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Abstract

This report is about the research and design of an audio power amplifier with a notch in the
output impedance. A notch in the output impedance could be beneficial if the amplifier is set
in parallel with a class D amplifier. In this combination, the amplifier should remove the
high frequency switching ripple of the class D amplifier.

Investigation of the output impedance with a pole zero analysis determines the theoretical
possibilities about a notch in the output impedance. A notch in the output impedance can be
created by a peak filter in the amplifier. An amplifier containing a peak filter is designed
with ideal components, like transconductances and inductors. Different filters are
investigated to implement a peak filter in an IC process. These filters are created by ideal
switches and capacitors. To evaluate their usability, simulations are done with amplifiers
containing those filters in combination with a class D amplifier.

The report shows that a notch can be created at the cost of some increase in the distortion.
This can be compensated by increasing the power consumption of the amplifier. Also a small
peak in the output impedance is introduced. The peak in the output impedance results in a
ringing when a step response is applied. Simulations results in the conclusion that it seems
not beneficial to use an amplifier with a notch in the output impedance, if the notch should
remove the switching ripple of the class D amplifier.






Table of contents

Abstract
1 INErOAUCEION cocvrreriecrinnricssssnniecsssnnsecssssssessssssssesssssssasssssssssssssssssssssssssssssssasssssssssssssssssssass 7
2 AmPLifier reqUIrEMENLS .....ccocieervercsssencsssnicssnsssssnssssssesssasesssssssssssssssssssssssssssssssssssssassses 9
2.1  Gainin respect With stability.........ccccceiieiiiiii 9
2.2 Derivation of the output IMPEdANCE .........eoieiiiiie s 11
2.3 Output impedance in respect with stability ..........ccccceeverieeriiiieieeceee e 13
2.4 Output impedance SPECITICATION .........eiiiiiiie e e 15
3  Output impedance using a Pole-Zero analysis ........cueeneenreensenssnncsnenssncsssecssneesaenes 17
3.1 Standard amMPlTIEI........oiieiie e 17
3.2  Adding two complex zeros to create a NOLCN.........ccccevveiieicie i 19
3.3 Limitations while neglecting the third pole...........cccoviiiiiiiii e 22
3.3.1 Length of the two poles with respect to DC.........ocoeviieviiiniieiiecieeieeeene. 22
332 Shifting 0ne 1eal POIE ....cc.eeiiriiriiiiiiieee e 25
3.4 Limitations in @ realistic SItUALION...........ccoviiieriiiree e 28
3.5 SYSEEM DESIGN....eiiieiiiie ittt et bbbt nr e enes 31
4 AMPLfier deSIGN ...ccciueeiirseriiisniiiisnrinisnrininrenssnncssssncsssicssssnsssssssssssssssssesssssssssssssssssssssses 33
4.1 System IMPIementation..........oocueiiiriieese e 33
4.2 Realizing the notch in the output iIMPedancCe............ccvvereriereere e 34
4.3  Amplifiers in parallel...........oo e 38
4.4 Amplifiers in parallel with an output Stage..........ccccveveiiieiiciecce e 42
5 Filter implementation 45
51  ContinUOUS tIMe FIITEIS ...ccueiuiiiiiecic e 45
5.2 Switched capacitor fIltErS.........cociiiiiiiiie s 47
5.2.1 Component SIMUIATION ........coevuiieiiiiiiiie e 47
522 Digital second order Filter.........ccccooiuiiiiiiiiiiiiiee e 48
523 Peak filter USING ONE CAPACILOL .....eevveeerieiieeiieiie ettt 50
5.2.4 Peak filter using eight equal capacitors..........cccceevuieriieiieniieenieceeeeeee, 53
6 SIMUIATIONS . .cueeiiiiireiiiiisrnniicnsssnniecsssnnecssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssassssssss 55
6.1 AMPUFIEr SEIUCTUIE ..o 55
6.2  Different @amplifiers .......coooeiiiiice s 57
8.3 RESUILS ..t nb et 59
A ©71) 1 14 1113 1) 1 PN 61
RETEIEICES .cuurreriecirrnnricisssnniensssnricsssssssessssssssessssssssossssssssssssssssssssssssssssssssssssssssassssssssssssssssssass 63
APPEINAICES coverirrurrirsercssercsssnrcsssrssssasssssasssssassssssssssssssssasssssassssssssssssssssssssssssssssssssssssssssasssssasss 65
A. Derivation of the output IMPEANCE .........c.ccveiiiiieieeecece e 65
B. Coefficients Of the Z fIlter........cccooi i 66

C. Design of the five amplifiers.........cceiieiiieseee e 67






Chapter 1 - Introduction

1 Introduction

Audio power amplifiers are widely used nowadays. The difficulty of audio amplifiers is to
obtain high output power in combination with high efficiency and low distortion. Class AB
amplifiers have low distortion but the efficiency is very low. Class D amplifiers have very
high efficiency, but also high distortion. A parallel combination of a class D and class AB
amplifier results in high efficiency and low distortion. The combination of the two amplifiers
is shown in figure 1.1.

Vin s

O,

Figure 1.1 Parallel combination of a Class AB and Class D amplifier

The output power should be delivered by the class D amplifier and the accuracy by the class
AB amplifier. The class AB amplifier should be able to drain the switching ripple. This
topology is already investigated [1], but there is no suitable design for the use in an IC
process, because the output impedance of a class AB amplifier is relatively high for the high
switching frequencies. Consequently, it cannot compensate the ripple.

There are some options to lower the output impedance. In general, the gain of the amplifier
should be improved. It is not possible to improve the total amount of gain of the amplifier
freely over the whole frequency by limitations of the stability of the amplifier in combination
with the used IC process. More gain results in general in less distortion at the cost of stability
or power consumption. A typical amplifier design is a trade of between gain, stability and
power consumption, which is set to the best needed performance.

A more realistic option is to improve the gain of the amplifier at a small bandwidth. This
could be done by a peak filter in the gain stage of the amplifier. Another option is to design
an external notch filter at the output of the amplifier. A filter at the output of the amplifier
should be able to drain and source large currents, which requires large external components.
More suitable in IC design is a filter in the gain stage of the amplifier. By limitations of the
accuracy in an IC process, some care should be taken by designing the peak filter.

The research focuses on the possibilities to create a notch in the output impedance of the
class AB amplifier to be able to remove the ripple of the class D amplifier. The amplifier
should be able to realize in an IC process without requiring many external components.

Chapter 2 gives some background theory about the output impedance of amplifiers. Also a
derivation is done about the specifications of the amplifier in combination with the
distortion, power consumption and stability.
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Chapter 1 - Introduction

The output impedance of the amplifier is derived in a pole zero analysis in chapter 3. The
chapter deals with the stability in combination with a notch in the output impedance. During
the derivation, some limitations were derived. The results and limitations of the pole zero
analysis is translated to an amplifier design. This design is done with ideal components and
results in an amplifier topology and is described in chapter 4.

The amplifier topology contains some ideal components which are not suitable to implement
in an IC process. Especially filters with inductors are not able to implement. In chapter 5,
some filters are investigated to implement the topology in an IC process.

In Chapter 6, simulations are done with the parallel combination of the AB amplifier and a
class D amplifier. There are four ideal amplifiers designed which will be compared with an
amplifier without a notch in the output impedance. The last chapter, chapter 7 contains the
conclusion of the project.
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Chapter 2 - Amplifier requirements

2 Amplifier requirements

The parallel combination of a class AB and class D amplifier gives some more requirements
to the class AB amplifier. The amplifier should be able to remove the switching residues of
the class D amplifier. The switching frequency is relatively high compared to the audio
bandwidth of 20 Hz to 20 KHz. First the gain of amplifiers is described with respect to
stability. The output impedance should be low to remove the switching ripple; the limitations
of the output impedance of amplifiers is described next. The output impedance of the
amplifier has a relation with stability which is described in paragraph 2.3. Finally, the
requirements are given when the amplifier has a notch in the output impedance.

2.1 Gain in respect with stability

The design of audio amplifiers is widely described in literature and is not repeated in this
section. This paragraph gives only a short summary about the gain of amplifiers in respect to
stability. A two stage amplifier is shown in figure 2.1.1. First the Miller capacitance Cm; is
neglected. In that case, the amplifier contains two poles which are typically close to each
other. Each pole contributing 90 degrees phase shifts and consequently the amplifier
asymptotically approaches 180 degrees. The magnitude and phase characteristic of the
amplifier is shown in figure 2.1.3a.

The two poles without the miller capacitance are described by:

1 . N
RICI ’ RLC:L

F_igure 2.1.1 Two stage Am;)lifier

Applying negative feedback, a part of the output is redirected to the input. If the output is
fully redirected, a voltage buffer is created which is shown in figure 2.1.2. According to the
stability criterion [8], the open loop gain has to cross the unity gain bandwidth (UGB) or
zero dB before the phase shift reaches 180 degrees. The amplifier as sketched above without
the Miller capacitance has a phase shift of 180 degrees at UGB. The Miller capacitance is
needed which introduces a dominant pole. A bode plot containing Miller compensation is
shown in figure 2.1.3b. The first pole is shifted more to the left, which results in zero dB
gain before the phase shift reaches the 180 degrees.

V;II

Figure 2.1.2: Voltage buffer
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Figure 2.1.3 a) Bode and phase plot b) Bode and phase plot with Miller capacitance

The Miller compensation can be extended to more than two stages. Theoretically, it is
possible to extend the amplifier with an infinite number of stages. In literature different
methods of Miller compensation is described, but it does not result in relatively high gain for
high frequencies.

In the most amplifier designs, the allowed phase is less than 180 degrees at UGB. The
distance between the phase at UGB and 180 degrees is called phase margin (PM). The phase
margin is indicated in figure 2.1.3b. Typical phase margins are around 45 or 60 degrees [8].
The unity gain bandwidth of the amplifier of figure 2.1.1, is described by [2]:

ucs = IM
C

ml

An option to improve the gain is to increase the transconductance of the output stage. The
output stage of the two-stage amplifier in figure 2.1.1 is gm,. The transconductance can be
increased by increasing the quiescent current in the output transistors. This current leads to
more power dissipation and is not attractive in a low power audio amplifier design.
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Chapter 2 - Amplifier requirements

2.2 Derivation of the output impedance

The interest in this report lies on the output resistance, because reducing the output
impedance will also reduce the distortion and switching ripple [1]. The relation of the
distortion and the output impedance can be easily determined using figure 2.2.1.

Figure 2.2.1 Relation between distortion and output impedance

The amplifier is simplified by a voltage source with a resistance in series. The error or
distortion signals are described by current source at the output. The error signal could be
introduced by the amplifier itself, but also by external factors for example the class D
amplifier in this case. If the output impedance is zero, the error signal is shortcut by the
voltage source. If the output impedance is high, the error signal can not be dissipated by the
voltage source and consequently the error signal is dissipated by the load. In this situation,
the unwanted error current in the load results in distortion.

The output impedance of the voltage buffer of figure 2.1.2 depending on the open loop gain
RO

1+ A,

is described by [4]: Z, =

The resistance “R,”, is the open loop resistance at zero Hertz. Increasing the gain, results in
decreasing of the output impedance and consequently in reducing the distortion. This is true
in general, but it is also shown that it is possible to decrease the output impedance keeping
the same open loop gain by influence of the feed back Miller capacitances [3]. Next, the
output impedance of a simple amplifier topology is derived. The amplifier is shown in figure
2.2.2, the output is fed back to the input and a current source is applied to be able to derive
the output impedance. In practice, there are a lot of variations possible, but the limitations
are comparable.

Vi

-gms

R, I Cq iﬁout

Figure 2.2.2 Two stag_e amplifier
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The output impedance can be written by [2]:

S S
1 Cl +Cm1 ( RI(CI +Cm1)j

m, C, oy IM
Chi

Investigation of the output impedance equations shows that it contains some constants and a
pole and a zero. The pole and zero is written by:

Zout (s)=
g

TN v op=_9m
1 RI(CI +le) 1 Cnl
For high frequencies, the output impedance is written by:
2. ()= 1 C +C, - 1
gm, le gm,

Independent of the poles and zeros, the output impedance for high frequencies is always
approximately 1/gm,, where gm, is the transconductance of the output stage. To have lower
output impedance at low frequencies, the zero should be set lower frequencies than the pole.
The corresponding graph is shown in figure 2.2.3a. Also the situation is shown in figure
2.2.3b, when the pole is set to a lower frequency than the zero. In that case, the output
impedance for low frequencies is much higher than the final value of 1/gm, for high
frequencies.

p1

1igm2 1igm2

i
Z>

z1

f> f>
Figure 2.2.3 a) output impedance with z1<p1 b) output impedance with z1>p1

The low frequency output impedance is written by:

1
Zou 0)=——
t( ) gmlngRl

To have as low output impedance as possible, gm; gm, and R; should be as large as
possible. As described in [2], this has some limitations. Increasing the resistance, results in
decreasing the place of the first zero and results in more phase shift. The phase shift in
respect to stability is described in the next paragraph. The transconductance gm; is limited
by transient current and consequently by the power dissipation.
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2.3 Output impedance in respect with stability

The amplifier in paragraph 2.1 contains one zero and one pole. The corresponding phase
shift is shown in figure 2.3.1. The phase shift is zero degrees for low frequencies, reaches the
maximum value of +90 degrees and becomes zero degrees as well to high frequencies. A
positive amount of phase shift acts inductive. Loading the output with a capacitor, there is a
capacitor and inductor in parallel. This could results into oscillation and consequently in
instability. In this paragraph, some limitations of designing an amplifier with respect to
output impedance and stability are described.

Phase [degrees]

Frequency [Hz]
Figure 2.3.1: Phase shift of an amplifier with one pole and one zero

With one zero and one pole the phase shift is always between zero and +90 degrees. In
practical designs, there are more poles and zeros and consequently it is possible to reach
larger phase shifts. If the phase shift becomes negative, the amplifier acts like a capacitor.
Zero degrees phase shift corresponds to a resistance. If the phase shift becomes more than
+90 or less as -90 degrees, a negative resistance part is introduced.

Im
Yload
AT
Ytotal
. | Re
Isig Zout Zload |
|
T |
|
Yout
Figure 2.3.2 a) example of Z,, and a Z,,,q b) impedances written as vectors

A simplification of an amplifier with a load is shown in figure 2.3.2a. The current source
with output impedance in parallel corresponds to the amplifier. In figure 2.3.2b, the
impedances are written as admittances. The impedance is equal to 1/admittance. The total
admittance is the sum of the two vectors. If the phase of the amplifier is +90 degrees and the
load is capacitive (-90 degrees) and You=Yload> Ytotal 18 Zzero. The output impedance is 1/Y iotal,
division by zero results in oscillation. Assuming the load can be every passive load, the
phase of the load is always between +/- 90 degrees. If the amplifier never reaches +/-90
degrees, it is never possible to get oscillation and stability can be guaranteed for every
passive load.
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In practical amplifier designs, the amplifier is only fully stable for limited loads [5]. With
fully stable, it is meant that the amplifier does not resonate. The phase shift is normally zero
or higher to get low output impedance for low frequencies. Consequently, the amplifier is
limited for capacitive loads. A graph is made containing plot of the output impedance of an
amplifier and two impedances of two capacitances, which are 1nF and 100nF. A capacitance
of 1nF lies in the resistive part of the amplifier at 150 MHz. Increasing the capacitance,
results in decreasing the impedance of the capacitor to high frequencies. The 100nF
capacitance lies in the inductive part of the amplifier and the amplifier could resonate.

Magnitude
40 : :

30 .............................................................. .
Load=1nF

20 .............................................
Load=100nF

Zout [dB]
[
i

w1t ot w0t ot o
Frequency [Hz]

Figure 2.3.3 Output impedance of amplifier in combination with a capacitive load

The phase of the system could exceed the +90 degrees maintaining a stable system. The
resistive load should be larger than the negative resistance which is created by the amplifier.
If the load is 1Q, the phase could exceed the +90 degrees between 10-100 KHz in the
example of figure 2.3.3. Especially for high frequencies when the output impedance is high,
the phase should be smaller than +90 degrees to guarantee a stable system. The amount of
resonance is dependence on the phase of the output impedance and the load.

To be able to determine the stability of a system, a step response can be applied. A step
contains all the frequency components. The step response displays overshoot and ringing. An
example of a step response is shown in figure 2.3.4. The graph contains 3 lines with different
step responses. The first line does not have ringing at all, the second line is damped out
within 10 ps and the third line has a very long ringing time. The margin of the ringing time
is not determined now, but a response like ‘line 3” is not allowed.

Step Response

15 T T T T T T T T T
Line 1
11 —— —Ling 2
—-—-Line3
. .
o i~ I .
= ] [ A . i
% | '\-lgL P I ! \.1' LA P e \
£ \ 3/'\'1 P ] 1o jh e
. T e S S A Y A
[ | i : o
A | i v ! \J, L -
st b ) > . 1
1 1 1 1 1 1 | | | |

) ] 04 0.z 03 0.4 04 0g oy 0s os 1
Time (zec) w107

Figure 2.3.4 Example of a step response
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2.4 Output impedance specification

An amplifier does not have low output impedance for high frequencies by the limitations of
the 1/gm of the output stage. The switching frequency of the class D amplifier is high and
consequently, it is not possible to remove the switching ripple. To be able to remove the
switching ripple, the output impedance should be decreased. The idea is to do this by
creating a notch in the output impedance. A graph of the wanted curve is shown in figure
24.1.

Z=

f-=
Figure 2.4.1 Output impedance with a notch

The output impedance of the amplifier at resonance frequency should be lower than the
impedance of the loudspeaker, because the current ripple should be dissipated by the
amplifier and not in the loudspeaker. To be able to drive some capacitive load, the phase
should not exceed +90 degrees above resonance frequency. Also the low frequency output
impedance should be low, to have as low distortion as possible in the audio bandwidth.

There is a relation between the open loop gain of the amplifier and the output impedance.
Increasing the open loop gain, results in decreasing the output impedance. Creating a peak in
the open loop gain of the amplifier should results in a notch in the output impedance. Some
care should be taken, that the peak in the open loop gain does not lead into instability with
respect to the phase. The phase shift should always be smaller than 180 degrees if the gain is
one.

The switching frequency of the class D amplifier could be constant or variable, depending on
the design. To be able to dissipate the switching ripple, the resonance frequency should be
known with certain accuracy. If there are design possibilities, the resonance frequency
should be variable. Filters which could be needed to create the notch should be able to
implement in an IC process and not requires much external components. Another important
parameter is the power consumption. The extra components which are needed to create the
notch in the output impedance should consume less power than simply increase the current
in the output transistors. Increasing the current in the output transistors results in a higher
transconductance and consequently in lower output impedance. Next, the specifications as
described in this paragraph are summarized.
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Specifications

The amplifier should be stable

Low output impedance in the audio bandwidth

Zout(wpeak) << Zspeaker

Phase should not exceed +90 degrees above resonance frequency
The filter should be able to implement in an IC process

Power consumption should be low in comparison with
transconductance.

increasing the

Remco Twelkemeijer
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Chapter 3 - Output impedance using a Pole-Zero analysis

3 Output impedance using a Pole-Zero analysis

This chapter gives some theory and methods about reducing the output impedance using a
pole-zero analysis. First, a start is made with a standard amplifier described by a pole-zero
map. Next, two poles and two zeros are added to create a notch in the output impedance. The
notch gives some limitations to the output impedance. An approach while the last pole is
neglected is first described. Next, the output impedance is investigated in a realistic situation,
when the last pole is not neglected. Finally two examples of two system designs with respect
to the tradeoff between the place of the poles and zeros is described.

3.1 Standard amplifier

In this chapter the output impedance is derived in a very mathematical way. This means,
there is a direct relation with an amplifier but the variables, poles and zeros can be set to
every value. With this approach it is possible to determine the limitations about reducing the
output impedance without using amplifier topologies. Designing an amplifier, it should deal
with those limitations.

The amplifier should have low output impedance at low frequencies as well as a certain
resonation frequency. Starting with the amplifier in paragraph 2.1 of figure 2.1.1, the output
impedance is described with some constants, one pole and one zero. Simplifying the output
impedance to a general first order Laplace function, the output impedance is written by:

Zout(s): K M

(S_pl)

K A certain proportionality factor for the output impedance.
Z1 First zero
P First pole

From the function Z,,, there are several methods to determine the magnitude and phase
characteristics. One of them is using a pole-zero map as shown in figure 3.1.1. A pole-zero
map is not the easiest way to determine the magnitude and phase characteristics of a first
order system, but in the next paragraphs some poles and zeros will be added to the function.
With these extra poles and zeros, the complexity of the function increases. Using a pole-zero
map, it is possible to simplify the function and it is easier to investigate the problems when
the complexity increases.

jw

a
Figure 3.1.1 Pole-Zero map
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Chapter 3 - Output impedance using a Pole-Zero analysis

The output impedance at a frequency y is equal to the length of the vector of the zero
divided by the length of the vector of the pole. The phase at this frequency is the angle of the
vector of the zero @,, minus the angle of the vector of the pole @,,.

|G, =2) 1
| out ) K | ja) _ plx K r b q)(zout ((0)) q)zl(a)) q)pl(a))

The length of the pole or zero is described as function of the frequency. It is the length of the
vector from a pole or zero to a certain frequency. In figure 3.1.1, the length of the pole at
frequency oy is 1,. Sometimes, the length of the vector is needed when the frequency is zero.
This is described as the length at DC. Note that for real poles or zeros, the length at DC is
equal to the poles and zeros.

Starting at DC, o is zero. The magnitude of the output impedance becomes:
yA

12, (0] =K -‘—1 :
P,

pole should be large. This corresponds to the magnitude characteristic of the output
impedance as described in paragraph 2.2. The graph is repeated in figure 3.1.2.

To get low impedance, it follows that the zero should be small and the

[+)

Z>

z1

f->
Figure 3.1.2: Curve of the output impedance with one zero and one pole

The contribution of a zero to the phase is +90 degrees and the contribution of a pole to the
phase is -90 at maximum. Because the zero should be set to lower frequencies than the pole,
the phase shift lies between zero and +90 degrees. Assuming the poles are real and the
constant ‘K’ is one, the output impedance and phase shift depending on the frequency can be
written by:

2 2
|Zout l Zl—m , (D(Zout (a))): tan—l(ﬂj _ tan‘l(ﬁj
W Z1 p2
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3.2 Adding two complex zeros to create a notch

In the previous paragraph, the output impedance is described with a first order function.
With a first order function it is not possible to get low output impedance to low frequencies
as well as a notch in the output impedance. To create a notch in the output impedance, two
complex conjugated zeros are needed. With the zero which is necessary to satisfy low output
impedance at low frequencies, at least a third order function is needed. With respect to
stability, the phase of the amplifier should be between +/- 90 degrees. To get zero degrees
phase shift at high frequencies, the same amount of poles and zeros are needed. To create a
notch in the output impedance as well low frequency output impedance, at least three poles
and three zeros are needed. The ideal curve which is wanted is shown in figure 3.2.1.

The curve can be written by:

(S_ 21)(5_22)(3_ 23)

Zout(s): K- (5_ pl)(s— pz)(S— ps)

K A proportionality factor for the output impedance.

Z First zero
7 Second zero (complex) mz,=a+b-]
73 Third zero (complex) =a-Db-j

1 First pole
P2 Second pole
P3 Third pole

The resonance frequency ®yorch depending on the second and third zero is equal to the length
of the zeros at DC [9]:

M:():) @\ 0tch z'\/m:|zl/2|

0w

Z=

f->
Figure 3.2.1 simplified plot of the output impedance dependence on the frequency.

With respect to stability, all the poles should be negative. The two complex conjugated zeros
should be negative as well to compensate the poles. The first zero can be positive or
negative. A negative zero results in +90 degrees phase shift and a positive zero results in -90
degrees phase shift. If the zero becomes positive, the transfer function with “s” is zero

becomes: Z,,(0)=K M

(P P> Xps)
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Chapter 3 - Output impedance using a Pole-Zero analysis

The first pole z; has a minus sign, a minus sign in the output impedance results in -180
degrees phase shift. A phase shift of -180 degrees results in a negative impedance, which
could result in instability. With this approach it can be concluded that all the poles and zeros
should be negative.

Starting the third order system with the resonance frequency at 1 MHz and the first zero to
10 KHz and the third pole to 100 MHz, the poles can be directly determined. In paragraph
3.1, it was obtained that the poles should be as large as possible to retain low output
impedance for low frequencies. Creating large poles, for example if one pole is larger than
the resonance frequency and one pole is smaller than the resonance frequency. It directly
follows that the phase becomes larger than +90 degrees to frequencies larger than resonance
frequency. The first zero is compensated by the first pole. At resonance frequency the phase
shift is +180 degrees at maximum by the two zeros and consequently more than +90 degrees.
An example with a pole at 100 KHz and a pole at 10 MHz is shown in figure 3.2.2. The
phase shift has the maximum value after 1 MHz and becomes nearly 180 degrees. At this

frequency the phase shift should be less than 90 degrees to be able to drive some capacitive
load.

Pole-Zero Map %107 Magnitude
20

1]

.............................. dos
-20

]

x

*

X

6

&

f
Zout [dB]

]

-80

-100

1 o 3

e e e e s . . ‘ . . o0 . . . ‘ .
a et ot ad® et adt a0® ad® et e w0t ot w0 i L1 G 5 S Ty S v GRS 1 AR S TS i
o+(2-m) Frequency [Hz] Frequency [Hz]

Figure 3.2.2 Combination of the notch and the first order system in a third order system

The magnitude characteristic of figure 3.2.2 corresponds to the wanted curve of figure 3.2.1.
With respect to stability, it is not possible to create this curve. To be able to create a stable
system, the second pole should also be set to lower frequencies than the resonance
frequency. This situation is shown in figure 3.2.3. The two poles are able to compensate the
two complex zeros if the system is designed properly. This results automatically in +90
degrees phase shift at maximum. In paragraph 3.1, it was obtained that the poles should be as
large as possible to retain low output impedance for low frequencies. With the need for
stability, the poles are decreased and the output impedance at low frequencies increases.

p3

p1 p2

s

z1

Wwp

f->
Figure 3.2.3 simplified plot of the output impedance dependence on the frequency.
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With the first and second pole, large complex conjugated poles can be formed. This is shown
in figure 3.2.4. Using the peaking behavior of the complex poles; it is possible to satisfy
good output impedance at DC and a phase shift between +90 and -90 degrees. For low
frequencies and keeping the real value of the poles constant, the vector of the two poles
becomes larger if the poles complexity increases. Increasing the lengths of the poles, results
in decreasing of the output impedance. From this approach it can be concluded that a
peaking in the output impedance is needed if the low frequency output impedance has to be
decreased.

p3
p1p2

2>

z1 wp

f=
Figure 3.2.4 simplified plot of the output impedance dependence of the frequency.
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3.3 Limitations while neglecting the third pole

It is seen that that the need for stability results in an increase of the output impedance for low
frequencies or introduce a peak in the output impedance. One could ask how much the
output impedance increase and how large should the peak in the output impedance be with a
marginal lost in DC gain. In this paragraph, a derivation is done while the influence of the
third pole is neglected. First the values of the poles are calculated to satisfy a stable system.
Finally, the poles are supposed to be real. If the poles are real, they could be set to different
frequencies. A calculation is done what happens to the output impedance at low frequencies
as well at resonance frequency.

3.3.1 Length of the two poles with respect to DC

With respect to stability, the values of the poles are limited by the zeros. Next these values
will be calculated. The output impedance for a third order system with the constant ‘K’ is
one can be written as:

|H (Cl)] — rzl(a))' rzz(a))' r23(60)

(@)1 (@) 1y (@)

The length of the poles is written by:

(@)= \/Re(pyx )2 + (a)—Im(pyX ))2 LN r(@)=p, +@

The angle is determined by subtracting the angle of the poles and adding the angle of the
zeros which results in:

(D(Z(a))): q)zl(a))+q)zz(a))+CDZS(a))_q)pl(a))_(DpZ(a))_(DpS(a))

The angle of the poles is written by:

D ()= tan_l[a) ~Im(p, )J m(p 20y ox ()= tan™ (ﬁ]

Re( px) px

The magnitude of the function corresponds to certain output impedance and should be as
small as possible. The length of the poles should be as large as possible and the length of the
zeros should be as small as possible. The place, and consequently the length of the poles and
zeros are limited by the allowed phase shift.

Starting again with the wanted curve shown in figure 3.2.1, the formula for the phase and
magnitude can be simplified. Using a resonance frequency of 1 MHz, the first zero z,, is far
away (for example 10Khz). The contribution of this zero results in +90 degrees phase shift.
The third pole ps is set to very high frequencies (for example 100MHz) which results in a
contribution of zero degrees phase shift. The phase of the function can now be written as:
D(Z()) = 90°+ .. (0) + ©.. ()~ . (0) -0 . (o).
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In the calculations, the +90 degrees is left out. To maintain +/- 90 degrees phase shift, the
phase shift should be between -180 and 0 degrees. Also the contribution in magnitude of the
first zero and last pole could be left out. This results in losing the low output impedance in
the graphs, but the transfer function is still useful and simpler to read. If the transfer function
becomes less than zero dB, there is some improvement and if the function becomes larger as
zero dB the output impedance is decreased. The simplified output impedance is written as:

|H (a)l _ o (@) 15 (@)

MORMC)

As described in paragraph 3.3.2, the two poles should have a smaller length than the zeros.
This results in increasing the output impedance at low frequencies. Next, it is possible to
calculate the influence of the place of the poles and zeros. Starting with complex conjugated
zeros and complex conjugated poles, the real part of the poles can be derived to maintain a
stable system.

jw

X(.lJp

al

Figure 3.3.1 Pole-Zero map

In figure 3.3.1, a pole-zero map containing two complex zeros and the place of the resonance
frequency on the imaginary axis is given. On the imaginary axis there is a second point,
described as ‘x'w,’. The variable ‘x’ is only a multiply factor and o, is the resonance
frequency. The contribution of the first pole to the phase of the system dependence on the
variable ‘x’ can be described as:

o0 (220

Re(z))

An example of the phase characteristics depending on the variable ‘x’ is shown in figure
3.3.2. The phase should be limited to -180 and zero degrees. At ‘x’ is 0.1, the phase is -180
degrees, around ‘x’ is one (resonation frequency), the phase goes to zero degrees. It reaches
zero degrees asymptotically at ‘x” infinity. In the calculations, the value ‘x’ should be large.
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Phase [degrees]
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Figure 3.3.2 Phase characteristics depending on ‘x’.

If ‘x’ becomes large (larger than 10), the contribution of the imaginary part to the phase
becomes very small. The phase for two poles and two zeros should be between -180 and zero
degrees. The contribution of the two poles can be equal to the contribution of the two zeros
at high frequencies, to high values of ‘x’.

The angle should be limited by:

_l[x-a)p-klm(zl)] _I(X-a)p—lm(zz)J _I[X-a)p-klm(pl)J _l[x-a)p—lm(pz)J
tan | —™ |+tan | ———|-tan | ——— |—tan | ———— |<0
Re(z,) Re(z,) Re(p,) Re(p,)

If ‘x” is much larger than ‘1°, the imaginary part can be neglected. The formula can be
simplified to:

2tan'1( XDy J<2tan"l{ XDy j:> XD X9 = Re(z,) = Re(
s S 1) 2 Re(p))
Re(z)) Re(p,) Re(z))  Re(p,)

The real part of the zero should always be larger or at least equal as the real part of the pole.
This solution is useful if the contribution of the phase of the poles should always be larger or
at least equal than the contribution of the zeros. In a third order system, the phase can be
larger by the influence of the first zero and third pole. The solution for this situation is
described in paragraph 3.4.

With the result that the real part of the zero should be larger or equal to the real part of the
pole, it is possible to make a graph of the improvement in the output impedance. The graph
is shown in figure 3.3.3 and contains 4 curves, two solid lines and two dotted lines. The two
solid lines correspond to a system were the poles only contains a real part. The curve at DC
and at resonance frequency is given. It shows clearly that if the zeros are very complex, the
improvement at resonance frequency is nearly 80 dB. The improvement at DC is -160dB,
which corresponds to an increase in output impedance with 160dB to low frequencies. This
1s unacceptable; also if the zeros become less complex the loss at DC is approximately 40dB.

The dotted curves corresponds to a system containing two poles with a real part equal to the
zero, but an imaginary part is introduced to keep the loss 3dB for low frequencies.
Comparing the two curves at resonance frequency, the improvement at resonance frequency
is decreased by approximately 10dB, but the loss is at low frequencies is only 3 dB.

Remco Twelkemeijer Page 24 of 68



Chapter 3 - Output impedance using a Pole-Zero analysis

Improvement of the output impedance

Improvement in output impedance [dB]

160 L L i
10° 10° 10 10
Real part of the zero and the pole

Figure 3.3.3 Improvement of the output impedance

3.3.2  Shifting one real pole

If the poles are complex, the real part of the poles is equal. Non complex poles have the
possibility to have some “distance” between the poles. An example of three magnitude bode
plots are shown in figure 3.3.4. The first pole is kept on the same place and the second pole
is shifted to the left. This results in increasing the output impedance to low frequencies. The
question is how much will the output impedance increase and what happens around the
resonation frequency. A pole-zero map is shown in figure 3.3.5. It contains two complex
zeros and two real poles. Starting at a point where the two poles are equal, the second pole
can be decreased to zero at least. If the second pole decreases and the first pole is kept
constant, the contribution of the poles to the phase is increases. From this, it follows that the
complexity of the zeros can be increased and consequently the real part of the complex
conjugated zeros can be decreased.

p3 p3 p3
A p2 A A
™ p1 N p2 p1 N p2 p1
z1
z1
z1
wp wp wp
fox f> f>

Figure 3.3.4 Magnitude plots with different distances between the poles

The angle should be limited by:
tan{x.wp +Im(zl)j+tanl(x~wp —Im(z2)J _ tanl(x.wp)J—tan{x.wp J
ﬂRe(Zl) IBRe(Zz) P, 7P

Two new variables are introduced in this formula. The first one vy, is the decreasing factor of
the second pole with respect to the first pole. The second pole is now described by p,= yp1.
The range for v could be one to zero. Starting with a y of one and decreasing this value, the
real part of the complex conjugated zeros can be decreased keeping the phase between +/- 90
degrees. This is done by the second new variable f3.
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jw

ozl

o z2

Figure 3.3.5 Pole-Zero map with two real poles and two complex zeros

Using the formula of the angle limitation, it is possible to solve the value for . This results

n: B~ —%j(ny), x>>1 = fix—P1 (14y)

Re(z )(1 Re(z,)

The output impedance, dependence from ® can be written as the length of the zeros divided
by the length of the poles. In general, the output impedance can be written for every second
order system with two complex zeros and two real poles by:

| a)] K I _ \/RG(Z) +(a) Im(Z) \/Re(z ) +(a)+Im(Z ))
out rplr-pZ \/pl +w \/p2 +a)

Putting the two poles and zeros in the formula and the constant factor ‘K’ is one, the follow
function is obtained at resonance frequency:

[ﬂ Re(z,)) (\/a) - B% ‘Re(z,)’ +ij2j( B-Re(z,)) (\/w - B7 -Re(z,)’ +wp]2J

Zout(a)p’y)‘ (p12+60;X72p12+a’;2))

The influence of the third pole is neglected in this approach, consequently the interest lies on
P,

—L_(1+y), the formula can be
Re(z,)

large values of ‘x’. For large values of ‘x’ and using f =

simplified to:
Re
Zout(wpay)‘ ~ 2%(7—'—1)

p

Next, the output impedance can be compared with respect to y is one (the first pole is equal
to the second pole). This gives a relative improvement or reduction in the output impedance
at resonance frequency, depending on the place of the second pole.

Zoa(@p )] 2
Zo (@) (r+1)

, 0>72>1
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A graph of this formula is made and is shown in figure 3.3.6. Also a graph of the
improvement in output impedance for low frequencies is given. For low frequencies, there is
no improvement at all because the improvement factor is lower than one. It is clearly visible
that if y is approximately 0.1 (po= 0.1'p;), the low frequency performance is decreased by
20dB and the benefit at resonance frequency is approximately 6 dB.
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Figure 3.3.6 Improvement at resonate frequency and reduction at low frequencies.

Result

In general the output impedance around resonance frequency is improved if the second pole
becomes smaller keeping the first pole constant. The output impedance at low frequencies
increases too much, which is unacceptable. It can be concluded from figure 3.3.3 in
paragraph 3.3.1 in combination with the approach in this paragraph, that the poles should be
complex to maintain low output impedance for low frequencies. The real value of the poles
should be equal or smaller than the real value of the zeros under the condition that the last
pole is neglected.
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3.4 Limitations in a realistic situation

The approach while the last pole is neglected shows clearly the limitations of a notch filter.
The poles should be complex to maintain low output impedance for low frequencies.
Applying a step response to a system with two complex poles, resonance occurs. It seems
not possible to design an amplifier without any resonation if it should have a notch and low
output impedance at low frequencies and be stable for any passive load. One could ask, how
complex should the poles be, using a good low frequency behavior and a deep notch.

The phase limitation lies on high frequencies in paragraph 3.3.1. A practical value of the last
pole could be around 10 MHz. It is not allowed to neglect the influence of the last pole with
this value. The phase influence by the last pole is described by a. Next, the minimum
complex conjugated poles will be simulated depending on the complex conjugated zeros and
the variable a. The contribution of the first zero is 90 degrees again.

This results in a phase of:
D(Z()=90°+® (@) + P 5 (0) - @, (@) - @, (0) - a°

The poles and zeros have a real and imaginary part. The resonate frequency (notch) is set to
1MHz. The resonate frequency of the poles (peak) should be smaller as IMHz to maintain a
system between +/- 90 degrees. This results in a loss of performance in the low frequency
region. The length of the poles is set to a loss of 3dB in the output impedance at low
frequencies.

The length of the zeros divided by the length of the poles at ®=0 results in the loss in output
impedance at low frequencies. A loss of 3dB and a resonate frequency of IMHz results in
the length of the poles:

(IMhz -2z )
H(0)| =~ =
| | (Lpoles)

With the length of the poles and zeros known, the poles and zeros are described by:
. 2
|Zl/2|z\/a)notch = Zy), zRe(zl/z)i J '\/a)jotc _Re(zl/z)

|p1/2| = Lpoles = P12 :Re(pl/z)i J '\/szoles —Re(pl/z)z

3dB=~2=L _ IMhz - 27

poles A{/E

Complex poles means resonation, if the poles become more complex, the resonance
increases. The real part of the poles should be as large as possible to have as less resonation
as possible. The phase of the system should be between +/-90 degrees, especially to high
frequencies. Using this limitation, the maximum real part of the poles can be calculated
dependence on the real values of the zeros.

In this approach with the extra variable the angle a, it is not possible to solve the place of the
poles depending on the zeros mathematically. But using the values of 1 MHz for the resonate
frequency a loss of 3dB in the output impedance at low frequencies; it is possible to solve
the equations numerically. In figure 3.4.1, four curves are shown, a real value of the zero of
10°2xm, 10*2n, 10°2n and the maximum real value of the pole which is possible. The
maximum real value of the pole is plotted dependence on the angle a. During the
calculations, the length of the poles and zeros is kept constant.
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Starting at a is zero, the corresponding real part of the poles are the same as the real part of
the zeros. This proves that the calculations in paragraph 3.3.3 are correct, because the
conclusion was Re(z,) > Re(p,) under the condition a is zero which was not jet introduced
at that moment.

The graph shows a large increase in the real part of the pole to low values of a. When a
becomes 5 to 10 degrees, the real part of the poles does not increase very vast anymore. The
curve “maximum” value is equal to the length of the poles. The real part of the poles can
never be larger as this value. At o is 45 degrees, none of the three curves will reach this
maximum value of o,. From this, it can be concluded again that the poles are always
complex and there will always be some ringing when applying a step response to the system.

Real value of the pole depedence of o

— 13
o, = 10727

— =g, =102

———g,=10%2x

maximurm value

10 1 1 1 1 1 I I I
0 5 10 15 20 25 30 35 40 45

Figure 3.4.1 Maximum real value of poles depending on the extra phase variable a

In figure 3.4.2 a typical magnitude plot of the second order system is shown. There are three
amplitudes given: Arr, Apeak and Apoeh. This means the loss in output impedance in the low
frequency region, the relative amplitude of the peak and the relative amplitude of the notch.
Because the third order system is approached by a second order system with an extra phase
variable a, the output impedance is zero dB to high frequencies and the loss value for low
frequencies.

Magnitude
B0 e me o

Zout [dB]

30 . :
10° 10° 100
Frequency [Hz]

Figure 3.4.2 Different calculated amplitudes
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Next, the amplitude of the second order function dependence on an extra phase is calculated.
The results are shown in figure 3.4.3. It shows that an increase of the real value with a factor
of 10, the notch decreases with a factor of 10. The difference of zero degrees and 45 degrees
extra phase is approximately a factor of two at maximum. Extra phase does not result in a
big improvement in the amplitude of the notch.

Amplitude of the notch
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Figure 3.4.3 A, ,:c» dependence of extra phase variable a

In figure 3.4.4 the amplitude of the peak is shown. The peak should be as low as possible to
have as less as possible resonation. The graph shows a large decrease in the peak value
dependence by increasing a. For example, if o, is 10*-2m, the peaking with a is zero degrees
is more as 100. Increasing a to 20 degrees, the peaking left is only a factor of three. The
extra phase results in less peaking. This is exactly what is wanted to be able to design an
amplifier with a notch in the output impedance. Especially if the zeros are large complex,
the difference is very large.

Amplitude of the peak

g, =10%2x |

_ant 1
——-o =102

2 ———g, =102z

Amplitude
2
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Figure 3.4.4 Ap.. depending of extra phase variable a

The calculations with the extra phase variable a results in the conclusion, that it is possible to
design a system with a deep notch and a peak. The amplitude of the peak does not have to be
as large as the notch if the system is designed in that way. With extra phase, it is not possible
to compensate the loss in the low frequency region.
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3.5 System Design

With these results, it is possible to do a system design. A pole-zero map is made as shown in
figure 3.5.1. In the map, there are also a pole and zero which results in low frequency gain.
There is also a magnitude and phase plot in the figure. Those plots contain two curves, a
dotted and solid line. The dotted line corresponds to a system which only has one pole and
zero for the low frequency gain. This is putted in the graph for comparison purposes. The
solid line has the same pole and zero as the system of the dotted line, but this system has also
two complex poles and zeros to create to notch. The pole-zero map describes the system with
the solid line.

The zero is set to 10* Hz and the pole to 3-10° Hz. This results in 70 degrees at 1| MHz as can
be read in the dotted line in the phase plot. This gives 20 degrees phase. From figure 3.4.1, it
can be read that with a real value of 10°27 of the zero results in approximately a real value
to the pole of 7-10*2x. From figure 3.4.3 it can be read that the improvement at 1 MHz is
approximately 0.006 (-44dB). The amplitude of the peak is approximately a factor of three
(9,5dB) which can be read from figure 3.4.4. The magnitude plot in figure 3.3.14 shows that
these values correspond.

Pole-Zero Map x10° Magnitude Phase
20

-20

40

x
°
o
f
Zout [dB]
Phase [degrees]

e T N N [V T TV 1 T o' ot ot ot o o FLE STy S T (VR v G O A T 1)
o+(2-7) Frequency [Hz] Frequency [Hz]

Figure 3.5.1 Pole-Zero map with corresponding magnitude and phase characteristics

Another option is to decrease the phase of the system as shown in figure 3.5.2. The zeros are
on the same place but the last pole is set to 3-10"-2x. To maintain a system between +/- 90
degrees phase shift, the real part of the complex poles should decrease to 3-10°-2x. This
decrement result in a larger peak, but with approximately no change to the notch.

Pole-Zero Map x10° Magnitude Phase
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Zout [dB]
Phase [degrees]

B0

x .80 B -0
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Figure 3.5.2 Pole-Zero map with corresponding magnitude and phase characteristics
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For the systems of the pole zero maps as described in figure 3.5.1 and figure 3.3.2, a step
response is applied. The result is shown in figure 3.5.3, the solid line correspond to the pole-
zero map in figure 3.5.2 and the dashed line to the pole-zero map of figure 3.5.1. The
placement of the last pole of the two systems differs, and consequently the gain. This results
in a different maximum value of overshoot. To compare those two systems, the maximum
amplitude of overshoot of the response is normalized. Comparing the two curves, the
damping of the system with the higher real value is much larger and the step response

becomes nearly zero within 10 ps. The other curve has low damping factor, which results in
a very long ringing time.

Step response
015 T T T

- 3
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———o =710%2n
g ph p |
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-
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Figure 3.5.3 Step response corresponding to the two pole-zero maps.
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4 Amplifier design

The approach in the previous chapter determines the theoretical limitations of the amplifier.
In this chapter practical topologies are described to create a notch in the output impedance.
First the system implementation is described briefly. Next the topology of an amplifier to
create a notch in the output impedance is described. With this amplifier a system design is
done. Finally an implementation is done with a output stage.

4.1 System Implementation

In the previous chapter it is determined that at least a third order output impedance is needed
to create a notch in the output impedance. The output impedance should contain two
complex poles and two complex zeros with one real pole and zero. Simplifying every
amplifier stage as blocks, the amplifiers can be set in cascade or in parallel as shown in
figure 4.1.1a and figure 4.1.1b respectively. In [2] it is proven with simulations that adding
an extra cascade stage normally results in an extra pole and zero. This is under the
assumption that the extra stage contains a capacitance and a resistance which is a first order
function. From this, one of the two stages of the amplifier should contain two complex poles
and two complex zeros if the amplifiers are set in cascade.

_ (S_Zl) _ (5_22)(5_23)
“s-n) “re = (s, Xs— pa)
7.7 _(s-z) (s- Z)Es z,)

cascade notch — (S— pl) (S _ pz)

Creating two amplifiers with only one stage, the output impedance of the two amplifiers are
set in parallel. If the first amplifier has one pole and one zero and the second one has only
two complex zeros and two real poles, the output impedance is written by a third order
function which contains 2 complex poles and two complex zeros. This can be obtained from
the formula Zaraner, the denominator contains the zeros z, and z3 which are assumed to be
complex. Solving the values of the three poles in the denominator, one real pole and two
complex poles is obtained.

\Y

VA

7 -7 //Z _ Z Znotch _ (S_Zl)(S_ZZ)(S_Z3)
peree 2 4 e (5= sz 5 -z )+ (- P )s - P )s-2,)

It seems easier to implement two amplifiers in parallel, because only two complex zeros
should be created. Another reason could be that the first amplifier contains always a linear
path, while the second amplifier can be designed with time discrete section in it without
aliasing problems.

Amplifier
1
Vin v
Vin_ Amplifier Amplifier Vout Amplifier
1 2 2
Figure 4.1.1 a) Amplifiers in cascade b) Amplifiers in parallel
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4.2 Realizing the notch in the output impedance

The starting point for the amplifier topology is determined in the previous paragraph. The
proposed topology has two amplifiers in parallel. The design of an amplifier with one pole
and one zero is already described in chapter 2. The second amplifier with two complex zeros
is described now.

The two-stage amplifier of figure 2.2.2 has a parallel combination of a resistor and a
capacitor between the two stages. The parallel combination is shown in figure 4.2.1. The
resistance for low frequencies is equal to R;. Increasing the frequency, results in decreasing
the impedance of the capacitance and consequently decreasing the impedance of the parallel
combination. The gain and consequently the output impedance is proportional to the input
voltage times the impedance of the parallel combination. The consequence of decreasing the
impedance for high frequencies results in less gain. The impedance of the parallel
combination can be written as:

7 _1 1
RC -~ '™ 17
1
¢ s+ Mrey)
Vi
R1 —Cq

Figure 4.2.1 Parallel combination of a resistor and a capacitor

The capacitance can be “compensated” at a certain frequency by an inductor. If the
capacitance is compensated, the impedance becomes equal to the resistance. The frequency
where the inductor compensates the capacitor is the resonance frequency. Adding an
inductor in parallel, results in the network as shown in figure 4.2.2. For realistic modeling,
there is also a resistance (Rp) in series with the inductance. The parallel combination
including the inductance can be written as:

s (“R/Llj

ZRLC =
< s? +S( ! +RLJ+RL R
RLCCI Ll I:QLC LlCI
Vic
L
|:| RLC ::CLC
R.

Figure 4.2.2 Parallel combination of a resistor, capacitor and an inductor
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In figure 4.2.3 two bode plots are shown of the two parallel impedances which are indicated
as Zgrc and Zgc. There also three resistances given, the impedance of Zgc is equal to R; for
low frequencies. The impedance of Zrrc is Ry for low frequencies and Zi¢ (equal to R; in
this example) at resonance frequency. The impedance at resonance frequency of the Zgic
network is much higher than the Zgc network, this result in more gain.
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Figure 4.2.3 Impedances of ZRC and ZRLC

It is shown that adding an inductor in parallel results in a peak in the impedance at resonance
frequency. Adding the inductor in a two stage amplifier, result in the topology as shown in
figure 4.2.4. In practice it is not possible to use an inductor in an integrated circuit. The
design of an inductor or a second order filter in an integrated circuit is described in chapter 5.
The derivation of the output impedance is described in appendix A. The contribution of the
Miller capacitance at high frequencies is ignored first.

“ |

[
DR1 §L1 et OF) @T'out
R

Figure 4.2.4 Two stage am_pliﬁer with a RLC filter

agmy

The output impedance is written by:

R
2 ( 1 RLJ %l—i—l
S+l — [+
Z — 1 Cl +le (Cl +le)Rl Ll Ll (Cl +le)

“ogm, C, LT
Ll le

Remco Twelkemeijer Page 35 of 68



Chapter 4 - Amplifier design

From the output impedance, it can be obtained that the formula contains two complex zeros
and two real poles. The first pole R;/L; is normally set to low frequencies, the second pole
gm;/Cm; is normally set to high frequencies. In the previous chapter it is determined that the
poles should be as large as possible. It seems that the miller capacitance can be removed in
this amplifier, because the output impedance to high frequencies becomes very large in
respect to the other amplifier. The miller capacitance is not needed for stability issues if the
amplifiers are in parallel.

The output impedance to low frequencies and to high frequencies is written by:

1
Z (0)=——— Z =
out( ) gmlgmzRL v out (OO) 0

100.0 RhasedFfnetds 1™
750
50.0
25.0

o]

-25.0

-50.0

-75.0

B 1888 dB2 OEVE( Neto9 1)

Y0 (deq)

-20.0
10° 101 102 103 10t 10° 108 107 10® 102
F i
Figure 4.2.5 AC response of the two stage amplifier with a RLC filter and without Cm

For low frequencies, the output impedance is high. It is not the value R; which have the
major influence to the output impedance, but the resistance Ry. This value is much lower
than the resistance R; and consequently the output impedance is much higher. A typical AC
response is shown in figure 4.2.5. It shows clearly that the output impedance around
resonance frequency is low and the phase shift lies between +/- 90 degrees.

The interest of this amplifier lies around resonate frequency. The general second order
equation is written by:

zZ. =K.

" (s-p)

Note that o,/Q is the bandwidth of the filter. Comparing the general equation with the
equation of the amplifier it can be obtained that if R, is very large, the contribution of
1/(C1+Cpm1)R; to the bandwidth is very small in respect to Ry /L;. The smallest bandwidth and
consequently the highest quality of the notch is achieved if R, is very large. The bandwidth
left is equal to Ry/L; which is equal to the first pole. The output impedance can now be
written as:

s’-s-p, +o,

(S_pl)
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Where, the pole and resonance frequency is written by:
1 Ll P Ll (Cl + le )

With this approach, it can be obtained that the output impedance can only becomes zero if
the first pole is zero. If the bandwidth becomes very small, it is very difficult to design the
resonance frequency exactly at a certain frequency without any variations. The minimum
bandwidth depends directly on how accurate it is possible to create the peak filter.
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4.3 Amplifiers in parallel

A topology when the amplifiers are set in parallel is shown in figure 4.3.1. The output
impedance is equal to the parallel impedance of the two amplifiers. The low frequency
output impedance should be as low as possible. In chapter 3 it is described that a notch
results in an increment in the output impedance, but this increment should be minimal.

Vi ‘ Vs Vout

gmy L gmz
R1 [LL_‘FQ ‘ % lout

gm gm2
L
D Ric ——Cic
Ry
—

Figure 4.3.1 Two stage amplifier

The output impedance is written by:
(S—Zl)(S—Zz)(S—Z3)
VA =2, /112 o =
1 “ (S—pl)(S—Zz)(S—Z3)+(S—p2)(S—p3)(S—Zl)

The output impedance is now written in a more complex way which is not easy to solve. To
see what happens, ideal simulations are done when only one component is changed. First the
transconductance gmy | is simulated with the values of 10uS, 35uS and 70puS.

parallel

Values

gm; =70 puS gmp; =variable gm, =gmp,=-200uS

R; =1.5MQ C = 1pF Cm1 =5pF

CLC =6 pF L =4.22mH RL = 1kQ RLC = 0

The only frequency region where the output impedance of Zpoch 1s lower than Z; is around
resonance frequency. Starting with a resonance frequency of 1 MHz, the two amplifiers can
be compared separately. In figure 4.3.2a, three curves with a notch are shown and the last
one is the output impedance of Z; alone with gm; is 94 uS. From the figure, it can be
determined that increasing the transconductance of gmy ;, results in lower output impedance
around resonance frequency in comparison with Z;. The frequency when the output
impedances are equal also increases with the transconductance. With gmp;=10 uS, the output
impedance becomes equal around 1.1 MHz. Increasing the gmL1 to 70 uS it is increased to
approximately 2 MHz.
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300
15.0

20.0 10.0

5.0
10.0

gm,=10us

Y0 (dB)
Y0 (dB)
o

gm,,=10pS o am, =358

-10.0 9My4=35HS S

gm=70pS 150 gm, =708

-20.0

4¥10% 5310° 108 2x10® 33108 108 107
FO Fo

Figure 4.3.2 a) Output impedance amplifiers separately  b) Output impedance amplifiers in parallel

Combining the two amplifiers result in the graph as shown in figure 4.3.2b. In this graph,
also four curves are shown. Three of them are the amplifier of figure 4.3.1. The last one is
for comparison purposes and is only a two stage amplifier with the same values of Z;, except
gm; which is 94 puS. As can be obtained from the figure, increasing the notch in this way
results in larger peaking and the output impedance is lower to high frequencies. The larger
peaking results in a larger ringing time when a step response is applied. The last pole is
shifted to the right when the output impedance is lower to high frequencies, because the final
impedance is the same (approximately 1/gm;). Using the determined values in the
simulations results in the conclusion that the third pole can be approximated by:
_gm, +gm,,

C

The high frequency part of amplifiers is limited to be able to drive some capacitive load.
Increasing the gain of the amplifier with the notch and keeping the third pole constant results
in increasing of the low frequency output impedance. Another option is to increase the
quality of the notch by decreasing the series resistance Ry of the inductance. Simulating it
with the values of 1002, 1kQ and 2kQ result in the graph as shown in figure 4.3.3a. In this
graph the output impedance is determined separately again. Also the output impedance with
gml = 94 uS is shown for comparison purposes.

p; =

ml

Values

gm; =70 puS gmp; =70 puS gm; =gmy, =-200 uS

R1 =1.5MQ C] = lpF le =5 pF

Cc =6pF L =4.22mH Ry =variable Ric =

The figure shows clearly that increasing the quality of the notch only results in lower output
impedance around 1 MHz, the high frequency behavior is the same for every quality factor.
This suggests that this is also the case when the two amplifiers are combined. The graph of
the amplifier is shown in figure 4.3.3b which shows that the output impedance to high
frequencies is the same. The only disadvantage is that the peak becomes larger when the
notch increases, but this is also expected from chapter 3.

R,=2K0

R=1kQ

R,=1000
-30.0

7#10% Bx10° 2310° 108 gx10% ax1o® 108
Fi Fi

Figure 4.3.3 a) Output impedance amplifiers separately b) Output impedance amplifiers in parallel
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Another important part of the stability of the amplifier is the frequency response of the open
and closed loop gain. Applying a voltage source to the input and load the output with 1kQ,
results in the graph as shown in figure 4.3.4a. The gain is increased as expected at 1 MHz,
which could lead to instability if the phase reaches -180 degrees. The resonance frequency
results in a positive phase shift to approximately 60 degrees. The phase becomes -90 degrees
after resonance frequency. This phase shift does not lead to instability. Designing the
amplifier, some care should be taken at the increasing of the gain with respect to the UGB.

75.0 100.0 50.0 10.0

50.0 75.0 0

YO (deqg)
Y1
YO (ceg)
r
]

o

-50.0

-75.0 -50.0 -75.0 500
-100.0 2750 -100.0 -60.0

w0 1l wd 1wt o1t 10 1w w’ w8 1wef 109 10l 102 107 w0t 10 105 107 108 102
Fo F o

Figure 4.3.4 a) Open loop gain b) Closed loop gain

In figure 4.3.4b, the closed loop gain of the amplifier is shown. The gain is 0dB to 1 MHz
and decreases after this frequency. There is also a notch in the gain, which corresponds to the
resonance frequency when a step response is applied to the amplifier.

In chapter 3.4 it is seen that the increasing in the output impedance for low frequencies
directly corresponds to the peaking frequency. Now, an approach is done to determine the
peaking frequency. The peaking frequency and the notch is shown in figure 4.3.5. Keeping
all the variables constant except gmp;+gm;, it is possible to determine a formula of the
peaking frequency. Assuming the last pole is constant, gmy;+gm; is constant. Increasing the
notch, results in decreasing gm; and consequently decreasing the peaking frequency because
the low frequency output impedance is increased. With this approach and in combination
with the results of chapter 3.4, the peaking frequency is written by:

gm,

a) —_—
gm;, +gm,

peak = a)notch

Z-»

notch

f>
Figure 3.3.5 Bode plot of the output impedance with a peak and a notch

This is valid under the assumption that gm,=gm;, and the output impedance of Z, is lower
than Z; around resonance frequency. With the results in this paragraph, a topology design
can be done. Setting the first zero to 10 KHz, the resonance frequency to 1 MHz, the last
pole to 3 MHz and the increasing in the output impedance to 3dB, results in the following
values.
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Values of output impedance with notch

gm; =66,5uS gmp; =27,5uS
R1 =2.65 MQ C] =1 pF

CLC =6 pF L =4.22mH

Values of output impedance without notch

gm; = 94 puS gmp; =-200puS
C; =1pF Cmi =5pF

gm; =gmy,=-200uS

le = SpF
RL =500 Q RLC = 0
R, =2.65MQ

The magnitude and phase result of the simulation with these values is shown in figure 4.3.6a
and 4.3.6b. The magnitude behavior of a two stage amplifier is also shown (gm;=94uS). The
graph clearly shows the increase of 3dB to low frequencies. The peak is much smaller than
the notch and the high frequency output impedance and phase are the same for both
amplifiers. The peaking frequency is 835 KHz, calculating this frequency with the formula
above result in 841 KHz which seems to be a good approximation. Also a pole and zero
simulation is done, which shows that the calculated values are correspond to the simulated

one.

20.0

10,0 M2(8 359%107, 13 &

MO(45 54, -30 9408)

M 148,45, -33.95¢B)
-40.0
109 10l 104 107 104 10% 10% 107
Fo

Figure 4.3.6 a) Magnitude plot

Simulated poles and zeros

pl =-57.696 kHz +j853.257 kHz
p2=-57.696 kHz - j853.257 kHz
p3=-2.897 MHz

M3(1x108 -17 33dE)

100.0

-25.0
=50.0

-75.0
109 109

101

10° 103 104 10° 108

b) Phase plot

z1 =-10.010 kHz

z2=-9.429
z3=-9.429

kHz +j 1.000 MHz
kHz —j 1.000 MHz

107 108 102
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4.4 Amplifiers in parallel with an output stage

The topology of the previous paragraph can be extended by a output stage as shown in figure
4.4.1. An extra stage in cascade results in an extra pole and zero. Consequently, there is
more freedom of placing the poles and zeros. The advantage of a output stage lies in large
signal behavior and it is possible to set the last pole to higher frequencies than 3 MHz which
result in lower output impedance.

Clrll'11
I
C”’Iz
[
vV ‘ v v,
gm; ! T gm; 2 T gms 2
R4 ]_ Ci ‘ Rz ]— C: %?Iout
V
gmy4 e gmp
L
|:| Ric —Ci¢
R
—

Figure 4.4.1 Two stage parallel three stage amplifier implementation with RLC filter

Keeping the parallel stage the same as in the simulation of the previous paragraph, the zero
is set to 6.6 MHz and the last pole to 32 MHz. This should give an improvement of 6 dB in
the output impedance to low frequencies and around resonance frequency. The low
frequency output impedance in respect to a three stage without a parallel notch should have a
difference of 3 dB again.

The capacitances of the output stage are assumed to be large by the parasitic capacitances of
the output transistors. With respect to the topology of the previous paragraph, the gain is
improved by a factor of two. A simulation of this topology and a three stage topology
without the parallel notch stage is done and the results are shown in figure 4.4.2a and 4.4.2b.
It shows at 1 MHz an improvement of 24 dB in the output impedance with only a peak in the
output impedance of 9 dB. For low frequencies, the output impedance is increased with 3 dB
as expected and the high frequency output impedance is the same.

Values

gm; =66.5uS gmy; =20mS gms =-200uS

C, =1pF Cm =5pF C, =140pF Cm2=100 pF
Ry =265MQ R, =100 Q

gmy = 27.5 MS gmp, = 20 mS CLC =6 pF

L =422mH Ry =500 Q Ric =
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Values for comparison

gm; =94 uS gmy; =20mS
Ci =1pF Cmi =5pF
Ry =265MQ R, =100 Q

0.0

20.0 !
M1(E 356107, 7, 92808

100

4]

YO (oB)

-10.0
-20.0
-30.0 M2(126.6, -36 9608)
-40.0
M3(L12.3, 39,3706
-50.0

107 101 102 10% 104 10% 106 107

Fo

Figure 4.4.2: a) Magnitude plot

Simulated poles and zeros

pl =-58.425 kHz +j851.777 kHz
p2=-58.425 kHz - j851.777 kHz
p3=-3.350 MHz

p4=-27.815 MHz

gms =-200uS

C, =140pF Cm2=100 pF

100.0
5.0
50.0

25.0

YO (deg)

[

-25.0

MO(Li10% 23 88cE) -50.0

-75.0

-100.0
108 109 109 1wl 10f 103 w0t 10° 108 107 108 109

FQ
b) Phase plot

z1 =-10.010kHz

72 =-9.429 kHz +j1.000 MHz
z3=-9.429 kHz - j1.000 MHz
z4=-6.631 MHz

pS =-185.382 MHz

At high frequencies (higher than 100 MHz), the output impedance shows a capacitive
behavior. This corresponds to the fifth pole which is equal to 185 MHz. The pole is
introduced by the high frequency influence of the miller capacitance. During the derivation
of the output impedances in this report, the high frequency influence of the miller
capacitance is always neglected. In practice the influence of this capacitance introduce an
extra pole and could lead to instability [2]. The extra pole can be approximated by the
intersection between the resistive part and the miller capacitance. The resistive part is the
output impedance at high frequencies. The pole can be approximated by:

1 C1+le= 1
gm, C,  sC

m, m1

I

C,+C,,

= pmiller =

A bode plot of the output impedance including the extra pole is shown in figure 4.4.3a. In
this plot, the first pole and the pole of the miller capacitance are far away. Starting at low
frequencies, this results in a resistive part, inductive part, a resistive part again and finally
capacitive respectively.

i
i

Zq Zq

f-> f>
Figure 4.4.3 a) Bode plot when p,>>p; b) Bode plot when p,, and p; are complex
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The pole pm is an approximation which is valid if the poles are far away from each other. If
the become closer to each other, the complete derivation should be done. The derivation is
also done in [2]. The interest lies on the high frequencies and consequently on the two poles.
The two poles are written by:

2
P, / P, =— gm, —gm, + gm, —gm, . gm, -gm,
2C, 2C, C,-Cm,

From the two poles, it can be obtained that if the value of gm; is close to gm,, complex poles
are formed. A bode plot of the output impedance is shown in figure 4.4.3b when the poles
are complex. The complex poles results in a peak in the output impedance, which results in
resonation if a step response is applied. If gm; becomes larger than gm, the complex poles
becomes positive, which causes the amplifier to be unstable. The complexity depends on
how close gm; and gm; are.

The output impedance for the two simulated amplifiers (with and without a notch in the
output impedance) is the same for high frequencies. This results also in the same last pole
and the same requirements to maintain a stable system.
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5 Filter implementation

In the previous chapter, inductors are used in the amplifier. It is impossible to create
inductors in an IC process, if the inductor should work around the frequencies of interest.
This problem can be solved by filters which should have the same behavior as the function
described in chapter 3 and 4. First, a start is made with continuous time filters to implement
a filter in the amplifier. Finally switched capacitor filters are described in respect with some
relevant amplifier topologies.

5.1 Continuous time filters

The easiest way is to create a peak filter is an active component which acts like an inductor,
This could be done by a gyrator loaded by a capacitor. A gyrator is an active component
which gyrate a current into a voltage and a voltage into a current. Loading the gyrator results
in an inverse capacitor which is actually a inductor. The inductor can just be replaced by the
gyrator in the amplifier topology of figure 4.2.4. A traditional gyrator loaded with a
capacitor is shown in figure 5.1.1.

The impedance of the active inductor is written by:
Z =s-L=s-L,

inductor

Xx—- :\\Olf\“)
gl +TKALC
TEAT

+ 8

m2

+
OTA‘(S\ |

Figure 5.1.1 Gyrator loaded with a capacitor using two OTAs

The inductance L is written by [7]:
__ G
eq — .
g ml g m2
The simulated inductance depends ideally on the capacitance and the two transconductance

of the two Operational Transconductance Amplifiers (OTAs). Combining the simulated
inductance into the formula for the resonance frequency:

a)p — 1 — ,gmlgmz
LeqCI COCI

In an IC process there is a large spread of the transconductance of the amplifiers. Also the
absolute values of capacitances contain a large spread. The resonance frequency depends on
the absolute values of the capacitances and transconductance. If the total absolute spread is
approximately 50%, the resonance frequency lies between 700 KHz and 1.2 MHz. The
impedance of a peak filter with this variation is shown in figure 5.1.2a. It shows clearly that
the notch should be much more accurate.
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Impedance of peak filter
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Figure 5.1.2 a) Peak filter with +/- 50% accuracy b) Compensated filter with +/- 20% accurcacy

To reach certain accuracy in the output impedance at resonance frequency, the peak should
be reduced. An example of a compensated filter with 20 percent accuracy is shown in figure
5.1.2b. The difference in output impedance at resonance frequency is approximately 6 dB. It
shows also the original curve with an output impedance of 1 MQ around resonance
frequency. The difference between the curves is very large and does not satisfy the
requirements of the filter.

In literature several other topologies of time continuous bandwidth filters are described, but
these filters requires compensation methods like external bias currents to satisfy a high
accuracy [10, 11]. It is also possible to design a filter without a direct relation ship of an
inductor, but these filters depend on some way on the transconductance [7]. In chapter 4 it is
determined that the quality of the filter should be as high as possible. It seems that
continuous time filters does not satisfy this requirement.
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5.2 Switched capacitor filters

Switched capacitor filters are normally used in IC design and are widely described in
literature. The accuracy of the filters in an IC process is much higher than continuous time
filters. Switched capacitor filters can be designed in several ways. The first one which is
described act like a inductor. Another possibility is to design a Laplace or Z function which
can be created in some way. A filter is described when only one capacitor is used to create
the notch in the output impedance. Finally, the filter is extended with more capacitors to
reach a higher quality factor.

5.2.1 Component simulation

In component simulation, the inductors and resistances are simulated by active or passive SC
networks. The design basically consists of replacing the inductors and resistors by these
simulated networks. An example of the simulation of an inductor is shown in figure 5.2.1.
The equivalent inductance is written by [6]:

Leq:lg-cl
Ve . c
Paiad!
. G
I

Figure 5.2.1 Simulation of an inductor

In comparison with the active gyrator in chapter 5.1, the capacitance is now in the
denominator. Placing a capacitance C; between V; and ground, a parallel combination of an
inductor and capacitance is created. This results in a relative dependence of the capacitances
in the resonance frequency which results in a much better accuracy in an IC-process. The
resonance frequency can now be written as:

1 4 [c

O =—=—-
P JLc T \C,

If the sampling frequency is 10 MHz and the capacitance C,; is 1pF, the capacitance C;
should be 40.5pF to get a resonance frequency of 1 MHz. The capacitance of C; is also 1pF,
but this capacitance does not influence the resonance frequency.
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The inductance is now created by an active component, an operational amplifier. Ideally, the
created inductance is very accurate, but it depends on the open loop gain of the amplifier in
practice. A simulation is done when the open loop gain of the amplifier is variable as shown
in figure 5.2.2. It shows that an open loop gain of 100 does not results in a resonance at all,
but if the open loop gain is 1000, the resonance is approximately 20dB which approximately
the minimum value which is needed.

105.0
100.0
85.0
=y
E 900
=
85.0
80.0

75.0

7xlo® sxl0° ax1o® 108
freg (Hz)

Figure 5.2.2 Magnitude response depending on the open loop gain of the amplifier

5.2.2 Digital second order Filter

A disadvantage of the previous design is that it is sensitive to the parasites of the
capacitances. To solve this problem, several stray insensitive topologies are proposed [6]. A
topology of a stray insensitive circuit could be a biquad. With one biquad it is possible to
create every second order Z function. A Z function can be created by a Laplace function
which is transposed to the Z domain.

Starting with a band pass filter:
H,(s)=

The function can be transposed to the Z-domain. To do this, several methods can be used,
like impulse invariance method, matched-z transformation, Backward and Forward Euler
approximation, Lossless Discrete Integrator (LDI) transformation or the bilinear
transformation [6].

The Impulse Invariant transformation retains the exact impulse response of the analog
system. It is desirable in cases where the impulse time response of the filter is important to
be retained and is more complex to calculate. The Matched Z transform employs a basic
simple method of translating analog poles and zeros to digital poles and zeros on the
cascaded continuous transfer function.

In the backward Euler Approximation, the derivative is approximated by the first backward
difference. With forward Euler approximation, the derivative is approximated by the forward
difference. The forward and backward Euler approximations does not mapped the imaginary
axis in the s-plane into the unit circle. This means, a stable analog function with complex
poles or zeros does not result in stable sampled data transfer functions when Euler
approximation is used.
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The Bilinear uses trapezoidal integration to implement the digital Z transform. It is usually
the most accurate digital implementation for filtering a continuous variable. However,
significant warping of the frequency spectrum occurs. The LDI transformation is, just as the
bilinear transformation, derived from trapezoidal integration method. But the LDI
transformation uses midpoint integration. However, significant warping of the frequency
spectrum occurs.

It is not possible to do the backward and forward Euler approximation, because complex
poles are needed. The bilinear and LDI transformation seems to be a good option. To solve
the problem of warping of the frequency, pre-warping techniques are available for the
bilinear and LDI transformation. In this paragraph, the bilinear transformation is used.

Calculation of the pre-warped frequency and quality factor [6]:

@
a):) =2.fs-tan| ——
21,

Q\ _ a)p . 1
Lok o |1+ 1 o |1-1
P &Qp) P /(2Qp)
tan 2fs —tan 2fs

Setting the resonance frequency to 1 MHz and the quality of the filter to 20, a pre-warped
frequency of 1,034 MHz and pre-warped quality factor of 18 is calculated. Next, the filter
can be transposed by [6]:

-1 -2 -1
HZ(Z):HI[Z'fsi_Z j:rz —g-z +p

+2z7! v-z7?—u-z7 +1

In appendix B, the formulas for the variables are given. Solving the equation with a gain of
20 at resonance frequency, the formula results in:

0.32-032-z7
1-1.592-27" +0.968 -2

H2(2)=

Frequency response Z-fifter

gain (Wout™in)

1 P | 1 i i PR T
10 10° 10
fregquency (hz)

phase (degrees)
: [

HE R ; i
10 10° 10
frequency (hz)

Figure 5.2.3 Frequency response of the Z-Filter
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The frequency response of the Z-filter is shown in figure 5.2.3. The graph shows clearly the
resonance frequency of 1 MHz and the peak is approximately 20. Solving the capacitances in
a biquad, results in the conclusion that the total capacitance is higher than 100 times the unit
capacitances. This is much too high in comparison with the space which is needed for the
capacitances.

5.2.3 Peak filter using one capacitor

In literature, a simple but very good SC notch filter is described [12]. This filter is shown in
figure 5.2.4a. The notch occurs exactly at sampling frequency. The voltage at V, could never
contain this frequency because the input voltage at V; is every time the same. With this
configuration it is very easy to control the notch frequency and the capacitance size is not
very important. The transient response when the input frequency is equal to the sampling
frequency is shown in figure 5.2.5a.

—0
Vio——0 oV, if‘
Vio—— C
T j
—_ O

Figure 5.2.4 (a) SC notch filter; (b) SC peak filter.

Changing the configuration into a periodically inverse capacitor as shown in figure 5.2.4b, a
peak filter is created. In this case, the input is a current source at V;, V; is grounded and the
peak occurs at sampling frequency again. The idea is the same; the current over the positive
half of the sine wave is integrated by the capacitor in the even phase. In the odd phase, the
capacitor is inverted, and the voltage at V; becomes negative. Together with the negative
half of the sine wave, the capacitor becomes more negative. An ideal simulation is done and
the result is shown in figure 5.2.5b. The graph shows an increment in the output voltage
depending on the time. In comparison with the SC notch filter, this system has some
disadvantages. The peak occurs exactly at Nyquist frequency and odd Harmonics of the
sampling frequency will be transposed to the sampling frequency.

1.5 ¥T{/neto170" 1.5 ¥Tr'Yneto170"
1.0 10
5

T 5
) ES
ER e 0
o -5
-1.0 -10
-15 =
VT{ fnet0gs”) 7géj§ WTP fnet06e)
< 30 500.0
E 5 2500
5 -4.0 E 5
= H 250.0
50 > -220.
-500.0
-6.0 -750.0
-1000.0
4.0 5.0 6.0 7.0 g.0 3.0 0 2.5 5.0 75 100
time {us) time {us)

Figure 5.2.5 a) Transient response SC notch filter  b) Transient response SC peak filter
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A simple amplifier topology which contains the SC peak filter of figure 5.2.4b is shown in
figure 5.2.6. The resistor Rs simulates the switching resistance and is assumed to be low.
Now it is possible to determine if this peak filter also generates a notch in the output
impedance. Applying some current I, to the amplifier, the voltage V; is known because gm,
should drain this current. Switching the capacitance to the opposite direction results ideally
in loading the capacitance with the required voltage directly. Consequently, the voltage over
the capacitance is always known, and could not create a notch in the output impedance. The
behavior of the SC peak filter can be described as a low pass filter in this situation [6]. This
is exactly what happens if the output impedance is simulated in this situation as shown in
figure 5.2.7a. The switching frequency is 1 MHz and the output impedance increases by the
capacitance behavior for high frequencies.

Figure 5.2.6 Amplif_ier with SC peak filter.

If the switching resistance is assumed to be much larger, for example 100kQ and the
capacitance is 10pF, a low pass configuration with a -3dB frequency of 160kHz is created.
The voltage over the capacitance cannot be change with the sampling speed of 1 MHz and
the voltage is kept constant when a signal of 1 MHz is applied. A simulation is done and the
result is shown in figure 5.2.7b. It shows clearly a notch of several dB’s in the output
impedance around resonance frequency. Also some odd harmonics are filtered, but much the
notches of the harmonics are much smaller.
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Figure 5.2.7 a) PAC Simulation with Rs=0Q b) PAC Simulation with Rs=100kQ

The amplifier can be estimated as a 1 bit adder or subtractor in this situation. The voltage
depends on the input amplitude. In the best case, the voltage over the capacitor becomes
proportional to the average voltage of the sine wave over a half period.

v A Tsm(t)-dt =£Asm
! T

capacitor oC
T
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Chapter 5 - Filter implementation

The output voltage of the amplifier is shown in figure 5.2.8. There are two curves shown, the
first one is the applied sine wave when there is only a resistor between the two stages of the
amplifier. The second one is the amplifier with the SC peak filter; the sine wave is divided
into two sections which results into a lower output voltage and consequently lower output
impedance.
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-0,5+

Fiéure 5.2.8 Example of the output voltage of an amplifier with a SC peak filter.

Integration of the absolute value of the sine wave which is left, results in the conclusion that
the output impedance can be decreased by approximately 7.5 dB at maximum in this
situation. Integrating the sine wave with a phase difference of 90 degrees, results in zero and
there is no improvement at all. Consequently, if there is only one SC peak filter, the phase
shift of the sine wave in relation with the clock phase should be zero to retain the best filter
behavior. To avoid this problem, two amplifiers are needed in parallel, when the second one
has a SC peak filter with 90 degrees phase shift. With the same method as above it is
possible to integrate the sine wave depending on a certain phase difference:

Ve,

A%in (/)I”Sin(X)dX — COS((/)) — COS((D + 7[) . Ag

4
Ain
T

A

Voe,

2 —Cos((p+17zj —COS(¢+37Z]
jSin(x)dx = 2 2 . A
1

T

Vsc1 Voltage over the first capacitor.

Vsc2  Voltage over the second capacitor
d Phase difference in radials

Now a 2 bit adder or subtractor is created, with 4 different phases as shown in figure 5.2.9.
There are two curves shown, the first one is the sine wave for comparison with a phase shift
of 45 degrees in respect to the two clocks. The second one is the output voltage of the
amplifier which has four non periodic parts.

17

0,54

-0,5

1

Fi_gure 5.2.9 Example of the output voltage using two amplifiers in parallel with a SC peak filter.
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With two SC peak filters and a variable phase, the minimum improvement factor is not zero
anymore. The improvement factor depends on the phase difference. Integrating the output
function depending on the phase shift over the time, the benefit of this filter is calculated and
shown is in figure 5.2.10. The phase shift could only difference from 0 to 90 degrees,
because the phase of the two peak filters has a phase difference of 90 degrees and more
phase difference results in just a minus sign. The maximum benefit is reached at 45 degrees
phase difference and is 9dB at maximum. The minimum benefit of the SC peak filter is
approximately 7.5 dB, which is the same for only one amplifier with a SC peak filter with a
phase shift of zero degrees.

SC peak filter
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Figure 5.2.10 Improvement when two SC peak filters are set in parallel with 90 degrees phase shift.

5.2.4 Peak filter using eight equal capacitors

Extending the peak filter of the previous paragraph with more capacitances, a high Q filter
can be created [13, 14]. Now the capacitances are not periodically inverted anymore, but are
set in parallel with a switch in series. Only one of the N switches is closed at a time. The
proposed filter in [13, 14] is shown in figure 5.2.11 The filter has eight capacitances; this is a
trade of between complexities in the control signals versus performance. The quality factor is
written in a simplified form as:

Q=7-N-R-C-F

‘;'i%

Figure 5.2.11 filter

{
XL

||H }_.—F

11

The formula of the quality shows that increasing the capacitance, the resistance and the
number of capacitors results in increasing the quality factor. The control signals, x1 to x8 are
shown in figure 5.2.12. Only one of the eight signals is ‘one’ at a time. The signal x1 is only
‘one’ between 0 and 0.12 us. A whole cycle of x1 to x8 (To) is equal to the resonance
frequency of the filter. In this case, the resonance frequency is set to 1 MHz. The design of
the control signals is not described here, but it could be done with a ring oscillator with
exclusive or gates.
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x1 x2 x3 x4 x5 xB6 x7 x8

o] 250 SO0 FEO 1.0
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Figure 5.2.12 Control signals x1 to x8

The frequency response of the filter is shown in figure 5.2.13a. The magnitude response
shows a peak at IMHz and the harmonics. Also a low pas filter behavior is shown. The
corresponding phase shift of the filter is also shown in figure 5.2.13a. The phase
characteristic shows that the filter should be able to implement in an amplifier.
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Figure 5.2.13 a) Frequency response filter b) Frequency response amplifier

In figure 5.2.14, an amplifier topology is shown of the filter, also a capacitance C; is
introduced which simulate the gate source capacitances. Placing the amplifier in the same
topology as in paragraph 4.4, the frequency response as shown in figure 5.2.13b can be
obtained. The output impedance has different notches of approximately 20, 10 and 6 dB to
the frequencies of IMHz, 2MHz and 3 MHz respectively.
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Figure 5.2.14 Amplifier topology using the peak filter
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6 Simulations

The previous chapters describe the theoretical limitations of the amplifier, some amplifier
topologies and methods to implement the filters in an IC process. With these results,
simulations can be done with the amplifier in combination with a class D amplifier. First, the
amplifier structure used in the simulations is described. There are several filters described in
chapter 5 which results in different amplifiers. The amplifiers used in the simulation are
described next. With the structure and the amplifiers known, some simulations are done. The
results of the simulations are described finally.

6.1 Amplifier structure

A simple parallel combination of a class AB and a class D amplifier is shown in the
introduction and repeated in figure 6.1.1. The class D amplifier in this structure is defined by
the current delivered by the class AB amplifier. This is time independent, the class D
switching frequency is variable which could be for example 40 KHz or 1 MHz. The filters
which are designed in the previous chapter are not variable. Consequently, the class D
amplifier should have a fixed switching frequency to be able to remove the switching ripple.
The class AB amplifier should have a voltage source behavior and the class D amplifier
should have a current source behavior, because it is difficult to have two voltage sources in

parallel.
Vis +
&H : #

Figure 6.1.1 Parallel combination of a Class AB and Class D amplifier

The switching frequency of the class D amplifier can be fixed if a pulse with modulator
(PWM) is used. In a simple version, it is a comparator which compares a square wave with
the output current of the class AB amplifier. Also if the output current is higher than the
maximum value of the square wave, the class D amplifier should switch to satisfy a constant
switching frequency.

The class D amplifier is implemented as ideal switches with an inductor at the output to
satisfy a current behavior. The linearity or the value of the inductance is not very important,
because the accuracy is delivered by the class AB amplifier. The class AB amplifiers used in
the simulations are described in the next paragraph.

The amplifier structure which will be used in the simulations is shown in figure 6.1.2. The
structure contains a PWM, a class AB and class D amplifier, an inductor and a loudspeaker.
The switching frequency of the PWM is 1 MHz, the inductance of the inductor (L;) is 0,8mH
and the loudspeaker impedance is assumed to be real and the resistance is 4€Q2. The threshold
of the PWM is set to 95mA. This means, if the amplifier delivers more than 95mA, the on
time of the class D amplifier is maximal and satisfying a switching frequency of 1 MHz.
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Figure 6.1.2 Topology used in the simulations
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6.2 Different amplifiers

Before the simulations can be done, the different amplifiers should be designed properly to
be able to compare the results. It is very easy to get wrong information from the simulations.
There are three major parameters, the power consumption, the stability and the distortion. It
is not possible to keep all the three parameters equal. In chapter three, the major power
consumption (output stage) and the stability (phase) are kept equal. This results in an
increasing in the distortion depending on the amplifier design. In the simulations, the same
criteria are used. This criteria is extended for one design, the phase shift should be 60
degrees or lower after a certain frequency (for example 5 MHz).

The low frequency output impedance of the amplifiers with a notch in the output impedance
is increased by 3dB. Consequently, the increasing in the distortion can also be approximated
by 3dB. The amplifiers can also be compared in another way. If the stability and the
distortion should be equal, the power consumption is increased by 3dB.

The topology of the amplifier is shown in figure 6.2.1. There are five different amplifiers
containing different filters are designed for the simulations. The filter block in the figure
contains a different filter for every amplifier. The first one is a standard three stage amplifier
without a notch in the output impedance for comparison purposes. The second one has a
RLC filter with an ideal inductor.

Continuous time filters does not have enough accuracy and are not simulated. The third
circuit contains an inductor created by a switched capacitor filter. This filter could have
some influence from parasites. The two last amplifiers have a peak filter using one and eight
capacitors respectively. The amplifiers are numbered from one to five and the numbering
will be used in the rest of this chapter.

Different filters used in the amplifier described in
1) None (paragraph 4.4.4)
2) Ideal inductor (paragraph 4.4.4)
3) Inductor created by a switched capacitor circuit (paragraph 5.2.1)
4) Peak filter using one capacitor (paragraph 5.2.3)
5) Peak filter using eight equal capacitors (paragraph 5.2.4)
C|FI|'11
1 o
I
1l
gmi v T ‘ gmz ks T ™ ?V“‘
R, C, ‘ R. C Tlout
Filter

Figure 6.2.1 Two stage parallel three stage amplifier implementation with a filter
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The parameters of the components and filters are given in appendix C. Also the
characteristics of the output impedances are shown in the appendix. It shows clearly that the
stability and power criteria are satisfied at the cost of an increase of 3 dB in the output
impedance for low frequencies.

Summarized, the peak of amplifiers 2 and 3 is approximately 10dB, including the loss of
3dB for low frequencies. The notch as an amplitude compared with amplifier 1 of:

Amplifier Filter Notch
1 None -
2 Ideal inductor 21dB @ 1 MHz
3 SC inductor 19dB @ 1 MHz
4 One capacitor 1dB @ 1 MHz
5 Eight capacitors 7dB @ 1 MHz, 6dB @ 2 MHz, 3.5 dB @ 3MHz,

2.3 dB @ 4 MHz, 0.5 dB @ 5 MHz.
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6.3 Results

There are five different amplifiers which could be used in the simulation. The topology
structure described in chapter 6.1 is used. The main interest lies on the voltage ripple over
the loudspeaker. The amplifiers one to five designed in the previous paragraph are used in
structure called 1,2,3,4 and 5 respectively. The four structures 2,3,4 and 5 should contain a
lower voltage ripple in compared with structure 1. The transient response over the
loudspeaker using the five structures is shown in figure 6.3.1. The numbers of the structures
are shown close to the transient response of the voltage over the loudspeaker of the structure.
There is no input signal applied and the switching frequency is equal to 1 MHz for all the
structures. The switching ripple of the switched capacitor filters are clearly shown in curve 3,
4 and 5. The voltage of structure 4 seems to be relatively large in respect to structure 1. This
corresponds to the output impedance as shown in the previous paragraph.

W)

2375 34.0 34.25 245
time (us)

Figure 6.3.1 Transient response of the simulation with the 5 different amplifiers

The voltage can be derived by calculating taking the root mean square (RMS) value of
transient response. Comparing the RMS values of structures 2, 3, 4 and 5 with structure 1 the
improvement factor can be calculated. The simulated RMS values and improvement factors
are:

Structure Filter RMS value  Improvement factor
1 None 3,35 mV
2 Ideal inductor 0,91 mV 11,3dB
3 SC inductor 0,98 mV 10,7dB
4 One capacitor 3,55 mV -0,5dB
5 Eight capacitors 1,78 mV 3,9dB

The improvement factors are much less than the factor of the notch. The reason for this lies
in the square wave in the transient response of structure 1. A square wave with amplitude
one contains a RMS value of approximately 0,7 of the first harmonic. The other energy lies
in the other harmonics. The logarithmic of 1-0,7 is approximately 10,7dB which corresponds
to the improvement factor as shown in the table. A discrete Fourier transform (DFT) is done
to determine the energy depending on the frequency. The results with a DFT of structure 1 is
shown in figure 6.3.2 a. It shows a large peak at 1 MHz and some smaller peaks in the odd
harmonics. In figure 6.3.2b, the DFT of the second structure is shown. The amplitude
approximately is 20 dB smaller at I MHz and the harmonics seems to be the same.
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Figure 6.3.2 a) DFT of the response of amplifier 1 b) DFT of the response of amplifier 2

The switched capacitor version of the inductor (structure 3) shows a small increase in the
improvement factor in comparison with structure 2. The contribution is mostly introduced by
the influence of the switching periods of the filter.
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Figure 6.3.3 DFT of the response of amplifier 5

The result of structure 5 is not very good, the improvement is only 4 dB but the AC response
of the corresponding amplifier is very good. It seems that this also come from the switching
ripple of the filter itself. To check this, also a DFT of the response of structure 5 is created
and is shown in figure 6.3.3. The results of the DFT depending on the frequency are shown
in a table:

Frequency Amplifier 1  Amplifier 2 Improvement

1 MHz 4,6 mV 2mV 7,2dB
3 MHz I mV 0,6 mV 4,4 dB
5 MHz 0,43 mV 0,4 mV 0,6 dB
7 MHz 0,3 mV 0,6 mV -6 dB

9 MHz 0,2 mV 0,6 mV -9,5 dB

The table proves that there is some improvement for the frequencies of 1, 3 and 5 MHz.
Those factors correspond to the AC results of the amplifier as shown in paragraph 6.2. The
improvement factor for the frequencies of 7 and 9 MHz is negative which means a reduction.
The increment at those frequencies is the result from the switching residues of the filter. This
increment results in the improvement factor of 4 dB.
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7 Conclusion

The output impedance is investigated with a pole zero analysis. This approach shows that a
notch in the output impedance results in a higher output impedance for low frequencies.
Increasing the output impedance means increasing the distortion. The power in the amplifier
should be increased if the same distortion should be reached. Also a peak in the output
impedance is introduced, but the peak could be smaller than the notch. The quality factor of
the notch should be as large as possible and depends on the accuracy of the filter.

With these limitations, an ideal amplifier design is made. This means, ideal components are
used, like inductors and transconductances. The first one contains two, two stage amplifiers
in parallel. The final topology contains an extra output stage which could be beneficial for
the power consumption or large signal behavior.

Inductors are not able to implement in an IC process and some filters have been investigated.
It is not possible to implement continuous time filters, because they have a very bad
accuracy. The accuracy of switched capacitor filters is much better and three amplifiers have
been designed.

The simulations of the amplifiers in combination with the class D amplifier in parallel shows
a decreasing in the output impedance of 11,3dB at the cost of 3dB extra power with the same
stability and distortion. This result is obtained by an ideal amplifier with ideal components.
The switched capacitor filter contributes some extra distortion by the switching of the
capacitances itself. The maximum reached improvement with a amplifier containing a
switched capacitor filter is approximately 10,5 dB. This factor corresponds to the expected
energy in the first harmonic of a squire wave. A real design of the amplifier will normally
results in less improvement.

The advantages of removing approximately 11 dB energy of the switching ripple go at the
cost of extra energy in the output stage to maintain the same distortion, extra space
requirements on the chip by the capacitances and extra amplifier stages in parallel. It is
possible to create more notches in the output impedance, but this requires extra power
consumption to keep the distortion the same. The benefit of an extra notch is not very large,
because most of the energy of a square wave lies in the first harmonic. It seems that the
advantage of 11 dB not compensate the disadvantages. Under these conditions, it is not
beneficial to design a real amplifier.
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Appendices

A.  Derivation of the output impedance

In this appendix, the output impedance of the amplifier as described in chapter 4.2 is derived.
During the derivations in this appendix, it is assumed that the miller capacitance will
manifest itself at very high frequencies and therefore it is ignored.
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Figure A.1 Amplifier with RLC filter
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B. Coefficients of the Z filter

Starting with a second order Laplace band pass filter:

HI(S):

With three variables:
®p Resonance frequency
Qp Quality factor
k Gain at resonance frequency (not shown in the Laplace function)

Should be transposed by:

1-z7") r-z?+q-z"'+p
H,(z)=H,|2-f =
(2) 1( S1+z“j v-zZ+u-z7 41

First the frequency should be pre-warped:

\ wp
o, =2.fs. tan| —
2f,

Q\_ a):) . 1
"2t o |1+ 1 o |1- 1
el o)) el )
an —tan
2fs 2fs

Next, the variables ‘u” and ‘v’ can be calculated by:

S o o 2
VP o] B
N 2fs N 2fs

The gain at resonance frequency is written by:

_bp-r
S 1-v
The constant ‘q’ is zero, and solving the variables ‘p’ and ‘q’ results in:
p=0.5-k-(1-v)
q=0
r=-p
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C. Design of the five amplifiers
The amplifiers are designed under the assumption that the stability and the major power

consumption are equal. First the values of all the components of the amplifiers are given and
finally the frequency responses of the amplifiers are given.

Different filters used in the amplifier

1) None
2) Ideal inductor

3) Inductor created by a switched capacitor circuit

4) Peak filter using one capacitor

5) Peak filter using eight equal capacitors

Values amplifier 1
gm; = 94 uS gmy
C1 = 1 pF Cmi
R = 2.65 MQ R,

Values amplifier 2
gm; = 66.5 pS gm,
C; =1 pF Cm1
R, = 2.65 MQ R,

Filter stage
gmy; = 27.5 pS  gmp;
L = 4.22 mH Ry

Values amplifier 3
gm; = 66.5 uS gmy
Cq = 1 pF Cm1
R = 2.65 MQ R,

Filter stage
gmy; = 200 us gmyrz
L., = 625 uH Ry

Values amplifier 4
gm; = 66.5 usS gmy
C1 = 1 pF Cm1
R; = 2.65 MQ R,

Filter stage
gmy; = 35 uS gmy2

= 20 mS

5 pF
100 Q@

20 mS
5 pF
100 @

= 20 mS

500 Q

20 mS
5 pF
100 @

20 mS
5 kQ

20 mS
5 pF
100 Q

= 20 mS

cfilter = 50 pF stitch =

Values amplifier 5
gm; = 66.5 pS gmp
C; =1 pF Cm1
Ry, = 2.65MQ R,

Filter stage
gmy; = 27,5 pS gm

10 kQ

= 20 mS

5 pF
100 Q

= 20 mS

Ctitter = 5 PF Rswiteh =

0 Q

gms
Co

gms

= -200us
= 140 pF

— -200uS
— 140 pF

= 6 pF

= -200us
= 140 pF

— 40.5 pF

= -200us
= 140 pF

= 2 pF
= 2.65 MQ

— -200uS

140 pF

= 1 pF
= 2.65 MQ

Cm2 = 100 pF

Cuo = 100 pF

sz = 100 pF

Cm2 = 100 pF

Cuo = 100 pF
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Figure C.1 Output impedance characteristics of amplifier 1, 2 and 3
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Figure C.2 Output impedance characteristics of amplifier 1 and 4
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Figure C.3 Output impedance characteristics of amplifier 1 and 5
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