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Abstract

This report describes the design and implementation of a motion control algo-
rithm for a humanoid robotic head. The humanoid head consists of a neck with
four degrees of freedom and two eyes (a stereo pair system) with one common
and one independent degree of freedom. The kinematic and dynamic properties
of the head are analyzed and modeled using bondgraphs and screw theory. A
motion control algorithm is designed that receives, as input, the output of a
vision processing algorithm and utilizes the redundancy of the joints. This al-
gorithm is designed to enable the head to focus on and follow a target, showing
human-like behavior. The dynamic model is used to analyze the performance
of the control algorithm in a simulated environment. The algorithm has been
implemented and tested on a real-time control platform. The migration from
simulation environment to the real-time platform is governed by a step-by-step
integration and testing procedure. After each step, the algorithm output is vali-
dated and its performance evaluated. The algorithm is implemented succesfully
on a real-time PC-104 platform.
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Abbreviations and Symbols

a ∈ R
n Column vector of n elements

ã Skew symmetric matrix form of a

A ∈ R
n×m Matrix of n rows and m columns

A Vector space
TaA Tangent space to A

α, θ, . . . Angles
ω Angular velocity
τ Torque
J Jacobian matrix
Ψi Coordinate system i

pk A vector expressed in coordinate system Ψk

vk Linear velocity of pk expressed in Ψk

p
k,j
i A vector from the origin of Ψi to the origin of Ψj , ex-

pressed in coordinate system Ψk

R
j
i Rotation matrix that defines the rotation from Ψi to Ψj

H
j
i Homogeneous matrix that defines the change of coordi-

nates from Ψi to Ψj

T
k,j
i Generalized velocities of coordinate system Ψi, with re-

spect to coordinate system Ψj, expressed in coordinate
system Ψk

T̂ Unit twist
Wk,i Generalized forces acting on body i, expressed in coordi-

nate system Ψk

Ad
H

j

i

Adjoint of a homogeneous matrix

ad
T

k,j

i

Lie algebra of a twist

Ik,i Inertia tensor of body i, expressed in coordinate system
Ψk

Pk,i Moment of body i, expressed in coordinate system Ψk

Se An effort source in bondgraphs
I An energy storing bondgraph element
(M)TF A (modulated) transformer in bondgraphs
(M)GY A (modulated) gyrator in bondgraphs
L,R Associated with left or right camera/eye
proj Projection, projected
GSL GNU Scientific Library
SV Singular Value
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1 Introduction

In the last decades, robotics has been developed and applied in several fields,
like automotive, packaging, transportation and other kinds of general factories
in which automated systems can assist human beings. Slowly but steadily the
next phase is entered: humanoid robots.

Since the world as it is today has been designed and built by humans, it is a
logical choice to have robots that take the form of humans. In many scenarios,
this requires less effort to get things done and getting places. Also, collaboration
tasks involving both humans and robots become easier when robots are capable
of doing the same things as humans.

The Control Engineering group at the University of Twente has extensive expe-
rience in the field of dynamic walkers. Recently the group has started to employ
its knowledge in constructing a humanoid robot. In a collaboration project with
the Technical Universities of Delft and Eindhoven, a teen-sized humanoid robot
is under development and built with the aim to participate in the RoboCup
soccer competition.

Within the scope of this project, a humanoid head has been developed.
The head will serve two purposes. Firstly, it will become an integral part of
the humanoid itself. Secondly, it will serve as a research platform for stud-
ies on human-machine interaction. It is believed that human-like behavior in
humanoids is a key part in acceptance of humanoids in society.

The realization of the humanoid head, implies work on a mechanical design
(both interior and exterior), a vision system and a motion control algorithm.
The mechanical design consists of a four degree of freedom neck and the vision
system of two cameras with two degrees of freedom. In particular, this research
assignment focuses on the development on and implementation of the motion
control algorithm.

1.1 Goal

The goal of this assignment is to develop and implement a motion control al-
gorithm for the humanoid head. Inputs to the algorithm are the coordinates of
a target, provided by the vision processing algorithm. The control algorithm
should enable the head to look at things (even while moving), while at the same
time the movements are human-like. The algorithm should thus be designed to
exploit the redundancy of the system in order to generate human-like motions
while performing the primary task of target tracking.

Since the development processes of the mechanical design, the vision process-
ing algorithm and the motion control algorithm will run in parallel, an extensive
dynamic model of the system should be developed in order to facilitate testing
of the algorithm prior to implementation.

1.2 Outline

The project is divided into two parts, which have been documented in two
separate papers. The first part covers the design and simulation of the motion
control algorithm. This paper first treats the design of a dynamic model that is

1



used to test the algorithm in a simulation environment. Then the design of the
motion control algorithm is covered. The kinematic behavior of the system is
analyzed and a solution is presented that utilizes the redundancy in the system
to meet the requirement of human-like motions.

The second part covers the implementation of the algorithm on a real-time
platform. A step-wise testing and integration procedure is presented that helps
migrating the scripted algorithm from the simulation environment to the real-
time platform.
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Vision Based Motion Control for a Humanoid Head
L.C. Visser, S. Stramigioli, R. Carloni, G. van Oort, E.C. Dertien

Abstract—This paper describes the design of a motion control
algorithm for a humanoid robotic head. The humanoid head
consists of a neck with four degrees of freedom and two eyes (a
stereo pair system) with one common and one independent degree
of freedom. The kinematic and dynamic properties of the head
are analyzed and modeled using bondgraphs and screw theory.A
motion control algorithm is designed as to receive, as an input,
the output of a vision processing algorithm and to exploit the
redundancy of the joints for the realization of the movements.
This algorithm is designed to enable the head to focus on and
to follow a target, showing human-like behavior. The dynamic
model is used to analyze the performance of the control algorithm
in a simulated environment.

Index Terms—Bondgraphs, human-machine interaction, hu-
manoids, motion control, redundancy, robot dynamics, robot
kinematics, vision systems, screw theory

I. I NTRODUCTION

T HE Control Engineering group at the University of
Twente, in collaboration with the Technical Universities

of Delft and Eindhoven and industry partners, are developing
the 3TU humanoid robot “TUlip” [1].

In the scope of the project, a humanoid head system,
equipped with a vision system and a neck, has been designed.
The purpose of this work is to develop and implement a motion
control algorithm for this system. In particular, input putto the
algorithm are the coordinates of a generic target, providedby
the vision processing system so that the head can track an
object, and while moving, it exhibits a human-like behavior.

The paper is organized as follows: in Section II, human
anatomical data are analyzed and a complete list of require-
ments for the system is presented. These requirements have
been used in [2] for the design of the mechanical part of the
head and in this paper for the design of the motion control
algorithm. Section III presents the dynamic model of the
system based on screw theory and bondgraphs and Section IV
focuses on the description of the control of the humanoid
head, based on the kinematic properties of the model. Finally,
in Section V simulation results of the dynamic model are
presented and discussed.

II. REQUIREMENTS

The purpose of the humanoid head project is twofold.
Firstly, it is meant to be mounted on the teen-sized humanoid
robot “TUlip”. As such, the head should enable the robot
to perceive its environment and focus on specific targets.
Secondly, the head will be used as research platform in the
field of human-machine interaction. As such, the head system
should be able to exhibit human-like behavior, e.g. observing
the environment, focusing on particular features, and, maybe,
interacting with people.

Since the head should be able to move human-like, it has
been investigated what “human-like” actually means. Using
research data from [3], [4] and observations, a set of anatom-
ical data has been compiled: this list represents the average
capabilities of a human head.

In particular, in order to achieve human-like motions, the
head-neck system realizes a four degrees of freedom structure
[2], as is shown in Fig. 1. The lower tilt (a rotation around
the y-axis) and the pan (around thez-axis) motions of the
head are realized through a differential drive, that combines
the actuation of these two motions in a small area. The other
two degrees of freedom of the neck are the roll (around the
x-axis) motion and the upper tilt. The cameras mounted on a
carrier structure share the common actuated tilt axis and can
rotate side freely.

The specifications of the degrees of freedom for the neck
and eyes are meant to approach the human anatomical data as
closely as possible within reasonable feasibility boundaries.
Since the head will be mounted on a humanoid robot, there
are some severe restrictions on available space and power.
The space limitations restrict the maximum angle certain
joints can span, and power limitations restrict velocitiesand
accelerations. Therefore, a trade-off was made between getting
as close as possible to the human capabilities and the real
feasibility. Table I summarizes the final set of specifications.

Aside from the mechanical requirements of the system,
there are also behavioral requirements that the system should
comply with in order to look “natural”. Behavioral studies
have shown how humans use both their head and eyes to look
at a particular target [5]. In general the eyes move first towards
the target, while the head slowly follows.

The direction of sight is called the gaze. The gaze is defined
as the angle of the eyes with respect to a fixed reference and is
equal to the sum of the angle of the head with respect to this
reference and the angle of the eye with respect to the head. The
offset of the eye with respect to the rotation point of the head is
usually ignored. A gaze shift can be a saccade, when the gaze
is abruptly changed (e.g. looking at a new object), or a smooth
movement (e.g. following an object). Fig. 2 shows a simulated
(one dimensional) saccade. It can be seen from this figure that
the gaze (top) changes fast due to the fast movement of the
eyes (middle). The head (bottom) moves slowly towards the
target. When the eyes look at the target, they start to counter
rotate to compensate for the movement of the head.

It is this kind of motions that characterizes humans: the
fast and light-weight eyes acquire the target quickly, while
the heavy head follows later and slower. This combines fast
gaze shifts with low energy cost. This kind of motion should
be mimicked by the motion control algorithm to make the
system motions look human.
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Differential: z (pan) 

Neck: y (upper tilt)

Neck: x (roll)

Eyes: y

Left Eye: z
Right Eye: z

Differential Housing   

(body 1)

Neck (body 2)

Neck (body 3)

Head (body 4)

Eye Carrier (body 5)

Left Eye

(body 6)

Right Eye

(body 7)

Differential: y (lower tilt) 

Fig. 1. Mechanical design of the neck-head system — The mechanical
design comprises a four degree of freedom neck with a platform carrying
the cameras (representing the eyes). The cameras tilt on a common axis, but
rotate sideways independently. The differential combinesthe lower tilt and
pan movement.

TABLE I
FINAL SPECIFICATIONSCOMPARED TOHUMAN ANATOMICAL DATA

Human Model

Head Lower tilt −30o − +10o −45o − +45o

Upper tilt −71o − +100o −45o − +45o

Pan ±100o ±100o

Roll ±63.5o ±35o

vmax 352o/s 160o/s

amax 3300o/s2 3300o/s2

Eyes Tilt ±40o ±30o

Pan ±45o ±30o

vmax 850o/s 600o/s

amax 82000o/s2 -

Field of view (hor.) 175o 60o

Field of view (ver.) 160o 60o

Focal field of view ∼ 2o − 5o -

III. D YNAMIC MODEL

The design of the head system consists of seven rigid bodies
(a differential housing, two neck elements, the head, the eye
carrier and two eyes), interconnected by joints. In order to
facilitate algorithm development and testing, a dynamic model
of this design has been developed using bondgraphs and screw
theory. Bondgraph theory is well suited for fast and multi-
domain dynamic modeling, while screw theory provides the
mathematical tools to describe kinematic and dynamic rela-
tions of connected rigid bodies. The combination of these two
theories provide a powerful and flexible toolset for dynamic
modeling.

A. Rigid Bodies

In order to model the dynamic behavior of a generic rigid
body, a number of essential properties of a rigid body need to

Fig. 2. A simulated saccade of a human — The gaze (top) is defined as the
angle of the eyes with respect to a fixed reference. The sum of the angle of the
eyes with respect to the head (middle) and the angle of the head with respect
to the fixed reference (bottom) gives the gaze. The gaze quickly reaches the
desired angle because of the fast movement of the eyes. The eyes keep the
angle of the gaze constant by counter rotating to compensatefor the relatively
slow movement of the head.

be identified. With the aim of explaining the basis of screw
theory, we refer to Fig. 3.

Each bodyi is characterized by a reference coordinate frame
Ψi, centered in the joint connecting bodyi to a previous body
i − 1 and aligned with the joint rotation axis. This choice
allows a easy modeling of a chain of rigid bodies.

The rigid body velocity of a coordinate frame can be
expressed in the form of a twist, which takes the form of
a six dimensional vector

T
k,j
i =

[

ω

v

]

, (1)

whereT
k,j
i denotes the generalized velocity of the body fixed

in coordinate frameΨi with respect to coordinate frameΨj,
expressed inΨk. The twist has a rotational velocity component
ω and a linear velocity componentv.

Secondly, a principal inertia frame,Ψip
, is centered in the

center of mass of the body. This coordinate frame is chosen
such that it is aligned with the principal inertia axes of the
body. By this choice, the inertia tensor of bodyi, denoted
with Ii, is diagonal when expressed in this frame, which
greatly eases inserting this data or importing it from other
software packages. Since the relative position of the main
reference coordinate frame and the principal inertia frameis
constant, the generalized velocity of these coordinate frames
with respect to an arbitrary coordinate frameΨj expressed in
a global coordinate frameΨ0 are equal

T
0,j
ip

= T
0,i
ip

+ T
0,j
i = T

0,j
i . (2)

The impuls law for a point mass,p = mv, wherep is the
momentum of the point mass,m the mass andv the velocity,
can be generalized to rigid bodies. The moment screwP i of
body i is given by [6]

(

P i
)T

= IiT
i,0
i . (3)
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Body i − 1

Body i

Body i + 1

C.O.M.

Ψi

Ψip

Ψi+1

Body reference frame

Principal inertia frame

Ψ0

Fig. 3. Representation of a rigid body — The body coordinate framePsii
is chosen to be coincident with the joint connecting it to theprevious body.
A principal inertia coordinate frame is defined in the centerof mass, aligned
with the pricipal axes of the body. The inertia tensor of the body can be
expressed in this frame in the form of a diagonal matrix.

The second law of dynamics for a rigid body, equivalent to
ṗ = F , follows from Eq. (3)

Ṗ0,i = W0,i, (4)

whereW0,i represents the wrench acting on bodyi, expressed
in the global coordinate frameΨ0. Eq. (4) can be expressed
in the principal inertia frame of the body with a change of
coordinates:

(

Ṗ ip

)T

= adT

T
ip,0

ip

(

P ip
)T

+
(

Wip
)T

, (5)

where the symbol (ad) denotes the Lie algebra ofT.
The gravity force on bodyi is a wrench defined in a

coordinate frameΨig
that is located in the principal inertia

frame Ψip
, but aligned withΨ0. By this choice, the wrench

takes the intuitive form of

Wig

grav =
[

0 0 0 0 0 −mg
]

. (6)

Bondgraph Representation: The generalized velocities of
coordinate frames can be represented in a bondgraph structure
by a 1-junction. The inertia tensorI can be represented by
an I-element. As stated before, the inertia tensor is diagonal
if it is expressed in the principal inertia frame. Therefore, the
I-element representing this tensor should be connected to a1-
junction representing the generalized velocity of the principal
inertia frame expressed in this frame,T

ip,j

ip
. This generalized

velocity is related toT0,j
ip

by the adjoint of the transformation
matrix H that defines the change of coordinates

T
0,j
i = T

0,j
ip

= AdH
0

ip

T
ip,j

ip
. (7)

This adjoint operation can be modeled by a(M)TF-element
connecting the two1-junctions.

By representing the kinetic energy storage of the rigid body
by an I:Iip-element, the moment of bodyi, P ip , is given
by the state of theI-element, which can modulate a one-port
MGY-element to implement the first term of the right hand side
of Eq. (5).

1:T
ip,0

ip
MTF:Ad

H
ip

0

1:T 0,0
i I:Iip

MTF:Ad
H

ip

ig

Se:
(

W
ig
grav

)T

MGY

Pip

1:T
ig,0

ip

Fig. 4. Bondgraph representation of a rigid body — The generalized
velocities of the two coordinate frames defined on the body are represented
by 1-junctions. Energy storage is modeled as aI-element.

By applying the proper change of coordinates to Eq. (6),
gravity can be modeled as anSe-element inΨip

.
All components are now available to represent a rigid body

in a bondgraph model, as shown in Fig. 4. Note that the bond
to theI-element is of mixed causality. Only one state of the
element is independent, the other five are dependent.

B. Joints

The rigid bodies of the system are interconnected by actu-
ated joints. The torqueτ and the rotational velocityω of the
output shaft of the joint motor are transformed into a twist and
wrench pair that defines the joint motion. This transformation
is defined by a Jacobian matrixJ [6]

T = Jω

W = τJT ,
(8)

whereω andτ are in general scalars andJ is a column vector
equal to the unit twist̂T. For example, the Jacobian for the
roll motion of the neck, i.e. a rotation about the localx-axis,
would have:

Ji = T̂
i−1,i−1

i =
[

1 0 0 0 0 0
]T

, (9)

where the unit twistTi−1,i−1

i gives the relative generalized
velocity of the bodies connected by the joint. Since the body
coordinate frames are chosen to be aligned with the joint
rotation axis, the Jacobian in Eq. (9) takes the form of the
unit twist with only one non-zero element, which gives an
intuitive representation of the joint movement.

Eq. (9) holds for most of the joints, except for the differen-
tial drive. The twist of the body attached to the differential
drive is a function of two actuators, hence its Jacobian
Jdiff ∈ R

6×2. In order to explain the derivation of the twist of
the differential drive, we refer to the schematic representation
depicted in Fig. 5.

The generalized velocity of frameΨ1, located in the center
of the common gear, with respect to frameΨ0 as a function of
ωa andωb, the rotational velocities of the driven gears, can be
found by considering the constraints imposed on the contact
pointsc1 andc2.
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ωa

ωb

ωy

ωz

c1

c2

(a)

y
x

z

y
x

z

y
x

z

y
x

z

Ψ0

Ψ1

ΨA

ΨB

rc

rd

α

c1

c2

(b)

Fig. 5. Schematic representation of the differential drive— Fig. 5a shows a
schematic drawing of the design, that shows how the motions of the common
(upper) gear is constrained by the motion of the two driven gears. Fig. 5b
shows a schematic representation of the differential drivethat shows how
the coordinate frames are defined. The constraint on the instantaneous linear
velocity of the contact pointsc1 and c2, can be used to derive the twist of
coordinate frameΨ1 with respect to global reference coordinate frameΨ0.

The contact pointsc1 andc2 can be expressed in homoge-
neous coordinates inΨ0 as

c0
1 =









rd sin α

rc

rd cosα

1









, c0
2 =









rd sinα

−rc

rd cosα

1









, (10)

where the angleα is the angle of thez-axis of frameΨ1 with
respect to thez-axis of frameΨ0 andrc andrd are the radii of
the common and driven gears. From Fig. 5 it is straightforward
that α is given by

α =
1

2
(θa + θb) , (11)

whereθa andθb denote the angle rotated by the driven gears,
i.e. the integral ofωa andωb respectively.

Let p1 be a point fixed inΨ1 andpA be a point fixed inΨA

(on gear A). Furthermore, let bothp1 and pA be coincident
with the contact pointc1. The linear velocity ofp1 andpA,
numerically expressed inΨ0, must be equal when the gears are
assumed to be ideal (i.e. no backlash) [7]. The linear velocity

of p1 expressed inΨ0 is given by

ṗ0
1 =

d
dt

(

H0
1p

1
1

)

= Ḣ0
1p

1
1 + H0

1ṗ
1
1 = Ḣ0

1p
1
1

= Ḣ0
1

(

H1
0H

0
1

)

p1
1

= T̃
0,0
1 H0

1p
1
1 = T̃

0,0
1 p0

1,

(12)

whereH0
1 is a homogeneous matrix that defines the change

of coordinates fromΨ1 to Ψ0. A similar result is obtained for
pA

ṗ0
A =

d
dt

(

H0
ApA

A

)

= Ḣ0
ApA

A

= T̃
0,0
A H0

ApA
A = T̃

0,0
A p0

A.

(13)

Sincep1 and pA are both coincident withc1, Eq. (12) and
Eq. (13) must be equal

T̃
0,0
1 p0

1 = T̃
0,0
A p0

A, (14)

or equivalently
T̃

0,0
1 c0

1 = T̃
0,0
A c0

1. (15)

With an analogous approach forc2, the following set of
equations is obtained

T̃
0,0
1 c0

1 = T̃
0,0
A c0

1

T̃
0,0
1 c0

2 = T̃
0,0
B c0

2.
(16)

The right hand sides of Eq. (16) are defined by Eq. (10) and

T̃
0,0
A =









0 0 ωa 0
0 0 0 0

−ωa 0 0 0
0 0 0 0









, T̃
0,0
B =









0 0 ωb 0
0 0 0 0

−ωb 0 0 0
0 0 0 0









.

(17)
The linear velocity ofΨ1 expressed inΨ0 is zero by design,
i.e.

T
0,0
1 =

[

ωT 0
]T

. (18)

By combining Eqs. (10), (16), (17), (18) it follows that

T
0,0
1 =

















1

2

rd

rc
· sinα · (ωb − ωa)
1

2
(ωa + ωb)

1

2

rd

rc
· cosα · (ωb − ωa)

0
0
0

















, (19)

which can be rewritten in the form of Eq. (8):

T
0,0
1 = Jdiff

[

ωa

ωb

]

=

















− 1

2

rd

rc
sinα 1

2

rd

rc
sin α

1

2

1

2

− 1

2

rd

rc
cosα 1

2

rd

rc
cosα

0 0
0 0
0 0

















[

ωa

ωb

]

.

(20)

In the mechanical design, there is a differential housing
present with a non-neglectable mass that only rotates along
the y-axis of the differential joint. Therefore,T0,0

1 should be
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1:ω 1:T i−1,i−1

iMTF:J
τ

ω T

WT

Fig. 6. Bondgraph representation of a joint — The(M)TF-element defines
the relation between actuator output(ω, τ) and the movement of the body
connected to the actuator.

decoupled in two separate rotations along they- and z-axes.
It can be shown that Eq. (20) can be decoupled as:

T
0,0
1 = Jdecoupled

[

ωy

ωz

]

=

















0 sin α

1 0
0 cosα

0 0
0 0
0 0

















[

1

2
(ωa + ωb)

1

2

rd

rc
(ωb − ωa)

]

.

(21)

Bondgraph Representation: A joint defined by Eq. (8)
can be represented in a bondgraph by an(M)TF-element,
as shown in Fig. 6. In general, the left bond is only one-
dimensional, as follows from Eq. (8). In case of the differential
joint, the bond is two-dimensional, as follows from Eq. (20).
It should be noted that the(M)TF-element has a fixed flow
in causality, due to the non-invertability of Eq. (8).

C. Connecting Bodies and Joints

The generalized velocity of bodyi with respect toΨ0

expressed inΨ0, T
0,0
i is given by adding the generalized

velocity of the previous bodyi − 1, T
0,0
i−1 and the relative

velocity T
0,i−1

i

T0,0
n = T

0,0
1 + T

0,1
2 + · · · + T

0,n−2

n−1 + T0,n−1
n . (22)

Using this relation, a kinematic chain of rigid bodies and joints
can be represented in a bondgraph structure.

By properly transforming the generalized velocities of the
main coordinate systems to a global coordinate frameΨ0, the
joints and rigid bodies can be interconnected. This transfor-
mation can be implemented by an(M)TF-element using the
Adjoint of the transformation matrixH as defined in Eq. (7).
Addition of the generalized velocities is implemented through
0-junctions. The resulting structure is shown in Fig. 7.

IV. M OTION CONTROL

An overview of the controller structure is shown in Fig. 8.
The vision processing algorithm determines where the robot
head should look at by choosing a proper target in the image
planeX [8]. The output of this algorithm, two sets of(x, y)-
coordinates of the target, is supplied as input to the motion
control algorithm. From these coordinates, the motion control
algorithm calculates generalized joint velocitiesq̇ through the
relation

ẋ = F (q) q̇ , (23)

where ẋ ∈ TxX , the tangent space toX , denotes the time
derivative of vectorx of the target coordinates,q ∈ Q denotes
the generalized joint states defined in the vector spaceQ and
q̇ ∈ TqQ, the tangent space toQ, its time derivative. It can
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Actuator 1:T 0,4
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Fig. 7. Complete bondgraph structure — Joints and bodies canbe connected
by properly transforming generalized velocities to a common coordinate
frame, after which they can be added using0-junctions.

Motion ControlVision Processing Robot
Sensors

x q̇ q
F (q)

Fig. 8. Controller overview — The vision algorithm providesthe motion
control algorithm with target coordinates. From this, the controller calculates
joint velocities through a mapF (q). The change in joint state influences
the target perception, so in order to come to a functional control algorithm,
we need to know how the joints should be actuated and how this actuation
influences the perception of the target.

be seen from the figure that the robot behavior influences the
vision processing algorithm. In order to design an algorithm
that can use the output of this algorithm effectively, two
questions need to be answered: how is the target perceived
by the camera and how does the joint actuation influence this
perception. From this analysis, it is possible to derive a control
law that actuates the joints so that the desired goal, i.e. looking
at the target in a human-like way, is achieved.

A. Target Perception

Target perception by the camera can be modeled with a
pinhole camera model [9]. From this model it follows that the
coordinates come from a projection of the target on a image
plane in the camera coordinate frame, as is shown in Fig. 9.
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Fig. 9. Target coordinates — The target coordinates as perceived by the
cameras can be modeled by a projection on a plane (the image plane) using a
pinhole camera model. The camera coordinate frame is denoted by Ψ{L,R}
for the left and right camera respectively. The projection plane is at focal
depthf on thex-axis of the camera frame.

Let

p{L,R} =





x

y

z





{L,R}

(24)

whereL andR identify the left and right cameras, be a target
point in three dimensional Euclidian spaceE(3), expressed in
coordinate frameΨ{L,R}. It can be shown that the projection
of this target point, expressed in the camera coordinate frame,
p
{L,R}

proj , is given by

p
{L,R}

proj =

[

yproj

zproj

]

{L,R}

=
f

x{L,R}

[

y

z

]

{L,R}

, (25)

wheref is the focal depth of the camera.
Assuming that the origin of the camera coordinate frame

is located in the center of the image, “look at the target” is
to be interpreted aspproj being(0, 0) for both cameras. From
this, the definition of the state vectorx is formed to hold the
projected target coordinates for both cameras:

x =









yleft

zleft

yright

zright









=

[

pL
proj

pR
proj

]

. (26)

B. Target Perception and Joint Movement

In order to move the robot to accomplish the required task,
it is necessary to know how the state vectorx changes as
function of the change of the generalized joint coordinatesq,
i.e. what the matrixF is in Eq. (23).

The generalized joint velocities iṅq are given by the angular
velocities of the joints:

q̇ =





















ωy

ωz

ωneck,roll

ωneck,tilt

ωeyes,y

ωeye,left,z

ωeye,right,z





















. (27)

Using ωy andωz is a more natural choice than usingωa and
ωb from the actuators (see Fig 5). This requires that calculated
generalized joint velocities as defined in Eq (27) need to be
mapped to actuator velocities using the second part of Eq. (21).

The first step in findingF is to determine how the camera
coordinate frames move as function ofq̇. If T

0,0

{L,R}
denotes

the generalized velocity of the left (ΨL) or right (ΨR) camera
coordinate frame with respect to the global coordinate frame
Ψ0, expressed inΨ0, it can be shown that the following
relation holds [6]

T
0,0

{L,R}
= J{L,R} (q) q̇ J{L,R} ∈ R

6×7,q ∈ R
7, (28)

where the Jacobian matrixJ{L,R} is constructed by the (unit)
twists for each joint, as in Eqs. (9), (20). By evaluating
Eq. (28), we can obtain an expression for the twists of the
two cameras with respect toΨ0 in the same fashion as in
Eq. (22).

From Eq. (28) it is found that the Jacobian for the left
camera is given by

JL (q) =
[

Jdecoupled T̂
0,1
2 T̂

0,2
3 T̂

0,3
4 T̂

0,4
L 0

]

, (29)

and, similarly, for the right camera

JR (q) =
[

Jdecoupled T̂
0,1
2 T̂

0,2
3 T̂

0,3
4 0 T̂

0,4
R

]

. (30)

In Eqs. (29), (30) the twistŝT0,∗
• denote the unit twists as

given in Eq. (9), but expressed inΨ0. The indices refer to the
bodies, as defined in Fig. 1.

From Eq. (25) it follows that when the camera coordi-
nate frame moves, the projection is affected, becausep{L,R}

changes. An expression for the instantaneous rate of change
of p{L,R}, ṗ{L,R}, caused by the joint movement, can be
found by assuming a situation as depicted in Fig. 9 for the
left camera.

Let the homogeneous coordinates of the target, expressed
in the left camera coordinate frameΨL, be given by

[

pL

1

]

= HL
0

[

p0

1

]

, (31)

wherep0 denotes the target coordinates inΨ0.
The linear velocity ofpL expressed inΨL is found by

differentiating Eq. (31) with respect to time, yielding
[

ṗL

0

]

= ḢL
0

[

p0

1

]

, (32)

where we used the fact that we are considering the instanta-
neous case wherėp0 = 0. By using the relation

ḢL
0 = T̃

L,L
0 HL

0 , (33)

we obtain
[

ṗL

0

]

= T̃
L,L
0 HL

0

[

p0

1

]

= T̃
L,L
0

[

pL

1

]

,

(34)

that can be also written as

ṗL =
[

−p̃L I3

]

T
L,L
0 , (35)
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by using the relatioñab = −b̃a. The twistTL,L
0 can be also

written as

T
L,L
0 = −Ad

H
L
0

T
0,0
L , (36)

by noting thatTi,i
j = −T

i,j
i and T

i,j
i = Ad

H
i
j
T

j,j
i . Finally,

from Eq. (28), it follows that

ṗL =
[

p̃L −I3

]

Ad
H

L
0

JL (q) q̇. (37)

From Eq. (25)pL
proj is found to be a scaled version ofpL,

and therefore

ṗL
proj = −

[

0 1 0
0 0 1

]

[

p̃L
proj −I3

]

AdH
L
0

JL (q) q̇, (38)

whereṗL
proj denotes the two dimensional velocity vector that

gives the instantaneous velocity of the observed target on the
image plane and the projected targetpL

proj is given by Eq. 24.
By taking the same approach, we find a similar expression

for the right camera, and these results combined gives the
matrix F in Eq. (23).

C. Control Law

Now that it is known how the perception of the target
changes as the joint angles change, a control law can be
formulated for the actuation of the joints. The goal is to move
the perceived target coordinatesp

{L,R}

proj to (0, 0). The error in
the state vector is defined as

xerror =

[

0

0

]

−

[

pL
proj

pR
proj

]

= −

[

pL
proj

pR
proj

]

. (39)

Using a proportional gainKp on this error, the desired rate
of change of the state vector,ẋ, is formulated as

ẋ = −Kp

[

pL
proj

pR
proj

]

. (40)

To achieve the desireḋx, it is required to invert Eq. (23) to
calculate the required joint velocitieṡq. Since the robot head
has multiple redundant joints, inversion of Eq. (23) is given
by

q̇ = F♯ẋ +
(

I7 − F♯F
)

z, (41)

where F♯ ∈ R
7×4 is the weighted generalized inverse of

matrixF in Eq. (23) and vectorz ∈ R
7 is an arbitrary vector of

appropriate dimension which is projected onto the null space
of F, see [10] for more details1.

In order to achieve the required human-like motions, we
choose a criterionG (q) with respect toq

G (q) =
1

2
(q0 − q)

T
W (q0 − q) , (42)

1In general,ẋ = Fq̇ has a minimum norm, least-squares solutionq̇ = F♯ẋ

when a physically consistent Euclidian inner product is defined on both the
vector spaceTxX and TqQ. In this paper, since any element belonging to
these vector spaces can be represented by components with the same physical
units, a physically consistent inner product is defined and it follows that

F♯ = F+ = FT
(

FFT
)−1

, where the symbol+ indicates Moore-Penrose
pseudoinverse.

where q0 denotes the preferred joint state (which may be
chosen to be0) and W = diag{w1, . . . , w7}, wherewi are
weighting factors. By taking

z =
∂G

∂q
= W (q0 − q) , (43)

the joints are actuated to move towards their initial positionq0

proportionally to the weighting factorswi. By choosing appro-
priate weighting factorswi, the head will move in a human-
like way [11]. For example, giving the weight corresponding
to the roll motion of the neck a large value will result in
only small roll motions. This is desirable behavior, because
humans do not often use this motion either. Also, the weights
corresponding to the joints that control the eye motion need
to have a significant value, so that the eyes tend to return to
a neutral position, but at the same time a value that is not
too high, to allow the eyes to move to the target in the first
place. Choosing the exact values forwi has turned out to be
a combination of the above reasoning and trial-and-error.

A more sophisticated approach could be to choose the
weightswi dynamically, so that we have

W = W(t) = diag{w1(t), . . . , w7(t)} . (44)

With this approach, the joint motion can be controlled over
time to achieve more sophisticated behavior. For example,
when tracking a slow moving target, the weights that control
the eye motion could be choosen very low when a target
has just come into view. As the target remains in view over
time, the weights could increase in value, so that the eyes
will remain closer to their neutral position and as a result the
neck joints become more active. This kind of behavior closely
resembles human behavior.

Optionally, the vectorz can be used to project “behavioral
motions” onto the null-space and in this way have the head
show emotions while simultaneously looking at something,
e.g. somebody’s face.

V. SIMULATION RESULTS

The dynamic model and the motion control algorithm have
been implemented in a simulation environment using 20-sim
simulation software [12]. This software package allows for
direct implementation of bondgraph models combined with
the controller code.

The motion control algorithm and the model are imple-
mented in a structure depicted in Fig. 10. The cameras are also
modeled using the pinhole camera model given by Eq. (25).
The delay due to the time that the vision processing algorithm
needs to process the camera images is also modeled.

The simulation environment is divided in a continuous time
and discrete time part. It is expected that the vision processing
algorithm will work at a rate of 20 Hz., therefore the cameras
are modeled in discrete time at 20 Hz. The motion control
algorithm is also modeled in discrete time, but at a rate of
60 Hz. It has been found that this is the minimum sample rate
at which the motion control is capable of effectively dealing
with the delay of the vision processing algorithm.

The joint velocities calculated by the motion control algo-
rithm are send to the actuators of dynamic bondgraph model
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2D target coordi-

nates from left and

right camera at
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Actuator velocities q̇

Actuator angles q

The motion control
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Fig. 10. Simulation environment in 20-sim — The target and the dynamic
model are modeled in continuous time; the cameras and the motion control
algorithm are modeled in discrete time. The cameras supply the algorithm
with target coordinates at a fixed rate of 20 Hz. The dynamic model of the
head also contains closed loop PID-controllers for the actuators.

Fig. 11. Time plots of the joint angles for the differential drive and the eyes
— The counter rotation of the differential drive actuators (top two) result in
a panning motion of the head. The rotation of the eyes (bottomtwo) with
respect to the head is much faster than the head movement and also shows
the desired counter rotation to compensate for the head movement once the
target is in view.

of the system. The actuators are modeled as closed loop PID-
controlled servo motors.

Fig. 11 shows time plots of the joint angles of the differen-
tial drive and thez-axis rotation eyes for a horizontal saccade.
The norm of the target vector in 2D camera coordinates is
reduced to zero in about 400 ms. This is achieved by a rapid
movement of the eyes, which reach their maximum angle in
about 300 ms. After this, the eyes start to rotate back to
their initial position, as the differential drive moves thehead
towards the target. When this plot is compared with Fig. 2, the
resemblance with human behavior is apparent. The plots show
similar patterns, but on a different time scale. This is because
the rapid eye movement of humans could not be achieved.

The algorithm has been succesfully tested in various situa-
tions, e.g.: saccades, target tracking and null-space movement
(i.e. moving the head while keeping the target in focus).

VI. CONCLUSIONS ANDFUTURE WORK

A motion control algorithm for a humanoid head has been
designed. The algorithm acts on camera inputs and can control
the humanoid head in a human-like way. This has been
achieved by appropriately actuating the redundant joints using
a null-space projection method. A dynamic model based on
bondgraph and screw theory has been developed and has
been used to test the motion control algorithm in a simulated
environment. Simulations have shown that both saccades and
target tracking tasks can be performed, encountering a human
like behavior in several circumstances.

Future work are the implementation of the control algo-
rithms on a real-time hardware platform and evaluation of the
performance in a hardware-in-the-loop environment. When the
algorithm is found to work correctly on the real-time control
platform, the real humanoid head system can be interfaced,
because the dynamic model is developed to match the real
system as close as possible. No major issues are to be expected
in the implementation phase.
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Implementation of a Vision Based Motion Control
Algorithm for a Humanoid Head

L.C. Visser, S. Stramigioli, R. Carloni, G. van Oort, E.C. Dertien

Abstract—This paper describes the implementation and testing
of a vision based motion control algorithm for a humanoid head.
The motion control algorithm has been designed in [1] and pro-
vides the head a human-like behavior. In this work, we describe
the implementation and tests in a simulation environment and
the migration of the algorithm from the simulation environm ent
to a real-time control platform. This migration is governed by a
step-by-step integration and testing procedure. After each step,
the algorithm output is validated and its performance evaluated.
The algorithm is implemented succesfully on a real-time PC-104
platform.

Index Terms—Digital control, programming, real time systems,
software testing

I. I NTRODUCTION

W ITHIN the 3TU collaboration project, the Control
Engineering group at the University of Twente and

research groups of the universities of Delft and Eindhoven,
in collaboration with industry partners, are developing the
humanoid robot “TUlip” [2]. In the scope of this project, a
humanoid head-neck system has been developed, however,
the head-neck system will serve two purposes. Firstly, it is
meant to be mounted on a teen-sized humanoid robot as a
way to percieve the environment. Secondly, the head will
be used as research platform in the field of human-machine
interaction. The mechanical design consists of a four degree
of freedom neck and a vision system based on two cameras.
The cameras, representing the eyes, tilt on a common axis and
rotate sideways independently.

In previous work a motion control algorithm for this system
has been developed and tested on a dynamic model in a
simulation environment [1]. This paper will focus on the
migration of the motion control algorithm from the simulation
environment to an implementation on a real-time platform.

This paper is organized as follows: in Section II a set of
requirements for the real-time implementation is presented.
Based on these requirements, a number of implementation
choices have been made, which are presented in Section III.
Section IV presents a step-wise integration and testing method
that should lead to a succesful implementation of the motion
control algorithm on the real-time platform. The outcome of
this method will be presented and discussed in Section V.

II. REQUIREMENTS

The control of the humanoid head system requires a number
of components: a vision processing algorithm, a motion control
algorithm and hardware interfaces. The vision processing algo-
rithm will run on a separate, dedicated PC, so implementation

of the control algorithm consists of the implementation of
the motion control algorithm, the actuator controllers and
the design of a framework providing communication between
the algorithms and the hardware. The following software
components are needed for the realization of a succesful
implementation of a controller system for the humanoid head:

• A real-time operating system (RTOS), running on a PC-
104 platform that hosts the control software

• A framework running on the RTOS, providing commu-
nication between components (i.e. the motion control
algorithm, PID-controllers, hardware interface, etc.)

• An implementation of the the motion control algorithm
that can be integrated in the framework

• A real-time implementation of the actuator control loops
• An interface to the vision processing algorithm
• An interface to the hardware

These mechanisms and the relations between them is sum-
marized in Fig. 1. The figure also shows a low-level safety
layer. In principle, the control algorithms should take care
of initializing the system (homing of the encoders, software
endstops, etc.) and provide safe operation. Regardless, a back-
up, low level safety layer should be present outside the
framework. This safety layer may consist of, for example,
emergency shutdown buttons, current limiters for the actuators,
hardware endstops, etc., so to guarantee safe operation at all
time, even when the framework stops functioning (e.g. when
the operating system crashes). The implementation of this part
is beyond the scope of this paper.

A. Component Requirements

In this paragraph we describe the requirements listed above
that are required in order to come to a successful implemen-
tation and integration of the motion control algorithm.

Real-Time Operating System: The real-time operating sys-
tem should be able to provide a hard real-time environment.
It should also allow for easy hardware interfacing, since hard-
ware will be used that requires very low-level programming.

Framework: The framework should provide a communica-
tion network for the different parts involved in the control
structure. Moreover, it should provide an abstract interface to
which the modules can be connected, and provide the real-time
environment for the modules.

Motion Control Algorithm: The control algorithm will run
in a hard real-time environment. As observed in simulations,
the algorithm should run at at least 60 Hz., so execution time
should not exceed 0.017 s. Since the motion control algorithm
is only a small part of the complete system and time is needed
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Fig. 1. Overview of the control structure — The framework running on a
RTOS provides communication between modules (datalink interface, motion
control algorithm, actuator controllers). The framework also serves as an
abstraction layer between the RTOS and the modules.

to perform other calculations as well, the maximum available
execution time is more likely to be around 0.005 s. This
imposes limitations on the programming language used and
programming constructions that can be used. For example,
interpreted languages or programming languages that run in
a managed environment cannot be used.

The algorithm needs to interface the framework to receive
input values and output desired joint velocities. This interface
needs to be as simple (i.e. little overhead and delay) but robust
as possible.

Actuator Control Loops: The actuator control loops consist
of an integrator and closed loop PID-control of the actua-
tor position. The integrators generate setpoints for the PID-
controllers of the servo actuators. Since there are seven actu-
ators, it is desirable that there is a generic controller that can
be instantiated multiple times with different parameters.This
is preferable over implementing seven seperate controllers,
which is more error-prone. Also, in this way the interface
to the controllers is always the same, which simplifies the
integration in the framework. The actuator control loops and
hardware interfaces should run at a high sample frequency
of 1 kHz. or higher to obtain smooth and stable actuation of
the system. The integrators in the control loop are essentially
interpolating the motion controller output.

Interface to the Hardware: The interfaces to the hardware
should be provided in a generic way, in case the hardware
drivers change. The hardware interface should wrap around
the hardware driver, so changes of the driver do not require
changes in the framework.

Interface to the Vision Algorithm: The vision processing
will run on a separate PC connected to the PC-104 platform
through ethernet. Since the vision processing algorithm will
run at a much slower rate than the motion control algorithm
(∼ 20 Hz. and∼ 60 Hz. respectively), it is not necessary

Vision interface

Motion control

Integrate

PID-control

time1/60s

Fig. 2. Task execution scheme — There are three real-time tasks that run
simultaneously: the motion control algorithm at low frequency (60 Hz. or
higher), setpoint generation through integration (1 kHz. or higher) and closed
loop actuator control and interfacing (also 1 kHz. or higher). Interfacing the
vision algorithm is not a real-time task.

that the interface to the vision algorithm runs hard-real time.
It is sufficient for the motion control algorithm to check for
new data on the interface once every iteration. This approach
requires that the interface is non-blocking, so that the real-time
operation of the control algorithm can be guaranteed.

From these requirements it follows that we have three real-time
tasks that run simultaneously: a motion control task at at least
60 Hz., an integration task and a closed loop actuator control
and interfacing task at much higher frequencies (1 kHz. or
higher). The vision algorithm should be interfaced periodically
as well, but not necessarily real-time. This results in a task
timing scheme as depicted in Fig. 2. The RTOS and framework
should provide means to implement this scheme.

III. I MPLEMENTATION CHOICES

Based on the requirements, a number of choices have been
made regarding implementation details.

A. Real-Time Operating System

The choice was made in favor of a GNU/Linux distribution
running the Xenomai [3] real-time environment. The primary
reason for choosing GNU/Linux is because of the real-time
capabilities, the wide range of supported hardware, the ease
of hardware interfacing and the flexibility.

B. Framework

The framework is based on the work presented by Lootsma
in [4]. He has provided a easy-to-use and flexible interface to
the real-time environment provided by Xenomai. It was found
that this interface was well-suited for the framework structure
envisioned for this project.

The framework is written in C++ programming language.
The object-orientated features of this language are very well
suited to fulfill the modularity requirement. It also allowsfor
a certain level of abstraction regarding the aforementioned
interfaces.

C. Motion Control Algorithm

Based on the requirements, the choice was made to imple-
ment the algorithm in the C-programming language. Because
C-code should be compiled to native machine code, programs
written in C can be very fast and are suitable for hard real-
time operations (depending on programming structures used).
C-compilers for almost any platform exist, which will make
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the algorithm very portable to other platforms. The availability
of low-level memory operations allows for a very fast and
consistent interface to the framework through pointers. An
extra advantage is that the framework is implemented in
C++, allowing easy integration of the control algorithm in the
framework.

To simplify the implementation of the many matrix opera-
tions in the algorithm, an external matrix library is used. The
choice was made to use the GNU Scientific Library (GSL)
[5]. This is a scientific mathematics library, implemented
in C. It is known to compile on many platforms and is
actively maintained. It is a mature library that provides a
consistent interface and many optimization possibilities. A
wrapper interface to this library is made, in case the choiceis
made to use a different library in the future. In that case, only
the interface needs to be changed, while the algorithm can
remain unaltered. This should reduce the chance of erroneous
operation in case of a change of platform or library.

The motion control algorithm will be embedded in a state
machine based controller. In this way, the hardware and
software can be properly initialized prior to the executionof
the control algorithm.

D. Actuator Control Loops

For implementing the actuator control loops, two options
are available: exporting the controller designs from the 20-sim
software package [6] or realizing a custom implementation.
Although 20-sim provides excellent functionality for C-code
generation, the choice was made to manually implement the
controllers. The main motivation is that in this way an optimal
integration with the framework can be realized.

E. Interface to the Hardware

The hardware is interfaced with a FPGA based PC104+
Anything I/O card [7]. These boards have been used in many
projects in the Control Engineering group, so documented
drivers and a lot of experience are available.

F. Interface to the Vision Algorithm

The interface to the vision processing algorithm should
provide non-blocking read and write functions. Unix-sockets
provide this functionality in combination with theselect()
system call [8].

The designed implementation structure and communication
signals is shown in Fig. 3. The real-time tasks are grouped by
related operations. The interfaces are primairily implemented
through memory pointers. In this way, communication over-
head is kept to a minimum. Also, certain cases of unintended
data manipulation can be discovered at compile time.

Initially, the choice was made to allocate memory for the
algorithm dynamically in each call to the algorithm. While
this results in overhead (memory allocation is expensive in
that it is not deterministic), it was found that in this way
the code can be kept organized better and memory usage can
be minimized. Tests will need to show whether the overhead

Motion
Control

Algorithm

Control Task

Integrate Task

PID-
Controller

PID-
Controller

Integrator

Integrator

Anything
I/O

Interface Task

Vision Interface

Socket

Framework on RTOS

Framework Supervisor Function

target coordinates

target coordinates, configuration feedback

configuration feedback

configuration feedback

status feedback

q̇ q

Fig. 3. Overview of the implementation structure — The framework
supervisory function controls the initialization phase and provides means of
communication between modules. The three tasks that need torun real-time
are grouped and will run in separate threads: the motion control algorithm at
a low frequency, integration and hardware interfacing at high frequencies.

caused by the memory allocation operations is too big. In that
case, initialization and termination functions should be written
that allocate and deallocate appropriate amounts of memory
for the algorithm at startup and shutdown.

IV. STEPWISEINTEGRATION AND TESTING

In order to come to a correctly functioning implementation
of the control algorithm, a stepwise testing and integration
strategy has been adopted [9]. This procedure is illustrated in
Fig. 4. Point of departure is the control algorithm implemented
in the scripted simulation environment of the 20-sim software
package. Then the algorithm is ported to C-code and tested
again to validate its correctness. After successful completion
of this phase, the algorithm can be integrated into the con-
troller framework and should be tested again. The final phase
comprises the integration of the seperately designed vision
processing algorithm, the motion control algorithm integrated
in the framework on the PC-104, and the interface to the
hardware.

The framework has been developed and tested separately.
The design, implementation and testing procedure for the
framework is treated in [4].

A. Testing in a Simulation Environment

The first phase is to exhaustively test the algorithm in a
simulation environment. This has been done by implementing
the algorithm together with a dynamic model in the 20-sim
software package. The algorithm has been tested in a number
of predefined scenarios:

• An instanteneous change in target position, resulting in a
saccade

• A smoothly moving target that must be tracked
• A randomly but smoothly moving target that must be

tracked
• A stationary target that must be kept in view while

redundant joints are actuated
• Combinations of the above

During these tests, signals from the (simulated) actuators, PID
controllers and cameras were logged, as well as the control
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Fig. 4. Stepwise testing and integration procedure — Four separate testing
phases are identified, each of which works closer towards integration of
the motion control algorithm in the real-time environment of the controller
framework.

algorithm output. This data is used in the next phase to validate
the correctness of the ported algorithm.

B. Porting and Testing the Control Algorithm

The next phase is to port the motion control algorithm
to C-code. The process of porting the algorithm consists
of two phases. The first step is to provide an interface to
GSL and test this interface. The interface primarily consists
of elementary matrix and vector manipulation functions, e.g.
addition, multiplication, etc.

One key feature of the algorithm is the utilization of a
pseudo-inverse with optimization [10] to obtain desired joint
actuator velocities

q̇ = F+ẋ +
(

I7 − F+F
)

z. (1)

Since GSL does not support pseudo-inverses natively, a routine
was implemented that utilizes Singular Value (SV) decompo-
sition to obtain a pseudo-inverse [11]. A matrixA ∈ R

n×m

can be decomposed in

A = UΣVT , (2)

where the diagonal matrixΣ ∈ R
m×m holds the singular

valuesσi

Σ , diag(σ1, . . . , σp)

p = min {m, n}

σ1 > σ2 > · · · > σk > 0

σk+1 = · · · = σp = 0.

(3)

From this, a pseudo-inverseA+ ∈ R
m×n is obtained through

A+ = VΣ+UT , (4)

whereΣ+ follows from (3) and is defined as

Σ+ , diag

(

1

σ1

, . . . ,
1

σk

, 0, . . . , 0

)

︸ ︷︷ ︸

p=min{m,n}

. (5)

GSL only supports SV decomposition for matricesA ∈ R
n×m

with n > m and the matrixF ∈ R
4×7 does not fulfill this

condition. To be able to use the GSL decomposition routines,
the SV decomposition ofFT is taken according to (2). Using
Σ+ from (5), F+ is then obtained from:

G , FT = UGΣGVT
G

G+ = VGΣ+

GUT
G =

(

F+
)T

⇒ F+ =
(

G+
)T

= UGΣ+

GVT
G

(6)

The output of the ported algorithm is validated using the
data collected in the experiments conducted in the previous
phase. This is done by an automated program that provides
the algorithm with input data from simulations of the previous
phase. The output of the ported algorithm is compared with
the output of the scripted algorithm and an error is raised if
the output is invalid.

C. Integration and Testing on the PC-104

The next phase in the integration process is to incorporate
the motion control algorithm in the framework on the PC-
104. Since both the framework and the control algorithm
are written in the C-language, this is a fairly easy task. In
order to test the algorithm on the framework, it needs to
receive target coordinates and joint actuator position feedback.
This is achieved by porting the dynamic model and simulated
target and cameras to C-code as well. The 20-sim software
package provides template-based export functions to do this
automatically. It should be noted that, due to the model
complexity, only a limited number of scenarios that do not
demand to much of the model can be tested and only in
simulated real-time. This is because the PC-104 platform has
limited computing power available. Nonetheless, this should
be sufficient to verify correct behavior of the control algorithm.

In this phase, where both the control algorithm and the
dynamic model run on the PC-104 platform, a PC is used
to gather and visualize data signals. Since the correctnessof
the algorithm has alread been validated in the previous phase,
the focus is primarily on testing the interface between the
framework and the algorithm.

D. Connecting the Vision Processing Algorithm

The final phase of the testing and integration process is to
connect the seperately developed vision processing algorithm
to the framework and control algorithm. The vision process-
ing algorithm analyzes image frames from two cameras and
decides what the head should look at. Due to the nature of this
task, this phase requires that the dynamic model is removed
from the framework and that the actual hardware is interfaced.

If all testing phases have been completed succesfully, this
phase will yield the complete integrated system, comprising
cameras, vision processing algorithm, motion control algo-
rithm and a naturally moving humanoid head.
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V. RESULTS AND CONCLUSIONS

The first three steps of the integration and testing procedure
have been completed. The algorithm was successfully ported
to C-code and the validation process showed no errors in
the calculated output. The execution time of the algorithm
was found to be approximately 40µs, significantly below the
maximum of 5 ms. As mentioned before, there is still room
for improvement if 40µs turns out to be too long. Also, since
memory allocation is not deterministic, the required execution
time of the algorithm cannot be determined beforehand with
the current implementation. This might need to be improved
in the future as well.

Integration of the motion control algorithm with the con-
troller framework has been completed succesfully as well.
Because the PC-104 platform has a limited amount of cal-
culation power, it was not possible to simulate the algorithm
and the dynamic model real-time. Instead, a pseudo real-time
environment, where the clock runs a fixed factor slower to
“create” time, was created in which the algorithm was tested.
This only allowed for very simple testing scenarios, but the
emphasis in this phase was on testing the integration with the
framework rather than on the correct behavior of the algorithm
(since this was already validated). The scenarios that havebeen
tested have shown no problems.

The final integration step, where the motion control algorithm
and vision processing algorithm are connected and the real
hardware is interfaced has not been completed yet. This is
due to unavailability of the hardware. No serious problems are
expected to arise in completing the integration, since extensive
testing of the algorithm and the integration in the framework
have not revealed any issues. It is therefore expected that the
final integration step will be succesfull as soon as all partsare
available.
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A Screw Theory

This appendix summarizes some basic concepts of screw theory in order to allow
the reader to better understand and follow the formulae presented in this report.
For a more comprehensive and complete introduction, the reader is referred to
literature.

A.1 Homogeneous Coordinates

Let

pi =





x

y

z





i

be a generic point in three dimensional Euclidian space E(3), expressed in coordi-
nate frame Ψi. The point can be numerically expressed in a different coordinate
frame Ψj by applying a change of coordinates E(3) → E(3) due to a rotation
and translation




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z





j

= R
j
i





x

y

z





i

+ d
j
i ,

where R
j
i ∈ SO(3) defines the rotation from Ψi to Ψj , and the vector d

j
i ∈ R

3

the corresponding translation.
The change of coordinates can be expressed by a single matrix multiplication

by introducing homogeneous coordinates. A generic point P in homogeneous
coordinates is represented by

pi =








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z

1
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i

.

The change of coordinates is then defined by
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,

where the homogeneous matrix H
j
i ∈ SE(3) has the following structure:

H
j
i =

[

R
j
i d

j
i

0 0 0 1

]

.

A.2 Twists and Wrenches

It can be shown that a change of coordinates H ∈ SE(3) can be found by taking
the exponential of a matrix T̃ ∈ se(3):

H = eT̃,

where T̃ has the form

T̃ =

[

ω̃ v

0 0 0 1

]

,
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with ω̃ ∈ so(3) and v ∈ R
3. The equivalent vector representation of T̃ is

T =

[

ω

v

]

.

Here ω represents a rotational velocity and v represents a linear velocity.
The vector T is called twist and represents the generalized velocity of a

coordinate system rigidly attached to a body. According to Chasles’ theorem,
any twist can be written as

[

ω

v

]

=

[

ω

r ∧ ω

]

+ λ

[

0

ω

]

.

This corresponds geometrically to a rotating motion around ω combined with a
simultaneous translation λ along ω: a screw-like motion (hence the name “screw
theory”).

If a matrix H
j
i ∈ SE(3) defines the change of coordinates from Ψi to Ψj,

then their relative motion, expressed in Ψi, is given by:

T
j,j
i = Ḣ

j
iH

i
j .

It can be shown that T
j,j
i can be expressed in an arbitrary coordinate system

Ψk:

T
k,j
i =

[

ω
k,j
i

v
k,j
i

]

=

[

Rk
j 0

d̃k
j R

k
j Rk

j

] [

ω
j,j
i

v
j,j
i

]

.

This change of coordinates is defined by an operator, called adjoint, on the
homogeneous matrix Hk

j that defines the change of coordinates from Ψj to Ψk:

Ad
H

k
j

,

[

Rk
j 0

d̃k
j R

k
j Rk

j

]

.

Similarly, a wrench represents the generalized force acting on a body and
takes the form

W =
[

m f
]

.

Here m represents a torque and v represents a linear force. A wrench W is a
element of the dual space se(3)∗ and we have

P = WT,

where P denotes power.
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B Motion Control State Machine

The motion control algorithm is governed by a state machine. The primary task
of the state machine is to ensure that the encoders are properly initialized prior
to operation. The structure and functional design of the state machine is shown
in figure 1. The following states are available:

Stopped This is the initial state in which the state machine will be on startup.
Zero output is sent to all encoders. This state can only be left by the start
and initialize commands.

Initialize This is a transition state provided for optional logging purposes. It
is directly left to go into the homing state of the first joint.

Homing Joint < n > In this state, the endstop detection is used to termine
the range of the joints. This is achieved by actuating the joint slowly in
positive and subsequently in negative direction until the endstops are hit.
By reading the encoder data, the range of the joint can be determined,
upon which the joint states can be properly initialized.

Initialization done This state is provided as a pausing point, so that all ini-
tialization functions can be completed. Upon receiving a start or stop
command, this state will be left to enter the stopped or running state
respectively.

Running In this state, the motion control algorithm will calculate actuator
velocities as it is designed to do. On any error, this state will be left for
the error state. Upon receiving the stop command, the state will be left
for the stopped state.

Error This state is provided for error handling. Subsequently the stopped state
will be entered.
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Figure 1: State machine structure.
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