

The Media Gateway Control Protocol (Megaco) is a result of joint efforts of the IETF and the
ITU-T Study Group 16. Therefore, the IETF defined Megaco is the same as ITU-T Recom-
mendation H.248 [83] [29]. Megaco/H.248 is for control of elements in a physically decomposed
multimedia gateway, which enables separation of call control from media conversion.

Services

Megaco/H.248 addresses the relationship between the Media Gateway (MG), which converts
circuit-switched voice to packet-based traffic, and the Media Gateway Controller. There are
two basic components in Megaco/H.248: terminations and contexts. Terminations represent
streams entering or leaving the MG (for example, analog telephone lines, or RTP streams).
Terminations have properties, such as the maximum size of a jitter buffer, which can be
inspected and modified by the MGC.

All Megaco/H.248 messages are in the format of ASN.1 text messages. Megaco uses a series
of commands to manipulate terminations, contexts, events, and signals. The following is a
list of the commands:

e Add - The Add command adds a termination to a context. The Add command on the
first Termination in a Context is used to create a Context.

e Modify - The Modify command modifies the properties, events and signals of a termi-
nation.

15

2.4. The Call Processing Protocols Chapter 2. State of the art in VolP

e Subtract - The Subtract command disconnects a Termination from its Context and
returns statistics on the Termination’s participation in the Context. The Subtract
command on the last Termination in a Context deletes the Context.

e Move - The Move command atomically moves a Termination to another context.

e AuditValue - The AuditValue command returns the current state of properties, events,
signals and statistics of Terminations.

e AuditCapabilities - The AuditCapabilities command returns all the possible values
for Termination properties, events and signals allowed by the Media Gateway.

e Notify - The Notify command allows the Media Gateway to inform the Media Gateway
Controller of the occurrence of events in the Media Gateway.

e ServiceChange - The ServiceChange Command allows the Media Gateway to notify
the Media Gateway Controller that a Termination or group of Terminations is about
to be taken out of service or has just been returned to service. ServiceChange is also
used by the MG to announce its availability to an MGC (registration), and to notify
the MGC of impending or completed restart of the MG. The MGC may announce a
handover to the MG by sending it ServiceChange command. The MGC may also use
ServiceChange to instruct the MG to take a Termination or group of Terminations in
or out of service.

All of these commands are sent from the MGC to the MG, although ServiceChange can also
be sent by the MG. The Notify command, with which the MG informs the MGC that one of
the events the MGC was interested in has occurred, is sent by the MG to the MGC.

Protocol flow

Figure 2.9 shows the protocol flows for the setup of a call of Megaco. At the first part, the
Off-hook state shows the Local Gateway would like to have a call. After accumulating the
digits (the address of the Remote Gateway), the connection can be setup, which is noticed to
the Remote Gateway by a Ring. After an acknowledgement, there is a Ring back at the Local
Gateway. When the Remote Gateway reaches the Off-hook state, the call has been setup.

2.4.3 MGCP

The Media Gateway Control Protocol (MGCP) is published as RFC 3435, which obsoletes an
earlier definition in RFC 2705 and integrates the Simple Gateway Control Protocol (SGMP)

and the Internet Protocol Device Control (IPDC) specification. The Gateway Controller is
called a Call Agent.

MGCP as primarily developed to address the demands of carrier-based IP telephone networks.
MGCP is a complementary protocol for both H.323 and SIP, which was designed as an
internal protocol between the Media Gateway Controller and the Media Gateway. In MGCP,
an MGC primarily handles all the call processing by linking with the IP network through
constant communications with an IP signaling device, for example an SIP Server or an H.323
gatekeeper.

16

Chapter 2. State of the art in VolP 2.4. The Call Processing Protocols

Local Gateway MGC Remote Gateway
‘ Modify i
5 Modify (ACK)
Off-hook | 3 .
4 Notify ol 5 Off-hook
ded
_ Noify (ACK) o TR
Accumulate "7'
digits ¢ Notify _
Notify (ACK) §
-t Adld 10
" Add (ACK)
12 Adg P
<« A ACK) i
14 Modify N
15 |Rin
«Modity (ack) 15"
Ring bafﬁ 18 Modify (ACK) o+
i 20| Off hook
o Notify 24
2 Notify (ACK)
¢ Mudifx)

” Modify (ACK)

Figure 2.9: Megaco protocol flow

Services

MGCP is comprised of a Call Agent, one media gateway (MG) which performs the conversion
of media signals between circuits and packets, and one signaling gateway (SG) when connected
to the PSTN (Public Switched Telephone Network). MGCP is widely used between elements
of a decomposed multimedia gateway.

Call Agents come with the capability of creating new connections, or modify an existing
connection. Generally, a media gateway is a network element which provides conversion
between the data packets carried over the Internet or other packet networks and the voice
signals carried by telephone lines. The Call Agent provides instructions to the endpoints to
check for any events and - if there is any - create signals. The endpoints are designed in such
a way as to automatically communicate changes in service state to the Call Agent. The Call
Agent can audit endpoints and the connections on endpoints. [56]

MGCP uses the following commands [28]:

e AUEP - Audit Endpoint: Used by the Call agent to query (the state of) a Media
Gateway

17

2.4. The Call Processing Protocols Chapter 2. State of the art in VolP

e AUCX - Audit Connection: Used by the Call agent to query (the state of) a Media
Gateway

e CRCX - Create Connection: Used by a Call Agent to manage an RTP connection
on a Media Gateway

¢ DLCX - Delete Connection: A Media Gateway can also send a DLCX when it
needs to delete a connection for its self-management

e MDCX - Modify Connection: Used by a Call Agent to manage an RTP connection
on a Media Gateway

¢ RQNT - Request for Notification: Used by a Call Agent to request notification
of events on the Media Gateway, and to request a Media Gateway to apply signals

e NTFY - Notify: Used by a Media Gateway to indicate to the Call Agent that it has
detected an event for which the Call Agent had previously requested notification of

e RSIP - Restart In Progress: Used by a Media Gateway to indicate to the Call
Agent that it is in the process of restarting

Protocol flow

Figures 2.10 and 2.11 shows the call setup and tear down of MGCP. The user starts the
setup by starting the Off-hook state. He hears the dial tone and enters the digits (the address
of the callee). When the connection is setup to the callee, the user hears a ringtone. When
the user ends the connection, the on hook state is reached again.

2.4.4 SIP

The Session Initiation Protocol (SIP) [94] is a control protocol which can set up, modify
and tear down sessions between session users. An interesting part of SIP is the support for
mobility. If a user registers his or her location with a SIP server, SIP will direct SIP messages
to the user or invoke a proxying operation to another server to a user’s current location.

SIP can be used with UDP or TCP, which is in an intelligent way implemented: UDP will be
used first. If problems arise and a timeout will happen, TCP will be used as a fallback.

SIP is an attractive control tool for IP telephony because:

e It can operate as stateless or stateful. It provides good scalability and robustness for
the stateless implementation.

e It uses many of the formats and syntax of HI'TP, thus providing a convenient way of
operating with ongoing browsers.

e The SIP message (the body) can be used in any syntax, such as Multipurpose Internet
Mail Extension (MIME) or the Extensible Markup Language (XML).

e It identifies a user with a URI, thus providing the user the ability to initiate a call by
clicking on a Web link.

18

Chapter 2. State of the art in VolP

2.4. The Call Processing Protocols

User

Resi-
dential
Gateway

Call
Agent

Commen
Data-
base

Accoun-
ting
Gateway

Trunking
Gateway

LEC

Offhook 2

_Notification
" Request
ACK o

_ Dialtone |~ Request

Noti
4

< ACK 5

<

_Notification

%

Digits
>

7 ACK o

9 Notify.
=ACK 10
_Notification
" Request
12 L_ACK o

__ Create
“Conneclion

14 ACK o

15 | _Query >

EesEonse
16

Create

Connectio

ACK 15

19 JAM

_ Modify
“Connectiof
ACK

21

 J

1AM

Y

aACM

22

ACM |

_Notification| .
Ring |~ Request

A

Services

24
24 |22ACK

Figure 2.10: MGCP protocol flow part 1

SIP supports five aspects regarding the establishment and termination of communications

sessions: [84]

e User location: Determination of the destination end system

e User availability: Determination of the willingness of the call party to accept a call

to this device

e User capabilities: Negotiation of the session parameters

e Session setup: Establishment of the session

e Session management: Modification and termination of the session

A SIP architecture consists of three types of elements: SIP User Agents, SIP servers, and
Location Servers. These elements are shown in Figure 2.12. SIP User Agents are end devices
such as: SIP phones, a software SIP client on a computer or handheld, or a gateway to other
networks, typically a PSTN gateway. They can originate SIP requests and send and receive

19

2.4. The Call Processing Protocols Chapter 2. State of the art in VolP

Resi- Common Accoun- 7
User dential Call Trunking

Data- ting
Gateway Agent base Gateway St

LEC

< ANM
ANM 25

_Notification| .,

Removs E.",Request
Ringinaﬂ ACK >

_ Modify
“Connection
291 ACK o

28

REL 30

'}

REL

Delete [
Connectior] 31 Delete
31 Connection
32 ACK o | a ACK 32

thook |33
34 Notify >

aACK 35

_Notification
" Request
37 ACK

w

6

Figure 2.11: MGCP protocol flow part 2

media. A SIP User Agent contains two parts: the User Agent Client (UAC) part initiates
requests and the SIP User Agent Server (UAS) part responds to received requests.

Three types of SIP servers exists: Proxy, Redirect, or Registrar servers [94]. When receiving
requests from a SIP user agent or a SIP proxy for a call setup, it forwards the requests towards
the intended destination. A SIP Redirect server receives requests from User Agents or proxies
and returns redirection information to contact an alternative URI. A SIP Registrar receives
SIP registration requests and updates Location Servers with SIP User Agent information. A
Location Server is a database that contains user, routing, and location information.

SIP uses several operations (according to RFC254 and RFC3261 [94]):
o ACK: Acknowledgement of a received message

e BYE: End of the session

CANCEL: Cancellation of the request

INVITE: Invitation of a user to a call

OPTION: Request for information about the possibilities of the server

REGISTER: Registration of the user agent

Protocol flow

Figure 2.13 shows an example of a complete SIP session, starting with the registration, fol-
lowed by the call setup and the call and finishing with the ending of the call. The INVITE
method is explained in more detail in Appendix A.

20

Chapter 2. State of the art in VolP 2.5. The User Protocols

User Proxy Server Proxy Server ' Proxy Server

Agent A
\ /—‘

User
Agent B

Figure 2.12: SIP elements

2.4.5 Summary

Table 2.1 shows an overview of the four Call Processing Protocols as described before. [81]
[83]

2.5 The User Protocols

SIP is a protocol used to start up VoIP calls, not to send the actually desired data over the
network. To send the data the User Protocol Real Time Protocol (RTP) and the Support
Protocol 'Real Time Control Protocol’” (RTCP) are used.

2.5.1 Real Time Protocol (RTP)

The RTP standard defines a packet structure for use in real-time applications, amongst others
it includes fields for timestamps and sequence numbers necessary for synchronization. RTP
runs over UDP and is often viewed as a sub layer of the transport layer. However technically
the RTP protocol is implemented in the application layer. Data encapsulation is performed
at the end systems and the protocol does not provide any mechanism to prevent out of
order packets or quality mechanisms. In order to provide control functions RTP is usually
complemented with the RTCP protocol, described in the next section.

2.6 The Support Protocols

This section describes the support protocols Session Description Protocol (SDP), Network
Time Protocol (NTP) and RTP Control Protocol (RTCP).

21

2.6. The Support Protocols Chapter 2. State of the art in VolP

User Proxy User
Agent 1 Server Agent 2
REGISTER
< S0 OR _ REGISTER Registration
_ 20000K
INVITE url o
_ 100 TRYING
I INVITE url
o 100 TRYING —
<180 RINGING Call setu
180 RINGING 500 OK P
- — ACK o
ACK -
RTP/ RTCP
.------t-.---.-> Call
BYE > BYE -
_ ACK < ACK = Ending call

Figure 2.13: Possible protocol flow of SIP

2.6.1 RTP Control Protocol (RTCP)

The RTP control protocol (RTCP) is usually implemented in combination with the RTP
protocol and is based on the periodic transmission of control packets. RTCP does not send
a payload with application data, instead it sends statistical information that is necessary for
the application to provide feedback on the VoIP quality. The way this information is used
by the application layer is not defined in the RFC3550 standard, and depends strictly on
the application. RTCP and RTP packets are distinguished by using different port numbers.
Typically the RTCP port is one higher than the RTP port, RTCP also uses UDP as the
transport protocol.

The statistical information RTCP gathers are for example information about loss, jitter,
feedback and the round trip time. An application can use these information to increase the
QoS, lower the bandwidth by using another bandwidth, or some thing else.

2.6.2 Session Description Protocol (SDP)

SDP is a text-based session description format. It is used by SIP to convey information
about a media session, e.g. type of media, the transport protocol in use, format of the media,
multicast addresses, port numbers, etc. [86]. SIP carries SDP encoded in MIME as a message
body in a SIP message. SDP supports use of [Pv6 addresses.

2.6.3 Network Time Protocol (NTP)

The Network Time Protocol (NTP) is a protocol for synchronizing the clocks of computer
systems over packet-switched, variable-latency data networks. NTP uses UDP port 123 as
its transport layer. It is designed particularly to resist the effects of variable latency. NTP is
needed in VoIP for the QoS, if for instance the end-to-end delay is measured, the time should
be synchronised.

22

Chapter 2. State of the art in VolP 2.7. Conclusions
H.323 SIP MGCP MEGACO
Architectural Model | Peer-to-peer Peer-to-Peer Master/slave Master /slave
Media types Voice, video, | Voice, video, | Voice Voice, video
limited data data
Network scope Intra, extra | Inter, Extra | Intranet only Intranet only
and Internet and Internet
Extensibility Low High Medium Medium
Scalability Medium High Low Low
Ease of deployment | Low High Medium Medium
Standardization ITU-T IETF IETF IETF and
ITU-T
Functionality Establishing Establishing Signaling Signaling
connection connection Control Infor- | Control Infor-
mation mation
Advantages Quite preva- | Relatively sim- | Web-based and | Web-based and
lent and | ple and eas- | relatively sim- | relatively sim-
powerful (es- | ily extensible. | ple ple
pecially for | It is published
conferencing) as RFC 2543,
thus a formal
IETF standard
Disadvantages Complex built | - Lots of redun- | -
on ITU-T OSI dancy relative
layer 6 to Megaco, but
not an Internet
standard
Endpoints Smart Smart Dumb Dumb
Network Dumb Dumb Smart Smart

Table 2.1: Summary of the Internet Call Processing protocols

NTP is one of the oldest Internet protocols still in use (since before 1985). NTP was originally
designed by Dave Mills of the University of Delaware, who still maintains it, along with a
team of volunteers. NTP is published in RFC 1119.

NTP can operate above UDP or TCP. The time is displayed as GMT.

2.7 Conclusions

This chapter gave a short introduction to telephony and VoIP. Furthermore it provided in-
formation about the Call Processing Protocols (H.323, MGCP, Megaco and SIP), the User
Protocol (RTP) and the Support Protocols (RT'CP, SDP and NTP). These different protocols
are complementary; they offer the functionality of VoIP, although they cannot do the setup,
tear down and actual call all by there self. The four Call Processing Protocols support the

23

2.7. Conclusions Chapter 2. State of the art in VolP

call setup and tear down, but are different. H.323 and SIP have smart endpoints and a dumb
network and Megaco and MGCP have dumb endpoints and a smart network. Hence, the
protocols are not equal, and thus have to be translated to make the protocols compatible.

SIP is an open and emerging protocol, unfortunately not all protocols used for VoIP are open.
Proprietary protocols are not easily translated, and quite often are not possible to translate
at all. This means it is not possible to interconnect all of the protocols and thus for the
interconnection, a protocol independent solution should be found.

The next chapter shows the commonly used VoIP systems, and shows that the VoIP systems
not always use the VoIP protocols as described in this chapter. Some of the VoIP systems
use their own, proprietary protocols and are thus not open.

24

Chapter 3

Overview of VoIP Systems

Nowadays, many Instant Messenger (IM) and VoIP systems are available. Instant Messenger
systems, which started with only messaging have voice calls included now. Examples of these
systems are Live Messenger (MSN), Google Talk, Yahoo! Messenger and ICQ. The Skype
system has entered the market with the audio as main target and is currently the market
leader on VoIP.

Remember that in this report the term ” VoIP system” means that the system offers both IM
and VoIP functionality.

This chapter provides an overview of the most widely used VoIP systems. Information on these
VoIP systems are found in existing reports, papers and with experiments. These experiments
are performed by the author of this report, by using Wireshark [70], which is an application
to snif packets. Sequence diagrams are produced using Visual Ether [69] and are summarized
in readable sequence diagrams by the author. Those latter sequence diagrams are published
in Appendix B

Based on the existing VoIP systems, a generic system has been made to refer to. The overview
of every VoIP system is divided into thee parts:

e Features
e Entities
e Protocol

The ’features’ paragraphs sum up the functionalities of the VoIP system and compare them
to a generic list of functionalities. The ’entities’ paragraphs discuss the entities of the VoIP
systems. The ’protocol’ paragraphs discuss the several protocols used by the VoIP system.

The focus in this chapter will be on Login, Buddy search, Message sending and Calling. More
information about File transfer can be found in Appendix B. Detailed information about the
protocols of the VoIP systems, such as the protocol flows can also be found in Appendix B.

3.1 Aspects of VoIP systems

This chapter discusses several VoIP systems and compares them with a generic VoIP system,
shown in the next sections. This generic VoIP system has been developed based on analyses

25

3.1. Aspects of VoIP systems Chapter 3. Quverview of VoIP Systems

of all described VoIP systems. The reason for this generic VoIP system is to compare it to
the existing VolP systems, to show easily the differences, and similarities between the several
VoIP systems and their accompanying protocols.

3.1.1 Features

The VoIP systems have many features. The main services of most VolIP systems are:
e Login: Authentication with username (name, email address or number) and password

e Buddy search: Every user has a contact list with one or more buddies. To expand
this list, other contacts can be searched for and added. We only focus on the searching
for a buddy and expanding of the contact list

e Messaging: Typing in a message and sending it to one or more selected user(s)

e Calling: Setting up a conversation requires first the invitation of the caller, which the
callee might accept. After acceptance, the conversation starts. This report only focuses
on PC-to-PC calls

3.1.2 Entities

User A User B

SAP A SAP B

VolIP system

Figure 3.1: Entities of a VoIP system

Figure 3.1 shows an overview of a VoIP system. It is based on the five architectures of
the VoIP systems discussed in this chapter. Each VoIP system has two users. A user only
notices it is using the system to communicate with another user. He does not notice what is
happening inside the system.

Figure 3.1 shows in between the users and the VoIP system Service Access Points (SAPs).
These SAPs show the interactions between the VoIP system and the users. It defines the
services.

26

Chapter 3. Quverview of VoIP Systems 3.1. Aspects of VoIP systems

User A

Client A

ULL system

VoIP system

Figure 3.2: Entities of a VoIP system

Figure 3.2 shows a decomposition of Figure 3.1. Inside the VoIP system, two clients, a server
and an Underlying Layer (ULL) of the VoIP system are situated. The clients offer the interface
to the user and use the ULL to send their data to the server or to other clients. The server
consists of the Login Server and other servers, like a chat server or VoIP server. If the clients
do not use the server to communicate with each other, they use a P2P connection. Login is
always done with the use of a server. For the most VolP systems, buddy search and messaging
is done with the use of a server and Calling is done with a P2P connection.

3.1.3 Protocol

In this section we present the generic protocol flow in sequence diagrams. These generic
protocol flows are based on the protocol flows of the five VoIP systems as discussed in this
chapter. In the ’protocol’ sections of the VoIP systems, we show a short overview of the
protocol(s) used by the VoIP system, the sequence diagrams are presented in Appendix B.

Login
Figure 3.3 shows the generic login sequence diagram. First a secure connection has to be set
up, before login to the server is possible. Afterwards, it is possible to login to other servers.

Buddy search

Figure 3.4 shows the generic buddy search sequence diagram. First the client has to request
for a buddy search. For some VoIP systems, a list of possible buddies is returned. This
list contains the usernames that almost equal the search. In that case, one buddy has to
be selected, in both cases Client B receives an addbuddy request. If Client B accepts, the
selected buddy is added to the contact list of Client A.

Messaging
Figure 3.5 shows the generic messaging sequence diagram. First the other client is announced

27

3.1. Aspects of VoIP systems Chapter 3. Quverview of VoIP Systems

Client A Login server Other servers

T T
Secure connection request
|

[}
Secure connection response
v S e 1
4 Login request |
|

I
I Login response

T
|
|
|
|
|
|
|
|
I Login request |
|
Lagin relrspansa !
e

Figure 3.3: Login sequence diagram

Client A Senver Other servers

T T
I Buddy request |
|

T
|
|

[

Fossible buddies response :
|
|
|
|

I I
| Select buddy request |

E-_-_‘_-_-_-_'_'—'_‘—"'I add buddy request

|
add buddy ack___|
——

selected buddy ack

Pimssereiana

Figure 3.4: Buddy search sequence diagram

the user is typing. This is not a functionality offered by every VoIP system. Afterwards the
message is sent and an acknowledgement is received in return.

Call

Figure 3.6 shows the generic call sequence diagram. First a request for a call is sent to Client
B. If Client B accepts, the actual conversation takes place. Afterward both Client A and
Client B are allowed to close the call, in this example Client A closes the call and Client B
acknowledges it.

28

Chapter 3. Quverview of VoIP Systems 3.1. Aspects of VoIP systems

Client A Senver Other servers

I Motify typing :
I Send message Naotify typing

Send message \

| |
ack :""'—‘_'—E_-———._‘:
s el |

Figure 3.5: Messaging sequence diagram

Client A Server Client B

|
| Call request I

Z

I
|
|
Call request |
|
|

|

| | Call ack

[Iq-—-—-—-—'—'_'_'l

| Call ack |

b——'—'_'_'_'_'———é_e.t:p call :
|

acknmﬂedgement

| ‘__________—l————'_-_-_-j

Conversation

| conversaticn |

I _._________-—c—-—-—-—'_'_"l

| Close call |
| |
Close call ack

Figure 3.6: Call sequence diagram

29

3.2. Windows Live Messenger (MSN) Chapter 3. Quverview of VoIP Systems

3.2 Windows Live Messenger (MSN)

Windows Live messenger [32] (formerly known as MSN messenger) has been released by
Microsoft on August 24, 1995, to coincide with the release of Windows 95. Windows messen-
ger is a proprietary VoIP system installed on Windows XP and available for among others
Windows 2000. This latter application, Windows Messenger should not be confused with the
MSN messenger or Windows Live Messenger, although they have similar functionalities. MSN
messenger has changed the name in 2006 to Windows Live Messenger. The word ”MSN” is
the word for MSN Messenger and Windows Live Messenger in Internet slang [30]. In this
report the word MSN will be used when Windows Live messenger or the older version MSN
messenger is mentioned. Windows messenger has not been studied.

3.2.1 Features

MSN offers the main services and furthermore offline text messages for Windows Live Mes-
senger, video communication, Multi-user chats, SMS, avatars and other personalization tools.
It is also possible to make a call to a PSTN phone.

3.2.2 Entities

The architecture of MSN consists of servers and several clients and is thus a client-server
architecture. Multiple servers are used and a peer-to-peer connection between two clients is
possible.

MSN uses the following servers:
e Dispatch Server (DS)
e Notification Server (NS)

e Switchboard Server SS

The DS tracks locations for the notification servers and communicates the IP address of these
servers to clients. The NS manages the user presence of the users. Clients must maintain
connection to the NS at all times. The NS provides information on client locations for routing
purposes and provides connections to the SSs. It provides presence information notifying other
users if whether or not a particular user is connected. The SS provides messaging and file
transfer functionality between two clients.

The .NET Passport Login Server is also part of the authentication process. In this report it
can be seen as a part of the DS, to limit the amount of servers in the architecture and the
sequence diagrams. The .NET Passport Login Server provides the client attempting to sign
in with a ticket to complete the authentication process with a NS. Also the Nexus Server is a
part of the DS in this report. The Nexus Server is another part of the authentication process
and provides a client with a URL (Uniform Resource Locator) of the .NET Passport Login
Server and information necessary to authenticate.

The DS can be accessed via the domain name messenger.hotmail.com. The function of the
DS is to direct the user to an appropriate NS (based on the supplied .NET passport). If

30

Chapter 3. Quverview of VoIP Systems 8.8. Google Talk

the messenger.hotmail.com domain name could not be reached (i.e. if the firewall blocks the
port), the domain name gateway.messenger.hotmail.com is available for HTTP connections.
The MSN client will often store the address of the appropriate NS once located, to make
future connections go easier.

The NS manages user presence on the network. Logging in to the NS announces the avail-
ability of the user. The NS stores and synchronizes user details, provides notifications of new
Hotmail messages and checks the version of the MSN client being used. The NS does not
handle IM, the NS will set up a connection to the SS for IM.

The SS establishes and manages chat sessions between users on the network. The SS forwards
IM messages to the recipients. Users do not know each others IP address. The SS facilitates file
transfers, but are carried out peer-to-peer using the MSN File Transfer Protocol (MSNFTP).
After both users agree to send the file, SS provides IP addresses.

While connected to the SS, the user is still connected to the NS. If the NS connection is
broken, the SS notices the offline status and will not allow the connection from the user to
the SS anymore.

MSN uses Microsoft’s .NET Passport for creating and maintaining the user accounts. This
account can be created at the Hotmail or .NET websites, not within the MSN domain. Once
an account is created, it is possible to sign in to the MSN network directly.

3.2.3 Protocol

MSN uses the Mobile Status Notification Protocol (MSNP) for the login and the MSN Mes-
senger Service (MSNMS) for the messaging. Furthermore, SIP is used for the call. The
sequence diagrams of the main services are presented in Appendix B.3.

3.3 Google Talk

Google Talk (GTalk) [16] is an application offered by Google for VoIP and IM and is available
since August 2005. Google’s mission is to make the world’s information universally accessi-
ble and useful. GTalk uses the open protocol Extensible Messaging and Presence Protocol
(XMPP) and Jabber [23] for the IM part and presence events. To make VoIP, video and
other peer-to-peer multimedia sessions possible, Google released libjingle [88] in December
2005. Libjingle is a library of the code that Google uses for peer-to-peer communication, and
was made available under a BSD license. This license is like the GNU GPL license for free
software, but with more restrictions.

GTalk does not encrypt the Jabber stream; it uses an undocumented nonstandard way of
authenticating to the service, retrieving a token from a secure web server. Other clients than
Google’s own are required to secure their streams with Transport Layer Security (TLS) before
sending the password, causing them to stay encrypted throughout the whole session. GTalk
claims to fully support encryption of chats and calls before their next official release. [9] [12]
1]

31

3.8. Google Talk Chapter 3. Quverview of VoIP Systems

3.3.1 Features

GTalk does not support many features (yet). It supports the main services as presented in
Section 3.1.1. Furthermore if a buddy is offline, it is possible to leave a voicemail. This
voicemail can be at most 10 minutes long and it is delivered to the buddies Gmail mailbox
as an attached MP3 file.

Currently it is only possible to make PC-to-PC calls with GTalk. GTalk claims however that
it is adding DTMF support to Jingle, to make PC-to-PSTN calls possible in the future. [12]

3.3.2 Entities

Google Talk uses Jabber, and thus this section discusses the Jabber architecture.

Client A Client B

Client Jabber Server Jabber Server Client

Client Client

o
i1

Legacy Server/

(CELEEY Client

Figure 3.7: detailed GTalk architecture

A Jabber network consists of two kind of entities: clients and servers. Every client is connected
to a server and servers may be connected to one another. Like said before, these connections
are established using the XMPP communication protocol. Entities should identify itself on
a network by a (unique) Jabber Identifier (JID). A JID looks like ”username@servername”,
just like an email address. Additionally it is possible to add a resource to the JID. This
part is recommended but optional and the whole JID will look at that case like "user-
name@servername/resource”. [25]

Figure 3.7 shows the Jabber architecture. The Jabber server is the central part and is a com-
plex server with many jobs like delivering messages, storing contact lists, managing gateway
services and many more. The Jabber architecture is a so called client server architecture [23].
It uses several servers and a peer-to-peer connection could be possible. GTalk also offers a
Gateway to Legacy Server / Client to provide a gateway to other applications. This gateway,
also transport called, is an example of a component which extends the basic functionalities.
There exist bridges to other VoIP systems, like ICQ, Yahoo and MSN [26]

The Jabber clients with their JID belong to a specific server. This means that if a server goes
down, it is impossible for the users registered to that server to use the Jabber service, which
means it is not possible to use the GTalk client.

32

Chapter 3. Quverview of VoIP Systems 3.4. Yahoo Messenger

3.3.3 Protocol

GTalk uses the Extensible Messaging and Presence Protocol (XMPP) for login and messaging
and Jingle for the call. Appendix B.4 shows the sequence diagrams for GTalk.

3.4 Yahoo Messenger

Yahoo! Inc is an internet service company, which operates an Internet portal and provides
a full range of products and services including a search engine, the Yahoo! Directory and
Yahoo! Mail. It also provides the Yahoo! Messenger [61]. The Yahoo! Messenger will be
named short as Yahoo in this report. [92]

The acronym for Yahoo became: ”Yet Another Hierarchical Officious Oracle”. The messenger
is provided free of charge. To login to the messenger and other Yahoo! Services, a Yahoo! 1D
is needed. [59] [60]

Interoperability between Yahoo and MSN was launched July 12, 2006. This allows for Yahoo
and MSN users to talk to each other without the need to create an account on the other
service. Not all features are supported though; voice calls cannot be made.

3.4.1 Features

Yahoo offers all main services as presented in Section 3.1.1. Starting with version 8.0, it is
possible to create plug-ins to add more functionalities. Yahoo offers e-mail, voicemail, games,
chat rooms, conferencing and webcam support.

On Microsoft Windows operation systems Yahoo offers some unique features such as IMVi-
ronments (customizing the look of Instant Message window), address-book integration and
Custom Status Message. Furthermore it offers offline-messaging, BUZZing, music-stats and
avatars.

3.4.2 Entities

The architecture of the Yahoo is a client-server architecture. Yahoo uses the following servers:
e Login server
e IM server
e SIP server
e STUN server

STUN (Simple Traversal of UDP (User Datagram Protocol) through NATs (Network Address
Translators)) is a network protocol allowing a client behind a NAT (or multiple NATS) to find
out its public address, the type of NAT it is behind and the internet side port associated by
the NAT with a particular local port. This information is used to set up UDP communication
between two hosts that are both behind NAT routers. The protocol is defined in RFC 3489.
48]

33

3.5. ICQ Chapter 3. Quverview of VoIP Systems

3.4.3 Protocol

YMSG is the Yahoo! Messenger Protocol, which is used for the login and messaging. Further-
more, SIP is used for the call. Appendix B.5 shows the sequence diagrams for the protocol
flows.

3.5 ICQ

ICQ [21] was developed in 1996 by Mirabilis, the creators of the first fully functional Internet-
wide instant messenger comprising presence, a contact list and rapid messaging. AOL bought
Mirabilis on June 8th, 1998 for over 200 million dollars. On December 19, 2002, AOL Time
Warner announced that ICQ had been issued a United States patent for instant messaging
(USPTO Patent Number 6,449,344). In June 2004 ICQ celebrated its 300 millionth download
from download.com where it remained the most popular program for seven consecutive years.

Before ICQ, people were connected to the internet, but not interconnected. ICQ was the
missing link, a technology that made peer-to-peer communication possible. The following
year ICQ took the internet by storm. Through viral marketing a chain reaction was created,
resulting in one of the largest download rates for a start-up company in the history of the
Internet. Since MSN arrived at the market, the popularity of ICQ decreased. [20]

ICQ has always been technologically innovative. Not only was ICQ one of the first Internet
wide instant messaging services, many features that make up the core of today’s IM services
were first introduced by ICQ. [20]

The name ICQ should be pronounced as ”I seek you”, because the founders of the system
wanted to make clear that it is possible to use ICQ to find somebody and talk to that person
in real-time.

3.5.1 Features

ICQ features offline text messages support, video communication, Multi-user chats, SMS,
greeting card, multiplayer games, searchable user directory, skins, emoticons, avatars and
other personalization tools and POP3 email support. Furthermore it supports the main
services as presented in Section 3.1.1.

ICQ users are identified by a Universal Internet Number (UIN), also called Unified Identifi-
cation Number (UIN). Every user of ICQ gets his own number after registration. There exist
already over 300.000.000 numbers. Buddies can be found by UIN, by name, e-mail address
or some other personal details a user makes available. [18]

ICQ and AIM users are since 2000 able to add each other to their contact list without any
extra server or gateway.

3.5.2 Entities

An ICQ network consists of clients and servers. Each client has to login at the server before
it can communicate with buddies. In the early years of 1CQ, before AOL bought it, it was
possible to have a peer-to-peer connection between two clients. Since AOL bought ICQ, it

34

Chapter 3. Quverview of VoIP Systems 3.6. Skype

introduces the protocol OSCAR. With the OSCAR protocol, no peer-to-peer connection is
set up.

ICQ uses the following servers:
e Login
e BOS (Basic Oscar Services)

e File

3.5.3 Protocol

Since AOL bought the ICQ company, ICQ uses the OSCAR protocol for login, buddy search,
messaging and call. OSCAR does not offer peer-to-peer connections, which means even the
call is done with the use of a server in between the two clients. Appendix B.6 shows the
sequence diagrams of the protocol flow.

3.6 Skype

The founders of Skype [45] wanted something that would let the world talk for free. One of
the names they came up with was ”Sky peer-to-peer”, which got soon shortened to ”Skyper”.
But one of the domain names associated with ”skyper” was already taken, so they dropped
the ”r” and made it ”Skype”

Skype is a popular and free VoIP system from the developers of KaZaA, and thus uses a
similar network topology as KaZaA'’s file sharing system. This means that Skype is a peer-
to-peer communication network. It is possible to download the Skype client from the website
[46] for free and make phone calls to other Skype users for free. Some additional features the
user has to pay for are SkypeOut and Skypeln; Calling a PSTN telephone number at low
rates and use a subscription to receive calls from a PSTN telephone number respectively.

Skype uses a proprietary protocol and has no detailed information available. This report
contains an explanation of how the Skype network works found in literature and gives analyses
of the protocol used by Skype. However, keep in mind that some of the information that is
given are researched guesses by the authors of some papers that analysed the Skype system
and protocol and by the author of this report. Skype itself provides a Skype API, to make it
possible to build plug-ins for the Skype system.

3.6.1 Features

Skype offers the main services as presented in Section 3.1.1. Furthermore it is possible to call
a PSTN line (SkypeOut), or receive a call from a PSTN line (Skypeln). Latter two have to
be paid for, but this is often less then the standard PSTN companies ask for. Some phone
numbers (in some countries) are even for free. Since February 2007, Skype launched its Skype
Pro in Europe. For just two Euros a month users are able to receive calls from a PSTN phone
(Skypeln) and to call a PSTN phone (SkypeOut) for free.

35

3.7. Conclusion Chapter 3. Quverview of VoIP Systems

Skype Voicemail has experienced numerous problems over the past year and users complain
that many voicemail calls are never received. Additionally, the Skypeln service occasionally
never records certain incoming calls on the systems history page. These current problems
have not been completely resolved. Skype supports also group text chat with an interface
similar to IRC with 100 People.

On Windows XP, Skype 2.0 (and above) supports videoconferencing. For Mac, Skype Beta
version 1.5.0.4 was the first version to support Video Chat, making Skype one of the few
cross-platform video conferencing solutions between Windows and Mac. Skype only supports
one-to-one video chat but may support multiple point video conferencing in the future.

Skypecasts are live, moderated conversations allowing groups of up to 100 people to converse,
moderated by the "host’ who is able to mute, eject or pass the virtual microphone to par-
ticipants when they wish to speak. Skypecasts do not support chat windows to share text
information (such as URLs) with participants.

One of the few new features in Skype 2.5.0.72 beta is the ability to send SMS messages to
mobile phone numbers.
3.6.2 Entities

The basic Skype architecture is composed of the following entities [66]:

e Host nodes: Host nodes are Skype systems, which enable phone calls and sending
messages

e Super nodes: Any node in the overlay network with a public IP address, high amount
of CPU power, memory and bandwidth has possibility to become a super node.

e Login server: Though pure P2P networks do not have any centralized servers, Skype
still uses them for user authentication.

Any node in a network can become a super node. This means that every computer where
the Skype client runs can be used as a super node and will use some bandwidth and CPU
power. This information is available in the Skype End User License Agreement, which the
user should agree on before installing the Skype application.

3.6.3 Protocol

Skype uses the proprietary protocol Skype for the login, buddy search, messaging and call.
It uses a peer-to-peer connection. Appendix B.7 shows the sequence diagrams for Skype.

3.7 Conclusion

This section provides summarizing tables. Table 3.1 shows the differences and similarities of
the VoIP systems. The "Buddy ack” entry means if the buddy is asked for acceptance to
add the buddy to the contact list of the originating user. Table 3.2 [33] [7] [8] [95] shows a
summary of the VoIP systems.

36

Chapter 3. Quverview of VoIP Systems 3.7. Conclusion

BIT messages | potential buddies | Messaging | Call Buddy ack
MSN | yes no not P2P P2P yes
GTalk | no no not P2P P2P no
Yahoo | yes no P2P P2p yes
ICQ yes yes/no not P2P not P2P | yes
Skype | no yes P2P P2p no

Table 3.1: Differences and similarities of VoIP systems

For all VoIP systems counts that the call have to be accepted before the actual call can take
place. With the buddy search, GTalk and Skype are different to the rest; they do not have
to accept the buddy search request before the client can add the buddy to the contact list.

As said in Chapter 2, some protocols are proprietary protocols. Skype is an example of
a proprietary protocol. Because of these proprietary protocols, interoperability is not that
simple to arrange. In the following chapters, we search for a solution to create interoperability
between VoIP systems.

37

Chapter 3. Quverview of VoIP Systems

3.7. Conclusion

MSN GTalk Yahoo Skype 1CQ

Creator / Owner Microsoft Google Inc. Yahoo! Niklas Zennstrom, | Mirabilis
Janus Friis (eBay)
First public release July 22, 1999 August 23, 2005 June 21, 1999 2003 November
1996
Latest stable version | Live Messenger 1.0.0.100 8.1.0.195 (Win- | 2.5.0.151 (Win- | 5.1
dows), 2.5.3 | dows), 1.3.0.53
(Mac) (Linux),
Software license Proprietary Proprietary Proprietary Proprietary Proprietary
M Yes Yes Yes Yes Yes
Encryption No No No Yes No
File Transfer Yes Yes Yes Yes Yes
Graphical smileys Yes Partial Yes Yes Yes
Unicode (UTF-8) Yes Yes Yes Partial Yes
Plug-in system No No (but gateway) | Yes Yes (API) No
Third party add-ons | Yes Yes No Yes Yes
Message Logging Yes Yes Yes Yes Yes
Webcam support Yes No Yes Yes Yes
PCtoPc calls Yes Yes Yes Yes Yes
VoIPout Yes (LiveCall) No Yes (Phone-Out) | Yes Yes (ICQ-
phone)

VoIPin No No Yes (Phone-In) Yes No
Protocol MSNP (login), | XMPP YMSG Skype OSCAR

MSNMS (messag-

ing)
Call protocol SIP Jingle SIp Skype OSCAR
Compatible with Yahoo None MSN None AOL

Website

get.live.com

www.google.com

/talk

messenger.yahoo
.com

www.skype.com

wWww.icq.com

Table 3.2: Summary of VoIP systems

38

Chapter 4

VoIP system services

Chapter 3 described five commonly used VoIP systems. This chapter provides the minimum
and optional services offered by those VolIP systems.

4.1 Services

Figure 4.1 shows the structure of the entities of a VoIP system. The figure shows two clients; a
user client and a buddy client. Furthermore it has a server in between those clients. Figure 4.2
shows the services as presented to the user. The VoIP system will be handled as a blackbox.
These services are described in this chapter.

Client Server Client

Figure 4.1: VoIP system entities

T T

Figure 4.2: VoIP system entities

The VoIP systems support at least the minimum set of the four features as presented in
Chapter 3.1.1. These features are Login, Buddy search, Messaging and Call and are described
shortly:

e For most VoIP systems applies that the Login is done with the use of one Client and

39

4.1. Services Chapter 4. VolP system services

one Server; the Client performs a request to login, and the Server confirms the login (or
not).

e For the buddy search, a request to search for a buddy is sent by the client to the
server. If the server finds the buddy, the buddy receives a request for acceptance. If the
buddy accepts, the user receives a new contact list with the new user included from the
server.

e When the user sends a message to its buddy, the client sends the message to the server,
which forwards the message to the client of the buddy.

e The call is divided into call setup, tear down and the actual call. The setup is done by
sending a request to the server, which asks the client of the buddy for acceptance. If
the buddy accepts, IP addresses are exchanged. Now the actual call can take place by
a peer-to-peer connection (the line between the two clients in Figure 4.1.

Notice that the features as performed in the preceding section can be different from VolP
system to VoIP system. The description of the preceding paragraphs are the ones mostly
used.

I uddysearch

essagmg # I
{# = Buddy needs to be in contactlist} ﬁ Call #

Figure 4.3: Login, Buddy search, Messaging and Call

VAVAY

Logout

Figure 4.3 shows the order of actions that can happen. A user always has to login first, before
it can do something else. After a correct login, it is possible to search for a buddy, to send
a message, or setup a call and have a conversation. From the buddy search, messaging, and
call state it is always possible to switch between each other. From each of these states, it is
possible to logout. Contacting a buddy (sending a message, a file or having a call) is only
possible if the buddy is in the contact list.

In this chapter, the four features are called service elements. The interactions between the
clients and servers and the user and VoIP system are called service primitives. Furthermore,
the service primitives including their parameters are given. These parameters will be shown
between parentheses behind the service primitives in Section 4.1 and Section 4.1.2.

4.1.1 Minimum services

This section provides the minimum services offered by each VoIP system. The interactions
are discussed per service element.

40

Chapter 4. VolP system services 4.1. Services

User T System
[
Enter name and password
! »
See message "Login correct"
——

Figure 4.4: Login

Login

The service primitives and parameters of the service element Login are:
e Enter name and password (username, password)
e See message "Login correct” (login correct)

e See message " Login incorrect” (login incorrect)

Figure 4.4 shows the interactions between the User and the VoIP system for a correct login.
When the user enters his user name and password, the client sends a login request including
this user name and password system (to the server). The user receives a positive or negative
confirm. If the confirm is positive, the user is logged in. Otherwise the login fails and the
user can try again.

Buddy search

Userf(tem

|
Open buddy search screen
I
>

I
Receive ack andI see buddy in list
<
I
|

Figure 4.5: Buddy search

To extend the contact list, a buddy can be searched. The service primitives and parameters
of the service element buddy search are:

e Open buddy search screen (open)

41

4.1. Services Chapter 4. VolP system services

e Enter buddy name (buddy name)

e Receive ack and see buddy in list (contact list)
Figure 4.5 shows the interactions between the User and the VoIP system for a buddy search.
To extend a contact list, the user should first open the screen of the client to search for a

buddy. In the text field, the user enters the name of desired buddy. If the buddy is found,
the contact list will be extended.

Messaging

Userﬁ System 7\&@

|
Open buddy screen

4I_}

Send rrllessage
|

|
i
_t—»
Type message :
|
|
|
|
—_—T > [

: Receive message
1

| R e

| |

| |

Figure 4.6: Messaging

The service primitives and parameters of the service element messaging are:

e Open buddy screen (open)

e Type message (message)

e Send message (message)

e Receive message (message, buddy name)
Figure 4.6 shows the interactions between the user and the VoIP system when sending a text
message. To send a message, the user opens the screen of the client used for sending a text

message to the buddy. Now he types a message. If the user sends the message (e.g. press the
"send” button), the buddy receives the actual text message.

Call

The service primitives and parameters of the service element call are:
e Start call (setup)

e Receive request for call (request for call, buddy name)

42

Chapter 4. VolP system services 4.1. Services

User ?T tem ?T User

Start call :
4|—’ |
| 1
: Receive request for call
1
|
: Accept call
Have conversation Have conversation
| |
Close call '
—_—

Receive call is closed message
—_—

Figure 4.7: Call

Accept call (accept)

Decline call (decline)

Receive decline message (decline message, buddy name)

e Have conversation (audio, buddy name)

Close call (close)

Receive call is closed message (closed by buddy, buddy name)

Figure 4.7 shows the interactions between the users and the VoIP system for a call. If the
user starts a call (mostly by pressing the ’start call’ button), the buddy receives a request for
the call. If the buddy declines the call, this is displayed by the client of the originating user.
If the buddy accepts, the client is able to let the user have a conversation with its buddy. If
the user closes the call (mostly by pressing the ’end call’ button), the buddy sees that the
”conversation is closed” displayed at its client.

4.1.2 Optional services

This section provides the optional services. To show the correct sequence of the interactions,
also the minimum services are shown. For the login and call, no optional services exist, so
these two service elements will not be repeated. The optional services are marked in the
sequence diagrams and in the service primitives list with a star (*).

Buddy search

The service primitives and parameters of the service element buddy search are:

e Open buddy search screen (open)

43

4.1. Services Chapter 4. VolP system services

User T tem Userjt

|
Open buddy search screen

1y
Receive request of buddy

4|_’

|
Receive possible buddies *
¢—F—
Select buddy * !
! p Receive request of buddy
: >
. Accept buddy
Receive ack and see buddy in lis :
——

Figure 4.8: Optional services for buddy search

Enter buddy name (buddy name)

Receive possible buddies (possible buddies) *

Select buddy (buddy name) *

Receive request of buddy (request, buddy name) *

*

Accept buddy (accept, buddy name)

Ignore buddy (decline, buddy name) *

Receive ack and see buddy in list (contact list)

Figure 4.8 shows the interactions between the User and the VoIP system for a correct buddy
search. To extend a contact list, the user should first open the screen of the client to search
for a buddy. In the text field, the user enters the name of desired buddy. Some VoIP systems
first send a list with possible buddies, and the buddy needs to select the desired one. Other
VoIP systems skip the possible buddy part. Both continue with an optional request to the
buddy to accept the originating user. If the buddy accepts, the originating user sees the
extended contact list, with the buddy on it. If the buddy ignores or declines the request,
nothing happens; The contact list is not extended with this buddy.

Messaging

The service primitives and parameters of the service element messaging are:
e Open buddy screen (open)
e Type message (message)

e Receive ”Buddy is typing” message (BIT message, buddy name) *

44

Chapter 4. VolP system services 4.2. Differences

Q
User 7@ System W User

! I
Open buddy screen |
—I—’. |
Type message !
— I » Receive "buddy is typing" message *
Send message -
! |
—_—>

|

! Receive message
1

I _—t >

! I

| I

Figure 4.9: Optional services for messaging

e Send message (message)

e Receive message (message, buddy name)

Figure 4.9 shows the interactions between the User and the VoIP system for sending a text
message. To send a message, the user has to open the screen of the client used for sending
a text message to the buddy. Now he types a message. While typing, the buddy receives a
message that the originating user is typing. If the originating user sends the message (e.g.
press the ”send” button), the buddy receives the actual text message.

4.2 Differences

This section provides an overview of the differences in offered services by the VolIP systems.
The differences are described per service element. These differences are important to keep in
mind during the design. The solution should be able to handle the differences and respond
to it in a proper way.

4.2.1 Login

The login procedure is not completely equal for all VoIP systems, in some cases the User has
to enter a name (GTalk, Yahoo, Skype), some cases an email address (MSN) and in some
cases a number or an email address (ICQ). Some VoIP systems provide a cookie to allow login
to a second (or even third) server.

4.2.2 Buddy search

The VoIP systems Skype and ICQ (in case the people search will be used) offer the possibility
to search for keys, like a (part of a) name, provide a list of potential buddies and the User can
select one of them. Yahoo, MSN, GTalk and ICQ (in case the search will be on number of
email address) do not offer this possibility. The entered name (name, number, email address)
should match exactly an existing user and will be added to the contact list after accepting

45

4.2. Differences Chapter 4. VolP system services

BIT message MSN, ICQ, Yahoo

No BIT message GTalk, Skype

Potential buddies Skype, ICQ (partly)

No potential buddies | MSN, GTalk, Yahoo, ICQ (partly)
Buddy ack MSN, Yahoo, ICQ

No buddy ack GTalk, Skype

Table 4.1: BIT messages, potential buddies and buddy acceptance

the buddy. MSN, Yahoo and ICQ require the user to accept the request to be added to the
contact list, before the buddy can be added to the contact list. GTalk and Skype do not offer
this service.

Table 4.1 summarizes the VoIP systems sending BIT messages and requires the acceptance
of the buddy before extending the contact list.

4.2.3 Messaging

Only for the VoIP systems MSN, Yahoo and ICQ a message like ”Buddy is Typing” will be
displayed at the client and thus has to be send and received. GTalk and Skype do not offer
this functionality.

table 4.1 also summarizes the VoIP systems that offer potential buddies.

4.2.4 Call
For the call, all services offered by MSN, GTalk, Yahoo, ICQ and Skype are equal.

46

Chapter 5

Related work

This chapter describes systems that offer interoperability. The need of this chapter is to see
the possibilities that are on the market right now for the interoperability of IM and VolP
systems and protocols. Based on these IM and VoIP systems (and the lack of these systems),
the following steps to design an own interoperable system can be made, which will be done
in the next chapters.

For now, three kind of interoperability applications are presented. The first sections discuss
PSGw and Uplink. These applications work as a router in between Skype and SIP, to translate
Skype into SIP and SIP into Skype.

Furthermore, GTalk-to-VoIP will be discussed. This application makes it possible to translate
GTalk to SIP. Because MSN and Yahoo also use the protocol SIP, these three VoIP systems
are interoperable.

Third, systems to make several IM and VoIP systems interoperable are discussed. The inter-
operable IM systems focus on the interoperability of IM systems and have now also started to
try to integrate VolP. The interoperable VoIP systems focus on the interoperability of VoIP
systems. Three commonly used interoperable IM systems are [22]:

e Gaim
e Miranda IM
e Trillian

These systems are not able to support all functionalities of the messengers included. Further-
more, it takes a while before new offered functionalities by the IM systems are supported.

The essence of the three interoperable IM systems are mostly the same. Different accounts
have to be filled in in these application and all buddies of these different accounts will be put
in one contact list. Trillian will be discussed in Section 5.4. The other applications are not
discussed, because the essence of the applications are the same.

Two commonly used interoperable VoIP systems are:
e Wengophone

e Gizmo

47

5.1. PSGw Chapter 5. Related work

Also these two interoperable VoIP systems are in essence the same, several accounts have to
be filled in and contact lists will be combined. Only Gizmo will be discussed in Section 5.5.

5.1 PSGw

Personal Skype to H.323/SIP gateway (PSGw) [38] is a system that allows connecting the
Skype network with H.323 and SIP networks. PSGw works as a router that should be placed
between a Skype and a H.323 or SIP network and route calls according to user-defined rules.
PSGw supports only a single concurrent connection between a Skype and a SIP/H.323 net-
work.

PSGw runs on top of Skype, which means that a Skype client should run at the same computer
as the PSGw application. At the PSGw client several user data should be filled in, like the
SIP user client the call should be forwarded to. An incoming Skype call will be handled by
PSGw instead of Skype and PSGw will forward it to the SIP client. This SIP client can run
on a different computer.

It is also possible to have a SIP to Skype call. The PSGw system forwards and converts the
SIP call to the Skype system.

An upcoming application by PSGw is the first ”Multiline Enterprise Software Skype Ex-
change” (MESSiX). MESSiX allows handling multiple Skype connections at the same com-
puter.

To have a call using SIP, a SIP phone is needed. Several (free) SIP phones can be found on
the Internet. Furthermore, a SIP address to forward the call to is needed. A free SIP address
can be received from Ekiga [54].

5.2 Uplink

The idea is the same as for PSGw, although this one needs more software to be installed
to let it work exactly the way you want. First of all, the client Uplink is needed, which is
the Skype-to-SIP converter. Second, the Virtual PBX Axon is needed, and third the SIP
softphone Express Talk. The Axon Virtual BPX will act as a SIP provider and generates a
SIP account. When a buddy calls Skype, Uplink will take the call over (Uplink is added as a
plug-in to Skype) and forwards it to the SIP softphone Express Talk. As with PSGw, Skype
has to run at the PC to let Uplink work with it.

Uplink [50] connects SIP protocol calls to the proprietary Skype phone network, but it does
not support H.323. It works in both directions.

Uplink connects both incoming and outgoing calls to the Skype network, it can be used to
make SkypeOut calls from a SIP device or SIP PBX and can receive Skypeln calls and direct
them to your SIP extension. It fully complies with the RFC3261 for SIP signaling and offers
quick and easy operation.

48

Chapter 5. Related work 5.8. GTalk-to-VolP

5.3 GTalk-to-VolP

Ruslan Zalata has implemented a GTalk to VoIP gateway. He has made an application to
convert GTalks JingleAudio to H.323 and SIP (and the other way around). The core of
their implementation is a VolIP soft-switch. It consists of a number of VoIP signal processing
stacks, like H.323, SIP (including Yahoo and MSN its "dialects”) and Jingle Audio. It also
includes media codecs, transcoders and conferencing rooms (the last are just a subtype of
transcoders).

—_————

Tl
(:; LALR,

Technology
I and procedures

—— = =

' - GTalk->PSTN
\ Finite State D PSTN->GTalk |
\ Machine < Voice mail ,
! = Voice conference

o ——

I o
i / [f:\e.m“\

i

; Ny
J," Jingle Audio SIP H.323 Conf ROOMSs i

i Stack Stack Stack & Transcoders I

i
[
k. \ TCP/IP Stack)
N
.

ValP
Gateway at

ta k. -~ Jingle Audio flow some TSP

7" VolP flow (transcoded)
Operational events
Operational commands

Figure 5.1: GTalk to VoIP technology [15]

GTalk-to-VoIP, also written as GTalk2VoIP, makes it possible to let the protocols H.323
and SIP, interact with the protocols of the VoIP systems MSN, GTalk and Yahoo. They
offer the possibility to add MSN and Yahoo contacts to the Google Talk contact list, or
GTalk and Yahoo to the MSN contact list. Users have to be added to GTalk named
someuser%hotmail.com@msn.gtalk2voip.com. Voice calls can be made to these added buddies
by pushing the call button.

Text messages sent to such contacts will not reach MSN users, though they are working on
this feature and will be available soon

49

5.4. Trillian Chapter 5. Related work

To start using the service using for instance an MSN client, a user has to add a new buddy,
the service@gtalk2voip.com buddy. This buddy will handle commands. To know which
commands, this special buddy will send a command list, as displayed in the following box:

service008@gtalk2voip.com says:
Welcome to GTalk2VoIP - Free Voice Gateway for Google Talk, MSN and Yahoo!

service008@gtalk2voip.com says:
Type ’HELP’ for more information

service008@gtalk2voip.com says:
You entered: help

service008@gtalk2voip.com says:

====== AVAILABLE COMMANDS ======

HELP - Display this message.

MYPAGE - Display URL to your personal account page.

WEBCALL - Display URL to your personal Web Call.

MSG to text - Send off-line message text to user to .

IM to text - Send Instant Message text to user to . Example: IM msn:billgates@hotmail.com Hello
Billy!

VMLIST - Display content of your voice mail box.

VMPLAY id - Play voice mail message number id .

VMDEL id - Delete voice mail message number id

VMSEND user - Send voice mail to other gtalk user .

CONF - Create conference room for you. Room cookie will be sent back.
JOIN cookie - Join someone’s else conference room using cookie

service008@gtalk2voip.com says:

COST phone - Display amount of credits charged for 1min unit while calling to phone . Example,

to figure price for calling american 800 services type: COST 1-800

CREDITS - Go buy more credits.

CALL phone [via] - Make an outgoing voice call to telephone number phone which is represented in
E.164 format. Example, to call Google type: CALL

1-650-253-0000 . You can also setup a registered service provider name in optional via parameter to
place call throu.

CALL sipuser@sipprovider.com - Make an outgoing voice call to SIP phone sipuser@sipprovider.com .
Example: CALL pbx@stalker.com .

DTMFTONES : Type in any string of digits or Asterisk or # sign while talking to send DTMF tones.

SMS phonenumber text - Send text an SMS message to phone . Example: SMS +1-234-5678901 Hello, just
testing

END

service008@gtalk2voip.com says:
Please, enter command:

service0080@gtalk2voip.com says:
Your personal account page: http://www.gtalk2voip.com/users/?auth=xxxXXXXxx

5.4 Trillian

Trillian [2] is a multiprotocol instant messenger built by Cerulean Studios. It is a fully fea-
tured, stand-alone chat client that supports AIM, ICQ, MSN, Yahoo, and IRC. It provides
functionalities that are not possible with original network clients, while supporting standard

50

Chapter 5. Related work 5.5. Gizmo Project

features such as audio chat, file transfers, group chats, chat rooms, buddy icons, multiple
simultaneous connections to the same network, server-side contact importing, typing noti-
fication, direct connection, proxy support, encrypted messaging, SMS support, and privacy
settings.

Trillian itself has no protocol included; it supports other protocols. Trillian has two versions:
a basic and a pro version. The basic version is for free, the pro function has to be paid for.
The latter offers more functionalities, like the use of plug-ins to support more protocols (and
thus the opportunity to support more VoIP systems).

Trillian connects to multiple instant messaging services without the need of running multiple
clients. Users can create multiple connections to the same service, and can also group con-
nections under separate identities to prevent confusion. All contacts are gathered under the
same contact list. [49]

There is a plug in to interact with Skype, called SkyLlian, but it needs Skype to be installed
in order to be used.

To eliminate duplicates and simplify the structure of the contact list, users of Trillian Pro
can 'bundle’ multiple contacts of the same person into one entry in the contact list.

5.5 Gizmo Project

The Gizmo Project was founded by Michael Robertson. The Gizmo Project uses open stan-
dards for call management, SIP and Jabber. It uses several proprietary codecs, like Skype.
The Gizmo Project client is proprietary/closed source software. It is run by the company
SIPphone. It offers free calls to Gizmo Project, Yahoo, GTalk, or MSN users and paid calls
to PSTN phones. It uses a peer-to-peer VoIP network.

Since the Gizmo Project is based on SIP, it can interoperate with other SIP-based networks
directly, although some data will always be routed via central SIPphone-servers, making it
less than ideal in these settings from a privacy and security perspective. This includes the
popular PBX applications Asterisk [53] and Ekiga [54], which avoid the phone system and is
thus free of charge. Gizmo uses encryption (SRTP) for Gizmo to Gizmo calls.

The text chat function of Gizmo Project utilizes the Jabber protocol. Users using Gizmo can
be reached through the Jabber protocol at username@chat.gizmoproject.com

Gizmo also offers Call-in: To call from a phone to Gizmo. However, both Call-in and Call-out
are not available in every country.

o1

Chapter 6

Requirements

In the preceding chapters, VoIP has been explained and five commonly used VolP systems
have been discussed. These VoIP systems offer both IM and VolIP functionalities. Further-
more, in Chapter 5, related work has been discussed. Many interoperability systems already
exist and provide full integration between systems for IM. Many interoperability systems
already try to provide full interoperability between VoIP systems. This latter is still not
fully covered; no existing interoperability system offers full interoperability between all VoIP
systems.

The following two chapters will provide information needed for the design of an interoperable
system for fully interoperability of the five commonly used VoIP systems as presented in
Chapter. To create a good design, it is important to take the requirements of different
stakeholders into account. This chapter focuses on the requirements to create interoperability,
which illustrates the conditions the interoperable system should fulfill.

When creating interoperability, several stakeholders have to be considered. These stakeholders
are:

e Users

e Application Providers (APs)
o Interoperability Provider

e Designers and implementers

The users are the people of flesh and blood, which control the application. The APs are the
companies creating and maintaining the VoIP systems, an example is Microsoft for MSN.
The Interoperability provider is the one which will offer the functionalities necessary for
interoperability. For instance a gateway can be used to convert and forward the messages.
The designers and implementers are the ones creating the interoperable system.

The following sections will discuss the requirements of each stakeholder. Notice that no
surveys on this topic are done. The requirements are just logical requirements considered by
the author. Furthermore, the requirements do not have the same weight of importance. In
Chapter 9 the most important requirements (and which are ignored) will be discussed. Also
Paragraph 7.6, the conclusion of the possible approaches for an interoperable system reverts
to these requirements.

93

6.1. User requirements Chapter 6. Requirements

6.1 User requirements

The user requirements focus on the needs and expectations of users, which can vary in weight
from user to user. The users have the following requirements:

e Use one VoIP client

e Continue using familiar client

e Many features in one VoIP system

e User-friendly

e Users must not notice the use of another server
e Plug-in availability

Furthermore, users want costs as low as possible, and the service quality and the speech
quality should be high. It also should be a trustful and secure application. Although the
goal to design a system for interoperability can be broad interpreted, the focus will not be on
building a new VoIP system, but on a gateway that handles the interconnection to combine
existing VoIP systems and their protocols. This means the cost, reliability, service and speech
quality requirements only have limited influence to the design. These requirements are part
of the existing VoIP systems itself. Those VolP systems will not be changed, only plug-ins
will be used to manage the desired result.

Use one VoIP client: Users want to use just one single client to make a call. They do not
want to install additional software, just use the client software of the existing VoIP system.
This requirement means that as many as possible VoIP systems should be interconnected.
Furthermore, users want to have it as easy as possible, so they just want one account and
want to contact everybody in their contact list and extend this contact list with new buddies.

Continue using familiar client: Users do not like to change the client they are currently
using and thus the client they are familiar with, because they are used to the current layout
and features. Furthermore they like to keep their contact list (buddies); with a new client
they need to build there contact list from scratch.

Many features at one VoIP system: A user would like to have a VoIP system with
all services (like messaging and calling) included. Some newly VoIP system as described in
Chapter 5 do not offer all features (yet).

User-friendly: The application should be user-friendly. It should be easy in use and the
actions they have to execute (like login) should be intuitive.

Users must not notice the use of another server: Users just want to communicate with
their buddies. They probably do not know they are connected to a server, so do not bother
them with changing the settings to connect to a server of the interoperable system (too).

Plug-in availability: The Interoperable communication system requires an interface to the
Client, in order to be able to send and receive messages between Client and Gateway.For
every VolP system to be able to communicate with the Gateway, an open or known interface
should be available. This could be, for example, specified in an API.

54

Chapter 6. Requirements 6.2. AP requirements

6.2 AP requirements

The APs all want to have the best and most used application. Some companies have chosen
for an open protocol or even an open source product. Others (like Skype) have a proprietary
protocol. The requirements of the APs are:

e No or minimal changes to their VoIP system
e Reliability
e Performance

No or minimal changes to their VoIP system: Open source VolP systems can be
changed; vendors of closed VoIP system only want to change their VoIP system if it has
enough benefit. An application like Skype probably does not want to change. Of course, it is
the question if, how and who has to change the open source VolP systems.

Reliability: If the user uses the client of the AP in combination with a server of the in-
teroperable system, this server should be as reliable as the vendor’s server, which means the
security level and the speech and quality level should be as high as they are of the APs.
Otherwise it could look like a failure of the AP, or it looks like the AP offers less quality.

Performance: If the user uses the client of the AP in combination with a server of the
interoperable system, this server should be always available and have a stable performance,
because otherwise it could look like a failure of the AP.

6.3 Interoperability Provider requirements

The interoperability provider has the following requirements:
e Scalability
e Performance
e Availability
o Reliability

Scalability: The number of users should not be limited, it should be possible to support
extra users and thus extra client instances.

Performance: If the user uses the client of the AP in combination with a server of the
interoperable system, this server should be always available and have a stable performance,
because otherwise it could look like a failure of the AP.

Availability: A VoIP system like MSN is nowadays installed on most computers, at home, at
work and at public places. The new system should be easily available, also at other computers.

Reliability: If the user uses the client of the AP in combination with a server of the in-
teroperable system, this server should be as reliable as the vendor’s server, which means the
security level and the speech and quality level should be as high as they are of the APs.
Otherwise it could look like a failure of the AP, or it looks like the AP offers less quality.

95

6.4. Designers and implementers requirements Chapter 6. Requirements

6.4 Designers and implementers requirements

The designers and implementers have the following requirements:
e Universal solution
e Few implementation work
e Easily extendable

Universal solution: The interoperable system should include at least the five most com-
monly used VoIP systems, or even more. Furthermore it should provide both IM and VoIP.

Few implementation work: Possible approaches for the interoperable system exists. Some
approaches need a lot of implementation work, like implementing a gateway in combination
with a new client (or the whole VoIP system), other approaches need less implementation
work, for instance when only a gateway has to be implemented. The less implementation
work the better.

Easily extendable: The currently used VolIP systems offer new versions and new features
once in a while, and sometimes even change their protocols. The design of the interoperable
system should have the possibility to be easily extended to support these changes. Further-
more, new VoIP systems will probably be built in the future, so the interoperable system
should also be able to be extended to support new VoIP systems.

6.5 Conclusion

This chapter informs about the requirements of the interoperable VoIP system. Summarised,
the interoperable VoIP system should use an existing client with no changes at user side, to
make it user-friendly. To interact with the existing clients at the gateway side, a plug-in is
needed (API). As many as possible VoIP systems should be integrated and also as many as
features (like IM and audio). The interoperable VoIP system should be reliable and scalable
with a stable performance. The user should not use the use of (another) server and the
implementation should be easily extendable.

This concludes that we need a solution using the existing clients; all VoIP systems with the
ability for a plug-in could be integrated. We look for a solution that supports both IM and
VoIP. The next chapter gives a five possible solutions for these requirements.

o6

Chapter 7

Design approaches

The preceding chapters provided an overview of the existing VoIP systems and the available
solutions (related work) to create interoperability between those VoIP systems. Because
no universal solution for interoperability among VolP systems exists, this chapter discusses
several possibilities for a universal solution. These possibilities are called possible design
approaches.

All these approaches will be explained one by one in the following sections. Also advantages
and disadvantages of the approaches are discussed. Finally, the chapter is concluded with the
selection of one approach. First a short overview, the approaches are:

1. Interconnected existing VolIP systems: In this approach a gateway takes care of
the interconnection between the VoIP systems, which is done at service level. The
clients of the existing VolIP systems are used without any change for the user and with
an extension at the Gateway side.

2. Changes to the existing VoIP clients: For this approach the clients of the existing
VoIP systems are changed, to let them connect to the gateway. This gateway takes
care of the interconnection; the gateway needs to understand the protocols of all VoIP
systems.

3. Self made client: For this approach, we design an own client, which will be used by
the user, while the buddy still uses an existing VoIP client. This self made client is
connected to a gateway, which takes care of the interconnection.

4. Self made peel client: For this approach, again we design an own client, which
embeds all client software components of existing VoIP systems in a single client. For
example, the MSN component of the client can now communicate with the MSN buddy,
the GTalk component of the client with the GTalk buddy, etcetera.

5. Web client: This approach is almost equal to the third approach. Instead of a self
made client installed at the computer, the client is web based and online reachable. The
gateway takes care of the interconnection.

Approach one, two, three and five include a gateway that act as an interpreter that (a)
translates the protocol messages from one protocol to another, or (b) translates the services
offered at higher level. The difference between (a) and (b) lies in the behaviour of the gateway,
which is influenced by the location of the gateway.

o7

7.1. Approach 1: Interconnected existing VolP systems Chapter 7. Design approaches

7.1 Approach 1: Interconnected existing VolIP systems

End user A AP A Interoperability Provider AP B End user B

Control /
Messaging /
Forwarding

Control /
Messaging /
Forwarding

Input /
Qutput

ntrol /
gsaging

Audio Audio

Figure 7.1: Overview of approach 1

Figure 7.1 shows the overview of the first approach. The figure shows in the middle the
Gateway. On the left side of the Gateway, the figure shows VolP system L, which consists of
Client A, Server A and Proxy B (which can be seen as another Client at this moment). On
the right side of the Gateway, the figure shows VolIP system R, which consists of Client B,
Server B and Proxy A (which can also be seen as another Client at this moment). User A
has an account at VoIP system L and User B has an account at VolP system R.

The Interoperability is realized by the Proxies and the Gateway, as shown in Figure 7.1. The
proxy element represent clients from a VoIP System R in a VoIP system L, these entities
are responsible for the syntactic and (potentially semantic) translation of VoIP control plane
messages and VolP user data from between VolP system R and an ”abstract VoIP system”.
The responsibility of the Gateway is to properly route control plane messages and user plane
data among Proxies. The Gateway is an intermediary between calls from users of VolIP system
L and VoIP system R. The Gateway tunnels the control, messaging and audio from one Proxy
to the other, to let the User think he is directly connected to his buddy (without the Proxies),
but in the system, the Client is actually connected to the representation of the Client of the
buddy, the Proxy.

The Proxies are extended clients in a VolIP system. This means, Proxy B is a extended client
in VoIP system L, almost like Client A. Without the interconnection, Proxy B can also be a
buddy of Client A. Using this approach for interconnection, the two proxies tunnel the data
(control, messaging and audio) to create a connection between Client A and Client B. In this
way, for the APs the Proxy and Client will look like two normal Clients connected to each
other, and for users it looks like the users are directly connected to each other.

Somewhat more specific, the proxies are representations in VolP system R of clients in VolP
system L (and vice versa), i.e. these are not just clients, proxies are representations of clients
in another VoIP technology.

As can be seen in the figure, the Client is always connected to its own server and can have
peer-to-peer connections with the Proxy. Furthermore, the Client can have peer-to-peer
connections with other Clients.

o8

Chapter 7. Design approaches 7.1. Approach 1: Interconnected existing VolP systems

Initially, the user can not yet communicate with buddies in another VolIP system. Further-
more, no proxies exist for this client yet. To initiate a relationship with a user from another
VoIP system, the user first needs to add a representation of the Gateway to his contact list.
This representation provides the possibility to communicate with the Gateway and is called
from now on the Gateway Client. The Gateway Client is not shown in Figure 7.1. The
Gateway Client is the buddy client of the user client in the same network. In Figure 7.1
this means the Gateway Client is situated where the Proxy is. After adding this Gateway
Client as a buddy, the user can send text messages to the Gateway Client. These messages
should contain commands, to command the Gateway what to do. To know what commands
are supported by the Gateway, the Gateway Client could send a message with a list of the
supported commands to the client, so the user can read it.

Let us assume User A wants to add User B to its contact list, which means User A and User
B become buddies. We assume that User B is online and ready to receive messages from
another user. To initiate this relationship, the following steps take place to add a buddy:

1. User A uses Client A to send a message to the Gateway Client, containing the ID of
Client B.

2. The Gateway creates an account at VoIP system R, using a unique identifier by com-
bining the user ID of User A and an ID for VoIP system R.

3. The Gateway starts an instance of the client process for VoIP system R. In fact, the
client using this new account is called Proxy A.

4. The Gateway makes Proxy A send a buddy search request of Client B
5. The VoIP system Server B responds with the Client B data

6. The Gateway creates an account at VolP system L, using a unique identifier by com-
bining the user ID of User B and an ID for VoIP system L.

7. The Gateway starts an instance of the client process for VoIP system L. In fact, the
client using this new account is called Proxy B.

8. The Gateway Client sends a message to Client A, containing the unique ID of Proxy B,
which is read by User A.

9. User A responds to the message by performing a buddy search, Client A sends the
buddy search request to its system, searching for Proxy B.

10. Client A receives the message of the Gateway Client and adds the ID of Proxy B to the
contact list.

11. The Gateway knows how to tunnel data from Proxy B to Proxy A, and User B seems
like a buddy of User A.

Two Proxies are created at this moment (and the Gateway Client still exists, which makes it
three Proxies). After performing the buddy search of Proxy B by Client A, Client A is also
added as a buddy to the contact list of Proxy B. At VoIP system R the same happens; after
searching for Client B by Proxy A, Proxy A is also added as a buddy to the contact list of
Client B.

99

7.1. Approach 1: Interconnected existing VolP systems Chapter 7. Design approaches

The above mentioned steps are executed only once, i.e., when User A and User B become
"buddies”. When User A or User B goes online by starting the client, this will be noted by
the Gateway and the Gateway starts the corresponding proxies Proxy A or Proxy B. As a
consequence, the status (online, away from computer, etcetera) of Proxy B is mirrored by
the status of Client A and vise versa. Similarly, the status of Proxy A is mirrored by Client
B and vise versa. Now, the configuration is ready to start communication sessions. Let us
assume again that User A takes the initiative, hence User A is the caller, and User B is the
callee. The following steps take place to setup the call:

1. Client A knows the ID of the Proxy B. Client A uses this ID to check the contact list
in order to see whether Proxy B (and thus Client B) is online. Let us assume Client B
is online

2. User A initiates the communication according to the mechanisms of VoIP system L.
Proxy B, recognized the call from Client A.

3. Proxy B signals the Gateway to setup a call. Proxy B is the unique proxy of Client B
hence, the Gateway knows that this concerns a call from Client A at VoIP system L to
Client B at VoIP system B.

4. The Gateway signals Proxy A to setup a call at VoIP system R. Proxy A is the unique
proxy of Client A hence, the proxy knows this concerns a call to Client B at VoIP system
R.

5. Proxy A uses the mechanisms of VoIP system R to setup a call to Client B at VoIP
system R.

6. Client B knows the ID of Proxy A, recognizes the ID and User B accepts the call using
the mechanisms of VoIP system R.

7. Proxy A will be informed by this acceptance and signals the Gateway about the accep-
tance of the call

8. Proxy B is now allowed to accepts the call between Client A and Proxy B using the
mechanisms of VolIP system L.

9. Audio sent from Client A to Proxy B is translated and tunneled by the Gateway to
Proxy A, which sends the audio to Client B, using the mechanisms of VoIP system R.

10. Audio sent from Client B to Proxy A is translated and tunneled by the Gateway to
Proxy B, which sends the audio to Client A, using the mechanisms of VoIP system L.

The translation and tunneling of the audio needs more explanation. Client A reads the signal
of a microphone and detects the speech of User A (the audio signal) and creates an audio
stream according to the standards of VoIP system L. The audio stream is transferred to
Proxy B using the mechanisms of VoIP system L. Proxy B receives the audio stream and
transforms the audio stream to an audio signal according to the standards of VoIP system L.
The Gateway feeds this audio signal into Proxy A. Proxy A creates an audio stream according
to the standards of VoIP system R. The audio stream is transferred to Client B using the
mechanisms of VoIP system R. Client B receives the stream and transforms the audio stream
into an audio signal according to the standards of VoIP system R. The audio signal is fed to

60

Chapter 7. Design approaches 7.2. Approach 2: Changes to the existing VolP clients

loudspeakers and is finally heard by User B. Similarly, the speech of User B is transferred to
User A.

Using this approach, the Proxies should alway be in the same state (online/offline) as the
accompanying clients. Once the ID’s of the proxies are entered in the contact list, the com-
munication between users is transparent, i.e., the users need not be aware of the fact that
they are using different systems.

This approach has some advantages and disadvantages. To identify these (dis-)advantages
the requirements formulated in Chapter 6 are considered.

Advantages:
e The user can use one client
e The user can use existing VoIP systems and thus the client the user is familiar with
e All features (messaging, VoIP, etcetera) are included
e [t is user-friendly after the buddy is added to the contact list
e The user does not notice the Gateway after the buddy is added to the contact list

e The APs do not have to make any changes to their VoIP systems, they only have to
provide an API

e Network problems (like NAT issues, firewalls, etcetera) are handled by the existing VoIP
systems and their protocols

e GTalk and MSN have already reached interoperability with a same kind of approach
[15]
Disadvantages:

e The user notices the Gateway during the buddy search, for exact to be, the user needs
to know how to connect to the Gateway Client.

e The commands send to the Gateway Client (like buddy search in another network) is
done by sending text messages. This can be difficult to understand by the user.

e Multiple instances of the client should be possible to have, this rises the question whether
it is scalable enough.

7.2 Approach 2: Changes to the existing VolIP clients

Figure 7.2 shows the overview of the second approach. The figure shows in the middle the
Gateway. At the right side is VoIP system R which consists of Proxy A, Server B and Client
B. The right side of the figure handles as described in approach 1. The left side of the figure
shows VoIP system L and consists of Client A and Server A. As can be seen, there is no Proxy

61

7.2. Approach 2: Changes to the existing VolP clients Chapter 7. Design approaches

AP A End user A Interoperability Provider AP B End user B

Contfol / Co
Cantrol aging/ Server Mess:
B

Figure 7.2: Overview of approach 2

Control /
Messaging /
Audio

G
trol / ’
aging /
dio

B in this approach. Actually, the Gateway acts as Proxy B. User A has an account at VoIP
system L and User B has an account at VoIP system R.

The Interoperability is realized by the Proxy and the Gateway, as shown in Figure 7.2. The
proxy element represent clients from a VoIP System L in a VoIP system R, these entities
are responsible for the syntactic and (potentially semantic) translation of VoIP control plane
messages and VolP user data from between VolP system R and an ”abstract VoIP system”.
In the first approach, the responsibility of the Gateway was to properly route control plane
messages and user plane data among Proxies. However, in this approach is only one proxy,
which means the Gateway has to act as a proxy as well. This makes the responsibility of the
Gateway to properly route control plane messages and user plane data from the proxy and
to the proxy. Furthermore, the Gateway needs to understand every ’language’ of the VoIP
systems connected to the Gateway. In other words, if Skype is connected to the Gateway, the
Gateway needs to understand the (encrypted) Skype messages and Skype data and if GTalk
is connected to the Gateway, the Gateway needs to understand the XMPP data.

For this approach, Client A has to login to Server A, its own server, and when the authen-
tication is confirmed, the Client logs in to another server, the Gateway. Now User A can
communicate with other users in his network by using his own server. To communicate with
users of another VolIP system, the Gateway is used.

The Gateway is connected to Client A. To understand the messages send by and to Client A,
the Gateway needs to understand the protocol of Client A. This means the Gateway needs
to understand the protocols of all VoIP systems that could be connected to the Gateway.
The Gateway translates the incoming protocol messages in outgoing protocol messages; the
Gateway is situated at protocol level.

Initially, the user can not yet communicate with buddies in another VoIP system. Further-
more, no proxy exist for this client yet. To initiate a relationship with a user from another
VoIP system, the client (let us assume Client A) first needs to login to the Gateway. After this
authentication is successful, the Gateway will create a Proxy A at VoIP system R. Again, the
communication between the Gateway and VoIP system R is equal to the situation explained
in approach 1.

Notice that the User has nothing to do with the login to the Gateway. It is the Client that
initiates and finishes the login to the Gateway. The client should know how and what to do,

62

Chapter 7. Design approaches 7.2. Approach 2: Changes to the existing VolP clients

so the client needs an extension to create this possibility.

Let us assume User A initiates a relationship with User B, which means User A and User
B become buddies. We assume that User B is online and ready to receive messages from
another user. To initiate this relationship, the following steps take place to add a buddy:

1. Client A logs in to the Gateway

2. The Gateway creates an account at VoIP system R, using a unique identifier by com-
bining the user ID of User A and an ID for VoIP system R.

3. The Gateway starts an instance of the client process for VoIP system R. In fact, the
client using this new account is called Proxy A.

4. The Gateway makes Proxy A send a buddy search request for Client B
5. The VoIP system server B responds with the Client B data
6. The Gateway translates and forwards the Client B data to Client A

7. Client A receives the message of the Gateway and adds the ID of Client B to the contact
list.

Already some difficulties arise: The Gateway is not able to understand all VoIP system
protocols. Furthermore, User A also wants to communicate with other buddies, in the same
VoIP system. The client should know which data should be sent to the VoIP system server,
and which data should be sent to the Gateway. Furthermore, two contact lists exist; the
contact list of Client A created by its own Server A and the contact list of Client A created
by the Gateway (with buddies of other VoIP systems). Let us assume for now this is all
taken care of. After adding the buddy to the contact list, the configuration is ready to start
communication sessions. Let us assume again that User A takes the initiative, hence User A
is the caller, and User B is the callee. The following steps take place to setup the call:

1. Client A knows the ID of the Client B. Client A uses this ID to check the contact list
in order to see whether Client B is online. Let us assume Client B is online

2. User A initiates the communication according to the mechanisms of VoIP system L,
however the Gateway is used as the server in stead of Server A

3. The Gateway signals Proxy A to setup a call at VoIP system R. Proxy A is the unique
proxy of Client A hence, the proxy knows this concerns a call to Client B at VoIP system
R

4. Proxy A uses the mechanisms of VoIP system R to setup a call to Client B at VolP
system R

5. Client B knows the ID of Proxy A, recognizes the ID and User B accepts the call using
the mechanisms of VoIP system R

6. Proxy A will be informed by this acceptance and signals the Gateway about the accep-
tance of the call

63

7.8. Approach 3: Self made client Chapter 7. Design approaches

7. The Gateway translates and forwards the acceptance to Client A

8. Audio sent from Client A to the Gateway is translated and tunneled by the Gateway to
Proxy A, which sends the audio to Client B, using the mechanisms of VoIP system R.

9. Audio sent from Client B to Proxy A is translated and tunneled by the Gateway to
Client A, using the mechanisms of VoIP system L.

The translation and tunneling of the audio is done in the way of the first approach. Instead
of using Proxy B, the Gateway is used, which means the audio stream is transferred to the
Gateway. The Gateway receives the audio stream and transforms the audio stream to an
audio signal. The Gateway feeds this audio signal into Proxy A. Proxy A creates an audio
stream according to the standards of VoIP system R. The audio stream is transferred to Client
B using the mechanisms of VoIP system R. Client B receives the stream and transforms the
audio stream into an audio signal according to the standards of VoIP system R. The audio
signal is fed to loudspeakers and is finally heard by User B. Similarly, the speech of User B
is transferred to User A. The moment Proxy A receives the audio stream and transforms it
to an audio signal, the Gateway transforms this signal into an audio stream according to the
standards of VoIP system L.

This approach has some advantages and disadvantages. To identify these (dis-)advantages
the requirements formulated in Chapter 6 are considered.

Advantages:
e The user can use one client
e The user can use existing VoIP systems and thus the client the user is familiar with
e All features (messaging, VoIP, etcetera) are included

e [t is user-friendly, the user does not have to send text commands, he can use the buttons
at the client

e The user does not notice the Gateway

e It is better scalable then approach 1; less proxies are needed

Disadvantages:

e The client of the VoIP systems have to be changed and the user has to install new
software on his computer. If the APs change the VoIP system, it will not be difficult
for the user to install the client. However, if somebody else has to do it, issues like how
to distribute the changed client to make users use it and how to implement it will arise.

e Network problems (like NAT issues, firewalls, etcetera) between Client A and the Gate-
way need to be taken care of by the implementers of the Gateway.

e It is not for all data streams (like the proprietary protocol Skype) possible to convert

64

Chapter 7. Design approaches 7.8. Approach 3: Self made client

End user A Interoperability Provider AP B End user B

Control / Control /

Messaging / Messaging
Aldio Audio

Audio

Figure 7.3: Overview of approach 3

7.3 Approach 3: Self made client

Figure 7.3 shows the overview of the third approach. The figure shows on the left side of the
middle the Gateway. On the left side of the Gateway, the figure does not show a VoIP system
L, it only shows Client A (and its User A). On the right side of the Gateway, the figure shows
VoIP system R, which consists of Client B, Server B and Proxy A. The right side of the figure
handles as described in approach 1. User A has an account for Client A and User B has an
account at VoIP system R.

Client A is not an existing client, as used in approach 1 and 2. Client A is a self made client,
with a self chosen protocol. Client A is able to communicate with other clients using its server
(the Gateway). Client A logs directly in to the Gateway. Other servers are not needed for
this Client. If buddies are also using the self made client, it is possible to communicate like
existing VoIP systems do; Client A sends a message to the Gateway), which forwards the
message to Client A2 and vise versa.

If the buddy is in another VoIP system (let us say VoIP system R), Proxy A in VoIP system
R tunnels messages to the Gateway. When Client A adds Client B as a buddy, User B will
not notice the use of the Gateway, if Client B wants to add Client A to his contact list, it
needs to add the Gateway Client to his contact list first, as described in the first approach.

Initially, the user can not yet communicate with buddies in another VolIP system. Further-
more, no proxy exist for this client yet. To initiate a relationship with a user from another
VoIP system, the client (let us assume Client A) first needs to login to the Gateway. After this
authentication is successful, the Gateway will create a Proxy A at VoIP system R. Again, the
communication between the Gateway and VoIP system R is equal to the situation explained
in approach 1.

Notice that the User initiates the login to the Gateway, it is the 'normal’ login procedure of
the Client to its server.

Let us assume User A initiates a relationship with User B, which means User A and User
B become buddies. We assume that User B is online and ready to receive messages from
another user. To initiate this relationship, the following steps take place to add a buddy:

65

7.8. Approach 3: Self made client Chapter 7. Design approaches

1. Client A logs in to the Gateway

2. The Gateway creates an account at VoIP system R, using a unique identifier by com-
bining the user ID of User A and an ID for VoIP system R.

3. The Gateway starts an instance of the client process for VoIP system R. In fact, the
client using this new account is called Proxy A.

4. The Gateway makes Proxy A send a buddy search request of Client B
5. The VoIP system server B responds with the Client B data
6. The Gateway translates and forwards the Client B data to Client A

7. Client A receives the message of the Gateway and adds the ID of Proxy B to the contact
list

As can be seen, the buddy search seems equal to approach 2. The difference is at the end;
when the Gateway informs Client A about the buddy data (sends the contact list). First,
in approach 2 there are two contact lists (of the Server and of the Gateway) and for this
approach only one contact list exist (the Gateway is the Server). Second, the Gateway has
to translate at protocol level for the communication between Client A and the Gateway. For
approach 2 this is rather difficult, because of the closed protocols like Skype. In this approach,
the protocol used is a self chosen protocol and thus the Gateway is able to understand the
protocol.

After adding the buddy to the contact list, the configuration is ready to start communication
sessions. Let us assume again that User A takes the initiative, hence User A is the caller, and
User B is the callee. The following steps take place to setup the call:

1. Client A knows the ID of the Proxy B. Client A uses this ID to check the contact list
in order to see whether Client B is online. Let us assume Client B is online

2. User A initiates the communication to the Gateway

3. The Gateway signals Proxy A to setup a call at VoIP system R. Proxy A is the unique
proxy of Client A hence, the proxy knows this concerns a call to Client B at VoIP system
R

4. Proxy A uses the mechanisms of VoIP system R to setup a call to Client B at VoIP
system R

5. Client B knows the ID of Proxy A, recognizes the ID and User B accepts the call using
the mechanisms of VoIP system R

6. Proxy A will be informed by this acceptance and signals the Gateway about the accep-
tance of the call

7. The Gateway translates and forwards the acceptance to Client A

8. Audio sent from Client A to the Gateway is translated and tunneled by the Gateway to
Proxy A, which sends the audio to Client B, using the mechanisms of VoIP system R

66

Chapter 7. Design approaches 7.4. Approach 4: Self made peel client

9. Audio sent from Client B to Proxy A is translated and tunneled by the Gateway to
Client A

Again, the call steps looks similar to the call steps of approach 2. The main difference is that
the Gateway uses a self chosen protocol for the communication between the Gateway and
Client A.

This approach has some advantages and disadvantages. To identify these (dis-)advantages
the requirements formulated in Chapter 6 are considered.

Advantages:
e The user can use one client
e All features (messaging, VoIP, etcetera) are included
e It is user-friendly, because the layout can be self designed (plug-ins are not necessary)
e The user does not notice the Gateway

e The APs do not have to make any changes to their VoIP systems, they only have to
provide an APT (for Proxy A)

e The VoIP system is easy to extend and also a version for mobile phones and PDAs can
be made

Disadvantages:
e Users have to get used to a new client

e Network problems (like NAT issues, firewalls, etcetera) should be taken care of by the
implementers of the Gateway

e It is not widely adopted and available
e It is hard to compete with the existing well-known VoIP systems

e It needs a lot of research and implementation to build a good VoIP system, considering
layout issues and reliability and quality of the gateway and the connection between the
gateway and the client

7.4 Approach 4: Self made peel client

Figure 7.4 shows the fourth approach and shows on the left side Client A including a converter,
in the middle a Server and on the right side Client B.

This approach can be seen as follows: The user installs the Clients of all VoIP systems it
wants to use (and achieves an account for every VoIP system it wants to use). Now it can
use the Client of MSN to communicate with an User of the MSN system, the GTalk Client
to communicate with an User of the GTalk system, etcetera.

In stead of installing the clients of all VoIP systems, just one self made peel Client can be
installed, which is Client A in Figure 7.4. To use all the VoIP systems, accounts for the VoIP

67

7.4. Approach j: Self made peel client Chapter 7. Design approaches

End user A AP B End user B

Input / Input /
output output

. Control|/ Control /
Chlent A Messaging/ Server \Messaging
nc
converter B
Audio

Figure 7.4: Overview of approach 4

systems the user wants to use have to be activated at this Client. Now the MSN component of
Client A is used to communicate with the buddy using a MSN Client, the GTalk component
to communicate with a buddy using a GTalk Client, etcetera. An example of such a system
is Trillian [2]. Only this new self made peel Client has to be used, other Clients do not have
to be installed on the computer.

Let us assume User A initiates a relationship with User B, which means User A and User
B become buddies. We assume that User B is online and ready to receive messages from
another user. To initiate this relationship, the following steps take place to add a buddy:

1. User A logs in. This means Client A uses, for example, its MSN account to log in to
the MSN Server, its GTalk account to log in to the GTalk Server, and etcetera

2. User A uses Client A to send a message to the Gateway Client, containing the ID of
Client B

3. Client A sends a buddy search request using the same kind of account as the buddy is,
e.g. it uses its MSN account to search for a MSN buddy, and etcetera

4. Client A receives the message of the Server and adds the ID of Client B to the contact
list.

The user will see all of its buddies in one contact list, so the different contact lists of the
different VoIP systems are combined. The communication with a buddy is done directly by
the protocol of the AP (which can differ from buddy to buddy). To display the data the way
we want in stead of the way the existing Clients do, a converter (which is included in the
client) should interpret the incoming data. The APIs of the several VoIP systems should be
used to be able to interpret this data and respond to it.

Now, the configuration is ready to start communication sessions. Let us assume again that
User A takes the initiative, hence User A is the caller, and User B is the callee. The following
steps take place to setup the call:

68

Chapter 7. Design approaches 7.5. Approach 5: Web client

. Client A knows the ID of the Client B. Client A uses this ID to check the contact list

in order to see whether Client B is online. Let us assume Client B is online

. User A initiates the communication according to the mechanisms of the VoIP system

Client B knows the ID of Client A, recognizes the ID and User B accepts the call using
the mechanisms of the VoIP system

. Client A will be informed by this acceptance

Audio sent from Client A to Client B could be sent over a peer-to-peer connection
between Client A and Client B and vise versa

Notice that both the buddy search as the call steps are simply done according to the mecha-
nisms of the VoIP system, e.g. according to the MSN system in case of a MSN buddy, GTalk
system in case of a GTalk buddy, and etcetera.

This approach has some advantages and disadvantages. To identify these (dis-)advantages
the requirements formulated in Chapter 6 are considered.

Advantages:

The user can use one client
All features (messaging, VoIP, etcetera) are included

It is user-friendly, only setting up is time consuming, because all accounts should be
filled in by the user, but this only have to be done once

The user does not notice the Gateway after the buddy is added to the contact list

The APs do not have to make any changes to their VoIP systems, they only have to
provide an API

Network problems (like NAT issues, firewalls, etcetera) are handled by the existing VoIP
systems and their protocols

One client logs in to all servers belonging to the user accounts
It is as scalable as the existing VolIP systems
It is as secure and trustful as existing VolIP systems

This solution is already available for IM (Trillian [2]) and partly for VoIP (Gizmo [55],
ete).

Disadvantages:

Users have to get used to a new client

A user needs an account for every VoIP system it wants to use and have to fill them all
in

69

7.5. Approach 5: Web client Chapter 7. Design approaches

End user A Interoperability Provider AP B End user B

output

Input / @

Control / Control /
essaging / Messaging
Audio Audio

Audio

Figure 7.5: Overview of approach 5

7.5 Approach 5: Web client

Figure 7.5 is almost equal to Figure 7.3. The difference is that Client A is situated at the
Interoperability Provider for this fifth approach, in stead of at the End User A. The self made
client, Client A, is a web based client.

For this approach a web client is used. The user can communicate to his buddies by this web
Client. The web Client is directly connected to the Gateway. The user has to login to the
Gateway; no other servers will be used by this Client. Notice that the buddy uses an existing
client of an existing VoIP system.

The user visits a website where the web Client will be displayed. After login to the Gateway,
the Client can communicate with buddies. The Gateway has to convert messages to and from
Proxy A. The Proxy handles as the Proxy described in approach 3. Also the buddy search
and call steps are equal to the steps in approach 3.

This approach has some advantages and disadvantages. To identify these (dis-)advantages
the requirements formulated in Chapter 6 are considered.

Advantages:
e The user can use one client
e All features (messaging, VoIP, etcetera) are included
e It is user-friendly, because the layout can be self designed (plug-ins are not necessary)
e The user does not notice the Gateway

e The APs do not have to make any changes to their VoIP systems, they only have to
provide an API (for Proxy A)

e The VoIP system is easy to extend and also a version for mobile phones and PDAs can
be made

o [t is widely available

Disadvantages:

70

Chapter 7. Design approaches 7.6. Conclusion

e Users have to get used to a new client

e Network problems (like NAT issues, firewalls, etcetera) should be taken care of by the
implementers of the Gateway

e It is not widely adopted and available
e [t is hard to compete with the existing well-known VoIP systems

e It needs a lot of research and implementation to build a good VoIP system, considering
layout issues and reliability and quality of the gateway and the connection between the
gateway and the client

e Because the client is on the Interoperability Provider side, the connection to the client
can be slow

7.6 Conclusion

Approach 2 is technically not possible, because some VoIP systems have proprietary proto-
cols, which makes the data streams unreadable. Furthermore most of the data streams are
encrypted. This approach will be discarded.

Approach 4 is technically possible and is already partly done in commercial projects. VoIP
is not completely covered by those projects yet, but people are working on it. This makes it
less interesting for this master thesis to continue researching this subject.

Approach 3 and 5 are almost equal, because they consist of a self-made client and a gateway.
For the user this approach is most user-friendly, because all functionalities can be integrated
in one client. The focus for this thesis is on the gateway and not on the client, designing
a client is too much work for this thesis. If we would focus on the client, also aspects like
security between client / server, codecs, protocols and etcetera should be complied with.

Approach 1 focuses on the gateway with two Proxies and can be extended in the future by
approach 3 or 5. For now this is the best choice to study further, because it focuses on how
the different protocols can interact, based on events.

To refer to the requirements discussed in Chapter 6, approach 1 seems to obey most of these
requirements. With approach 1, the user can continue using its familiar application and
probably all features can be covered (in the future). It will use the protocols of the existing
applications, so reliability and security issues are of limited influence.

Unfortunately there are two worrisome issues for approach one, (i) the text-based commands
sent to the gateway; it is not sure if the users will understand it, and (ii) for every user and
every buddy a Proxy has to be set up. If many people start using this solution, it is not clear
whether it is scalable.

71

Chapter 8

Design of the Gateway

In Chapter 7, the Interconnected existing VoIP systems approach has been chosen as the
design approach for this chapter. For this approach the clients of the existing VoIP systems
are used. A Gateway takes care of the interconnection between these VoIP systems. This
chapter explains the approach in more detail and describes the design of the Gateway and
the proxies.

First we give a short overview and the functional requirements for the Interoperable VoIP
Gateway and afterwards the structure of the design. Furthermore we discuss the behaviour
of the Gateway and the proxies. The behaviour is specified with sequence diagrams and are
modelled based on the service primitives and elements as presented in Chapter 4. Finally we
give a discussion about encountered problems and this chapter is ended with a conclusion.

8.1 Functional requirements

This section formulates the functional requirements for the Interoperable VoIP Gateway.
These requirements define how the features of an interoperable VoIP Gateway are initiated,
handled and acknowledged.

The functional requirements define the main characteristics and functionalities of the Inter-
operable VoIP Gateway. Those characteristics are defined in Paragraph 3.1.1 and are the
login, buddy search, messaging and call. The call can be divided into call setup (which is
subdivided into initiation and acknowledgment), call teardown and call modification.

Login
Requirement: The Interoperable VoIP Gateway requires users to login to their own server.

The user should login to its own server(s). Only if this is valid, the Proxies can be buddies
and thus only then the Gateway can be used.

Buddy search
Requirement: The Interoperable VoIP Gateway must provide the possibility for users to search
for buddies in another VoIP system.

To extend the current contact list and be able to communicate with users from other VoIP
systems, it should be possible to search for users in the other VoIP system. The Gateway
must therefore be able to forward the search requests into the other VolIP system.

73

8.2. Structure Chapter 8. Design of the Gateway

Messaging
Requirement: The Gateway in combination with the Proxies should be able to forward mes-
sages from one VoIP system to the other VolP system.

The Proxies should be able to receive messages sent by a user. To tunnel those messages to
the other VoIP system, the Gateway should know the final destination, in order to send the
messages to the correct destination.

Call initiation
Requirement: The Interoperable VoIP Gateway requires users to initiate the call

The user is always the one who will initiate the communication. This applies also for login,
buddy search and messaging. The Gateway (and the Proxies)will never initiate any of these
processes, it just responds to the events.

Call acknowledgment
Requirement: The Interoperable VoIP Gateway requires users to acknowledge an incoming
call.

A user should acknowledge the Gateway about the acceptance of the call. Again the Gateway
is not allowed to accept a call by itself, the user should do this. The Gateway is allowed to
accept the call after it is triggered by an event of the user.

Call termination
Requirement: The Interoperable VoIP Gateway requires users to terminate the call.

A wuser should terminate the call, which is noticed by the Gateway. Again the Gateway is
not allowed to terminate a call by itself, the user should do this. The Gateway is allowed
to terminate the call between the Gateway and the buddy Client, after it is triggered by an
event of the user.

8.2 Structure

This section describes the detailed structure of the design.

Interoperable VoIP Gateway

Figure 8.1 shows the architecture of the Interoperable VoIP Gateway. It shows two end users,
two VoIP systems and the Gateway. Each VoIP system is subdivided into two clients, a server
and the underlying layer, for the connection between the clients and server. Furthermore,
the figure shows the caller and the callee. The User needs at least a little knowledge about
the Gateway. First of all, the user needs to include a Gateway Client to its contact list. The
Gateway Client is a Client in the VoIP system of the User Client and is the interface to the
Interoperable VoIP Gateway. The Gateway Client is able to receive text commands, which
makes it possible for the user to command the Gateway. The Gateway Client is not shown
in Figure 8.1.

74

Chapter 8. Design of the Gateway 8.2. Structure

User A User B

[r S Gateway Ty

Interconnection

Pl

o P ——2 0

Client A Server A Server B Client B

ULL VolIP system A ULL VolIP system B

VolP system A

VolP system B

Interoperable VolP Gateway

Figure 8.1: Architecture of the Interoperable VoIP Gateway

The Proxies and the Gateway are situated at the Interoperability Server. The Gateway
consists of plug-ins (the plug-ins use the API of the VoIP system, see Section 8.4.2) for the
Clients and Interconnection.

Notice that VolIP system A and VoIP system B are the VoIP systems MSN, GTalk, Yahoo,
ICQ or Skype and do not have to change their architecture or functionalities. Only at the
Gateway, the two Clients have a plug-in (the combination Client and Plug-in is the Proxy) to
handle the incoming data (seen from the ULL) and outgoing data (seen from the Gateway),
this will be explained in more detail in Section 8.4.2.

Proxies and Gateway

Proxy X

Plug-in X

N
T

Client X

Figure 8.2: Proxy

The Proxies are the combination of the VoIP system Client and the plug-in to this Client.
Figure 8.2 shows the Proxy divided in the Client and Plug-in.

Figure 8.3 shows the Proxy (the Client and Plug-in) and the Gateway (the Plug-in and
interconnection). The figure also shows two numbers, number 1 and number 2, to show the

75

8.2. Structure Chapter 8. Design of the Gateway

Gateway
a N
Plug-in X 2 Interconnection 2 Plug-in' Y
Proxy X 1 1 Proxy Y
Client X Client Y

Figure 8.3: Proxy and Gateway

connections between the Client and Plug-in and the Plug-in and Interconnection. When the
data from the Server or buddy Client is fed to the Client, the plug-in translates this data to
the Gateway language using the API of the VolIP system. This means that API functions are
used at number 1 in the figure to get this data. Inside the Plug-in, the data is translated into
the Gateway language. Inside the Gateway (remember the Gateway consists of the plug-ins
and the Interconnection), the communication is done with this Gateway language (number 2
in the figure).

Interconnection

The Interconnection is responsible to handle the incoming events and make sure the correct
outgoing events are triggered. The following situations can occur:

1. Message forwarding: The text message is translated to the Gateway language and
just forwarded from one plug-in to the other plug-in

2. Buddy search When the user of a VoIP system wants to search for a buddy in
another VoIP system, it has to command the Gateway to perform this search. This is
done by sending a text message to the Gateway Client. When this message arrives at
the Gateway, the Gateway starts a buddy search in the other VoIP system. When the
searched buddy is found, the Gateway sends the buddy information to the originating
user. Furthermore, it sets up a new Proxy, which represents the Client of the buddy.

3. Call setup and tear down handling: When a user starts a call, this is noticed at
the Gateway. The Gateway starts a call at the other VoIP system to the desired buddy
Client. If the Gateway receives an accept of this buddy, it will accept the originating
call request of the user. Now the call is setup. Furthermore, if the user closes the call,
the Gateway handles it too.

Also audio has to be connected between Proxy A and Proxy B. This is done differently then
the three items just discussed. The audio forwarding is handled by a so called Virtual Audio
Cable, which has the end points at the number 1s of Figure 8.3

1. Audio handling: When the call is setup, there is a connection between Client A and
Proxy B, and between Client B and Proxy A. The Gateway forwards the audio between
the two Proxies, i.e. Proxy A and Proxy B. This is done by connecting the audio output
of Client X (see Figure 8.3) to the audio input of Client Y and vice versa.

76

Chapter 8. Design of the Gateway 8.3. Behaviour of the Interoperable VoIP Gateway

8.3 Behaviour of the Interoperable VoIP Gateway

This section explains the behaviour of the Interoperable VoIP Gateway. First the term ’event’
is explained by an example. When a user starts a call (with the Client to the Proxy), the
plug-in notices the request for a call. This event is handled by the Gateway by sending a
request for call to the other user (via the other Proxy to the other Client). If the call is
accepted, the Gateway notices the "accept” event and is allowed to accept the originating
call request. This example shows that the Gateway responds to the incoming events to the
plug-ins of the Proxies and it triggers new events on the other plug-ins of the Proxies.

User B
o

Client B

Client A

Interconnection

Server B

7 8 > 9
ULL VoIP system B

Interoperable VolP system

Proxy B

43

ULL VoIP system A

VoIP system A

Figure 8.4: SAP numbering

Next we explain the behaviour of the Gateway per service element. The interactions are illus-
trated with sequence diagrams. These sequence diagrams use Service Access Points (SAPs),
which numbers are equal to the SAPs in figure 8.4. The sequence diagrams are based on the
information gathered in Chapter 3 and 4 and Appendix B.

8.3.1 Login

For the login, the Gateway is not used. When the user logs in, the client logs in to its own
server, situated at the VolP system.

8.3.2 Buddy search

Figure 8.5 shows the minimum interactions for a buddy search in another VoIP systems. To
search a buddy in another VoIP system, the user opens the Gateway buddy screen, types a
message and sends the message to the Gateway client. This message contains the command
to search for a buddy, the buddy name the user is looking for and the VoIP system where the
buddy can be found.

When the Gateway Client receives the message with the buddy search command, it first
creates a representation of Client A, the Proxy A. Afterwards, it enters the buddy name
to search for a buddy and the Proxy receives an extended contact list, with this new buddy
included. The Gateway will use this buddy information to set up a representation of Client B,
the Proxy B. Furthermore, the Gateway sends a text message with the information of Proxy
B to Client A. User A can now perform a buddy search in its own VolP system, searching
for Proxy B. Notice the two number four SAPs in figure 8.5, the first is the SAP between the
ULL and the Gateway client and the second is the SAP between the ULL and Proxy B.

77

8.3. Behaviour of the Interoperable VoIP Gateway Chapter 8. Design of the Gateway

=]

[

v

T T
| |
| |
| |
| I
| |
| |

|

T
'
Type msg (msg) Proxy B
(I |

T T
Send msg (msg)

——f ¥ Racaive msg (msg) | i
| | translate msg (msg) 1
—
| (| — = — =Enter buddy name !
[Buddy search L
| | | Creale | = ;
| 1 | } Prosy | | —1 RequssIPf buddy
e
0 il ! = f_ _I ! I Accept buddy
: : : : 1I acknowiedge buddy PP i
—
! I Translate buddy | 5= 7 Janskxe uiddy,
—
. ! Send message Proxy | I
Receive -+ ek I g |

(I |

Open buddy search screen : :
1

I}

Reguest of buddy

—
Enter buddy name

71 *

| Accep! buddy
acknowledge buddy —tt—
s

Figure 8.5: Sequence diagram buddy search minimum

Figure 8.6 also shows the interactions for a buddy search. In this figure, all optional in-
teractions are included too. The main difference to Figure 8.5 is when the Gateway starts
the buddy search and the Proxy receives the possible buddies. In stead of just receiving
an extended contact list, as can be seen in Figure 8.5 a list of possible buddies is returned.
The user should choose between those possible buddies first. This is done by sending a text
message with the possible buddies list to User A. User A can now send back a text message
with the command to the Gateway to search for one specific buddy. Now the Gateway can
start the buddy search, Proxy A receives an extended list, the Gateway sets up Proxy B as
representation of Client B and User A receives a text message with the information about
Proxy B, and searches for this buddy.

Buddies can be added for example to the contact list with the following structure:
someuser%gmail.com@interoperableserver@hotmail.com or
someuser%hotmail.com@interoperableserver@gmail.com, etcetera.

where someuser%gmail.com and someuser%hotmail.com is the identification of the Client,
@hotmail.com and @gmail.com shows the VoIP system and the total key is the identification
for the Proxy.

8.3.3 Messaging

Figure 8.7 shows the sequence diagram. To send a message from User A to User B, User
A opens the screen of the buddy (Proxy B) and types the message. While typing, Proxy B
receives a BIT message. When User A sends the message, Proxy B receives this message.
The Gateway opens the screen of the buddy (Client B), gets the message from Proxy B and
enters this message into Proxy A. Client A receives a BIT message and after Proxy A sends
the message, User B receives the message. Notice that the BIT messages are optional, not
every VoIP system supports BIT messages. For those who do not support BIT messages, the
received BIT messages are just ignored and not sent into that system and if there is no BIT
message, but the other VoIP system does need a BIT message, the Gateway generates a BIT
message.

78

Chapter 8. Design of the Gateway 8.3. Behaviour of the Interoperable VoIP Gateway

T T T T T
Type msg (msg) | 1 | |
g Receive BIT msg 1 | |
Send msg (msg) s s translate BIT 1 | |
|
| Receive msg drrﬁg] | } : }
| 1' — translate msg (msg) E | \
H P X e .IEmef buqa;.- rame Buddy search |
] I I L Prox R I
o 2 2
I [| | 1 Receive passible buddies |
I Sond i Traratas budiad — = — 1 onsiels budes —t [
L
Receive BIT g | i : }
: Send messd ne
el T I i I l
—fe—ee.
Send BIT message Ll | 1 | |
SR L Receive BIT
Send gl i translate BIT } : }
—_— Receive msg Q‘nsg] _:r - i ‘
T T* translate msg (msg) 1 | |
Translate buddy | |
—_— Select possible buddy

H Request of buddy
_— h
T 5 I i
| Accept buddy
I 1 acknowdedge buddy =
Create | Translate buddy ‘
Proxy | #¥———
B |

Sand BIT

(|

(| |
(| I
(| |
(| I
(| I
11 Translate buddy :

1 +

-
Receive BIT message Tond dlge

Raceive

———
Open buddy search screen

1
|
|
Enter buddy name :
i
|
1
.

R
Recelve possible buddies

- 1
Selact possible buddy *
[]

Requast:of buddy
! Acoep:‘ buddy
acknowledge buddy 1—;—'—
— 1

Figure 8.6: Sequence diagram buddy search full

8.3.4 Call

Figure 8.8 shows the interactions for the call. First the User starts the call. Proxy B receives
the request to accept the call. The Gateway handles this request by starting a call from Proxy
A to Client B. User B receives the request to accept the call. If User B accepts, Proxy B
receives an acknowledgment. The Gateway sees this acknowledgment and knows it is allowed
to accept the call from User A to Proxy B. Two connections exist now, between Client A and
Proxy B and between Proxy A and Client B. The incoming audio at the Proxies are forwarded
by the Gateway to outgoing data at the other Proxy. In this way, User B hears the voice of
User A and User A hears the voice of User B. If a User ends the call, this is noticed by the
Gateway. The Gateway will respond to this by closing the other connection too.

‘zgl ‘ aeA ! HHUXyB s HGN“ e ‘ ‘meyA ‘ ! ‘ ‘LLLB ‘ ng‘
! | | |
Typemsg (msg) o 1 1 |
_ Receive BIT msgy ! ! |
Sendimsg (msg) — translate BIT | |
T > Receive msg (msg) 1 > : :
! translate msg (msg) ! !
i i ransiate meg (Tsg) Sem!islT
! ! : — SN !
1 1 1
' | | | sty '
1 1 1 I m—
! ! ! ! Receive nisg (sg)
i i i i >

Figure 8.7: Sequence diagram messaging

79

8.4. Behaviour of the Prozies Chapter 8. Design of the Gateway

‘ A 1 ULLA 4 Proxy B 5 ‘ GW ‘ ‘ 6 ‘ Proxy A 7 ULLB 10
Set : al | i i i
etup c :
! Receive call ! 1 1
—_— v T lat | '
! —> rans ! ecd Translate call Setul call |
: : | 4;—> F Receive call
1 1 1 1 I E— [R
: : : : ! Accept call
I I I ' acknowledge call —
1 1 ! Translate ack «—
! accept call Translate ack : :
acknowwledge call — I 1 1
-
audio I I I I
i audio ! ! ! !
H | translate audio 1 1 1
! ! ’ — Translate audio autio I
! ! I R I audio
: : : ! T ——
| i i | ! audio
i i ! ! audio P L
1 1 ' audio —F 1
! " audio | |
I audio «— | H H
audio D S e ! I ! !
e — | | | | |
Close call ! ! ! ! :
1 > call is closed Al i 1 1 1
] i Translate Cfﬂl is closed Translate call is closed Closle cal !
1 1 I » 1 N !
i Send closed call ack ! [— callis closed
L —t i | 1 o,
Receive closed call ack i ! Receive closed call ack Send closed call ack
— —t
1
1
1

Translate closed call ack 1 1
«—

Figure 8.8: Sequence diagram call

8.4 Behaviour of the Proxies
This section explains the behaviour of the proxies. We will focus on the following three items:

1. Multiple instances have to run at the Gateway to create Proxies for all users and
buddies.

2. Plug-ins have to be used at the Gateway to extend a Client to a Proxy

3. Buddy search requests have to be translated by the Gateway between the Proxies

4. Messaging messages have to be translated by the Gateway between the Proxies

5. Audio forwarding is not an event the Gateway can respond to, the audio has to
tunneled between the proxies

8.4.1 Multiple instances

The VoIP systems MSN, GTalk, Yahoo, ICQ and Skype do not offer multiple instances of
their clients. However, using some tricks or installing extensions, provides the possibility to
create multiple instances for all VoIP systems.

MSN
MSN Messenger Polygamy [31] is an extension to MSN to create multiple instances.

GTalk

GTalk can offer multiple instances by execute a trick. A parameter named "nomutex” has to
be added to GTalk. Information about this parameter and others can be found in [10] and
how to execute this trick can be found in [14]. Also Google Talk Poligamy [13] can be used,
this is an extension to GTalk to offer multiple instances.

80

Chapter 8. Design of the Gateway 8.4. Behaviour of the Proxies

Yahoo
Yahoo Multi Messenger [58] is an extension to Yahoo to create multiple instances.

ICQ
ICQ has two possibilities: An extension to ICQ lite [19], or an application to change the
registry [34]. With both possibilities, ICQ can offer multiple instances.

Skype
Skype can have multiple instances by using different credentials [39]. Under Windows XP,
this can also be realized by using different Windows XP users.

8.4.2 Plug-in possibilities

First we will look into the way the clients can be extended to act as a proxy. Therefor we
need to examen the API of the clients and determine a way to implement this behaviour as
an extension. This extension, also called a plug-in, is necessary to be able to get information
out of the Client and put information into the Client.

All researched VoIP systems support plug-in facilities. Table 8.1 shows the VoIP systems and
their websites for development. These websites include information about the plug-ins.

MSN | http://dev.live.com (SDK) [73]

GTalk | http://code.google.com/apis/talk/open_communications.html [71]
Yahoo | http://developer.yahoo.com/messenger (SDK) [75]

ICQ http://www.icq.com/webtools/app-develop.html (API) [72]

Skype | https://developer.skype.com/ (API) [74]

Table 8.1: Plug-in facilities

Chapter 4 introduces the sequence diagram for the call. The following steps in the sequence
diagram are mentioned:

e Start call

Receive request for call

Accept call
e Have conversation

Close call

e Receive call is closed message
Furthermore in stead of an Accept call, also a reject call can be sent.

The functions accept and generate the incoming and outgoing events. The events should be
mapped with functions understood by the Gateway. Table 8.2 presents the mapping.

81

http://dev.live.com
http://code.google.com/apis/talk/open_communications.html
http://developer.yahoo.com/messenger
http://www.icq.com/webtools/app-develop.html
https://developer.skype.com/

8.4. Behaviour of the Prozies

Chapter 8. Design of the Gateway

Start call callSetup(id)

Receive request for call callRequest(id)

Accept call callAccept(id)

Reject call callReject(id)

Have conversation Mapping explained in Section 8.4.5
Close call callTeardown(id)

Receive call is closed message | callTeardownAck(id)

Table 8.2: Mappings of the Gateway

Table 8.2 shows the functions of the Gateway code. The (id) is the source or the destination,
i.e. the Client or buddy Client. It can be a name, e-mail address or another unique name.

callTeardownAck

Client A Server Client B
T T T
| callSetup | |
f\,: l
i I callRequest i
| | |
: I callReject or callAccept]
! —
:caJIReject or caIIAccept: !

| |

' callAudio !
“’I
I callAudio |
|

1

|

|

- 1

Figure 8.9: Sequence diagram of the call functions

Figure 8.9 shows the sequence diagram of the call, showing the call functions.

When a call is setup by Client A and sent to Proxy B, the Gateway receives callRequest(id)
and transforms it to a callSetup(id) from Proxy A to Client B. Table 8.3 shows the rest of

the mappings.

The following sections present three VolP systems, GTalk, Skype and 1CQ, and shows the
mapping between the functions of the Gateway and the functions provided by the APIs of the
three VoIP systems. These three VoIP systems are randomly chosen, we did not look closer

at the APIs of Yahoo and MSN.

Every next section starts with a table; this table shows the mapping between the functions
of the Gateway and the functions of the VoIP system API. Furthermore the functions of the

VoIP system API are explained.

82

Chapter 8. Design of the Gateway 8.4. Behaviour of the Proxies

Incoming Outgoing
callRequest(id) callSetup(id)
callAccept(id) callAccept(id)
callReject (id) callReject (id)
callAudio() callAudio()
callTeardownAck(id) | callTeardown(id)

Table 8.3: Mappings inside the Gateway

GTalk
callSetup() > | Call::InitiateSession(destination)
callRequest/() | CallClient::OnSessionState(call, session, STATE_RECEIVED_INITIATE)
callAccept() — | Call::AcceptSession(call_—sessions()[0])
callReject/() — | Call::RejectSession(call_—sessions()[0])
callTeardown/() | Call::TerminateSession(session) and Call::Terminate()
callTeardownAck() | « | Call::Terminate()

Table 8.4: Mappings between GTalk API and the Gateway

The destination of the InitiateSession(destination) is the JID (Jabber ID). The session of the
OnSessionState contains information about the caller. For the call teardown, the Session and
the call is closed.

Call setup

According to [80]:

The high-level object that manages the important actions in a voice call is called Call. A Call
object manages any number of peer-to-peer Session objects, each representing one peer-to-peer
connection. The Call object is the top level object to make calls, accept or reject incoming
calls, monitor the status of the call, and performs other high level actions on call connections.
CallClient wraps all required steps for making a call in its MakeCallTo method. Here are the
basic steps taken by CallClien:

1. Create the Call object by calling PhoneSessionClient::CreateCall

2. Connect to the PhoneSessionClient::SignalCallDestroy to monitor when the all sessions
in the call have ended and the call object is being destroyed. A call is destroyed when
all the Session objects are destroyed, which can happen by request of the current user,
by request of the other user, or by a connection failure.

3. Connect to the new Call object’s SignalSessionState signal to monitor progress of the
connection and send notifications to the user (”sent initiate ,” ”
progress,” and so on).

» D

recetved initiate ,” 7in

83

8.4. Behaviour of the Prozies Chapter 8. Design of the Gateway

4. Send the connection request to the other user. Call Call::InitiateSession with the Jabber
ID (JID) of the person to connect to.

5. Listen for the STATE_INPROGRESS message associated with that session, which will
indicate that the connection request has been accepted and bequn. The Call object will
handle all the details of connecting and managing the connection for you.

The following code from CallClient::MakeCallTo starts a call to another user, specified by
JID.

// Let us know when the Call object is destroyed, so we can close the UI

// or alert the user.

// This only needs doing once per PhoneSessionClient.

phone_client () —SignalCallDestroy.connect(this, &CallClient::0nCallDestroy);

// Create the call object.
call_ = phone_client() —CreateCall();

// Connect to receive session notificatioms.
call_—SignalSessionState.connect(this, &CallClient::0OnSessionState);

// Make the connection request to the other user
session_ = call_—InitiateSession(buddy_jid);

// libjingle audio engine only handles one active voice channel at a time.
// Set the focus on the newly created conversation.
phone_client () —»SetFocus(call.);

// Listen to the progress of the call and alert the user.
void CallClient::0OnSessionState(cricket::Call* call,
cricket::Session* session,

cricket::Session::State state) {

if (state == cricket::Session::STATE_INPROGRESS) {
console_—Print("Call connected.");

} else if (state == cricket::Session::STATE RECEIVEDREJECT) {
console_—Print ("Other side rejected the request.");

4
...other conditionms...
}
}

Receiving a Call

1. An incoming call triggers PhoneSessionClient to send its SignalCallCreate signal. You
connected to this signal earlier as part of your initial setup. When an incoming call
request is received, the PhoneSessionClient creates a new Call object and sends this
signal, along with the Call object. Because SignalCallCreate is sent whether you or
someone else created the Call object, the only way to find out what caused this call is to
connect to the Call object’s SignalSessionState signal.

2. The new Call object sends a SignalSessionState signal describing the new connection
request. SignalSessionState notifications include the managing Call object, the Ses-
sion object (which contains information about the caller), and an enumeration in-
dicating what is happening (outgoing call, incoming request, etc). See Session for

84

Chapter 8. Design of the Gateway 8.4. Behaviour of the Proxies

a description of the important enumeration values. Incoming call requests are sent
STATE_RECEIVEDINITIATE.

3. Alert the user that a new call request has been made, and allow them to accept or
reject the request. libjingle will respond to the call request automatically with session
negotiation stanzas, but will not begin exchanging data until the user has explicitly ac-
cepted a connection request. Accept a call using Call::AcceptSession; reject a call using
Call::RejectSession. You must pass in the session holding this request. FEither use the
Session object you received from SignalSessionState, or use the first Session object in
the Call object’s Session collection (accessed using Call::Sessions). Each new connec-
tion request generates a new Call object with one Session object, so there should not be
a problem with finding the right session on an incoming call.

4. If the user accepted the call, activate the voice channel of the new call. Before you can
begin talking over a session, you must first call PhoneSessionClient::SetFocus(Call* call)
to activate the channel. This is because the audio engines in the example implementation
only allow one voice channel to be active at a time. Once a sesston has focus, you can
start talking over it.

The following example code demonstrates receiving a call. This code is taken from call-
client.cc

// Handler connected to PhoneSessionClient::SignalCallCreate on initialization.
void CallClient::0nCallCreate(cricket::Call* call) {
call—SignalSessionState.connect(this, $CallClient: :OnSessionState);

}

// Handler called when a Session object changes state or is first created.
void CallClient::0OnSessionState(cricket::Call* call,

cricket::Session* session,

cricket::Session::State state) {

if (state == cricket::Session::STATE_RECEIVEDINITIATE){

// This is an incoming call. Alert the user of the caller’s JID.
buzz::Jid jid(session—remote_address());

console_—printf ("Incoming call from ’%s’", jid.Str().c.str());

// In this thread or in a new thread, request user input to accept or reject the call.
// Input not shown.
bool acceptCall = user input value;

// Accept or reject the call.

// The call will be the first item in the Call::Sessions() collection.
if (acceptCall){

call_—AcceptSession(call_—sessions() [0]);
phone_client () —»SetFocus(call.);

}
else{
call_—RejectSession(call_—sessions () [0]);

}
}

other session states ...

Terminating

1. When you are connected, you can mute or unmute a call with the Call::Mute method
or terminate a session with the Call::Terminate method. (Some methods exposed by

85

8.4. Behaviour of the Prozies Chapter 8. Design of the Gateway

Call apply to specific sessions, while others apply to all sessions. See the reference
documentation for details.)

Skype
callSetup() — | Call(id)
callRequest() — | get Call (property) where property status = RINGING and
type = Incoming_p2p
callAccept() — | set Call (id) status INPROGRESS
callReject() — | set Call (id) status REFUSED
callTeardown/() — | set Call (id) status FINISHED
callTeardownAck() | < | get Call (id) status FINISHED

Table 8.5: Mappings between Skype API and the Gateway

The id in table 8.5 are the source or destination.

This sections shows the objects Call, Get call, and set call [78] [79].

CALL

Syntax

o CALL (target)/, (target)]*
Response

o CALL (call_ID) (status)
Parameters

e (target) - targets to be called. In case of multiple targets conference is created. Available
target types:

o USERNAME - Skype username, e.g. "pamela”, "echol123”
e PSTN - PSTN phone number, e.g. "+18005551234”, 7003725555555”
e SPEED DIAL CODE - 1 or 2 character speeddial code

GET CALL

Syntaz
e GET CALL (id) property
Response

o CALL (id) property (value)

86

Chapter 8. Design of the Gateway 8.4. Behaviour of the Proxies

Parameters and response values
e (id) - call ID (numeric);

e property - property name. Refer to CALL object for the list of properties.

SET CALL INPROGRESS

This enables you to resume a call, for example after placing it on hold. Syntax:
e — SET CALL (id) STATUS INPROGRESS
o — CALL (id) STATUS INPROGRESS

Parameters:

e (id) - call ID (numeric)

The following statuses are available:
e UNPLACED - call was never placed.
o ROUTING - call is currently being routed.

o FARLYMEDIA - with pstn it is possible that before a call is established, early media is
played. For example it can be a calling tone or a waiting message such as all operators
are busy.

o FAILED - call failed - try to get a FAILUREREASON for more information.
e RINGING - currently ringing.

o INPROGRESS - call is in progress.

e ONHOLD - call is placed on hold.

e FINISHED - call is finished.

o MISSED - call was missed.

e REFUSED - call was refused.

e BUSY - destination was busy.

o CANCELLED (Protocol 2).

o VM_BUFFERING_GREETING - voicemail greeting is being downloaded.

o VM_PLAYING_GREETING - voicemail greeting is being played.

o VM_RECORDING - voicemail is being recorded.

o VM_UPLOADING - voicemail recording is finished and uploaded into server.

o VM_SENT - voicemail has successfully been sent.

87

8.4. Behaviour of the Prozies Chapter 8. Design of the Gateway

o VM_CANCELLED - leaving voicemail has been cancelled.

o VM_FAILED - leaving voicemail failed; check FAILUREREASON.

The following types are available:
o INCOMING_PSTN - incoming call from PSTN.
o QUTGOING_PSTN - outgoing call to PSTN.
o INCOMING_P2P - incoming call from P2P.
o OUTGOING_P2P - outgoing call to P2P.

Example to answer and end a call:

/**

End a CALL.

O@throws SkypeException when connection is bad.
/

public void finish() throws SkypeException {
setStatus ("FINISHED");

}

/*%

Answer a ringing CALL.

@throws SkypeException when connection is bad.
/

public void answer() throws SkypeException {
setStatus ("INPROGRESS") ;

}
ICQ

callSetup() — | createRvSession(), sendRv(voiceReqRvCmd(destination))
callRequest() — | sendRv(voiceReqRvCmd(source))

callAccept() — | sendRv(voiceReqRvCmd(source))

callReject() — | sendRv(voiceRejectRvCmd(rejectioncode))
callTeardown() — | sendRv(voiceRejectRvCmd(rejectioncode))
callTeardownAck() | < | sendRv(voiceRejectRvCmd(rejectioncode))

Table 8.6: Mappings between ICQ API and the Gateway

The rejectioncode in Table 8.6 is a public static final int. The rejectioncode CANCELLED
= 1, other values are (not yet) defined.

net.kano.joscar.rvemd.voice shows the JOSCAR API [76] with the information about voice
commands.

88

Chapter 8. Design of the Gateway 8.4. Behaviour of the Proxies

Since AOL is the owner of ICQ, ICQ uses OSCAR as the underlying protocol. ICQ has its
own API, but did not respond to our request to make it available to us. We have found
another API for ICQ, named JOSCAR [76]. JOSCAR is a library for connecting to AOL
Instant Messenger from Java, and thus it is possible to connect to ICQ.

The interface RvSession represents a single "rendezvous session.” Briefly, every rendezvous
command sent between two buddies contains a ”session ID” which is used to group a set of
commands logically. Each of the request, acceptance, and rejection commands are rendezvous
commands, and each command contains the same ”session ID” as the initial file send request
Alice sent.

These "sessions” are mever formally created or ended on the OSCAR protocol level, but the
author of JOSCAR decided creating a class for it would be the best way to do it. Thus, to
send a rendezvous using a RvProcessor, first one must create a new and then send the RV
commands through that.

Because OSCAR does not use a sessions [77], formally no sessions are created and thus no
sessions can be ended. Nevertheless, it is possible to ’create’ a session with createRvSession
and send a callSetup request using voiceReqRvCmd. To end the call the object voiceRejec-
tRvCmd can be used. This is also used to reject the incoming call. Creating this object let the
listeners know the ’call session’ is ended.

Creating the call:

cmdMap . put ("voicechat", new CLCommand() {

public void handle(String line, String cmd, Stringl] args) {
RvSession session = bosConn.rvProcessor.createRvSession(
args[0]);

session.addListener (bosConn.rvSessionListener) ;

try {
session.sendRv(new VoiceReqRvCmd (O,

RvConnectionInfo.createForOutgoingRequest(
InetAddress.getLocalHost (),

-1)));

} catch (UnknownHostException e) {
e.printStackTrace();

}
}
s

Accept the call invitation:

89

8.4. Behaviour of the Prozies Chapter 8. Design of the Gateway

/%%

A rendezvous command used to accept a voice chat invitation.

/

public class VoiceAcceptRvCmd extends AbstractAcceptRvCmd {

/%%

Creates a new voice chat session acceptance command from the given
incoming RV ICBM.

@param icbm an incoming voice chat acceptance RV ICBM command
/

public VoiceAcceptRvCmd(RecvRvIcbm icbm) {

super (icbm) ;

}

/%%
Creates a new outgoing voice chat invitation acceptance command.

/
public VoiceAcceptRvCmd() {
super (CapabilityBlock.BLOCK_VOICE) ;

}

Reject or end the call:

/**

A rendezvous command used to indicate that a voice chat invitation has been
denied or cancelled.

/

public class VoiceRejectRvCmd extends AbstractRejectRvCmd {

/%%

Creates a new voice chat invitation rejection command from the given
incoming voice chat invitation rejection RV ICBM.

@param icbm an incoming voice chat invitation rejection RV ICBM command

/
public VoiceRejectRvCmd(RecvRvIcbm icbm) {
super (icbm) ;

/%%
Creates a new outgoing voice chat invitation rejection command with the
given rejection code.

Qparam rejectionCode a rejection code, like {@link #REJECTCODE_CANCELLED}
/
public VoiceRejectRvCmd(int rejectionCode) {

super (CapabilityBlock.BLOCK_VOICE, rejectionCode) ;

}

Summary

With the provided functions in this chapter, it is possible to show the mappings between the
three VoIP systems. The arrow shows the direction the data is going. The Gateway translates
the function of VoIP system A to its own function and translates it again to the function of
VoIP system B. Notice that the Gateway transforms the incoming callRequest to a callSetup
and translates the callRequest function to the function of VoIP system B (and vice versa).

90

Chapter 8. Design of the Gateway

8.4. Behaviour of the Proxies

Table 8.7 shows the mappings between Google Talk, the Gateway and ICQ (and vice versa).

GTalk Proxy B GW Proxy A ICQ

GTalk| Proxy B GW Proxy A 1CQ
— CallClient::OnSessoionState(call,| callRequest sendRv(voiceReqRVCmd(destination)) —
session, — callSetup
STATE_RECEIVED_INITIATED)
— Call::RejectSession() callReject sendRv(voiceRejectRvCmd(rejectioncode)) | «—
— Call:: AcceptSession() callAccept sendRv(voiceAcceptRvCmd()) —
— Call:: Terminate() callTeardown | sendRv(voiceRejectRvCmd(rejectioncode) | —
— Call::Terminate() callTeardown | sendRv(voiceRejectRvCmd(rejectioncode)) | «—
Ack
— Call::Terminate() callTeardown | sendRv(voiceRejectRvCmd(rejectioncode)) | «—
— Call:: Terminate() callTeardown | sendRv(voiceRejectRvCmd(rejectioncode)) | —
Ack
— Call::InitiateSession(buddy_jid) | callRequest sendRv(voiceReqRvCmd(source)) —
«— callSetup

Table 8.7: Mappings between GTalk, the GW and ICQ

Table 8.8 shows the mappings between Google Talk, the Gateway and Skype (and vice versa).

GTalk| Proxy B GW Proxy A Skype
— CallClient::OnSessoionState(call, ses- | callRequest Call(id) —
sion, STATE_RECEIVED_INITIATED)| — callSetup
— Call::RejectSession() callReject set call(id) status REFUSED —
— Call::AcceptSession() callAccept get call(id) status IN- | «—
PROGRESS
— Call:: Terminate() callTeardown | set call (id) status FINISHED —
— Call::Terminate() callTeardown | get call (id) status FINISHED —
Ack
— Call::Terminate() callTeardown | set call(id) status FINISHED —
— Call:: Terminate() callTeardown | get call (id) status FINISHED —
Ack
— Call::InitiateSession(buddy_jid) callRequest callSetup get Call (property) | «—
«— callSetup where property status = RING-
ING and type = Incoming_p2p

Table 8.9 shows the mappings between Skype, the Gateway and ICQ (and vice versa).

Table 8.8: Mappings between GTalk, the GW and Skype

As we read in the last sections, GTalk creates a session when setting up a call. ICQ does not
create a session, but JOSCAR does, which means a session is setup and over this session the
call is created. Skype sets up a session before the first contact starts. So, the session already
exists and it only has to create a call. The sessions and calls are not in detail equal, but the
idea is the same.

91

8.4. Behaviour of the Prozies

Chapter 8. Design of the Gateway

Skype| Proxy B GW Proxy A ICQ
— Get Call (property) where | callRequest sendRv(voiceReqRVCmd (destination)) —
property status = RINGING | — callSetup
and type = Incoming_p2p call-
Request
— set call(id) status REFUSED | callReject sendRv(voiceRejectRvCmd(rejectioncode)) | «—
— get call(id) status IN- | callAccept sendRv (voiceAcceptRvCmd()) —
PROGRESS
— set call (id) status FINISHED | callTeardown | sendRv(voiceRejectRvCmd(rejectioncode)) | —
— get call (id) status FINISHED | callTeardown | sendRv(voiceRejectRvCmd(rejectioncode)) | «—
Ack
— set call(id) status FINISHED | callTeardown | sendRv(voiceRejectRvCmd(rejectioncode))| «—
— get call (id) status FINISHED | callTeardown | sendRv(voiceRejectRvCmd(rejectioncode))| —
Ack
— Call(id)) callRequest sendRv(voiceReqRvCmd (source)) —

«— callSetup

Table 8.9: Mappings between Skype, the GW and ICQ

92

Chapter 8. Design of the Gateway 8.4. Behaviour of the Proxies

8.4.3 Buddy search

Figure 8.5 and 8.6 show the ”Translate message” and ”Translate buddy” steps and ”Create
Proxy A” and ”Create Proxy B”. The moment Client A sends a buddy search command (the
client sends a message with the command buddy search in it), the Proxy gets this message and
translates it to an event. The Gateway starts a new Proxy A and this new Proxy performs
a buddy search request to its VoIP system (which is the buddy VoIP system of the current
User). The found buddy is added to the contact list of Proxy A and the Gateway starts a
new Proxy B as an representation of Client B (The buddy Client). When Client A performs a
buddy search requets for Proxy B and Proxy B is added to its contact list, the communication
can start.

8.4.4 Messaging

Figure 8.7 shows the ”Translate message” steps. The moment Client A sends a message to
Proxy B, Proxy B translates the message data stream into a text-readable strings and hands
it over to the ’Message forwarding’ Interoperable Interpreter. This Interoperable Interpreter
translates the text-readable strings into the message data stream according to the rules of
VoIP system R.

8.4.5 Audio forwarding

As can be read in Chapter 5, Gizmo provides VoIP interoperability between Yahoo, GTalk
and MSN. Also GTalk-to-VoIP provides interconnection between Yahoo, GTalk and MSN
converting the call setup and tear down to SIP. Furthermore, Skype can be converted to
SIP and vice versa. SIP is not used for the audio itself, but also the audio transfer can be
converted using these related work systems. This proves converting is possible between MSN,
Yahoo, GTalk and Skype. Unfortunately ICQ is not supported by these related work systems
and thus there is no prove ICQ can be interoperable with Yahoo, GTalk, MSN and Skype as
far as audio converting is concerned. The related work systems do not explain exactly how
they work. So in the following paragraphs, the own design idea is discussed again.

The provided design can be extended at several abstraction levels. For instance, now a Proxy
has a plug-in on top of it, but is could also be possible to situate a Gateway at the underlying
protocol, before the data stream reaches the Proxy. This creates the possibility to directly
use the data streams (the packets), in stead of the service. It is even possible to have this
solution for one VoIP system and another solution for other VoIP system.

This leads to two possible solutions for the audio forwarding:
1. Forward data stream
2. Virtual audio cable

For the first solution, the easiest way is when the protocol used to transmit the data stream
from Client A is the same as the protocol used by Client B. Furthermore, by the setup of the
call, the codec preferences should be indicated. If the codecs are the same, the data stream
can be directly forwarded.

93

8.4. Behaviour of the Prozies Chapter 8. Design of the Gateway

Proxy B Proxy A

Figure 8.10: Possible way of audio forwarding

If the protocol used for the data stream of Client A is not the same as the protocol used
by Client B, the data stream should be converted. This is only possible if the protocol is
understandable. Some VoIP systems have proprietary protocols, so this will not be a suitable
solution.

The second solution for the audio forwarding is using the Proxies with their plug-ins. This can
be sketched at the following way: The incoming audio at Proxy B will sound at a speaker.
Next to the speaker a microphone is situated. This microphone is connected to Proxy A,
which now converts it according its protocol and sends the audio to Client B. Figure 8.10
shows this sketch.

Of course, the scenario with microphones and speakers is not scalable and thus not usable. In
stead, a virtual audio cable [51] can be used. This virtual audio cable transfers audio streams
from one client (i.e. Proxy B) to another (i.e. Proxy A). It creates a set of ”Virtual Cables”
each of them consists of a pair of the waveform input/output devices. Any client can send
audio stream to an output side of a cable, and any other client can receive this stream from
an input side. All transfers are digitally, providing no sound quality loss. Figure 8.11 shows
the Virtual Audio Cable audio forwarding.

Virtual audio cable

Proxy B Proxy A

Figure 8.11: Audio forwarding by a Virtual Audio Cable

Many VoIP systems already use virtual audio cables. VoIP phones also provide this kind of
gateways (for example to forward audio between the Skype client and the phone).

94

Chapter 8. Design of the Gateway 8.5. Conclusion

Figure 8.8 shows the ” Translate audio” steps. The moment Client A sends the audio to Proxy
B, Proxy B uses the virtual audio cable to translate and tunnel the audio to Proxy A.

8.5 Conclusion

The advantage of this design is that it does not matter if the VoIP systems use peer-to-peer
connections or not. It does not matter what is in between the client and the Proxy, and which
protocols are used. As long as the Proxy and its plug-in converts the protocol messages into
services, the Gateway can handle it. At this way ICQ (not P2P) can be integrated with the
other VoIP systems (P2P). The Interoperable VoIP Gateway is thus protocol independent.

By implementing this system, the structure of the protocol messages are not important; the
offered services (events) are important. Only text messages and audio has to be converted
directly.

To do the buddy search, a command is sent to the Gateway and is handled by this Gateway.
Because of the command handling functionality of the Gateway, in the future more commands
can be added. This means the Gateway is extendable.

The functional requirements as presented at the beginning of this chapter are all fulfilled by
this design. The Gateway is not needed for the login and thus the user logs in to its own
server. Users are able to extend their contact list with buddies of other VoIP systems by
using Proxies and are able to send those buddies text messages, which are forwarded by the
Gateway. The user has to initiate the call; the Gateway is not allowed to initiate a call.
Furthermore, only if the user accepts the call, the Gateway can accept the call. Without the
acceptance of the buddy, no call can be made.

Plug-in functionality is offered by all VoIP systems. We looked closer to three VoIP systems
and their APIs. We can conclude that for Skype, ICQ and GTalk we are able to get data out
of the Client and translate it in our own language. Multiple instances are not offered, but
with tricks and extensions, multiple instances of all VoIP systems can be arranged. For the
audio forwarding virtual cables can be used.

95

Chapter 9

Conclusion

This chapter concludes the master thesis. It provides the solution (as presented in Chap-
ter 8) and the answers to the research questions (as presented in Chapter 1). One of the
research questions is about the requirements, so the requirements (as discussed in Chapter
6) are reflected and discussed. Furthermore we discuss which problems are solved and the
(dis)advantages of the solution. Finally future work is presented.

9.1 Solution summary

The solution is called the Interoperable VolIP Gateway. It introduces a Gateway, which inter-
connects the existing VoIP systems by using Prozies.

The client of one VoIP system is connected to a Proxy (representation of the buddy client).
The Gateway is able to interact with this Proxy, translate the incoming data and puts it
into another Proxy (the representation of the user client), to create an indirect connection
between two clients.

The buddy search is done by sending a text message command to the Gateway; the Gateway
will search for the buddy client in another VoIP system and creates the representation of the
user client and a representation buddy client. Text messages are sent from the client to the
Proxy of the buddy; the Gateway tunnels the text message to the Proxy of the user, which
sends the text message to the buddy client.

The call setup and tear down is done by responding to events. For instance, when the client
sends a call request, the Gateway responds to this request by creating another call request to
the buddy client at the other VoIP system. When the buddy client sends a positive response,
the Gateway is allowed to provide a positive response to the originating request. The audio
sent from the client to the proxy is tunneled by the Gateway to the other Proxy, which sends
it to the buddy client.

9.2 Conclusions per research questions
This section discusses the research (sub)questions as presented in Section 1.3.

97

9.2. Conclusions per research questions Chapter 9. Conclusion

What is the state of the art in VoIP?

Chapter 2 provides the history of telephony and VoIP and discusses four major Call Processing
Protocols. It seems that SIP is the winner, and this protocol will be even used more in the
future. As can be seen, two of the five VoIP systems discussed in Chapter 3 already use
SIP (Yahoo and MSN). Although not mentioned in this report before, many other VoIP
systems [27] also provide SIP. Also large Telecom operators like KPN for the Netherlands are
working on the support of SIP. They are replacing their core-networks to the standardised
Next Generation Networking (NGN) architecture called ”IP Multimedia Subsystem” (IMS).
The IMS supports SIP too.

Because SIP is used more and more, another approach for the design could have been to
translate every other protocol to SIP. The Uplink and PSGw software (see Chapter 5) shows
it is possible to translate Skype into SIP and vice versa. GTalk-to-VoIP in the same chapter
shows that the GTalk protocol can be translated into SIP. MSN and Yahoo already use SIP.
This leads to the possibility of interoperability between Skype, Gtalk, MSN and Yahoo by
using SIP.

The reason why the approach of translating protocols to SIP is not chosen, is because of the
desire to be independent of protocols. Furthermore, building something that already exists
is a waste of time. Using PSGw, Uplink or GTalks2VoIP does not support the ICQ system.
Furthermore one overall solution is better than several solutions combined.

What are the characteristics, differences and similarities of the VoIP systems and
their accompanying protocols?

Chapter 3 and Appendix B shows the overview of five VoIP systems and their protocols. The
discussed VoIP systems are MSN, GTalk, Yahoo, ICQ and Skype. The main differences are
the protocols used by the VoIP systems. For calls, MSN and Yahoo uses SIP, GTalk uses
Jingle, ICQ uses OSCAR and Skype uses Skype.

The five VoIP systems also have some similarities. The main similarities are the services
offered by the VoIP system. For example, for a call, first the call has to be setup and
accepted by the buddy before the actual conversation can take place. These similarities are
also clarified in Chapter 4.

What are the requirements for a prototype to create interoperability between
several VolIP systems?

The user requirements are almost all fulfilled. Just one client has to be used, and this can be
the one the user is familiar with, which makes it user-friendly. Many features, like messaging
and call, are supported. The only not fulfilled requirement is the use of another server. The
Gateway buddy that has to be added to support interoperability is the Gateway (server) and
thus will be noticed. This Gateway buddy is only needed for sending commands (currently
only used for the buddy search and messaging command). The other requirements together
weight heavier than this latter one, thus this approach works fine enough.

The Application Provider does not have to change their VoIP systems. The reliability and
performance depends on the implementation of the gateway. For now, it seems possible to

98

Chapter 9. Conclusion 9.2. Conclusions per research questions

provide reliability and performance, as long as these two have high priority in the implemen-
tation process. If this works out fine, the AP requirements are also fulfilled.

The interoperability provider requires scalability. Multiple instances of the client of the VoIP
system take care of the scalability, although it is not clear whether the solution is scalable
enough.

The designers and implementers requires a universal solution, which is done by this design.
It supports five commonly used VolP systems and is probably able to support many others,
because it is based on events; it is protocol independent. Only the gateway has to be imple-
mented and not the client, so it is few implementation work. It is easily extendable and has
chances to succeed to be reliable, which means the designers and implementers requirements
are fulfilled too.

What are the different solutions to create interoperability between the VolIP
system?

To find out the best way to design the prototype for the interconnection of several VolP
systems, a design approach has to be defined. Chapter 7 discusses some possible approaches.
The first approach is to use the existing VolP systems and interconnect them with a Gateway.
The second approach is to change the client of the existing VoIP systems and led those
clients connect to the gateway. The third approach is to build a new VolP system, which is
interconnected to existing VolIP systems with a gateway. The fourth approach is a client that
works as a peel around the existing VoIP systems; accounts for all existing VolIP systems are
needed, but the VoIP clients do not have to be installed. The fifth approach equals the third,
but the client is now a web client.

The first approach is chosen as the most interesting to continue working with. Chapter
8 provides a detailed description of this design solution and concludes it is indeed a good
solution.

How is the interconnection modelled and realized?

Chapter 8 presented the architecture of the Interoperable VoIP Gateway. This design is
realized by first studying the most commonly used VoIP systems (Chapter 3 and Appendix
B) and defining their services (Chapter 4, second by studying related work on interoperability
(Chapter 5) third by defining possible approaches (Chapter 7) and selecting the best suitable
solution. This selected approach is modelled with sequence diagrams, defining scenarios
(Chapter 8).

How can VolIP systems interoperate?

The main research question is already answered in the subquestions. The solution to let VoIP
systems interoperate is to design a Gateway and use Proxies.

9.2.1 Solved problems

First we needed to find out the equalities and differences of the VolIP systems. We chose
five commonly used VoIP systems (MSN, Yahoo, GTalk, ICQ, Skype), with Wireshark ex-

99

9.2. Conclusions per research questions Chapter 9. Conclusion

periments we sniffed the packets and we provided sequence diagrams of four features (Login,
Buddy search, Messaging and Call).

We found out that it is impossible to understand the proprietary protocol packets. This let us
to the conclusion it is not possible to create a solution for all VoIP systems when translating
at protocol level. We decided to create a protocol independent solution.

Next, we needed to find out how to translate the data sent to the Proxies. The five VoIP
systems provide APIs to create a plug-in to the existing Client. With the APIs it is possible
to get data out and put data in the Clients. We looked closer to three VolIP systems and
their APIs. We can conclude that for Skype, ICQ and GTalk we are able to get data out of
the Client and translate it in our own language. The choice of these three VolIP systems is
random. The audio forwarding can be done by virtual audio cables.

For the interconnection, every client has a representation, i.e. Proxy. Actually, it can have
multiple proxies, one for each specific VoIP system. This means multiple instances of the client
have to run at the Gateway. We found out that it is possible to create multiple instances for
the five VoIP systems.

9.2.2 Advantages

Despite of the interconnection, the user can still communicate with a user from the same VoIP
system, without using the Gateway. This concludes that it is possible to create interoperability
between VolP systems, at least for the five commonly used VoIP systems as presented in this
report.

Furthermore, as already discussed in Paragraph 8.5, the five VoIP systems have the possibility
to add plug-ins to handle the events and messages. Multiple instances of the Clients of the
VoIP systems are needed, and this is also possible to get done. The audio forwarding can be
done by using a virtual audio cable.

The advantage of this design is, that it does not matter what the underlying protocols of the
VoIP system are, the solution is protocol independent.

The Gateway is able to handle commands and is now only used for the buddy search. In the
future this is extendable for more commands if needed.

9.2.3 Disadvantages

This solution has also some disadvantages. First, for the user it is difficult to add a buddy
from a different VoIP system to the contact list. In stead of adding a buddy, the user needs
to send a command to the Gateway client. After adding the buddy, the user will not notice
the interruption of the Gateway anymore.

Second, this solution needs multiple instances of the clients, to create the Proxies. This makes
it unclear whether it is scalable enough.

100

Chapter 9. Conclusion 9.2. Conclusions per research questions

9.2.4 Future work

This section suggests possibilities to continue the research presented in this thesis.

This thesis consists of the design of the Gateway to interconnect several VoIP systems. To
prove the design, we need an implementation.

VoIP systems offer most functionalities for free. The implementation and maintenance is
expensive, but is probably compensated with advertisements shown in the clients. A cost
analysis of how much would cost the implementation of the Gateway was not addressed in this
thesis. Furthermore, a cost analysis of the maintenance of the Gateway was not addressed
in this thesis. Nevertheless, such an analysis would provide more information about the
Interoperable VoIP Gateway chance of success from an economical point of view.

101

Appendix A
Additional information: State of the Art in VolP

This Appendix shows additional information about the on-hook and off-hook operations, more
Call Processing Protocols and the INVITE method of SIP.

A.1 On-hook and off-hook operations

Table A.1 shows the on-hook and off-hook operations.|[82]

Name Type Direction | Meaning

Connect Off-hook | — Request service and hold connection
Disconnect On-hook | — Release connection

Answer Off-hook | — Terminating end has answered

Hang up On-hook | «+ Message complete

Delay start Off-hook | « Terminating end not ready for digits
Wink start Off-hook | «+ Terminating end ready to receive digits
Start dialing | On-hook | « Terminating end ready for digits

Stop Off-hook | « Terminating end not ready for further digits
Go On-hook | « Terminating end ready for further digits
Idle trunk On-hook | <

Busy trunk | Off-hook | —

Table A.1: On-hook and Off-hook Operations

A.2 Call Processing Protocols

Four Call Processing Protocols have already be mentioned, H.323, MGCP, Megaco and SIP.
Some other Call Processing Protocols are:

e Skinny Client Control Protocol (SCCP): Proprietary protocol of Cisco
e MiNet: Proprietary protocol of Mitel
e CorNET-IP: Proprietary protocol of Siemens

e TAX: Inter-Asterisk eXchange protocol for the open source PBX server Asterisk

103

A.3.

SIP INVITE method Appendix A. Additional information: State of the Art in VoIP

Skype: A proprietary peer-to-peer protocol used for the Skype application

Jajah: A proprietary peer-to-peer protocol used in Jajah SIP and TAX compatible
web-phones

Jingle: Open peer-to-peer protocol based on XMPP (Jabber) and able to communicate
with the Google Talk protocol

A.3 SIP INVITE method

Figure A.1 shows the INVITE method of SIP, and consists of the following events:

Event 1: User 1 is trying to reach User 2. It sends an INVITE message with the URL
of User 2.

Event 2: The INVITE message is forwarded to the redirect server (Proxy Server) of the
first user.

Event 3: The Redirect Server looks up this URL in its database and asks the Proxy
Server to directly contact the User Agent and provides the location information of the
User Agent.

Event 4: The Proxy Server now sends the INVITE message directly to the User Agent.
Event 5: The User Agent alerts the called party with a ring tone.

Event 6: The User Agent sends back OK message to acknowledge it.

Event 7: The Proxy Server sends the OK message to the calling party.

Event 8 and 9: User 1 sends an ACK message to User 2 (relayed by the Proxy Server).

Proxy Location User
i Server Server Agent Sl
1 INVITE
url 7] INVITE _
2 e
url
“*ocaton | 3
4 INVITE >
5 Ring >
- OK
0K . 6
. 7
ACK
81 > ACK
9 —-

Figure A.1: SIP protocol flows of an INVITE

104

Appendix B

Additional information: Overview of VolIP systems

This appendix provide additional information about the VoIP systems. It gives a list of
less known VoIP systems and the Skype IP domain. Furthermore, it provides additional
information about the five VoIP systems used in this report, including the sequence diagrams
based on the Wireshark results.

B.1 VoIP systems

Some open source alternatives for Skype are [47]:

Ekiga: A free application that supports both H.323, SIP, audio and video. Ekiga was
formerly known as GnomeMeeting. So far only works with various Linux based systems.
No version for Microsoft Windows has been released yet, but there is a working snapshot
available.

Kiax: VoIP application based on TAX
PSI: The current Beta version has protocol support for Google Talk

Switchboard: Free VoIP applet which works from within a web browser. Works on
Windows, Mac, Linux, and any other Java enabled platform. No installation necessary

Tapioca: Includes support for Google Talk
WengoPhone: A free VoIP application based on SIP open standard

Freetalk: A command line jabber client with VoIP support. Has readline support and
scheme as an extension language. This project is a part of the GNU Project.

Some closed source alternatives for Skype are [47]:

amiciPhone: A secure peer-to-peer VoIP application

Gizmo Project: A closed source VoIP application based on SIP open standard and
uses SRTP between clients. Now offering free landline/cell calls to over 60 countries

iCall: A closed source free VoIP application based on SIP open standard and providing
free PC to Phone calling in the US and Canada.

105

B.2.

Skype IP domain Appendiz B. Additional information: Overview of VolIP systems

Jajah: Alternative where no headset, no download, no installation and no broadband
connection is necessary. A VoIP call gets activated between two normal phones.

Secure Shuttle Transport (SST): Free encryption and secure messaging software
including VoIP and video. Works on PCs running Windows 98 or higher.

SightSpeed: Free video and voice calling service supporting Mac and Windows. Also
allows phone out and in calling.

Parlino: A VoIP network based on open standard SIP-protocols, launched by Parlino
S.A.

Vbuzzer: A VoIP softphone and service as well as an active advocator of SIP open
standard

VoIP Buster: A VoIP application offering 300 minutes per week of free calls to land-
lines in many countries, including the EU, USA, Australia, etc.

VoIP Stunt: A VoIP application offering 300 minutes per week of free calls to landlines
in many countries, including the EU, USA, Australia, etc.

Zfone: is a solution of Phil Zimmermann (inventor of PGP) to encrypt VoIP (SIP)
sessions, protocol published as IETF draft.

TipicIM: A free VoIP application, Videocalling based on XMPP/Jabber and Speex
audio codec support

ClosedTalk: is secure VoIP software free for Business/Personal use. Works on PCs
running Windows 2000/XP. [ClosedTalk exposes 'man in the middle’ attacks by dis-
playing a short security message on both caller screens for comparison.

BT Communicator: is a VOIP service from British Telecom (BT plc.)

Furthermore two multi-protocol applications exist: Trillan and Gaim. These applications
include other application protocols and make it possible to have send messages to applications
of different protocols.

B.2 Skype IP domain

Skype network According to RIPE, next ranges of IP addresses belong to the Skype company:

Skype-NL
212.72.49.128 - 212.72.49.159
213.244.170.64 - 213.244.170.127

Skype (LU)
80.92.83.128 - 80.92.83.255

According to ARIN, next range of IP addresses belongs also to the Skype company:

Skype (LU)
67.72.71.48 - 67.72.71.63

106

Appendiz B. Additional information: Overview of VolIP systems B.3. MSN

B.3 MSN

The protocol MSN uses for sending messages and control information is called Mobile Status
Notification Protocol (MSNP). MSNP works over TCP and is an ASCII-based protocol and
uses a series of UTF-8 encoded commands for the communication between servers and clients.
These commands and their parameters are always transmitted as plaintext (i.e. unencrypted),
and are displayed as human readable text. [91] The commands start with three characters, and
are followed by the actual information regarding the command that is being sent. Examples
of commands are TFR (transfer), USR (user), and CHG (change). One TCP/IP packet can
have more than one command. The commands are separated using carriage-return/linefeed
(CRLF, \r \l). [40]

Login

MSN uses the Mobile Status Notification Protocol (MSNP) to connect to the NET Messenger
Service. The .NET Messenger Service offers its service on port 1863 of messenger.hotmail.com.
Microsoft disclosed version 2 (MSNP2) to developers in 1999 in an Internet Draft [91], but
did not release newer versions to the public. For Windows Live Messenger MSNP13 has been
used.

By default the MSN servers are waiting on port 1863 for clients to connect. If this port is
blocked, clients will attempt connections on the very common destination port HTTP (80).
MSNP is able to tunnel IM traffic via HT'TP by embedding the packets into an HT'TP POST
request; this causes the packets to pass through security measures such as firewalls. [67]

Users attempting to access the MSN network must first contact the DS to request login, which
then redirects the user to the .NET Passport Nexus Server for authentication. Communication
with the DS occurs in plaintext and contain information such as the account name and the
operating system and hardware platform. Communication with the Nexus Server occurs over
an encrypted Secure Socket Layer (SSL) HTTPS connection, to prevent the password from
being transmitted in plain text. If authentication is successful, the client may connect to the
NS.

[oms | [= | [=]
T T T
| lngin request | |

] |
I acknowledgement____! !
| === |
E—SLL [passwd) | |
o I
: SLLOK 1 I
- |
| login |

|

: contact fist
*_______———l———-_-_-_-_|
i

Figure B.1: Login sequence diagram

Figure B.1 shows the sequence diagram of the login process. Client A requests to login and
the DS confirms. Client A will use the Secure SSL connection to send the password and the

107

B.3. MSN Appendiz B. Additional information: Overview of VoIP systems

DS responds over this secure SSL connection to confirm the login. Now client A can contact
the NS. The NS will respond with an acknowledgement and the contact list.

During a connection to the MSN presence service, the client will synchronize now and then
the data with the server. These data include account names of all contacts and their phone
numbers. The synchronization process occurs in plaintext. After a successful authentication
these kind of information is also synchronized with the server.

Buddy search
To expand the contact list, it is possible to search for a buddy. Figure B.2 show the sequence

| MSNMS UBX (buddy}—
1‘,...-—-—-—"';5;_ :
M
|]
| 1

Client & NS | Client B
A sns anc {budey) ‘I‘ f
i I
I MSNMS ADC {buddy)— MSNMS ADL I
b —— |
ATASNMS ILN (buddyl—
| | |
b .S
l—\)l |

I
I
I
I
I
I
I

Figure B.2: Buddy search sequence diagram

diagram of the buddy search. First it sends a request to the NS with the msn name of the
buddy to find. The NS sends a request to Client B to ask for permission. If Client B accepts,
an acknowledgement will be send to the NS and now the NS is allowed to send the new buddy
data to Client A, which is done by sending a new contact list. Messages are send by the MSN
Messenger Service (MSNMS) protocol.

Messaging

‘ Client A ‘ ‘ 55 | ‘ Client B ‘
T

| BIT message I

I ! BIT message
Sand message \

N

|
|
|
Farward message |
|
|
|
|
|

|

I I

I I

| I

I I

| I
Figure B.3: Messaging sequence diagram

Sending a text message occurs in plaintext. Messages are sent to the SS, the MSNP messaging
server.

Figure B.3 shows the sequence diagram of text messaging. Client A sends a message to the
SS, which forwards the message to Client B. Client B might respond with an own message,
and sends it to the SS, which forwards it to Client A again.

108

Appendiz B. Additional information: Overview of VolIP systems B.3. MSN

Filetransfer

[lien
. T
Filetransfer reguest

T
| |
| Filetransfer request l
I

S
T

)

|

1

H ACK

[
| |
| IP address B IF Bddesa o |
| I |
Ready for receiving
|
|
|

Filetransfer
1

I
: Ack

e TR |
| 1 |
I 1 i

Figure B.4: File transfer sequence diagram

Figure B.4 shows the sequence diagram of file transfer. If Client A wants to send a file,
it has to sent a request to the SS. The SS forwards this request to Client B. If client B
accepts, it sends an acknowledgement to the SS. Now the SS is allowed to distribute the IP
addresses to both clients, so they can setup a peer-to-peer connection. When client B receives
this message with the IP address of Client A included, it will send a message to Client A
to inform it is ready to receive. Client A will receive this message directly form Client B,
because it has received the IP address of Client B. Client A will now send the file and Client
B will acknowledge it afterwards.

Call

Figure B.5 shows the sequence diagram of a call. If Client A wants to have a conversation
with Client B, it has to send a request to the SS, which forwards it to Client B. If Client B
accepts, the SS is allowed to distribute the IP addresses to both clients. Client B sets up a
SIP connection. It sends an invite to Client A, which responds with a SIP Trying, Ringing
and OK message. If everything is okay, Client B responds with an acknowledgement. Some
RTCP data will be send to maintain the connection and the conversation between the two
clients is possible. To end the call, Client A sends a SIP Bye and a RTCP Goodbye. Client
B acknowledges the end of the call by a SIP OK and a RTCP Goodbye.

109

B.3. MSN Appendiz B. Additional information: Overview of VoIP systems

A Call request * *
M Call request |
I r-—-—~______b1|
] I
i :‘_____EE_-—-—-—-‘I
I |
) P address B IP address A I
|
! INVITE SIP <IP addr>____———1
SIP fwing :

! SIPRinging =]
SRS . i

SPoK——————)
] |
E‘________"_‘?______—-—A

Conversation
- 1 —
- -

|
|
]
|
RTCF (Goodbye) 1

\/

SIP OK
| RTCP (Goodbye)
I

Figure B.5: Call sequence diagram

110

Appendiz B. Additional information: Overview of VolIP systems B.4. GTalk

B.4 GTalk

Google Talk uses the Extensible Messaging and Presence Protocol (XMPP) and thus this
protocol will be described in this paragraph. XMPP is defines in the XMPP core (RFC
3920) and XMPP IM (RFC 3921) specifications by the Jabber Software Foundation to the
Internet Standards Process, which is managed by the Internet Engineering Task Force (IETF)
in accordance with RFC 2026. [8§]

For VoIP, video and other P2P multimedia, GTalk uses Jingle. Furthermore GT claims to
support SIP in a future release.

A GTalk (XMPP) message may possess the following attributed [36]:
e To: Specifies the intended recipient of the message
e From: Specifies the sender of the message
e ID: An optional unique identifier for the purpose of tracking messages
e Type: An optional specification of the conversational context of the message
e Body: The textual contents of the message
e Subject: The subject of the message

e Thread: A random string that is generated by the sender and may be copied back in
replies; it is used for tracking a conversation thread

e Error: An error code

Login
A Jabber client connects to a Jabber server on a TCP socket over port 5222. This connection
is ”always-on” for the life of the client its session. [23] [25]

When a client connects to a server, it opens a one-way XML stream from the client to the
server, and the server responds with a one-way XML stream from the server to the client.
The advantage of the use of XML streams is the low bandwidth-use caused to the exchange
of simple and small lines of XML.

Figure B.6 shows the sequence diagram of the login process. Client A starts a secure SSL
connection to the Login Server with a 'Client Hello’ message to announce itself. The Login
server responds with the secure TLS message and sends a certificate. Client A and the
Login server will exchange encryption information, like key and afterwards Client A is able to
connect to the Contact server by sending a Jabber request and receiving a Jabber response.
Jabber messages are in XML.

Buddy search

Client A sends a Jabber request to the Contact Server, which responds with a Jabber response.
Client B is not asked for acceptance, but is just added to the contact list of Client A. This
is the main difference with the buddy search process as presented in Figure 3.4, where Client

B has to accept. Furthermore a user does not receive a list of potential buddies while using
GTalk.

111

B.4. GTalk Appendixz B. Additional information: Overview of VolIP systems

Client A Login Server Contact Server
! S5Lv2 Client Hello :
|

TLSw1 Client }:lello_.__—-—-—"‘l
TLSv1 Ce(tiﬁd_:ate‘_,_._-—-—-—"‘l

1
1 |
:TLSv] Encrypted Handshaing rr\essage“l
1
1
1

|
Jabber Reguest <XML=>
'*"\.‘

|
Jabber Response <XML>_______ _ —————

I
I
I
I
1 I
I I
1 I
I
] I
I
] 1 I
TLSv1 Client Key Exchange Handshaking I
1 1 I
I
I
I
I
I
I
I
I
I
I

Figure B.6: Login sequence diagram

' Client A Contact Server
[|
[|
I Jabber response ™
- |
|

I

Figure B.7: Buddy search sequence diagram

does not have to accept the invitation to join the contact list.

Messaging

Figure B.8 shows the messaging sequence diagram. When Client A wants to send a message
to Client B, it sends a Jabber request (the message) to the Contact server, which forward it
to Client B. Client B acknowledges this message to the Contact Server, which forwards it to
Client A. Client B might send a message back (via the Contact Server) to Client A, which
responds (via the Contact Server) to Client B with an acknowledgement.

Filetransfer

Figure B.9 shows the sequence diagram of file transfer. First, Client A sends a Jabber request
to the call server to request for file transfer. The Call server forwards this request to Client
B, which might accept it (and respond to Client A via the Call server). Both clients do a
HTTP get to the Call server and get a HTTP OK respond. To avoid NAT problems, STUN
binding messages are sent to the Call server and between the two clients. Afterwards Client
A is allowed to send the file to Client B, which responds with an acknowledgement.

112

Appendiz B. Additional information: Overview of VolIP systems B.4. GTalk

Contact Server Client B
| 1
I

F/Eﬂ//
TCP
/

Figure B.8: Messaging sequence diagram

Jabber Request <XML> | :
1
I 1 Jabber Response <XML=>
| |
. S R —
i I TP 1
I | I
| I I
I

P | !
1
| | |
1 ! I‘ﬂ'Ti3 get
HTTP get |
| | I
| I
1 1 1
| HTTF OK
\ HTTF OK 1
| I

STUN Binding Request 1
I

|
STUN Birding Response

|
|
| I
| STUN Binding Request :

Figure B.9: Filetransfer sequence diagram

113

B.4. GTalk Appendixz B. Additional information: Overview of VolIP systems

Call

XMPP has an extension to make it possible to do more then only IM, like video and audio
communication. This extension is called Jingle. [88] [89]

With the extension Jingle it is possible for Jabber to create a Peer-to-peer connection to
make voice communication possible. The Jabber Software Foundation published on the 15th
of December 2005 the specification about ”Jingle Signaling” and the specification ”Jingle
Audio” for VoIP. The same day Google published the source code for the library of Jingle:
"libjingle” to implement the specification. [24]

Libjingle also specifies the RTP protocol for transmitting and receiving media across the
network. RTP was improved by the Libjingle developers, STUN and ICE protocols were im-
planted to support a higher interoperability through various NAT and firewall configurations.

[52] found out that GTalk uses the PCMU/G.711u codec by default, but many more codecs
are implemented, like GSM and iLBC. Google claims they are going to support a series of
Speex codecs, which have a good voice quality with good bit rate and are license and patent
free.

Call Server STUN Server
] I

: Jabber F(E';pjﬂﬂse =XML> :
1 :‘—‘_—_ﬂh_—_—_d
i i '
! ! ce 1
i i i
i)]
“— |
1 ! HTTP get :
HTTP gat |]
i | l i
1 |]
1] I
1 HTTP OK i !
i I |
1 I 1]
STUN Binding Request I !
i | STUNBinding Request |
L—_—___T__—,_J STUN Binding Response |

|
STUN Binding Response

]
| STUN Binding Request |
t+ T |
1 | | i
h STUM Binding Respanse | |
1 i]
1] |
| i uop | BTy
— t UDP ! !
¥ | |]
I e
1 | | |
| | Jabber Request <XML>
1 i
| Jabber Response <XML>____1 I]
l—— i 1 i
Tce i] i
| i |]
i

I
1
I | I
1

Figure B.10: Call sequence diagram

Figure B.10 shows the sequence diagram of a call. It is almost the same as Figure B.9. Client
A sends a request for call, Client B accepts, HT'TP get and OK messages are exchanged and
STUN Binding messages are exchanged. The difference between call and filetransfer is that
for the call both Client A and B needs to send STUN Binding messages to the STUN server
and that Client B sends a STUN Binding request to Client A, in stead of Client B sending
to Client A.

Afterwards it is possible to have the voice conversation. If Client B ends the call, it will send

114

Appendiz B. Additional information: Overview of VolIP systems B.5. Yahoo

a request through the Call server to Client A, which acknowledges this request. Of course,
Client A is also allowed to end the call.

B.5 Yahoo

YMSG is the Yahoo! Messenger Protocol. Some parts of YMSG rely on other protocols. For
example, file transfer is initially negotiated using YMSG, but the actual transfer of the file is
done via HTTP. Regular webcam connections use H.323 and a PC-to-PC call uses SIP. The
calls are handled indirectly by the Yahoo! Servers, so the client does not have direct access
to it. [62]

A YMSG packet starts with the letters YMSG. If the client sends the packet to the server,
the byte that follows is the version of the protocol. If the server sends it, the following byte
is zero.

Appendix Aoverview describes the header for YMSG packets.

Login

YMSG communicates between clients and the server, using a TCP connection to cs.yahoo.com
on port 5050 by default. Other ports may be used if this port is blocked. If other ports are
also blocked, the alternative is a HTTP route.

The client remains logged in for as long as the TCP connection is still open. In case of the
HTTP connection, the client remains logged in until the client fails to send a request for some
time (”ping” messages are sent about every thirty seconds). [63]

The login for YMSG is quite complex. First, the client introduces itself with a message
containing its username. The response of the server is a 24-character string. In return, the
client puts this into an algorithm, along with the password and sends the two 24-caracter
strings back to the server. These two strings contain an MF5 crypt hash of the password as
well as the encrypted user name. If these values match, the client is authorized and will get
the data associated with the account (like the contact list). Once the server verifies the user,
a random X-byte cookie is sent back to the client. The client can now use this cookie for
various functions, such as checking when new email arrives. Once the cookie is received, the
client changes the status to online and is ready for messaging. [87]

Figure B.11 shows the sequence diagram for the login. Client A first sends a message con-
taining the username to the IM Server. The IM server responds to this. Next Client A will
connect to the Login Server by sending the username and password. If this is correct, the
Login server will respond with an okay message. Now the client is allowed to send a request to
the IM server and receives the contact list in response. Furthermore, the Client has to register
itself to the SIP server with a SIP REGISTER message. The response of the SIP server will
be SIP OK, SIP SUBSCRIBE and SIP NOTIFY, all over the secure SSL connection. Also
STUN binding messages are sent between Client A and the STUN server.

Buddy search
Figure B.12 shows the sequence diagram for the buddy search. Client A sends an add buddy
request to the IM server. The protocol YMSG is used again. The IM server checks whether

115

B.5. Yahoo Appendiz B. Additional information: Overview of VoIP systems

| Clirta

| 1M Server | | Login Server ‘ ‘ SIP Sarver

[

1 1
L__Client Ausername |
1
1

Client Ausei_nams/—Jl
|

|
\—_ Handshaking + ussmame + passwd

I
I
Handshaking + passwd ok____——

o —————

I
lient A username + cookia?
|

|

|

|

|

|

| |
Buddy data (all}—+ |
| |
|

|

|

|

I

I
|
| SSLSIP REGISTER
|
I
I

SSLSIPOK |

SEL SIP SUBSCRIBE usemame@SIPserverlPaddress:port___—|
=

| |

| STUN Binding message
|
|

| owesree P

|

|

|

I |

! SSLSIP OK }

I

I |
|
I

Figure B.11: Login sequence diagram

Client B accepts the invitation. If so, an acknowledgement and the contact information will
be send to both Client A and Client B.

Messaging

Figure B.13 shows the sequence diagram for the messaging. Client A has been notified of the
IP address before and is now able to send data directly to Client B. The moment the user of
Client A starts typing, Client B will be notified of this, and might acknowledge it. When the
message is sent, Client A sends a message it is having a chat session to the IM server. Next
it is allowed to send the message to Client B. The IM server responds with a chat session
ACK. And also Client B responds with an acknowledgement. Client B might send a message
back. The moment the user of Client B starts typing, Client A receives a message of this and
acknowledges it. When the message is sent, the IM server will be notified.

Filetransfer

Figure B.14 shows the sequence diagram for the filetransfer. If Client A wants to send a file
to Client B, it sends a request to the IM Server. The IM server notices both clients about the
file transfer. Client A is now allowed to send information about the file via the IM server to
Client B. If Client B accepts, Client A sends the file using HTTP and Client B acknowledges
it.

Call

Figure B.15 shows the sequence diagram for the call. Yahoo is using SIP with a secure
SSL connection. Client A first sends a SIP INVITE via the IM server to Client B. Client
B responds with a SIP Trying, SIP Ringing and SIP OK. Furthermore some STUN binding
messages are needed. Now Client A is allowed to send the file to Client B, which acknowledges
it. Closing the connection is done by SIP Bye messages, with a SIP OK response.

116

Appendiz B. Additional information: Overview of VolIP systems

B.5. Yahoo

=N =3 =

! YMSG yahoo_service_addbuddy :

.

Yh:lSG yvahoo_service addbuddy | server a.ck

YMSG yahoo_service_y7_authorization, server ack
| P |

I
[¥YMSG yahoo _servica y7_authorization|

|
I

Figure B.12: Buddy search sequence diagram

WMSG yahoo_service y7_authorizationd
| |

| YMSG yarm_ser\rice__addbuddy_--l

¥MEG yahoo_add_service_addbuddy, server ack
1 |

YMSG yahoo_service y7_authorization, server ack
i |

Client A M Server Client B
[1 |
: YMSG natify yping :
I 1
T
: ack

|
I
i |
I I
| ([|
!

I

I
[
: ¥YMSG chatsession ack— I

Figure B.13: Messaging sequence diagram

117

B.5. Yahoo Appendiz B. Additional information: Overview of VoIP systems

Client A I Server Client B

Y!‘.‘\:SG FileTransfer usamams+ B :
| \4 |
| |
: YMSG FileTransfer ack—Jr_mse FileTransfer ack :

I |
| I i

¥MSG FlleTransfer info (flenagpe) YMSG FileTransfer—,
| |
| |
| L_YMS3G FllaTransfer ack |

| I |

| I |
| | YMSG FileTransfer accepty
|

| YMSG FlleTransfer ack—

s e

HTTP {file)

|
I\‘

: i HTTP (file)

| I

| IR&
| I

|

|

|

e

Figure B.14: Filetransfer sequence diagram

118

Appendiz B. Additional information: Overview of VolIP systems B.5. Yahoo

Clent.A SIP Server _
| : i
| | |
: S5L SIP Invite :
| =mmrrre. o
i | |
' | SSLSIP Trying
I |
' i o
| SSLSP Trying——7 o- o Rlngmg.a———-*l
|
+—S5L SIP Ringing— SSLSIP oK_—
I SSL SIP OK_—

| siuw
SSL SIP Ack I [
| |
| |
SSL SIF Ack |
| |
|

1
STUN

|

|
[

|

SSL SIF Bye I |
:‘H |
[|
il

SEL SIP DK_,_._._-r-':

S5L SIP OK_—

Figure B.15: Call sequence diagram

119

B.6. ICQ Appendiz B. Additional information: Overview of VolIP systems

B.6 ICQ

The protocol OSCAR is used for the communication. OSCAR uses a binary/hexadecimal
coded command syntax that is structured using a series of "frames”. OSCAR frames are
therefore not easily read, as commandos do not translate directly into meaningful text. OS-
CAR is used by both ICQ and AIM clients. [65]

OSCAR provides two methods for user authentication, referred to as ”Channel 0x01” and
"MD5-based” authentication. Both methods transmit a portion of information in plaintext,
including client version, account name, and the country the user is located. Channel 0x01
authentication encrypts a password using a method called roasting. This method is not
secure and an intercepted password can be easily decoded. MD5-based login uses an MDb5
authentication key acquired from the login server. This key makes it possible to encrypt the
password before sending it to the server. The MDb5 authentication key is changed at each
login and a password cannot be easily recovered as in the roasting method.

Packets are called FLAPs. Most of the commands are sent in SNAC packets that are contained
within the FLAP packets. Each FLAP packet has a FLAP header. Appendix B presents these
headers.

Login

During the login, OSCAR will first try to login on login.oscar.aol.com, with the default port
5190. If the default port of an OSCAR client is blocked by a firewall, the clients are able
to use any number of ports to tunnel information. If the login.oscar.aol.com is blocked by
firewalls, a HTTP proxy server (www.proxy.aol.com) can be used. In this case, an HTTP
header will be added to all the packets.

Figure B.16 shows the sequence diagram of the login. The client first connects to the Login
Server and sends the screen name and other associated information. The server will ask for
the password. The client hashes the password and sends back a packet with the screen name,
password, and client version information. If these data is correct, the server will respond with
a random X-bit cookie and the IP address of the Basic Oscar Services (BOS) server.

Now the client disconnects from the Login Server and connects to the BOS server. The client
will authenticate itself by sending the cookie it received from the Login server. The server
also sends a package to the client telling how often it needs to send keep-alive packets to the
server. If this rate is disobeyed, the server will invalidate the cookie and the client will be
disconnected. If the client disconnects, the cookie will also be invalid.

Buddy search

Figure B.12 shows the sequence diagram for the buddy search. Client A sends a buddy search
request to the BOS Server. Furthermore it sends an AIM SSI Grant Future Authorization to
Buddy, an Edit Start and Add buddy request. The BOS server acknowledges these messages
and Client A is now allowed to send an Authorization Request to the BOS. The BOS forwards
this request to Client B, which might accept the invitation to join the contact list. The reply
to the BOS will be forwarded to Client A, which will finalize the buddy search.

Messaging

120

Appendiz B. Additional information: Overview of VolIP systems B.6. 1CQ

Clisnt & Login server BOS server

T T
I TCP I

I

| AIM rew connection(}=—1

I |
I

lAINM new connection (ICCH)
I

AlM close connection (BOS IP)
i]

! AlM close connection

]

CP

I\:\q

AIM new connection

I

|

|

|

|

|

|

|

|

I |
|

|

| |
I |
| |
2 |
] |
|

—

Al rew Iuonnecliun
AIM Generic Server Ready
t |

AIM Generic Capabilitiss :

i
-+

|
AIM Generic Message of the day |
t

L }
AlM Rate Info Request |
i

|
|
AlM Rate Info

"
-+

— T I
AM BOS Rights Query I

1 I

E AlM BOS REights (IcC#)

1

I

AIM S5 List()

|
AIM Location set user info

Y

|

AlM Generic Self inte raply
= 1
! AIM 1CQ Request

SRR 5. SO

|

Al Generic Self info reply (ICTH) _‘:

e

AIM Buddylist Oncoming Buddy: <buddyie _1'
AIM ICQ server Variabia Reply (XML) |

-+ .
AIM ICQ Response
-+ -

AIM 1C0 Request

SR

I
I |

I AIM ICQ Short user infor reply (usemame and email)!
2 1

Figure B.16: Login sequence diagram

Figure B.13 shows the sequence diagram for the messaging. The moment the user of Client A
starts typing, Client A sends a Mini Typing Notification (MTN) through the BOS Server to
Client B, which acknowledges it. Now the real message can be send through the BOS Server
to Client B. Client B sends an auto response to acknowledge the incoming message. Client
A will receive the acknowledgement from the BOS server. When Client B wants to send an
message to Client A, the opposite will happen.

121

B.6. ICQ Appendiz B. Additional information: Overview of VolIP systems

Celignt A BOS Server Client B

T T
100 search By UIN Request
|

AlM 551 Grant Future Autorization thcu Buddy
— |
| AlM S5 Edit Start™%

|
| AIM S5 Add Buddy
—

|
| AIM 35l Server Ack |

|
!
!
!
!
!
!
!
!
!
!
| !
| AIM 551 Edit Stop I !
!
!
!
|

e |
Al 551 Send authentication Request
|

AlIM S50 Authentication Request

e |
AlM 551 Send Authentication Rephy
|

|

|

|

|

|
AlM 251 Authentication Reply
I

I

—
55| Edit Stop I :
|L_'_\—-‘—-.___,t |
I I

Figure B.17: Buddy search sequence diagram

Filetransfer
Figure B.14 shows the sequence diagram for the file transfer. When Client A wants to send

MTN = Mini Typing Naotification ﬁ

‘ Client A BOS Server | Client B |

AIM Messaging MTN (icq#clients)
]

: AlM Messaging MTN
| |

| | TCP
1

Tcp —

—
AIM Messaging Qutgoing to <icg#clientB> + message 1

o
| AlM Messaging Incoming + message
|
| AlM Messaging Client Auto Response (icgiclientB)
S s i

J"\IM Messaging Acknowledg'é
f =

AIM Messaging Client Auto Response (icgiclients)
| e

Figure B.18: Messaging sequence diagram

a file to Client B, it first requests Client B via the BOS Server. Client B acknowledges the
incoming message. Afterwards Client A sends the file name to the File Server, which for-
wards this file name to Client B. Client B might accept the retrieval of the file and sends this
acknowledgement through the File Server to Client B. When Client A receives this acknowl-
edgement, it is allowed to send the actual file through the File Server to Client B. The file
will be acknowledged.

122

Appendiz B. Additional information: Overview of VolIP systems

B.6. ICQ

ars.oscar. aol.com

l Client A

BOS Sewerl ‘ File Server | ‘ Client B ‘

AIM M

Figure B.19: Filetransfer sequence diagram

ing Outgaing to <icrgclisntB W‘
[

: AlM Messaging Inc&uning (Milename)
: | TP
AIM Messaging Ar:knuwledg@_-—4—_;_-_-_-_:
| |
| AIM Messaging Incoming | I
l— |
TCP (fiiénarne) 1‘

:
I TCP (filenama)

|
|
|
|
|
|
|

I I

| | TCP ACK (filename)
|
|
|
|

I
| TCP ACK (filename)
I

TCP (flename + cata)

I
I__—_-__—r_-___'_‘M TCP {flename + data):

! TCP ACK (filename] |

[
[
| i
[|
: TCP ACK iflename) ! :
i i |
| [| |
| [i |
[[\ [

ICQ does not use a P2P connection for the file transfer. Furthermore, Client A first sends a

message to Client B. Later on, Client A sends the request for the file transfer.

Call

Figure B.15 shows the sequence diagram for the call. When Client A wants to make a call to
Client B, it first sends a message to the BOS Server, which forwards it to Client B. Client B
acknowledges the incoming message. Afterwards Client A sets up the call through the BOS
Server to Client B. Client B might accept the incoming call to let Client A and Client B have

a conversation.

123

B.6. ICQ Appendiz B. Additional information: Overview of VolIP systems

Client & BOS Server Client B

I | AlM Messaging Incoming

|

| |
| |

AlM Messaging Acknowledg

|g——" 1

|
|
|
| Al Messaging Incomirg | |
ol bbsalbull
l4——CF [call) ! :
|
|
|

i i i

Al Messaging Cuigoing to <icglidientB= |
|

|

I
:L-_-——_'_'_'—_"‘ TCP (call)

: | TP AcK i

| e

j oAkl |
TCP (call) | :

|

|

Sl

Figure B.20: Call sequence diagram

124

Appendiz B. Additional information: Overview of VolIP systems B.7. Skype

B.7 Skype

Skype uses its own proprietary protocol, named Skype.
Login

First of all, while trying to connect to the Skype network, the Skype client will search for
available Super Nodes. Every node in the network has a list of super nodes, which is refreshed
regularly. These list, also called Host Cache and named shared.xml is kept on the local disk
(C:\Documents and Settings\username\Application Data\Skype) of the users computer and
consists of up to 200 entries of Skype super nodes it knows from previous sessions. [64] As
long as the list contains one valid entry (e.g. IP address and port number of an online Skype
node), it is able to connect to the Skype network.

When it is the first time the Skype application is used, the Host Cache is empty. Therefore,
Baset and Schulzrinne found out in [64] that Skype has some bootstrap super nodes hard
coded in the software, which are only used when the client logs on for the first time.

According to [64], Skype is able to solve NAT and firewall traversal issues by using a variant
of IETF’s STUN protocol. Skype is also able to do hole punching [17], to open a port on the
firewall to connect to this port. During the login process, Skype clients automatically informs
all other nodes in the P2P networks of its presence and discovers other online nodes as well.

The steps in the process of connecting to a supernode have been figured out by Baset and
Schulzrinne [64]. These steps are presented in Figure B.21 and discussed in the following text.

First, the Skype client will pick a super node from the Host Cache and tries to connect. This
is done by sending an UDP packet to the IP address and port it finds in the Host Cache. If
the node is not responding within five seconds, the node is probably offline and another node
from the Host Cache will be used.

However, it is also possible that the node is behind a firewall that blocks all UDP traffic, so
on the next attempt to connect to a Super node, TCP will be used.

When even a TCP connection to the addresses and ports of all entries from the Host Cache
fails, it will try a TCP connection to port 80 (HTTP-port). The last attempt to get a TCP
connection will be on port 443 (HTTPS-port). If all these attempts result in no connection,
the Skype client gives up and reports a login failure.

If somewhere in this algorithm the connection to this algorithm is setup, the connection to
the Super Node is successful and can continue the rest of the login process.

Figure B.22 shows the sequence diagram for the login. Client A first sends a UDP Request
to the Super Node, which responds to it and provide the location of the Login Server. Now
Client A can login to the Login Server sending its username and password. When these
information is correct, the Login Server acknowledges it. Now Client A can ask for the online
buddies to different Nodes. The Nodes respond with the online buddies. Also the Super Node
will be asked to send information about the online buddies.

125

B.7. Skype Appendixz B. Additional information: Overview of VolIP systems

Serd UDP
i pacheils) ig HG P
adciress and port

TEP camection
elipmpt wih HE 1P
Bddmss and por

Mo

TGP conaction Buenngs

milompt with HG 1P I'k P

ecddress and padt 80 &
[HTTP pari}

Ko
¥
TCP eairwecizn
eltempt wih HG 1P
address. ard port 443
[HTPS por)

Wini for . seconds

Figure B.21: Skype login algorithm

The Skype Client must authenticate the username and password with the Skype Login Server.
This server ensures that Skype names are unique across the Skype name space. Baset and
Schulzinne [64] found out during their experiments that the Skype Client always exchanged
data over TCP with a node whose IP address is 80.160.91.11. This node is probably the Login
Server and this server is hosted by an ISP based in Denmark. However, in my experiments

126

Appendiz B. Additional information: Overview of VolIP systems B.7. Skype

Client A Super Node | | Login Server Node
: UDP Request i |[
| UDP Response__ :
I
I
]

|
p—TCP connect (usermame, password)
]

SIS B S S

T
|
|
I
|
|
|
|
|
|
|
i I
UDP Searching for buddies :
I
|

/

] | I

| UDP Response online buddies_____————1

L I

TCP Request online buddies IL I

I

[|

TCP Response onling buddies Il I
l.._———-_-_-l

Figure B.22: Login sequence diagram

this IP address never shows up. According to the whois database of RIPE [37], this IP address
is indeed located in Denmark, but there is no evidence that this IP address belongs to the
Skype company. The IP ranges that belongs to the Skype network according to Ripe can be
found in Appendix B.

A newer research, presented by Mirtic and Radusinovic [68] shows the Skype network has
been grown, which means more Login Servers are used now, and thus more IP addresses can
be used for the login process.

Buddy search
Skype has developed the Global Index technology [44]. This technology allows super nodes

Client A (Super) Node Client B

T
|
|
|
|
w— UDP | i
|
|
|
|
|

LIDP
‘\H\J
I
I |

Figure B.23: Buddy Search sequence diagram

to communicate in such way that all other nodes in the network are aware of the available
users. The Global Index technology is a multi-tiered network where super nodes communicate
in such a way that every node in the network has full knowledge of all available users and

127

B.7. Skype Appendixz B. Additional information: Overview of VolIP systems

resources with minimal latency.

According to [66] to search for a user, a Skype client sends a request to its supernode, which
apparently responds with four IP addresses with respective port numbers. Skype clients
exchange TCP packets with its supernode and UDP packets with other nodes. It is unclear
why Skype uses different types of packets with different nodes. As long as the Skype client
does not find the user, it continues to request for new nodes to contact from its super node.

Figure B.23 shows the sequence diagram for the Buddy Search. Requests for a new buddy
are send to several (super) nodes. If the buddy is found, Client A receives the IP address,
and is able to contact Client B.

Messaging
Figure B.24 shows the sequence diagram for the Messaging. Client A first contact the Super

‘ Client A | | SuperNode | | Client B

T
I TCP I |
|
|

e ey

1 I I

Figure B.24: Messaging sequence diagram

Node to find Client B. Client B will get the IP address of Client A to setup a peer-to-peer
connection between the two clients, so Client A can send a message to Client B and opposite.

Filetransfer

Figure B.25 shows the sequence diagram for the Filetransfer. Again, Client A first contacts
the Super Node, to find Client B. Client A will receive the IP address of Client B to setup a
peer-to-peer connection to send the file to Client B. Client B will acknowledge the reception
of the file.

Call

Skype always uses TCP to signaling, because the signaling is the most critical part of call
establishment. In case the caller is behind a NAT, the caller first has to contact another
online Skype node, which will forwards the packets to the receiver. This means, if a peer is
behind a NAT, it will need assistance from other nodes in the network, which have either
public IP or are not firewall restricted, to establish phone calls.

128

Appendiz B. Additional information: Overview of VolIP systems B.7. Skype

Client A Super Node Client B

. S
|
I

Figure B.25: Filetransfer sequence diagram

For the voice transmission, mostly UDP packets are used. TCP is used in case the caller or
receiver is behind a NAT and UDP-restricted firewall. The voice messages in Skype have to
be encrypted end-to-end, since the messages travels through other, possible unreliable nodes
in the P2P network

[66] concludes that Skype works seamlessly behind most of the NAT and firewalls, calls are
encrypted end-to-end since all the calls are routed through public Internet and Skype is not
pure P2P system since login server is required.

Client A Super Node Client B

|]
TCP ! TCP

|
| ——e——p |

| TCP I
|

TCF I
:\4\‘!
1 I
I TCP
— |
i LIDFP

! I
LIDP

\ |
:\mN;
i

I |
I TCP

Figure B.26: Call sequence diagram

Figure B.26 shows the sequence diagram for the call. Again, Client A first connects to the
Super Node to setup a peer-to-peer connection with Client B. Now it is possible to have a

129

B.7. Skype Appendixz B. Additional information: Overview of VolIP systems

conversation.

130

Appendix C

Additional information: Validation

This appendix validates the design. It gives a validation with sequence diagrams, where the
VoIP systems are connected using several scenarios. Which events happen and what the
responses are can be illustrated in such kind of sequence diagrams.

Because the login is done without the use of the Gateway, login does not have to be validated.

BIT message MSN, ICQ, Yahoo

No BIT message GTalk, Skype

Potential buddies Skype, ICQ (partly)

No potential buddies | MSN, GTalk, Yahoo, ICQ (partly)
Buddy ack MSN, Yahoo, ICQ

No buddy ack GTalk, Skype

Table C.1: BIT messages and potential buddies

Table C.1 shows which VoIP system supports Buddy Is Typing (BIT) messages, which VoIP
system provides a list of potential buddies after a buddy search and which VoIP system needs
the acceptance of the buddy to add the buddy to the contact list.

C.1 Buddy search

Figures C.1 till C.13 show the sequence diagrams for the Buddy search. A buddy search is
done as explained in Chapter 8, first a message with the buddy search request in it is sent to
the Gateway, then a buddy search on the other side, afterwards a message back to the sender
with the buddy name, and last a buddy search for the Proxy.

The sequence diagrams shows three differences. First of all, some VoIP systems send Buddy
Is Typing (BIT) messages, before sending the actual message, others do not. Second, some
VoIP systems provide a list of potential buddies, others only provide the matching entered
buddy name. At the left side of the diagram, both the BIT message and the potential
buddies can happen (or not). At the right side, only the potential buddies can happen. This
means 23 = 8 possible scenarios exists for these two differences. Third some VoIP systems
ask for acceptance of the buddy before adding the buddy to the contact list, others do not.

131

C.1. Buddy search Appendiz C. Additional information: Validation

1 ULLA 4 Pg\”N‘V 5 aw 6 Proxy A 7 ULLB 10

i ' i i i i
! 4 ProyB| | | | |
Type meg (msg) — | | | |
— 1 Receive BIT msg I : ! !

[I |
Send msg (msg) —:—:—b translate BIT : : :

1 I
— Receive msg {imsg) > | | |
| 4:_%, translate msg (msg) [! :
| o — er buddy name Buddy search |
) o | Create ; | I
: : : : Prosy : Receive ible buddies :
' Vo !) A Mranslate buddies poss |
| Send BIT message Translate budi i | I
Receive BIT message - | | '
ve : Send messdge : ' : '
Receive message 71 I | I I
 — 1 I | 1 | 1
Send BIT message S : : : :
Send message % translate BIT i | |
TS rememsofm) > : | |
' — translate msg (msg) ' l |
1 [Translate buddy I 1
| . |) St posste bty |
| N | | — |
1 1 1 | I | 1
i . I acknonledge budy i
| | Ty | poy | 4TSRSy T |
1 Send BIT message «—F [PrEgy § | 1
Receive BIT message <« I S | | |
— Send messqge | | I |
Receive message T T | 1 | 1
« [| 1 | I
btz | | | | |
— T [I | I I
Enter buddy name : : : : : :
45——’ 1 1 | I | I
Receive possible buddies b | | | |
ible b P | | | i
Select possible buddy Reguestof buddy ! ! : |
I Accep] buddy | | | |
acknowledge buddy A I [| 1
e B | | | |
| 1 | 1

Figure C.1: ICQ — Skype

This makes five more scenarios exist. Summed up with the 8 possible scenario’s, 13 possible
scenario’s are presented in this section.

Figure C.1 shows the sequence diagram for an ICQ application at the left side (VoIP system
A) and a Skype application at the right side (VoIP system B). ICQ first sends a BIT message,
before sending the actual message. At the Gateway the command ”Search buddy” is activated
and thus a buddy search happens at the network of VoIP system B. Skype first provides some
potential buddies, so a message with the list of potential buddies is sent to the ICQ client. The
user sends a message to the Gateway with the buddy it wants to select. Now the Gateway
selects the buddy in the Skype network. The found buddy is added to the contact list, a
Proxy B is set up (as a copy of this new found buddy) and the name of this Proxy is sent
to the ICQ client. Because it first sends a BIT message, the user first sees (shortly) the BIT
message. After receiving the buddy name, the user searches for the Proxy in its own network.
As response, a contact list with the added buddy is sent.

132

Appendiz C. Additional information: Validation C.1. Buddy search

1 ULLA 4 Pg\’;v‘y 5 GW 6 Proxy A 7 ULLB 10
: ' : : : :
| 4 Poys| | i i |
Type meg (msg) A i i i |
— Receive BIT I'T'Sg I I I |
Send mlsg (msg) 4ii> trarslaltte BIT i i i
! ’ Receive msg qrrsg) 1 > : : !
| H > translate msg (msg) _ 1 I |
| o Y i Eer buddy name Buddy search l
! [| B e 4 > |
i i i i A . Ial: - Receive possible buddies i
i : Translate buddi oale buddes D E— i
| Send BIT megsage - i | I
Receive BIT message “—t—1 1 I 1 |
- Send message : : : :
Receive message 1 i i d 1
< I I I I I |
Send BITI message L : : : :
Send message Rg.—k.mve.BlT e translate BIT | | |
— Receive meg (msg) — i | |
! — translate msg (msg) ! | |
| I > Translate buddy o I ble bucdy I
1 o 1 1 lect possible |
—
l Do i i — Request of buddy
| | | | s
! L . ! oot budly |
! eate | Tranglate buddy
1 I 1 I |
: Translat
! Send BIT message Jransiate buddy P’g"y —t I !
' “——+— I [} [} |
Reoewe BIT message Send message : : : :
Pk : ! : |
Open buddy search screen i i i i i i
' I 1 I I 1 |
Enter buddy name [| 1 1 |
! Requestiof buddy ! ! | |
: e b : : : |
acknowledge buddy G‘—';I | i i i i
i i i |
1 1 1 |

Figure C.2: MSN, ICQ, Yahoo — ICQ

The same idea happens for Figure C.2. Here the left side (VoIP system A) can be MSN,
ICQ or Yahoo and the right side (VoIP system B) can be ICQ. This means MSN to ICQ and
Yahoo to ICQ can be realized.

The same idea happens for Figure C.3, although in this figure Skype does not accept the
buddy search request (and the buddy search request is successfully completed). Here the left
side (VoIP system A) can be MSN, ICQ or Yahoo and the right side (VoIP system B) can be
Skype. This means MSN to Skype, ICQ to Skype and Yahoo to Skype can be realized.

Figure C.4 shows the diagram with on the left side ICQ and on the right side MSN or Yahoo.
Figure C.5 shows on the left side ICQ and on the right side GTalk. Figure C.6 shows on the
left side MSN, ICQ or Yahoo and on the right side MSN, Yahoo or ICQ. figure C.7 shows on
the left side MSN, ICQ or Yahoo and on the right side GTalk. Figure C.8 shows on the left
side Skype and on the right side ICQ. Figure C.9 shows on the left side GTalk and on the
right side ICQ. Figure C.10 shows on the left side GTalk and on the right side Skype. Figure
C.11 shows on the left side Skype and on the right side MSN, Yahoo or ICQ. Figure C.12

133

C.1. Buddy search Appendiz C. Additional information: Validation

1 ULLA 4 Pg\’NXy 5 GW 6 Proxy A 7 ULLB 10
T I T T T T
[} I | | |
: 4 ||Pave)) : : :
Type meg (msg) . i | | |
— Receive BIT nsg | | i |
Send nr?g (msg) 4ii> trans!alie BIT i i i
- Receive msg (msg) — T ! ! !
: ! q > translate msg (msg) | : :
| B b gy e gy e |

e]
e . L A e
I Lo 1ot A ranslate buddies "o Posslole buddles |
[Send BIT mﬁsage Translate buddies — ! !
Receive BIIT message D LI ¢ 1 : : :
« Send message : : : :
Receive message ——— H | | |
< | 1 1 | | |
Send BI'I'I message L : : : :
Send message m transiate BIT | | |
—T Receive msg msg) — | | |
: 4'—'—PI ' translate msg (msg)] : :
! . — Translate budy ! |
| [I T Select possible buddy I
| B | : — :
i i i i i admaMec!ige buddy i
! . ! Oreate | Transiate buddy |
1 | 1 ! | |
- Translate buddy |
oy T Jh gy FEEE |
e MeSSage Send messdge Lo ! ! !
Receive message «——

«— Do | | | |
Open buddy search screen i i i i i i
cntye | a | | |
. Request of buddy | | | |
1 ——» 1 1 1 |
! Joop{ by | : : :
aCkn(M‘edge bUCUV | [} [} | | |
NN | | | |
I | | |

Figure C.3: MSN, ICQ, Yahoo — Skype

shows on the left side Skype and on the right side GTalk. Figure C.13 shows on the left side
GTalk and on the right side MSN, Yahoo or ICQ.

All these figures combined show the connections between all five VoIP systems for the buddy
search.

134

Appendiz C. Additional information: Validation C.1. Buddy search

O O

W 1 ULA 4 Pg)v‘y 5 W 6 Proy A 7 ULB LOW
| ' : : : :
| 4 A | | |
Type g (eg) . | | | |
— Receive BITrsg ! | ! ,
Send ey (Tsg) — trarslate BIT : | !
: ’ Receive nsg imsg)] ’ : : i
| ' translate meg (sg) o tulidy | !
| | | » er name I
: N e T, RS |

| Lo ! Proxy | | Reqest of buddy

| Lo | A | I m

| L JR— o acknowledge bucly —r

. Qregte ! " ——

I L] Trandlatebukdy | progy | 4o Y ! !
I Send BIT message «— i | |)
Reoeive BIT message ‘—'—HSerd essie R B | ! ! :
R S | | |
Open buddy search screen i i i i i i
Enter tuljdy name l : : : : :
o Requestiof buddy | | | I
| WW' | | | |
acknowlecige buddy - ! ! ! !
| b | | | |
| | | | | | 1
| | | | | | |

Figure C.4: ICQ — MSN, Yahoo

135

Appendiz C. Additional information: Validation

Buddy search

C.1.

Sl

ULLB

Proxy
GW

<t

ULLA

il

translate BIT

Receive possible buddies

Figure C.5: ICQ — GTalk

136

Buddy search

C.1.

Appendiz C. Additional information: Validation

ULB

M~

Proxy A

Proy
el

<

<

ULA

translate BIT

=D

translate msg: (msg)
I
I
I
I
I
I
i
achty
|
I
1
|
I
|
I
|
1
I
I
1
|
1
|
I
I
I
I
[}
I
I
1
I

Figure C.6: MSN, ICQ, Yahoo — MSN, Yahoo, ICQ

137

Appendiz C. Additional information: Validation

Buddy search

C.1.

UuLB

Proxy A

<t |

ULA

R S .m
g

S

Figure C.7: MSN, ICQ, Yahoo — GTalk

138

Buddy search

C.1.

Appendiz C. Additional information: Validation

10

ULLB

7

Proxy A

" Create
B

|

I

|

I

e buddi
translate msg (msg)

Select possible buddy
|
acknowledge buddy
I
I

Figure C.8: Skype — ICQ

139

Appendiz C. Additional information: Validation

Buddy search

C.1.

10

ULLB

ULLA

1 ——
g
1 4 i
© pem—m—m———————— M, |lm ||||||||||||||| Wu |||||| m ||||||||||||||||||||
M MWA MMB
Eey Z
o Bl 8| _________ Bl m
§ 8 . g
% E £ 5 &
&

2 N T T
I |l i S 1N A S |
:

Figure C.9: GTalk — ICQ

140

Buddy search

C.1.

Appendiz C. Additional information: Validation

ULLB

7

i

|

I

|

|

|

|

|

I

|

|

Buddy search
|)
Receive possible buddies

I

|

|

|

|

|

|

|

I

|

|

I

|

Select possible buddy
|
acknowledge buddy

<

g

T mm M

I 5 I 1 I
= ey

5
i
1
1
I
1
I
1
I
|
'ITBQ
I
:
1
e buddies
translate msg (msg)
I
1
I
1
1
I
i
e buddy Proxy
I
1
[}
I
1
I
I
1
[}
1
1
I
1
[}
I
1
1
I
1

il
mog
e
e mog freg)
| 1

ULLA

Figure C.10: GTalk — Skype

141

Appendiz C. Additional information: Validation

Buddy search

C.1.

ULB

Proxy
el

<t

ULLA

|

Figure C.11: Skype — MSN, Yahoo, ICQ

142

Buddy search

C.1.

Appendiz C. Additional information: Validation

ULB

O]
]

:
I I
o

NI
E

Proxy A

Proy
GW

< be_——_—e

ULA

1
i
|
Type msg (msg)
(msg)
Receive message

Figure C.12: Skype — GTalk

143

uLB

Appendiz C. Additional information: Validation

Proy

ULA

Buddy search

C.1.

GTalk — MSN, Yahoo, ICQ
144

Figure C.13:

Appendiz C. Additional information: Validation C.2. Messaging

C.2 Messaging

7@ 1 ULA 4 RoyB 5 av 6 RoyA 7 uLB 107(

| | |
Twa'rr@(nxj N : : :
——» RoedTnyg | | l I
e e S L S | |
I e ' | I I
| — T TR tarddensy(Te) ! |
: : — i, S () .l
| | I | SN FHB\er:mg(n@
| | i | | i
| | [[[|
| | | | | |
Figure C.14: MSN, Yahoo, ICQ — GTalk, Skype
7@ 1 ULA 4 RoyB 5 aN 6 RoyA 7 uLB 1_07@
i | [[[|
Tyeefsg (e i | | | |
! Recsve BITITey ! ! ! !
Serdinsg (vs0) —L— tardae BT | | !
— " Redeng(sg — e BT l |
! R rarsiete ey (Teg) e A 1 I |
a T i
| i N
I : I
| I I I Sednsgy (M=) .
| | | | | Recehve ey (eg)
| | | T
|
| | | |
1 [| |

Figure C.15: MSN, Yahoo, ICQ — MSN, Yahoo, ICQ

Figure C.14 till C.17 show the sequence diagrams for the Messaging. The differences are the
BIT message, a VoIP system offers it or not. This provides four possible diagrams. Figure
C.14 shows on the left side a BIT message, but not on the right side. Figure C.15 shows on
both sides the BIT messages. Figure C.16 shows on both side no BIT messages and Figure
C.17 shows only on the right side BIT messages.

Again, all these figures combined show the connections between all five VoIP systems.

145

Appendiz C. Additional information: Validation

C.2. Messaging

Ql

uB

i

Figure C.16: GTalk, Skype — GTalk, Skype

uLB

Figure C.17: GTalk, Skype — MSN, Yahoo, ICQ

146

Trandiate dosed call ack i
—

Appendiz C. Additional information: Validation C.3. Call
C.3 Call
W 1 ULA 4 Proy B 5 GV 6 Proy A 7 uLB 1_07(
| [] I] |
subaa | | : | :
— Recehe cal Trarstzte call oo I I
| R m— I . |
I I A — I Setup call Recei
i i | : —1 —
| | | 5 Adonledge cal po
I I ! Trandate ack I
! Acoept call Trandate ack 4_:_ : :
Adaomledoe call : : : : :
At | | | | |
— Audo : I | I
Trandlate audo
| | | ! |
| T > Temeas At e
| | | 1
| | | o =B
Audo
| |) ! Audio ¢ B
| | ! Trandate audio —F I
I Au'do Trandate audo «—— | I
Ao — | i | |
—F | I I I |
Close cal N I I I |
—L Call is dosed Trarslate call is dosed o | |
! 4:_, : Traslate(}l'all is dosed osecall !
I Serd dosed call ack : — — Callis dosed
| | | | ——
Receive dosed call ack | Recaive dosed call ack Send dosed call ack
I
|
|
|

Figure C.18: MSN, Yahoo, GTalk, ICQ, Skype — MSN, Yahoo, GTalk, ICQ, Skype

For the call, only one sequence diagram show the connections between all five VoIP systems,
because all VoIP systems handle the call (setup, tear down and the audio transfer) as the

same way at this abstraction level. Figure C.18 shows this.

147

Bibliography

Bbc - history, alexander graham bell (1847-1922), 12-09-2006. Available from: http:
//www.bbc.co.uk/history/historic_figures/bell_alexander.shtml.

Cerulean studios: Creators of trillian and trillian pro instant messengers, 13-03-2007.
Available from: http://www.ceruleanstudios.com/.

Bolt, beranek and newman, 13-10-2006. Available from: http://nl.wikipedia.org/
wiki/Bolt, _Beranek_and_Newman.

History of voip - intertangent technology directory, 13-10-2006. Available from: http:
//www.intertangent.com/023346/Articles_and_News/1413.html.

Osi model, 14-03-2007. Available from: http://en.wikipedia.org/wiki/0SI_model.

Circuit switching, 14-11-2006. Available from: http://en.wikipedia.org/wiki/
Circuit_switching.

Comparison of instant messaging clients, 14-11-2006. Available from: http://en.
wikipedia.org/wiki/Comparison_of_instant_messaging_clients.

Comparison of instant messaging clients, 14-11-2006. Available from: http://www.
answers.com/topic/comparison-of-instant-messaging-clients.

Faq google talk, 14-11-2006. Available from: http://www.google.com/talk/about.
html#privacy.

The google blog, 14-11-2006. Available from: http://www.thegoogleblog.com/
gtalk-tweaks/.

Google talk, 14-11-2006. Available from: http://en.wikipedia.org/wiki/Google_
Talk.

Google talk and open communications, 14-11-2006. Available from: http://code.
google.com/apis/talk/open_communications.html.

Google talk poligamy patch, 14-11-2006. Available from: http://www.softpedia.com/
get/Internet/Chat/Instant-Messaging/Google-Talk-Poligamy-patch.shtml.

Google talk: Run multiple instances or login as multiple users, 14-11-2006. Available
from: http://www.tech-recipes.com/google_tips975.html.

149

http://www.bbc.co.uk/history/historic_figures/bell_alexander.shtml
http://www.bbc.co.uk/history/historic_figures/bell_alexander.shtml
http://www.ceruleanstudios.com/
http://nl.wikipedia.org/wiki/Bolt,_Beranek_and_Newman
http://nl.wikipedia.org/wiki/Bolt,_Beranek_and_Newman
http://www.intertangent.com/023346/Articles_and_News/1413.html
http://www.intertangent.com/023346/Articles_and_News/1413.html
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Circuit_switching
http://en.wikipedia.org/wiki/Circuit_switching
http://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients
http://en.wikipedia.org/wiki/Comparison_of_instant_messaging_clients
http://www.answers.com/topic/comparison-of-instant-messaging-clients
http://www.answers.com/topic/comparison-of-instant-messaging-clients
http://www.google.com/talk/about.html#privacy
http://www.google.com/talk/about.html#privacy
http://www.thegoogleblog.com/gtalk-tweaks/
http://www.thegoogleblog.com/gtalk-tweaks/
http://en.wikipedia.org/wiki/Google_Talk
http://en.wikipedia.org/wiki/Google_Talk
http://code.google.com/apis/talk/open_communications.html
http://code.google.com/apis/talk/open_communications.html
http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/Google-Talk-Poligamy-patch.shtml
http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/Google-Talk-Poligamy-patch.shtml
http://www.tech-recipes.com/google_tips975.html

Bibliography Bibliography

[15]
[16]
[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

33]

[34]

[35]

Google talk to voip, 14-11-2006. Available from: http://www.gtalk2voip.com/.
Gtalk website, 14-11-2006. Available from: www.google.com/talk.

How skype & co. get round firewalls, 14-11-2006. Available from: http://www.
heise-security.co.uk/articles/82481.

Icq, 14-11-2006. Available from: http://en.wikipedia.org/wiki/Icq.

Icq lite starter, 14-11-2006. Available from: http://www.dirfile.com/icq_lite_
starter.htm.

The icq story, 14-11-2006. Available from: http://www.icq.com/info/icqgstory.html.
Icq website, 14-11-2006. Available from: www.icq.com.

Instant messaging, 14-11-2006. Available from: http://nl.wikipedia.org/wiki/
Instant_messaging.

Jabber, 14-11-2006. Available from: http://xmpp.packetlabs.org/jabber.
Jabber, 14-11-2006. Available from: http://de.wikipedia.org/wiki/Jabber.

Jabber entities, 14-11-2006. Available from: http://micro-jabber.sourceforge.net/
?What_is_Jabber’%3F:Jabber_entities.

Jabber: het wat, het waarom, maar vooral het hoe..., 14-11-2006. Available from: http:
//users.pandora.be/cobnet/ict/Jabber/jabber_vvv.html.

List of sip software, 14-11-2006. Available from: http://en.wikipedia.org/wiki/
List_of _SIP_software.

Media gateway control protocol, 14-11-2006. Available from: http://en.wikipedia.
org/wiki/Media_Gateway_Control_Protocol.

Megaco/h.248, 14-11-2006. Available from: http://www. javvin.com/protocolMegaco.
html.

Msn, 14-11-2006. Available from: http://en.wikipedia.org/wiki/Msn.

Msn messenger 4&5 polygamy, 14-11-2006. Available from: http://www.softpedia.
com/get/Internet/Chat/Instant-Messaging/MSN-Messenger-Polygamy.shtml.

Msn messenger website, 14-11-2006. Available from: get.live.com.

New google talk offers instant messaging & voice chat, 14-11-2006. Available from:
http://searchenginewatch.com/showPage.html?page=3529566.

Open mulitple instances of icq, 14-11-2006. Available from: http://www.freevbcode.
com/ShowCode . asp?ID=3253.

Packet switching, 14-11-2006. Available from: http://en.wikipedia.org/wiki/
Packet_switching.

150

http://www.gtalk2voip.com/
www.google.com/talk
http://www.heise-security.co.uk/articles/82481
http://www.heise-security.co.uk/articles/82481
http://en.wikipedia.org/wiki/Icq
http://www.dirfile.com/icq_lite_starter.htm
http://www.dirfile.com/icq_lite_starter.htm
http://www.icq.com/info/icqstory.html
www.icq.com
http://nl.wikipedia.org/wiki/Instant_messaging
http://nl.wikipedia.org/wiki/Instant_messaging
http://xmpp.packetlabs.org/jabber
http://de.wikipedia.org/wiki/Jabber
http://micro-jabber.sourceforge.net/?What_is_Jabber%3F:Jabber_entities
http://micro-jabber.sourceforge.net/?What_is_Jabber%3F:Jabber_entities
http://users.pandora.be/cobnet/ict/Jabber/jabber_vvv.html
http://users.pandora.be/cobnet/ict/Jabber/jabber_vvv.html
http://en.wikipedia.org/wiki/List_of_SIP_software
http://en.wikipedia.org/wiki/List_of_SIP_software
http://en.wikipedia.org/wiki/Media_Gateway_Control_Protocol
http://en.wikipedia.org/wiki/Media_Gateway_Control_Protocol
http://www.javvin.com/protocolMegaco.html
http://www.javvin.com/protocolMegaco.html
http://en.wikipedia.org/wiki/Msn
http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/MSN-Messenger-Polygamy.shtml
http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/MSN-Messenger-Polygamy.shtml
get.live.com
http://searchenginewatch.com/showPage.html?page=3529566
http://www.freevbcode.com/ShowCode.asp?ID=3253
http://www.freevbcode.com/ShowCode.asp?ID=3253
http://en.wikipedia.org/wiki/Packet_switching
http://en.wikipedia.org/wiki/Packet_switching

Bibliography Bibliography

[36]

[37]
[38]
[39]

[41]

[42]
[43]

[44]

Presence and awareness services, 14-11-2006. Available from: http://phoenix.labri.
fr/documentation/sip/Documentation/Papers/Programming_SIP/Presentation/
Liscano.pdf.

Ripe website, 14-11-2006. Available from: http://www.ripe.com.
Rsdevs psgw, 14-11-2006. Available from: http://www.rsdevs.com/psgw.shtml.

Running multiple instances of skype, 14-11-2006. Available from: http://www.
tipmonkies.com/2005/08/18/running-multiple-instances-of-skype/.

Securing public instant messaging (im) at work, 14-11-2006. Available from: http:
//caia.swin.edu.au/reports/040726A/CATA-TR-040726A . pdf.

The session initiation protocol (sip): A key component for internet telephony, 14-11-2006.
Available from: http://www.callcentermagazine.com/article/CTM20000608350019.

Signaling system 7, 14-11-2006. Available from: http://en.wikipedia.org/wiki/SS7.

Sip phone extension for mozilla thunderbird, 14-11-2006. Available from: http:
//cockatoo.mozdev.org/.

Skype explained, 14-11-2006. Available from: http://skype.com/products/
explained.html.

Skype website, 14-11-2006. Available from: www.skype.com.

Skype website, 14-11-2006. Available from: http://www.skype.com.

Skype wikipedia, 14-11-2006. Available from: http://en.wikipedia.org/wiki/Skype.
Stun - wikipedia, 14-11-2006. Available from: http://en.wikipedia.org/wiki/STUN.

Trillian (instant messaging client), 14-11-2006. Available from: http://en.wikipedia.
org/wiki/Trillian_(instant_messenger).

Uplink, 14-11-2006. Available from: http://www.nch.com.au/skypetosip/index.
html.

Virtual audio cable, 14-11-2006. Available from: http://spider.nrcde.ru/music/
software/eng/vac.html.

Voip application development: view from inside, 14-11-2006. Available from: http:
//www.gtalk2voip.com/articlel_en.html.

Website asterisk, 14-11-2006. Available from: http://www.asterisk.org/.

Website ekiga, 14-11-2006. Available from: http://www.ekiga.net.

Website gizmo project, 14-11-2006. Available from: http://www.gizmoproject.com/.
What is mgep?, 14-11-2006. Available from: http://www.tech-faq.com/mgcp.shtml.

What is ss7 - isup?, 14-11-2006. Available from: http://www.asknumbers.com/
Whatisss7isup.aspx.

151

http://phoenix.labri.fr/documentation/sip/Documentation/Papers/Programming_SIP/Presentation/Liscano.pdf
http://phoenix.labri.fr/documentation/sip/Documentation/Papers/Programming_SIP/Presentation/Liscano.pdf
http://phoenix.labri.fr/documentation/sip/Documentation/Papers/Programming_SIP/Presentation/Liscano.pdf
http://www.ripe.com
http://www.rsdevs.com/psgw.shtml
http://www.tipmonkies.com/2005/08/18/running-multiple-instances-of-skype/
http://www.tipmonkies.com/2005/08/18/running-multiple-instances-of-skype/
http://caia.swin.edu.au/reports/040726A/CAIA-TR-040726A.pdf
http://caia.swin.edu.au/reports/040726A/CAIA-TR-040726A.pdf
http://www.callcentermagazine.com/article/CTM20000608S0019
http://en.wikipedia.org/wiki/SS7
http://cockatoo.mozdev.org/
http://cockatoo.mozdev.org/
http://skype.com/products/explained.html
http://skype.com/products/explained.html
www.skype.com
http://www.skype.com
http://en.wikipedia.org/wiki/Skype
http://en.wikipedia.org/wiki/STUN
http://en.wikipedia.org/wiki/Trillian_(instant_messenger)
http://en.wikipedia.org/wiki/Trillian_(instant_messenger)
http://www.nch.com.au/skypetosip/index.html
http://www.nch.com.au/skypetosip/index.html
http://spider.nrcde.ru/music/software/eng/vac.html
http://spider.nrcde.ru/music/software/eng/vac.html
http://www.gtalk2voip.com/article1_en.html
http://www.gtalk2voip.com/article1_en.html
http://www.asterisk.org/
http://www.ekiga.net
http://www.gizmoproject.com/
http://www.tech-faq.com/mgcp.shtml
http://www.asknumbers.com/Whatisss7isup.aspx
http://www.asknumbers.com/Whatisss7isup.aspx

Bibliography Bibliography

[58]

[59]
[60]

[61]
[62]
[63]
[64]
[65]

[66]

Y! multi messenger 8.0.0.508, 14-11-2006. Available from: http://www.softpedia.com/
get/Internet/Chat/Instant-Messaging/Yahoo-Multi-Messenger.shtml.

Yahoo, 14-11-2006. Available from: http://en.wikipedia.org/wiki/Yahoo.

Yahoo! messenger, 14-11-2006. Available from: http://en.wikipedia.org/wiki/
Yahoo%21_Messenger.

Yahoo website, 14-11-2006. Available from: messenger.yahoo.com.

Ymsg, 14-11-2006. Available from: http://www.answers.com/topic/ymsg.
Ymsg, 14-11-2006. Available from: http://en.wikipedia.org/wiki/YMSG.
An analysis of the Skype Peer-to-peer Internet Telephony Protocol, 2004.

Securing Public Instant Messaging (IM) At Work, July 2004. Available from: http:
//caia.swin.edu.au/reports/040726A/CATA-TR-040726A . pdf.

An analysis of Hybrid and Pure Peer-to-Peer Technologies for IP Telephony, April
2005. Available from: http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=
1196353.

Blocking MSN: A Case Study of Preventing the Abuse of IM, October 2005. Available
from: http://ieeexplore.ieee.org/iel5/10412/33074/01554237.pdf?isnumber=
&arnumber=1554237.

The Principles of Speech Transmission Realization in Skype, September 2006.

Eventhelix.com - sequence diagram based system design tool, 22-10-2006. Available from:
http://www.eventhelix.com/.

Wireshark: The world’s most popular network protocol analyzer, 22-10-2006. Available
from: http://www.wireshark.org/.

Gtalk plug-in, 24-03-2007. Available from: http://code.google.com/apis/talk/
open_communications.html.

Icq plug-in, 24-03-2007. Available from: http://www.icq.com/webtools/app-develop.
html.

Msn plug-in, 24-03-2007. Available from: http://dev.live.com.

Skype-plugin, 24-03-2007. Available from: https://developer.skype.com/.

Yahoo plug-in, 24-03-2007. Available from: http://developer.yahoo.com/messenger.
Icq api, 29-12-2007. Available from: http://joust.kano.net/docs/api.

Icq api sessions, 29-12-2007. Available from: http://joust.kano.net/docs/api/net/
kano/joscar/rv/RvSession.html.

Skype api, 29-12-2007. Available from: http://share.skype.com/media/1.2_api_
doc_en.pdf.

152

http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/Yahoo-Multi-Messenger.shtml
http://www.softpedia.com/get/Internet/Chat/Instant-Messaging/Yahoo-Multi-Messenger.shtml
http://en.wikipedia.org/wiki/Yahoo
http://en.wikipedia.org/wiki/Yahoo%21_Messenger
http://en.wikipedia.org/wiki/Yahoo%21_Messenger
messenger.yahoo.com
http://www.answers.com/topic/ymsg
http://en.wikipedia.org/wiki/YMSG
http://caia.swin.edu.au/reports/040726A/CAIA-TR-040726A.pdf
http://caia.swin.edu.au/reports/040726A/CAIA-TR-040726A.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1196353
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1196353
http://ieeexplore.ieee.org/iel5/10412/33074/01554237.pdf?isnumber=&arnumber=1554237
http://ieeexplore.ieee.org/iel5/10412/33074/01554237.pdf?isnumber=&arnumber=1554237
http://www.eventhelix.com/
http://www.wireshark.org/
http://code.google.com/apis/talk/open_communications.html
http://code.google.com/apis/talk/open_communications.html
http://www.icq.com/webtools/app-develop.html
http://www.icq.com/webtools/app-develop.html
http://dev.live.com
https://developer.skype.com/
http://developer.yahoo.com/messenger
http://joust.kano.net/docs/api
http://joust.kano.net/docs/api/net/kano/joscar/rv/RvSession.html
http://joust.kano.net/docs/api/net/kano/joscar/rv/RvSession.html
http://share.skype.com/media/1.2_api_doc_en.pdf
http://share.skype.com/media/1.2_api_doc_en.pdf

Bibliography Bibliography

[79]

[80]

[81]

[82]
[83]
[84]

[85]

[36]

[87]

Skype api, 29-12-2007. Available from: https://developer.skype.com/
GettingStarted/KickStartGuide.

Voice chat applications, 29-12-2007. Available from: http://code.google.com/apis/
talk/libjingle/voice_chat.html.

M. Arango, A. Dugan, C. Huitema, and S. Pickett. Media Gateway Control Proto-
col(MGCP). The Internet Society, 1.0 edition, 1999.

U. Black. Internet Telephony: Call Processing Protocols. Prentice Hall PTR, 2001.
U. Black. Voice over IP. Prentice Hall PTR, 2nd edition, 2002.
I. M. A. Caballero. Secure mobile voice over ip. Master’s thesis, June 2003.

E. B. Fjellskl and S. Solberg. Evaluation of voice over mpls (vompls) compared to voice
over ip (voip). Master’s thesis, May 2002. Available from: http://student.grm.hia.
no/master/ikt02/ikt6400/g12/Evaluation-of-VoMPLS-compared-to-VoIP.pdf.

M. Handley and V. Jacobson. Sdp: Session description protocol. Rfc, The Internet
Society, April 1998. Available from: ftp://ftp.rfc-editor.org/in-notes/rfc2327.
txt.

N. Hindocha. Threats to instant messaging. Master’s thesis. Avail-
able from: http://cnscenter.future.co.kr/resource/rsc-center/vendor-wp/
symantec/ThreatsToIM.pdf.

S. Ludwig, J. Beda, P. Saint-Andre, R. McQueen, S. Egan, and J. Hildebrand. Xep-
0166: Jingle. Xep, XMPP Standards Foundation, 1999-2007. Available from: http:
//www.xmpp.org/extensions/xep-0166.html.

S. Ludwig, P. Saint-Andre, R. McQueen, and S. Egan. Xep-0167: Jingle audio via rtp.
Xep, XMPP Standards Foundation, 1999-2007. Available from: http://www.xmpp.org/
extensions/xep-0167.html.

D. Minoli and E. Minoli. Delivering voice over IP networks. Indianapolis, IN, Wiley,
2nd edition, 2002.

R. Movva and W. Lai. Msn messenger service 1.0 protocol. Rfc, Microsoft, August 1999.
Available from: http://www.hypothetic.org/docs/msn/ietf_draft.txt.

S. Norin and D. Stenman. Instant messaging skerhetshot och tgrder. Master’s thesis.
Available from: http://dsv.su.se/en/seclab/pages/pdf-files/05-68.pdf.

R. Parhonyi. MICRO PAYMENT GATEWAYS. University of Twente, 2005.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler. Sip: Session initiated protocol. Rfc, The Internet Society, June
2002. Available from: http://www.apps.ietf.org/rfc/rfc3261.html.

H. Schildt. Sicherheitsaspekte von instant messaging. Master’s thesis, July 2005. Avail-
able from: http://archiv.tu-chemnitz.de/pub/2005/0091/data/IM-Aspekte.pdf.

153

https://developer.skype.com/GettingStarted/KickStartGuide
https://developer.skype.com/GettingStarted/KickStartGuide
http://code.google.com/apis/talk/libjingle/voice_chat.html
http://code.google.com/apis/talk/libjingle/voice_chat.html
http://student.grm.hia.no/master/ikt02/ikt6400/g12/Evaluation-of-VoMPLS-compared-to-VoIP.pdf
http://student.grm.hia.no/master/ikt02/ikt6400/g12/Evaluation-of-VoMPLS-compared-to-VoIP.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc2327.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2327.txt
http://cnscenter.future.co.kr/resource/rsc-center/vendor-wp/symantec/ThreatsToIM.pdf
http://cnscenter.future.co.kr/resource/rsc-center/vendor-wp/symantec/ThreatsToIM.pdf
http://www.xmpp.org/extensions/xep-0166.html
http://www.xmpp.org/extensions/xep-0166.html
http://www.xmpp.org/extensions/xep-0167.html
http://www.xmpp.org/extensions/xep-0167.html
http://www.hypothetic.org/docs/msn/ietf_draft.txt
http://dsv.su.se/en/seclab/pages/pdf-files/05-68.pdf
http://www.apps.ietf.org/rfc/rfc3261.html
http://archiv.tu-chemnitz.de/pub/2005/0091/data/IM-Aspekte.pdf

Bibliography Bibliography

[96] C. Vissers, L. F. Pires, D. Quartel, and M. van Sinderen. Design of Telematics Systems,
Reader for the Design of Telematics Systems course. University of Twente, 2003.

154

	Abstract
	Preface
	Introduction
	Context
	Problem statement
	Objective and research questions
	Approach
	Structure

	State of the art in VoIP
	Introduction to the telephone network
	Introduction to Voice over IP
	The Call Processing Model
	The Call Processing Protocols
	H.323
	Megaco / H.248
	MGCP
	SIP
	Summary

	The User Protocols
	Real Time Protocol (RTP)

	The Support Protocols
	RTP Control Protocol (RTCP)
	Session Description Protocol (SDP)
	Network Time Protocol (NTP)

	Conclusions

	Overview of VoIP Systems
	Aspects of VoIP systems
	Features
	Entities
	Protocol

	Windows Live Messenger (MSN)
	Features
	Entities
	Protocol

	Google Talk
	Features
	Entities
	Protocol

	Yahoo Messenger
	Features
	Entities
	Protocol

	ICQ
	Features
	Entities
	Protocol

	Skype
	Features
	Entities
	Protocol

	Conclusion

	VoIP system services
	Services
	Minimum services
	Optional services

	Differences
	Login
	Buddy search
	Messaging
	Call

	Related work
	PSGw
	Uplink
	GTalk-to-VoIP
	Trillian
	Gizmo Project

	Requirements
	User requirements
	AP requirements
	Interoperability Provider requirements
	Designers and implementers requirements
	Conclusion

	Design approaches
	Approach 1: Interconnected existing VoIP systems
	Approach 2: Changes to the existing VoIP clients
	Approach 3: Self made client
	Approach 4: Self made peel client
	Approach 5: Web client
	Conclusion

	Design of the Gateway
	Functional requirements
	Structure
	Behaviour of the Interoperable VoIP Gateway
	Login
	Buddy search
	Messaging
	Call

	Behaviour of the Proxies
	Multiple instances
	Plug-in possibilities
	Buddy search
	Messaging
	Audio forwarding

	Conclusion

	Conclusion
	Solution summary
	Conclusions per research questions
	Solved problems
	Advantages
	Disadvantages
	Future work

	Additional information: State of the Art in VoIP
	On-hook and off-hook operations
	Call Processing Protocols
	SIP INVITE method

	Additional information: Overview of VoIP systems
	VoIP systems
	Skype IP domain
	MSN
	GTalk
	Yahoo
	ICQ
	Skype

	Additional information: Validation
	Buddy search
	Messaging
	Call

	Bibliography

