A scalable repository
based on a meta-modelling
architecture

Master Thesis

By: Josbert Lonnee (s9801650)
Date: August 2008
Study: Master Computer Science
Track: Software Engineering

University of Twente BiZZdesign B.V.

Drienerlolaan 5 Colosseum 21
Postbus 217 Postbus 321
7500 AE Enschede 7500 AH Enschede
Netherlands Netherlands
Fh
Y

University of Twente BiZZdESign

Enschede - The Natherlands

Supervisors Supervisor
Dr. Ivan Kurtev (primary) Dr. Ir. Harm Bakker
Dr. Ir. Klaas van den Berg

A scalable repository based on a meta-modelling architecture

Abstract

BiZZdesign is a company that develops tools for business processes and architecture model-
ling. With these tools customers handle models that conform to changeable meta-models.
BiZZdesign currently supplies its customers with a repository that stores the models as atomic
units. The meta-models can not be stored. Operational problems appear when models get too
big. Moreover the repository can not interoperate with other tools. In this thesis we address
the enhancement of this repository for:

1. Storing the meta-models to which the models conform;

2. Allow the connecting tools to be scalable with respect to the size of the models;

3. Allowing it to interoperate with other tools than that of BiZZdesign.

For the first and third point BiZZdesign could apply Model Driven Engineering (MDE) in order
to obtain a meta-modelling architecture and communication standard. However existing ap-
proaches such as the Meta Object Facility (MOF) in the Model Driven Architecture (MDA) and
the Eclipse Modelling Framework (EMF) do not supply a proper solution to all three above en-
hancements. Especially scalability is not addressed. On the other hand BiZZdesign’s current
technology especially does not address interoperability and how to store meta-models. In this
thesis we evaluate all approaches and analyze their shortcomings. There is no standard that
allows BiZZdesign to keep its particular object-oriented paradigm. Stop using this would be an
unaffordable effort for BiZZdesign. Henceforth no standard or framework is used and we de-
cided to build a repository from scratch.

In the context of MDE in general and BiZZdesign in particular we first provide a novel system
representation for representing any model or meta-model and any of the relations between
them. Beside meta-models must be represented and stored by the repository, we also inves-
tigate what we can store in and express with a meta-model. We describe how it can com-
pletely define an information system and thereby facilitate pure development based on MDE.
We show how any information would fit in a meta-modelling architecture with three typing-
layers and three meta-layers.

We achieve scalability by building a distributed system with client-server architecture. The
repository contains all data and the tools that work with it have a limited view on it. A tool
dynamically changes its view by loading and unloading clusters of data. When clusters are
loaded, what they contain and what their uses are is specific for the tool’s domain. Henceforth
this is to be defined by the meta-model that is both the tool’s definition and part of the re-
pository’s content. Our scalability solution is similar to that of the World Wide Web. While the
data on the Internet does not fit on any single machine, a browser can still handle all reach-
able data by handling it on a page basis.

We incorporate our scalability solution in a design of BiZZdesign’s repository and a prototype.
For the first we in fact provide a design for a new product in the product line of BiZZdesign. It
is based on a three-layer meta-modelling architecture that seamlessly joins BiZZdesign's spe-
cific OO paradigm. The prototype contains a repository and a tool and partially proofs our
system representation’s capability of representing all desired information and our scalability
solution. Scalability is demonstrated by benchmarking an original tool of BiZZdesign and the
tool of the prototype. Real proofs of our solutions are postponed until the actual development
of BiZZdesign’s repository that will occur after our work.

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

Preface

With this we describe our work between November 2007 and August 2008. Officially this work
is internal for the University of Twente. Still it is executed on request of the BiZZdesign Com-
pany and is mostly executed there.

This thesis has a tree structure of depth three. The content is first divided in chapters, sec-
ond each chapter is divided in a humber of sections and third each section may contain a
number of subsections. The terms used here for the depths are used stringently throughout
the entire thesis. All chapters but the first and the last start with an introducing section and
end with a concluding section.

We would like to acknowledge Alfons Laarman for the term ‘model space’. At explaining him
what it was, he started to use this term from the moment it became clear to him. Thereby he
implicitly indicated this term covers the idea behind it the best to the ‘outside world’.

A scalable repository based on a meta-modelling architecture

List of Abbreviations

Abbre- | Full Description:
viation:
AO Aspect-Oriented or Aspect-Orientation.
AOP Aspect-Oriented Programming
API Application Program Interface
CORBA | Common Object Request Broker Architecture. A standard of the OMG.
CVS Concurrent Versions System
CWM Common Warehouse Model. A standard of the OMG.
DLL Dynamically Linked Library. Part of a program on the MS Windows platform.
DSL Domain Specific Language
DTD Document Type Descriptor. Document to which an XML file can conform.
EADF Extendable Applications Definition Framework. Described in this thesis.
ECore | The meta-meta-model of the EMF.
EMF Eclipse Modelling Framework [55]
GMF Graphical Modelling Framework [54]. Also of Eclipse.
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
IDL Interface Description Language
JAR Java Archive. A compressed file used in conjunction with the Java platform.
JRE Java Runtime Environment
LDAP Lightweight Directory Access Protocol. Is typically used to access a directory of
users’ information.
MDA Model Driven Architecture™ [26] An approach to MDE proposed by the OMG.
MDD Model-Driven Development. Typically used by Atkinson & Kithne [4] to indicate
MDE. Synonym to MDE.
MDE Model Driven Engineering
MDSD | Model Driven Software Development. Synonym to MDE.
MML Meta Modelling Language. One of BiZZdesign’s languages for expressing meta-
models.
MOF Meta Object Facility [35] A standard of the OMG.
MS Model space.
MVC The Model-View-Controller architectural pattern.
MySQL | A specific database platform [39].
O/R Used when discussing an Object—-Relational mapping or a tool therefore.
OCL Object Constraint Language. A language for expressing constraints on objects.
OMG Object Management Group. A consortium developing relevant standards.
0]e)] Object-Oriented
0s Operating System
OSGi Open Services Gateway initiative. Obsolete name for alliance creating open stan-
dards.
OWL Web Ontology Language. The abbreviation is intentionally wrong.
PIM Platform Independent Model. A type of model within the MDA approach [26].
PSM Platform Specific Model. A type of model within the MDA approach [26].
RCP Rich Client Platform [34]. Like the EMF and the GMF of Eclipse.
RTF Revision Task Force. Involved in revising a standard.
SQL Structured Query Language
SWT Standard Widget Toolkit. An open source Java UI toolkit.
Ul User Interface
UML Unified Modelling Language. Language for OO modelling of information systems.
URI Uniform Resource Identifier
WWW | World Wide Web
XMI XML Metadata Interchange. A standard of the OMG.
XML Extensible Markup Language. Text based language for expressing general data.

Mast

er Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

Table of Contents

1 INTRODUCTION......cccttimmmmnnnmmsansmssnssssnsssssnssssnssssnnsssnnsssnnsssnnssnnnsnsnnnes 13
3 10 1\ I = T 13
O R o = 1V (o Y0 K- o] o < PP 13
1.1.2 The Prior REPOSItOry DESIGI ... e eeeens 14
1.2 PROBLEM ST ATEMENT Lottt e et e e et e e e s e e e e e sanneesanneeaans 14
1.2.1 INEEIOPEIADIlItY ...ttt ettt et ettt 14
1.2.2 Meta-Modelling ArChitECEUIEoeieee e 14
1.2.3 SCAIADIIIEY .o 15
1.3 APP RO A CH . i e 15
1.3.1 ANAIYZE thE MDE-........ e e 15
1.3.2 Analyze BiZZdesign’'s CUITENt SEAte.......ccuiureiieiiiii ittt et aatessaaaieaneanens 15
1.3.3 Design a System Representation...........coouvuvuiiiiuiiiiiiiiiiiiiiiisiiiiiesisaiaseasaaaas 15
1.3.4 Design a Scalability SOIULION....... ..o 16
G G Y 2 =10 Yo X [0 g VA = [« o 16
1.3.6 BUIldiNG @ PrOtOtYDE . ..sies ettt ettt ettt et ettt ettt et 17
1.3.7 Compare Using @ BENCAMAIK..........cuouuiiiiisiis ettt sttt s eraasieaaaneas 17
1.4 CONTRIBUTIONS ..ttt e it r e st s et e e et s e e e s s e e s st e s aanaeaaanneans 17
1.4.1 Investigation of EClipS€’S FIamMEWOIKS.cuuueiii i eeaaaeens 17
1.4.2 A VIEW ON MDE ...ttt 18
B B RL=To To Xy e gy VA ==Y [o 18
1.4.4 A Proven Scalability SOIULIONcuuureiiiii sttt ettt et eaeasaeaseananens 18
1.5 OUTLINE OF THE THESIS ..ttt ittt it it e it e eete e e et e s et e s et e saneesaneaanns 18
B2 A 1\ VI I @ 15 1 1 O] 21
2.2 BIZZDESIGN'S META-MODELLING. ..ottt i et aae e aaeas 22
2.2.1 MEEA-MOAEIS. ... e 22
2.2.2 Meta-Modelling ArCRItECEUIEv..ees ettt st ettt aaaeaseannanens 22
2.2.3 TRE MML .t 23
2.2.4 TRE Profile@S LANGUAGE.coueurieeiseies sttt et ettt et e s tet it et tataatassaeasasnnanens 25
2.2.5 MML VEISUS Profil@S.....csseisieiis ettt ettt ettt e e et e e sttt e e st e eaaeaees 26
2.2.6 Generating Tools from Meta-MOAEISc.uireiiie ittt sttt et aeteaaareaieaaaaens 27
2.2.7 TRE MM-FIamEWOrIKcuseisiiiie et e st e et et s e es st s e e st asansssaasnsaeansnnes 28
2.2.8 Conclusions & DEVEIOPMENLEo 29
2.3 BIZZDESIGN'S MODELLING PRACTICE ..iiittiittiitt i iii i e e et etnaaenaneaaneas 30
2.3.1 Model REPIESENEALION ... e et 30
2.3.2 Models’ OUEWAId REFEIEINCES.eire ittt ettt ettt a et et e seaaaeerenees 31
PANCHC I U7 (oo (=] W @Y g 1 (=1 O [0 =1 (=X PP 31
DG I B V=T o | 7 [=Tol - 1 1= 1 PP 32
2.4 BIZZDESIGN’S CURRENT REPOSITORY ...utiiiiiiiiiiiiiiiiiii s et snesanenaneanaeas 32
2.4.1 SYStEM ArCHItECEUIE et ettt ettt ettt e st st e aaaeasaaeanens 32
2.4.2 SUOIAGE st s 32
2.4.3 CONCUITENCY CONEIOL. ...ttt ettt ettt e es e ettt e st assaeaseannanens 33
B R o |11 Yo [34
A T I e 1 =i 1 1 35
2.5.1 TRE ADPIOGCKH .ttt e e 35
2.5, 2 GOAIS. s 36
D TG S =T Yo =] 1 V2 S 36
A < T I o 1 =i 1 [] 36
2.6.1 Meta-Modelling ArCRItECEUIEo.eeeeeee e enens 37
2.6.2 INEEITACES ..t e e 38
2.6.3 UNAEr-SPECIfiCatIONeneeieie e e 38
2.6.4 THE MOF fOr @ REPOSIEOIY vttt sttt ettt et et es e et et e st tataaaaeneannanens 38
2.6.5 AdApDLIVE REPOSIEOIY ..ttt sttt ettt et ettt et a st e ettt e st ta e aaaearaaneanens 39
2.7 ECLIPSE’S SUPPORT FOR TOOL CREATION & MDEcivviiiiiiiiiiieiieiiieiieinennenaens 39
2.7.1 TRE PIUGIN SYSEOIM ..ttt ettt sttt ettt e es e et et e st s e aaaeaseananeas 39
2.7.2 TR Rich Client PlatfOrm.........uirieise ettt ettt ettt e s eaa s eaaeees 40

A scalable repository based on a meta-modelling architecture

2.7.3 PIUG-INS OVEIVIEW ...ttt ettt et et et et e e et ettt et et ta s as et e st assaataaanasaasssnnannns 40
2.7.4 Model Driven Engineering With EClIDSEc.ouiuininiiiiiiiiii e 41
2.7.5 The Eclipse Modelling FrameEWOrKcuuuuuiueiiiiisesiaiaaesteastaseastaasasasareseansanens 41
2.7.6 The Graphical Modelling FrameEWOIKououiuininiiiiiiiiea e 44
2.7.7 Combining the EMF and the GMF..........cuuriiiiiii st ies et sttt ettt aaasaaeneanaanens 45
2.8 PRIOR REPOSITORY DESIGN ..uiiiiiiiiiiiiteiiie i aie e s s snaesnaneesnnnssnnnessnnnes 45
2.8.1 SYStEM ArCRIEECEUIE ... ettt 45
D I Y o] - T = S 47
2.8.3 SCAIADIIIEY ..o s 48
2.8.4 WOIKFIOW SUPDOIT ..o ettt aenenens 49
2.8.5 COMMUNICALION. ...ttt s e a st en 49
2.8.6 EVAIUGLION .. .c.ses et 50
2.9 PRIOR REPOSITORY’'S WORKFLOW SUPPORT DESIGNciciiviiiiiiiiiiiieceeaeas 51
2.9.1 AN AT . e 51
2.9.2 REIALIONS. ... sttt e 52
2.9.3 WOrKFIOW VEIrsUS SEOIGGEerieiseiiiae ettt st s e st s sanaaeeaes 53
2.10 RETROSPECTIVE VIEW ON SCALABILITY 1ttt i i siiaes i e siessnnen e 53
D O N ¥ 1 T [T g =T g -] T PP 53
D O O 11 1= x =T o o o 54
2.10.3 System Properties and QUAlIEYcuuuueiusiiiiie ittt 54
2.11 RETROSPECTIVE VIEW ON MDE CONCEPTS ...ttt i i i niaee e nnen enees 55
D B A 1 o T = 55
2.11.2 Meta-MOAEIIING ... e 55
P B NG I U7 (oo =] I 24=] o) g =Xt =T g L= 1 (o o PP 56
2.11.4 Systerm RepreSENtatiONcuuiuiiiiiiii i 57
2.11.5 Model SErialiZatiONcueiuiiii ittt 58
2.11.6 To0Is Handling MOGEISoueireieie sttt sttt ettt ea e et e et e st s e asaeaseannanens 58
2.11.7 Meta-Modelling ArCRItECEUIE e nens 59
2.11.8 INter-Model REIALIONSoreiie ittt ettt et e e sena e eaneeaes 59
2.11.9 Model TranSfOrMaAatiONseurie ittt ettt ettt et ae e tasaeaeaaenes 60
2.12 CONCLUSIONS ..ttt it e a et st s s e s s e e s eana e s eaneeeannneaannes 60
EVALUATING ECLIPSE’S SUPPORT....cccctvmmiemmnesmsesmssssssssasssssssnsnansnanes 01
7 A VI I 2 15 1 U G 1] 61
3.1.1 APPlication BUIlAINGouuiueie ittt ettt ettt ettt it ettt sataeaaasaareaneans 61
3.1.2 MDD .o 61
3.1.3 Meta-Modelling ArCRItECEUIES..........uei ettt et ettt s e earaaareannans 62
30104 SCAIADIIIEY v.voveeei e 62
3.2 SELECTING SUPPORT Lttiiittiiitetiitesasseessaseesaaseesannessansessansesaassesannsesanneesennes 62
3.2.1 PIUGINS BASE.. .ottt ittt ettt et e 62
32,2 R Pt e 62
G T R = 1 /S 63
3.2.4 GFraPRiCS & GMF ...ttt 63
3.2.5 Meta-Modelling ArChit@CEUIEoeeiee e 64
3.2.6 SCAIGDIIIEY .ot 64
3.3 BUILDING AN APPLICATION L.ttt ittt et e e e e s raae e s et e saaaeesaaneeaannes 65
TG T B = { O = PP 65
G TG 00 . | S 65
I IC I B = | o o | 1 PP 66
G T R € L S 66
3.4 THE META-MODELLING ARCHITECTUREcciiiiiii it i i it nnaeeeaees 67
3.4.1 Profiles Meta-Meta-Model EXEENSIONuueuuieiisiiis ettt iaaaaaaaeiaaanaas 67
3.4.2 Intermediate Profiles Meta-Meta-MOdel..........c.c.oviuiiiiiiiiiiiiiiii it eieseeiennss 69
3.4.3 Meta-ModEl EXEENSION.uiuse sttt et e e ettt ettt et et na e eanasaaenns 70
3.5 MDE WITH ECLIPSE. ...ttt e r e s a e s r e s e e sanneeaannes 72
3.6 CONCLUSIONS ..ttt i it e et ea st s s ae e s s e s sane e s sannesaanneeannes 73
T A = | PP 73
306, 2 GMF ot et 73
3.6.3 APPliCation BUIlAINGuuuiueiesiii sttt ettt st sttt ettt et a e aaaaaaeaneans 74
306.4 MDD ..o et 74
3.6.5 Meta-Modelling ArCRIEECEUIES..........uee ettt et ettt s e teatnanaareaneans 75
3.6.6 SCAIADIIIEY ... e 76

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

4 SYSTEM REPRESENTATION FOR MDE..........csccvimnmnnnnsssnnenns 79

6

O 1V I 1 L o I P 79
4.2 MODELS ..ttt 80
4.2.1 INformation CONEENE.......uuiuiuiiiiiiiiiiii et aeaes 80
4.2.2 El@MENES .vieiiiiiiiii e 81
4.2.3 Graph RePreSeNntation...........e.e.e e 81
4.2.4 DEfiNItiON .uvviuisisiiiia i e 82
N I D] Yol U X1 [0 o F 83
4.3 RELATING MODELS ...ttt s r s n s n e s e s s e e nes 84
G T AV o X1 1 o= Lol [0 o F S 84
G 07 g =] 1 [0 o 84
G G B €= o 1= - | S 85
4.4 META-MODEL RELATION Lt tuttiittiiiaesatsaeseeeseeseesesanessnnssnnssnnssnnssnnennnennes 86
o B D - i1 11 (o] B PP 86
4.4.2 CONSErAINES ..vvuesiieiieii it 86
4.4.3 MUILIPHCIEY e et et 87
4.5 MODEL SPACE ...ttt 87
4.5.1 Information CONEENE.......uuiuiuiiiiiiiiiii et eeaes 88
4.5.2 Relating MEta-MOGAEIS ... e 89
4.5.3 DEfiNItiON ouvvinisisiiiisi i 90
4.6 EXAMPLE REPRESENTATIONtttitiiitiirieraeeneeseesesanssnnssnnssnnesnnesnnssnnennes 91
4.6.1 ADSEIACENESS ...ttt ettt ettt e 92
I | [T L= B = o e L= 92
4.7 CONCLUSIONS ..ottt e e s s s e s s e e e e e s e e an e ae e san e sneanneenneenes 92
O N 0 1= ol o] o G PP 93
4.7.2 SIMPLICIEY ovvvininiiiii i 94
4.7.3 EXPDIESSIVENESS ..ttt 94
META-MODELLINGccctvemminmmnsmanssnnssnsssnsssnssanssnnssnnsnnssnnsnnnssnnsnnsnnnsns 97
o R AV 1 20 1 1 o O PP 97
5.2 MODEL INFORMATION CONFORMANCE ...ttt rnaesnaesanesneeas 97
5.2.1 Dynamic Part of the Meaning-Derive Methodcccouiiiiiiiiiiiiiiiiiiiiiieiieiinannnns 98
5.2.2 Linguistic versus ONtOIOGICAl.ouiuimie e 98
5.2.3 Models with Multiple Meta-mOdelS..........c.oiuiiriiieii ittt atestraieeieaneans 99
5.3 MODELLING AN APPLICATION. .t i titttitttate sttt sanesanesanesaeesanesansranesanesanernnenns 99
5.3.1 Supplementing the Meta-MOdel.............ouieiiii e 99
CIIC IV Vo Xl /= To il - 1 Lo [V - Lo [PP 100
5.3.3 ThEe MDA APPIOACH ... ettt 100
5.304 TRE OW L.t 101
5.3.5 Eclipse’s Modelling FrameEWOIKSc.uuuuiueiiaeiieaiteiaasasaaeaie st sataaaaasesnanennnnnes 101
5.4 APPLICATION DEFINITION EXAMPLE ...ciiiiiiiii i e e e nnenee s 101
O R R O 1V V= 102
5.4.2 CONSEIaiNtS .uvuviiieiei s e 102
5.4.3 REPIESENEALIONS et 103
SO o [2 Vo o 104
5.4.5 Starting POINTc.uiuiiiiii e 105
5.4.6 SEMANTICS ..cuiuiiiiiiiii i e 105
5.5 CONCLUSIONS .ttt e e r e s s s e s s e s s e s e e e s n e sn e e e e sneenneenneanes 106
5.5.1 Defining an APPlICAtIONcuenenee e 106
5.5.2 Comparison With the MDAeie ettt ettt ettt s a e teaieaeaaennes 108
5.5.3 CompariSON WIth AOPeeeee e 109
5.5.4 Meeting the GOals Of MDEuieiiiies ettt ettt et ettt et aareainaeanennes 109
META-MODELLING ARCHITECTURES.......csccviemmumsnnnssnnssnnsnnssnnsnnnnnas 111
6.1 INTRODUGCTION . .ttt ittt e e e e e e s s e e s e e sae s sna e snesnnerneanes 111
6.2 IMPLIED ARCHITECTURE ..ot et ee s 111
6.2.1 MEUEA-LAYEIS .o rieiaieiit it e 111
6.2.2 Ty PE- LAY IS et st e ettt ettt 112
6.2.3 Typing-Layers Versus Meta-Layersccuuuvuuuiuiiiiriiiisiiiiiiisisaiiiaiisasinniniiasiens 113
6.3 RELATED WORKttt ittt tatesaeesaaesaeesane e seesanssanesanesanssnnesnnesnnesnneenes 113
6.3.1 Defining ADBSEraCt LAnGUAGEScuueiusisiieie st iseiaastsasasteasesitsssaasasnsasesinansanens 113

7

8

A scalable repository based on a meta-modelling architecture

6.3.2 Language and Library MetapROr........couuie ittt ettt iaaeas 114
6.3.3 RESPECEING MELA-LAYEIS ...c.urieiieii it eaareas 114
LT 2 S I o 1= T L7 [] 114
6.3.5 REfIECEIVE TOPD MEEA LAY ..t e e e eaeeens 115
6.3.6 Ontological FOUNAATIONc.ueeeses et ettt et a et ettt st s tessaressearnanens 115
(YN I A R L= Ta [=] g 1= o L S 115
6.4 OBJECT-ORIENTATION Lutttititiiiitttesseriieteesrraiseeeerrearnsteeeseaarnnseeesrrrannnnees 116
6.4.1 PragmatiC LAy IiNGoeuueeeisitesiseateat sttt ass st sassaastasaansannasnesasnassnsnnnens 116
(ST 0 | 0 X = 1 = 1 1 [0 F 117
(ST TG T o Ya'a 1 = 111 1 0 KRS 117
6.4.4 1V L = 1 [0 1 118
2= T O 0 11\ [101 10 111 118
6.5.1 ODBJeCt-Ori@NEALION ...t 119
(ST T Y - 1 o e -] o K- 119
DATA HANDLINGccciiiinssnnsss s s aaa s a s s s aanssssssssssnnnnnnnnnnnnnnnn 121
72 R 1\ 1 200 15 16 o I 0 121
7.2 DISTRIBUTED SY ST EMS iiiiiiiiiiiiiiiiiiiiiiiiessssssssssssssssssttessersserressnnnns 121
7.2.1 DEIINIEION sttt ettt ettt et et 121
7.2.2 SYStem ArChIEECEUIE .. vttt ettt ettt ettt st a et esnaaarennnans 121
7.2.3 SCAIADIIIEY ..o.veese e 122
7.3 DISTRIBUTED DATA HANDLING ..tttttttttttttteeeeeeeeneensenenmnenmmnnmsmmmnns 123
7.3.1 [Tz T o= I Mo Tor= 1 o [g K- 123
VNG T2 DT 1 - B D) o T= T 1] [0 123
7.4 AN APPLICATION’S DATA HANDLING .ttt ittt iiisee e s isiinssesssannnannens 124
704,01 AS ASPECE. st s 124
7.4.2 Practical CONSIAEIAtiONSuiiuiiiiis sttt ettt ettt ittt st ssissssssssisesinenans 124
7.5 CON CLUSTION S Lot iiitttttttttteeeeeneeeesneseesssnmmmmmmmemeemeeeeesnnnns 125
SCALABILITY SOLUTIONcccccisisssssssssssssssnsnsssssssssnasnssnnnnsnnnnnnnnnns 127
Bl INTRODU CTION .ttt r s nnnnnnnns 127
8.1.1 DiStribUted SYSt@IM. .. s sttt ettt ettt ettt 128
8.1.2 Scalable Data Handlinguuuueiriseiii ettt ettt ettt e eaaanaaenaas 129
8.2 CLUSTERS VS, RESOUR CES . .. i iiiiiiiiiiiiiii i i i i i s s s s s s s s s s s s s s n s n i aas 129
8.2.1 JR SR 00 | o =S 129
E T O [1 = 3 130
[FZC SR @ 1 1] - 1= o F S 131
8.2.4 IMPIEMENEALIONS. ... e 132
8.3 WORKING WITH CLUS T ERS .ttt iiiiiiiiiiis s s i s s s s s s s s s s s s s s s ans 133
8.3.1 Defining CONEENESvirie ittt e ettt ettt es e ettt st t st e st aateaeaaaneanes 133
8.3.2 System ReEPreSENEALIONSveeee ettt ettt e et st et 133
B4 DEFINTITIONS Lttt ittt sttt s s nnnnnnns 134
8.4.1 THE MOAEI SPACE. ...ttt ettt 134
ES T B I o 1TV 1 S 134
ES B0 S O [= =3 135
ES B = 1= 1 o) o KPS 136
ST 1O 1 3 1 1\ T I L 137
8.5.1 BaASIC CRANGES . ..ueieit ettt ettt et et 137
8.5.2 Repository Content CONSISEENCYiuiuiiuiiiiiiiaiiiiiiii it eaaaaass 137
8.5.3 Relation Type MUILIDIICIEIESee sttt ettt ettt st reaiearaanennes 138
8.5.4 OtREr CONS IraiNtS. .. ettt ittt st sttt ee e e et aa s et s sta s ssa e et s essessssansssaneins 139
ES 2o TS SR I = Y= Tox o [0 1 139
8.6 CON CLUSTIONS L. ittt ettt st rt i te e e st tee e s s eanaaeeesssaannnsaeeessannnnsneesssnnnns 139
8.6.1 (O L] =] IS 140
8.6.2 MOIfYiNG Datac.ooueiiiiiie ittt et ettt ettt e e 141
8.6.3 ANGIOGY e 141
ES T R = o Yo) 142
REPOSITORY DESIGNcccciiietesnninssnnnnsssssssssssssssssssssnnnnnnnnnnnsnsnnnnnn 143
0.1 INTRODU CTION .ttt s nnnnnnnns 143
9.1.1 Product Lin€ ENGINEEIING........u.uuiueiiasasssitasesttsttasstasassasssssestsssssssasassnesnaesinins 143
9.1.2 DEVEIOPMENT PrOCESS ... ettt ettt e e e rar e e eaeens 144

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

9.2 META-MODEL ARCHITECTURE ...ttt s vee e veeneennennennenas 144
0.2.1 FiXed @nd Data Partsuuuuiuuieiiieias ettt et et ettt et r e 145
0.2.2 Free Layering OPULiOnNueresisisse sttt aas e saateat e saaesanesssasatnsasaaanansnnasnnnnns 145
9.2.3 THIre€E Layers OPLiON ... ettt 146
LR S oYU gl =} V7Y o O o 1 o) o 147
9.2.5 Choosing a Lay€ring OPEiONc.uiuiureiieiiaseeisa i a sttt ete st sstasaaaresnansanennnans 148
9.2.6 EXemplifying ArCRIt@CEUIE.eieee e 149

9.3 SYSTEM ARCHITECTURE ...ttt i e et e v r e e s e e s a e saneesaneeas 150
L G T R V=Y = o o =)V = 150
9.3.2 Cluster COMMUNICALIONueisse sttt et ettt et et e et et s e natannananans 150
O.3.3 LAYEIS DAl@ . ..cuieisiiieee e et e et 151

0.4 ST ORAGE ittt it e aneas 154
9.4.1 THE MOAEI SPACE. ettt 154
O0.4.2 PRYSICAl vttt e 155
L2 G B o ¢ o= B D | - I 155

0.5 CONCLUSTIONS ..ttt ittt e a et e ra e s s e s e e e s e a e s aane e sannneaanneens 156

10 REPOSITORY PROTOTYPE......ccccttmtiammnsnunsnnnssnnssnsssnssnnssnnsnnssnnsnnnsnns 159

10.1 INTRODUGCTION ... ttttiittttiite s taae e s ae s sane e s saneessaneesaaneesaaneesaannesannness 159

10,2 GOALS ittt e a e 159
10.2.1 SYStem ArChitECEUIEo eeens 159
10.2.2 Offered FUNCEIONAIIEYoneeei e eaeens 160

10.3 SYSTEM ARCHITECTURE .. vttt i i i e r e e e anee e e saaeesaneeas 160
B0 TR Y o = e > 160
0 JC 7 @ g 0 1 17] [0r= 1 [0 ¢ R 161

10.4 META-MODELLING ARCHITECTURE ...iiiiiiiiiii i siie s siee s e nnnessnnaeennnee e 161
10.4.1 THE TRr€E MEUtA-LEVEIS.ottt et et ettt aa e eat st natanaananans 162
10.4.2 The Meta-Meta-MOdElcuuiiiiiiiiiiiiiiiiisisi st ns 162
10.4.3 WOIKFIOW SUPPOIT ... ettt e e e r e e eeens 162

10.5 THE TOOL'S FUNCTIONALITY 1 tuttitiitiitiate st st re e siesaessesesaesssassassassnnsnnsnnens 162

10.6 SCALABILITY BENCHMARK ..ttt i e are s s aaeesaane e sanneesane e naneans 163
10.6.1 Testing the BiZZAESIGNEru.uiieiiiiste it e sttt et e este et e ettt atasaaarasnaaareannans 164
10.6.2 Testing the RepoSitory ProtOtYPE ..o 165
N CTIC N @0)] o= 1 o) o J P 167
10.6.4 THE TAIESAOIA. ...ttt ettt ettt ettt e et e es e aasaaaananans 168
O ST S O o 11 [0/ 1= 1 L 169

10.7 CONCLUSTIONS ..ttt e e e s e e s e s s s e e s s e e s aane e s aanneaanneesn 169
10.7.1 Data MOAIfiCAtiONuiueeiis ittt ettt et e et ettt e et e st s anaaaaananans 169
10.7.2 EVvents from the REPOSIEOIYuiueiiiie ittt ettt et ea e sttt s st saatesnaaaiennnans 170
10.7.3 Real Ligaturing Dat@.........uueuiuiiiiiaista ettt ettt et este et st tata st aatasnasaareannans 170
NN O B XU = Tor (o] s F PPN 170
10.7.5 The Scalability SOIUtION.........cuieiii et aeaes 170

11 EVALUATION OF MDEccoccctmmummmsnmmmsnnsssanssssnnsssnnsssnnsssansssnnnsnnnnsnnnns 171

1 R 1V I O L I O 171

11.2 BASIC CONCEPTS L .tiiitiiitttteiaeetatesate et sanesanssanesanssaneranesanesaneraneranesnnenns 171
11.2.1 MOGEIING .o 171
11.2.2 Matters of Meta-MoOdEIIINGcuuiuiiriii ittt sttt ettt et saaesinaaareannans 172

11.3 BACK-INFLUENCE BY SCALABILITY ON DESIGN ...icviiiiiiiiiiieeiineninennnennnennnenns 172
11.3.1 Desired Development PracCtiCeoeueeiiii e 173
11.3.2 Real DevelopmeENnt PracCtiCe.........uuuiuiuriieiiase et te et at st e ettt s st asaaestnaaaiennnans 173
11.3.3 Acceding BaCK=INfIUENCES.c.iuiiee e e e e eeens 174
11.3.4 TRHE MDA PrOIMUSE. .. ueuseiseiiaae e e e st ettt st s e st st s e s st s e s s saesaaneansnaes 175
11.3.5 Workflow Support by Back-INfIUENCEceeeiiiiiiiiiiiiiee e 175

11.4 CONCLUSTIONS ..ttt it e e s e s e e s s e e s aane e s aane e s aanneaanneenn 175

12 CONCLUSIONS.....ccctimtmumrmnmsnnnsnnsssnssnnssanssanssnnssnssnnssnnssnnsnnssnnsnnnsnnnnns 177

12.1 CURRENT REPOSITORY ..ttt iitsiits e s saaeessaneessannesannnesanneesanneenn 177
0 O B o 0o) = o 177
12.0.2 GOGIS. s ettt e 177

12.2 RESEAR CH ...ttt e e e s e s e e s e s e a e 178
12.2.1 Meta-Modelling ArChitECEUIEuviiiee ettt ettt s st esnasaaieannans 178

A scalable repository based on a meta-modelling architecture

12.2.2 INEEIOPEIADIIIY ...ttt ettt ettt et ettt 179
12.2.3 SCAIADIIEY ..o e 179
G T S =i U 1 I 1 P 180
2 T B 2 U=T o Yo X [0] VA L= [« o 180
J2.3.2 PO O Y DO ettt et 180
12.3.3 BENCAMAIK. ... ettt 181
12.4 EVALUATION & RECOMMENDATIONS ...ttt i e e e 181
12.4.1 Model Driven ENGIN@EIING.uuuiuei et e et e e e ra e eeeens 181
Yo] L1 o [o 182
REFERENCES.......ccccciiii i nnis s nssnsa s nanaa s s nnnsnsnsssssnnnnssnnnnnnsnnnnns 183
APPENDIX A: REPOSITORY PROTOTYPE DESIGN.......cccccmmmnmmmmnnmmnannnnnss 187
A.1 META-MODELLING ARCHITECTURE IMPRESSION.....iiiitiiiiie i eniaeeeaaees 187
N N | o I I I O 187
A.2.1 Development USING JAVAcuuuiuii it a e ranaeaaeens 188
A.2.2 Used Systems, Platforms & FrameEWOrKSc.uuuuiuuisiiieiieiieiiisiassasssiesieninananns 188
A.2.3 The Cluster COMMUINICALION.........cuuues sttt et ettt et s sre et eaasareaaneaaarans 189
Y U s 1= Koo MV = PP 190
VAW NI O] o) [=To i @5 (=] 1] - 1 (o] s FH NP 190
G T VAN 6 AN I O N 190
VA C I B Oo g [o=1 o AU | B Y Ko - Lo L= O 190
A.3.2 PRYSICAl SEOIAGE . vttt ettt ettt ettt ettt e ea ettt e st 191
A.3.3 CIUSEEIING SYSEOM ...ttt e e 191

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

List
TABLE 1:
TABLE 2:
TABLE 3:
TABLE 4:
TABLE 5:

TABLE 6:

-10 -

of Tables

BIZZDESIGN'S META-MODELLING LAYERS AND THEIR CONCRETE REPRESENTATIONS...30

THE MAPPING BETWEEN BIZZDESIGN AND ECLIPSE ITEMS.......cccocviiiiiiiiiiiii, 63
COMPARISON BETWEEN THE META-LAYERS OF THE MOF AND OF BIZZDESIGN............ 114
ANALOGY BETWEEN THE DISTRIBUTED SYSTEM WITH CLIENT-SERVER ARCHITECTURE
FROM OUR SCALABILITY SOLUTION AND THAT OF THEWEB.cccocoiiiiiiiiiin, 142
RESPONSIBILITY, STATE AND REMARKS FOR THE SYSTEM-LAYERS OF THE REPOSITORY.
.. 152
JAVA PROJECTS FORMING THE REPOSITORY PROTOTYPE.cciviiiiiiiiiiiiiinieea 188

A scalable repository based on a meta-modelling architecture

Tabl

FIGURE 1:
FIGURE 2:
FIGURE 3:

FIGURE 4:
FIGURE 5:
FIGURE 6:

FIGURE 7:
FIGURE 8:

FIGURE 9:

FIGURE 10:

FIGURE 11:
FIGURE 12:
FIGURE 13:

FIGURE 14:

FIGURE 15:
FIGURE 16:
FIGURE 17:

FIGURE 18:

FIGURE 19:
FIGURE 20:
FIGURE 21:
FIGURE 22:
FIGURE 23:

FIGURE 24:
FIGURE 25:
FIGURE 26:
FIGURE 27:
FIGURE 28:

FIGURE 29

FIGURE 30:

FIGURE 31:
FIGURE 32:
FIGURE 33:
FIGURE 34:
FIGURE 35:
FIGURE 36:

FIGURE 37

FIGURE 38:

FIGURE 39:

e of Figures

DEPENDENCIES BETWEEN THE CHAPTERS. ... 19
IMPRESSION OF THE CURRENT META-MODELLING ARCHITECTURE AT BIZZDESIGN.....23
THE MOST IMPORTANT CONCEPTS OF THE MML, DEPICTED AS META-MODEL IN UML LIKE
NOTATION. Lo e 24
AN IMPRESSION OF THE MOST IMPORTANT CONCEPTS OF THE PROFILES LANGUAGE,
DEPICTED AS META-MODEL IN UML LIKE NOTATION. THE ENTITIES ‘TYPE’ AND ‘STRUC-

TURE”ARE THOSE FROM THE MML. ...ciiiiiiii e 26
TOOL PARTS, MODELS AND THEIR RELATIONS.cuiiiiiiiiiiiiiii s 27
TRANSLATION OF TYPE / CLASS EXTENSION. ...cciviiiiiiiiiiiii e 28
MML TYPE EXTENSIONS AND GENERATED CODE.......ccciviiiiiiiiiiiiiiiin e 30

IMPRESSION OF A TOOL STUDIO AT THE CURRENT SITUATION OF BIZZDESIGN. ONE OF
THE TOOLS OF THE STUDIO TAKES CARE OF COMMUNICATING WITH THE MODEL RE-

POSITORY DATABASE. .. ittt e 32
OVERVIEW OF THE PARTS IN A SHARED STORAGE OF A ONE MODEL.cccvviiiinnnn, 34
TYPICAL MDA APPROACH LIKE DEPICTED BY KLEPPE ET AL [26]. THE BOXES REPRESENT
MODELS AND THE ARROWS MODEL TRANSFORMATIONS........coiviiiiiiiia 35
TYPICAL MDA TOOL ARCHITECTURE LIKE DEPICTED BY KLEPPE ET AL [26].........cuv..e. 36
THE META-MODELLING ARCHITECTURE IMPLIED BY THEMOF. ..o, 37

OVERVIEW OF TYPICAL PLUGINS OF AN APPLICATION BASED ON THE EMF, THE GEF
AND THE GMF AND THEIR DEPENDENCIES. THE BOXES WITH A THICK BORDER REPRE-
SENT A PLUGIN THAT IS GENERATED. THE BOXES WITH A THIN BORDER REPRESENT A
SET OF STATIC PLUGINS. THE BOXES WITH A DASHED BORDER REPRESENT A SET OF
MANUALLY CREATED PLUGINS. THE ARROWS REPRESENT THE DEPENDENCY RELATION.

IT IS DEPICTED INCOMPLETE FOR ILLUSTRATIVE PURPOSES.cccoiiiiiiiiiiiiiiiens 40
THE PROCESS OF MODEL AND CODE GENERATION AND CODE DEPENDENCIES AT US-
ING THE EMF, GEF AND GMF FRAMEWORKS.ccoiiiiii 42
THE ECORE META-META-MODEL OF EMF [55]. tviiiiiiiiiiiiiiiiii e 43
THE GMF DASHBOARD. ..uiiiiiiiiiiiiii e 44
OVERVIEW OF (FUTURE) (SUB)SYSTEMS AND THEIR MUTUAL INFRASTRUCTURE, RELE-
VANT FOR THE REPOSITORYttt 47
AN UML LIKE DIAGRAM OF THE RELATIONS BETWEEN MODELS, META-MODELS AND THE
THINGS BOTH FORM INFORMATION ABOUT. ...t 56
THE SERIALIZING OF AMODEL USING XMI. ..o 58
SCREENSHOT OF THE BIZZDESIGNER LIKE APPLICATION BASED ON RCP. 65
EXAMPLE BIZZDESIGN DOMAIN MODEL FOR EXPERIMENTING WITH GMF.................. 66
PROFILES EXTENSION OF EMF’S ECORE META-META-MODEL.cccvviviiiiiniiiien, 67
USING THE EMF PROFILES META-META-MODEL: MODEL INSTANCES AND TOOL PARTS.
.. 68
EMF PROFILES META-META-MODEL AS INSTANCE OF ECORE.cccoiiiiiiiiiiiian, 69
INTERMEDIATE META-MODEL: MODEL INSTANCES AND TOOL PARTS.cocviiiiininnnns 69
EXTENDED META-MODEL: MODEL INSTANCES AND TOOL PARTS.cociviiiiiiiiiiann, 70
EXAMPLE GEDRAG CORE META-MODEL.ccciiiiiiiiiiiiiiii 71
EXAMPLE GEDRAG META-MODEL EXTENSION.cciviiiiiiiiiiii e 71
: SOME MODELS, RELATED IN TWO KINDS OF WAYS. . .ciiiiiiiiiiiii 84
EXAMPLE OF A MODEL SPACE CONTAINING A CORE MODEL, AND EXTENDING MODEL
AND A META-MODEL. ...ttt 91
THE META-MODEL IN OUR EXAMPLE MODEL SPACE REPRESENTED USING UML. 92
ENTITIES IN AN ARISTOTELIAN ONTOLOGICAL SQUARE.ccoiviiiiiiiii, 93
EXAMPLE INTERDEPENDENT MODELS DEFINING AN APPLICATION.ccoviviiiiiinnnnn, 102
EXAMPLE OF ALTERNATIVE FOR '‘BRIDGE’.civiviiiiiiiiiiiii e 108
THE IMPLIED LAYERS IN A MODEL SPACE SNAPSHOT......ciiiiiiiiii, 112
A MODEL SPACE SNAPSHOT CONTAINING ONLY APPLICATION DATA MODELS AND ALL
NECESSARY TYPE-MODELS. ..ottt 112
: A (PART OF A) MODEL SPACE SNAPSHOT CONTAINING THE DEFINITION OF AN APPLI-
CATION FOR EDITING META-MODEL PARTS. ...uiiiiiiiiiiii e 113
A SNAPSHOT OF THE ELEMENTS IN THE THREE, TYPICAL META-LAYERS OF THE OO
PARADIGM AT DEFINING AN OO APPLICATION. ...cuiuiiiiiiiiiiii i 116
THE PHYSICAL THREE-TIERED SYSTEM ARCHITECTURE CONTAINING THE REPOSITORY
APPLICATION. ittt e 122

-11 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

FIGURE 40:

FIGURE 41:

FIGURE 42:

FIGURE 43:

FIGURE 44:

FIGURE 45:

FIGURE 46:

FIGURE 47:
FIGURE 48:
FIGURE 49:
FIGURE 50:
FIGURE 51:
FIGURE 52:

FIGURE 53:

FIGURE 54:
FIGURE 55:

-12 -

THE DISTRIBUTED SYSTEM FORMED BY THE REPOSITORY AND TOOLS USING IT. ONLY
ONE TOOL IS SHOWN. THE DATA LOCATIONS AND DATA MOVEMENTS ROUTES ARE
SHOWN BY DASHED LINES.ciiiiii e 127
ILLUSTRATION OF THE SCALABILITY SOLUTION, ABSTRACTING FROM AS MOST AS
POSSIBLE OTHER ITEMS. ...t 140
NON-LAYERED ARCHITECTURE WITH ONE CONTEXT-FREE CONFORMANCE RULES SET.
THE FACT THAT THE CONFORMANCE RULES ARE FIXED IS DEPICTED WITH A THICK,
DASHED BORDER. ...uiiiiiiiiiiiiiiiii 146
FIXED THREE-LAYER ARCHITECTURE WITH A SINGLE, TWO-LAYER CONFORMANCE
RULES SET. THE FIXED LINES AND BORDERS ILLUSTRATE THE FIXED LAYERING, CON-
FORMANCE RULES AND META-META-MODELS.cccooiii 146
AN IMPRESSION OF A FIXED FOUR-LAYER ARCHITECTURE WITH FIXED META-META-
META-MODEL AND METHOD FOR DEFINING TWO-LEVEL CONFORMANCE RULES SETS.
THE FIXED PARTS ARE DEPICTED BY THICK BORDERS.cccooiiiiiiiiiiee 147
A TYPICAL EXAMPLE OF A MODELLING ARCHITECTURE IN THE CONTENT OF A
BIZZDESIGN SPECIFIC REPOSITORY. THE PARTS THAT ARE FIXED BY THE REPOSITORY
ITSELF OR BY AN ASSOCIATION WITH EXTERNAL TOOLING ARE DEPICTED BY THICK
BORDERS. ..ot 149
TYPICAL SYSTEM ARCHITECTURE LAYERS OF THE REPOSITORY DESIGN. FROM TOP TO
BOTTOM THEY ARE ORDERED, NUMBERED AND RANGE FROM PRESENTATION (AT THE
TOOL) TO STORAGE (AT THE REPOSITORY). teuiuitiiiiiiiiiiiniiinnen s 150
THE SYSTEM ARCHITECTURES AND THE HANDLED DATA. THE LAST INCLUDES THE
META-MODELLING ARCHITECTURE......cciiiiiiiiiiiiiii e 153
A SNAPSHOT OF THE TOOL SHOWING THE PARTIALLY LOADED TREE AND SHOWING
ONE LOADED DIAGRAM. ...t e 163
A SNAPSHOT OF THE INDEX OF THE MODEL CONTAINING 2000 DIAGRAMS. 164
THE COPIED DUMMY DIAGRAM IN THE MODEL. ...cvviiiiiiiiiii 164
A SNAPSHOT OF A PART OF THE INDEX OF DEPTH 7 OF THE REPOSITORY DATA REFER-
RING TO 167961 DIAGRAMS IN TOTAL. ..viiiiiiiiiiiiiii i 166
A RANDOMLY GENERATED DIAGRAM AS GRAPHICALLY REPRESENTED BY THE REPOSI-
TORY PROTOTYPE TOOL. 1.ttt 167
A SUGGESTIVE GRAPH SHOWING THE TIME TO OPEN / LOAD A NOT YET SHOWN DIA-
GRAM GIVEN THE TOTAL NUMBER OF DIAGRAMS IN THE HANDLED MODEL DATA. ALL
INDICATED CONCRETE VALUES RELATE TO THE EXECUTED TESTS DESCRIBED ABOVE

THE WATERFALL MODEL OF MDE. ..o 174
IMPRESSION OF THE META-MODELLING ARCHITECTURE OF THE REPOSITORY. THE TYP-
ING AND NON-TYPING RELATIONS ARE CORRECT FOR THE GIVEN, BASIC MODELS.. 187

A scalable repository based on a meta-modelling architecture

1 Introduction

The context of our work is sketched by BiZZdesign that desires a model repository and ends
up in at the MDE because of that. A first repository design is created, but some problems per-
sist. A scalability problem appears to be the most prominent and pervasive. Our work contin-
ues on this ‘runaway’ design problem. We analyse a lot of MDE, which is currently in full de-
velopment. We conclude with a repository design based on a proven scalability solution, but
not based on any standard.

1.1 Context

There is a “recent trend” [27] to Model Driven Engineering (MDE). The MDE mostly concen-
trates on creating software applications by creating models. The concept of meta-model is
central [29] in the MDE. Even standards like the Meta Object Facility (MOF) [35] are being
developed for this area.

BiZZdesign Tools is a part of the BiZZdesign Company [8]. BiZZdesign Tools (from now on

just called BiZZdesign) develops and maintains modelling tools. The current tooling is based

on code originating from the Testbed Project [53]. The most important tools are:

Q BiZZdesigner: Tool for modelling business processes. The models conform to a language
called Amber [14];

O BiZZdesign Architect: Tool for modelling business architectures. The models conform to
a language called ArchiMate [30].

Summarized these tools of BiZZdesign are typical modelling tools. Models are created, their
information is graphically represented, information can get modified, etc. MDE was not yet a
major development when BiZZdesign started. But currently the engineering at BiZZdesign has
overlap with MDE. A key difference is that BiZZdesign's tools handle business models instead
of software application or design models. On the other hand BiZZdesign does use meta-
models like Amber [14] and ArchiMate [30]. As a result BiZZdesign followed this recent trend
to MDE.

Next BiZZdesign also develops and maintains repository functionality. The current repository
is conceptually a storage facility of only models as handled by the above tools. Physically it is
a database. The customers of BiZZdesign can access a repository instance by using the tools.
Next to storing models the repository functionality includes offering an overview of what is
stored in the repository.

1.1.1 Previous Work

Before our work started BiZZdesign had formed new requirements for its repository function-
ality. Moreover efforts were made on designing a repository as a new product. This repository
design has been the subject of our trainee project, which was executed at BiZZdesign and
took three months.

As explained above BiZZdesign’s current repository offers an overview of what is stored in the
repository. Thereby BiZZdesign was in fact anticipating on offering a workflow support for
the work on models by BiZZdesign’s users. Part of the work of our trainee project concentrat-
ed on designing an improved workflow support for the repository product. In the rest of this
thesis this is referred to as the prior workflow support. Another part of the work concentra-
ted on creating a web based portal based on an adapted version of existing code. The first
work on a high-level system design for the new repository product was described in [32].

BiZZdesign had put three more requirements for the new repository product:

1. The storage and communication of model information should conform to standards to faci-
litate interoperability;

2. Beside storing model information the repository should also store associated meta-model
information;

3. The current tools of BiZZdesign are not scalable with respect to the size of models. The re-
pository should solve this scalability problem.

-13 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

During our trainee project there appeared not to be enough time to make the design meet
these requirements. They appeared to be difficult and intertwined. Especially the scalability
problem appeared to be pervasive and affect all aspects of the design and the implementa-
tion. They became the motivation for the work behind this thesis.

1.1.2 The Prior Repository Design

The previous subsection explains a basis for a design of a new repository has been created.
Our work starts with this design and it is considered input. It is from now called the prior de-
sign. The main goal behind the prior repository design is to form a storage and registration of
all artefacts of a customer of BiZZdesign. These artefacts include:

1. Business models;

2. Other artefacts related to business models;

3. The relations between all of business models and the other artefacts.

The design is different from the current repository as the latter only stores business models.
The prior design covers:

Q A repository as new product;

O How tools communicate with the repository;

QO The tool’s internal model data management.

According to the prior design the repository and tools conform to the client-server system
architecture. An important aspect of the design is that it takes the efforts that BiZZdesign
would need to create an implementation in the future into account. Design rationales are
based on:

O Reuse of existing implementations;

O BiZZdesign’s practical, internal experience;

O BiZZdesign’s experience with its customers.

1.2 Problem Statement

Our work behind this thesis continues the design of the repository. We respect the prior de-
sign and its design rationales. We respect the insights previous work gained on the workflow
support as well. The design must join the current tooling and functionality of BiZZdesign as
most as possible and existing system parts and implementations must be reused whenever
this is possible. Otherwise BiZZdesign’s experiences are ignored. Moreover the future imple-
menting of the repository can get too costly.

The previous section explains there are three remaining requirements the prior design does
not anticipate on. These problems persist in both the current situation and this prior design.
Hence these are the problems in stock for our work. We detail them in the next three subsec-
tions. In the remainder of this thesis these problems are respectively referred to as the in-
teroperability, meta-model and scalability problems.

1.2.1 Interoperability

The current repository of BiZZdesign is completely customized to internal needs. A resulting
interoperability problem is that only BiZZdesign’s tool can interoperate with it. It is for exam-
ple not possible to use it with MOF compliant tools of other tool vendors.

In the past BiZZdesign gained experiences with the software of Adaptive [1], which offer a
repository solution that complies with the MOF standard [35]. In spite of the last it is yet im-
possible to let BiZZdesign’s tools communicate with the repository of Adaptive as BiZZdesign’s
tools do not comply with the MOF standard.

Clearly interoperability should result from making the repository comply with a standard like
that of the MOF [35]. The interoperability problem of the prior design is that it is unclear if
and how the repository can comply with the MOF standard or another standard, while still
meeting all other requirements.

1.2.2 Meta-Modelling Architecture

The current tools of BiZZdesign allow their users to change the contents of the meta-models
to some extent. Hence the meta-models are members of the set of a customer’s artefacts

- 14 -

A scalable repository based on a meta-modelling architecture

that are related to that customer’s business models. Thereby the repository must store the
meta-models as can be concluded from subsection 1.1.2. Another reason for storing meta-
models comes from anticipation on the interoperability problem. Hence there are two reasons
for the repository to store meta-models.

By storing meta-models the new repository will be based on some meta-modelling architec-
ture like we describe in subsection 2.11.7. The meta-model problem of the prior design is that
it is unclear what meta-modelling architecture is able to shelter all models, meta-models and
other artefacts the repository must store. Furthermore it is not clear if any standard, like for
instance that of the MOF [35], defines an architecture that suits all needs.

1.2.3 Scalability

The current tools of BiZZdesign are not scalable with respect to the size of models. When a
model’s size gets above a certain system-dependant threshold the tools get unable of prop-
erly handling them. As we explain above a requirement for the repository is to solve this
problem for the situation where a tool approaches a model via the repository. The scalability
problem of the prior design is that there is no scalability solution.

1.3 Approach

The next subsections describe the steps of our approach to our problem. For each step we
first describe the reason and then its contents.

1.3.1 Analyze the MDE

To solve the meta-model problem knowledge is necessary of modelling, meta-modelling and
meta-modelling architectures. To solve the meta-model and interoperability problems knowl-
edge is necessary about MDE related standards. Hence we study the concepts behind the MDE
and related standards.

BiZZdesign’s tools handle business models instead of software application models. Thereby we
only need knowledge of certain aspects of the MDE. These aspects for example include:

O Meta-modelling;

O Model representation;

O Model communication.

Part of the literature we study is about how to approach the software application creation
problem. An example is the Model Driven Architecture (MDA) approach as described by
Kleppe et al [26]. Other literature is formed by standard specification like that of the Meta
Object Facility (MOF) [35]. Finally we study much literature about modelling and meta-
modelling in the light of the MDE.

1.3.2 Analyze BiZZdesign’s Current State

As we mentioned in subsection 1.1.1 it is clear that our scalability problem affects all aspects
of the design and the implementation. On the other hand part of our problem is that we must
not divert too much from the prior design. This design also aims at reuse of existing imple-
mentations of BiZZdesign. This makes the current situation of BiZZdesign important for us.
Hence the next step in our approach is to study the current situation around BiZZdesign’s
repository.

The current situation around the repository of course includes the storage of models. But
other important subjects are:

O The way BiZZdesign currently expresses its meta-models;

O How the current tools internally represent models;

Q What tools do with models and model data;

O The communication between the tools and the repository.

1.3.3 Design a System Representation

The current repository of BiZZdesign only stores business models. Yet the new repository
must also store other artefacts including meta-models. Moreover also all relations between
any couple of stored artefacts must be stored. We describe this in subsection 1.1.2. In this

- 15 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

step we first analyse what data must be stored. We also look at how this data interconnects
by looking for example at the following kinds of relations:

O Between models as required for the workflow support;

O Between models as practiced by BiZZdesign’s current tooling;

O Between models and meta-models;

Q Within meta-modelling architectures.

In subsection 2.11.3 we will describe how a system benefits by a system representation that
is as simple as possible and still capable of expressing all information that the system is
about. As it is now clear what the repository must store we conclude this step by designing a
completely new system representation for the information of the repository.

As antithesis we also anticipate on the fact that the storage is involved for the scalable model
handling of the next step in our approach. Hence the next step in our approach has a back-
influence on this step. This means the system representation must facilitate complete free-
dom of creating views on the stored content. We design a system representation that is sim-
ple and homogeneous, while it is able to represent any information the repository will need to
store now and in the future. We refer to this system representation as the model space.

1.3.4 Design a Scalability Solution

The previous steps form all of the analysis and design for the interoperability and meta-model
problems. The last problem that remains is that of the scalability. Hence the next step in our
approach is to design a scalability solution.

First we analyze what scalability really means for modelling tools that work with the reposito-
ry. In fact this analysis is done in parallel with the previous steps of our approach. We finally
describe scalability of interconnected data handling systems in section 2.10.

We conclude the repository and the tools that work with the repository together in fact form a
distributed system. According to our solution the tools do not load models that are isolated
chunks in the repository. Instead the tools have a limited view on a single, ‘huge’, homoge-
neous storage. This view is dynamically changed by loading clusters from the repository and
unloading. We describe a cluster is factually a subset of the repository’s data formed and
loaded for a specific use within the tool. We conclude that the freedom of forming clusters
must not be impeded to get optimal scalability. We next conclude an (internal) system repre-
sentation can impede this. This way this step of our problem approach has a back-influence
on the previous step in our approach. We describe this previous step and mention this back-
influence in subsection 1.3.3.

1.3.5 Repository Design

Now all problems with the prior design are analyzed and we have enough knowledge of
BiZZdesign’s current situation we carry our knowledge through in the repository design. We
create a repository design that is subsequent to the prior design, but without its problems.
The design encapsulates the scalability solution of the previous step in our approach. The sys-
tem architecture is the client-server architecture. The server conceptually stores the model
space. This model space contains a meta-modelling architecture that is custom to BiZZdesign.

A major issue for this step of our approach is to let the design join the current tooling and
functionality of BiZZdesign as described in section 1.2. Hence we respect the prior design and
insights on workflow support. This includes the respecting of the choice for the client-server
architecture.

As BiZZdesign’s current tools for instance share code and components they in fact form a
product line. The repository will be a next product in this line. Hence the design process in
fact borrows down to “software product line engineering” [42]. The actual development of
the repository will be done after our work behind this thesis and in lock-step with the current
development steps.

-16 -

A scalable repository based on a meta-modelling architecture

1.3.6 Building a Prototype

At the previous step of our approach the scalability solution is based on clearly defined con-
cepts. The fact that tools that work with the repository have a limited view leaves the follow-
ing questions open:

Q Can they work with their view?

O Can they update data while keeping the repository’s data consistent?

QO Tools can dynamically expand their view. Will this view not get too big?

We think these questions can only really be answered by a real implementation of the solu-
tion. It is foreseen that the development of the repository according to the refined design will
take BiZZdesign a couple of years. Hence this will not happen as part of our work. Still we
want the above questions answered before this happens. Therefore we build a prototype.

This prototype will be used for the comparison that is the next step of our approach. There-

fore the prototype:

Q Offers functionality that is representative for a part of the functionality BiZZdesign cur-
rently offers to its customers;

O Implements the scalability solution;

O Has a system and meta-modelling architecture that is similar to the refined repository
design.

The last two months of work were spent on the creation of this prototype.

1.3.7 Compare Using a Benchmark

By only building the prototype the scalability solution is not evaluated. Hence we use a
benchmark to compare the prototype with current technology of BiZZdesign. Both are tested
with *huge’ amounts of data. Their behaviours are monitored and observations form the re-
sults.

1.4 Contributions

Our work contributes to both BiZZdesign and to the development of MDE supporting tools in
general.

1.4.1 Investigation of Eclipse’s Frameworks

Eclipse offers much software and many frameworks and standards. Eclipse aims at supporting
software development. It is clear the aimed development has much overlap with the devel-
opment as BiZZdesign. This overlap includes for example:

O Tool Building: BiZZdesign develops tools that are based on a rich UI. Eclipse offers the
Rich Client Platform (RCP) [34] to support this development;

O Meta-Modelling: BiZZdesign develops meta-models and tools that handle models con-
forming to these meta-models. Eclipse offers the Eclipse Modelling Framework (EMF) [55]
to support this development;

O Graphical Model Representation: BiZZdesign develops tool that graphically represent
parts / aspects of models. Eclipse offers the Graphical Modelling Framework (GMF) [54] to
support this development.

The mentioned support of Eclipse requires development in the Java language. For BiZZdesign
it would be a tremendous effort to port all their code to Java. Therefore we contribute to
BiZZdesign by investigating how useful Eclipse’s contributions are to BiZZdesign.

We do not only look at BiZZdesign’s current state. We also investigate how useful Eclipse’s of-
fer would be for the future repository. We focus on the EMF’s capabilities of expressing meta-
model architectures and solutions for scalability.

We conclude Eclipse’s offers should not (yet) be used by the following:

O The EMF contains functionality for generating code on the basis of a meta-model. Yet this
currently still is quite limited. Still many parts of the generated application must be coded
manually;

O The EMF itself offers no scalability solution. It only allows an application that uses it to be
set up scalable, but only in some specific way;

-17 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

O The GMF is yet not mature enough to be used in a production environment as that of
BiZZdesign;

O The meta-model a model conforms to and graphical representations of that model should
be separated. Still the GMF generated graphic representation code based on assumptions
about the meta-models.

1.4.2 A View on MDE

As the introduction describes there is a “recent trend” [27] to MDE. The fact that it is a trend
means there currently is a lot of research to it. The fact that it is recent means there currently
is not much consensus on shared key concepts. For instance there still is much debate around
the central concept of the meta-model. Gogolla et al [20] also mention that “notions within
the metamodeling area are often loose due to a lack of formalization. This has been recently
referred to as the meta-muddle.”

We contribute by giving a view on the concepts of MDE. The meta-modelling concept is cen-
tral. We focus on how we think meta-models define information systems and how meta-
modelling architectures are formed. Moreover we gain more insights on the MDE in general
and the data aspect of the models and meta-models in particular by designing our scalability
solution, BiZZdesign’s repository and our prototype. In chapter 11 we describe what we learn.

1.4.3 Repository Design

We contribute to BiZZdesign by creating a full-scale design for a future repository. This design
is based on the prior design, joins the current tooling and functionality of BiZZdesign and in-
corporates the new scalability solution. This solution is based on clearly defined formalisms.
The creation of the design aims at reusing as much as possible of BiZZdesign’s current tech-
nology. Except for creating a repository design our work behind this thesis did not contribute
to further phases of the development. For instance we do not create and test an implemen-
tation of (a part of) the final repository.

1.4.4 A Proven Scalability Solution

We contribute to the development of MDE supporting tools with a scalability solution. We base
our solution on our observations on how applications handle data. For our solution we con-
sider the repository and the tools that use it as a typical distributed system. We have built a
prototype as part of our problem approach (see subsection 1.3.6). This distributed prototype
system proves the solution really allows a model data handling tool to work with a ‘huge’
amount of model data. Still this amount is allowed to contain any desired amount and kinds of
interconnections.

1.5 Outline of the Thesis

The background of our work is given shape by the prior design, our investigation of eclipse’s
frameworks, the research we did with the first two steps of our problem approach and our
general research to data handling. In chapter 2 we describe the basics of this background.
Chapter 3 gives more details of our investigation of Eclipse’s frameworks. We postpone de-
scribing our relevant findings about how systems handle data in general and distributed sys-
tems in particular till chapter 7.

These further details are based on experience gained by experimenting with and using the
frameworks. This experience is one of our contributions and is therefore not described as part
of our background in chapter 2.

Next follows the result of our research to MDE in general. Chapter 4 describes the first step of
our problem approach. It describes the system representation we design for the repository.
The latter can then represent any model information. Chapter 5 contains our contribution of
our view by focussing on meta-models and how they model an application. In chapter 6 we
extend this view as we focus on meta-modelling architectures.

Chapter 8 summarizes our scalability solution and gives the underlying definitions. It is mainly
based on our vision on data handling we give in chapter 7. Next chapter 9 contains our re-
pository design that incorporates that solution. The architecture of the system and the meta-

- 18 -

A scalable repository based on a meta-modelling architecture

modelling architecture are both described together with their integration. The physical storage
gets highlighted as well.

Chapter 10 shortly discusses the design and implementation of the prototype we created at
the one-but-last step in our problem approach. The last step in our approach is benchmarking
our scalability solution. The description of this benchmark and the results form the last part of
chapter 10.

Figure 1 depicts the chapters of our thesis and their dependencies. For the chapters 2 to 10
transitivity mostly applies. The back-influence from our scalability solution on our system rep-
resentation we mention in subsections 1.3.3 and 1.3.4 is also shown.

1: Introduction

y
2: Background

v v

4: System Repre- 5: Meta-Modelling
sentation

3: Eclipse

Y

y

Architectures

A 4 y
7: Data Handling | 8: Scalability
Solution

A 4
9: Repository
Design

y
10: Repository
Prototype

11: Evaluation of
MDE

y
12: Conclusions

Figure 1: Dependencies between the chapters.

The chapters 3 to 6 together form a first part about the MDE in general. The chapters 7 to 10
form a second part that focuses on building a scalable repository. The second part is based on
the first part. In chapter 11 we evaluate MDE in general and describe what we learn about it
in the second part. Finally chapter 12 is our conclusions chapter. There we evaluate to what
extend we solve our problems. Furthermore we give a summary of our work, give recommen-
dations and describe outlets for future work.

- 19 -

A scalable repository based on a meta-modelling architecture

A scalable repository based on a meta-modelling architecture

The chapters 2 to 10 are intentionally removed. They can be
supplied and may be distributed, sold and/or copied only with
permission of BiZZdesign B.V. in the Netherlands,

www.bizzdesign.nl

-20to 170 -

A scalable repository based on a meta-modelling architecture

A scalable repository based on a meta-modelling architecture

11 Evaluation of MDE

In the chapters 3 to 6 we create a custom view on the MDE in general, where we use a top-
down approach. In particular we concentrate on the data aspect of models and meta-models.
In the chapters 7 to 10 we design a practical, scalable repository solution, where we use a
bottom-up approach. In this chapter we evaluate the MDE after what we learned from the
second approach.

11.1 Introduction

As the new repository of BiZZdesign will be about models, meta-models and their relations we
got to the subject of MDE. This way the research area of the MDE became a major part of
ours. The MDE aims at development of information systems by creating models. On the other
hand the repository is mostly about storage of data. Hence we mostly concentrated on the
data aspects of the involved subjects. We used a top-down approach and found there is much
unclarity at this aspect of the MDE.

The MDE finally gave us a good impression of what data BiZZdesign’s repository will be about.
On the other hand we had to find out how this data should be handled to get a scalable solu-
tion. Here we used a bottom-up approach. We found much of the unclarity can vanish by first
giving good, simple and strict answers to basic questions like:

O What is in a model? How do we basically represent a model?

O What is in a meta-model?

O How does a meta-model relate to software?

O What is instantiation?

In section 11.2 we give general conclusions on and recommendations for some basic MDE
concepts from our background. We observed that, at developing information systems, scal-
ability issues typically have a back-influence on the design. With real MDE an information sys-
tem is completely defined by a meta-model. Hence designing a system is creating a meta-
model and scalability issues must be fed back into the meta-model during development. We
describe this in section 11.3.

11.2 Basic Concepts

We conclude on how we see a model in the light of MDE and how we can express instantiation
between models and the meta-models they conform to.

11.2.1 Modelling

The MDE aims at creating information systems by creating models instead of traditional code.
We conclude that, in the light of MDE, a model is just an information carrier. 1t typically con-
sists of the data of a system or information about an aspect or part of the design of a system.
A model is typically not any more considered an abstraction of something of the real world as
with the classical conception of a model. Still traditional implementation artefacts like code in
particular are also information carriers. What are the benefits from creating models over cre-
ating code?

With MDE the models are explained to be typically abstract. Productivity benefits should come
from the fact there is less information in the models and thus less need to be defined at de-
veloping an information system. On the other hand also more abstract specialized languages
can be created that bring the same benefits with traditional coding. These benefits are for
example brought by languages like the PHP for developing web services and the SQL for de-
scribing database communication;

An added value of a model over code we see is that it is not necessarily text. This can bring
the advantage of not any more suffering from the “tyranny of the dominant decomposition”
[52] that a grammar brings. Next people have proven to be more efficient at working graphi-
cally: A picture is worth a thousand words.

Kleppe et al [26] describe the Model Driven Architecture™ approach for MDE of the OMG.
They even explain code as a model. On the other hand the Java development language is

-171 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

known for its platform independence. Combining these two facts Java code describing some
information system is a Platform Independent Model (PIM) of that system. Java has already
proven itself at the development of a wide range of information systems. In our opinion the
benefits of the MDA have this way faded.

While we observe that the term ‘model’ is, in the light of MDE, given a different meaning than
the meaning from before the research around the MDE, we propose no alternative for this
term either.

11.2.2 Matters of Meta-Modelling

Kihne [27] distinguishes two “Flavors of model and element instantiation”: ontological and
linguistic. “Ontological instantiation between two elements or models is [...] based on the rela-
tionship between them in terms of their meaning.” [27] “Linguistic instantiation between an
element and a linguistic type is based on the assumption that the type represents a (fragment
of a) language defining which expressions are valid sentences of it.” [27] We observe from his
work how linguistic instantiation is used to allow systems to approach information that is
formed by instances. Next the types involved in this instantiation can be used to express an
‘orthogonal’ instantiation that can have any meaning for the system. Two linguistic type ele-
ments can for example be a ‘class’ and an ‘instance’. The relation between an instance of
‘class’ and an instance of ‘instance’ then is what Kiihne [27] explains as ontological instantia-
tion.

But we distinguish three flavours of instantiation:

1. Each element of each model at any meta-layer or typing-layer is an element instance of
the model space;

2. Each model space element has another model space element as type. This is indicated by
the typing relation of the model space;

3. A meta-model can for example define a ‘class’ type and a related ‘object’ type. That
makes it possible to express in conforming models how instances of ‘object’ are instances
of instances of ‘class’.

The way Kihne [27] describes his two flavours of instantiation gives the impression any in-
stantiation is always one of the two. We conclude the two flavours are roles instantiations
have in relation to each other. With the above instantiations the first is linguistic with respect
to the second and the second is linguistic with respect to the third. Vice versa the third instan-
tiation is ontological with respect to the second and the second is ontological with respect to
the first.

Above we explain linguistic instantiation is used to allow systems to approach information that
is formed by instances. This still holds. On basis of the first of the above instantiations the
repository system approaches the model space. A system that corresponds to a meta-model
in the repository approaches conforming models that are also in the repository on basis of the
second instantiation. When the system that corresponds to that meta-model is a tool for cre-
ating UML models the system under development that is modelled with that tool will approach
its data on basis of the third instantiation.

11.3 Back-Influence by Scalability on Design

We conclude on the practice of creating information systems by creating models. In our opin-
ion an information system should, for complete MDE, be completely defined by the models,
not only modelled. In this section we describe the back-influence of typical scalability prob-
lems in the system development process in terms of:

O Designing systems by creating a meta-model like we describe in chapter 5;

O How systems handle data like we describe in chapter 7;

O Our scalability solution we describe in chapter 8.

This section contains a reasoning of the correlation between the designing of an application’s:
1. Conceptual storage of data;

2. Practice of data handling;

3. Physical storage of data.

-172 -

A scalable repository based on a meta-modelling architecture

In the remainder of this section we refer to these with (1), (2) and (3) respectively. The data
concerns that of any application in general, but also the model and meta-model data of the
repository and tools in particular.

11.3.1 Desired Development Practice

When designing an application the formulation of its (1) should be regardless of its (2) and
(3). As its (1) corresponds to the domain the application is created for, the disregarding assu-
res the freedom of creating applications for any desirable domain. Next at developing an ap-
plication its (2) will be based on its (1) and thereby depend on this. We also describe this in
chapter 7. An application’s (2) can not always (completely) be derived from its (1). With our
scalability solution the definitions of clusters’ contents (defining the (2)) for instance form
additional information of the meta-model (defining the (1)). Finally at the implementing of the
application, its (3) should be derived from or based on its (2).

At developing the repository no assumptions about its (1) or (2) are on stock. The only thing
known by the design is that it will have the form of cluster communication. As a consequence
the repository’s (3) must be able to allow any (2). The best information about the (2) is re-
trieved by looking at how tools approach the repository’s data in general. This should not be
evaluated once, but once in a while during the time the repository is in use. An example
evaluation was in fact described in A.3.2, where indexes were added on tables regarding their
(indirect) use by the prototype tool. Hence the (2) of the prototype emerged not before a
representative version of a tool (i.e. the prototype) ran for the first time.

The above reasoning implies an ideal order for application development. Ideally an applica-
tion’s (1), (2) and (3) are developed in this order. When the application is a tool that works
with the repository, it is not necessary to derive its (3) from its (2) as this is fixed by the re-
pository’s system architecture. Still the above ideal ordering is recognizable at the develop-
ment of a tool that uses the repository. A tool’s (2) still needs to be based on its (1).

11.3.2 Real Development Practice

As opposed to the previous subsection that is about the desired practice, we now describe the
real practice of developing applications in general and tools that use the repository in particu-
lar.

Above we explain formulating an application’s (1) have complete freedom, but is that attain-
able in reality? For developing an application’s (2) it is clear there are practical limits. The
handling of data by processes, algorithms, etcetera is typically considered unpractical when it
just takes the application too long. There are also clearly physical limits for an application’s
(3). Typical examples are the limits on the amount of system memory, disk storage, network
capacity, etc.

With the desired application development first its (1) is designed, then its (2) is developed
and then its (3) is implemented in a single run. But with real development this run becomes a
zigzag. When basing an application’s (2) on its (1) or its (3) on its (2) results in a (2) or (3)
that is feasible and satisfies all requirements, then the development is settled. But that result
is not guaranteed. When any resulting (2) or (3) is infeasible, this must out of neces-
sity be fed back into the (1) or (2) it is based on respectively. Without such back-
influence all systems would probably have been designed for a 24/7 running main-frame with
unlimited, random-access system-memory and unlimited communication without delays.
Many examples can be given of the above described back-influence.

We can now illustrate this back-influence during application development by using our scal-
ability solution. Now a tool that uses the repository for its (3) and the cluster communication
for its (2) is the application. The repository’s (3) can have a back-influence on a design of
tool’s (2). It is not expected that the amount of meta-model data in the repository will impose
any (future) scalability problems. Still the amount of model data can. Time will tell whether
the repository’s (3) and framework for (2) will suffice for all tools in the future. Next, when a
tool’s clusters’ definitions (i.e. its (2)) are designed this can back-influence the tool’s (1): its
domain concepts!

In section 8.5 we discuss what modification of model data means. Typically multiplicities that
are practiced for extends of relation types have consequences for modifications. At creating a

-173 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

meta-model defining a tool we desire the complete freedom of assigning each relation type
any practiced multiplicity. But in that section we conclude these multiplicities have conse-
quences for the an tool’s (2) when they are any other than 0..* - 0..*. (See subsection
8.5.3 for the notation of multiplicities.) When a tool handles model data that is structured
according to meta-model data that includes such relation types, it is forced to mind the multi-
plicities at modifying that data. Moreover it can be forced to mind multiple relation types’ mul-
tiplicities when these relation types are interconnected. The latter can force a tool’s (2) to
place multiple modifications in a transaction.

When a tool needs to edit a model element that has a relation with a type that has a multi-
plicity that has a left and right upper bound of at most one: 0..1 - 0..1, 0..1 - 1..1 or
1..1 - 1..1, then it must, for that relation, mind at least one other element. This can lead to
the need for transactions to update the element. Still this does not necessarily lead to scal-
ability problems. When the tool needs to edit a model element that has a relation with a type
that has a multiplicity that has an unlimited upper bound: 0..1 - 0..*, 0..1 - 1..%,1..1
- 0..%1..1 - 1..*%,0..* = 1..xor1..* - 1..*, then it possibly needs to mind an arbi-
trary number of other elements. This can mean a tool is forced to mind more elements then
practical limits allow. This possible scalability problem can get even worse when the meta-
model specifies multiple interconnected relation types with such multiplicities. What for exam-
ple if type A is related to B where the relation has a type with multiplicity 1..1 - 0..* and B
is related to Cwitha 1..1 - 0..~* relation type? If a tool needs to delete an element instance
of A, then it must do this in a transaction that minds all instances of B and all element in-
stances of C connected to each of these instances.

11.3.3 Acceding Back-Influences

Require-

ments \

Analysis

~

Meta-

Modelling u

Code Gen-
eration

~

Evaluation

N

Opera-
tions

Figure 2: The waterfall model of MDE.

Above we describe where potential scalability problems arise from. Acceding to a typical back-
influence on a meta-model is to change a relation type’s multiplicities from 1..1 - 0..* to
0..1 - 0..*. A tool that is associated with the changed meta-model will relate all ‘right’ ele-
ments to exactly one ‘left’ element. Yet the change in the meta-model allows the tool to de-
lete a ‘left’ element and then postpone the handling of the previously related ‘right’ elements.
New requirements can be formed for the tool about what to do with unrelated ‘right’ ele-
ments. In summary after evaluating a generated system a change in the meta-model may be
required. Next these changes may result in changed requirements.

Royce [46] gives a sequential software development model and explains it is an example of a
flawed model. Others mostly refer to this model as the waterfall model. In Figure 2 we give a
waterfall model that models the development process when based on MDE.

- 174 -

A scalable repository based on a meta-modelling architecture

In our waterfall model in Figure 2 the design is replaced with meta-modelling. The implemen-
tation is replaced by code generation. As the code is generated is should not need any test-
ing. Still this phase can not be removed and we call it the evaluation phase instead. “The test-
ing phase which occurs at the end of the development cycle is the first event for which timing,
storage, input/output transfers, etc., are experienced as distinguished from analyzed.” [46]
Also scalability issues can not be experienced before this phase. At the evaluation phase prob-
lems can be experienced that one can not overcome by changing the implementation only:
“Either the requirements must be modified, or a substantial change in the design is required.”
[46]. According to Royce [46] this results in back-influences similar as we depict in Figure 2.
These are the same back-influences as we describe at the start of this subsection.

11.3.4 The MDA Promise

In section 2.5 we describe the Model Driven Engineering™ approach of the OMG. Kleppe et al
[26] describe this approach as where first one Platform Independent Model (PIM) is created
for an information system. Next this PIM is transformed into multiple Platform Independent
Models (PSMs) in an automated way.

Above we describe how scalability problems can have a back-influence on the system model
creation. Clearly these problems are platform specific. Hence acceding to such a back-
influence means platform specific details need to be added or modified to the model. With the
MDA this is not possible as a system designer can only make design decisions that are plat-
form independent as he or she only creates a PIM. In other words we believe this approach is
not suited for “development of large software systems” [46] as acceding to back-influences
like described by Royce [46] is not possible.

In chapter 5 we describe it must be possible to model on the basis of platform independent
design decisions as well as typical platform specific design decisions. Moreover we conclude
platform independence is a relative concept. A central bomain Concepts part in a system’s
model is the most independent of any platform. Still even this part is not completely as it only
applies to the platform of interactive systems. The more indirections via which another, sup-
plementing part is connected to this part, the more platform specific it is. In terms of our view
on creating system models and our scalability solution, acceding to back-influences by scal-
ability problems means some Cluster Definitions or the central bomain Concepts model
part is modified.

11.3.5 Workflow Support by Back-Influence

We believe the workflow support the repository is to offer in fact results from back influences
as we describe above on requirements. We look at the practice of people working on reposi-
tory content. There are situations where this practice shows limitations. Not at any time of
this practice the content will be in a perfect, final state. This is especially true when the con-
tent is large and it is always approach on partial bases for scalability reasons. There will just
be moments on which the content is in some intermediate, half-finished state. To get a practi-
cal system this necessity results in requirements that allow the content to be in such a half-
finished state. Hence these requirements make the content subject of the entire workflow
instead of end result of this flow only.

11.4 Conclusions

In the previous section we describe why the MDA can not realize its promise. Still we see

benefits of MDE in general. When the practice of developing computer systems is changed

from traditional development to MDE according to our view we give in chapter 5, this practice

will significantly change. Traditional development is based on object-oriented (OO) or aspect-

oriented (AO) programming and we can describe this traditional practice of developing appli-

cations roughly as:

1. Creating text-based code artefacts that conform to a programming language;

2. The code is partitioned according to one ‘dominant decomposition’ [52] in its textual represen-
tation, implied by the grammar of the programming languages;

3. As far as elements in the code do not interconnect according to the dominant decomposition, it
interconnects by identifiers that are names and references to them;

- 175 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

4. Typically one language and paradigm is used for multiple parts or aspects of the developed
system. Only the choice for identifiers and code comments indicate what artefact belongs to
what part or aspect.

We can also describe the corresponding development practice according to our view on MDE:

1. Creating models that conform to a meta-model;

2. Assuming models are represented as a graphs there is not necessarily a ‘dominant decomposi-
tion’ [52] in this representation;

3. Assuming all model data is in one model space, then the models and all elements in the models
uniformly interconnect by a single kind of relation;

4. Each model has a meta-model that is specialized to the purpose of the model. By this speciali-
zation the model can be as abstract and concise as possible; below we describe why. Names
and identifiers should only originate from the domain of the developed system. The models
should be clear enough to eliminate the need for (model) comments and design documentation.

According to our view on MDE we give in chapter 5 a meta-model fully defines an information
system. Next a meta-model consists of multiple parts. Each part typically describes a part or
an aspect of the system.

Describing the above otherwise each part of a meta-model is in fact associated with a concern
of the system and as the parts are separated we have a “separation of concerns” [52]. This
way we get to the world around Aspect-Orientation (AO). We conclude that the research be-
hind MDE uses a top-down approach for separating concerns. The development behind MDE
allows more and more concerns of an information system to be defined in models, which are
next combined into one system where they are intertwined. The research behind AO uses the
corresponding bottom-up approach! The development behind AO allows more and more con-
cerns of an information system, that are intertwined at the system level and in using conven-
tional programming languages, to be expressed separately.

While we observe the research behind both MDE and AO aim at a separation of concerns,
there is also a difference. With aspect-oriented programming (AOP) a system can be devel-
oped by defining any desired number of aspects. All aspects are expressed using a single lan-
guage like Aspect]. With MDE a system can be developed by defining a fixed set of aspects
with predefined roles and interconnections. In chapter 5 we mentioned roles like bomain Con-
cepts, Constraints, Edit Operations, etc...

With conventional programming and AOP the abstraction level can also be raised by develop-
ing abstracter or more high-level languages. Above we describe that with MDE we express
each aspect of a system with a specialized model. This is the one and only reason why the
abstraction level can be raised by the MDE with respect to conventional programming! When a
meta-model part has for instance the role of constraints definition within a meta-model, then
typically a language like the Objects Constraint Language (OCL) can be used when using
MDE; when AOP is used these constraints must still for example be express in Aspect], which
is not as specialized to expressing constraints as the OCL is. Finally the benefits from raising
the abstraction level are obvious. Also Atkinson and Kihne [4] concluded this: "By raising
abstraction levels still further, MDD aims to automate many of the complex (but routine) pro-
gramming tasks”. [4]

The MDE subject is very broad and we describe above we think it is a good development.
There are currently multiple views on and intentions with it by the width of this view. This is
not necessarily a problem; all ideas and views can be united when they are based on defined,
fixed and basic ideas and concepts. The different views on MDE can coexist by using different
compositions of these basics. Of course this starts with a general agreement on these basics.
Yet we have not found such an agreement. Even what models are, how they should be repre-
sented and what kinds of information they can contain is currently different in all views. Until
this kinds of basics are not established the evolution of MDE is adrift. Gogolla et al [20] also
discuss “notions within the metamodeling area are often loose due to a lack of formalization.
This has been recently referred to as the meta-muddle.” [20] Our formalization of the model
space in chapter 4 might be a start of defining basics for the MDE.

-176 -

A scalable repository based on a meta-modelling architecture

12 Conclusions

BiZZdesign had interoperability and scalability problems with its model repository. Moreover it
did not store any meta-model information. We did research to MDE and scalability for solu-
tions. We created a new design and finally a prototype that partially proves out scalability
solution. We gained many insights in data handling and MDE.

12.1 Current Repository

Currently BiZZdesign supplies its customers with repository functionality. This functionality is
an intrinsic part of the tools BiZZdesign continuously develops. When users of these tools use
the repository functionality this means that models that are handled by the tools are stored in
a database. The tools directly connect to this database. The current situation has three prob-
lems we later refer to as the meta-model, interoperability and scalability problems.
BiZzZdesign previously formulated the goal to develop a new repository product that should
solve these problems.

12.1.1 Problems

The models of BiZZdesign’s tools have clearly defined meta-models. These meta-models are
defined using a method that is particular for BiZZdesign. A core part of a meta-model is fixed.
A part of the code of the corresponding tool is generated from this core part. Parts of the
meta-models that extend this core part can be changed without changing the tools. These
parts are loaded dynamically when the tool starts. With the current repository functionality is
that these variable meta-model parts can not be stored. This can lead to problems when a
BiZZdesign tool user loads a model from the repository that conforms to a meta-model that
the user has no knowledge about or has not available.

With the current repository functionality the tools communicate with and store models in the
database using a method that is custom to BiZZdesign. The only fully developed way of using
and communicating with this database is by reusing the database scheme and code that is
currently part of BiZZdesign’s tools. The current repository does not comply with any standard
for its external communication. In other words the current repository functionality lacks in-
teroperability. To enable other tools that that of BiZZdesign to communicate with the re-
pository database will lead to development problems as this is not trivial. An option is to reuse
the part of the code of the repository from BiZZdesign’s tools. But this would bind the devel-
opment of the other tools to the same development platform as that of BiZZdesign’s tools.
Another option is to rebuild this communication, but this needs a lot of development for each
individual tool.

With the current repository the models are stored as atomic units. When a tool loads a model
from it, this model must be loaded entirely. Operational problems appear when models get
too big. In other words the current repository functionality has a scalability problem with
respect to the size of models.

12.1.2 Goals

Before our work started BiZZdesign has formulated the goal to develop a new repository. This
new repository is not to form a part of the functionality of the tools, but a new product of
BiZZdesign. Once it is a new product it must also store not only models like with the current
functionality, but any information of customers of BiZZdesign that is relevant for describing
and modelling their business. Next to forming a general storage, with the new repository
product must also solve the problems we describe above.

Part of the work from before our work on this thesis resulted in a first design for the new re-
pository product. We refer to this design as the prior repository design. This design follows
client-server architecture, whereby the tools form the clients and a new repository application
forms the server. This server exclusively handles the database communication. The communi-
cation between the tools and the repository application would be network based.

The new repository should solve the above problems and it must be possible to let other, new
tools interoperate with it. At least a web portal is foreseen as one of these new tools. Scalabil-

- 177 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

ity should be a result of how the tools, including BiZZdesign’s current tools, connect with it.
Obviously also the meta-models should be stored as these are parts of BiZZdesign’s custom-
ers’ information describing their businesses. As BiZZdesign wants the new repository to store
as much as possible of this kind of information, a question became: What can be stored in
and expressed by a meta-model?

12.2 Research

In this thesis we tried to let BiZZdesign meet the goals of the previous section. Hence we ad-
dressed the enhancement of the prior repository design to make it solve of the above three
problems. We also tried to give an answer to BiZZdesign’s question of what can be expressed
by a meta-model beside what BiZZdesign’s meta-models currently do. Altogether this led us
to do an extensive research.

BiZZdesign’s current technology particularly has no solutions to the meta-model and interop-
erability problems. On the other hand no standard or framework is on stock that supplies us
with a complete scalability solution. Support for creating a custom scalability solution is how-
ever sometimes included by frameworks, but these frameworks are too strict with respect to
BiZzZdesign. They would not allow BiZZdesign to keep using its particular object-oriented
paradigm. In summary nothing supplies us with a solution to all three problems. We decided
to design solutions from scratch. The communication with the repository complies with not
any standard and no technology or framework is used according to our new design of the re-
pository. We developed a system representation, a meta-modelling architecture, repository
communication and a scalability solution based on basic principles.

12.2.1 Meta-Modelling Architecture

In chapter 4 we designed a novel system representation for the repository. In subsection
2.11.4 we explain what a system representation means in our opinion. It should be capable of
representing any of the system’s information. We finally developed the model space system
representation in chapter 4. Within a model space all information is represented with a set of
elements, a single binary relation and a single typing relation. The resulting, special graph is
capable of representing any model, meta-model and any relations between them. Why it is
capable we grounded philosophically in chapter 4. Indirections can be used to represent com-
plex information with this simple representation.

To answer the question of what can be stored in and expressed by a meta-model we de-
scribed how meta-models define an information system in chapter 5. Full MDE would be at-
tained when a meta-model forms a complete definition of such system. We observe a meta-
model consists of multiple models. A central domain concepts model indicates what informa-
tion the system is about. This model is supplemented with models that define an aspect or
part of the system. A model can also be a specialization of another and contain more detailed
definitions that are typically specific for certain functionality or platform. We observe that
platform independence is a relative concept. A domain concepts model is the most platform-
independent; still it is not completely as it for instance only applies to the platform of interac-
tive systems. Together with all supplementing models it forms one interconnected unity. The
more steps a model is away within this unity, the less platform-independent it is.

In subsection 2.11.4 we also explained that a system representation should be simple to re-
duce the complexity of that system. Next the simplicity of the model space made our problem
of creating an ideal meta-modelling architecture simple too. In chapter 6 we applied the view
of chapter 5 and showed what architecture comes into existence. We idealistically use an on-
tological foundation as meta-meta-model like proposed by Kurtev [29]. We conclude three
type-layers and three meta-layers are all what is needed to express all information.

The above meta-modelling architecture is not based on any paradigm. In section 6.4 we de-
scribed how such a paradigm is typically also based on 3 meta-layers. But it is silently also
based on formalisms that are part of the top layer and prescribe the instantiation between the
lower two layers. Each object-oriented (OO) paradigm variation has such formalisms.
BiZZdesign has its own OO paradigm. It is too big a step for BiZZdesign to stop using it. That
would need a tremendous effort of which we conclude that it is not affordable for BiZZdesign.

-178 -

A scalable repository based on a meta-modelling architecture

12.2.2 Interoperability

Interoperability results from establishing agreements on communication. Obviously the re-
pository would be interoperable when it complies with a standard for its communication. The
Meta Object Facility (MOF) [35] and the Eclipse Modelling Framework (EMF) [55] can both not
be used for a BiZZdesign specific repository, as both specify a paradigm that is based on a
different variant of object-oriented (OO) than that of BiZZdesign. Moreover both standards do
not supply us with scalability solution for the repository’s interface.

Compliance to the MOF standard borrows down to working with APIs and interfaces as the
standard prescribes. The specification of the MOF [35] pretends models can, with this stan-
dard, also form meta-modelling architecture with four or even more meta-layers. Still
BiZZdesign’s paradigm can not completely be defined when it is used with four layers. The
MOF offers no method for defining the formalisms we mention in the previous subsection.

We investigated the EMF and other support from the Eclipse community. The EMF comes with
a fixed meta-meta-model, a three-meta-layers architecture and a standard XML-based com-
munication. When its code is used a system representation for models and meta-models is
also supplied. In chapter 3 we showed it is not possible to divert from the specific OO variant
the EMF is based on: no meta-layer can be added and the top-meta-layer can not be adapted.

In subsection 12.4.2 we will explain standard-based communication is not excluded with our
repository design for BiZZdesign.

12.2.3 Scalability

The repository and the tools that use it in fact form a distributed system that follows client-
server architecture. In chapter 7 we described that the practice of data handling within
such a system is domain specific. No investigated technology or framework, including the cur-
rent technology of BiZZdesign, facilitates the complete freedom of partitioning repository data
for any desirable use by any (future) tool.

When the EMF is used the practice of data handling is also domain specific. The EMF does
come with a default mechanism for spreading model data over resources, but what data to
put in what resource is up to the application. The code generated by the EMF or the extending
Graphical Modelling Framework (GMF) [54] just puts all of one model in one resource for in-
stance. Next what is to form one model is entirely up to the user of the generated code.

We developed a scalability solution based on the distributed system. The repository’s *huge
amount’ of data is left in a database system. The tools in any case handle only a limited sub-
set of this data in their limited memories. This forms their view on the data. They should be
capable of handling this view and still be able to reach and work with all repository data. The
view on the data is dynamically changed by loading and unloading chunks of data we call
clusters. When to load a cluster and what is to be in a cluster is domain specific; applications
load and handle a part of data for a specific use or concern. Hence this should be a part of the
definition of a tool that works with the repository. According to our view on meta-modelling in
chapter 5 this should be defined by the meta-model that defines that tool.

To be able to easily create any cluster from the repository’s data, this data must not have any
internal borders of any composition. Otherwise the repository’s storage would suffer from the
tyranny of the dominant decomposition [52]. We need a single, homogeneous storage with
elementary units that are as small as possible. This observation had a major impact on our
system representation design in chapter 4. There an elementary unit typically contains noth-
ing but an identity. The representation is homogeneous as all relations are considered equal.
The original model borders are purely conceptual and are abstracted from.

For scalability the EMF offers a resources system. When an EMF-based application needs to
handle its model information partially for scalability reasons it must divide its data over multi-
ple resources. This way it is forced to use one single, dominant partition on its data. Obviously
this suffers from the tyranny of the dominant decomposition [52]. We found no other ways to
obtain scalability when using the EMF non-customized.

Our scalability solution brings new challenges for tools that use the repository. One is how its
data should be clustered and moved between the repository and the tool. Another is to allow
the tool to modify the data in its view while keeping the repository’s data consistent.

- 179 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

12.3 Results

Our work resulted in a prototype that is custom and a design of a new repository for
BiZZdesign. With both we maintained the client-server system architecture from the prior
design. Next we incorporated our scalability solution and the data handling and communica-
tion between the repository (the server) and the tools (the clients) is based on this solution.
We achieve interoperability only by using network-based communication based on a well de-
fined, but custom protocol. We did not achieve it by compliance with a standard or using a
(standardized) technology or framework. In the next subsections we describe the design and
the prototype respectively and describe what meta-modelling architectures they are based on.

12.3.1 Repository Design

The design of BiZZdesign’s repository satisfies all requirements and should not have any of
the mentioned problems. It can be used as a storage of any amount of interconnected data
any customer of BiZZdesign has that is relevant for describing and modeling its business. It
will not necessarily use the model space system representation we designed in chapter 4. As
alternative to the graph of elements the model space forms, also a graph of objects may be
used as system representation.

The repository’s meta-modelling architecture is implied by BiZZdesign’s current, specific, ob-
ject-oriented paradigm we mention above. This means the repository of BiZZdesign will just
have the three, strict meta-layers and fixed meta-meta-models that correspond to
BiZZdesign’s meta-model languages. This way the design will exactly suits the needs of
BiZZdesign. It is not based on the expressive meta-modelling architecture we described in
chapter 6.

With the design we in fact provided a design for a new product in the product line of
BiZZdesign. Hence the methodology of software product line engineering [42] applied to the
design process. We did not actually develop BiZZdesign’s repository. The further, actual de-
velopment of BiZZdesign’s repository will occur after our work. Hence a real proof of our scal-
ability solution is postponed until the completion of this development.

12.3.2 Prototype

We built a prototype solely to prove our scalability solution. As the prototype incorporates our
scalability solution, it follows the client-server architecture that is based on and encapsulates
a repository and a tool. The communication between the server and the tool is network based.
The server represents all data as one model space. The content conforms to our expressive
and concise meta-modelling architecture, having three typing-layers and three meta-model
layers. Exception is that it contains only a primitive object-orientation model at the top meta-
level instead of an ontological foundation. The use of the system representation and this ar-
chitecture partially proof their capability of representing any desired information.

To obtain a genuine proof facing BiZZdesign it offers a support representative for BiZZdesign’s
tooling. Like for example the BiZZdesigner tool of BiZZdesign, the prototype tool allows its
user to browse a tree of diagrams, open diagrams and close them again. Each action typically
leads the prototype tool to load or unload a cluster of elements of its view. Our particular pro-
totype consists of an optimized MySQL [39] database and a repository server and tool client
developed using the Java platform. Our prototype diverges from BiZZdesign’s repository de-
sign on the following points:

O The clusters’ definitions are not part of the stored meta-models. They are hard-coded in
the tool and repository;

O Data is only read, never modified and written back to the repository;

O No meta-data is read reflectively. In other words only the fixed, not the reflective form of
communication we describe in subsection 2.8.5 is used. The tool intrinsically knows all
meta-data that corresponds to it;

O The data of the tool mainly contains isolated diagrams. Hence the data is not really as
interconnected as with that of the BiZZdesigner, where diagrams can be graphic represen-
tations of shared, ‘semantic’ objects.

- 180 -

A scalable repository based on a meta-modelling architecture

12.3.3 Benchmark

Finally we demonstrated scalability by benchmarking an original tool of BiZZdesign and the

tool of the prototype. We can obviously not guarantee results of test we do with the prototype

tool will be the same as with the future repository. Of course we tried to do tests with equal

values for as much environment variables as possible. We did tests with both tools on the

same workstation. Points of criticism on the benchmark are still:

1. While both tools do work with data that forms a tree of maps whereby the maps contain
(reference to) diagrams, they internally represent their data differently;

2. The tools are developed on different platforms. The BiZZdesigner is developed using C++
and the prototype using Java;

3. The prototype server’s data does strictly not contain more data than created for the test.
The BiZZdesigner tool however creates more (internal) model data to support of function-
ality it offers, which the prototype does not offer.

The quality of the test was poor. Still the difference in behaviour of the two tools when han-
dling a ‘huge’ amount of model data was significant. Where the BiZZdesigner gets dispropor-
tionately slow (or even crashes), the prototype tool keeps performing well. When we let the
prototype handle data that forms a tree of depth 7 containing 167961 diagrams, we observe
how the tool opens any node in the tree or diagram within a second. On the other hand the
BiZZdesigner stops behaving properly when a model contains more than 2000 similar dia-
grams, even when no diagrams are even opened yet. From this significant difference we can
easily conclude that the data handling approach used in the tools does indeed matter for the
scalability.

Of points 1 and 2 of the above criticism we expect they are factors that would make the
BiZzZdesigner faster then the prototype. Hence they were not paramount. Of point 3 we ex-
pect the opposite: The prototype can be faster than the BiZZdesigner as it just loads less data
per diagram. Hence it still needs to be contemplated as this can be the factor that points out
why the prototype tool is faster than the BiZZdesigner tool. Yet we observe how the prototype
tool at least worked with a number of 167961 diagrams and the BiZZdesigner tool with +
2500 diagrams at maximum. What if we assume the number 167961 was the maximum for
the prototype tool to be capable to handle and this factor is the only factor that makes the
prototype tool faster than the BiZZdesigner tool? That would mean the BiZZdesigner tool has
an internal representation of a diagram that is about 167961 / 2000 = 84 times bigger than
that of the prototype tool. We think this is implausible. Hence we believe the factor is at least
not the only factor making the prototype tool faster than the BiZZdesigner tool. A major part
of the improvement in operations with ‘huge’ data content must originate from our scalability
solution.

12.4 Evaluation & Recommmendations

We have recommendations for both the use and development of MDE in general and
BiZZdesign in particular. For the first created a view and for the second we created solutions.

12.4.1 Model Driven Engineering

We did a broad research to the MDE and we evaluated the MDE in chapter 11. For further
development basics of MDE should now be defined. Our model space system representation
we described in chapter 4 can be a grounded start. The way a meta-model can define an in-
formation system’s domain concepts up to the entire system in chapter 5 is based on this.
This way all goals of the MDA can be met, on the other hand we criticize the MDA promise.
This does not facilitate the impact from a developed information system on its design (its
meta-model) as it proposes to automatically derive platform specific details from platform
independent ones.

In chapter 6 we continued and placed all relevant models in the models space. We concluded
that, as long no paradigm is used, three typing-layers and three meta-layers exactly concise
and yet expressive enough. Still a paradigm, like that of BiZZdesign, can not simply be re-
moved. A standard that allows multiple OO and AO paradigms to be described and exist next
to each other can once be developed. It would have a four-meta-layer architecture. This

- 181 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

would be beneficial for BiZZdesign and it could achieve interoperability as was once the inten-
tion with the MOF.

12.4.2 Solutions

We discourage any use of the technologies, frameworks and standards we investigated for
BiZZdesign. Not any allows it to keep its specific object-oriented paradigm. We found the
Eclipse community offers much support that would be interesting for BiZZdesign. Still this
support is hard to combine with BiZZdesign’s current tools. We finally relinquished the use of
the EMF for the design of BiZZdesign’s repository and the prototype by its scalability problems
and the fact it has a strict, different object-oriented paradigm. We recommend BiZZdesign to
keep its specific object-oriented paradigm and the corresponding meta-modelling architec-
ture.

We did not come up with a repository design that has standard-based interoperability. The

best thing we did to achieve interoperability is giving a good conceptual base and a clear de-

scription and some definitions for the communication: the clustering. On the other hand we

do not excluded standard-based interoperability either. Once the repository is set up as de-

signed, it is for example still possible to:

O Load one or more clusters of data from the repository;

Q Filter or select from this data some data that conforms to a custom, simplified meta-
model. This can for instance be expressed as an ECore model;

O Communicate this data as a standard prescribes. This can for example be using XMI, a
Java Metadata Interface (JMI) or an API that conforms to an IDL from the MOF specifica-
tion.

We recommend BiZZdesign the entire repository design we came up with and the scalability
solution it incorporated. Our prototype partly proved the feasibility and practice of the solu-
tion. We compared it with the current solutions of BiZZdesign and it showed a significant im-
provement. It would only be really proved when multiple, domain specific, fully developed
tools that are used in practice are successfully based on it. We described some challenges
with the solution. The prototype tool only reads data. How a tool can modify data while it only
has a limited view on the whole of the repository’s data and keeping the latter’s data consis-
tent is still the most open issue. We think this is feasible and of course the tools that will work
with BiZZdesign’s repository must be able to modify data within their limited views.

- 182 -

A scalable repository based on a meta-modelling architecture

References

(1]
(2]

(3]
[4]
(5]
(6]
[7]
5
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]

[19]

(20]
[21]
[22]
(23]
(24]
[29]
[26]
(27]

(28]
[29]

Adaptive. (2007). Retrieved 2007, from http://www.adaptive.com/.

Ambler, S. W. (2006). Introduction to Concurrency Control. Retrieved 2008, from
http://www.agiledata.org/

Atkinson, C., & Kihne, T. (2002). The Role of Metamodeling in MDA. In proceedings UML
2002 Workshop on Software Model Engineering, pp. 67 — 70, Dresden, Germany.

Atkinson, C., & Kuhne, T. (2003). Model-Driven Development: A Metamodeling Foundation.
The IEEE Computer Society, volume 20, pp. 36 — 41.

Base64 (n.d.) Retrieved 2008, from http://nl.wikipedia.org/wiki/Base64 Wikipedia, de
vrije encyclopedie, http://nl.wikipedia.org/

Berners-Lee, T., Fielding, R., & Masinter, L. (2005). Uniform Resource Identifier (URI): Ge-
neric Syntax. Retrieved 2008, from http://tools.ietf.org/html/rfc3986

Bézivin, J., Didonet Del Fabro, M., Jouault, F., & Valduriez, P. (2005). Combining Preoccupa-
tions with Models. In Proceedings of the First Workshop on Models and Aspects - Handling
Crosscutting Concerns in Model-Driven Software Development (MDSD), ECOOP.
BiZZdesign. (2006). Retrieved 2008, from http://www.bizzdesign.com/

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R, & Grose, T. J. (2003). Eclipse Modelling
Framework. Addison Wesley.

Burleson, D. K. (2005). Physical Database Design Using Oracle. CRC Press.

Display a UML Diagram using Draw2D. Retrieved 2008, from
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw?2d.html Eclipse,
http://www.eclipse.org/

eBPNM Designer. (2007). Soyatec, Open Solutions Company. Retrieved 2008, from
http://www.soyatec.com/ebpmn/

Eertink, H., Belinfante, A., Bakker, h., & Middelink, P. (1998). Testbed Project, D 5.2. Testbed
Software Architecture. Internal document of TRC Company.

Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W. B., & Chris A. Vissers. (1999). A
Business Process Design Language. World Congress on Formal Methods (1), pp. 76 — 95.
Eichler, H. Scheidgen, M., & Soden, M. (2006). A Meta-Modelling Framework for Modelling
Semantics in the Context of Existing Domain Platforms. Humboldt-Universitét zu Berlin.
Faase, F. (2008). Design and architecture of the repository. BiZZdesign internal document.
Filman, R. E., & Friedman, D. P. (2000). Aspect-Oriented Programming is Quantification and
Obliviousness. In Workshop on Advanced Separation of Concerns, pp. 21 — 35, Addison-
Wesley.

Glossary of Networking Terms for Visio IT Professionals. (2002). Retrieved 2008, from
http://www.microsoft.com/ Microsoft Corporation

GMF Tutorial Part 2. (2008). Retrieved 2008, from

http://wiki.eclipse.org/GMF_Tutorial Part 2 The Eclipsepedia,
http://wiki.eclipse.org/

Gogolla, M., Favre, J., & Bittner, F. (2006). On Squeezing M0, M1, M2, and M3 into a Single
Object Diagram. Lecture Notes in Computer Science, Volume 3844/2006, pp. 1 — 9.
Guizzardi, G (2005). Ontological Foundations for Structural Conceptual Models. Telematica
Instituut, Fundamental Research Series, vol. 015, Enschede, the Netherlands.

Harel, D., & Rumpe, B. (2004). Meaningful Modeling: what's the semantics of "semantics"?
Computer, volume 37, No. 10, pp. 64 — 72.

Hibernate, Red Hat Middleware. (2006). Retrieved 2007, from http://www.hibernate.org/
sourceforge.net.

lacob, M. (2008). A-MUSE, (Freeband Communication). Retrieved 2008, from
http://www.telin.nl/index.cfm?project=A-MUSE

lacob, M., Jonkers, H., & Wiering, M. (2004). Towards a UML profile for the ArchiMate lan-
guage. Telematica Instituut & Leiden Institute for Advanced Computer Science.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained, The Model Driven Architecture:
Practice and Promise. Addison-Wesley.

Kihne, T. (2006). Matters of (meta-) modelling. In Software and Systems Modeling (SoSyM),
volume 5, number 4, pp. 369 — 385, Springer-Verlag.

Kurtev, I. (2005). Adaptability of Model Transformations. PhD Thesis, University of Twente.
Kurtev, I. (2007). Metamodels: Definitions of Structures or Ontological Commitments? Work-
shop on Towers of Models, 25 Jun 2007, Zurich, Switzerland, pp. 53-63. University of York.

- 183 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

[30]
[31]
[32]
(33]
[34]
[39]

[36]
[37]

[38]

(39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
[50]
[51]

[52]

[53]
[54]
[55]

[56]

[57]

[58]

Lankhorst, M. (ed.) (2005). Enterprise Architecture at Work: Modelling, Communication, and
Analysis. Springer.

Lonnee, J. (2007). Ontwerp Repository Metamodel & Portal. Version 1.5, BiZZdesign.
Lonnee, J., & Hoogeveen, S. (2007). Plan van aanpak van invoegen (web)portal. BiZZdesign.
Lozano, F. (1998). Retrieved 2008, from http://www.edm2.com/0612/msqgl7.html Intro-
duction to Relational Database Design. http://www.edm?2.com/

McAffer, J., & Lemieux, J. (2005). Eclipse Rich Client Platform, Designing, Coding, and Pack-
aging Java Applications. The eclipse series, Addison Wesley.

MetaObjectFacility(MOF) Specification. (2002). Object Management Group, Version 1.4. Re-
trieved 2007, from http://www.omg.org/

Minsky, M.L. (1967). Computation: Finite and Infinite Machines. Prentice Hall.

MOF 2.0/XMI Mapping. (2007). Version 2.1.1, Object Management Group,
http://www.omg.org/.

Muth, P. Rakow, T. C., Weikum, G., Brossler, P., & Hasse, C. (1993). Semantic Concurrency
Control in Object-Oriented Database Systems. In Proceedings of the Ninth International Con-
ference on Data Engineering, pp. 233 — 242.

MySQL. (2008). Retrieved 2008, from http://www.mysqgl.com/ The world's most popular
open source database. MySQL AB, Sun Microsystems, http://www.sun.com/

OWL Web Ontology Language Guide. (2004). Retrieved 2008, from
http://www.w3.org/TR/owl-guide/ W3C, http://www.w3.org/

Plante, F. (2006). Introducing the GMF Runtime. Retrieved 2008, from
http://www.eclipse.org/articles/Article-Introducing-GMF/article.html IBM.

Pohl, K., Bockle, G., & van der Linden, F. (2005). Software Product Line Engineering: Founda-
tions, Principles, and Techniques. Springer, Heidelberg.

Rashid, A., & Ghitchyan, R. (2003). Persistence as an Aspect. In proceedings of the 2nd inter-
national conference on Aspect-oriented software development, pp. 120 — 129.

Richters, M., & Gogolla, M. (1999). A Metamodel for OCL. In UML *99 - the unified modeling
language: beyond the standard, pp. 158 — 171.

Rittel, H., & Webber, M. (1973). Dilemmas in a General Theory of Planning. Policy Sciences,
Vol. 4, pp. 155 — 169, Elsevier Scientific Publishing Company, Inc., Amsterdam.

Royce, W. W. (1970). Managing the development of large software systems. In proceedings of
IEEE WESCON, pp. 1 -9.

Sheth, A. (1997). Data Semantics: what, where and how? Chapman and Hall.

Sim, S.E., Easterbrook, S., & Holt, R. C. (2003). Using Benchmarking to Advance Research: A
Challenge to Software Engineering. In Software Engineering, 25th International Conference on
Software Engineering (ICSE'03), pp. 74 — 84.

Stahl, T., & Vélter, M. (2006). Model-Driven Software Development, Technology, Engineering,
Management. John Wiley & Sons, Ltd.

Stefik, M. J., & Bobrow, D. G. (1986). Object-Oriented Programming: Themes and Variations.
In Al Magazine 6(4), pp. 40 — 62.

Tanenbaum, A. S., & Steen, M. van (2002). Distributed Systems, Principles and Paradigms.
International Edition, Prentice Hall, Inc.

Tarr, P., Ossher, H., Harrison, W., & Sutton, S. M. (1999). N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In International Conference on Software Engineering,
pp. 107 — 119.

Testbed. (n.d.). Telematica Instituut. Retrieved 2008, from
https://doc.telin.nl/dsweb/Get/Document-2909/Testbed folder.pdf.

The Eclipse Graphical Modeling Framework (GMF). (2008). Retrieved 2008, from
http://www.eclipse.org/gmf/, Eclipse, http://www.eclipse.org/.

The Eclipse Modeling Framework (EMF) Overview. (2006) Retrieved 2008, from
http://help.eclipse.org/, Eclipse, http://www.eclipse.org/.

The EMF.Edit Framework Overview. (2004). Retrieved 2008, from
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.emf.doc/references/ov
erview/EMF.Edit.html Eclipse, http://www.eclipse.org/.

The Graphical Editing Framework (GEF). (n.d.). Retrieved 2008, from
http://www.eclipse.org/gef/ Eclipse, http://www.eclipse.org/.

Tijhuis, F.P., & Lippe, E. (2004). Handreiking; Kwaliteit Modellen en Bestanden. Retrieved
2008, from http://www.alterra.wur.nl/ Wageningen Universiteit en Researchcentrum
http://www.wur.nl/

- 184 -

[59]

[60]
[61]

[62]

A scalable repository based on a meta-modelling architecture

Weger, M. de (2007). Model Driven Architecture en UML 2. Checklisten Informatiemanage-
ment, 3.C.11.

Wieringa, R.J. (2003). Design methods for reactive systems. Morgan Kaufmann.

XML Path Language (XPath). (1999). Version 1.0, W3C. Retrieved 2008, from
http://www.w3.0rg/TR/xpath

Zhang, Y., & Xu, B. (2004). A Survey of Semantic Description Frameworks for Programming
Languages. ACM SIGPLAN Notices, volume 39 no.3, pp. 14 — 30.

- 185 -

Master Thesis of Josbert Lonnee, University of Twente & BiZZdesign B.V.

- 186 -

A scalable repository based on a meta-modelling architecture

Appendix A is intentionally removed. It can be supplied and
may be distributed, sold and/or copied only with permission of
BiZZdesign B.V. in the Netherlands,

www.bizzdesign.nl

- 187 -

