University of Twente

EEMCS / Electrical Engineering
Control Engineering

‘
@

Design of the global software structure and
controller framework for the 3TU soccer robot

Marten Lootsma

MSc report

Supervisors:
prof.dr.ir. S. Stramigioli
dr.ir. J.F. Broenink

dr. R. Carloni

ir. G. van Oort

June 2008

Report nr. 014CE2008
Control Engineering
EE-Math-CS
University of Twente
P.O.Box 217

7500 AE Enschede
The Netherlands

Summary

Four identical humanoid soccer robots are currently developed by the three universities of
technology in the Netherlands (3TU), with the intention to participate as the TeamDutchRobotics
at the RoboCup 2008 competition. In order to move, each robot has 14 joints in its arms and
legs, from which 12 are actuated by electric motors. The mechanical configuration is designed
for dynamical walking; it is unstable and should continuously have stabilizing control. The
‘brain’ of the robot is a single processor computer, a PC-104 stack. The aim of this master thesis
project is twofold:

* Design of the global software structure
* Design of the joint controller framework

The first part is about the software architecture, real-time behavior and the use of third-party
software. Many software projects do exist for robots, the so-called robot software frameworks.
The usability of these frameworks has been investigated, it remained in two candidates for us-
ing it in TUlip: Orocos and RoboFrame. However, no framework fully satisfied the require-
ments, because Orocos is not light weighted and RoboFrame does initially not support real-
time. It has been chosen to use RoboFrame for the non-real-time part of the software and a
self-written framework for the real-time part, with kept in mind that RoboFrame later can be
ported to support real-time behavior. Furthermore it has been decided to use Linux/Xenomai
as operating system to achieve the real-time execution of the software.

The second part is about the design of a software framework for stabilizing controllers: the
joint controller framework. The movements of the robot exist of several basic behaviors, such
as walking, kicking the ball, stand up etcetera. Each basic behavior might need different config-
urations of the joint controllers or even different types of joint controllers. The goal is to create
a framework that gives control engineers the opportunity to switch among controllers and to
be flexible in adjusting the parameters. The joint controller framework has been designed and
a prototype has been realized. Instead of testing it on the real robot, models of the robot have
been used to test the framework, because the robot was not assembled yet. Because of prob-
lems with the model of TUlip’s body, the joint controller framework is tested on models of a
humanoid head as well. The joint controller framework worked well and it has been used for
realizing the head demo, as described in[Visser| (2008).

For future work, the prototype of the joint controller framework has to be extended to support
switching between controllers while performing movements. It is expected that switching of
controllers require an initialization mechanism for the new controllers in order to perform the
transition of the controllers as smooth as possible.

Instead of having two separate frameworks for TU]ip, it is an option to port RoboFrame to sup-
port real-time behavior, in order to create a light weight real-time framework that can be used
for the whole system.

Although Orocos has chosen not to be used in TUlip because of uncertainties about its resource
consumption, it might be interesting to do a full research on its capabilities and timing char-
acteristics. Orocos is interesting, because does have real-time support and useful libraries for
using it in robot applications.

Control Engineering

ii Design of the global software structure and joint controller framework for TUlip

Samenvatting

Vier identieke humanoid voetbal robots worden op dit moment ontwikkeld door de drie Neder-
landse technische universiteiten (3TU), met de intentie om als de TeamDutchRobotics aan de
RoboCup 2008 competitie mee te doen. The robots hebben elk 14 gewrichten in de armen en
benen, waarvan 12 geactueerd door elektrische motoren. Het mechanische ontwerp is toege-
spitst op dynamisch lopen; het is onstabiel en heeft voordurend stabiliserende regelactie nodig.
Het ‘brein’ van de robot is een computer met een enkele processor, een PC-104 stack. Het doel
van deze master opdracht kan worden verdeeld in twee gedeelten:

¢ Ontwerpen van de globale software structuur

¢ Ontwerpen van de joint controller framework

Het eerste gedeelte gaat over de software architectuur, real-time gedrag en het gebruik van soft-
ware van derden. Er zijn veel software projecten speciaal voor robots beschikbaar, de zoge-
naamde robot software frameworks. Het nut van het gebruik van deze frameworks is onder-
zocht. Het resulteerde in twee kandidaten voor het gebruik in TUlip: Orocos en RoboFrame.
Alhoewel, geen van beide frameworks voldoet volledig aan de eisen, omdat Orocos waarschi-
jnlijk een te zware belasting voor de processor is en RoboFrame ondersteund geen real-time
gedrag. Hetis gekozen om RoboFrame te gebruiken voor het niet real-time gedeelte van de soft-
ware en om een zelf geschreven real-time framework te gebruiken voor de tijdkritische software
gedeelten, met de gedachten dat RoboFrame later kan worden aangepast om real-time gedrag
te ondersteunen.

Het tweede gedeelte gaat over het ontwerp van een software framework voor stabiliserende
regelaars: de joint controller framework. De bewegingen van de robot bestaan uit verschil-
lende basic behaviors, zoals lopen, tegen een bal schoppen, opstaan etcetera. Elke van die
basic behaviors heeft wellicht een andere configuratie van regelaars of zelf verschillende type
regelaars nodig. Het doel is om een framework te creéren dat regeltechnici de mogelijkheid
geeft om van regelaars te wisselen en om flexibel te zijn met het aanpassen van parameters. De
joint controller framework is ontworpen en een prototype is gerealiseerd. Omdat de mecha-
nische constructie van de robot nog niet volledig af was, is het framework getest op modellen
van de robot. Door problemen met het model van de lichaam van de robot, is het framework
ook getest op een model van een humanoid hoofd. Het framework is later gebuikt voor het
realiseren van de hoofd demo, als beschreven in[Visser| (2008).

Voor verder werk, de prototype van the joint controller framework moet worden uitgebreid
om tijdens het bewegen van de robot het verwisselen van regelaars te ondersteunen. Het is te
verwachten dat een initialisatie mechanisme nodig is om de transitie naar nieuwe controllers
zo geleidelijk mogelijk te laten verlopen.

In plaats om twee verschillende frameworks voor TUlip te gebruiken, is het een optie om RoboFrame
aan te passen om real-time gedrag te ondersteunen, zodat een framework kan worden gebruikt
voor het gehele systeem.

Desondanks dat Orocos is niet gekozen om het te gebruiken in TUlip vanwege de verwachtte
zware processor belasting, kan het interessant zijn om verder onderzoek te doen naar de mo-
gelijkheden en timing karakteristieken van Orocos. Orocos is interessant, omdat het van zichzelf
al real-time gedrag ondersteund en het verschillende bruikbare libraries heeft voor gebruik in
robot applicaties.

University of Twente

iii

Preface

With this report I conclude my Master’s program in Electrical Engineering. Doing the Master’s
program has been a great addition to my HBO education. I am very thankful that I had the
opportunity to do so.

First of all I want to thank my parents that they always believed in me and for their support.
They made me who I am and they make me feel proud.

In general I want to thank the people of the Control Engineering group. It has been a great
experience to participate with them in several interesting projects. I would like thank Rafaella
Carloni, without her help this report could not be finished in time. I owe thanks to Gijs van der
Hoorn from the University of Delft for his cooperation and interesting ideas.

I want to thank my fellow students and friends Harm de Boer, Hans van der Steen, Jeroen War-
nas and Rein Hoekema for being with me this three years. I owe special thanks to Harm for
being critical on how to document my work.

Last but not least, I want to thank my better half: Alfiya Lootsma. Thanks for standing by me
and for your unlimited support and patience.

Marten Lootsma
Enschede, June 2008

Control Engineering

iv Design of the global software structure and joint controller framework for TUlip
Contents
(L Introduction| 1
(1.1 TheTUlip project] e e e e e 1
[1.2 Assignment| e e e e e e 1
1.3 Approachl|. 1
(1.4 Reportoutling] e 2
(2 Background 3
[2.1 Configurationof TUlp|. 3
2.2 Softwarein similarrobots|o oo 4
2.3 R ftware frameworks and middlewarelo L. 4
[3 Software architecture analysis| 5
[3.1 Requirements| e e 5
[3.2 Functional specification| L L 5
[3.3 Functions mapped on layered structure for priorities|. 7
3.4 Conclusions| 8
[4 Software framework analysis| 9
[4.1 Comparison of third-party robot software frameworks| 9
[4.2 Software framework choicefor TUlip| 11
[4.3 Real-time operatingsystem| e 11
44 Conclusions| e 12
[5 Analysis of joint controller organization| 13
[5.1 Multiple controller configurations| 13
[5.2 Principle of control objects| 14
5.3 Conclusions| L 16
[6 Design and implementation of the joint controller framework 17
[6.1 Time driven tasks with datastorages|. 17
[6.2 Execution of the controlobjects|, 18
[6.3 Implementationl|. e 19
[6.4 Discussion on the extension of features| 20
6.5 Conclusions] oo 21
[7 Realization of test setups and control configurations| 22
[7.1 Implementation of the controlobjects| 22
[7.2 Testing the joint control framework with a model of therobotf. 23

University of Twente

CONTENTS Y
.. 23
A RESUIT -« « oo et et e e 25
[2.5 Conclusions| ot o e e e e e e 26
8_Conclusions and recommendations| 27
1 nclusions| 27
2 Recommendations| L e 27
[A Robot software framework to use for TUIip| 29
|IA.1 Requirements for a robot software framework for TUlip| 29
2 Ev ion available frameworks|o oo oo 30
I versus RoboFramel. Lo oo o 31
A4 Conclusionl.o ot 33

[B_Real-time module] 35
B.1 Timing measurementsofthetasks|. 35
B.2 Model-in-the-loop| 35

|C Timing test of a task running on Xenomai 37

Bibliography 39

Control Engineering

1 Introduction

1.1 The TUlip project

TUlip is the Dutch Robotics soccer robot, which is a common project of the three technical uni-
versities of the Netherlands (3TU). It is a humanoid robot, whose body structure resembles that
of a human. The goal of the Dutch Robotics Team is to participate in the TeenSize Humanoid
League of RoboCupSoccer 2008 in China, an annual soccer competition for robots, where the
TeenSize Humanoid League is a category for autonomous humanoid robots larger than one
meter.

The Dutch Robotics Team consists of four identical robots. They should be able to walk dynam-
ically and kick the ball while maintaining balance, processing human-like sensor information,
making tactical decisions and communicating among each other.

At the beginning of this master thesis project, the mechanical parts were already designed and
in production. The design of the electronics was almost finished as well. However, no decisions
about the software had been made yet.

Together with students from Delft, the design and implement of TUlip software had to be real-
ized.

1.2 Assignment

The assignment is to participate in the design and the implementation of the robot software
architecture. The main point of interest is the implementation of the joint controllers. The aim
of the assignment is split into two parts:

» To design a global software architecture and to exploit, if possible, suitable third-party soft-
ware in order to realize the designed architecture.

* To design a framework for the joint controllers. The focus of this design is to be as flexible
as possible in order to give the control designers the freedom to use and switch between
different configurations of controllers.

1.3 Approach
1 The first phase of the assignment is the study on robotics, a survey on software in existing

robots and especially how the control of the joints is performed in similar robots.

2 After that, the functions that the software of TUlip should cover had been investigated, and a
list of requirement has been set up.

3 In the third phase, the usability of third-party software had been investigated.

* The usability of several third-party software frameworks had been considered. Together
with Deen| (2008), a test-case has been set up in order to compare two different architec-
tures: RoboFrame and Orocos.

* The use of Linux/Xenomai as the real-time operating system had been evaluated.

Together with the project members of the TUlip development team, the decisions have been

made.

4 The design and implementation work have been divided over the project members. In the
fourth phase of this assignment, the possible controller configurations have been investi-
gated and a concept design for the organization of joint controller has been made.

5 In the last phase, a prototype of the joint controller framework had been realized and tested
with models and controllers of the robot by|Daemenl (2008) and [Visser! (2008).

Control Engineering

Design of the global software structure and joint controller framework for TUlip

1.4 Reportoutline

In Chapter 2, background information on the robot is provided.

An analysis has been done on the requirement and functions for the software in Chapter 3.
A global software architecture will be presented. The different functions of the software are
categorized by the layered control structure in order to divide priorities.

In Chapter 4 several robot software frameworks have been analysed for the usability in TUlip.
A suitable robot software framework is suggested and explained. Furthermore the chose is
made on which operating system the software will run.

Chapter 5 describes the analysis of the possible controller configurations and a concept de-
sign is made.

The design and implementation of the joint controller framework is discussed in Chapter 6.
In Chapter 7 the validation of the joint controller framework is discussed.

Appendix[Alis the recommendation report on which third-party robot software frameworks
are useful to realize the designed software structure.

Appendix Bl describes the real-time software abstraction, the timing tests of tasks and how
model-in-the-loop is realized.

In Appendix[C the timing test of Xenomai discussed

University of Twente

2 Background

In this chapter, background information to support understanding the context of this project
is given.

2.1 Configuration of TUlip

The humanoid robot TUlip is about 1.20m high and weights, fully assembled, about 14kg. The
mechanical configuration is designed for dynamic walking (McGeer, [1988). It is unstable and
should continuously have stabilizing control. A rendered picture of the TUlip design is shown
in Figure Z.1l(a).

In order to move, TUlip has a total of 14 rotational joints in legs and arms, as depicted in Figure
[21(b). 12 joints are actuated by electrical motors, some of which are constructed as series elastic
actuators (SEA), as described in Williamson! (1995).

—i-

—E

4

/ Z

. >
P | i .N'L_f}
_ ?
(a) CAD design (b) Indication of the joints (green

boxes with axis)

FIGURE 2.1 - The robot TUlip (a) and the simulated model (b)

TUlip should be able to walk dynamically and kick the ball while maintaining balance, pro-
cessing human-like sensor information, making tactical decisions and communicating among
each other. All these functions are performed by some sort of ‘brain’, which determines au-
tonomously the tactical decisions that has to be made. These tactical decisions are based upon
information about its environment and status. This information is provided by sensors, such
as:

* Pressure sensors in both feet

* Acceleration sensors

* Vision system

The tactical decisions are then translated to the necessary movements. To perform these move-
ments, the joints need to be actuated. Joint controllers are needed to control this actuation in
order to move the initially unstable robot in a proper way. Feedback for joint controllers are
provided by rotational position sensors in the joints.

The brain of the robot is located in its chest and it is realized by a single processor[PC-104](2008)
stack. The software on the stack needs to implement the functions The basic specifications of
the stack are listed in Table[2.1]

Control Engineering

4 Design of the global software structure and joint controller framework for TUlip

TABLE 2.1 - Basic PC104 specifications

Type Specification
Processor low power, fan-less 1.0GHz VIA Eden ULV
Work memory 256MB 533MHz DDR2 RAM
Data storage 4GB flash card
Communication Gigabit Ethernet
4xUSB 2.0
4x Serial port
33MHz PCI Bus

2.2 Software in similar robots

Similar dynamic walking robots have been analysed in order to evaluate the software in existing
robots. The main point of interest is the computation of the joint controllers because TUlip has
been designed to have a central computer on which the control algorithms of the joint have to
be computed as well.

One of these projects is the two dimensional biped Dribbel. Dribbel has been designed at the
University of Twente and it is controlled by a distributed network of micro-controllers (Dertien)
2005). A central computer is used, to control all the different distributed micro-controllers.
Since the software of Dribbel does not compute the controller at a central computer, the soft-
ware implementation of Dribbel is no used.

Flame, a robot of the University of Delft, computes the joint controllers in a central computer.
The robot itself is in fact the standard used for the mechanical design of TUlip and therefore
similar. The software is a self written set of libraries on a real-time Linux kernel. One thread,
timed with the critical time period, processes all the tasks sequentially. So even the non-real-
time tasks are performed on the highest frequency which leads to less computational space for
the time critical tasks. Flame focuses on implementing a dynamic walking algorithm, while
TUlip needs to perform, besides dynamic walking, several other functions. No software of
Flame has been used for the implementation of TUlip, however, the software architecture has
been studied in order to learn from it.

2.3 Robot software frameworks and middleware

As defined by|Douglass| (2003): “A framework is a ‘partially completed application that you cus-
tomize or specialize for you specific application.” A framework differs from a library in that a
library is a passive thing that you call to invoke a service. A framework is your application that
invokes the problem-specific services that you want to perform. Fortunately frameworks for
robot software exists.”

As described in Section[2.2] software for similar robots have been developed in previous projects.
Since the software in these projects are not reused in TUlip, there are two options:

¢ write the software from scratch and create a self-written framework,

¢ use a third-party software framework to start with.

Several third-party software frameworks for using it in robots are available. A significant part
of the frameworks is the middleware. It operating system services like processes and inter-
process communication. Developers of these frameworks all have a different philosophy and
background, which results in various projects, all with their strong and weak points. Alliance,
CLARAty, Miro, Orca, Orocos, Player, RoboFrame, URBI and YARP are robot software frame-
works. In this project, the usability of these frameworks for the TUlip software have been in-
vestigated. This is described in Appendix[Al

University of Twente

3 Software architecture analysis

This chapter presents the analysis of software architecture of TUlip. In order to set up a archi-
tecture, a list of requirements has been made.

3.1 Requirements

The RoboCup rules, hardware limitations and requests of the control engineers are analysed,

and translated to the requirements for the robot software. These requirements are:

e Multiple functions: TUlip should make autonomous decisions, have a vision system, actuate
the hardware for performing complex movements (e.g.: dynamic walking), have stabilizing
control and communicate with team members and the referee. These functions have to be
implemented in the software.

* Real-time: Some parts of the software (e.g.: stabilizing control) are time critical and need
real-time execution.

* Multiple controller algorithms and topologies: It has to be possible to select different con-
trollers for each joint and situation.

* Light weighted: As the hardware is already designed, the computational power of 1GHz and
the available work memory of 256 MB are restrictions that should be taken into account. Be-
cause of the high complexity of the system, it is a challenge to fit the software in the given
hardware. Therefore, the software should be light weighted.

Furthermore requirements according to the organization of the software are:

* Reusable: The intention of Dutch Robotics is to participate each year at the RoboCup tourna-
ment. The goal is to evolve the hardware and software over the years. Therefore the software
needs to be reusable.

* Easily configurable: It should be possible to configure and adjust the software easily. For
minor changes of the system, for instance parameter adjustments, the system should not
have to be recompiled.

* Modularity: Since the software needs to be reusable, it should be modular. With a modular
structure, it is also easier to divide the software implementation over a large (changing) group
of developers.

3.2 Functional specification

As mentioned in the requirements, the robot software should fulfil several functions and be
modular. A graph is set up in order to get a general overview of the functions and their relation,
itis depicted in Figure[3.1l The structure consists of function blocks, which are explained in the
following paragraphs:

World modeling

The robot is supposed to play in a field with borders, goals, team mates and opponents. Static
parameters are available on forehand, such as: field size, border indication, color of team mem-
bers and opponents etcetera. Information about the active environment is collected in this
function block to create an up-to-date model of the environment. The information is gath-
ered by several inputs, e.g: vision, distance sensors, status of the robot, information from other
robots.

Communication

Data exchange with team mates and with the referee needs to be possible. Team mates can
exchange information about the world model (e.g.: position of the ball). The referee gives in-
formation about important events like starting and stopping the game, a score or maybe a foul.

Control Engineering

6 Design of the global software structure and joint controller framework for TUlip

— —

World modeling Communication

(vision, distance sensors)

Decisions ‘

Behavior commands

Robot status

(absolute positions, x-sense)

Basic behaviors ‘
stand / walk / kick

Configuration / parameters / setpoints

Joint control ‘

14 joints

» Safety

Variable
estimat_ion

states of joints’

Joints

FIGURE 3.1 - Functions and their relations within the software.

" Afunction block

== The distribution of information is show by the arrows.

<> Ovals are the robot and the joint actuation/monitoring.

= 7 The bond-graph arrows indicate the physical interaction of the robot.

Decisions

Since it is an autonomous robot, TUlip needs to make decisions by itself. It has to decide which
movements need to be performed, and give commands to the basic behaviors in order to per-
form the movements. The decisions can be based on information from the robot states, the
world model and through communication with other robots and the referee.

Basic behaviors

The robot needs to move in various ways and perform different tasks (e.g.: walk to the ball
and kick in direction of the opponent’s goal). These movements are split up in simple move-
ments (e.g.: walk, turn, kick), which are called basic behaviors. The idea and the term of basic
behaviors came from a German RoboCup team as mentioned in Brunn et al. (2001). Each ba-
sic behavior is a set of motions which can be ‘played’. A list of several basic behaviors can be
played in order to perform a task. To perform motions, the basic behavior should be able to
manipulate the joint controllers by:

 configure the controller algorithms and topologies

* set the parameters of the configured algorithms

* give setpoints to the controllers

University of Twente

Software architecture analysis 7

Joint control

The joints of the robot are actuated by electric motors and need to be controlled continuously.
The joint control should support several control algorithms and combination of control algo-
rithms to perform the motions requested by the basic behaviors.

Safety

This function block has to prevent the robot from damaging itself, or its environment. Safety
can be achieved by setting limitations to system states, such as maximum velocity, maximum
torque and maximum position of the joints (also known as software end-stops).

Variable estimation
Information of position sensors on the joints can be used to estimate other useful information
such as joint velocities, torques etcetera.

Robot status
This function block collects the information provided by the sensors on the status of the robot
(e.g.: its current posture). This information can be requested by other function blocks.

3.3 Functions mapped on layered structure for priorities

Each function described in the previous section has a certain extent of real-time requirements.
Since the software is running on a single central processing unit (CPU), computational time
needs to be shared.

In digital control theory, real-time is an important issue. Real-time is spread over a range of
non- and hard-real-time. Between these boundaries there is the area of soft-real-time. Hard-
real-time stands for: not allowed to be to late, and soft real-time for: try not to be to late. Sharing
of the CPU is done by means of processes with priorities. Software with hard-real-time require-
ments should have the highest priority.

Non-realtime &7
| ,D\Qé\/
] ,«&/
Supervisory Control 7
7
8 =
g Sequence,control
g A
= /
= | Loop control
o |
g I
= y Safety
/
7

_ 7

e Hard-realtime

FIGURE 3.2 - Layered control structure

The Control Engineering group has experience with real-time control applications. The control
processes should be divided over the range of hard and soft real-time. To make this visible a
layered priority structure is used, as proposed by|Broenink et al.| (2007) and depicted in Figure
[3:2 It consists of several control layers in order to indicate the priority of the control processes.

The function structure of Figure [3.1] have been mapped into the layered controller structure,
which resulted in the new structure as depicted in Figure[3.3] The safety and loop control are
hard-real-time, because missed deadlines may result in unstable control actions for the joints
or in a system failure. It includes the function blocks: Safety, Variable estimation and Joint
control. The sequence control configures the loop controllers and includes the Basic behaviors
and Robot status. It takes care for the movements and thus the stability of the robot (that it
does not fall), therefore it is soft-real-time. The supervisory control and user interface consist

Control Engineering

8 Design of the global software structure and joint controller framework for TUlip

of the function blocks Decisions, World modeling and Communication. These functions do not
influence the stability of the robot and therefore they are non-real-time.

Supervisory control

World modeling Communication

Decisions

J Sequence control
A

Basic behaviors J

Robot status

Loop control &
Safety

Joint control

Variable
estimation

Hardware

Joints

FIGURE 3.3 - Function structure mapped onto the layered control structure

3.4 Conclusions

In this chapter a software architecture that complies with the analysed requirements is pro-
posed. This modular software architecture consists of function blocks in which all required
functions are implemented. The function blocks have been mapped onto a layered structure
to divide them in real-time priority layers.

The other requirements: reusability, light weighted and easy configurability depend on the
software implementation. The architecture and the software requirements, will be used as a
guideline for choosing an appropriate software framework solution. This will be discussed in
Chapter[4]

University of Twente

4 Software framework analysis

As mentioned in Section[3.JJone requirement is that the software should be reusable. Reusabil-
ity of software can be achieved by using a framework, as described in Section[2.3]

As explained in Section [2.2] software from previous projects are not useful as a framework for
TUlip. However, various third-party software frameworks especially for robots are available.
For this assignment, several frameworks have been investigated for the usability in TUlip. In
this chapter, the results of this investigation is discussed.

4.1 Comparison of third-party robot software frameworks

A literature study have been performed on the capabilities of the commonly used robot soft-
ware frameworks, which are: Alliance, CLARAty, Miro, Orca, Orocos, Player, RoboFrame, URBI
and YARP In order to create a software architecture as given in Section the main goal was
to find an open framework with middleware that gives the opportunity to create executable
modules that can communicate with each other. By investigating the software structure and
the used techniques of each framework, as described in Appendix[A] two possible candidates
remained for use in TUlip:

* Orocos (Bruyninckx, [2001)

* RoboFrame (Petters and Thomas, 2005)

As described in Appendix [A.3] the capabilities of these frameworks have been compared in
detail. The result of this comparison is listed in Table [4.11

TABLE 4.1 - Comparison list of RoboFrame and Orocos

5]
=
L
s 8
o o
. @) —
Requirements = O
Multi layered structure + 0+
Light weighted + -
Inter module communication
- local + o+
- through network + o+
Real-time -+
Open + o+

From the nine investigated robot software frameworks, Orocos is the only framework which
supports real-time, however it is known to be resource consuming. This is based on the projects
where Orocos is used and from information from their /mailinglist| (2008). As stated in Section
[B.1] one of the requirements is that the software needs to be light weight, in order to fit on the
hardware. Therefore, Orocos has not been chosen to be used as a framework for the TUlip
software.

Although RoboFrame does not initially support real-time, it seems to be the only appropriate
third-party framework, that can be used for the TUlip software. RoboFrame is discussed in
more detail in the next section.

Control Engineering

10 Design of the global software structure and joint controller framework for TUlip

4.1.1 RoboFrame

RoboFrame is a modular software framework for lightweight autonomous robots, created by
the Technical University of Darmstadtl (2008). RoboFrame started as a master thesis project
of Petters and Thomas| (2005). It is developed especially for the soccer robot competitions,
basically for statical actuated small robots like Aibo from Sony. RoboFrame focuses on serving
an infrastructure between several modules, such as: Vision, Behavior, Communication and
Actuation.

As depicted in Figure 4.1, RoboFrame is a framework that allows the programmer to create a
modular application, which is platform independent. The RoboApp library can be used for the
actual robot application, which is build from modules (depicted in Figure [4.Ta as blocks with
3 dots). RoboGUI is a|QT] (2008) graphical interface library, to create a user interface that can
look into the process status. RoboFrame offers logging and configuration functionality.

Instance 1
Router ! Process
:Queue :
Queue ‘ Module ‘ ‘ Module ‘
7'y x i
RingBuffer ") ¢
SharedMemory v
SharedMemoryElemeng
A
Process
Module Module
Application RingButer ")
RObOApp RObOGUi SocketListener ‘
‘ H ‘ li' QSocketConnector :
\ Thread H System \ pr—

\‘ BaseThread m\ BaseSystem m

Instance 2 7 /

Posix||- MY | Win32 || WinCe || Unix | SocketConnector |
Threads
(a) Abstraction layers. The blocks with 3 dots (b) Example of implementation

are custom modules.

FIGURE 4.1 - Structure of RoboFrame

Figure [4.Tb shows an example of implementation. The object which is called a process, is a
thread. A process can consists of multiple modules, which can use global data objects to com-
municate among each other within one instance or through a router even among modules in
different instances. Modules are C++ classes where its functions can be triggered by the sched-
uler or a change in its connected data objects.

Sharing data among several modules can be done in two ways. One way is to store data in
shared memory, the so called Blackboard. In that case the data object needs to be locked for
writing and reading. Data on the blackboard can be accessed by multiple readers and writers.
The second way is a Data Buffer, which is a one-to-one data exchange and is based on the ring-
buffer principle. The ring-buffer has a predefined number of elements and can handle besides
standard data types also custom data types (which within RoboFrame are called Representa-
tions).

Furthermore, data can be exchanged between different instances which might be on the same
computer or connected via a network. Each instance has a router which can be reached via

University of Twente

Software framework analysis 11

a socket connection. In this way it is possible to create user interface application (e.g.: with
RoboGUI) which can read and even adjust data within the robot application.

Furthermore it provides services for:

e data logging

 configuration file interpreter

* finite state machine engine (with use of XABSL! (2008))

4.2 Software framework choice for TUlip

To use RoboFrame for all the software function blocks, it also needs to provide real-time sup-
port for the time critical parts. RoboFrame initially does not support real-time. However it has
a well defined OS abstraction layer, which makes it possible to port it to a real-time OS. It is ex-
pected that this porting cost a lot of time to implement and to evaluate. Another option, which
is less time consuming, is to implement a self-written real-time module for the time critical
parts. These are the sequence control, joint control and safety layers as described in Section
[3:3l RoboFrame can be used only for the supervisory priority layer. This separation is depicted
in Figure[4.2] Because of the limited time resources, this option have been chosen to be imple-
mented.

RoboFrame

Basic behaviors J

!

Joint control

4

Variable
estimation

Self-written realtime framework

FIGURE 4.2 - Use of software frameworks in TUlip

4.3 Real-time operating system

In order to execute real-time software on the computer stack of TUlip, a real-time OS is needed.
Several real-time OS’s are available. Since RoboFrame has a OS abstraction layer which sup-
ports windows and POSIX OS’s, it leaves the choice open for any real-time OS. With many
projects at the Control Engineering department the real-time operating system Linux/RTAI
(2008) have been used. It seems to be sufficient for projects with similar hardware and tim-
ing requirements. RTAI is known to have a conservative attitude to be fully compatible with
older versions. It lacks support and documentation as well. A spin-off of RTAI, called Xenomai

Control Engineering

12 Design of the global software structure and joint controller framework for TUlip

(2008), known before as RTAI Fusion, has a progressive development and a large developers
community. Xenomai has several skins to be compatible with other popular real-time OS’s.

Is has been chosen to use Linux/Xenomai, because a lot of support is available and is easy to
implement. However, Xenomai can only be used when the timing performance are satisfying
the requirements. In order to evaluate the timing performance of Xenomai, a jitter test has
been carried out, as explained in Appendix [C Jitter is the unwanted variation in periodical
timing. Itis the difference between the scheduled time and the actual execution time. For hard-
real-time the worst-case jitter is important, however, no timing constraints are yet available
for the function blocks which need hard-real-time. The timing constraints are determined by
the digital controllers , which are expected to run at a frequency of 1kHz. Since the digital
controllers are not designed yet and not timing constraints are available, it is chosen to use
sufficient criterion: as reference, worst-case jitter should not exceed 1% of the periodic time .

On the computer stack of TUlip, a periodical task is scheduled at 1kHz and the jitter is mea-
sured while the system was fully loaded, as described in Appendix[Cl From the results of the
test, Xenomai have been found to be suitable because the worst-case jitter stayed below 7us,
which is below 1%. With this result, it proven that Xenomai can achive the required real-time
behavior and thus can be used.

4.4 Conclusions

In this chapter, RoboFrame and Orocos are analysed for usability in TUlip. From this analyses, it
has been decided to use RoboFrame because of its modularity and lightweight characteristics.
Since RoboFrame does not have real-time support, it has been chosen to implement a self-
written real-time module for the time critical function blocks. In order to provide real-time
support, a real-time OS is needed. After a short analysis, Xenomai is chosen to be used because
of its good support and easy implementation. With a short test, it was proved that the jitter of a
periodic task, running on Xenomai, is within acceptable bounds.

This concludes the design of the global software architecture, which is the aim of the first part of
the assignment. The second part of the assignment is to design the joint controller framework,
which consist of the analysis and design of the functions in the loop control & safety layer. This
will be discussed in the next chapters.

University of Twente

13

5 Analysis of joint controller organization

This chapter focuses on the analysis of configuring the joint controller by the basic behaviours.
These two function blocks are part of the software architecture as discussed in Section [3.2]
In Figure G.1] the software architecture is represented with a more detailed view of the joint
controller and basic behaviours blocks.

World —
" Communication
modeling
Decisions

Robot status (Basic behaviors

Basic
behavior

}

Multiple control algorithms
and topologies

Joint control

Safety

Variable
estimation [e] e Joints

FIGURE 5.1 - How the controllers have to be organized

The basic behaviors block, consists of multiple basic behaviors. Each basic behaviour repre-
sents a certain movement like walking or kicking. In order to perform these movements, the
different joints have to be actuated. This actuation will be controlled by the joint controller
function block. Each basic behavior configures and activates the necessary controllers to per-
form the requested movement. How the controllers have to be organized to be fully adjustable
by the basic behaviors, is the question which this chapter tries to answer.

5.1 Multiple controller configurations

In general most control problems are solved by designing a single-loop controller for an of-
ten linearized plant. Such a single-loop controller has one mode: it contains one (optimized)
algorithm to make a joint reach a certain setpoint (e.g. a desired torque, angular position or an-
gular velocity). However, in a multi-joint, multi-mode system such as TUlip a lot of interaction
among the joints exist and the required controller response can differ per situation.

From the software requirements, as discussed in Section [3.1] it needs to be possible to sup-
port multiple control algorithms and topologies, so that the basic behaviors are not restricted
by a single controller algorithm. Each basic behavior might have its preferred control algo-
rithms, and some basic behaviors need two types of controllers (e.g. walking motion of a robot,
called Flame, implemented byHobbelen| (2008), which switches between position and torque
control). Also different controller algorithms can have different topologies. Three commonly
used topologies are shown in Figure 5.2l Figure[5.2[(a) shows a topology for a multi joint sys-
tem, with independent control algorithms per joint, it is an array of the single-input-single-

Control Engineering

14 Design of the global software structure and joint controller framework for TUlip

output (SISO) controllers. In order to compensate for interaction among the joints a multi-
input-multi-output (MIMO) controller can be used. In Figure[5.2(b) such a MIMO topology is
depicted. It is possible to combine these two topologies as shown in Figure5.2l(c).

—— o bar] E [EeET

T L L TE > L

B .
c 3

SERE & =t

(a) SISO (b) MIMO (c) MIMO and SISO cascade

\A 4

2

FIGURE 5.2 - Examples of several common used controller topologies. T — motion trajectories;
C - control algorithm; J — joint actuations.

To be able to support multiple control algorithms and topologies, the controller organization
should be as generic and flexible as possible. Besides these requirements, the requirement of
light-weighted software has to be kept in mind for designing a suitable controller architecture.
Furthermore, parameters and setpoints have to be set by the basic behaviors.

Three different options for organizing the controller algorithms are considered and evaluated
on flexibility and generality:

* Configurable pool of controllers: The basic behavior can configure the joint control per joints
to use certain algorithms and topology through an interface. As long as the system needs
only SISO controllers, it is straight forward. The configuration would be: per joint a selection
among several algorithms. However, as soon as combinations of MIMO and SISO controllers
in different topologies are needed, the configuration becomes complex. It is highly generic,
although it will be difficult to implement MIMO control topologies, this reduces the flexibil-
ity.

¢ Selectable sets of controllers: The basic behavior can select among different predefined sets
of algorithms and topologies per system. It reduces the complexity compared with the pre-
vious alternative. However, in this case it is not possible to change the algorithm for a single
joint with changing the controllers for all the joints.

* Controllers per basic behavior: Each basic behavior has its own customized control objects
which implements a certain algorithms, in this way it can be totally on the demands of the
basic behavior. The active basic behavior gives the pointer of its controller objects to the
joint controller. The joint control can call a special function of the control objects in order to
compute the controller algorithms per joint. This option is general and flexible, because the
control objects can be totally customized per basic behavior.

It is chosen to design and implement a controller framework with use of control objects, be-
cause it is a flexible and generic solution in order to organize controller algorithms, fully ad-
justable by the basic behavior.

5.2 Principle of control objects

This section explains the basic principle and the use of the control objects. In Figure (.3] the
function blocks basic behavior and joint control are depicted in detail. The control objects are
represented by the Joint 1, 2,3 blocks.

The joint control has for each joint a controller interface. Such an interface is a reference to
a custom joint controller in the active basic behavior. Although the joint controller interfaces
are per joint, it is possible to create custom MIMO controller objects, which simply serve mul-

University of Twente

Analysis of joint controller organization 15

Basic behaviors
\

Joint
controller
interface

Joint control

FIGURE 5.3 - Customized joint controllers per basic behavior, called: control objects.

tiple interfaces. The basic behavior adjust the custom joint controllers by setting parameters
and setpoints. On the other side, the joint controller calls a function of the joint controller in-
terface, which is associated with a custom control object, in order to compute the appropriate
algorithm.

In Figure[5.4] a control object is depicted. The principle of a controller object is based on low
level and high level controllers. As shown in Figure controller configuration have certain
topologies. These configuration can be split up in two levels, high and low. The distinction
between low and high level is in general:

* Low level contains the control algorithm that is responsible for the dynamics of the joint and
often realized as SISO PID controllers.

* High level contains the less time critical and CPU time consuming algorithms, such as setting
parameters, generation of motion profiles and computation of a cascaded MIMO controller.

Parameters

slow states

Sequence control
Loop control

rapid states

Low level

Calculate

FIGURE 5.4 - A control object

In Figure a few examples of loop control objects are given. The control objects in Figure
B5(a) and (b) are PID controllers, where (a) is a single joint controller and (b) a multi joint
controller. Figure (a) computes the output of the PID on a request from the loop control, de-
pending on the parameters set by the configuration. Computing of a mass matrix, which is
needed for a multi joint PID controller, is in general a resource consuming job. In (b) the mass

Control Engineering

16 Design of the global software structure and joint controller framework for TUlip

Setpoint, P, | and D values Setpoint, P, | and D values

PID algorithm

MIMO PID algorithm

Calculatef] Calculatel] Calculate|
(Joint1) (Joint2), (Joint3),

Calculate

(a) SISO PID controller (b) MIMO PID controller

Profile properties and setpoint Profile properties and setpoint

Calculation next setpoint
of motion profile

Fetching next setpoint
from record

]
Calculate Calculate

(c) Motion generator, computed by (d) Motion generator, computed by
the high level part the low level part

FIGURE 5.5 - Example joint control objects. g and ¢ are measured joint positions and velocities.

matrix will be computed by the high level part, requested by the basic behavior. As soon as the
joint control request a computation of one of the joints, the low level part computes the output
for all the joints depending on the mass matrix and returns the requested one. The remaining
request of the other joints simply return the already computed values. Figure (c) and (d)
represents motion profile generators. Where in (c), the computation will be done by the high
level and put in a list, so that the low level part can just fetch the next setpoint each time on a
request of the joint control . In (d) the computation of the motion profile is done each time the
joint control requests computation.

These object are just examples and can be implemented as needed.

5.3 Conclusions

In this chapter, the possible organizations of the joint controllers has been analysed and a
concept for implementation the controllers is proposed, which complies to the stated require-
ments. It is chosen that each basic behavior has its own set of control algorithms for the joints,
in the so-called control objects. It is chosen because it is a flexible and generic solution in or-
der to organize control algorithms so that they are fully adjustable by the basic behavior. The
joint control reach the control objects through a generalized joint controller interface, in order
to compute the control algorithms. The principle and use of the control object concept are
explained by examples, which show that it is possible to implement different controller algo-
rithms in a generic way.

In order to execute the algorithms of the control objects, a execution engine is needed. The
design of it will be discussed in the next chapter.

University of Twente

17

6 Design and implementation of the joint controller
framework

The joint controller framework is the execution engine for the sequence control, loop control
and safety layer, as discussed in Section3.3l As described in Section[3.1] a requirement is that
the loop controller and safety layer need to be executed hard-real-time. The sequence control
layer has the requirement to be executed soft-real-time.

This chapter explains how the software is executed, and how the data is exchanged between
the layers.

6.1 Time driven tasks with data storages
All the function blocks of the joint controller framework have to be implemented with use of a
self-written real-time module, as discussed in Section [4.2]

Since controllers need to be executed periodically and the context of the basic behaviors (which
is outside of the scope of this assignment) needs to be executed periodically, it is chosen to
create periodical executed software components, which are called tasks.

Each tasks has a priority. To achieve hard-real-time for tasks that implement function blocks
that require hard-real-time, these tasks are given a higher priority than the tasks with function
block that require soft-real-time.

In order to reduce complexity and overhead due to communication mechanisms, the goal is
to create a minimum number of tasks. Therefore, all functions with the same timing require-
ments are handled by the same task. Timing requirements are the period time and priority.
For instance, the data loop of: reading sensors, calculate the joint controllers and actuating the
joints are all handled sequentially in one task grouped by joints with the same sampling rate.

The function blocks within the different tasks, need to be able to configure each other and ex-
change data. Since the tasks have different priorities and different period time, it is undesirable
to couple the tasks for data communication. Therefore it has been chosen to use asynchronous
communication. Communication is realized by shared memory in the so-called data storage.
The concept of data storages is that only one task is responsible for one data storage. It is based
on the concept that each function block in Figure [3.1]is responsible for one set of data, while
multiple function block might use the data, as shown in Figure 3.1l

In Figure[6.1] a task and a data storage are shown. The arrows indicate data transfer. Each data
storage can only be written by one task. The task can update the storage by processing data
from other data storages or external data. Each data storage can be read by a number of tasks.

T >

— Task Data

storage

FIGURE 6.1 - A task responsible for a data storage

Figure [6.2] gives a representation of the tasks and data storages within the real-time software
module. It consist of three tasks:

 Supervisory control interface

* Behavior engine

Control Engineering

18 Design of the global software structure and joint controller framework for TUlip

¢ Control engine
which correspond respectively to the control priority layers supervisory, sequence and loop
control.

The task supervisory control interface communicates with the supervisory software modules
written with RoboFrame. It provides the robot status data for the supervisory software and
receives commands to perform certain the basic behaviors. The implementation of this task is
outside the scope of the assignment and will not be discussed any further.

Each basic behavior consists of a few motions. These motions are processed by a hierarchical
state machine, where each state performs a motion. The state machine transitions and the
state contents are periodical executed by the task basic behavior engine. The state contents
configure and execute the high level of the control objects, as described in Section[5.21

The low level algorithms of the control objects are executed by the task control engine. Further-
more, the control engine performs the function block safety, the function block filtering and
communication with IO of the robot hardware as well.

/—Supervisory control ~
RoboFrame
modules
\ A J
/—Realtime module ; ~

Supervisory
control
interface

Robot status Behavior

commands

Behavior engine

Control engine

Joint states Joint config
A
- J
/—Hardware " ~
Robot joints
- J

FIGURE 6.2 - Tasks and data storages within the real-time software module

6.2 Execution of the control objects

As mentioned by |Visser et al.| (2006) two different control approaches exists within digital con-
trol. The so called ‘sample-compute-actuate’ and the ‘sample-actuate-compute’ in which the
names refer to the order of the loop control processes.

In the control engine, it is not known what the computation time of the control objects will, be-
cause the executing code can change. Because of the variating computation time, jitter might
occur when using the common ‘sample-compute-actuate’ approach, as shown in Figure

University of Twente

Design and implementation of the joint controller framework 19

sample - compute - actuate

AD Comp DA [ide] AD] Comp] DA C__ T
20 Lo : 8] T
variable delay v variable delay v :
T(k-1) T(k) ; Ton
sample - actuate - compute !
AD | DA Comp [ide] AD[DAT Comp 1]] Teomp (kd)
N il fixed delay 1 fremeneremmmosesmnees
T(k-2) T(k-1)
T(k-1) T(k)

FIGURE 6.3 - Timed-control implementation approaches (from|Visser et al.| (2006))

As suggested by [Visser et al.| (2006), the ‘sample-actuate-compute’ approach has been imple-
mented.

Figure shows the sequence diagram of the control engine task. On each periodic trigger,
the joint sensors are read first. The information is stored in the Joint states data storage. The
data is filtered, in order to to estimate states (e.g.: joint velocities). This information is stored
in the Joint states as well. The function safety checks if the current joint states are not out of
their boundaries and that the actuation signal is appropriate. If it discovers that something
is wrong (e.g.: joint exceeded a software end-stop, or a maximum velocity), it can perform a
graceful degradation (Cooling} [2000) instead of failing the whole system. The actuation signal,
checked by safety, is written to the actuators. These performed functions have practically a
fixed execution time. Also, they can not be interrupted, since they are executed in a real-time
tasks with the highest priority. In this way the jitter of actuation is tried to be minimized. The
algorithms of the control objects are computed in the spare time of the execution period. It
calls for each joint the joint controller interface, which refers to a customized controller object.
The lower part of each control object can reach the joint states in the data storage which are
updated in the beginning of this sequence.

‘ Control engine ‘ ‘ Control object 1 H Control object 2 H Control object 3 ‘

> Read sensors
> Filtering
> Safety

> Write actuators

compute()

compute()

1

compute() % U

FIGURE 6.4 - The sequence of functions executed by the control engine

In Figure the sequence diagram of the behavior engine task is shown. The behavior en-
gine task updates the state machine according to the joint and robot states. The context of the
current state is executed, which configures the control objects. The higher part of each con-
trol object can reach the joint states and the robot states in order to perform it configuration
algorithm.

6.3 Implementation
A prototype of the joint control framework has been made. It consists of two real-time tasks,

Control Engineering

20 Design of the global software structure and joint controller framework for TUlip

‘ Behavior engine ‘ ‘ Control object 1 H Control object 2 H Control object 3 ‘

Updating state machine

configure()

configure()

configure()

FIGURE 6.5 - The sequence of functions executed by the behavior engine

the basic behavior engine and the control engine.

In order to create real-time tasks easily, an object-oriented abstraction layer for the Xenomai
application programming interface has been created, as discussed in Appendix[Bl The commu-
nication through data storages are realized by shared memory.

Implementation of two controller configurations have been realized, as discussed in Chapter
[[l The classes used in the prototype are depicted in Figure The prototype is focused on
execution of the control objects and the functions safety and IO are not implemented yet. For
both controller configurations, the basic behavior engine is composed of control objects. At a
periodic trigger, it executes the high level algorithms (configuration) of the control objects. The
control engine is composed of control object interfaces, which are associated with the actual
control objects. On the periodical trigger of the control engine, it calls for every control object
interface the compute() function, in order to compute the low level algorithm of the associated
control objects. The control objects can make use of the joint states in their algorithms.

«IControlObject»

C Controlinterface
virtual double compute()
AN
n
n CustomController
BasicBehaviorEngine ControlEngine
double compute()

T
Joir

FIGURE 6.6 - Implemented classes of the joint controller framework prototype

6.4 Discussion on the extension of features
Since the implementation of the joint controller framework is in a experimental phase, two not
yet fully implemented features will be discussed.

Non-blocking shared memory

Data exchange with use of the data storages is implemented as shared memory. Different tasks
might perform a read or write request to the same data at the same time. Without a protection
mechanism it might result in corrupted data.

Protection mechanisms can be ‘blocking’ or ‘non-blocking’ Blocking shared memory is used
commonly, a well-known example is mutual exclusion (Dijkstral [1965). It is currently used for
the shared memory.

University of Twente

Design and implementation of the joint controller framework 21

In a task with hard-real-time requirements, it is not desirable to wait for data that is locked by
another task. When a higher priority tasks is blocked because a lower priority thread has locked
the data, it is called priority inversion. Although blocking priority inversion can be solve by
priority inheritance (the lower priority task inherits the priority of the highest priority task), it
is highly undesirable because it decreases the predictability of the timing of the higher priority
task. Especially, when

e the data is large
* locks are performed inefficiently
* datais locked frequently

In these cases it is desirable to use non-blocking shared memory.

In|Soetens| (2006b) an principle for non-blocking shared memory is described and evaluated.
A simple and clear picture is given in the presentation of/Soetens| (2006a). Basically it is having
multiple copies of the data, in such a way that it is always possible for a writer to find 'free’
memory. As soon as a writer has updated the data, it marks the data as ‘most recent’. A reader
always reads the most recent data.

The principle, as explained by[Soetens| (2006a), is for many-writer-many-reader setups. How-
ever, the maximum number of readers and writers should be known in order to allocate enough
memory, which grows linear with the number of readers and writers.

In case of hard-real-time threads sharing

* alarge data object

¢ frequent read data

it is worth to consider using non-blocking shared memory.

It can be useful, for instance, in a MIMO control object, where the high level computes the mass
matrix and the low level need to access the mass matrix in order to calculate its algorithms.
Since the computation of the mass matrix can be time consuming, with blocking shared mem-
ory it should - calculate the mass matrix locale — lock data — copy — unlock data — in order to
minimize the time of locking the data. While with non-blocking shared memory it can - calcu-
late mass matrix to free buffer — mark buffer as most recent —. The second case does not have
any extra overhead, while the benefit is that there is not chance on priority inversion.

Switching between loop controllers

Switching among control objects creates a potential undesired effect and in worst case insta-
bility. In case of switching to a control object with an algorithm that uses memory, it could be
initialized. For example switching to, for instance, a PID controller, which has one integrating
action, it could be for initialize by the reverse calculation of the previous state, setpoint and
actuation.

This is a hypothetical solution to a potential problem, it had not been proved nor tested. It
only have been an trigger for implementing the possibility for initialization of controllers by
the previous output before switching.

6.5 Conclusions

In this chapter, the design of the joint controller framework is discussed, which consists of
real-time tasks in order to execute the function block with real-time requirement. In order to
implement the data flow as in Figure B.I] data storages have been implemented. Only one
task is responsible for a data storage, while the others can read from it. The data storages have
been implemented as shared memory in order to reduce overhead, compared to message based
data exchange. Furthermore, the actuation of the hardware is done with the sample-actuate-
compute approach in order to reduce jitter.

The joint controller framework and the control objects will be validated by discussing the im-
plementation of two controller configuration, in the next chapter.

Control Engineering

22 Design of the global software structure and joint controller framework for TUlip

7 Realization of test setups and control configurations

In this chapter, the realization of two test setups is discussed. For the test setups two different
control configurations have been used.

The test setups have been create in order to:
* test development iteration of the joint controller framework,
¢ test the use of ‘controller objects’.

7.1 Implementation of the control objects

The use of control objects have been tested by implementing two controller configurations.

1 A controller configuration for the 12 joints of TUlip’s body, in order to stand up from prone
position. It was created by[Daemen| (2008) as a Master Thesis project. It consists of 12 SISO
PID controllers with a sequence controller, which changes the setpoints and parameters of
the PID controller according to the current state of the robot.

2 A controller configuration for a humanoid head, which is created by[Visser! (2008) as a Master
Thesis project. The neck, head and eyes are connected to each other with 7 joints. The set-
point to the controller is a point in a three-dimensional space (e.g. location of an interesting
object). By inverse kinematics it steers the joints in order to focus the eyes to that point.

These controller configuration were designed with use of 20-sim. Both controller configura-

tions are split up in a high and low control loop, to fit in the concept of the control object (as

designed in Section[5.2)).

P
q . Setpoint and parameter qN . .
generator state machine > EEEER RS S
P,I,Dand ¢ q
1,4
el Array of 14 PID controllers Integrator
T q
(a) Body: Get up from prone position. (b) Head: Follow target with the vision sys-

tem.

FIGURE 7.1 - Two controller configurations implemented in control objects. Explanation of
the variables in the figures: B I and D - controller parameters; g — desired joint position; g —
measured joint positions; ¢ — desired joint velocity; g — estimated joint velocity; 7 — desired
joint torque; P — 3D setpoint (target position). The variables in the erea between are stored in

shared memory of the control object, it is the configuration of the low level algorithm.

The controller object created for the first controller configuration is shown in Figure [/l The
higher level of the controller object consists of a state machine, which depends on joint posi-

University of Twente

Realization of test setups and control configurations 23

tions (G). It generates parameters (P, I and D) and setpoint (g) for PID controllers in the lower
level. The PID controllers compute the torques (7) for actuation, according to the current joint
positions (§) and velocities (¢).

The second controller configuration is implemented as shown in Figure[7.Ib. A target position
(e.g.: gathered by the vision system) is the setpoint for the higher level controller. The desired
joint velocities for the joints (§) are computed by inverse kinematics and proportional control.
The lower level is a simple integrator to obtain the desired joint positions ().

Both controller objects have been implemented.

7.2 Testing the joint control framework with a model of the robot

Unfortunately, at moment of implementation of the controller objects, the robot was not op-
erational yet. To bypass the missing robot, simulation models of the robot have been used in
order to test the controller implementations.

Both the controller configurations mentioned in the previous section are developed and tested
with use of models in 20-sim. These models are used in the test setup.

7.2.1 Computation of the robot model
In order to test the real-time framework, the model should be computed in real-time as well.
This can be realized by Hardware-in-the-Loop (HIL), as described by|Visser et al.| (2004).

A problem is that the computation of the given models on standard lab computers take longer
than the simulated time. In case of the model of the body, a modern desktop computer com-
puted 12ms for a model time of 1ms. In order to use these models for testing the real-time
setup, a solution need to be found. Possibilities are:

1 Simplify the model and code
2 Use more computational power
3 Simulation of the framework

Both the models are designed with the 3D Mechanics Toolbox of[20-sim| (2008). It has been cho-
sen to not simplify the model, because it would require a revalidation of the model. However,
the C-code generated by 20-sim could be optimized, which resulted in a computation time of
9ms, but it is still —of course- not real-time. For the second option, in order to compute the
robot model real-time, a system should be used that is capable of compute ten time faster then
a modern desktop computer. It is possible, for instance, to increase the computational power
by using a cluster of computers. The third possibility is to do a step back, instead of testing
the framework by HIL, to test the framework by simulation. Since the second option would
require a lot of effort of setting up a HIL system, it has been chosen to test the framework by
simulation. Simulation of the framework can be realized by modifying it in such a way, that it
is possible to suspend the whole system. The feature of suspending the real-time tasks have
been implemented and it is described in Appendix[B.2} In Figure[7.2] the timing diagram of the
basic behavior and control engine tasks is depicted. On the vertical dotted lines, the tasks get
suspended in order to compute a time interval of the model, after it the system resumes again.
In this way the real-time relation between the tasks is maintained. Compared with HIL, simu-
lation of the framework has the advantage that no second computer is needed for computation
of the model, because the computation of the model can be done at the stack as well.

7.3 Testsetup

In Figure [Z.3] the test setup is depicted. The left box represent the PC-104 stack, which is the
computer of the robot. On the PC-104 stack, the joint controller framework is running. Instead
of actuating the hardware, the model of the robot is computed on the stack as well. While com-
puting the model, the real-time tasks are suspended. A separate non-real-time thread contains
a socket server, which reads on each request the model states and sends it over a network con-

Control Engineering

24 Design of the global software structure and joint controller framework for TUlip

Basic behavior engine

@

Control engine . . . - . - .

m

Time

FIGURE 7.2 - Timing diagram of the basic behavior engine and control engine tasks. The dark
blocks represents the execution of the tasks, while the light gray blocks represents preemptions
of a task.

nection to the second computer, depicted as the right box. On the second computer a instance
of 20-sim is running. Through a customized DLL, the data can be requested and brought into
the 20-sim simulation environment. Where the 3D visualization is the representation of the
model states. In this way 20-sim can monitor the states of the model and is able to start and
stop the joint controller framework.

Lk
/—PC 104 stack ~ /—Desktop computer—\
Joint .
controller [—» MOdel. . 20.S'm.
framework computation visualization
Socket Network 20sim
server B connection | socket DLL
\ J \ J

FIGURE 7.3 - Overview of the test setup

Both controller configurations have been tested with this setup, they will be further described
in the next sections.

7.3.1 Joint controller framework with model-in-the-loop: Body

As shown in Figure the joint controller framework exists of two asynchronous real-time
tasks: Behavior engine and control engine. Which are periodical executed at 100Hz and 1kHz
respectively. The behavior engine executes the higher level of the control object, which con-
tains the setpoint and parameter generator, implemented as a state machine. The lower level
of the control object is executed in the control engine. From the generated parameters (B, I
and D) and setpoints, it computes the PID control algorithm. Instead of actuating the hard-
ware, the controller ‘actuates’ the model, by computing 1ms of simulation. While the model
is computed, both real-time tasks are suspended. The joint positions g from the model are
the feedback signals for the PID controllers and motion controller. On request of the 20-sim
application, the transformation matrices H of the limbs from the model and sends it over a
network connection to the second computer, where the 3D visualization is the representation
of the transformation matrices form the model.

7.3.2 Joint controller framework with model-in-the-loop: Head

The second setup, as shown in Figure[7.5 is similar to the first, but instead of controlling the
humanoid body it controls a humanoid head. In this case the joint controller framework con-
sists of three real-time tasks. The extra tasks reads the joystick device in order to manipulate a
3D target position. This target is the reference for the inverse kinematics controller, which tries

University of Twente

Realization of test setups and control configurations

25

/—PC 104 stack

Behavior engine

Setpoint

7! generator

]
q,P1,D

h 4

(&

N
I——- 20-sim

PID array

C-code

—Desktop computer————

20-sim 3D view

model
Control engine

Socket

20-sim

Server

H=» Socket
DLL

20-sim

T

)

(&

Plot

)

FIGURE 7.4 - Joint controller framework with model-in-the-loop: Body

to focus the ‘eyes’ to the target. The control engine integrates the output of the inverse kine-
matics by executing the lower level of the control object. The tasks are periodical executed at
10Hz, 20Hz and 1k Hz respectively. Instead of sending the transformation matrices, only the
joint positions are send to the visualization computer. The visualization computer computes
locale the transformation matrices H in order to visualize the model.

—~PC 104 stack—————————

(&

—Desktop computer———

Joystick 20-sim 3D view
P target
Behavidr engine '
N lg .‘
i Inverse
> kinematics
q
— v 20-sim
Integrators B
q TR T
q I
C-code Socket 20-sim Computation
20-sim =G =) Server -G 3 socket +G ¥ transformation
model DLL matrices
Control engine
J &

J

FIGURE 7.5 - Joint controller framework with model-in-the-loop: Head

7.4 Results

Both control configurations are implemented. Unfortunately, the C-code generated from the
model of the body generates errors as soon the actuation of the joints become to large. These
errors occur because parts of the model are based on the timing of zero-crossings, which can
be easily determined by variable step algorithms, but not by the fixed step algorithms that are
available for the C-code generation in 20-sim. In order to ommit the errors, several changes

Control Engineering

26 Design of the global software structure and joint controller framework for TUlip

have been made:

* Calculate the model at a higher frequency

¢ Tried different integrator algorithms for the model

* Weakening the controller parameters

¢ Interpolating the signals from the controllers to the model

However, even with these changes it did not succeeded to control the model in a proper way.

The head model is handled well by a fixed step integrator algorithm. The control configuration
was set up with success. The ‘eyes’ of the head follow the with the joystick manipulated target.
After the successful simulation of the framework with the head model, the framework is used
to control the real head, as described in[Visser! (2008).

7.5 Conclusions

In order to test the joint control framework and the concept of controller objects, two controller
configuration have been implemented. The controllers from 20-sim have been divided in a
lower and higher controller part to fit in the concept of the control objects.

The concept of the higher and lower controller of the control object, allows to split up the con-
troller in two parts. So that the hard-real-time control loop does not have to compute time
consuming algorithms, which are able to run a lower sampling time. The concept of the con-
trol objects serves a high flexibility of combining control algorithms as well. Two examples are
the two implemented controller configurations.

A simulation setup with models of the robot have been realized to perform the test of the soft-
ware, because the robot was not present yet. The setup might also be used later when the robot
is operational to prevent the robot from damaging caused by buggy experimental code.

The model of the body has not been successfully tested, because the C-code of the model did
not work properly. However, the model of the head has been tested successfully in the frame-
work simulation and the framework is used for the implementation of the head demo, as de-
scribed in[Visser| (2008).

On the other hand, the test setup has been used to test iterations of the joint controller frame-
work, in order to improve and add functionalities.

University of Twente

27

8 Conclusions and recommendations

8.1 Conclusions

A software architecture for TUlip is proposed. This modular software architecture consists of
function blocks in which all required software functions are implemented. The function blocks
have been mapped to a layered structure to divide them in real-time priority layers.

Several third-party robot software frameworks are analysed for usability in TUlip. From this
analysis, it has been decided to use RoboFrame because of its modularity and lightweight char-
acteristics. Since RoboFrame does not have real-time support, it has been chosen to implement
a self-written real-time module for the time critical function blocks.

Xenomai is chosen to be used in order to provide real-time support, because of its good support
and easy implementation. With a short test, it is proved that the jitter of a periodic task, running
on Xenomai, is within acceptable bounds.

A controller architecture is proposed which complies to the stated requirements. It is chosen
that each basic behavior has its own set of control algorithms for the joints, in the so called:
Control objects. It is chosen because it is a flexible and generic solution in order to organize
controller algorithms so that they are fully adjustable by the basic behavior. The concept of the
higher and lower controller of the control object allows to split up the controller in two parts.
So that the hard-real-time control loop does not have to compute time consuming algorithms,
which are able to run a lower sampling time. In this way the load of the hard-real-time software
part is minimized. The concept of the control objects serves a high flexibility of combining
control algorithms as well.

A design has been made of the joint controller framework, which consists of real-time tasks
in order to execute the function blocks with real-time requirements. A prototype of the joint
controller framework has been made.

In order to test the prototype of the joint control framework and the concept of controller ob-
jects, two controller configuration have been implemented in the simulated framework setup.
The model of the body has not been successfully tested, because the generated C-code of the
model did not work properly. However, the model of the head has been tested successfully in
the framework simulation and the framework is used for the implementation of the head demo,
as described inVisser! (2008).

8.2 Recommendations

8.2.1 Porting RoboFrame to support real-time behavior

Instead of continuing with two separate frameworks, it might be useful to port RoboFrame
to a real-time operating system, in order to create a light weighted framework that simplifies
creating real-time applications. The well-defined OS abstraction layer of RoboFrame allows
relatively easily porting.

8.2.2 Investigation performance of Orocos

It might be interesting to do a full research about the timing characteristics of Orocos. From
documentation of[Orocos| (2008), it can be concluded that it is possible to optimize the soft-
ware for timing, by using the so-called ‘hard-coded deployment’. As can be seen in Appendix
Orocos is more focused on general robotics than RoboFrame, since it has very useful li-
braries and support real-time behavior. However, it has not chosen to be used for TUlip, be-
cause the uncertainties about its resource consumption (which has not been proven nor un-
proven), because of limited time resources). Since the only drawback of Orocos is its expected
resource consumption, it would be a huge improvement if it is possible to reduce its resource

Control Engineering

28 Design of the global software structure and joint controller framework for TUlip

consumption.

8.2.3 Switching between controllers while operational

For this assignment, a generic and flexible solution for organizing joint controllers has been
proposed. However, it has not been tested what happen on switching between different con-
troller configurations while the robot is operational. As mentioned in Section [6.4] a poten-
tial problem is undesired effect or even instability when switching between controllers, which
might be solved by initializing the controllers by inverse computation of the algorithm. Fur-
thermore, switching between loop controllers can cause instability. The timing of switching
from loop controller should be chosen carefully in order to omit instability.

8.2.4 Testing new controller implementations by simulating the framework

A simulation setup has been realized to perform the test of the software, because the robot
was not present yet. The setup might also be used later when the robot is operational to test
the implementation of new controllers, to prevent the robot from damaging caused by buggy
experimental code.

University of Twente

29

A Robot software framework to use for TUIlip

In this chapter, several third-party robot software frameworks will be discussed.

A.1 Requirements for a robot software framework for TUlip

In the software architecture design, several layers are defined which implement different func-
tionalities, as shown in Figure and explained in Section 3.3 The main requirement for a
framework is the possibility to create such a modular and layered structure. The software that
need to be created should be an executable that runs at the given computer stack and work with
the given hardware. It is a challenge to implement all the functionalities discussed in Section
B.Zlon the PC-104 stack, because of its limited resources. Therefore, the software framework (if
used) should be light weighted. Among the modules, direct communication should be possi-
ble. The loop control layer which is responsible for the joint controllers is time triggered and
requires hard real-time behavior in order to guarantee low latency for actuation of the joints.
Another issue is the licencing of the software. It should be free to use and adjustable.

Supervisory control
) — Y

World modeling Communicationj

Decisions

Sequence control

Robot status
Basic behaviors

Loop control &
Safety

Joint control

Variable
estimation

Hardware

Joints

FIGURE A.1 - Software layers with responsibilities

The requirements that are used in order to make a selection from the available frameworks are
summarized in the following list:

* Multi layered structure

 Light weighted

* Inter-module communication

* Real-time support

* Open

Furthermore additional requests were used to indicate the usability of the framework in global,
these are:

* Scripting engine: To adjust software at runtime

 State machine engine: For executing state dependent software

* Library components: Already developed components that might be used

e Library of basic functions: For example mathematical function

* Examples available: Examples are useful to learn the capabilities of the software

Control Engineering

30 Design of the global software structure and joint controller framework for TUlip

¢ Well documented: To learn more about the software it should be well documented

A.2 Evaluation available frameworks

Popular robot software frameworks at the moment were Alliance, CLARAty, Miro, Orca, Orocos,
Player, RoboFrame, URBI and YARP. In the following paragraphs the available robot software
frameworks will be shortly discussed and evaluated according to the requirements.

Three very common used frameworks are Yet Another Robot Platform YARP, Universal Robotic
Body Interface (URBI) and Player. These framework are similar to each other and respectively
describes by [Fitzpatrick et al.| (2008); [Baillie| (2005); [Vaughan et al.| (2003). They all are sensor-
actuator interface networks and are focused on reusability. That means that programs are able
to connect certain hardware by connecting to a server. A lot of already made interfaces for
common hardware does exist.

Middleware for Mobile Robots (Miro) is developed by the computer science department of the
university of Ulm in Germany (Utz et al.,2002). It focused on distributed systems. All internal
communication is through CORBA.

The Coupled Layer Architecture for Robotic Autonomy project (CLARAty) is the two layered soft-
ware framework from NASA. It is a framework for reusable robotic components and it is focused
on abstraction of devices.

Open Robot Control Software (Orocos) is a framework for robot and machine control (Bruyn-
inckx, [2001). It was started as an EU-sponsored project of three universities to create an open
and free framework. Eventually the work of three universities has never been merged. The
project referred here is of K.U.Leuven in Belgium. Applications bases on Orocos are constructed
from real-time components. Several already made components for common purpose are avail-
able. Furthermore two mathematical libraries are available which can be used within the real-
time components.

Orca was initially part of the Orocos project, but it split-off and was renamed to Orca. It is part
of the Australian Centre for Field Robotics now. The framework of Orca is highly modular and
there exists a lot of reusable modules (Kaupp et al.,[2007). In 2006 the internal communication
system was replace by ICE, the Internet Communication Engine. Orca is focused on reusability
of modules and in contrast with its sister project Orocos it does not support real-time behavior.

RoboFrame is a a modular software framework for lightweight autonomous robots [Petters and
Thomas! (2005). It has a very general setup, although it was specially designed for soccer robot.
The focus of it is to be able to create time or data triggered threads and the communication
among the threads. The data object are usual shared within one executable, but can be reached
through a network connection. RoboFrame is a promising framework because it is used very
successful by the GermanTeam at the RoboCup competitions for several years. The drawback
of RoboFrame is that it does not support real-time behavior.

Alliance is an framework that is focused on multi robot cooperation and higher level intelli-
gence (Parker,[1998), it is used mainly for wheeled robots. By its design it is not usable for multi
layered structure.

A.2.1 Selection of candidates
In Table[A.I] the comparison of mentioned frameworks are listed.

With Orocos, it is possible to create the modular and multi layered architecture with direct
inter-module communication. It has to be noticed that Orocos is the only framework that has
a middleware with real-time support. However, it is known to be resource consuming, this is
based on the projects where Orocos is used and from information from their mailing list™. As
stated in Section[A.I] one of the requirements is that the software need to be light weighted, in

10rocos mailing list: lorocos-users@lists.mech.kuleuven.be

University of Twente

mailto:orocos-users@lists.mech.kuleuven.be

Robot software framework to use for TUlip 31

TABLE A.1 - Comparison list of several robot frameworks

Q

QL o0

£ 8

E o s Z 2

o 8 ~ = é o 5 — [l

Q o S S = %‘ @ o=t

o = = = = < <

£ O O < 0O = &~ b =
Multi layered structure + o+ o+ + o+ - - -
Light weighted + -
Inter-module communication
- direct e
- distributed + + 4+ + o+ 4+ - - -
Real-time . .-
Open/Availability + o+ + - -+ o+ o+ 4+

order to fit on the hardware. Because of this uncertainty, it might be possible that no framework
can be used for the real-time part of the software. Therefore the usability of the other (non-real-
time) frameworks is still of interest.

The hardware interface frameworks URBI, YARP and Player are not useful to create the modu-

lar and multi layered structure, because inter-module communication is not possible. CLARAty
seems a promising candidate, because in|Volpe et al.|(2001) issues as reusability, object-orientation,
decision layer and functional layer are mentioned. However, it is not an open framework. The
internal communication of Miro, Orca and Alliance are based on network communications
layer for distributes systems, which leads to a loss of efficiency as most of the advantages of it
cannot be used. RoboFrame does not support real-time behavior and therefore it fails the re-
quirement. However, it does have a well-defined OS abstraction layer, which makes it possible

to port it to a real-time OS. Furthermore is capable of creating modular software in a layered
priority structure as Orocos.

That leaves two possibilities with both their disadvantages:

* Orocos: uncertainty about its resource consuming

* RoboFrame: it does not initially have real-time support

In order to make a deliberative choice, these two frameworks have been compared in detail.
This will be discussed in the next section.

A.3 Orocos versus RoboFrame

First of all RoboFrame and Orocos are with repect to modularity and infrastructure similar. Ex-
ecutables bases on these frameworks are standalone programs which consists of components
that implements the robots activities. RoboFrame is used mainly in wheeled robots, although
it is also used in two small humanoid soccer robots (Stelzer and von Stryk, [2008). Orocos is
focused on industrial robotics and have not been used in public humanoid projects yet.

In order to compare the two frameworks in detail, the support of each requested feature will be
discussed. After that, the test-case will be discussed, which is done to experience the usability
of the frameworks to create an robot application.

A.3.1 Comparing by requested features
In this section Orocos and RoboFrame will be compared to each other. This is done by the list
of additional request given in Section[A.Il

Orocos does have a scripting engine that allows adjusting source code online (while the exe-
cutable is running). They both have a finite state machine engine, although RoboFrame makes
use of an external but close related state machine engine, which is called The Extensible Agent
Behavior Specification Language (XABLS) and created by|Lotzsch et al.| (2006).

Control Engineering

32 Design of the global software structure and joint controller framework for TUlip

Orocos is the only framework which support real-time, however it is known to be resource con-
suming. This is based on the projects where Orocos is used and from information from their
mailing list 2. Although RoboFrame does not support real-time behavior, RoboFrame is used
by the competitor GermanTeam (who created RoboFrame) in a humanoid robot as well. Their
solution was to use a separate real-time module to handle the time critical software.

Orocos comes with two mathematical libraries, the Kinematics and Dynamics Library (KDL)
and Bayesian Filtering library (BFL). The website of Orocos hosts also a set of already made
components which can be directly used in a self made Orocos program, this set of components
is called the Orocos Components Library (OCL). In contrast with RoboFrame, that really is only
a modular infrastructure framework.

Examples and documentation are available for both frameworks. Also the source code was in
both cases documented with DoxygenB]. Besides that Orocos does have an active community
on the user mailing list.

A.3.2 Test-case

To get to know more about RoboFrame and Orocos, it was decided to perform a simple test-
case: implementing existing [20-siml| (2008) controllers for the JIWY setup to control the move-
ments with a joystick (similar as in [Jovanovic et al| (2002)). The idea of this test-case was to
get familiar with the frameworks in order to judge about how useful the frameworks could be.
The test with RoboFrame was performed by the writer of this report, the test with Orocos was
performed byDeenl (2008). Time needed for installation of the framework, studying of the API
and implementation will be taken as measures.

Test setup for RoboFrame: Controlling JIWY

The JIWY setup, as shown in Figure[A.2] has 2 degrees of freedom. The setup consists of a PC-
104 computer with RoboFrame modules and a Anything I0 FPGA board. All the software is
running in RoboFrame modules, and each module is within a process (as described in Sec-
tion[4.1.1). The joystick process is periodical executed on a 10H z, the module reads the non-
bocking joystick device and stored the setpoints in a blackboard data object. The control pro-
cess consists of a 20sim controller, its reads out the setpoint from the black board and by data
from the encoders it computes the next actuation for the joints. The IO process consists of two
modules. First, a module to write the PWM to the AnythingIO board. Second, a module which
reads the encoder values from from the Anything IO board. This process it scheduled at 100 H z.
By writing data to the buffer of the 20sim controller, the 20sim controller module gets triggered.
After computation it writes the result to the actuation buffer. In this way the IO is executed at
100H z, and in the spare time the controller is computed.

Results

The results of RoboFrame test was that the joystick interface, controllers and 10 was imple-
mented in one week after receiving the source code and documentation. While the test with
Orocos byDeen| (2008) took longer, which had two reasons: first, the longer installation pro-
cess, due to the needed real-time libraries; and second, the higher complexity of the strong
structured Orocos.

It have to be noticed that the loop controllers in RoboFrame were not implemented to support
real-time. Since RoboFrame is does not have real-time support (yet), and option is to create a
separate real-time module for the controllers, but would take significant more time.

From this test-case can be concluded that Orocos has a steeper learning curve. Our opinion is
that both frameworks were extremely usable for creating modular software, while Orocos does

20rocos mailing list: lorocos-users@lists.mech.kuleuven.be
3Doxygen website: www . doxygen . org

University of Twente

mailto:orocos-users@lists.mech.kuleuven.be
www.doxygen.org

Robot software framework to use for TUlip 33

—RoboFrame modules on a PC-104 stack—— —JIWY setup———~

Joystick process
”””” Read |
joystick |
| device
10Hz
Setpoint
1
Controllprocess 10 process
20sim Write .
i Controller actuators PWM—Y
Data| trigger | = | Anythinglo
Read
encoders €&+-Encoders=
100Hz
o AN J

FIGURE A.2 - Test of RoboFrame on JIWY setup with 20sim controllers

a step closer toward robotics due to its real-time support. In theory, Orocos does support real-
time, however, from timing tests performed by/Deenl| (2008) can be concluded that the real-time
characteristics of Orocos (about 20% variation in time on 1k Hz periodical execution, measured
on a similar computer as the TUlip stack) are dubious.

A.4 Conclusion

In this chapter, several popular robot software frameworks have been investigated. No frame-
work could meet all the requirements. However, Orocos and RoboFrame are capable of cre-
ating modular software that has inter-modular communication without the intervention of a
network protocol. Although, both with their disadvantages:

* Orocos: uncertainty about its resource consumption

* RoboFrame: it does not initially have real-time support

RoboFrame and Orocos have been compared in detail. From where can be concluded that
Orocos does support much more features than RoboFrame. However, Orocos has a steeper
learning curve because of its higher complexity.

The uncertainties about the resource consumption of Orocos have been nor proven, nor un-
proven. However, from results of the timing tests from [Deen! (2008), it is even unsure if Orocos
will meet the timing requirement of TUlip. Therefore Orocos has not chosen to be used as the
framework for TUlip.

Since RoboFrame has a well-defined OS abstraction layer it might be ported to an API of a real-
time OS. However, this is probably a time consuming job and requires extensive validation.
Therefore it has been chosen to use RoboFrame only for the non-real-time software parts.

An overview of the frameworks against the requirement and requests is given in Table

Control Engineering

34

Design of the global software structure and joint controller framework for TUlip

TABLE A.2 - Comparison list of several robot frameworks

Q
o o0
£ .=
S » 8 = L
% 8 < = é o 5 - [al)
S 2 £ S 3 &5 EF
£ O O < 0O =2 &m o >
£ Multi layered structure + o+ o+ -y -
o
£ Light weighted + -
= ..
'g Inter module communication
£ -local s
- through network + + + o+ o+ - - -
Real-time - + - - - .-
Open/Availability + o+ o+ - -+ o+ o+ o+
Scripting (runtime edit) +[B +@
State machine + 4d
:ﬁ) Available modules - +
2 Available libraries - 4B
Q
~ Examples + 4+
Well documented + +

@A two layered structure: Decision and Functional
bThe Extensible Agent Behavior Specification Language
€Orocos Program Scripts

d0rocos State Descriptors

¢Kinematics and Dynamics Library

University of Twente

35

B Real-time module

An object-oriented real-time tasks library was made, in order to create real-time tasks in an
easy way. It was chosen to create an abstraction to the timer API from Xenomai, to be able to
port it later to any other timing instructions such as from RTAI, or just from the not realtime
posix.

Figure shows that the timing classes inherit from the interface class ILoopingTask. The
classes XenomailLoopingTask, RTAILoopingTask and PosixLoopingTask implement the start()
stop() and the timing construction. This allows users of the timing classes to create a task and
only implement the run() function, which will be triggered at the requested time interval.

«lLoopingTask»

start()
run()
stop()
&
i
PosixLoopingTask XenomailLoopingTask RTAIlLoopingTask
start() start() start()
stop() stop() stop()
ATask
run()

FIGURE B.1 - OS independent loopingtask

B.1 Timing measurements of the tasks

In order to test the timing characteristics of tasks, a timing measurement feature is build in the
XenomailoopingTask. There are two timing measurements possible:

1 scheduling time if the task and

2 computation time of the task.

By measurements of the scheduling time, it can be monitored if the task is scheduled as ex-
pected. It measures the time at each execution of the task and stores the maximum and average
absolute jitter.

It is also possible to monitor the computational time of a task. In this way it is, for instance, pos-
sible to see which task causes heavy load. It measures the time before and after the execution
of the run function.

B.2 Model-in-the-loop

A simple loop controller framework has been set up. As shown in Figure it consists of two
tasks classes: LoopTask and MotionTask, which are inheritances of XenomaiTask and therefore
are real-time. LoopTask is running on a higher frequency and higher priority then MotionTask.

To test the loop controller the robot was needed. Unfortunately at that time the robot was
not fully assembled yet. Therefore was decided to use existing physical models of the robot
created by 20-sim. As shown in Figure[B.3|the LoopTask have been inherited by ModelLoopTask

Control Engineering

36 Design of the global software structure and joint controller framework for TUlip

XenomailLoopingTask

start()
stop()

MotionTask LoopTask

run()

run()

FIGURE B.2 - Used tasks

in order to calculate the model each time after the loop controllers. A non-real-time tasks send
periodically the states of the robot to another computer which displayed the model.

XenomailLoopingTask

start()

stop()
delay()

MotionTask

LoopTask

run()

run()

i

ModelLoopTask

run(){
LoopTask::run();

DelayTasks();

}

Calculate20SimModel();

FIGURE B.3 - Delay of the tasks

However, the computation of the models took a lot CPU time. Even more then the actual time,
for example the model was calculating 9ms for a physical time of 1ms. To bypass that problem
a delay function in the class tasks was introduced (as shown in the class XenomailoopingTask in
Figure[B.3). In the run function of ModelLoopTask the time of model calculation was measured
and all the tasks were delayed by that time. In that way the joint controller framework could be

tested.

University of Twente

37

C Timing test of a task running on Xenomai

In order to validate the timing performance of the realtime tasks based on Xenomai, a realtime
tasks have been created, as explained in Appendix[Bl The software is executed on the PC-104
stack of TUlip. No hard criteria are available yet, since the timing constraints are determined
by the digital controllers, which are not designed yet. Since it is expected to run at 1kHz, the
test task is scheduled at 1kHz as well. As a reference, the jitter should not exceed +1% of the
periodic time.

It implements a run function which measures the timing compared with the previous execution
and stores the data.

The test results, as depicted in Figure are produced by a measurement of 1000.000 sam-
ples. The test is done during 15 minutes (1000.000 samples at 1k Hz) with heavy system load.
The heavy system load is produced by reading bulk data from the storage device which causes
many interrupts, and continuously reading the random number generator for the computa-
tional load.

max="7.1us

Number of measurements
H
o
T
1
;
Il

of ! \ ! \ \ \ !
-8 -6 -4 -2 0 2 4 6 8
Jitter in ps (max=7.1us)

FIGURE C.1 - Jitter of a 1k Hz task, with full system load

The worst-case jitter is 7.1us according to the previous execution, it is below 1% of the sched-
uled period.

Control Engineering

38 Design of the global software structure and joint controller framework for TUlip

Bibliography
20-sim (2008), A modeling and simulation program, URL lwww.20sim. com.

Baillie, J.-C. (2005), URBI: towards a universal robotic low-level programming language, Intel-
ligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RS] International Conference on, pp.
820-825, d0i:10.1109/IR0S.2005.1545467.

Broenink, J., M. Groothuis, P. Visser and B. Orlic (2007), A Model-Driven Approach to Embed-
ded Control System Implementation, in Proceedings of the 2007 Western Multiconference on
Computer Simulation WMC 2007, San Diego, Ed. H. R. Anderson, J., pp. 137-144.

Brunn, R, U. Diiffert, M. Jiingel, T. Laue, M. Létzsch, S. Petters, M. Risler, T. Rofer, K. Spiess and
A. Sztybryc (2001), Lecture Notes in Artificial Intelligence 2377, in RoboCup 2001, Springer,
pp. 705-708.

Bruyninckx, H. (2001), Open robot control software: the OROCOS project, Robotics and Au-
tomation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 3, pp. 2523-2528
vol.3, ISSN 1050-4729, doi:10.1109/ROBOT.2001.933002.

Cooling, J. (2000), Software Engineering for Real-Time Systems, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, ISBN 0201596202.

Daemen, P. (2008), ZMP based control in 3D passive dynamic walking, Master’s thesis, Univser-
sity of Twente.

Darmstadt (2008), URLhttp://www.sim.tu-darmstadt.de/.

Deen, B. (2008), Developing a WLAN Orientation Platform (WOP), Master’s thesis, University of
Twente.

Dertien, E. (2005), Realisation of an energy-efficient walking robot, Master’s thesis, University
of Twente.

Dijkstra, E. W. (1965), Solution of a problem in concurrent programming control, Commun.
ACM, 8, 9, p. 569.

Douglass, B. P. (2003), Software available for reusability, frameworks Real-Time design patterns,
Addison Wesley Longman.

Fitzpatrick, P, G. Metta and L. Natale (2008), Towards long-lived robot genes, Robot. Auton.
Syst., 56, 1, pp. 29-45, ISSN 0921-8890, doi:http://dx.doi.org/10.1016/j.robot.2007.09.014.

Hobbelen, D. (2008), Limit Cycle Walking, Ph.D. thesis, TU Delft.

Jovanovic, D., G. Hilderink and J. Broenink (2002), Communicating Process Architectures, Read-
ing UK, chapter A communicating Threads -CT- case study: JIWY, pp. 321-330.

Kaupp, T., A. Brooks, B. Upcroft and A. Makarenko (2007), Building a Software Architecture for a
Human-Robot Team Using the Orca Framework, Robotics and Automation, 2007 IEEE Inter-
national Conference on, pp. 3736-3741, ISSN 1050-4729, doi:10.1109/ROBOT.2007.364051.

Lotzsch, M., M. Risler and M. Jiingel (2006), XABSL - A Pragmatic Approach to Behavior Engi-
neering, in Proceedings of IEEE/RS] International Conference of Intelligent Robots and Systems
(IROS), Beijing, China, pp. 5124-5129.

University of Twente

www.20sim.com
http://www.sim.tu-darmstadt.de/

BIBLIOGRAPHY 39

mailinglist (2008), URLmailto:orocos-users@lists.mech.kuleuven.bel

McGeer, T. (1988), Passive dynamic walking, Technical report, Simon Fraser University, Burn-
aby, British Columbia, Canada.

Orocos (2008), online, URL http://www.orocos.org/stable/documentation/rtt/vl.4.
x/doc-xml/orocos-components-manual . html#id2624787.

Parker, L. E. (1998), ALLIANCE: An architecture for fault tolerant multirobot cooperation., IEEE
Transactions on Robotics and Automaton.

PC-104 (2008), URLhttp://www.pcl04.org/.

Petters, S. and D. Thomas (2005), RoboFrame - Softwareframework fiir mobile autonome Robot-
ersysteme, Master’s thesis, TU Darmstadt, FB Informatik.

QT (2008), URLhttp://trolltech.com/products/qt/.
RTAI (2008), URLhttps://www.rtai.org/.

Soetens, P. (2006a), Lock-Free Data Exchange for Real-Time Applications, Presentation: http:
//people.mech.kuleuven.be/ psoetens/doc/Lock-Free-FOSDEM. pdf.

Soetens, P. (2006b), A Software Framework for Real-Time and Distributed Robot and Machine
Control, Ph.D. thesis, Katholieke Universiteit Leuven.

Stelzer, M. and O. von Stryk (2008), Walking, running and kicking of humanoid robots and hu-
mans, in From Nano to Space - Applied Mathematics Inspired by Roland Bulirsch, Eds. M. Bre-
itner, G. Denk and P. Rentrop, Springer Verlag, pp. 175-192 and 337.

Utz, H., S. Sablatnog, S. Enderle and G. Kraetzschmar (2002), Miro - middleware for mobile
robot applications, Robotics and Automation, IEEE Transactions on, 18, 4, pp. 493-497, ISSN
1042-296X, doi:10.1109/TRA.2002.802930.

Vaughan, R., B. Gerkey and A. Howard (2003), On device abstractions for portable, reusable
robot code, Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RS]
International Conference on, 3, pp. 2421-2427 vol.3, doi:10.1109/IR0S.2003.1249233.

Visser, L. (2008), Motion Control of a Humanoid Head, Master’s thesis, University of Twente.

Visser, P, J. Broenink and J. van Amerongen (2006), Boderc: model-based design of high-tech
systems, Embedded Stystems Institute, chapter 17, Design trajectory and controller-plant in-
teraction, pp. 205-214.

Visser, P. M., M. A. Groothuis and J. E Broenink (2004), Proceedings of the 5th Progress Sympo-
sium on Embedded Systems, STW, Nieuwegein, chapter Multi-Disciplinary Desing Support
using Hardware-in-the-Loop Simulation, pp. pp 206 — 213.

Volpe, R., I. Nesnas, T. Estlin, D. Mutz, R. Petras and H. Das (2001), The CLARAty architecture for
robotic autonomy, Aerospace Conference, 2001, IEEE Proceedings., 1, pp. 1/121-1/132 vol.1,
doi:10.1109/AER0O.2001.931701.

Williamson, M. M. (1995), Series Elastic Actuators, Technical Report AITR-1524, URL
citeseer.ist.psu.edu/williamson95series.htmll

XABSL (2008), URLhttp://www2.informatik.hu-berlin.de/ki/XABSL/.

Xenomai (2008), URLhttp://www.xenomai.org/.

Control Engineering

mailto:orocos-users@lists.mech.kuleuven.be
http://www.orocos.org/stable/documentation/rtt/v1.4.x/doc-xml/orocos-components-manual.html#id2624787
http://www.orocos.org/stable/documentation/rtt/v1.4.x/doc-xml/orocos-components-manual.html#id2624787
http://www.pc104.org/
http://trolltech.com/products/qt/
https://www.rtai.org/
http://people.mech.kuleuven.be/~psoetens/doc/Lock-Free-FOSDEM.pdf
http://people.mech.kuleuven.be/~psoetens/doc/Lock-Free-FOSDEM.pdf
citeseer.ist.psu.edu/williamson95series.html
http://www2.informatik.hu-berlin.de/ki/XABSL/
http://www.xenomai.org/

	1 Introduction
	1.1 The TUlip project
	1.2 Assignment
	1.3 Approach
	1.4 Report outline

	2 Background
	2.1 Configuration of TUlip
	2.2 Software in similar robots
	2.3 Robot software frameworks and middleware

	3 Software architecture analysis
	3.1 Requirements
	3.2 Functional specification
	3.3 Functions mapped on layered structure for priorities
	3.4 Conclusions

	4 Software framework analysis
	4.1 Comparison of third-party robot software frameworks
	4.2 Software framework choice for TUlip
	4.3 Real-time operating system
	4.4 Conclusions

	5 Analysis of joint controller organization
	5.1 Multiple controller configurations
	5.2 Principle of control objects
	5.3 Conclusions

	6 Design and implementation of the joint controller framework
	6.1 Time driven tasks with data storages
	6.2 Execution of the control objects
	6.3 Implementation
	6.4 Discussion on the extension of features
	6.5 Conclusions

	7 Realization of test setups and control configurations
	7.1 Implementation of the control objects
	7.2 Testing the joint control framework with a model of the robot
	7.3 Test setup
	7.4 Results
	7.5 Conclusions

	8 Conclusions and recommendations
	8.1 Conclusions
	8.2 Recommendations

	A Robot software framework to use for TUlip
	A.1 Requirements for a robot software framework for TUlip
	A.2 Evaluation available frameworks
	A.3 Orocos versus RoboFrame
	A.4 Conclusion

	B Real-time module
	B.1 Timing measurements of the tasks
	B.2 Model-in-the-loop

	C Timing test of a task running on Xenomai
	Bibliography

