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Abstract

Among radio amateurs a variation of the sampling mixer with 25% duty cycle is used, which
is known under several names: Tayloe Product Detector, van Graas Detector or Quadrature
Sampling Detector. Although the circuit has been in use for several years no thorough analysis
of its properties has been made and it has not been noticed in professional scientific literature.
The experimental data suggests that the circuit has low conversion loss and noise figure, while
having a high linearity.

The goal of this Master Thesis is to investigate the precise properties of this mixer and to
compare its performance with better known mixer circuits. The outcome is to be verified using
circuit simulations. Also the feasibility of designing a RF receiver front end in 65 nm CMOS
using this mixer should be explored.

A comparison has been made between the topologies of the switching, sampling and Tayloe
mixer. A model topology has been found that describes all three mixers, called the frequency
converter model. This model has been analyzed using Linear Periodically Time-Variant the-
ory and closed form expressions for the periodic transfer function have been derived. From
these expressions, properties like conversion gain, noise figure and baseband bandwidth can be
derived.

Also an approximation of the periodic transfer function has been formulated for narrowband
channels, which directly translates the duty cycle parameter to conversion gain and Noise
Figure, and the bandwidth parameter to the baseband bandwidth. It was concluded that a
double balanced Tayloe mixer with 25% duty cycle provides the best balance between noise
figure and conversion loss.

Using these results a RF receiver front end was designed and simulated in 65 nm CMOS.
The channel was chosen at 1 GHz with 20 MHz bandwidth. A conversion gain of 10.5 dB
was achieved with a noise figure of 5.0 dB. Furthermore, the IIP3 is +12 dBm and the -1dB
compression point is -5 dBm. Therefore, it can be concluded that a receiver front end with
high linearity and moderate noise figure can be implemented using the Tayloe mixer.

iii



Master Thesis

Tayloe Product Detector iv



Contents

Abstract iii

List of symbols vii

1 Introduction 1

2 Mixer Overview 3
2.1 Switching Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Single balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Double balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Sampling Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Single balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Double balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Tayloe Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Single balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Double balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Frequency Converter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Single Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Double Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Linear Periodically Time Variant Systems 13
3.1 The periodic transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Strom and Signell theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Properties of the periodic transfer function . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Conversion Gain and Noise Figure . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Time shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 Even-order Harmonic Cancellation . . . . . . . . . . . . . . . . . . . . . 18
3.3.5 IQ Image Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Mixer Analysis 23
4.1 Switching Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Single Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Double Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Sampling Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Single Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



CONTENTS Master Thesis

4.2.2 Double Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Frequency Converter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Single Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Double Balanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Mixer Parameter Exploration 37
5.1 Parameter Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 RC frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.3 The big picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 RF Frontend Design 43
6.1 Top Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Circuit Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.2 Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.3 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2.4 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Block Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.1 Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.2 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.3 Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Receiver Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusions 57

8 Recommendations 59

A Identities 61

B Derivations 63
B.1 Laplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2 Single Balanced Difference Equation . . . . . . . . . . . . . . . . . . . . . . . . 64
B.3 Double Balanced Difference equation . . . . . . . . . . . . . . . . . . . . . . . . 65

Tayloe Product Detector vi



List of symbols

Ak,Bk,Ck state matrices of the k-th periodic phase
Ac voltage conversion gain
D number of periodic phases in a periodic system
F noise factor
fi input frequency
fo output frequency
frc cuttoff frequency of RC filter
fs clock frequency
Gx discrete expression for the state values on switch instances
Hn periodic transfer function
I identity matrix
IIP3 input-referred Intercept point for 3rd order intermodulation distortion
k index of periodic phase
n harmonic index: fo = fi + nfs

NF noise figure in dB
pk duty cycle of k-th periodic phase
SNR signal power to noise power ratio
tk start time of k-th periodic phase
Ts clock time period Ts = 1

fs

U input signal in the Fourier frequency domain
X system states in the Fourier frequency domain
Y output signal in the Fourier frequency domain

vii



Master Thesis

Tayloe Product Detector viii



Chapter 1
Introduction

A few years ago Dan Tayloe has patented a seemingly new type of mixer circuit called the
Tayloe Product Detector [1]. It is also known as the Quadrature Sampling Detector and is
in use in several amateur radio receivers. A similar concept has been described by van Graas
almost a decade earlier [2] and by Japanese radio amateurs [3]. In lack of a better name the
circuit will be called the Tayloe Mixer in this report.

The circuit topology is much alike a sampling mixer, but is reported to have a much lower
noise figure while having low conversion gain. Because it is a passive mixer, the linearity is
expected to be high. In professional literature no references to this design have been found,
Leung for example only describes the switching and sampling mixer [7]. Pekau and Haslett
seem to have the same circuit topology but report a noise figure that is 20 dB higher [4].
Jakonis and Svensson also describe a sampling mixer with a noise figure 20 dB higher then the
Tayloe Mixer is claimed to have [5].

So the question arises in what respect the Tayloe Mixer is different from the switching and
sampling mixer, and what its exact properties are. Tayloe gives an approximate calculation
of the conversion gain of the Tayloe Mixer [1], but provides no solid mathematical model in
the time domain nor in the frequency domain. Therefore, the goal of this Master Thesis is
to investigate the precise properties of this mixer and to compare its performance with better
known mixer circuits. Also the feasibility of designing a RF receiver front end in 65 nm CMOS
using this mixer are explored.

Chapter 2 first gives an overview and simple time domain example of the three mixer types,
single balanced circuits as well as double balanced circuits. Then in chapter 3 the mathematical
tools for analyzing mixers called Linear Periodically Time Variant theory is described. Using
this theory the mixer types are analyzed in chapter 4, resulting in periodic transfer functions.
Then in chapter 5 these transfer functions are examined further and the relationship between
the three mixer types is explored. In chapter 6 the design and simulation of a RF receiver
front end using the Tayloe mixer are discussed. Finally, chapter 7 provides the conclusions and
chapter 8 gives some recommendations for further research.
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Chapter 2
Mixer Overview

This chapter gives an overview of the two main passive mixer types used in current designs, as
well as the new Tayloe mixer. The functioning of each mixer type is illustrated with a simple
example in the time-domain.

2.1 Switching Mixer

The switching mixer is the simplest implementation for a mixer. The input signal is multiplied
by a 50% duty cycle block wave, thus performing the mixing operation.

2.1.1 Single balanced

The single balanced switching mixer multiplies the input signal with a binary 50 percent block
wave having frequency fs to obtain frequency translation, see figure 2.1. Two switches alter-
nately connect the RC load to the signal and to ground. It is assumed in this simple overview
that the cutoff frequency of the RC filter is very high.

Figure 2.1: Single balanced switching mixer

When a sinusoid with a frequency equal to the clock frequency fs is applied to the input and
the switching is in phase so that the maximum conversion gain is achieved, the waveforms are
approximated by (figure 2.2):

3
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Vin(t) = sin(2πfst) (2.1)

Vout(t) =

{
sin(2πfst) 0 < t < Ts

2

0 Ts
2 < t < Ts

(2.2)

Figure 2.2: Single balanced sample waveform

Conversion gain is calculated roughly by assuming that half of the waveform is clipped away:

Ac =
1
Ts

∫ Ts
2

0
sin(

2π

Ts
t)dt =

1
π
∼= −9.9dB (2.3)

The noise figure is 6.9 dB, of which 3 dB is contributed by the noise in the image band (single
sideband noise).

2.1.2 Double balanced

Double balancing the switching mixer results in the circuit shown in figure 2.3. Because the
input signal is double balanced now it can be easily multiplied by -1 through switching the
input wires. So during half the time the switching mixer follows the input signal and during
the other half it follows the negated input signal.

When a sinusoid with a frequency equal to the clock frequency fs is applied to the input and
the switching is in phase so that the maximum conversion gain is achieved, the waveforms are
approximated by (figure 2.4):

Vin(t) = sin(2πfst) (2.4)

Vout(t) =

{
sin(2πfst) 0 < t < Ts

2

−sin(2πfst) Ts
2 < t < Ts

(2.5)

Conversion gain is calculated roughly as:

Ac =
1
Ts

(
∫ Ts

2

0
sin(

2π

Ts
t)dt +

∫ Ts

Ts
2

−sin(
2π

Ts
t)dt) =

2
π
∼= −3.9dB (2.6)

Tayloe Product Detector 4
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Figure 2.3: Double balanced switching mixer

Figure 2.4: Double balanced sample waveform

Tayloe Product Detector 5
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Which is an improvement of 6 dB. The noise figure is also improved to 3.9dB, which is close
to the limit of 3 dB.

2.2 Sampling Mixer

In a sampling mixer, a capacitor tracks and holds the input signal. The duty cycle can be very
low, resulting in a low conversion loss.

2.2.1 Single balanced

The single balanced sampling mixer is shown in figure 2.5. When the switch is closed, the
capacitor tracks the input signal. When the switch opens, the instantaneous input voltage is
hold on the capacitor not unlike a sample and hold. In this example a duty cycle of 10 percent
is used.

Figure 2.5: Single balanced sampling mixer

When a sinusoid with a frequency equal to the clock frequency fs is applied to the input and
the switching is in phase so that the maximum conversion gain is achieved, the waveforms are
approximated by (figure 2.6):

Vin(t) = cos(2πfst) (2.7)

Vout(t) =

{
cos(2πfst) 0 < t < Ts

10

cos(2π 1
10) Ts

10 < t < Ts

(2.8)

Conversion gain is calculated roughly as the average of the voltage on the capacitor:

Ac =
1
Ts

(
∫ Ts

10

0
cos(

2π

Ts
t)dt +

9Ts

10
cos(

2π

Ts

Ts

10
)) ∼= −1.7dB (2.9)

Which is higher then the switching mixer by several dB. By raising the duty cycle further,
lower conversion losses can be achieved. When the duty cycle is almost 0 % the circuit becomes
a pure sampler with zero-order-hold. The noise figure of the sampling mixer is infinite because
of the sampling nature of the capacitor hold. When the switch opens a sample is taken from
the instantaneous input voltage, which in the frequency domain can be interpreted as aliasing.

Tayloe Product Detector 6
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Figure 2.6: Single balanced sample waveform

2.2.2 Double balanced

The double balanced sampling mixer is very similar to the single balanced one, see figure 2.7.
The input is tracked twice (during the second track the input is negated) and the hold time is
halved.

Figure 2.7: Double balanced sampling mixer

When a sinusoid with a frequency equal to the clock frequency fs is applied to the input and
the switching is in phase so that the maximum conversion gain is achieved, the waveforms are
approximated by (figure 2.8):

Vin(t) = cos(2πfst) (2.10)

Vout(t) =


cos(2πfst) 0 < t < Ts

10

cos(2π Ts
10 ) Ts

10 < t < Ts
2

−cos(2πfst) Ts
2 < t < 6Ts

10

−cos(2π 6
10) 6Ts

10 < t < Ts

(2.11)

Conversion gain is calculated roughly as:

Tayloe Product Detector 7
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Figure 2.8: Double balanced sample waveform

Ac =
1
Ts

(
∫ Ts

10

0
cos(

2π

Ts
t)dt +

4Ts

10
cos(

2π

Ts

Ts

10
) (2.12)

+
∫ 6Ts

10

5Ts
10

−cos(
2π

Ts
t)dt− 4Ts

10
· cos(2π

Ts

6Ts

10
)) ∼= −1.6dB (2.13)

Which is almost the same as the single balanced sampling mixer. Again, the noise figure is
infinite due to the sampling nature. So double balancing the sampling mixer has almost no
effect on performance. Setting the duty cycle to almost 0%, a pure double balanced sampler
with zero-order-hold is aquired with 0 dB conversion loss and infinite noise figure.

2.3 Tayloe Mixer

A special form of the sampling mixer with 25% duty cycle was patented by Dan Tayloe [1].
This mixer type is not referenced in professional literature but is known among radio amateurs.

2.3.1 Single balanced

The Tayloe mixer is actually an extension of the idea of a sampling mixer. In a sampling mixer
the input signal is tracked and hold on a capacitor. This idea is extended by adding an extra
resistor to limit the bandwidth of the mixer, see figure 2.9. The RC filter now averages the
input signal when the switch is on.

In this example, a sinusoid with a frequency equal to the clock frequency fs is applied to
the input and the switching is in phase as to achieve maximum conversion gain. In the time
domain, the mixer is seen to average the samples taken when the switch is closed (figure 2.10).

Conversion gain is calculated roughly as:

Ac =
4
Ts

∫ Ts
8

−Ts
8

cos(
2π

Ts
t)dt ∼= −0.9dB (2.14)

Tayloe Product Detector 8
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Figure 2.9: Single balanced tayloe mixer

Figure 2.10: Single balanced sample waveform

Tayloe Product Detector 9



2.3. TAYLOE MIXER Master Thesis

In the time-domain, it is hard to generate a closed form expression for the response of the
Tayloe mixer. When the switch closes the response is depended of the voltage on the capacitor,
put there the previous time the switch was closed. Therefore, previous voltages on the capacitor
influence the response of the circuit, resulting in a memory-like effect. No efforts have been
made to solve this behavior in the time-domain. In the frequency-domain there is a closed form
expression possible, as is proved in the next chapter.

2.3.2 Double balanced

As with the sampling mixer, the double balanced Tayloe mixer is very similar to the single
balanced one. Figure 2.11 shows the double balanced circuit.

Figure 2.11: Double balanced tayloe mixer

In this example, a sinusoid with a frequency equal to the clock frequency fs is applied to the
input and the switching is in phase as to achieve maximum conversion gain (figure 2.12).

Figure 2.12: Double balanced sample waveform

Tayloe Product Detector 10
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Conversion gain is calculated roughly as:

Ac =
4
Ts

∫ Ts
8

−Ts
8

cos(
2π

Ts
t)dt ∼= −0.9dB (2.15)

Again, a time-domain description of the double balanced mixer is difficult to generate. There-
fore it will be analyzed in the frequency domain.

2.4 Frequency Converter Model

The three mixers discussed so far can be derived from a more general circuit topology, named
the frequency converter model. The properties of this model are determined by two parameters:
the duty cycle and the bandwidth.

2.4.1 Single Balanced

The circuits of the single balanced sampling mixer in figure 2.5 and the single balanced Tayloe
mixer in figure 2.9 are very similar in circuit topology but differ in the circuit parameters. The
frequency converter model in figure 2.13 can be transformed into these two mixers by setting
the duty cycle p0 and the bandwidth frc = 1

2πRC .

Figure 2.13: Single balanced frequency converter model

When a frequency domain description is found for this model, the expressions for the single
balanced sampling and Tayloe mixer can be derived by setting the right parameters.

2.4.2 Double Balanced

The circuits of the double balanced switching mixer in figure 2.3, the double balanced sampling
mixer in figure 2.7 and the double balanced Tayloe mixer in figure 2.11 are very similar in circuit
topology but differ in the circuit parameters. The frequency converter model in Figure 2.14
can be transformed into these three mixers by setting the duty cycle p0 and the bandwidth
frc = 1

2πRC .

When a frequency domain description is found for this model, the expressions for the double
balanced switching, sampling and Tayloe mixer can be derived by setting the right parameters.

Tayloe Product Detector 11
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Figure 2.14: Double balanced frequency converter model

2.5 Summary

The switching mixer is always designed with 50 % duty cycle , resulting in a conversion loss of
3.9dB and Noise Figure of 3.9dB. The sampling mixer has a freely defined duty cycle and can
achieve much lower conversion losses, up to the point where it becomes a real sampler and the
conversion loss is 0dB. However, its sampler like nature introduces an infinite Noise Figure.
The Tayloe Mixer is alike a sampling mixer with 25% duty cycle, but suppresses the noise
folding by introducing an RC filter with cutoff frequency lower then the sampling frequency,
resulting in a conversion loss of 0.9dB and a finite Noise Figure of 3.9dB.

All mixers discussed except the single balanced switching mixer are generalizations of the
frequency converter model defined in section 2.4. Any analysis done for the frequency converter
model can be converted to the mixer types by setting the duty cycle and bandwidth parameters.
The time domain simulation is not suitable for providing specific information about conversion
loss and Noise Figure, so a frequency domain approach is needed to determine which mixer
gives the best performance.

Tayloe Product Detector 12



Chapter 3
Linear Periodically Time Variant Systems

For the frequency-domain analysis of frequency translating circuits (like mixers) it is insufficient
to use Linear Time Invariant system theory. The LTI system theory has been extended for
periodically time-variant systems, which are systems with a finite number of periodically cy-
cling linear time-invariant responses. This chapter describes Linear Periodically Time Variant
(LPTV) theory and a method for calculating the LPTV response for switching circuits.

3.1 The periodic transfer function

The most commonly used type of circuit in Electrical Engineering is the Linear Time Invariant
or LTI system. The theory behind such circuits is well understood en can be intuitively used
to analyze and design LTI circuits. A different set of circuits can be described as a Linear
Periodically Time Variant or LPTV circuit. Again the circuit is linear, but its response changes
periodically in time. This means that its impulse response is repetitive with a certain period
Ts. Examples of LPTV circuits are usually build out of LTI elements and periodically operated
switches.

Leung gives a quick introduction in the basics of LPTV systems [7]. In a LPTV system the
impulse response is dependent on the time the impulse stimulus is presented to the circuit.
Called the periodic impulse response, it is denoted with g(v, u) and is dependent on the two
time variables v and u. v is the time the impulse stimulus is presented to the input of the
system (also called the launch time) and u is the time elapsed after the impulse stimulus. In a
LPTV system, g(v, u) is periodic in v with period Ts. Therefore, the periodic impulse response
can be represented as a Fourier series with periodic frequency fs = 1

Ts
:

gn(v) =
1
Ts

∫ Ts

0
g(v, u)e−j2πnfsudu (3.1)

From the convolution of input and impulse response, we can derive the frequency reponse of
the LPTV system as :

Y (fo) =
∞∑

n=−∞
Hn(fo)U(fo − nfs) (3.2)

Hn(fo) =
∫ ∞

−∞
gn(v)ej2πfovdv (3.3)

13



3.2. STROM AND SIGNELL THEORY Master Thesis

This periodic transfer function can also be written in term of the input frequency fi =
fo − nfs, resulting in the reciprocal:

Y (fo) =
∞∑

n=−∞
Hn(fi + nfs)U(fi) (3.4)

The output spectra of the LPTV system is constructed from an infinite number of shifted
input spectra multiplied by their specific transfer function. The transfer function is now two-
dimensional in n: the harmonic index and fo: the output frequency. By controlling the transfer
function in the n dimensionality, it is possible to control the amount of spectrum that is folded
back. This folding property proves useful for mixer circuits, which are supposed to do a
frequency translation. In most practical systems, it is necessary to limit the transfer function
in the n dimension, as to limit the number of spectra folded back into the output. Therefore
Hn should be designed to asymptotically go to zero for larger n.

3.2 Strom and Signell theory

For some specific problems the periodic transfer function can be found using Fourier frequency
analysis and transforming the result to the form of equation 3.3. The switching and sampling
mixer can be analyzed using this method, but the Tayloe Mixer and frequency converter model
cannot. A more general methodology for solving LPTV systems is given in the work of Strom
and Signell [6]. Their method is used to obtain a closed form expression for the frequency
converter model.

In the time intervals between switching moments, an LPTV system has a defined LTI re-
sponse, which is only valid in the switching interval. The switching interval is referred to as one
of the periodic phases of the LPTV system. Strom and Signell describe a method for expanding
the LTI description until it is valid for the complete time. Then each periodic phase can be
processed with LTI techniques and the summation of all states forms the overall response.

The periodic phase nTs < t < nTs + Ts can be divided into D portions (or states), each
portion having an LTI response. The k-th state is then referred to as the time period nTs+tk <
t < nTs + tk+1 for k = 0, .., D − 1. The duty cycle of each state interval is then defined as
pk = tk+1−tk

Ts
for k = 0, .., D − 1. Each k-th state then has a valid LTI state space description

within the interval:

d

dt
xk(t) = Akxk(t) + Bku(t)

y(t) = Ckxk(t)
(3.5)

This LTI description is only valid within nTs + tk < t < nTs + tk+1, so to be able to use
Fourier analysis the differential equation has to be made valid in the interval −∞ < t < ∞. In
order to keep the states separated, the output of each state must only be non-zero inside its
interval. Therefore the functions yk(t) and uk(t) are defined, which are equal to y(t) and u(t)
inside the k-th interval, and equal to zero outside the k-th interval:

yk(t) = y(t)δk(t),k (3.6)

uk(t) = u(t)δk(t),k (3.7)
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CHAPTER 3. LINEAR PERIODICALLY TIME VARIANT SYSTEMS Master Thesis

where δk(t),k is the indicator function which is 1 inside the k-th interval and 0 outside the k-th
interval. The indicator function for a state is shown in figure 3.1. The indicator function can
be expressed in a Fourier series and has the discrete spectrum:

δk(t),k(f) =
∞∑

n=−∞

e−j2πnfstk − e−j2πnfstk+1

j2πn
δ(f − nfs) (3.8)

Figure 3.1: Indicator function for D = 3 and k = 2

In order to comply to equation 3.7, the LTI differential equation for the k-th state has to be
modified to:

d

dt
xk(t) = Akxk(t) + Bkuk(t)+

∞∑
n=−∞

xk(t)δ(t− nTs − tk)− xk(t)δ(t− nTs − tk+1)

= Akxk(t) + Bkuk(t)+
∞∑

n=−∞
xk(nTs + tk)δ(t− nTs − tk)− xk(nTs + tk+1)δ(t− nTs − tk+1)

(3.9)

yk(t) = Ckxk(t) (3.10)

Inspection reveals that at the beginning of the state interval the initial value of the state is
injected using a delta pulse, while at the end of the state interval the final value of the state is
subtracted using a delta pulse. Together with the replacement of u(t) with uk(t) this ensures
that xk(t) is zero outside nTs + tk−1 < t < nTs + tk and equal to x(t) inside the interval. The
total response of the system is now the sum of the D states:

y(t) =
D−1∑
k=0

yk(t) (3.11)

The discrete values of xk (initial and final values of the interval) can be solved using the
D-dimensional difference equation with a sinusoid as input:

xk(nTs + tm+1)− Lmxk(nTs + tm) = Mme−j2πfnTs ,m = 0, .., D − 1 (3.12)

where the expressions Lm and Mm are determined by the Laplace equation of the m-th LTI
response. The solution can be calculated using the Z-transform and has the form:

xk(nTs + tm) = Gm(fi)e−j2πfinTs ,m = 0, .., D − 1 (3.13)

Note that this solution for xk is only valid on the switching instances and Gm(fi) is cyclic:
G0(fi) = GD−1e

j2πfiTs .
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3.2. STROM AND SIGNELL THEORY Master Thesis

By inserting equation 3.13 into equation 3.10 and taking the Fourier transform of the result,
the following expression is obtained:

Xk(fo)(j2πfoI −Ak) =
∞∑

n=−∞
[Bk(U(fo)) ∗ (δ(fo − nfs)

e−j2πnfstk−1 − e−j2πnfstk

j2πn
)

+ (Gk−1(fo)U(fo)) ∗ δ(fo − nfs) · fse
−j2πfotk

− (Gk(fo)U(fo)) ∗ δ(fo − nfs) · fse
−j2πfotk+1 ]

(3.14)

Y (fo) =
D∑

k=1

CkXk(fo) (3.15)

By evaluating the delta functions, this reduces to:

Xk(fo) =
∞∑

n=−∞
(j2πfoI −Ak)−1[Bk

e−j2πnfstk−1 − e−j2πnfstk

j2πn

+ fsGk−1(fo − nfs)e−j2π(fo−nfs)tke−j2πnfstk

− fsGk(fo − nfs)e−j2π(fo−nfs)tk+1e−j2πnfstk+1 ]U(fo − nfs)

(3.16)

And by making notice that e−j2πnfstk+1 = e−j2πnfstke−j2πnpk a common phase factor is split
off:

Xk(fo) =
∞∑

n=−∞
e−j2πnfstk(j2πfI −Ak)−1

[
Bk

1− e−j2πnpk

j2πn

+ fsGk(fi)e−j2πfitk − fsGk+1(fi)e−j2πfitk+1e−j2πnpk
]
U(fo − nfs)

(3.17)

The calculation of the frequency response of a LPTV system involves the following steps:

• Define D states with proper LTI differential equations

• Find the Laplace transform of each LTI differential equation

• Solve the D dimensional difference equation to obtain the initial and final values for each
state

• Solve the LTI frequency response for each LTI differential equation

• Evaluate and simplify equation 3.17 for each state

• Sum the responses from all states into:

Y (fo) =
D−1∑
k=0

CkXk(fo)

=
D−1∑
k=0

∞∑
n=−∞

CkHn,k(fo)U(fo − nfs)

(3.18)

Figure 3.2: LPTV analysis
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CHAPTER 3. LINEAR PERIODICALLY TIME VARIANT SYSTEMS Master Thesis

3.3 Properties of the periodic transfer function

3.3.1 Symmetry

A fundamental property of the periodic transfer function defined in equation 3.3 is the symmetry
in the f = nfs line:

Hn(f) = H∗
−n(−f) (3.19)

a property proved in [6]. This is closely related to the symmetry property of an LTI system
which ensure that the complex spectra represent real signals:

H(f) = H∗(−f) (3.20)

3.3.2 Conversion Gain and Noise Figure

When a mixer is build from a LPTV system, the goal is to translate a single piece of spectrum
once through the frequency spectrum without additional components. Since the frequency
response of the LPTV system is given by:

Y (fo) =
∞∑

n=−∞
Hn(fo)U(fo − nfs) (3.21)

Y (fo) =
∞∑

n=−∞
Hn(fi + nfs)U(fi) (3.22)

the most interesting frequency translation point is with n = ±1. So, in an ideal situation the
transfer function would be zero for all n 6= −1 and unity for n = −1. Because this will not be
the case several figures exist to access the performance.

The gain of the input signal to the baseband is noted as the Conversion Gain and is simply
H−1(fi − fs). In general, the conversion gain is frequency dependent. Because the transfer
function for n 6= −1 is in general not equal to zero, noise in frequency bands outside the signal
bandwidth are also translated to the baseband. This noise-folding deteriorates the output
signal-to-noise ratio (SNR), even if the mixer components are considered noise free. The figure-
of-merit for noise performance is expressed as the noise factor:

F =
SNRin

SNRout
=

Pin

Nin

Nout

Pout
(3.23)

Where Pin is the power of the input signal at the input, Pout is the power of the input signal
at the output, Nin is the noise power at the input and Nout is the noise power at the output.
For a single-sideband signal the conversion power gain is given by:

Pout = |H−1(fo)|2 Pin (3.24)

In the ideal case when the circuit components do not contribute extra noise, the only con-
tribution to the output noise is the input noise folded by each harmonic transfer function:

Nout =
∞∑

n=−∞
|Hn(fo)|2 Nin =

∞∑
n=−∞

|Hn(fi + nfs)|2 Nin (3.25)
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3.3. PROPERTIES OF THE PERIODIC TRANSFER FUNCTION Master Thesis

Inserting equation 3.24 and 3.25 into the noise factor equation 3.23:

F =
Pin

Nin

∑∞
n=−∞ |Hn(fo)|2 Nin

|H−1(fo)|2 Pin

(3.26)

=

∑∞
n=−∞,odd |Hn(fo)|2

|H−1(fo)|2
(3.27)

For convenience the noise factor is converted to decibels and is called the single-sided noise
figure:

NF (dB) = 10log(F ) (3.28)

So the periodic transfer function must asymptotically go to zero as n goes to infinity to
obtain a finite noise figure.

3.3.3 Time shift

The periodic transfer functions for an LPTV system is given by:

Y (fo) =
∞∑

n=−∞
Hn(fi)U(fi) (3.29)

Performing a time shift tk on input and output:

Y (fo)ej2πfotk =
∞∑

n=−∞
Hn(fi)U(fi)ej2πfitk (3.30)

Y (fo) =
∞∑

n=−∞
Hn(fi)ej2π(fi−fo)tkU(fi) (3.31)

=
∞∑

n=−∞
Hn(fi)ej2πnfstkU(fi) (3.32)

So shifting the clock timing to tk results in a factor ej2πnfstk in the periodic transfer func-
tion. This factor is present in equation 3.17, but in it there is another term dependent on tk:
Gk(fi)e−j2πfitk . This can only mean that Gk(fi) is of the form:

Gk(fi) = G’
k(fi)ej2πfitk (3.33)

In the Gk(fi) expressions derived in appendix B this is indeed the case.

3.3.4 Even-order Harmonic Cancellation

Equation 3.32 shows that a time shift of tk in the clock signals results in the term e−j2πnfstk in
the periodic transfer function. Now imagine taking two identical LPTV systems with different
phase timing, let’s say that the first system starts at t0,A and the second system starts at t0,B.
If the zero phase delay transfer function of a system is equal to Hn,0 then their respective
transfer functions are:

Hn,A = e−j2πnfst0,AHn,0 (3.34)

Hn,B = e−j2πnfst0,BHn,0 (3.35)
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CHAPTER 3. LINEAR PERIODICALLY TIME VARIANT SYSTEMS Master Thesis

Now let t0,B = t0,A + 1
2Ts which resembles a timing difference of 180 degrees and subtract the

outputs of the two systems, then the total transfer function becomes:

Hn = e−j2πnfst0,A(1− e−j2π 1
2
n)Hn,0 (3.36)

By inspection, (1 − e−j2π 1
2
n) is zero for even n and double unity for uneven n. This means

that all even harmonics are cancelled. In a mixer where even harmonics are unwanted, such a
mechanism is very useful. Furthermore, by combining LPTV systems in different ways more
harmonic cancellation can be achieved at the cost of greater circuit complexity.

3.3.5 IQ Image Rejection

For image rejection, many receivers use a Weaver architecture as shown in figure 3.3. In this
architecture, the input signal is mixed by two LO signals differing 90 degrees in phase. The
mixed signals are referred to as Inphase (I) and Quadrature (Q) channels. By combining I and
Q signal again the image can be completely canceled.

Figure 3.3: Weaver architecture

To analyze the conventional weaver architecture, let’s consider a single frequency from a
bandpass signal. The analysis can be made in the time or in the frequency domain, but
a frequency analysis is more useful since for the LPTV systems only a transfer function is
available. The bandpass sinusoid is given by:

xbp(f) =
1
2
C(f1)δ(f − fc − f1) +

1
2
C∗(f1)δ(f + fc + f1) (3.37)

where f1 is the sinusoid equivalent baseband frequency and C(f1) is the equivalent baseband
spectrum of the signal. Working out the multiplication with the cosine and low pass filter the
result gives:

xi(t) =xbp(t) ∗
1
2
(δ(f − fc) + δ(f + fc)) (3.38)

=
1
4
C(f1)δ(f − f1) +

1
4
C∗(f1)δ(f + 2fc + f1)

+
1
4
C(f1)δ(f − 2fc − f1) +

1
4
C∗(f1)δ(f + f1) (3.39)

i(t) =
1
4
C(f1)δ(f − f1) +

1
4
C∗(f1)δ(f + f1) (3.40)
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3.3. PROPERTIES OF THE PERIODIC TRANSFER FUNCTION Master Thesis

In similar fashion, the quadrature component is found my multiplying the signal by the sine
and low pass filter the result:

xi(t) =xbp(t) ∗
1
2j

(δ(f − fc)− δ(f + fc)) (3.41)

=− 1
4j

C(f1)δ(f − f1)−
1
4j

C∗(f1)δ(f + 2fc + f1)

+
1
4j

C(f1)δ(f − 2fc − f1) +
1
4j

C∗(f1)δ(f + f1) (3.42)

i(t) =− 1
4j

C(f1)δ(f − f1) +
1
4j

C∗(f1)δ(f + f1) (3.43)

To obtain the baseband spectrum the I and Q signal are combined:

x(t) = i(t)− jq(t) (3.44)

=
1
2
C(f1)δ(f − f1) (3.45)

The same principles can be applied to the LPTV system, regarding the frequency response
for n = 1 and n = −1 since these translate the bandpass signal to baseband. From equation
3.32 it was proved that an LPTV system can always be written in the form:

Y (f) =
∞∑

n=−∞
e−j2πnfst0Hn(f)U(f − nfs) (3.46)

Lets consider two identical LPTV systems with different t0. The first, labeled I, has t0,I = 0
while the second, labeled Q, has t0,Q = 1

4Ts = 1
4fs

. The net effect is that circuit Q lags a quarter
sample period behind circuit I. If the same signal is taken as in equation 3.37, the output of
circuit I is calculated to be:

YI(f) =
∞∑

n=−∞
Hn(f)U(f − nfs) (3.47)

=
1
2

[C(f1)H1(f)δ(f − 2fc − f1) + C∗(f1)H1(f)δ(f + f1)]

+
1
2

[C(f1)H−1(f)δ(f − f1) + C∗(f1)H−1(f)δ(f + 2fc + f1)] (3.48)

I(f) =
1
2

[C(f1)H−1(f)δ(f − f1) + C∗(f1)H1(f)δ(f + f1)] (3.49)

And similarly for the output of circuit Q:

YI(f) =
∞∑

n=−∞
e−j2πn 1

4 Hn(f)U(f − nfs) (3.50)

=
1
2
e−j2π 1

4 [C(f1)H1(f)δ(f − 2fc − f1) + C∗(f1)H1(f)δ(f + f1)]

+
1
2
ej2π 1

4 [C(f1)H−1(f)δ(f − f1) + C∗(f1)H−1(f)δ(f + 2fc + f1)] (3.51)

Q(f) =
1
2
e−j2π 1

4 C∗(f1)H1(f)δ(f + f1) +
1
2
ej2π 1

4 C(f1)H−1(f)δ(f − f1) (3.52)

Because e−j2π 1
4 = 1

j and ej2π 1
4 = −1

j this equation reduces to:

Q(f) =
1
2j

[C∗(f1)H1(f)δ(f + f1)− C(f1)H−1(f)δ(f − f1)] (3.53)
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The combination of circuit I and Q then results in:

Y (f) = I(f)− jQ(f) (3.54)
= C(f1)H−1(f)δ(f − f1) (3.55)

Therefore, when an LPTV circuit is used for quadrature image rejection can be performed
by having two identical LPTV circuits with a quarter sampling period lag between the state
intervals.

3.4 Summary

A linear periodically time variant system folds the input spectrum multiple times with each
harmonic having its own transfer function. For each harmonic n the output frequency fo of a
sinusoid with input frequency fi is defined as fo = fi + nfs, where fs is the periodic switching
frequency. In the frequency domain the output spectrum is obtained through:

Y (fo) =
∞∑

n=−∞
Hn(fo)U(fo − nfs) (3.56)

With Strom and Signell theory the periodic transfer function Hn(fo) can be calculated by
defining a finite number of states with valid Linear Time Invariant descriptions and summing
the modified expressions according to box 3.2.

For frequency translation (mixer) the most interesting harmonic is n = ±1. Since Hn(fo) is
symmetric around n = 0, the conversion gain can be defined either as the magnitude of Hn=1

or Hn=−1. From Hn(fo) the Noise Figure can be easily determined by evaluating:

NF (dB) = 10log(
∑∞

n=−∞ |Hn(fo)|2

|H−1(fo)|2
) (3.57)

It was also derived that all even harmonic transfer functions (n = even) can be made zero
by summing the outputs of two identical LPTV systems, with the second having a switching
pattern that lags Ts

2 behind the first. Also, IQ image rejection is possible by duplicating the
LPTV system again and applying a Ts

4 delay in the switching pattern.
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Chapter 4
Mixer Analysis

In this Chapter the switching mixer, sampling mixer and frequency converter model are an-
alyzed using the Linear Periodically Time Variant theory presented in the previous chapter.
The derivations result in the periodic transfer function for each mixer type.

4.1 Switching Mixer

4.1.1 Single Balanced

The signal representation of the single balanced switching mixer is shown in figure 4.1.

Figure 4.1: Single balanced switching mixer signal representation

The time domain description of the circuit is given by:

z(t) = u(t)
∞∑

n=−∞
rect(2

t− t0
Ts

− 2n− 1
2
) (4.1)

= u(t)
∞∑

n=−∞
rect(

t− t0 − nTs − 1
4Ts

1
2Ts

) (4.2)

= u(t)
∞∑

n=−∞

1
2
sinc(

1
2
n)ej2πnfs(t−t0− 1

4
Ts) (4.3)

paragraph After transformation to the frequency domain:
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4.1. SWITCHING MIXER Master Thesis

Z(fo) = U(fi) ∗
∞∑

n=−∞

1
2
sinc(

1
2
n)δ(fo − nfs)e−j2πnfst0e−j2π 1

4
n (4.4)

=
∞∑

n=−∞
e−j2πnfst0 1

2
sinc(

1
2
n)e−j2π 1

4
nU(fo − nfs) (4.5)

Y (fo) =
∞∑

n=−∞

e−j2πnfst0

1 + j fo

frc

1
2
sinc(

1
2
n)e−j2π 1

4
nU(fo − nfs) (4.6)

The resulting periodic transfer function is given in figure 4.2.

Hn(fo) =
e−j2πnfst0

1 + j fo

frc

1
2
sinc(

1
2
n)e−j2π 1

4
n (4.7)

=
e−j2πnfst0

1 + j fo

frc

1− e−j2π 1
2
n

j2πn
(4.8)

Note that Hn(fo) is decreasing with increasing n, resulting in a finite Noise Figure.

Figure 4.2: Switching Mixer Single Balanced Hn

4.1.2 Double Balanced

The signal representation of the double balanced switching mixer is shown in figure 4.3. The
two branches each multiply the input signal with a 50% duty cycle blockwave and are then
added together.

Figure 4.3: Double balanced switching mixer signal representation

The time domain description of the circuit is given by:
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z(t) = u(t)
∞∑

n=−∞
rect(2

t− t0
Ts

− 2n− 1
2
)− u(t)

∞∑
n=−∞

rect(2
t− t0

Ts
− 2n− 1

1
2
) (4.9)

= u(t)
∞∑

n=−∞

[
rect(

t− t0 − nTs − 1
4Ts

1
2Ts

)− rect(
t− to − nTs − 3

4Ts

1
2Ts

)

]
(4.10)

= u(t)
∞∑

n=−∞

[
1
2
sinc(

1
2
n)ej2πnfs(t−t0− 1

4
Ts) − 1

2
sinc(

1
2
n)ej2πnfs(t−t0− 3

4
Ts)

]
(4.11)

After transformation to the frequency domain:

Z(fo) = U(fi) ∗
∞∑

n=−∞

[
1
2
sinc(

1
2
n)δ(fo − nfs)e−j2πnfst0e−j2π 1

4
n−

1
2
sinc(

1
2
n)δ(fo − nfs)e−j2πnfst0e−j2π 3

4
n

] (4.12)

=
∞∑

n=−∞
e−j2πnfst0

[
1
2
sinc(

1
2
n)e−j2π 1

4
n − 1

2
sinc(

1
2
n)e−j2π 3

4
n

]
U(fo − nfs) (4.13)

=
∞∑

n=−∞

[
e−j2πnfst0(1− e−j2π 1

2
n)

1
2
sinc(

1
2
n)e−j2π 1

4
n

]
U(fo − nfs) (4.14)

Y (fo) =
∞∑

n=−∞

[
e−j2πnfst0

1 + j fo

frc

(1− e−j2π 1
2
n)

1
2
sinc(

1
2
n)e−j2π 1

4
n

]
U(fo − nfs) (4.15)

The resulting periodic transfer function is given in figure 4.4.

Hn(fo) =
e−j2πnfst0

1 + j fo

frc

(1− e−j2π 1
2
n)

1
2
sinc(

1
2
n)e−j2π 1

4
n (4.16)

=
e−j2πnfst0

1 + j fo

frc

(1− e−j2π 1
2
n)

1− e−j2π 1
2
n

j2πn
(4.17)

Note that Hn(fo) is decreasing with increasing n, resulting in a finite Noise Figure.

Figure 4.4: Switching Mixer Double Balanced Hn

4.2 Sampling Mixer

4.2.1 Single Balanced

The signal representation of the sampling mixer is shown in figure 4.5. The upper branch is a
multiplication with a block wave, while the lower branch is a sampler followed by a hold filter.
The two branches will be analyzed separately and joined later.
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Figure 4.5: Single balanced sampling mixer signal representation

The time domain description of the upper branch is given by:

a1(t) = u(t)
∞∑

n=−∞
rect(

t− t0
p0Ts

− n

p0
− 1

2
) (4.18)

= u(t)
∞∑

n=−∞
rect(

t− t0 − nTs − 1
2p0Ts

p0Ts
) (4.19)

= u(t)
∞∑

n=−∞
p0sinc(p0n)ej2πnfs(t−t0− 1

2
p0Ts) (4.20)

Transformation to the frequency domain gives:

A1(fo) = U(fi) ∗
∞∑

n=−∞
p0sinc(p0n)e−j2πnfst0e−j2π 1

2
p0nδ(fo − nfs) (4.21)

=
∞∑

n=−∞
e−j2πnfst0p0sinc(p0n)e−j2π 1

2
p0nU(fo − nfs) (4.22)

The time domain description of the lower branch is given by:

a2(t) =

[
u(t)

∞∑
n=−∞

δ(t− t0 − nTs − p0Ts)

]
∗ rect(

t− 1
2p1Ts

p1Ts
) (4.23)

Translation to the frequency domain gives:

A2(fo) =

[
U(fi) ∗

∞∑
n=−∞

fsδ(fo − nfs)e−j2πnfst0e−j2πp0n

]
p1Tssinc(p1

fo

fs
)e−j2π 1

2
p1

fo
fs (4.24)

=
∞∑

n=−∞
e−j2πnfst0p1sinc(p1

fo

fs
)e−j2π 1

2
p1

fo
fs e−j2πp0nU(fo − nfs) (4.25)
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Resulting in a total response of:

Y (fo) = A1(fo) + A2(fo) (4.26)

=
∞∑

n=−∞
e−j2πnfst0

[
p0sinc(p0n)e−j2π 1

2
p0n + p1sinc(p1

fo

fs
)e−j2π 1

2
p1

fo
fs e−j2πp0n

]
U(fo − nfs)

(4.27)

=
∞∑

n=−∞
e−j2πnfst0

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0n

]
U(fo − nfs) (4.28)

The resulting periodic transfer function is given in figure 4.6.

Hn(fo) = e−j2πnfst0

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0n

]
(4.29)

Or in sinc form:

Hn(fo) = e−j2πnfst0

[
p0sinc(p0n)e−j2π

p0
2

n + p1sinc(p1
fo

fs
)e−j2π

p1
2

fo
fs e−j2πp0n

]
(4.30)

Note that the second part of this equation has a magnitude that does not depend on n, resulting
in an infinite Noise Figure due to an infinite number of folding.

Figure 4.6: Sampling Mixer Single Balanced Hn

4.2.2 Double Balanced

The signal representation of the sampling mixer is shown in figure 4.7. There are four periodic
phases: p0 = p2, p1 = p3, p0 + p1 = 1

2 , p2 + p3 = 1
2 . The analysis is similar to the single

balanced case.

a1(t) = u(t)
∞∑

n=−∞
rect(

t− t0 − nTs − 1
2p0Ts

p0Ts
) (4.31)

A1(fo) =
∞∑

n=−∞
e−j2πnfst0p0sinc(p0n)e−j2π 1

2
p0nU(fo − nfs) (4.32)

a2(t) =

[
u(t)

∞∑
n=−∞

δ(t− t0 − nTs − p0Ts)

]
∗ rect(

t− 1
2p1Ts

p1Ts
) (4.33)

A2(fo) =
∞∑

n=−∞
e−j2πnfst0p1sinc(p1

fo

fs
)e−j2π 1

2
p1

fo
fs e−j2πp0nU(fo − nfs) (4.34)

a3(t) = −u(t)
∞∑

n=−∞
rect(

t− t2 − nTs − 1
2p2Ts

p2Ts
) (4.35)

A3(fo) = −
∞∑

n=−∞
e−j2πnfst2p2sinc(p2n)e−j2π 1

2
p2nU(fo − nfs) (4.36)
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Figure 4.7: Double balanced sampling mixer signal representation

Because p0 = p2 and t2 = t0 + 1
2Ts this expression reduces to:

A3(fo) = −A1(f0)e−j2π 1
2
n (4.37)

a4(t) =

[
−u(t)

∞∑
n=−∞

δ(t− t2 − nTs − p2Ts)

]
∗ rect(

t− 1
2p3Ts

p3Ts
) (4.38)

A4(fo) = −
∞∑

n=−∞
e−j2πnfst0p3sinc(p3

fo

fs
)e−j2π 1

2
p3

fo
fs e−j2πp2nU(fo − nfs) (4.39)

Because p1 = p3 and t2 = t0 + 1
2Ts this expression reduces to:

A4(fo) = −A2(f0)e−j2π 1
2
n (4.40)

Summing the four branches results in the total response:

Y (fo) = A1(fo) + A2(fo) + A3(fo) + A4(fo) (4.41)

=
∞∑

n=−∞
e−j2πnfst0(1− e−j2π 1

2
n)
[
p0sinc(p0n)e−j2π 1

2
p0n+

p1sinc(p1
fo

fs
)e−j2π 1

2
p1

fo
fs e−j2πp0n

]
U(fo − nfs)

(4.42)
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=
∞∑

n=−∞
e−j2πnfst0(1− e−j2π 1

2
n)

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0n

]
U(fo − nfs) (4.43)

The resulting periodic transfer function is given in figure 4.8.

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)
[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0n

]
(4.44)

Or in sinc form:

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)
[
p0sinc(p0n)e−j2π

p0
2

n + p1sinc(p1
fo

fs
)e−j2π

p1
2

fo
fs e−j2πp0n

]
(4.45)

Note that the second part of this equation has a magnitude that does not depend on n, resulting
in an infinite Noise Figure due to an infinite number of folding.

Figure 4.8: Sampling Mixer Double Balanced Hn

4.3 Frequency Converter Model

4.3.1 Single Balanced

To calculate the frequency response of the LPTV network, equation 3.17 has to be evaluated,
according to Strom and Signell [6]. In this case, D = 2 and the differential equations of the
two phases are:{

dVout(t)
dt = − 1

RC Vout(t) + 1
RC Vin(t) , nTs + t0 < t < nTs + t1

dVout(t)
dt = 0 , nTs + t1 < t < (n + 1)Ts + t0

(4.46)

Instead of the RC time, it is more constructive using the cutoff frequency of the filter, defined
as frc = 1

2πRC . The derivation and evaluation of equation 3.13 is given in Appendix B, resulting
in:

G(fi) =
e
j2πp0

fi
fs − e

−2πp0
frc
fs

e
j2π

fi
fs − e

−2πp0
frc
fs

1

1 + j fi

frc

(4.47)

G0(fi) = G(fi)ej2πfit0 (4.48)

G1(fi) = G(fi)ej2πfit2 (4.49)

G2(fi) = G(fi)ej2πfit2 (4.50)
(4.51)

The LTI response is easily calculated:

phase0

(j2πfoI −A1)−1 = 1
j2πfo+2πfrc

=
1

2πfrc

j fo
frc

+1

B1 = 2πfrc

(4.52)

phase1

{
(j2πfoI −A2)−1 = 1

j2πfo

B2 = 0
(4.53)
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Equation 3.17 is evaluated for phase 0:

X0(fo) =
∞∑

n=−∞
e−j2πnfst0(j2πfoI −A1)−1

[
B1

1− e−j2πnp0

j2πn

+ fsG0(fi)e−j2πfit0 − fsG1(fi)e−j2πfit1e−j2πnp0

]
U(fi)

(4.54)

X0(fo) =
∞∑

n=−∞
e−j2πnfst0(

1
2πfrc

j fo

frc
+ 1

[
2πfrc

1− e−j2πnp0

j2πn

+ fsG(fi)ej2πfit0e−j2πfit0 − fsG(fi)ej2πfit2e−j2πfit1e−j2πnp0

]
U(fi)

(4.55)

X0(fo) =
∞∑

n=−∞
e−j2πnfst0

[
1

1 + j fo

frc

1− e−j2πnp0

j2πn
+

1− e
j2πp1

fi
fs e−j2πnp0

(2π frc

fs
)(1 + j fo

frc
)

G(fi)
]
U(fi) (4.56)

Equation 3.17 is evaluated for phase 1:

X1(f0) =
∞∑

n=−∞
e−j2πnfst1(j2πfoI −A2)−1

[
B2

1− e−j2πnp1

j2πn

+ fsG1(fi)e−j2πfit1 − fsG2(fi)e−j2πfit2e−j2πnp1

]
U(fi)

(4.57)

X1(f0) =
∞∑

n=−∞
e−j2πnfst1 1

j2π fo

fs[
G(fi)ej2πfit2e−j2πfit1 −G(fi)ej2πfit2e−j2πfit2e−j2πnp1

]
U(fi)

(4.58)

X1(fo) =
∞∑

n=−∞
e−j2πnfst1 1

j2π fo

fs

G(fi)(e
j2πp1

fi
fs − e−j2πp1n)U(f − nfs) (4.59)

=
∞∑

n=−∞
e−j2πnfst1 1− e

−j2πp1
fo
fs

j2π fo

fs

e
j2πp1

fi
fs G(fi)U(f − nfs) (4.60)

=
∞∑

n=−∞
e−j2πnfst0 1− e

−j2πp1
fo
fs

j2π fo

fs

e−j2πp0ne
j2πp1

fi
fs G(fi)U(f − nfs) (4.61)

Summing these phase equations according to equation 3.11 gives the total response:

Y (f0) = X(fo) = X0(fo) + X1(fo) (4.62)

=
∞∑

n=−∞
e−j2πnfst0

[
1

1 + j fo

frc

1− e−j2πp0n

j2πn
(4.63)

+
1

j2π fo

fs
+ 2π frc

fs

(1− e
j2πp1

fi
fs e−j2πp0n)G(fi) (4.64)

+
1− e

−j2πp1
fo
fs

j2π fo

fs

e−j2πp0ne
j2πp1

fo
fs G(fi)

]
U(fi) (4.65)
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Since the state variable X is also the output: Y (f0) = X(fo). Then the periodic transfer
function becomes:

Hn(fo) =e−j2πnfst0

[
1

1 + j fo

frc

1− e−j2πp0n

j2πn︸ ︷︷ ︸
partB

+
1

(2π frc

fs
)(1 + j fo

frc
)
(1− e

j2πp1
fi
fs e−j2πp0n)G(fi)︸ ︷︷ ︸

partC

+
1− e

−j2πp1
fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs︸ ︷︷ ︸

partD

]

(4.66)

Part B and part C of this equation both have the factor 1

1+j fo
frc

, but part D does not. In

order to split off this common factor, part D is multiplied by the unity factor
1+j fo

frc

1+j fo
frc

:

Hn(fo) =e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs

+
1

2π frc

fs

(1− e
j2πp1

fi
fs e−j2πp0n)G(fi)−

j fo

frc

j2π fo

fs

(1− e
−j2πp1

fo
fs )e−j2πp0nG(fi)e

j2πp1
fi
fs

]
(4.67)

The lower line now has similar factors and can be simplified further:

Hn(fo) =e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs

+
G(fi)

2π frc

fs

(
1− e

j2πp1
fi
fs e−j2πp0n + e

j2πp1
fi
fs e−j2πp0n − e−j2πn

)
︸ ︷︷ ︸

partE

]

(4.68)

Part E evaluates to (1 − e−j2πn) = 0. The resulting periodic transfer function is given in
figure 4.9.
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Hn(fo) = e−j2πnfst0 1

1 + j fo

frc

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs

]
(4.69)

Or in sincform:

Hn(fo) = e−j2πnfst0 1

1 + j fo

frc

·[
p0 · sinc(p0n)e−j2π

p0
2

n + p1 · sinc(p1
fo

fs
)e−j2π

p1
2

fo
fs e−j2πp0nG(fi)e

j2πp1
fi
fs

] (4.70)

Given that:

G(fi) =
e
j2πp0

fi
fs − e

−2πp0
frc
fs

e
j2π

fi
fs − e

−2πp0
frc
fs

1

1 + j fi

frc

(4.71)

Figure 4.9: Frequency Converter Model Single Balanced Hn

4.3.2 Double Balanced

The double balanced frequency converter model is similar to the single balanced version, but
with the double amount of periodic phases. There are four phases so D = 4 and the balancing
forces the relationships:

p0 = p2, p1 = p3, p0 + p1 =
1
2
, p2 + p3 =

1
2

(4.72)

During phase 0 and phase 2 the circuit is a RC filter and during phase 1 and phase 3 the
voltage on the capacitors remains static. Therefore the differential equations are given by:

RC dVout(t)
dt + Vout(t) = Vin(t) , t0 + nTs < t < t1 + nTs

Vout(t) = Vout(nTs + t1) , t1 + nTs < t < t2 + nTs

RC dVout(t)
dt + Vout(t) = −Vin(t) , t2 + nTs < t < t3 + nTs

Vout(t) = Vout(nTs + t3) , t3 + nTs < t < t0 + (n + 1)Ts

(4.73)

The derivation of the difference equation 3.12 is given in appendix B. The resulting equations
for Gk(fi) are:

G(fi) = −e
j2πp0

fi
fs − e

−2πp0
frc
fs

e
j2π 1

2

fi
fs + e

−2πp0
frc
fs

1

1 + j fi

frc

(4.74)

G0(fi) = G(fi)ej2πfit0 (4.75)

G1(fi) = −G(fi)ej2πfit2 (4.76)

G2(fi) = −G(fi)ej2πfit2 (4.77)

G3(fi) = G(fi)ej2πfit4 (4.78)

G4(fi) = G(fi)ej2πfit4 (4.79)

The solution to the differential equations in each phase is trivial:
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phase0,phase2

(j2πfoI −A1)−1 = (j2πfoI −A3)−1 = 1
j2πfo+2πfrc

=
1

2πfrc

j fo
frc

+1

B1 = B3 = 2πfrc

(4.80)

phase1,phase3

{
(j2πfoI −A2)−1 = (j2πfoI −A4)−1 = 1

j2πfo

B2 = B4 = 0
(4.81)

Equation 3.17 is evaluated for phase 0:

X0(fo) =
∞∑

n=−∞
e−j2πnfst0(j2πfoI −A1)−1

[
B1

1− e−j2πnp0

j2πn

+ fsG0(fi)e−j2πfit0 − fsG1(fi)e−j2πfit1e−j2πnp0

]
U(fi)

(4.82)

X0(fo) =
∞∑

n=−∞
e−j2πnfst0(

1
2πfrc

j fo

frc
+ 1

[
2πfrc

1− e−j2πnp0

j2πn

+ fsG(fi)ej2πfit0e−j2πfit0 + fsG(fi)ej2πfit2e−j2πfit1e−j2πnp0

]
U(fi)

(4.83)

X0(fo) =
∞∑

n=−∞
e−j2πnfst0

[
1

1 + j fo

frc

1− e−j2πnp0

j2πn
+

1 + e
j2πp1

fi
fs e−j2πnp0

(2π frc

fs
)(1 + j fo

frc
)

G(fi)
]
U(fi) (4.84)

Equation 3.17 is evaluated for phase 2:

X2(fo) =
∞∑

n=−∞
e−j2πnfst2(j2πfoI −A3)−1

[
B3

1− e−j2πnp2

j2πn

+ fsG2(fi)e−j2πfit2 − fsG3(fi)e−j2πfit3e−j2πnp2

]
U(fi)

(4.85)

X2(fo) =
∞∑

n=−∞
e−j2πnfst0e−j2π 1

2
n(

1
2πfrc

j fo

frc
+ 1

[
− 2πfrc

1− e−j2πnp2

j2πn

− fsG(fi)ej2πfit2e−j2πfit2 − fsG(fi)ej2πfit4e−j2πfit3e−j2πnp2

]
U(fi)

(4.86)

X2(fo) =
∞∑

n=−∞
−e−j2πnfst0e−j2π 1

2
n

[
1

1 + j fo

frc

1− e−j2πnp2

j2πn
+

1 + e
j2πp3

fi
fs e−j2πp2n

(2π frc

fs
)(1 + j fo

frc
)

G0(fi)
]
U(fi)

(4.87)
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Inspection reveals that X2(fo) = −X0(fo)ej2π 1
2
n.Equation 3.17 is evaluated for phase 1:

X1(f0) =
∞∑

n=−∞
e−j2πnfst1(j2πfoI −A2)−1

[
B2

1− e−j2πnp1

j2πn

+ fsG1(fi)e−j2πfit1 − fsG2(fi)e−j2πfit2e−j2πnp1

]
U(fi)

(4.88)

X1(f0) =
∞∑

n=−∞
e−j2πnfst1 1

j2π fo

fs[
−G(fi)ej2πfit2e−j2πfit1 + G(fi)ej2πfit2e−j2πfit2e−j2πnp1

]
U(fi)

(4.89)

X1(fo) =
∞∑

n=−∞
−e−j2πnfst1 1

j2π fo

fs

G(fi)(e
j2πp1

fi
fs − e−j2πp1n)U(f − nfs) (4.90)

=
∞∑

n=−∞
−e−j2πnfst1 1− e

−j2πp1
fo
fs

j2π fo

fs

e
j2πp1

fi
fs G(fi)U(f − nfs) (4.91)

=
∞∑

n=−∞
−e−j2πnfst0 1− e

−j2πp1
fo
fs

j2π fo

fs

e−j2πp0ne
j2πp1

fi
fs G(fi)U(f − nfs) (4.92)

Equation 3.17 is evaluated for phase 3:

X3(f0) =
∞∑

n=−∞
e−j2πnfst3(j2πfoI −A4)−1

[
B4

1− e−j2πnh3

j2πn

+ fsG3(fi)e−j2πfit3 − fsG4(fi)e−j2πfit4e−j2πnp3

]
U(fi)

(4.93)

X3(f0) =
∞∑

n=−∞
e−j2πnfst1e−j2π 1

2
n 1

j2π fo

fs[
−G(fi)ej2πfit4e−j2πfit3 + G(fi)ej2πfit4e−j2πfit4e−j2πnp3

]
U(fi)

(4.94)

X3(fo) =
∞∑

n=−∞
−e−j2πnfst1e−j2π 1

2
n 1

j2π fo

fs

G(fi)(e
j2πp3

fi
fs − e−j2πnp3)U(f − nfs) (4.95)

=
∞∑

n=−∞
−e−j2πnfst1e−j2π 1

2
n 1− e

−j2πp3
fo
fs

j2π fo

fs

G(fi)e
j2πp3

fi
fs U(f − nfs) (4.96)

=
∞∑

n=−∞
−e−j2πnfst0e−j2π 1

2
n 1− e

−j2πp3
fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp3

fi
fs U(f − nfs) (4.97)

(4.98)
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Inspection reveals that X3(fo) = −X1(fo)ej2π 1
2
n. Summing these phase equations according

to equation 3.11 gives the total response:

Y (f0) = X(fo) = X0(fo) + X1(fo) + X2(fo) + X3(fo) (4.99)

=
∞∑

n=−∞
e−j2πnfst0(1− ej2π 1

2
n)
[

1

1 + j fo

frc

1− e−j2πp0n

j2πn
(4.100)

+
1

j2π fo

fs
+ 2π frc

fs

(1 + e
j2πp1

fi
fs e−j2πp0n)G(fi) (4.101)

− 1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0ne
j2πp1

fo
fs G(fi)

]
U(fi) (4.102)

Since the state variable X is also the output: Y (f0) = X(fo). Then the periodic transfer
function becomes:

Hn(fo) =e−j2πnfst0 (1− e−j2π 1
2
n)︸ ︷︷ ︸

partA

[
1

1 + j fo

frc

1− e−j2πp0n

j2πn︸ ︷︷ ︸
partB

+
1

(2π frc

fs
)(1 + j fo

frc
)
(1 + e

j2πp1
fi
fs e−j2πp0n)G(fi)︸ ︷︷ ︸

partC

− 1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs︸ ︷︷ ︸

partD

]

(4.103)

Part B and part C of this equation both have the factor 1

1+j fo
frc

, but part D does not. In

order to split off this common factor, part D is multiplied by the unity factor
1+j fo

frc

1+j fo
frc

:

Hn(fo) =e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs

+
1

2π frc

fs

(1 + e
j2πp1

fi
fs e−j2πp0n)G(fi)−

j fo

frc

j2π fo

fs

(1− e
−j2πp1

fo
fs )e−j2πp0nG(fi)e

j2πp1
fi
fs

]
(4.104)

The lower line now has similar factors and can be simplified further:

Hn(fo) =e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

[
1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs

+
G(fi)

2π frc

fs

(
1 + e

j2πp1
fi
fs e−j2πp0n − e

j2πp1
fi
fs e−j2πp0n + e−j2π 1

2
n

)
︸ ︷︷ ︸
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(4.105)
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Part E evaluates to (1 + e−j2π 1
2
n) which multiplied by part A gives zero:

(1− e−j2π 1
2
n)(1 + e−j2π 1

2
n) = 1− e−j2πn = 1− 1 = 0 (4.106)

The resulting periodic transfer function is given in figure 4.10.

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

·

[
1− e−j2πp0n

j2πn
− 1− e

−j2πp1
fo
fs

j2π fo

fs

e−j2πp0nG(fi)e
j2πp1

fi
fs

] (4.107)

Or in sincform:

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

·[
p0 · sinc(p0n)e−j2π

p0
2

n − p1 · sinc(p1
fo

fs
)e−j2π

p1
2

fo
fs e−j2πp0nG(fi)e

j2πp1
fi
fs

] (4.108)

Given that:

G(fi) = −e
j2πp0

fi
fs − e

−2πp0
frc
fs

e
j2π 1

2

fi
fs + e

−2πp0
frc
fs

1

1 + j fi

frc

(4.109)

Figure 4.10: Frequency Converter Model Double Balanced Hn

4.4 Summary

The periodic transfer function of a switching mixer and sampling mixer can be calculated
using the definition of the periodic transfer function and Fourier frequency domain identities.
However, the memory effect of the frequency converter model prevents a similar approach and
instead the full Strom and Signell theory has to be used.

For all three mixer types the periodic transfer functions were derived for both the single
balanced en double balanced case. The double balanced transfer functions differ mainly from
the single balanced ones by an additional factor (1 − e−j2π 1

2
n), resulting in all even order

harmonics to be zero. The same result was derived from Strom and Signell theory in section
3.3.4.
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Chapter 5
Mixer Parameter Exploration

In this chapter the expressions for the double balanced frequency converter model are examined
further. The goal is to derive simpler expressions for important performance figures like con-
version gain and noise figure. The periodic transfer function is repeated here for convenience:

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

·1− e−j2πp0n

j2πn︸ ︷︷ ︸
partA

− 1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πponG(fi)e
j2πp1

fi
fs︸ ︷︷ ︸

partB


(5.1)

Given that:

G(fi) = −e
j2πp0

fi
fs − e

−2πp0
frc
fs

e
j2π 1

2

fi
fs + e

−2πp0
frc
fs

1

1 + j fi

frc

(5.2)

5.1 Parameter Sweep

By choosing special values for the duty cycle p0 and the bandwidth frc equation 5.1 can be
simplified.

5.1.1 Duty Cycle

Put the duty cycle to 50 percent, which is p0 = 1
2 and p1 = 0. Part B now is zero because

1− e
−j2πp1

fo
fs = 1− e0 = 0 and only part A remains:

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

1− e−j2π 1
2
n

j2πn
(5.3)

Which is the expression for the double balanced switching mixer (figure 4.4).

5.1.2 RC frequency

First the effect of choosing an infinitely large frc on the periodic transfer function of the double
balanced Tayloe mixer is considered.
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For G(fi) the limit is:

G(fi) = −e
j2πp0

fi
fs − e−∞

e
j2π 1

2

fi
fs + e−∞

1
1

(5.4)

= −e
j2πp0

fi
fs e

−j2π 1
2

fi
fs (5.5)

The periodic transfer function becomes:

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)[

1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e
−j2πp0

fo
fs e

j2πp0
fi
fs ] (5.6)

= e−j2πnfst0(1− e−j2π 1
2
n)[

1− e−j2πp0n

j2πn
+

1− e
−j2πp1

fo
fs

j2π fo

fs

e−j2πp0n] (5.7)

Which is the expression for the double balanced sampling mixer (figure 4.8). Now make the
duty cycle very small so that p0

∼= 0 and p1 = 1
2 then the expression becomes:

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)

1− e
−j2π 1

2
fo
fs

j2π fo

fs

(5.8)

Which is the expression for a double balanced sampler with zero-order-hold.

5.1.3 The big picture

The previous two subsections have proved that equation 5.1 describes all the mixer types
discussed in Chapter 2 and that different mixer forms arise from different values of the duty
cycle p0 and bandwidth frc. Table 5.1 summarizes the conclusions made.

Table 5.1: Frequency Converter Parameter Variation

frc = ∞ frc < fs

p0 = 1
2 switching mixer

p0 = 1
4 Tayloe mixer

0 < p0 < 1
2 sampling mixer

p0 ≈ 0 sampler + zero-order-hold

5.2 Approximations

The equation for G is simplified when two conditions are assumed:

• Only the behavior around DC output frequency is concerned: f0 = 0 and fi = nfs

• The bandwidth is small with respect to the sampling frequency: frc < 0.1 · fs

Tayloe Product Detector 38



CHAPTER 5. MIXER PARAMETER EXPLORATION Master Thesis

Substituting the first condition into equation 5.2 result in:

G(fi) = −ej2πp0n − e
−2πp0

frc
fs

ej2π 1
2
n + e

−2πp0
frc
fs

1
1 + j 2πp0n

2πp0
frc
fs

(5.9)

=
2πp0

frc

fs

1− e
−2πp0

frc
fs

ej2πp0n − e
−2πp0

frc
fs

2πp0
frc

fs
+ j2πp0n

(5.10)

hen taking the limit from frc toward zero to apply the second condition:

lim
frc→0

[
2πp0

frc

fs

1− e
−2πp0

frc
fs

ej2πp0n − e
−2πp0

frc
fs

2πp0
frc
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+ j2πp0n

] = (5.11)
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frc→0
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2πp0

frc

fs

1− e
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frc
fs

] · lim
frc→0
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−2πp0
frc
fs

2πp0
frc

fs
+ j2πp0n

] = (5.12)

1 · ej2πp0n − 1
j2πp0n

(5.13)

Entering this resulting formula for G into part B of equation 5.1 gives:

1− e
−j2πp1

fo
fs

j2π fo

fs

e
−j2πpo

fo
fs

e−j2πp0n − 1
j2πp0n

e
j2π 1

2

fi
fs = (5.14)

−p1
e−j2πp0n − 1

j2πp0n
(5.15)

Which gives for the total periodic transfer function:

Hn(fo) = e−j2πnfst0(1− e−j2π 1
2
n)

1

1 + j fo

frc

[
1− e−j2πp0n

j2πn
+ p1

e−j2πp0n − 1
j2πp0n

] (5.16)

= e−j2πnfst0(1− e−j2π 1
2
n)(p0 + p1)

e−j2πp0n − 1
j2πp0n

(5.17)

= e−j2πnfst0 (1− e−j2π 1
2
n)

2
sinc(p0n)e−j2π

p0
2

n (5.18)

This expression is only valid for narrow band operation and for fo ≈ 0. The magnitude
is equal to sinc(p0n) for odd n and zero for even n. Using this result, the conversion gain is
estimated as sinc(p0) and the noise figure is estimated as:

NF (0Hz) = 10 log(
∑

n=odd sinc(p0n)2

sinc(p0)2
) (5.19)

Evaluations of this equation and equation 5.1 show that the estimate for the noise figure is
also valid for f0 < fs. Figure 5.1 show these expressions evaluated for some values of p0. The
case where p0 = 1

4 gives the best balance between low conversion loss and low noise figure.
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Figure 5.1: Approximate Conversion Loss and Noise Figure

The question arises if this approximation can be extended for output frequencies higher then
DC. Evaluations of equation 5.1 show that by adding the term 1

1+j fo
2p0frc

the approximation is

very good for fo < fs. This extra term then determines the bandwidth of the mixer:

BW = 2p0
1

2πRC
(5.20)

With this extra addition the periodic transfer function is approximated as:

Hn(fo) = e−j2πnfst0︸ ︷︷ ︸
Time shift

(1− e−j2π 1
2
n)

2︸ ︷︷ ︸
Balancing

sinc(p0n)e−j2π
p0
2

n︸ ︷︷ ︸
Harmonic Gain

1

1 + j fo

2p0frc︸ ︷︷ ︸
Bandwidth

(5.21)

The relative magnitude error between equation 5.1 and equation 5.21 for several duty cycles
and bandwidths is shown in table 5.2. A relative magnitude error less then 0.5% is achieved
for frc < fs

8 . In this case the relative phase error is less then 5 degrees.

Table 5.2: Maximum magnitude approximation error for fo < fs (1st, 3nd and 5nd harmonic)

frc = fs

2 frc = fs

4 frc = fs

8

p0 = 1
2 0% 0% 0%

p0 = 1
3 5% 1.5% 0.5%

p0 = 1
4 5% 1.5% 0.5%

p0 = 1
6 7% 2% 0.5%

p0 = 1
8 1% 0.2% 0.05%

Unfortunately the addition of the bandwidth term has not been derived from the original
expressions, due to mathematical difficulties.
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5.3 Summary

In this section the periodic transfer function of the double balanced frequency converter model
has been examined and transformed. It was proved that when the cutoff frequency of the RC
network is swept to infinity the resulting expressions are equal to the expressions derived earlier
for the double balanced sampling mixer. Also it shown that a duty cycle of 50 % transforms
the expressions into the double balanced switching mixer expressions. The expressions for the
Tayloe mixer are retrieved by setting a duty cycle of 25%.

Furthermore an approximate simplified expression for the conversion gain, noise figure and
bandwidth was derived, only valid when the bandwidth of the mixer is smaller then 10 % of
the RF frequency (narrowband). It was concluded that in the narrowband situation a duty
cycle of 25 % gives the best balance between conversion loss and noise figure.
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Chapter 6
RF Frontend Design

In the previous chapter is has been proved that the Tayloe mixer with 25 % duty cycle provides
the best balance between noise figure and conversion loss. In this chapter a RF front end is
designed using this mixer in standard 65 nm CMOS technology with a maximum gate-channel
voltage of 1.2 V.

6.1 Top Level Design

A sample front end receiver is designed and simulated. The channel is chosen at 1 GHz with
20 MHz bandwidth. Image rejection is done with quadrature mixing. A double balanced
architecture was chosen because of low conversion loss and robustness against second order
distortion effects (described by Razavi [10]).

Figure 6.1: Receiver Design

Figure 6.1 gives an overview of the example receiver. The ideal balun transform the single
ended antenna into a double balanced one. The second function of the balun is to provide a
DC bias voltage for the mixer and buffers. The Tayloe mixer down converts the signal into
an in-phase and quadrature signal at baseband. The buffers provide two times voltage gain
to loosen the noise figure requirements of the preceding stages and to convert the moderate
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output impedance of the mixer into a low output impedance. The target noise figure of the
entire receiver is 5.0dB and the linearity should be designed as high as possible.

6.2 Circuit Level Design

6.2.1 Antenna

For a double balanced mixer to operate the voltage coming from the antenna should be balanced
as well. An ideal balun transforms the single ended voltage into a double balanced voltage. The
common mode of the output balanced voltage is set to a bias voltage required for the buffer.

Figure 6.2: Balanced antenna model

In essence the receiver is sensing the voltage on the antenna. Typical receivers with LNA’s
first divide the voltage in half by impedance matching. The input signal power is defined in
dBm, as the power dissipated in the 50 Ohm resistor when matching impedances. So at a
defined input power, the input voltage at the input port of the receiver (after the antenna) is
twice as high for a voltage sensing receiver.

The result is two times voltage gain with respect to the impedance matched case. The
downside is the reduction of the IPx numbers with 6dB, since the input voltage is twice as
high. The trade off is made between voltage gain and linearity.

6.2.2 Clock Driver

The mixer requires a clock signal to drive the switches. The focus in this project is not on
clock generation, so it is assumed that the required clock signals are available with correct duty
cycle and phase. It is further assumed that the clock signals are pure block waves switching
between the negative and positive supply rail. In reality no clock generating circuit has these
properties, so an inverter buffer is added to add realistic rise and fall times to the block wave
and to provide a realistic output impedance.

In general, the linearity of a switch becomes better when the driving signal becomes larger
in magnitude. Because of supply rail limitations, the maximum clock amplitude available is
1.2V . For design reasons the channel voltage of the switches might be higher then the negative
supply rail, so in order to reach maximum channel-gate voltage the clock has to be raised in
voltage level as well.
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Figure 6.3: Clock bias circuit

The circuit used for raising the clock signals is shown in figure 6.3. The inverters are used
to simulate realistic rise and fall times.

6.2.3 Mixer

The main design point for the mixer is the implementation of the switches. A MOSFET is
ideal for switching purposes. Figure 6.4 shows the two mostly used implementations.

Figure 6.4: Transistor switches

In the NMOS implementation, the channel has a certain voltage level. When the gate voltage
is equal to the channel voltage, the source drain resistance is very big and hence the transistor
is off. When the gate voltage is well above the channel voltage (with a maximum of 1.2V for
the 65 nm process) the source drain voltage is very low and the transistor is on. The transistor
then operates in the linear region, since the gate source voltage minus the threshold voltage is
much higher then the source drain voltage.

For achieving 20 MHz of bandwidth, the capacitor value is calculated using equation 5.20:

C =
1
2

1
2π · 50Ω · 20MHz

= 80pF (6.1)

However, the input resistance seen by the mixer is not 50Ω but 25Ω because of the transformer
(figure 2.14). Therefore the capacitance to ground is two times C, or 160 pF.
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Figure 6.5: NMOS Tayloe mixer

For the CMOS implementation, a PMOS transistor is placed parallel to the NMOS transistor,
thus forming transmission gates. When the MOSFET’s are on, the resistance is lower because
of the parallel configuration. The width of both NMOS and PMOS is chosen equal to equalize
the gate capacitance.

Figure 6.6: CMOS Tayloe mixer

For IQ image rejection, a duplicate mixer is added with all clock periods shifted a quarter
time the sample time. The inputs of both mixers are connected together. The linearity is
optimized by applying as high a channel gate voltage swing as possible. The noise is minimized
to acceptable levels by scaling the width of the transistors.

6.2.4 Buffer

In the analysis of the mixer it was assumed that the block following it has a high input
impedance. Also, a bit more gain in the receiver helps to decrease the influence of back
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end receiver blocks on the noise figure. Therefore a buffer is being implemented following the
mixer, having two times voltage gain and a high linearity. The inverter has been reported by
Nauta [8] to have good linearity properties, so this is used as a base design.

The inverter ideally has zero second order distortion and reduced third order distortion. Be-
cause of the low supply voltage of 1.2V, only 0.6 V is available per transconductor. Klumperink
and Nauta have shown that for low voltage headrooms the MOSFET in strong inversion pro-
vides the highest linearity [9]. For higher supply voltages the degenerated MOSFET in strong
inversion gives higher performance. Klumperink and Nauta also derive that transconductor
design should concentrate on linearity properties, whereas the noise can be optimized by ad-
mittance scaling.

Figure 6.7: Inverter

The inverter schematic is shown in figure 6.7. The PMOS has lower mobility, so its width
is scaled to 3.2 times the width of the NMOS to ensure that both transistors have the same
gm. The length of PMOS and NMOS is kept at 0.5µm which improves linearity with respect
to minimum length transistors. Both the transistors are biased at half the supply rail at 600
mV, ensuring that the gate-source voltage of both transistors is equal.

Figure 6.8: Circuit half noise model

To achieve two times voltage gain, Av = R · gm = 2. To determine the receiver noise figure,
the noise is analyzed from the antenna through one-half of the mixer and one buffer. Figure
6.8 shows the noise contributions from every part of the circuit, only including thermal noise.
Because this analysis is focused on one circuit half of the double balanced structure, the antenna
impedance is the half of 50Ω. Another way of looking at it is that the balun transforms the
antenna impedance to 25Ω. The output referred contribution of each noise source is calculated:
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v̄2
n,antenna = 4kT25Ω · 0.92 · 10

3.9
10 · 22g2

mR2
L (6.2)

v̄2
n,NMOS = 4kTγgmR2

L (6.3)

v̄2
n,PMOS = 4kTγgmR2

L (6.4)

v̄2
n,RL

= 4kTRL (6.5)

Where k is the Boltzmann constant and T is the temperature in Kelvin. According to Leung
the noise figure can now be calculated by [7]:

NF = 10 · log
(

Noutput + Ninternal

G ·Ninput

)
(6.6)

Where Ninternal is the output referred noise power of the noise sources inside the circuit,
Noutput is the output referred noise power of the input noise source, Ninput is the input referred
noise power of the input noise source and G is the total power gain. Filling in the noise powers:

NF = 10 · log

(
v̄2

n,antenna + v̄2
n,NMOS + v̄2

n,PMOS + v̄2
n,RL

4kT25Ω · 0.92 · (2gmRL)2

)
(6.7)

= 10 · log

(
25Ω · 0.92 · 10

3.9
10 · (2gmRL)2 + 2 · γgmR2

L + RL

25Ω · 0.92 · (2gmRL)2

)
(6.8)

= 10 · log

(
10

3.9
10 +

1
2

1
gm

γ + R
(2gmR)2

25Ω · 0.92

)
(6.9)

= 10 · log

(
10

3.9
10 +

1
2gm

(γ + 1
Av

)

25Ω · 0.92

)
(6.10)

From this equation it can be concluded the noise contribution of the load resistor with respect
to the noise contribution of the transistors is determined by the voltage gain Av and γ. In this
case Av = 2 and γ = 2

3 , so the transistors contribute slightly more to the noise then the resistor
does. Evaluating this equation for gm = 100mS results in a total receiver front end Noise
Figure of 4.4 dB. This leaves some room for flicker noise and a dropping mixer gain for high
frequency until the Noise Figure of 5.0 dB is reached. For the NMOS a width of 1000µm is
needed and for the PMOS a width of 3200µm is needed to get gm = 100mS. To get the two
times voltage gain the load resistor RL is 10Ω.

6.3 Block Simulation Results

Simulated performance of the individual front end blocks.

6.3.1 Clock Driver

The time response of the CMOS clock driver is shown in figure 6.9. The clock driver ensures a
common channel voltage for both NMOS and PMOS, while maintaining the full supply voltage
swing over each gate.
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Figure 6.9: Clock bias circuit time response

6.3.2 Mixer

The periodic transfer function of the NMOS mixer is shown in figure 6.10, with respect to
output frequency and with respect to input frequency. The simulation verifies that the mixer
has a conversion loss of 0.9dB since the gain of the first harmonic around DC baseband is 0.9
. Furthermore the bandwidth is lower then 20 MHz, caused by the extra switch resistance of
the MOSFET transistors. The simulation shows this extra resistance to be 5Ω per transistor,
so equation 6.1 has to be modified:

C =
1
2

1
2π · (50 + 10)Ω · 20MHz

= 65pF (6.11)

Double balancing then requires the output node capacitance to be 130pF to ground. The
CMOS mixer has exactly the same transfer function, which is therefore not shown.

Figure 6.10: NMOS Conversion Gain

To optimize the Noise Figure simulations were performed with different transistor lengths.
Figure 6.11 shows the resulting noise figure for both CMOS and NMOS mixer. It appears
that the CMOS mixer achieves the same noise figure as the NMOS mixer at half the transistor
width. Such is to be expected since a PMOS and NMOS in parallel have effectively twice the
width of a single NMOS transistor. Therefore, the transistor width for NMOS is chosen to be
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200µm and the width for CMOS is chosen to be 100µm. The mixer noise figure then becomes
4.1 dB.

Figure 6.11: Mixer Noise Figure vs transistor Width

To verify the statement that the mixer IIP3 drops for lower gate LO drive, IIP3 simula-
tions were performed with several LO drives. Figure 6.12 shows indeed a descending IIP3 for
decreasing LO drive.

Figure 6.12: Mixer IIP3 vs LO Drive
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6.3.3 Buffer

The voltage amplification for the buffer is shown in figure 6.13. In the whole bandwidth the
voltage amplification is greater then two, as desired.

Figure 6.13: Buffer voltage amplification

The IIP3 of the buffer is shown in figure 6.14. The IIP3 is +12dBm and the -1dB compression
point is at -8 dBm. The low supply voltage limits the options to further improve the non-
linearity.

Figure 6.14: Buffer IIP3

The output impedance of the buffer is 10Ω, suitable for voltage driving the next stage in the
amplifier. The gate-source capacitance of the PMOS is 11pF and the gate-source capacitance
of the NMOS is 4pF. The combined 15pF of buffer input capacitance has to be subtracted from
the 130pF calculated in equation 6.11 to get the correct bandwidth.
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6.4 Receiver Simulation Results

Putting together the designed blocks a total receiver front end is created. Figure 6.15 shows
the NMOS front end with all device dimensions. The CMOS receiver is similar. The conversion
gain versus output frequency is shown in figure 6.16. The voltage amplification is 3.5 which is
equal to 10.5 dB.

The noise figure versus output frequency is shown in figure 6.17. In baseband from 1 MHz
to 18 MHz the noise figure is below 5.0 dB. Below 1 MHz the flicker noise from the buffer
MOSFET’s is raising the noise figure above 5 dB.

The IIP3 versus output frequency is shown in figure 6.18. The resulting IIP3 is higher then
+12dBm and the -1dB compression point is -5 dBm.

DC supply power simulations were performed. The resulting power figures are shown in table
6.1.

Table 6.1: DC Power Dissipation

Clock Driver Mixer Buffer Total
NMOS 4 · 2 mW 0 mW 4 · 11 mW 52 mW
CMOS 8 · 2 mW 0 mW 4 · 11 mW 60 mW

The balancing of the receiver cancels out antenna radiation. In the presence of mismatch,
the circuit will become unbalanced and LO signals can leak through to the antenna. For the
NMOS receiver the antenna voltage resulting from the LO signals have been measured while
mismatching the width of a single switch resistor in the mixer. In Table 6.2 the mismatch
results are shown in V.

Table 6.2: NMOS Receiver antenna radiation with a single mismatched transistor

f 0% 1% 5%
1 GHz < 100nV 85µV 430µV
3 GHz < 100nV 14µV 76µV
5 GHz < 100nV 30µV 151µV

The antenna impedance is 50Ω. Table 6.3 shows the mismatch results in dBm. In a practical
CMOS process the mismatch is below 1%, resulting in antenna radiation below -70dBm.

Table 6.3: NMOS Receiver antenna radiation with a single mismatched transistor

f 0% 1% 5%
1 GHz < −125dBm −72dBm −54dBm
3 GHz < −125dBm −84dBm −70dBm
5 GHz < −125dBm −77dBm −63dBm
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Figure 6.15: NMOS receiver frontend
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Figure 6.16: Front end voltage gain

Figure 6.17: Front end Noise Figure

Figure 6.18: Frontend IIP3
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6.5 Summary

A receiver front end using the Tayloe mixer was designed for a RF frequency of 1GHz and
with a bandwidth of 20 MHz. A conversion gain of 10.5 dB was achieved, with a noise figure
of less then 5.0 dB in the band of interest. The IIP3 is +12 dBm and the -1dB compression
point is at -5 dBm. Both are limited by the voltage buffer following the mixer. Both in-phase
and quadrature components are generated by having parallel mixer paths. Furthermore, the
output impedance of the output buffers is 10Ω.
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Chapter 7
Conclusions

A model has been presented to analyze the frequency domain behavior of the switching, sam-
pling and Tayloe mixer. This frequency converter model has been analyzed using Linear Pe-
riodically Time Variant theory, resulting in closed form expressions for the periodic transfer
function. With these expressions the conversion gain, bandwidth and Noise Figure of the single
and double mixers can be calculated exactly.

Furthermore, an approximation of the found periodic transfer function has been formulated
for narrowband channels, which directly translates the duty cycle parameter to conversion gain
and Noise Figure, and the bandwidth parameter to the baseband bandwidth. It was concluded
that a double balanced Tayloe mixer with 25% duty cycle provides the best balance between
noise figure (3.9dB) and conversion loss(0.9dB).

An example RF receiver front end was designed and simulated in 65 nm CMOS technology.
The channel was chosen at 1 GHz with 20 MHz bandwidth. A conversion gain of 10.5 dB was
achieved with a noise figure of 5.0 dB. The IIP3 of +12 dBm and -1dB compression point of -5
dBm are limited by the low supply voltage of the output buffers. It can therefore be concluded
that a receiver front end with high linearity and moderate noise figure can be implemented
using the Tayloe mixer.
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Chapter 8
Recommendations

In this Master thesis the linearity of the Tayloe mixer was not calculated, but assumed to
be high enough due to the passive nature of the mixer. In future work a Volterra series
representation of Tayloe mixer might help to calculate the distortion. From a design point of
view such a representation might not be necessary since it is easy to design highly linear switch
MOSFET’s. But from a theoretical point of view it is satisfying to have the complete picture.

The linearity of the simulated front end was limited by the voltage buffers following the
mixer. A commonly known trick to improve linearity is to use emitter degeneration, but the
supply voltage proved to be too low to take advantage of this trick. It is questionable whether
a supply voltage of 1.2V allows for IIP3 numbers much higher then +10dBm for non-feedback
gm stages. It might be necessary to put more research into highly linear IF amplifiers with
low supply voltages. Also, a feedback amplifier might be one of the options to achieve higher
linearity.
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Appendix A
Identities

In this appendix, some useful mathematical identities are given to assist the reader.

Euler

ejx = cos(x) + j sin(x) (A.1)

e−jx = cos(x)− j sin(x) (A.2)

cos(x) =
ejx + e−jx

2
(A.3)

sin(x) =
ejx − e−jx

j2
(A.4)

sinc(x) =
sin(πx)

πx
=

ejπx − e−jπx

j2πx
(A.5)

cosh(x) = cos(jx) =
ex + e−x

2
jsinh(x) = sin(jx) =

ex − e−x

2j
(A.6)

Complex numbers

|z| =
√

x2 + y2 (A.7)
φ = arg(x, y) (A.8)

z = x + jy = |z| (cos(φ) + j sin(φ)) = |z| ejφ (A.9)

z = x− jy = |z| (cos(φ)− j sin(φ)) = |z| e−jφ (A.10)

1
x + jy

=
x− jy

x2 + y2
(A.11)

1
z

=
z∗

|z|2
(A.12)
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Dirac pulse

x(t)δ(t− t0) = x(t0)δ(t− t0) (A.13)
x(t) ∗ δ(t− t0) = x(t− t0) (A.14)

A periodic Dirac pulse ( the Dirac comb) can be represented by a Fourier series. The period
time is Ts, the period frequency is Fs = 1

Ts
and the period angular frequency is ωs = 2πFs.

x(t) =
∞∑

n=−∞
δ(t− nTs) =

1
Ts

∞∑
n=−∞

ej2πnt 1
Ts (A.15)

X(f) = Fs

∞∑
n=−∞

δ(f − nFs) =
∞∑

n=−∞
e−j2πfnTs (A.16)
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Appendix B
Derivations

B.1 Laplace

In this section the time response of a first order RC filter is derived. Assuming a sinusoid input,
the input/output conditions are defined as:

Vin(t) = ej2πfi(t+tp) = ej2πfitpej2πfit (B.1)
Vout(0−) = v(0−) (B.2)

Transforming Vin(t) to the Laplace domain:

Vin(s) =
ej2πfitp

s− j2πfi
(B.3)

The differential equation of the circuit is:

RC
dVout(t)

dt
+ Vout(t) = Vin(t) (B.4)

Transforming to the Laplace domain:

Vout(s)(sRC + 1) = Vin(s) + RCv(0−) (B.5)

Vout(s) =
Vin(s)

sRC + 1
+

RCv(0−)
sRC + 1

(B.6)

Inserting the Laplace expression for Vin(s):

Vout(s) =
ej2πfitp

(s− j2πfi)(sRC + 1)
+

RCv(0−)
sRC + 1

(B.7)

Define RC = 1
2πfrc

:

Vout(s) =
ej2πfitp · 2πfrc

(s− j2πfi)(s + 2πfrc)
+

v(0−)
s + 2πfrc

(B.8)

Performing partial fraction expansion:

Vout(s) =
1

1 + j fi

frc

ej2πfitp

s− j2πfi
− 1

1 + j fi

frc

ej2πfitp

s + 2πfrc
+

v(0−)
s + 2πfrc

(B.9)
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Transforming back to the time domain:

Vout(t) =
1

1 + j fi

frc

ej2πfitpej2πfit − 1

1 + j fi

frc

ej2πfitpe−2πfrct + v(0−)e−2πfrct (B.10)

Or in different form:

Vout(t)− v(0−)e−2πfrct =
ej2πfit − e−2πfrct

1 + j fi

frc

ej2πfitp (B.11)

B.2 Single Balanced Difference Equation

The differential equations for the single balanced Tayloe mixer are given by:{
RC dVout(t)

dt + Vout(t) = Vin(t) , t0 + nTs < t < t1 + nTs

Vout(t) = Vout(nTs + t1) , t1 + nTs < t < t0 + (n + 1)Ts

(B.12)

Assuming a sinusoid input:
Vin(t) = ejωit (B.13)

For phase 0 equation B.11 is used to calculate the final value at nTs + t1, therefore t = p0Ts

and tp = nTs + t0:

Vout(nTs + t1)− e−2πfrcp0TsVout(nTs + t0) =
ej2πfip0Ts − e−2πfrcp0Ts

1 + j fi

frc

ej2πfi(nTs+t0) (B.14)

For phase 1 the difference equation is trivial:

Vout((n + 1)Ts + t0) = Vout(nTs + t1) (B.15)

Combining the two difference equations:

Vout((n+1)Ts+t0)−e−2πfrcp0TsVout(nTs+t0) =
ej2πfip0Ts − e−2πfrcp0Ts

1 + j fi

frc

ej2πfinTsej2πfit0 (B.16)

By using the substitution En = Vout(nTs + t1) this equation can be solved using the Z-
transform:

zEn(z)− e−2πfrcp0TsEn(z) =
ej2πfip0Ts − e−2πfrcp0Ts

1 + j fi

frc︸ ︷︷ ︸
C1(fi)

z

z − ej2πfiTs︸ ︷︷ ︸
input sinusoid

ej2πfit0 (B.17)

En(z) = C1(fi)
z

(z − e−2πfrcp0Ts)(z − ej2πfiTs)
ej2πfit0 (B.18)

Doing partial fraction expansion:

En(z) =

C1(fi)
[

1
ej2πfiTs − e−2πfrcp0Ts

z

z − ej2πfiTs︸ ︷︷ ︸
steady state

+
1

e−2πfrcp0Ts − ej2πfiTs

1
z − e−2πfrcp0Ts︸ ︷︷ ︸

initial value

]
ej2πfit0

(B.19)

Tayloe Product Detector 64
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When we are applying this in the frequency domain, the initial value response is not impor-
tant. When doing a frequency domain approach we assume that the sinusoids making up the
input signal have been on the input of the circuit for all time. We are not interested in startup
phenomenon. Therefore, the value of En in the time domain at the t0 time instants is given
by:

En = Vout(nTs + t0) =
ej2πfip0Ts − e−2πfrcp0Ts

ej2πfiTs − e−2πfrcp0Ts

1

1 + j fi

frc

ej2πfinTsej2πfit0 (B.20)

Since the input is defined as Vin(t) = ej2πfit, we can define a sort of transfer function relating
the value of Vout at the instant t0 to the input sinusoid. This transfer function is defined as G0

in the following way:

Vout(nTs + t0) = G0(fi)ej2πfinTs (B.21)

G(fi) =
ej2πfip0Ts − e−2πfrcp0Ts

ej2πfiTs − e−2πfrcp0Ts

1

1 + j fi

frc

(B.22)

G0(fi) = G(fi)ej2πfit0 (B.23)

Then from equation B.14 the expression for the other switching instants is reconstructed:

Vout((n + 1)Ts + t0) = Vout(nTs + t0)ej2πfiTs (B.24)

= G0(fi)ej2πfiTsej2πfinTs (B.25)

= G(fi)ej2πfit2ej2πfinTs (B.26)
Vout(nTs + t1) = Vout((n + 1)Ts + t0) (B.27)

= G(fi)ej2πfit2ej2πfinTs (B.28)

In summary:
Vout(nTs + tk) = Gk(fi)ej2πfinTs (B.29)

G(fi) =
ej2πfihTs − e−2πfrchTs

ej2πfiTs − e−2πfrchTs

1

1 + j fi

frc

(B.30)

G0(fi) = G(fi)ej2πfit0 (B.31)

G1(fi) = G(fi)ej2πfit2 (B.32)

G2(fi) = G(fi)ej2πfit2 (B.33)

Figure B.1: Tayloe Mixer Single Balanced Gk

B.3 Double Balanced Difference equation

The differential equations for the double balanced Tayloe mixer are given by:
RC dVout(t)

dt + Vout(t) = Vin(t) , t0 + nTs < t < t1 + nTs

Vout(t) = Vout(nTs + t1) , t1 + nTs < t < t2 + nTs

RC dVout(t)
dt + Vout(t) = −Vin(t) , t2 + nTs < t < t3 + nTs

Vout(t) = Vout(nTs + t3) , t3 + nTs < t < t0 + (n + 1)Ts

(B.34)
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B.3. DOUBLE BALANCED DIFFERENCE EQUATION Master Thesis

Assuming a sinusoid input:
Vin(t) = ejωit (B.35)

paragraph For phase 0 equation B.11 is used to calculate the final value at nTs + t1, therefore
t = p0Ts and tp = nTs + t0:

Vout(nTs + t1)− e−2πfrcp0TsVout(nTs + t0) =
ej2πfip0Ts − e−2πfrcp0Ts

1 + j fi

frc

ej2πfi(nTs+t0) (B.36)

For phase 1 the difference equation is trivial:

Vout(nTs + t2) = Vout(nTs + t1) (B.37)

paragraph For phase 2 equation B.11 is used to calculate the final value at nTs + t3, therefore
t = p2Ts and tp = nTs + t2:

Vout(nTs + t3)− e−2πfrcp2TsVout(nTs + t2) = −ej2πfip2Ts − e−2πfrcp2Ts

1 + j fi

frc

ej2πfi(nTs+t2) (B.38)

For phase 3 the difference equation is trivial:

Vout((n + 1)Ts + t0) = Vout(nTs + t3) (B.39)

Combining the four latter equations reduces the order to two:

Vout(nTs + t1) =
ej2πfip0Ts − e−2πfrcp0Ts

1 + j fi

frc

ej2πfinTsej2πfit0 + e−2πfrcp0TsVout(nTs + t0)

(B.40)

Vout((n + 1)Ts + t0)−e−2πfrcp2TsVout(nTs + t1) = −ej2πfip2Ts − e−2πfrcp2Ts

1 + j fi

frc

ej2πfinTsej2πfit2

(B.41)

Substituting for Vout(nTs + t1) yields a single difference equation:

Vout((n + 1)Ts + t0)−e−2πfrc(p0+p2)TsVout(nTs + t0) =

− ej2πfip2Ts − e−2πfrcp2Ts

1 + j fi

frc

ej2πfi(p0+p1)Tsej2πfi(nTs+t0)

+
ej2πfip0Ts − e−2πfrch0Ts

1 + j fi

frc

e−2πfrcp2Tsej2πfi(nTs+t0)

(B.42)

Vout((n + 1)Ts + t0)− e−2πfrc(p0+p2)TsVout(nTs + t0) =

−(ej2πfip2Ts − e−2πfrcp2Ts)ej2πfi(p0+p1)Ts + (ej2πfip0Ts − e−2πfrcp0Ts)e−2πfrcp2Ts

1 + j fi

frc

ej2πfi(nTs+t0)

(B.43)
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APPENDIX B. DERIVATIONS Master Thesis

Now we apply the restricting conditions for double balanced operation: p0 = p2, p1 = p3, p0+
p1 = 1

2 , p2 + p3 = 1
2 . The resulting difference equation becomes:

Vout((n + 1)Ts + t0)− e−2πfrc2p0TsVout(nTs + t0) =

(ej2πfip0Ts − e−2πfrcp0Ts)(−ej2πfi
1
2
Ts + e−2πfrcp0Ts)

1 + j fi

frc

ej2πfinTsej2πfit0 (B.44)

By using the substitution En = Vout(nTs + t1) this equation can be solved using the Z-
transform:

zEn(z)−e−2πfrc2hTsEn(z) =

(ej2πfip0Ts − e−2πfrcp0Ts)(−ej2πfi
1
2
Ts + e−2πfrcp0Ts)

1 + j fi

frc︸ ︷︷ ︸
C2(fi)

z

z − ej2πfiTs︸ ︷︷ ︸
input sinusoid

ej2πfit0 (B.45)

En(z) = C2(fi)
z

(z − e−2πfrc2p0Ts)(z − ej2πfiTs)
ej2πfit0 (B.46)

Doing partial fraction expansion:

En(z) =

C2(fi)
[

1
ej2πfiTs − e−2πfrc2p0Ts

z

z − ej2πfiTs︸ ︷︷ ︸
steady state

+
1

e−2πfrc2p0Ts − ej2πfiTs

1
z − e−2πfrc2p0Ts︸ ︷︷ ︸

initial value

]
ej2πfit0

(B.47)

When we are applying this in the frequency domain, the initial value response is not impor-
tant. When doing a frequency domain approach we assume that the sinusoids making up the
input signal have been on the input of the circuit for all time. We are not interested in startup
phenomenon. Therefore, the value of En in the time domain at the t0 time instants is given
by:

En = Vout(nTs + t0) =
(ej2πfip0Ts − e−2πfrcp0Ts)(−ej2πfi

1
2
Ts + e−2πfrcp0Ts)

ej2πfiTs − e−2πfrc2p0Ts

1

1 + j fi

frc

ej2πfi(nTs+t0)

(B.48)

En = Vout(nTs + t0) = −ej2πfip0Ts − e−2πfrcp0Ts

ej2πfi
1
2
Ts − e−2πfrcp0Ts

1

1 + j fi

frc

ej2πfi(nTs+t0) (B.49)

Since the input is defined as Vin(t) = ej2πfit, we can define a sort of transfer function relating
the value of Vout at the instant t0 to the input sinusoid. This transfer function is defined as G0

in the following way:

Vout(nTs + t0) = G0(fi)ej2πfinTs (B.50)

G(fi) = −ej2πfip0Ts − e−2πfrcp0Ts

ej2πfi
1
2
Ts + e−2πfrcp0Ts

1

1 + j fi

frc

(B.51)

G0(fi) = G(fi)ej2πfit0 (B.52)
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The difference equation for phase 2 (equation B.38) can be formed from the difference equa-
tion for phase 0 (equation B.39) by substituting ej2πfit0 = −ej2πfit2 . The same substitution in
equation B.52 results in the expression for G2(fi):

Vout(nTs + t2) = G2(fi)ej2πfinTs (B.53)

= −G(fi)ejωit2ej2πfinTs (B.54)

Now equations B.37 and B.39 give the expressions for G1, G3 and G4:

Vout(nTs + t1) = G1(fi)ej2πfinTs (B.55)

= −G(fi)ej2πfit2ej2πfinTs (B.56)

Vout(nTs + t3) = G3(2πfi)ej2πfinTs (B.57)

= G(fi)ej2πfit4ej2πfinTs (B.58)

Vout((n + 1)Ts + t0) = G4(fi)ej2πfinTs (B.59)

= G(fi)ej2πfit4ej2πfinTs (B.60)

In summary:
Vout(nTs + tk) = Gk(ωi)ejωinTs (B.61)

G(fi) = −e
j2πp0

fi
fs − e

−2πp0
frc
fs

e
j2π 1

2

fi
fs + e

−2πp0
frc
fs

1

1 + j fi

frc

(B.62)

G0(fi) = G(fi)ej2πfit0 (B.63)

G1(fi) = −G(fi)ej2πfit2 (B.64)

G2(fi) = −G(fi)ej2πfit2 (B.65)

G3(fi) = G(fi)ej2πfit4 (B.66)

G4(fi) = G(fi)ej2πfit4 (B.67)

Figure B.2: Tayloe Mixer Double Balanced Gk
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